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Abstract 

Baculoviruses are enveloped, rod shaped viruses with circular, double-stranded DNA 

genomes. These viruses infect arthropods, primarily in the order Lepidoptera, although members 

of this virus family also infect species of Diptera, Hymenoptera, and Crustacea. The majority of 

these viruses undergo a bi-phasic cycle with one phase defined by the production of a budded 

virus (BV) form, responsible for cell to cell transmission, and the other defined by the production 

of an occlusion-derived virus (ODV) form, responsible for host to host transmission. The proto-

typical member of the Baculoviridae family is considered to be Autographa californica M 

Nucleopolyhedrovirus (AcMNPV). Its 133,894 base pair genome is predicted to encode for 156 

proteins, a large number of which are essential for virus replication..  

In this current work, we have further characterized two viral proteins that are highly 

conserved among baculoviruses. The first of these is an ortholog of the fibroblast growth factor 

family of proteins with sequence homology to the Drosophila Branchless protein as well as the 

mammalian FGF- 9, -16 and -20 subfamily. Despite its high degree of conservation among 

Baculoviruses, the viral fibroblast growth factor (vFGF) is considered a non-essential protein, 

although its deletion from the genome does affect the lethality of the virus when ingested per os. 

In our study, we were able to localize vFGF to the membrane of BV. Its presence on the 

envelope affected the ability of the virus particle to bind to both heparin in vitro and to the cell 

surface in vivo, and may play a role in the attachment phase prior to virus entry.  

 We also characterized AcMNPV’s open reading frame 109 (Ac-orf109). Unlike vFGF, 

Ac-orf109 is essential for virus replication since its deletion results in a complete lack of BV 

production. Transmission electron microscopy of cells transfected with an Ac-orf109 deletion 

virus shows the full range of virus-associated structures including mature capsid formation but 

there appears to be a deficiency in capsid egress out of the nucleus. Furthermore, the ODV 

retained in the nucleus appear to lack microvesicular membranes, an essential component for 

host to host transmission of infection.    
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In our study, we were able to localize vFGF to the membrane of BV. Its presence on the 

envelope affected the ability of the virus particle to bind to both heparin in vitro and to the cell 

surface in vivo, and may play a role in the attachment phase prior to virus entry.  

We also characterized AcMNPV’s open reading frame 109 (Ac-orf109). Unlike vFGF, 

Ac-orf109 is essential for virus replication since its deletion results in a complete lack of BV 

production. Transmission electron microscopy of cells transfected with an Ac-orf109 deletion 

virus shows the full range of virus-associated structures including mature capsid formation but 
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CHAPTER 1 - Fibroblast Growth Factors, an Introduction 

Fibroblast growth factors (FGFs) are a diverse family of typically secreted, paracrine 

signaling molecules first isolated from pituitary extracts and characterized as potent mitogens for 

mouse fibroblast cells (Armelin, 1973). Since their initial discovery, FGFs have been found in a 

wide variety of multi-cellular organisms ranging from nematodes, which encode just two FGFs, 

to vertebrates, which encode 18 distinct FGFs and 4 FGF homologous factors (Beeken and 

Mohammadi, 2009; Birnbaum et. al., 2005; Ornitz and Itoh, 2000). While structurally similar, 

these FGFs are functionally diverse, playing roles ranging from pattern determination during 

embryonic development to homeostatic maintenance and metabolism in adults (Itoh, 2007; 

Kharitonenkov, 2009; Olsen et al. 2003). Interestingly, an increasing numbers of studies have 

linked mutations in the vertebrate fgf genes to serious health concerns including several 

aggressive forms of mammary and prostrate cancers, Parkinson’s Disease, and the metabolic 

disorder autosomal dominant hypophosphataemic rickets (Gattineni and Baum, 2009; Itoh, 2007; 

Krejci, et.al., 2009). Because of the serious nature of these illnesses, determining how FGFs 

function, and perhaps more importantly, how these functions can be modulated has been under 

intense scrutiny in the research community. 

What Makes a Fibroblast Growth Factor a Fibroblast Growth Factor? 
There are approximately 300 distinct protein sequences identified by homology as 

fibroblast growth factors in the National Center of Biotechnology Information database (Altschul 

et. al, 1990). Most of these sequences were collected from a diverse array of multi-cellular 

organisms including species of chordates, arthropods, and nematodes with the majority of them 

having been characterized to various extents according to their expression pattern, structure, and 

cellular function. In addition to these somewhat well characterized FGFs, several hypothetical 

proteins with weak structural similarity to the vertebrate basic fibroblast growth factor have also 

been identified in various plants and fungi species, but these have yet to be functionally 

characterized and none of these species appear to encode a corresponding fibroblast growth 

factor receptor (FGFR). Outside of these multi-cellular organisms, proteins similar in sequence 

to fibroblast growth factors have not currently been identified, however orthologs to vertebrate 

FGFs have been discovered in virtually all the genome sequences of the Baculovirus family of 
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arthropod-infecting viruses, opening up interesting speculation as to their function and potential 

roles during virus infection.    

Nomenclature and Classification of Fibroblast Growth Factors  

The first attempt to classify this particular class of proteins was based on the biochemical 

characteristics of two proteins isolated from bovine pituitary extracts which had previously been 

shown to induce cell proliferation in mouse embryonic 3T3 cells (Gospardowicz et. al., 1982; 

Gambrini and Armelin, 1981). The first of these proteins, which was resistant to both urea and β-

mercaptoethanol treatment, was called the ‘acidic’ fibroblast growth factor because it had an 

isoelectric point of 4. The second purified FGF protein, with an isoelectric point above 8, was 

termed the ‘basic’ FGF. Aside from these differences in isoelectric point attributable to overall 

amino acid composition, the ‘acidic’ and ‘basic’ FGFs had remarkably similar functions in these 

early assays and were capable of stimulating cell proliferation at concentrations as low as 10 

ng/mL (Gambrini and Armelin, 1981; Holley and Kiernan, 1974). 

The discovery of multiple and distinct FGFs in vertebrates, with a wide range of 

isoelectric points, made the initial classification of fibroblast growth factors as basic or acidic to 

be largely moot. In its place, attempts to classify vertebrate FGFs by their specific cellular 

function were made, but this quickly proved impossible when it was realized the diverse number 

of roles that FGFs play during development and homeostatic maintenance (Goldfarb, 2005; Itoh, 

2007). The discovery of fibroblast growth factor orthologs in arthropod, nematode, and 

baculovirus species further complicated FGF classification since these factors are somewhat 

divergent from their vertebrate counterparts in both sequence and function. Drosophila’s 

Branchless protein, for example, with an overall size of 770 amino acids (84 kilodaltons) is 

approximately two times larger than the largest known vertebrate FGF and fulfills multiple 

functions throughout the fly’s life cycle. A careful analysis of the Branchless amino acid 

sequence, however, shows it still retains a core element of ~120 amino acids which is markedly 

well conserved ( ~23%) with the vertebrate counterparts. Functional studies have further 

cemented its identification as a vertebrate fibroblast growth factor homolog since it has been 

shown Branchless works as a signal ligand binding to a tyrosine kinase receptor, Breathless, 

similar in structure to vertebrate FGF receptors (Glazer and Shilo, 1991; Sutherland et.al., 1996). 

Because of the diversity seen here, the current acceptable classification of fibroblast 

growth factors is based on two separate criteria— sequence homology of the FGF core region 
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and the ability to stimulate a tyrosine kinase receptor (Goldfarb, 2005). Based on these 

conditions, there are 18 recognized vertebrate FGFs organized into six subfamilies by sequence: 

FGFs 1 (acidic) and 2 (basic) comprise one subfamily, FGF 3, 7, 10 and 22 another; FGFs 4, 5, 

and 6 a third subfamily; FGFS 8, 17, and 18 a fourth subfamily; 9, 16 and 20 a fifth subfamily; 

and FGFs 19 (FGF 15 is the mouse homolog), 21, and 23 a sixth subfamily (Coulier et. al., 1997; 

Ornitz and Itoh, 2004). FGFs 11 through 14 were initially classified as functional vertebrate 

growth factors, but subsequent studies have shown they were incapable of stimulating any of the 

known FGF receptors and have been reclassified as FGF homologous factors (Goldfarb, 2005; 

Olsen et. al., 2003). In addition to these 18 vertebrate FGFs, there are approximately 50 

additional potential FGF orthologs identified in arthropod, nematode, and baculovirus species, 

but only a handful of these proteins have been functionally characterized and shown to work 

through stimulation of a tyrosine kinase receptor.  
The Structure-Function Relationship in FGF Signaling  

The first crystal structures to be reported for vertebrate fibroblast growth factors were for 

the prototypical acidic and basic FGFs (Eriksson et. al., 1991; Zhang et. al, 1991; Zhu et. al., 

1991). Each showed a characteristic tertiary folding of the core domain similar to the closed beta 

barrel formation described initially from the crystal structures of the two cytokines; interleukin 

1α and interleukin 1β (Murzina et.al, 1992). This closed beta barrel, or β-trefoil structure, 

consists of twelve antiparallel β strands arranged into three distinct sheets of four strands each. 

Subsequent crystal structures of FGFs 4, 7, 8, 9, 14, and 19 showed similar core domain 

architectures; however there were several important differences Bellosta et. al., 2001; Harmer et 

al., 2004; Olsen et. al., 2003; Olsen et. al., 2006; Osslund et. al., 1998; Plotnikov et. al., 2001). 

The FGF Heparin Binding Site 

One of the differences identified by comparing the various FGF crystal structures was 

how they interacted with extracellular heparan sulfate proteoglycans (HSPGs).  These 

proteoglycans are remarkably abundant throughout nature and can be found on virtually every 

mammalian cell, but they are far from uniform. In fact, HSPGs can be organized into three broad 

classifications based on how their core proteins interact with the cell surface: glycosyl-

phosphatidylinositol (GPI) anchored HSPGs (glypicans), transmembrane anchored HSPGs 

(syndecans), or secreted HSPGs (perlecan or agrin). Aside from their attachment differences, 

each of these proteins are heavily post-translationally modified beginning in the endoplasmic 
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reticulum where a short linker sequence is attached to specific SGD tripeptide binding sites 

(Costell et. al., 1997; Noonan et. al. 1991). Once the linker sequence is attached to the protein 

core, chain elongation begins in the Golgi with alternate glucuronic acid (GlcA) and N-

acetylglucosamine (GlcNAc) being attached by their respective gluco-transferases. Chains 

constructed in this manner are of widely varying lengths which is illustrated by a visualization 

study of HSPGs from basement membranes which showed 38% variation in length with a mean 

average length of 143 +/- 53 nm (Laurie et. al., 1988).  Once the sugar chains are covalently 

attached to the core protein, they can undergo modification as well via the action of a number of 

cell-specific enzymes. These modifications may include deacetylation and N-sulphation of 

GlcNAc, epimerisation of GlcA to iduronic acid (IdoA), and O-sulphation at the 2, 3 or 6 

position of the disaccharides (Prydz and Dalen, 2000). The variable ratio of these modification 

enzymes, as well as the abundance of the sulfate donor group, 3'-phosphoadenosine-5'-

phosphosulfate, lead to complex sulfation patterns which are tissue- and in some cases cell-

specific (Carlson et. al., 2008). 

The foundation for the interaction of FGFs with HSPGs was initially established before 

crystal structure analysis with work involving the culturing of human endothelial cells. It was 

demonstrated that the addition of heparin (highly sulfated repeating disaccharides similar to 

heparan sulfate, although the sulfation pattern is much greater yielding a very high net negative 

charge to mass ratio) to the culture medium, and not other negatively charged substrates such as 

chondroitin sulfate, dramatically increased cell proliferation even when very low concentrations 

of growth factors were present (Thornton et. al., 1983). Subsequent work showed that the 

addition of exogenous heparin not only affected the mitogenic activity of acidic FGF 

specifically, but that the nature of the heparin-FGF binding relationship could be exploited to 

prepare crude FGF-containing preparations from bovine extracts in a single two-step process 

(Shing et.al., 1984; Thomas et. al., 1985). Even with this early work indicating the importance of 

heparin in FGF signalling, it was clear that not all FGFs interacted with heparin in an identical 

manner. Both basic FGF and acidic FGF, for example, could be purified using a heparin-

Sepharose column but basic FGF had a much higher affinity to heparin compared to acidic FGF 

(Shing et. al., 1985). In addition, basic FGFs mitogenic activity was largely unresponsive to the 

addition of exogenous heparin in endothelial cell cultures while acidic FGF required exogenous 

heparin to stimulate cell proliferation to basic FGF levels (Gimenez-Gallego et. al., 1986). 
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The differential binding and responsiveness to exogenous heparin of the two prototypical 

FGFs led researchers to question the role endogenous HSPG plays in FGF signaling. Early work 

showed secreted FGF bound to extracellular matrix (EM) HSPGs upon exocytosis, independent 

of the presence of FGF-specific receptors, thus forming a readily-releasable pool of signal factors 

(Vlodavsky et. al., 1987).  Later work showed FGF-heparin complexes were protected from 

proteolytic degradation by plasmin, but this protection could be reversed if the cells were treated 

with heparinase prior to plasmin treatment (Saksela et. al., 1988).  In addition, researchers were 

also able to independently demonstrate the role of heparin in FGF-specific signal transduction by 

using cells deficient in their ability to form endogenous HSPG or pre-treating cells to remove 

HSPGs. In either case, FGFs could not bind to or stimulate a FGF-specific receptor or trigger cell 

proliferation (Rapraeger et. al., 1991; Yayon et. al., 1991). This led to the hypothesis that HSPGs 

were acting as low affinity FGF receptors and were essential for FGF signaling (Moy et. al., 

1997). As an extension of this hypothesis, researchers were also able to demonstrate that FGF 

signaling, at least in part, could be controlled by altering the sulfation pattern of HSPGs (Allen 

et. al., 2001; Pye et. al., 2000, Zhang et al., 2009).  

The emergence of other vertebrate FGFs and their similar requirements for HSPG, as 

well as the discovery of the first non-vertebrate FGF, Drosophila’s ortholog Branchless, 

bolstered this hypothesis; however it was still unclear how FGFs physically interacted with the 

negatively charged heparan sulfate (Lin et. al., 1999; Sutherland et. al., 1996). Crystal structures 

of the acidic and basic FGFs in the presence of heparin were able to show that several 

discontinuous, positively-charged amino acid residues, Lys-26, Arg-44, Lys-119, Arg-120, Lys-

125, Lys-129, and Lys-135 on basic FGF and Asn-18, Lys-113, and Lys-118 on acidic FGF, 

were displayed on the protein surface most prominently in the third sheet of the β-trefoil domain 

and entered into extensive hydrogen bond networks with heparin (Eriksson et.al., 1991; Zhang 

et. al, 1991; Zhu et. al., 1991). Deletion of this portion of the β-trefoil domain from basic FGF 

severely reduced the ability of the protein to bind heparin-Sepharose, but did not appear to affect 

receptor affinity in BALB/c3T3 cells (Seno et. al., 1990). A biochemical analysis using site-

directed mutations of basic FGF showed that in addition to the residues initially identified in the 

crystal structure analysis, Asn-27, Arg-81, Thr-121, Gln-123 and Gln-134, also contributed 

significantly to heparin binding in vitro (Thompson et. al., 1994). The identification of these four 

polar, neutral amino acids involved in heparin binding suggests that in addition to electrostatic 
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interactions, there are important non-ionic interactions that help to stabilize heparin-FGF 

complexes perhaps explaining the exclusion of other negatively charged substrates such as 

chondroitin sulfate as binding partners. The divergence in sequence of this core region, among 

the paracrine-acting FGFs at least, also helps to explain their differing affinities for both FGF 

receptor isotypes and differentially sulfated HSPGs (Guilmond and Turnbull, 1999; Moy et. al., 

1997; Plotnikov et. al., 1999; Venkataraman et. al., 1999). 

The discovery of a group of autocrine-acting FGFs (FGF 19, FGF 21 and FGF 23) further 

illustrated the importance of these amino acid residues in binding HSPGs. Each of these FGF 

subfamily members can interact with heparin although with a significantly lower affinity 

compared to the paracrine-acting FGFs (Goetz et. al., 2007; Harmer et. al., 2004). The lower 

binding affinity allows for these FGFs to migrate away from their primary areas of production, 

intestinal epithelial cells, hepatocytes or bone osteocytes, to interact with FGF receptors 

expressed on distant tissues (Kurosu and Kuro-o, 2009). Because of their autocrine-like nature 

and low affinity for HSPGs, these FGFs also require a tissue specific co-receptor to stimulate an 

appropriate FGF receptor. For FGFs 19, 21 and 23, this co-receptor has been identified as β-

Klotho, a single-pass; transmembrane protein expressed primarily in liver, kidney and mature 

adipocytes cells (Kurosu et. al., 2006; Ogawa et. al., 2007; Wu et. al., 2007). Comparison of the 

crystal structures of FGF 19 and FGF 23 with paracrine-acting FGFs, notably FGF 4, have 

shown the core architecture is largely intact, although there is a significant remodeling of the 

third β-sheet (β10 through β12 loops) with the β11 strand adopting a helical conformation and 

distorting the β-trefoil at the c-terminus end (Goetz et. al., 2007; Harmer et. al., 2004).  In 

paracrine-acting FGFs, this area is essential for the specificity of HSPG binding and overall 

stabilization of the specific FGF-FGF receptor complexes; although in autocrine-acting FGFs 

this region may help to stabilize the interaction of the C terminus with β-Klotho (Mohammadi et. 

al., 2005).   

The FGF Receptor 

Another difference identified from comparing structures of the various FGFs involved 

their respective FGF receptor binding domains. Before we can begin this discussion however, we 

first need to understand the key characteristics of this class of receptors. All of the vertebrate 

fibroblast growth factors studied to date, with the exception of the FGF homologous factors 

(FGFs 11-14); interact with at least one of four distinct classes of tyrosine kinase receptor 
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molecules. Each of these fibroblast growth factor receptors (FGFRs 1-4) exist as monomers and 

are composed of three basic elements: an extra-cellular FGF binding domain, a trans-membrane 

domain, and a cellular tyrosine kinase domain (Coulier et.al., 1997; Jaye et. al., 1992; 

Mohammadi et.al., 2005). Sequence analysis of the full length products show these receptors are 

highly conserved with sequence identities between 55 and 72% at the protein level (Johnson and 

Williams, 1993; Itoh and Ornitz, 2004).  The greatest diversion in sequence among the receptors 

occurs in the extra-cellular domain which gives each class certain structurally identifying 

characteristics as well as differing affinities for each of the FGF signal ligands. Still, even with 

this diversity, a major question arises on how signal specificity can occur given a large number 

of signal ligands and a small number of cognizant receptors. 

To answer this question, research has focused on the first tyrosine kinase receptor 

identified as the interacting partner of an FGF signal ligand: FGFR-1. FGFR-1 is considered the 

prototypical FGF receptor, having first been identified as a binding partner with basic FGF 

during a chemical cross-linking study involving baby hamster kidney cells (Neufeld and 

Gospodarowicz, 1985).  The sequence for this receptor was deduced during a subsequent screen 

of phosphorylated tyrosine kinases from a cDNA library constructed from mRNA of chicken 

embryos and from humans in a screen of a cDNA library derived from human placenta and 

umbilical vein endothelial cells (Johnson et. al, 1990; Pasquale and Singer, 1989). Since this 

initial work however, FGFR-1 has been shown to bind nearly all secreted forms of FGFs 

although with markedly differing affinities (Groth and Lardelli, 2002; Zhang et. al., 2006). 

  Structural analysis of human FGFR-1 has shown that the full length receptor (FGFR1-

IIIc) is composed of an extracellular domain, amino acids 40-359, formed into three 

immunoglobulin-like loops labeled D1-D3 (Groth and Lardelli, 2002; Kiselyov et. al., 2006). 

Each of these loops is separated by a short 10-12 amino acid linker sequence; however the linker 

sequence between D1 and D2 is somewhat longer and contains seven consecutive glutamic acid 

residues forming an “acid box” which is critical for binding to cell adhesion molecules such as 

N-cadherin and preventing heparin sulfate from binding to the receptor in the absence of FGF 

(Groth and Lardelli, 2002; Olsen et. al., 2004; Sanchez-Heras et. al., 2004). The intermediate 

transmembrane domain, amino acids 377-462, is well conserved among FGFRs and anchors the 

receptor to the cell membrane. Its α-helical arrangement allows for effective dimerization of 

receptors upon stimulation (Weng et. al., 2008). This dimerization is thought to be essential for 
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receptor signaling because it allows for close association and subsequent trans-phosphorylation 

of the intracellular domain. With human FGFR-1, this intracellular domain, amino acids 462-

822, is composed of 2 consensus tyrosine kinase domains separated by a short linker sequence 

(Johnson and Williams, 1993; Groth and Lardelli, 2002). Mutational analysis has shown that 

there are six auto-phosphorylation sites within the two FGFR-1 kinase domains (Y-463, Y-583, 

Y-585, Y-653, Y-654, Y-730) and one just outside of the terminal kinase domain (Y-766) which 

are instrumental for growth factor induced signaling either through the Ras/mitogen activated 

protein kinase (Ras/MAPK) pathway or the phospholipase Cγ (PLCγ) pathway.  Interestingly, of 

the seven auto-phosphorylation sites, only two (Y-653 and Y-654) are conserved among the 

other three FGFR classes and are considered essential for in vivo phosphorylation for 

intracellular substrates (Mohammadi et. al., 1996). 

In addition to full-length FGFR-1, there are also twelve known receptor isoforms 

corresponding to alternative splice products identified from human, mouse, frog and fish sources 

(Groth and Lardelli, 2002). The human fgfr-1, for example, is organized into seventeen exons 

which encode the full length FGFR-1-IIIc (described previously) as well as two other additional 

receptor isoforms arising from alternative splicing. One of these isoforms, FGFR1-IIIb, is a 

structurally similar to the full-length receptor but lacks the D3 loop of the Ig-like domain due to 

exon skipping (Johnson et. al., 1991). The lack of the D3 loop dramatically alters the affinity of 

the two isoforms for certain specific FGFs with FGFR-1-IIIc preferentially binding to FGF-2,-4,-

6, and -9 while FGFR-1-IIIB binds preferentially to FGF-3, -7, and -10 (Beer et. al., 2000; 

Mathieu et. al., 1995; Miki et.al. 1992; Mohammadi et. al., 1996; Ornitz et. al., 1996). In addition 

to preferential binding of FGFs, the two FGFR-1 isoforms also appear to be expressed 

differentially in tissues with FGFR-1-IIIc being produced primarily in the epidermis, brain, 

kidney, lung, liver and adipocytes while the truncated form is expressed preferentially in the 

brain, pancreas, epidermis, skeletal muscle, testis, and intestine (Beer et. al. 1999; Liu et.al. 

2007).  

Furthering increasing the complexity of this receptor type, the third human isoform, 

FGFR-1-IIIa, is a truncated product lacking both the D3 loop as well as the transmembrane and 

intracellular kinase domain (Johnson et al. 1990; Johnson et. al., 1991). This soluble form of the 

receptor binds to both acidic and basic FGFs, although its affinity for the basic FGF ligand is 

greater than 10 fold higher than for the acidic ligand (Duan et. al., 1992). FGFR-1-IIIa has been 
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detected in blood and retinal fluid and is thought to be an inhibitor of normal FGF signaling, 

specifically basic FGF, by acting as a sink for the ligand preventing it from binding to membrane 

associated FGFR-1 which may help to regulate errant FGF signaling in vivo (Guillonneau et. al., 

1998; Guillonneau et. al., 2000; Hanneken et.al., 1994).  

A quick review of the other three FGFR classes show much of the same variation as 

FGFR-1 including multiple isoforms and localized, tissue specific expression. The two 

predominant human FGFR-2 isoforms, for example, develop from alternative splicing of exons 

eight and nine resulting in a full-length receptor (FGFR2-IIIc) and one missing part of the D3 

loop (FGFR2-IIIb). FGRF2-IIIc appears to be preferentially expressed in epithelial cells and 

binds FGF-1, FGF-2, FGF-4, FGF-6, FGF-9, FGF-16 and FGF-20. Conversely, FGFR2-IIIb is 

predominantly expressed in smooth muscle, bone and kidney tissue and tightly binds FGF-1, 

FGF-3, FGF-7, FGF-10 and FGF-22 (Dell and Williams, 1992; Ornitz et. al., 1996; Zhang et. al., 

2006). Similarly, FGFR3 has three isoforms as well; a full-length FGFR3-IIIc, a smaller FGFR3-

IIIb variant, and a soluble variant FGFR3-IIIS lacking both the transmembrane and kinase 

domains. Each of these appear to be differentially expressed in various tissues and have differing 

affinities similar to FGFR1 and FGFR2 variants (Ornitz et. al., 1996)  Interestingly, FGFR4 has 

only two isoforms; a full-length variant FGFR4 and a soluble variant, sFGFR4, lacking the 

transmembrane and kinase domains (Ornitz et. al., 1996; Shigeo et. al., 2000).  

The FGF Receptor Binding Site 

With an understanding of the basics of FGFR structure, we can now turn our attention 

back to the initial question of what structural features are present on FGFs that allow them to 

interact with and stimulate target receptors. The first rudimentary structural analysis of an FGF 

binding to a target receptor was done with basic FGF modeled onto the extracellular fragment of 

FGFR1 lacking the D1 domain (Plotnikov et. al., 1999). As mentioned previously, the D2 and 

D3 domains of FGFR1 have been shown to be critical for FGF mediated signaling, while D1 is 

considered non-essential.  

The primary interaction between the receptor’s D2 domain and the ligand was mostly 

derived from hydrophobic interactions between discontinuous residues spaced throughout the 

beta-trefoil domain and several well conserved hydrophobic residues of the receptor. A sequence 

alignment of human FGFs shows that these discontinuous residues essential for binding for FGF-

2 are not well conserved with the exception of two tyrosine residues (Tyr-24 and Tyr-103) and a 
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leucine residue (Leu-140) which are present in all FGFs known to interact with FGFR1 

(Mohammadi et. al., 2005a). In addition to the hydrophobic interaction with D2, a tyrosine 

residue (Tyr-33) within FGF-2 engages in hydrogen bond formation with the receptor (Leu-165) 

which helps to orient the D2 domain to maximize the hydrophobic interactions. A sequence 

alignment of the human FGFs shows that only three FGFs (FGFs 7, 10, and 22) lack this tyrosine 

residue which may help to explain itheir lower affinity with respect to FGFR1 (Yeh et al., 2003). 

Interaction of FGF-2 with the linker sequence between D2 and D3 also requires hydrogen 

bond formation with three invariant bonds being formed.  Two of these are formed between the 

amide side chain of an asparagine residue (Asn-104) interacting directly with a highly conserved 

arginine residue (Arg-250) of the linker region. A third bond is formed between this same 

residue and the backbone carbonyl oxygen residue (Plotnikov et. al., 1999). The formation of 

these hydrogen bonds appears to be very important considering all FGFs have residues capable 

of forming 3 hydrogen bonds with the FGFR1 linker sequence with the exception of the four 

FGF homologous factors. In place of asparagine, these FGFs encode a non-polar valine residue 

which is incapable of hydrogen bond formation. This single amino acid change appears to be one 

of the reasons why these factors cannot stimulate any of the know isoforms of FGFRs 

(Mohammadi et. al., 2005a). 

While the interaction between FGF-2 and the D2 domain appears to be quite flexible in 

nature, the opposite is true for its interaction with D3 of FGFR-1. This is due to the extensive 

hydrogen bond formation that occurs between four discontinuous residues of the ligand with the 

receptor. The rigid structural nature of this interface allows for a more traditional “lock and key” 

interaction between the FGFR and the cleft formed at the base of the FGF beta trefoil “barrel” 

(Plotnikov et. al., 1999). A sequence analysis shows that three of the four residues involved in 

the hydrogen bond formation are variable, however a glutamic acid residue (Glu-96) involved in 

hydrogen bond formation with an invariant glutamine residue (Gln-285) of D3 is highly 

conserved among FGFs (Mohammadi et. al., 2005a). The importance of this residue is further 

illustrated by an early work which showed when Glu-96 of FGF-2 was replaced with a non-polar 

alanine residue; there was a subsequent 1600-fold loss of binding affinity to FGFR-1. 

Subsequent replacement of Glu-96 with the polar residue glutamine ameliorated this loss of 

binding significantly with only a 10-fold reduction in binding affinity compared to wildtype (Zhu 

et.al., 1995).  
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Subsequent comparisons of models including FGF-2 complexed with FGFR-2, as well as 

FGF-10 complexed with FGFR2-IIIb, have shown many of the same interactions seen with FGF-

2 and FGFR-1 (Plotnikov et. al., 2000; Yeh et. al., 2003). Interestingly, the models suggest the 

interaction between FGF and D3 domain of the FGFR is one of the key determinants for ligand-

receptor specificity despite the fact that several prominent isoforms of FGFRs lack the full-

length D3 domain. This is due to the interplay of the variable regions of FGFR which, along with 

the various residues of the FGF core domain including Glu-96, help to establish the hydrophobic 

network which facilitate the lock and key binding of the ligand to specific receptors. The limited 

number of models however, makes any conclusions highly speculative at this time. 

Putting It All Together:  FGF Signaling in Brief 
Fibroblast growth factor signaling typically begins with the secretion of mature growth 

factors to the extracellular matrix. To accomplish this, most fgfs encode a bipartite signal 

sequence which targets the nascent protein to the endoplasmic reticulum-Golgi transport 

pathways for efficient secretion (Coulier et. al., 1997). As in most cases, however, there are 

several important exceptions found among the various FGF homologs. For example, vertebrate 

FGFs 9, 16, and 20 all lack definable signal sequences but are still efficiently secreted utilizing 

the endoplasmic reticulum-Golgi transport pathways (Jeffers et.al., 2001; Miyakawa and 

Imamura, 2003; Revest et.al., 2000). In addition, both the prototypical vertebrate FGFs-1 (acidic 

FGF) and 2 (basic FGF) have a nuclear localization sequence instead of a bipartite signal 

sequence but are still exported to the extracellular matrix under certain conditions with the aid of 

cellular cargo proteins (Nickel, 2004; Prudovsky et. al., 2003; Schäfer et. al., 2004).  

Independent of how they are secreted, all FGFs bind to exogenous heparin with near 

equal affinity (Harmer, 2006; Ornitz, 2000). Structurally, this is accomplished through hydrogen 

bond formation between basic amino acid residues, primarily lysine and arginine, on the protein 

surface and the negatively charged sulfate groups on the glycan chains (Baird et.al., 1988; 

Nagendra et.al, 2001; Pellegrini et.al., 2000). The secretion and binding of FGFs to HSPGs on 

the cell surface, besides providing a rapidly-releasable pool of paracrine signaling molecules, 

also provides an additional level of signal complexity to the stimulation of FGF receptors. This is 

accomplished due to the subtle differences in sulfation patterns of the sugar side chains which 

preferentially interact with not only the FGFs but also with the D3 domains of certain FGFR 

isoforms. 
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 Once localized to the extracellular matrix, FGF signaling complexes are biologically 

inactive unless they are released from the cell surface. In mammalian systems, this is 

accomplished through either enzymatic cleavage of the HSPG-FGF complex through the actions 

of either cellular heparanase or matrix metalloprotease or the activity of the fibroblast growth 

factor-binding protein (Ardi et. al., 2009; Matzner et. al., 1985; Vlodavsky et. al., 1990; Wu et. 

al., 1991). Once released, the biologically active complex can interact with nearby cells 

expressing specialized FGF receptors (Supplementary Figure 1). Specific interactions between 

the FGF- HSPG signaling complexes and the various FGFR isoforms are determined by several 

factors including the spatial arrangement of several highly conserved residues within both the 

FGF beta trefoil domains and the invariant D2/D3 loops of the FGFRs as well as interactions 

with the receptor and the variably sulfated HSPGs. The role of the HSPG here is essential for 

signaling because it allows for the localization of multiple FGFs in a finite space, as well as 

helping to mediate the homo-dimerization of two FGFRs which begins the essential 

phosphorylation cascade. 

 
Supplementary Figure 1: Crystal structure (PDB code: 1FQ9) of two FGF-2 monomers 

complexed with HSPG and two monomers of the FGFR-1 receptor, extracellular loop only. 

Binding to HSPG is essential for the binding and dimerization of the cognizant receptors and is 

mediated by a number of positively charged amino acid residues spaced along the surface of the 

FGF. Binding to the receptor is mediated by interaction between the D2/3 domains of the FGFR 

and certain residues of the FGF. Differences in the amino acid profile responsible for interacting 

with the FGFR confer specificity to certain receptors.   
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CHAPTER 2 - FGFs in Action, the Insect Model 

The complexity of the mammalian FGF signaling systems, as well as their redundancy in 

certain biological processes, made, at least early on, the in vivo study of FGFs very difficult even 

within the well established mouse and zebrafish model systems.  Further compounding the 

problem was the lack of any potential FGF-like signal ligands in the single-celled bacterial and 

yeast models. Thankfully for the field, the discovery of a limited number of potential FGF 

homologs in Drosophila melanogaster seemed tailor-made for researchers to be able to study 

basic FGF functions in detail, which could then be potentially translated into the more complex 

signaling systems seen in mammals. The first step in this process, however, was to prove that the 

insect proteins were indeed FGF homologs. 

The Discovery of Branchless 
Like most good scientific discoveries, the finding of a fibroblast growth factor homolog 

in D. melanogaster was precipitated by careful observation and a bit of luck. It was known, prior 

to the isolation of the Drosophila FGF homolog (dFGF) that there was at least one tyrosine 

kinase receptor present with enough sequence identity to be considered a potential FGFR (Glazer 

and Shiloh, 1991; Shishido et. al., 1993). This receptor was found through a low stringency 

hybridization screen using the mouse FGFR-1 sequence as a probe. Only a partial sequence was 

isolated, however, but it predicted a protein structurally comparable to mammalian FGFRs with 

an extracellular Ig-like domain along with its corresponding acidic box, a transmembrane region 

and two distinct intercellular kinase domains. Using embryos at different developmental stages, 

it was also demonstrated that expression of this gene was limited primarily to terminal tracheal 

cells, midline glial cells of the endoderm, and to cells surrounding the wing and genital imaginal 

discs. Furthermore, embryos lacking both copies of this gene showed the formation of tracheal 

pits but lacked any significant branching (Glazer and Shiloh, 1991).  

Subsequent work was able to isolate the full-length mRNA of this potential insect FGFR 

and somewhat surprisingly it encoded not the typical two or three Ig-like loops found in the 

typical mammalian extracellular domains, but five discernible Ig-loops. In addition, there did not 

appear to be any splice variants present in their screen which were seen with the mammalian 

FGFRs. Loss of function mutations of this dFGFR were embryonic lethal with embryos failing to 

develop main tracheal branches from the six progenitor tracheal pits. In addition to the tracheal 
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defects, midline glial cells, which also normally express high levels of the FGFR, did not migrate 

from their anterior starting point to the posterior side of the developing embryo in the mutant 

dFGFR-1 strains (Klämbt et.al., 1992). Because of the loss of branching observed in the trachea 

of the dFGFR mutants, the dFGFR-1 gene was given the name breathless (btl) and work was 

focused on how btl activation was able to coordinate tracheal branching and glial cell migration.  

The first line of evidence to determine how the Drosophila FGFR was functioning was 

done by examining embryos expressing either a dominant negative allele of btl or ones 

expressing a constitutively active form of btl. In embryos expressing the dominant negative 

form, the phenotype was less severe than the complete loss of function btl mutants with the six 

primary tracheal branches forming from the tracheal progenitor cells, but then failing to develop 

any secondary or tertiary tracheal branching. Secondary and tertiary branches could be 

marginally restored in the presence of the dominant negative form of Breathless by co-

expressing a constitutively active form of Ras. This restoration suggested the activation of the 

Drosophila FGF receptor utilized the downstream Ras/MAPK pathway in the same manner as its 

mammalian counterparts (Reichman-Fried et. al., 1994).  

Interestingly, in the embryos expressing the constitutively active form of btl, there was 

also a loss of main branch formation similar to the effect of expressing the dominant negative 

form of btl. If the main tracheal branches were allowed to form prior to the expression of the 

constituitively active form of btl, however, there was a hyper-formation of secondary and 

terminal tracheal branches well beyond what is typically seen in developing embryos (Lee. et al., 

1996). Taken together, this data showed that the function of this growth factor pathway was to 

direct tracheal main tracheal branch formation early in embryogenesis and then direct secondary 

and tertiary tracheal cell migration at later stages. Furthermore, because the number of progenitor 

tracheal cells remained constant even with expression of the constituitively active form of 

breathless, it did not appear that tracheal cell proliferation was under FGF control.  

To answer the question of what was acting as a stimulant for dFGFR activation, 

researchers began looking for potential receptor ligands by inducing genome mutations in 

Drosophila and then screening progeny embryos for the loss-of-function breathless mutant 

phenotype. The results of this screen identified a potential gene target which was appropriately 

named branchless (Bnl) due to the complete loss of normal tracheal development. The predicted 

Branchless protein, based on the nucleotide sequence, was 770 residues in length with a 
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molecular mass of 84 kilodaltons, significantly larger than any known mammalian FGF. The 

expression profile of Bnl showed that it was expressed as early as 1.5 hours into embryonic 

development, peaked between 5-11 hours, and then dissipated until it was undetectable at 16 

hours post fertilization. In situ-hybridization of embryos at different stages showed high levels of 

gene expression in the cells surrounding the tracheal pits where branch points form during 

development. A closer examination showed most of the epidermal cells expressing this protein 

were in direct contact with tracheal cells, and that protein expression pre-dated tracheal branch 

formation in every instance. In several cases however, the branchless-expressing epidermal cells 

were separated from the nearby btl-expressing tracheal cells by short distances suggesting that 

the ligand was secreted and could also act in a gradient-like manner to induce branching 

(Sutherland et. al., 1996). 

The two striking conclusions based on this early work were the relative size of this 

potential FGF ligand in Drosophila, at least compared to known mammalian FGFs, and the 

possible gradient-like manner it could induce motility. A homology search using the bnl 

nucleotide sequence showed there was ~400 nucleotide segment stretching through the middle of 

bnl which corresponded to a beta-trefoil coding sequence similar to the one seen with 

mammalian FGFs. In addition to having a similar internal domain, the nucleotide sequence also 

revealed a clearly defined bipartite signal sequence suggesting that Bnl is a secreted protein 

similar to most mammalian FGFs which is vital for any paracrine-like signal ligand. At the 

protein level, an alignment of just the Branchless core domain with the core domains of the 

prototypical mammalian basic and acidic FGFs showed between 31 and 37% sequence identity 

respectively (Sutherland et. al., 1996).  

The Role of HSPGs in Branchless-mediated Signaling 

Still, with large undefined N- and C-terminal domains, it was not clear whether 

Branchless was a classical FGF or a multi-function chimeric protein which happened to have a 

segment that was structurally similar to mammalian FGFs. One potential way to differentiate 

between these possibilities was to see if Branchless utilized heparan sulfate comparable to 

mammalian FGFs. To assess the role of heparan sulfate in Branchless-mediated signaling, 

researchers used two established fly lines, each with a mutation which inhibits the normal 

formation of HSPGs. One of these mutations, called sugarless, prevents UDP-D-glucose 

dehydrogenase function and results in a complete lack of glucuronic acid, a key intermediate to 
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the formation of not only heparan sulfate but also chondroitin sulfate and dermatan sulfate 

(Häcker et. al., 1997). The second mutation, called sulfateless, lacks a functional N-

deacetylase/N-sulfotransferase. In this mutant, heparan side chains form but lack normal 2-O and 

6-O sulfation patterns (Lin and Perrimon, 1999). Embryos, with loss-of-function mutations in 

either sugarless or sulfateless, were examined for deficiencies in tracheal branch formation 

similar to those seen in btl and bnl mutants. In both cases, there appeared to be a severe loss of 

tracheal branch formation similar to, but not quite as severe as, that observed with either 

deletions of Bnl or Btl (Lin et. al., 1999). Thus, with a βeta-trefoil domain core structure and 

reliance on negatively charged heparan sulfate proteoglycans for activity, even with the large 

undefined N- and C-terminal regions, Branchless appeared to be a bona fide member of the FGF 

family.  

Having already established the role of heparan sulfate in Branchless-mediated signaling, 

the next step was to determine first if a single type of HSPG was involved and second if the 

sulfation patterns of the heparan affected signaling.  Fortunately, in Drosophila, there are only 

four genes which have been identified as encoding distinct heparan sulfate proteoglycans: two 

encode glycipans, one a perlecan and the fourth a syndecan (Perrimon and Bernfield, 2000). One 

of the genes encoding a glycipan was discovered in a screen for cell patterning and division 

defects in Drosophila’s neural development and was called division abnormally delayed, or 

Dally (Nakato et.al., 1995).  The other glycipan gene, Dally-like (Dlp), was discovered in a 

screen of Wingless signaling mutants similar in nature to the screen that identified sugarless and 

sulfateless (Khare and Baumgartner, 2000). The other two HSPG genes, dsyndecan and terribly 

reduced optic lobes (trol), were initially identified based on their sequence similarity to 

mammalian homologs and are the least characterized of Drosophila’s HSPGs (Friedrich et. al., 

2000; Spring et. al., 1994). Of these four, only Dally-like appears to be involved with 

Branchless-mediated tracheal migration, but surprisingly, it does not need to be expressed in the 

epithelial cells producing Branchless but in the tracheal cells expressing the Breathless receptor 

(Yan and Lin, 2007). This suggests Dlp is acting as a low affinity receptor for secreted 

Branchless in the tracheal buds prior to the stimulation of Breathless and in part, explains how 

Branchless can act in a gradient-like manner to determine fine tracheal branching.  

The next step was to determine if the discrete sulfation patterns of the heparan side chains 

of Dally-like affected Branchless-mediated signaling. In mammals, an examination of the 
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structural relationship between receptors and heparan side chains suggested the binding affinity 

of various FGFs to specific FGFRs could be altered by changing the sulfation patterns of the 

HSPGs (Chellaiah et. al., 1999; Mohammadi et. al., 2005b; Pye et. al., 2000; Sanderson et. al., 

2005). To study the role of differential sulfation on the activity of Branchless, two mutant fly 

lines were created which deleted either one or both of the predominant sulpho-transferases in 

Drosophila. Single deletions of either the HS 2-O sulfotransferase (Hs2st) or HS 6-O 

sulfotransferase (Hs6st) genes did not appear to affect development and embryos survived 

through to adulthood. An examination of tracheal branching showed defects in 39% of the Hs6st 

mutant embryos, but only 9% of Hs2st mutants. These defects were significantly less severe than 

those seen with either the deletion of breathless/branchless or sugarless/sulfateless with the most 

obvious deficiency being small breaks in the main dorsal trunk (Kamimura et. al., 2006).  

To try to explain the differences in phenotype between the Hs2st/Hs6st single mutants 

and the sugarless/ sulfateless-mutants, researchers next focused on the sulfation patterns of the 

HSPGs isolated from the adult flies. As expected, the HSPGs isolated in the Hs2st mutants 

completely lacked 2-O sulfation, but there was a concurrent increase in 6-O sulfation which 

restored the net negative charge of the HSPGs to 99.2% of wildtype levels. A similar increase in 

2-O sulfation was also seen in the Hs6st mutant HSPGs suggesting that each of the enzymes 

could increase their activity in the absence of the other. To confirm the compensatory effect of 

the two enzymes, Hs2st/Hs6st double mutants were created but the effects of losing both primary 

sulpho-transferases proved to be embryonic lethal with a complete failure to develop tracheal 

branches. In addition, ectopic expression of the Drosophila dual sulphatase, Sulf1, resulted in an 

overall reduction of charge on HSPGs in adult flies and a significant loss of tracheal branching in 

embryos compared to that seen in the Hs2st or Hs6st single mutants (Kamimura et. al., 2006). 

Interestingly, the same compensatory effect with respect to increased 6-O sulfation patterns has 

been seen in HSPGs of Hs2st-deficient mice. The loss of the 2-O sulfation in mice does reduces 

HSPG binding affinity for both FGF-1 and FGF-2 in vitro by ~30%, but this reduction does not 

appear to significantly reduce FGF-mediated signaling in vivo (Merry et. al., 2000).  Similarly, in 

Xenopus larvae, over-expression of QSulf1, a 6-O specific sulphatase, results in an overall 

reduction in HSPG charge and a concurrent reduction, but not complete loss of, FGFR-1/FGF-2-

mediated signaling (Wang et. al., 2004).  These results, taken together, suggest that the loss of 

single sulpho-transferases may be functionally compensated for in FGF-mediated signaling 
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through the activity of the other enzymes, but a complete loss of sulfation of HSPGs dramatically 

reduces the ability of FGFs such as Branchless to stimulate a cellular response.   

Branchless-mediated Signaling Outside of Embryogenesis 

As discussed in the previous chapter, many of the mammalian FGFs have roles outside of 

embryogenesis, but it was unknown whether Branchless functioned outside of a very strict time 

frame (1.5 to 16 hours post fertilization) during early development (Sutherland et. al., 1996). 

Work by Sato and Kornberg, however was able to detect low levels of branchless expression in 

wing imaginal discs early during the third instar stage of pupae development. These discs are 

composed of four distinct cell types: squamous peripodial cells, columnar epithelial cells, 

adepithilial cells and stalk cells. The peripodial cells undergo a contraction during differentiation 

and give rise to tissues in the mesothorax of the adult fly while the columnar epithelial cells 

expand and give rise to the major wing structures such as the hinge, scutum and notum. The 

adepithilial cells develop into the flight muscles for the wing and make direct contact with other 

epidermal structures including the main tracheal branch. Stalk cells, which are lost during 

maturation, initially serve to hold imaginal disc in place during early development (reviewed by 

Maves and Schubiger, 1999).  Expression of bnl appeared to be restricted to the columnar 

epithelial cells of the disc and gradually increased from early to late instar development. 

Expression of the breathless receptor was also detected in the tissues of the wing imaginal disc, 

although not in the columnar epithelial tissues or the surrounding peripodial cells, but in the 

adepithelial tissue directly adjacent to the main tracheal branch. These adepithelial cells remain 

distinct from trachea by not forming a luminal cuticle, the defining characteristic of traditional 

trachea, and instead develop into three adult air sac tracheoblasts (Sato and Kornberg, 2002).  

The formation of the adult air sac tracheoblasts begins during third instar maturation 

when clusters of btl-expressing cells migrate from the area where the wing hinge forms first 

dorsally, then anteriorally until three distinct clusters form. The migration of these immature 

tracheoblasts in the wing disc is, at least in part, directed by columnar cells expressing 

branchless. Indeed, the expression of an inactive form of Branchless in the wing imaginal disc, 

or ectopic expression of Bnl in tissues surrounding the imaginal disc seriously perturbed the 

proper migration of the Btl-expressing adepithelial cells. Quite surprisingly however, expression 

of a dominant-negative form of breathless in the wing imaginal disc not only resulted in a loss of 

migration, but also a dramatic decrease in the overall number of adepithelial cells. Conversely, 



 19 

expression of the constituitively active form of breathless, or ectopic expression of Breathless in 

the surrounding tissues, resulted in hyper-proliferation of these cells with the end result being the 

formation of additional air sacs tracheoblasts (Sato and Kornberg, 2002). This suggests that in 

the adult, Branchless/Breathless not only provides cues to direct proper cell migration, but also 

acts as a powerful mitogen directing cell proliferation. 

In addition to the formation of adult tracheoblasts, Branchless-mediated signaling has 

also been linked to the proliferation and differentiation of adult neuroblast cells in the second 

instar developmental stage (Barrett et. al., 2008; Park et. al., 2003). The progenitor cells which 

form the adult neuroblast become quiescent during embryogenesis and only proliferate and 

mature during adulthood when levels of the signal ligand Sonic Hedgehog reach a certain 

threshold (reviewed by Datta, 1995). Work with mutant fly strains where branchless expression 

is perturbed in the neuroblast precursor cells has shown a dramatic decrease in Hedgehog levels 

and a lack of neuroblast maturation. Conversely, increasing the amount of Hedgehog in 

immature neuroblasts leads to a concurrent increase in Branchless, and hyper-proliferation of 

neuroblast cells suggesting that the formation of adult neuroblasts works through a positive 

feedback loop involving both branchless and hedgehog expression (Barrett et. al., 2008). 

Interestingly, neuroblast proliferation is greatly decreased when the perlecan-encoding trol gene 

is mutated although it is still unclear whether Branchless or Sonic Hedgehog utilize this type of 

HSPG for signaling (Lindner et. al., 2007; Park et. al., 2003; Voight et. al., 2002). 

Lastly, Branchless-mediated signaling has also been implicated in the formation of the 

male reproductive organ in adult flies. The precursor cells for the male and female sex organs are 

found primarily in the genital imaginal disc and are formed from cells originating in four 

contiguous abdominal segments (AS). The cells of AS-8 give rise to the female genital 

primordium, while AS-9 gives rise to the male genital primordium. Cells of the imaginal disc 

from AS-10 and AS-11 give rise to male- or female-specific analia (reviewed in Sánchez and 

Guerrero, 2001). Some cells which develop into the male organ, however, are not part of the 

imaginal disc but part of the surrounding mesoderm. These cells migrate to the imaginal disc 

filling a space between the anterior and posterior portions during the second and third instar 

stages and form a novel intermediate structure. The migrating cells were shown to be expressing 

breathless, and were migrating in response to branchless expression from cells of AS-9 lineage. 

Upon contact with the imaginal disc, the breathless expressing cells underwent an 
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uncharacteristic differentiation pattern to become epithelial-like forming the paragonia and vas 

deferens structures of the male reproductive organ. In female flies, branchless-expression is 

directly repressed by Dsx-F, which prevents the migration of mesodermal cells to the imaginal 

disc. Indeed, ectopic expression of branchless in the AS-8 primordium of female flies results in 

reproductive organs developing multiple male paragonia, an observation first noted by Hildreth 

in his observation of dsx mutant flies (Ahmad and Baker, 2002).  

The Emergence of Heartless, Pyramus, and Thisbe 

 As work with Breathless/Branchless-mediated cell signaling was occurring, researchers 

had successfully identified three other FGF family members with active roles both during 

Drosophila embryonic development as well as during later larval maturation. The first of the 

“other” FGF genes isolated from Drosophila was a tyrosine kinase receptor, DFGFR-2, found 

exclusively in tissues of mesodermal origin (Klämbt et.al., 1992). DFGFR-2 is structurally 

similar to the mammalian FGFR1-IIIb ortholog with two only Ig-like extracellular loops 

compared to the five Ig-like domains seen with Breathless, a transmembrane domain and two 

discrete tyrosine kinase domains (Shishido et. al., 1993). In embryos, defects in this receptor 

resulted in a loss of mesodermal cell migration in the dorsolateral direction and a failure to 

develop several cell lineages includes those of the visceral mesoderm, somatic muscles and the 

heart. The failure to develop these tissues could be overcome with the ectopic expression of 

decapentaplegic (dpp) suggesting that the receptor, called Heartless due to the mutant phenotype, 

was solely responsible for the loss of cell migration and not cellular differentiation (Gisselbrecht 

et. al., 1996; Bieman et. al., 1996).  

Subsequent work with heartless however, showed that in addition to inducing cell 

migration, the receptor, working through activation of the Ras/MAPK pathway, was also 

responsible for the specification of certain muscle founder cells of the ventral mesoderm (Dutta 

et. al., 2005; Michelson et. al., 1998). These founder cells, which first appear ~7 hours into 

development, are part of the mesoderm that does not migrate over the endoderm during 

development and give rise to specific muscle groups including the lateral somatic muscles (Bate, 

1990). In mutants lacking heartless, the differentiation of these founder cells into somatic muscle 

could be accomplished by either ectopic expression of wildtype Heartless or a constituitively 

active form of Ras (Michelson et. al., 1998). 
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The identification of this second FGFR in Drosophila precipitated the search for 

additional signal ligands since there appeared to be little overlap in the expression patterns of 

heartless and the only known signal ligand in Drosophila, branchless. Using a microarray assay 

to examine gene expression during embryonic development of the neurogenic ectoderm, 

researchers were able to identify two putative FGF-like genes in close proximity with each other. 

Named pyramus and thisbe in reference to the heartbroken lovers of Ovid’s Metamorphoses, 

these two signal ligands are both predicted to have the traditional β-trefoil core domain, with 

sequence identity closest to that of the mammalian FGF 8 subfamily, and a N-terminal signal 

sequence designating them for secretion (Stathopoulus et. al., 2004). In situ hybridization of 

embryos at various stages show broad, overlapping expression patterns of these two signal 

ligands early during embryogenesis, but a discrete expression pattern after germ-band elongation 

is completed. At this time, pyramus appears to be primarily expressed in cells adjacent to nascent 

pericardial cells while thisbe is expressed in the founder cells of the visceral muscle. A large 

chromosomal deletion containing both pyramus and thisbe results in embryos with severe 

gastrulation defects similar to those seen in heartless mutants, but these effects can be partially 

overcome through either the ectopic expression of thisbe or a constituitively-active form of 

heartless (Gryzik and Müller, 2004; Stathopoulus et. al., 2004). Interestingly, single deletion 

mutants of either pyramus or thisbe could be not be generated suggesting perhaps that their 

function, with respect to mesodermal migration during early embryogenesis, is redundant.  

Putting it all together: FGF signaling in Drosophila melanogaster 
To date, there have been three ligands and two receptors identified in Drosophila 

involved with FGF-mediated signaling. Empirical evidence suggests Branchless is the primary 

ligand involved with stimulating the Breathless receptor, while both Pyramus and Thisbe ligands 

interact and stimulate the Heartless receptor. The spacial and temporal expression of the FGF 

genes suggests there is very little overlap in terms of which cells and tissues they control, 

although activation of both Heartless and Breathless appear to both drive cell migration at least 

during the early stages of embryogenesis. Of the three ligands, Pyramus and Thisbe are 

structurally similar to the mammalian FGF-8 subfamily, while the Branchless core domain is 

structurally similar to that of the mammalian FGF-10 subfamily. Unlike any of the mammalian 

FGFs or even Pyramus and Thisbe, Branchless has very bulky N- and C-terminal domains 

flanking the β-trefoil core domain making it by far the largest FGF identified to date. The size of 
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the flanking domains in Branchless may add specificity to the interaction with the abnormally 

large extracellular domain of Breathless.  

Early in embryogenesis, Branchless-mediated stimulation of the Breathless receptor in 

the epithelial cells of the tracheal pits results in the proper migration of these cells to form the 

main tracheal branches. At later stages, after these branches are formed, the same signal cascade 

leads to the formation of secondary and tertiary tracheal branches. Outside of tracheal branch 

formation, Branchless-mediated signaling has also been implicated in the formation of adult 

tracheoblasts from the wing imaginal disc, adult neuralblasts from glial progenitor cells, and the 

male appendage from the genital imaginal disc. In each of these cases, Branchless-mediated cell 

migration plays a significant role in their development, however, in some cases cell proliferation 

has also been observed. It is not clear, however, whether Branchless signaling is driving 

proliferation or another signaling pathway that is tied to the FGF pathways.    

Pyramus- and Thisbe-mediated stimulation of the Heartless receptor early during 

embryogenesis leads to the proper migration of mesodermal cells during embryogenesis. Once in 

the proper position, these cells differentiate into the visceral mesoderm, somatic muscles and the 

heart via the activation of other developmental signaling pathways including Dpp and Sonic 

Hedgehog. The loss of both Pyramus and Thisbe leads to a failure for the mesoderm to migrate 

properly, but this defect could be rescued through the ectopic expression of thisbe alone 

suggesting that Pyramus and Thisbe share redundant functions with respect to mesodermal 

migration patterns. Since single pyramus and thisbe mutants have not been successfully created, 

it is unclear whether they have other unique functions which cannot be complemented. 
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CHAPTER 3 - Baculovirus Fibroblast Growth Factors  

The initial discovery of fibroblast growth factor orthologs outside of multicellular 

organisms was noted with the annotation of the genome sequence of Autographa californica M 

Nucleopolyhedrovirus (AcMNPV), the first baculovirus genome to be completely sequenced and 

often considered to be the prototypical virus of this family (Ayres, et. al., 1994). This putative 

viral FGF (Ac-vFGF) was predicted to be 181 amino acids in length with a cleavable N-terminal 

signal sequence ( amino acids 1-18) targeting it for secretion and an internal β-trefoil core 

domain (amino acids 26-153) with architecture similar to that of the mammalian FGF 9, 16, and 

20 subfamily as well as Drosophila’s Branchless core domain. Subsequent work to demonstrate 

that Ac-vFGF was a bona fide member of the fibroblast growth factor family showed that Ac-

vFGF was indeed a secreted protein capable of binding to heparin and when added to various 

insect cell lines, capable of stimulating cell motility (Detvisitsakun et. al., 2005).  

A second virus genome, Bombyx mori Nucleopolyhedrovirus (BmNPV), sequenced 

shortly after AcMNPV,  was also predicted to encode a FGF (Bm-vFGF) ortholog with the same 

architecture and physical properties as Ac-vFGF suggesting the protein is potentially well 

conserved among baculovirus (Gomi et. al., 1996; Katsuma et.al., 2004). Indeed, forty-eight of 

the fifty-three currently sequenced baculovirus genomes in the National Center for 

Biotechnology Database (NCBI) database encode at least one putatively identified FGF ortholog. 

Of the five exceptions, four are viruses which infect either Diptera or Hymenoptera and are 

limited to replication in the midgut epithelial cells. The fifth virus, Maruca vitrata M 

Nucleopolyhedrovirus (MaviNPV) is the smallest in terms of nucleic acid content of the 

Lepidoptera-infecting baculoviruses and does not encode homologs of a number of highly 

conserved baculovirus genes including vfgf, odv-e66, and hcf-1 (Chen et. al., 2008). An 

alignment of the vFGF orthologs present in the remaining forty-eight Lepidoptera-infecting 

baculoviruses shows a sequence identity of between 30 and 70 percent. This high degree of 

conservation with respect to viral FGFs seen among these viruses suggests a critical role or roles 

during the infection process. To hypothesize what these potential roles could be, however, 

requires us to step back and first understand about how baculoviruses typically replicate in their 

host organisms. 

Baculoviruses in Nature 
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Baculoviruses are double-stranded DNA, enveloped viruses which infect Arthropods, 

primarily in the order Lepidoptera although other members of this virus family, infecting both 

Diptera and Hymenoptera species, have been studied with several of their genomes sequenced 

(Afonso et.al., 2001; Duffy et. al., 2006; Garcia-Maruniak et. al., 2004; Lauzon et. al., 2004). 

Within the family of baculoviruses, members are divided into four major genera: Lepidoptera-

infecting Nucleopolyhedrovirus (NPVs), Lepidoptera-infecting Granuloviruses (GVs), 

Hymenoptera-infecting NPVs and Diptera-infecting NPVs (Jehle et. al., 2006) The distinction 

between these two Lepidoptera-infecting genera is based on the major protein component of their 

occlusion bodies (OBs), although there are other cytopathological differences which can also be 

used to distinguish them such as whether the nuclear membrane remains intact upon infection 

(NPVs) or dissociates (GVs) (Federici, 1997). Within the Lepidoptera-infecting NPVs, there is 

often an additional subdivision based on whether the virus encodes a homolog of the envelope 

protein GP64 (Group I NPVs) or a homolog of the envelope F protein (Group II NPVs) (Herniou 

et. al., 2003).  

Within these classifications,  there appears to be an extensive amount of diversity 

between the baculovirus with only thirty highly conserved “core” genes common to all (reviewed 

by Herniou and Jehle, 2007; McCarthy and Theilmann, 2008). Analysis of the viral genomes 

using bioinformatic tools shows the greatest sequence divergence present in the genomes of 

Hymenoptera- and Diptera-infecting NPVs, while most conservation occurs among the Group I 

NPVs (reviewed by Harrison, 2009). The ample diversity seen among the genomes of the various 

baculovirus may in part be due to the co-evolution of the pathogen with its arthropod host 

(Herniou et. al., 2004). This hypothesis helps to explain the functional specialization of certain 

viral proteins as well as the narrow host range of the majority of baculovirus studied to date 

(Miller and Lu, 1997). Unfortunately, this hypothesis also makes it difficult to formulate broad 

assumptions about baculovirus, particularly when it comes to examining host-pathogen 

interactions. Still, despite these limitations, we can look at overall patterns of infectivity and 

come to some idea of how baculoviruses function in nature.    

The Beginning of the End: Ingestion of the Occluded Virus  

The Lepidoptera-infecting baculoviruses traditionally have a bi-phasic replication cycle 

with one phase devoted to the production of a budded virus (BV) which systemically spreads the 

infection throughout a single host, and a second phase devoted to the creation of an 
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environmentally-stable occluded virus form (reviewed in Cheng and Lynn, 2009 and Federici, 

1997). baculoviruses infecting species of Hymenoptera and Diptera are somewhat atypical 

because there does not appear to be a sustained budded virus phase and virus spread is limited to 

the insect midguts, the initial site of infection.  Due to this atypical nature, for the remainder of 

the discussion, we will focus solely on Lepidoptera-infecting baculoviruses unless otherwise 

noted.  

Among Lepidoptera-infecting baculoviruses, the occluded form of the viruses is 

characterized by small cuboidal bodies composed of infectious occlusion-derived virus (ODV) 

embedded in a para-crystalline protein matrix and surrounded by an outer calyx sheath. The 

protein component of this matrix can be composed primarily of either polyhedrin or granulin, 

and while these proteins share several significant characteristics such as relative size and amino 

acid composition, they are functionally divergent (Summers and Smith, 1975). This divergence 

is easily seen in the morphology of the two occlusion bodies with polyhedrin-based occlusions 

having a variable number of ODVs per occlusion, while the occlusions composed of granulin 

contained only a single encapsulated virion (reviewed by Hilton, 2008 and Theilman and 

Blissard, 2008). These morphological differences attributed to the matrix proteins may in part be 

explained by their ability (or inability) to interact with other viral proteins required for efficient 

occlusion body formation. For example, attempts to pseudotype the polyhedrin gene in AcMNPV 

with the granulin gene from Trichoplusia ni granulosis virus (TnGV) resulted in a few large, ill-

defined occlusions virtually devoid of ODV (Eason et. al., 1998). Interestingly, a similar attempt 

to pseudotype the polyhedrin gene in AcMNPV with the nearly identical polyhedrin gene (97% 

identity) from Spodoptera frugiperda M Nucleopolyhedrovirus (SfMNPV) met with a similar, 

albeit less severe, phenotype suggesting that even subtle differences in the structure of 

polyhedrin can lead to significant defects in occluded virus assembly (Gonzalez et. al., 1989).  

Typically, viral occlusions deposited on foliage from previously infected hosts are 

ingested by Lepidoptera larva inadvertently during feeding. These occlusions pass through the 

foregut of the insect and enter into the insect midgut. Unlike other holometabolous insects, the 

midgut environment of Lepidoptera larva is alkaline with a pH range between 8 and 12 

depending upon larval stage and diet (Chapman, 2007). This basic pH causes the polyhedrin or 

granulin matrix to dissociate releasing the embedded ODV, which can then infect the epithelial 

and regenerative cells lining the midgut of the insect (Granados and Lawler, 1981; Ji et. al., 
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2010). In order for this to occur, however, the ODV first must bypass the insect’s protective 

peritrophic membrane. 

The peritrophic membrane of most Lepidoptera species is a semi permeable barrier 

surrounding the nutrient-absorbing epithelial cells of the insect midgut and extending posteriorly 

into the insect hindgut. It is composed of various proteins, glycoproteins, proteoglycans, and 

poly-(1,4)-N-acetyl-D-glucosamine (insect chitin), although the exact make-up and distribution 

of these components widely varies between insect species. Specialized cells forming the cardia 

or proventriculus of the anterior midgut secrete the peritrophic membrane as a continuous sheet 

so that it appears sieve-like with openings just 2-6 nanometers (nm) in diameter (reviewed in 

Lehane, 1997). Since the diameter of a single, typical baculovirus capsid is significantly larger 

(50-100 nm) than the openings of the peritrophic membrane, simple diffusion across the 

membrane is considered impossible so alternative methods of entry must be employed (Khosaka 

et.al., 1971; Tweeten et. al., 1977).  

One alternative method to bypass the peritrophic membrane employed by a number of 

Baculoviruses, most notably the Lymantria dispar M  Nucleopolyhedrovirus (LdMNPV) and 

Trichoplusia ni granulosis virus (TnGV), is to produce a modified matrix metalloprotease similar 

in structure to bacterial enhancin proteins. These viral enhancins are incorporated into the 

envelope of the occlusion-derived virus and work to degrade the peritrophic membrane 

immediately prior to midgut infection (Lepore et. al., 1996; Slavicek and Popham, 2005). 

Sequence analysis of the baculovirus genomes however, shows that a large number (40 out of 

53) do not encode a suitable metalloprotease, but work with AcMNPV, which does not encode 

an enhancing protein, suggests that other unknown viral factors may also help to degrade the 

peritrophic membrane (Derksen and Granados, 1988). In addition, it has also been hypothesized 

that viruses lacking metalloproteases may use small breaks in the peritrophic membrane arising 

naturally from the feeding of course plant materials although more study of this subject needs to 

be done at this time (Plymale et. al., 2008).   

Once past the peritrophic membrane, the baculovirus ODV attaches to the brush boarder 

membrane of the epithelial midgut cells via the interaction of an unknown cellular receptor. The 

close proximity of the viral and cellular membranes allows them to fuse, internalizing the capsids 

and establishing the primary site of infection (Granados, 1978; Granados and Lawler, 1981; 

Horton and Burand, 1992). Studies of AcMNPV infections of various susceptible hosts have 
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demonstrated the initial attachment of the virus particle to the midgut epithelial cell is mediated 

by three highly conserved per os infectivity factors (Pif): P74, Pif-1 (Ac119) and Pif-2 (Ac022). 

These three factors are found on the envelope of the ODV particle and mediate both attachment 

and entry into the target cells (Haas-Stapleton et. al., 2004; Ohkawa et. al., 2005). Two other per 

os infectivity factors, Pif-3 (Ac115) and Pif-4 (Ac096) have also been shown to affect the initial 

establishment of infection in the midgut epithelial cells, but their exact roles have not been 

determined to date (Fang et. al., 2009; Ohkawa et. al., 2005). 

Once internalized into cells, viral capsids are trafficked to the cytoplasmic side of the 

nuclear envelope via interaction of the major capsid protein, VP39, with the host’s filamentous 

actin (Charlton and Volkman, 1993; Lanier and Volkman, 1998; Lu et. al., 2002). To start the 

infection process however, the genetic material inside the capsid must somehow either exit the 

capsid and transverse the nuclear membrane, or the capsid itself must be transported across the 

nuclear envelope, perhaps through nuclear pores, prior to uncoating and DNA release. Which of 

these two alternatives occurs with baculovirus infections is not currently known although the 

limited amount of evidence suggests the latter hypothesis may be correct since empty capsids 

have been detected in the nuclei of newly infected cells (Granados and Lawler, 1981). Certainly, 

before this hypothesis is widely accepted though, much more work needs to be done in this area.   

Not all capsids internalized into cells share the same fate, however. Several studies 

examining the initial stages of infectivity of AcMNPV, which contain multiple capsids within a 

single envelope, and Helicoverpa zea single Nucleopolyhedrovirus (HzSNPV), which consists of  

a single enveloped capsid, suggests when multiple capsids are present in the cell not all of them 

will be transported to the nucleus. Instead, many will be quickly repackaged as budded virus to 

establish secondary infections in the surrounding epithelial cells within two hours of the 

establishment of the primary foci (Flipsen et. al, 1995; Washburn et. al., 1999; Washburn et. al., 

2003). Rapid establishment of the infection throughout the midgut and subsequent escape to the 

hemocoel is thought to be beneficial to the virus since many Lepidoptera species routinely 

slough their midgut cells prior to pupation and in some cases in response to viral or bacterial 

infection (Engelhard and Volkman, 1995; Hakim et. al., 2010; Washburn et. al., 2003). What 

factors determine whether a virus capsid will enter the nucleus or become repackaged is not well 

understood at this time. 

The Second Phase: Production of Budded Virus 
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The dissociation of the capsid and release of the genome into the nucleus begins the 

process of virus replication and the production of budded virus. To achieve the initial burst of 

budded virus production prior to a potential host response, the patterned expression of viral 

genes is temporally regulated at the transcription level. This ensures that adequate levels of 

necessary viral proteins are available to quickly produce BV prior to the production of proteins 

required for ODV formation (Friesen, 1997). Extensive work temporally mapping viral RNA 

transcripts showed three distinct phases of gene expression, with only a small number of viral 

genes, such as the GP64 gene from AcMNPV, expressed through multiple phases (Friesen and 

Miller, 1988; Lübbert and Doerfler, 1988; Wood, 1980; Zhou et. al., 2003).  

The immediate early and early phases of viral gene expression begins upon the release of 

the viral DNA in the nucleus and lasts for roughly four to six hours until the onset of viral 

genome replication. During these phases, gene transcription is α-amanitin sensitive suggesting 

the virus exclusively utilizes the host’s DNA-dependent RNA polymerase II to produce viral 

mRNAs (Huh and Weaver, 1990; Theilmann and Stewart, 1991). Analysis of the upstream 

sequences of early transcribed genes show genetic elements that are remarkably similar to known 

arthropod promoter sequences including a TATA binding protein site (TATAA motif) 25 to 31 

nucleotides upstream of the +1 initiator start site (consensus CAGT) as well as downstream 

activating region elements (consensus CACNG) (Blissard et. al., 1992; Cherbas and Cherbas, 

1993; Kogan et. al., 1995; Pullen and Friesen, 1995).  Together, these cis-acting elements 

provide a high basal level of transcription for viral genes which must be synthesized prior to viral 

DNA replication and late gene expression.  

Examples of viral products from AcMNPV infections produced during this early phase 

include the major trans-activating proteins IE1 and IE2, the four subunits for a novel DNA-

dependent RNA polymerase, and the anti-apoptotic factor p35. In addition to these proteins, 

there are at potentially twelve other viral products, termed late expression factors (lefs), which 

must be expressed during the early phases in order for efficient late gene expression to occur 

(Todd et. al., 1995; Rapp et. al., 1998). The expression of either the F protein or GP64, the two 

major budded virus envelope proteins, also begins during this phase and may be required for 

efficient repackaging of the capsids derived from ODV.  

The late phase of gene transcription begins with the synthesis of viral DNA within the 

nucleus of infected cells and persists for roughly eighteen hours. During this phase, host gene 
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and early viral transcription declines while late viral gene transcription under the control of a 

promoter element with the common initiator site, (A/G/T) TAAG, increases. This initiator site is 

not recognized by the host polymerase, but by the novel, virally-encoded DNA-dependent RNA 

polymerase II (reviewed by Passarelli and Guarino, 2007). The exact mechanism for the switch 

from host polymerase to viral polymerase is not completely understood, but several reports 

suggest that a number of the late replication factors responsible for viral DNA replication also 

trigger a cellular reaction similar to the DNA damage response in vertebrates (Du and Thiem, 

1997; Schultz and Friesen, 2009).  

In insect cells, this DNA damage response leads to an arrest of the cell cycle at the G2 

phase along with a noticeable enlargement of the nuclei of infected cells coinciding with the 

displacement of the cellular genomic material to the periphery of the nucleus (Braunagle et. al., 

1998; Knudson and Harrap, 1975). Along with these obvious morphological changes, there is a 

concurrent reduction in global host protein synthesis and in some cases, with the absence of the 

viral anti-apoptotic p35 gene, eventual cell death (Schultz and Friesen, 2009). One interesting 

avenue of speculation is that the induction of the DNA damage response by baculovirus infection 

was an early anti-viral response designed to limit the spread of the virus. This anti-viral response 

was later circumvented by the virus’s acquisition and adaptation of a DNA-dependent 

polymerase and anti-apoptotic factors which allowed the virus to maintain high levels of protein 

synthesis despite the loss of the cellular transcription machinery. 

Examples of genes expressed during the late phase of AcMNPV infections include the 

nine virus structural genes such as VP39 and vp80 as well as genes encoding viral proteins 

essential for assembly of the mature budded virions (Thiem and Miller, 1989; Wu et. al., 2008). 

With sufficient copies of the viral genome present, assembly of the complete viral capsids begins 

during this phase as well. Thin-section micrographs of infected cells during this time frame have 

shown that this assembly takes place in an electron dense, sub-nuclear compartment called the 

virogenic stroma (Frasier, 1986).  

Early work on the structure of this sub-nuclear compartment showed it was composed 

primarily of filamentous proteins but extracted stroma proved to be sensitive to treatment with 

both DNAse and RNAse suggesting a nucleic acid component as well (Frasier, 1986; Young et. 

al., 1993). Further studies of cells infected with Bombyx mori Nucleopolyhedrovirus (BmNPV) 

demonstrated that in addition to the filamentous proteins, several viral structural proteins as well 
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as a number of proteins associated with genomic replication co-localize in the virogenic stroma. 

These proteins include the major structural protein, VP39, the major trans-activation protein IE1, 

the single-stranded binding protein (LEF-3), and the DNA helicase P143 (Kawasaki et. al., 2004; 

Nagamine et. al., 2006). Because of these studies, is now thought that the virogenic stroma is the 

site of both DNA replication and capsid assembly and that the lattice-like structure of the stroma 

provides a unique scaffold for the rapid and efficient assembly and packaging of virus capsids 

(Charlton and Volkman, 1991; Kawasaki et. al., 2004) 

Once capsids are assembled and packaged during this late phase, they must exit out of the 

nucleus to start the process of becoming infectious BV. Electron micrographs of infected cells 

during this phase suggest capsids assembled in the virogenic stroma migrate to the periphery of 

the nucleus. There, the capsids orientate themselves perpendicular to the nuclear membrane and 

egress occurs through a budding process similar to the one seen upon exit from the cell even to 

the extent that the capsid acquires a nuclear membrane-derived envelope which is subsequently 

shed (Granados and Lawler, 1981). An early study done with a temperature sensitive mutant of 

AcMNPV, defective in BV production at higher temperatures, suggested that the capsid egress is 

mediated by a nuclear membrane-associated protein, GP41 (Olszewski and Miller, 1997). Since 

then, subsequent studies of AcMNPV deletion mutants have suggested that a variety of other 

highly conserved, structural proteins including Ac66, Ac98, and Ac141 also play a significant 

role in efficient virus egress out of the nucleus, perhaps by directing the association of the 

capsids with cellular transport proteins and/or microtubules (Fang et. al., 2007; Fang et. al., 

2009; Ke et. al., 2008; Wu et. al, 2008). 

 Capsids move through the cytoplasm to locations along the interior of the surface cell 

membrane where they will eventually exit the cell. In AcMNPV-infected midgut epithelial cells 

of Trichoplusia ni larva, BV egress appears to directed almost exclusively to the basal and lateral 

surfaces of the cells which are highly enriched in the viral envelope proteins GP64 and F protein. 

Studies using other tissues such as fat body and in cell culture, however, have noted GP64 

localization appears to uniform across the entire cell surface suggesting BV egress is only 

directed in columnar epithelial cells of midgut lineage (Blissard and Rohrman, 1989; Keddie et. 

al., 1989; Pearson et. al., 2001). The tissue specific differences in BV egress sites may provide a 

proliferative advantage for the virus since any BV released from the apical surface of midgut 

epithelial cells would be released into the alkaline environment of the midgut lumen where it 
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would quickly be inactivated. By directing a baso-lateral exit, the virus is increasing the 

likelihood that the BV produced in this early phase would be used to establish secondary foci 

   The exact mechanism which allows the capsid to exit the cell and acquire a cellular-

derived envelope is not well understood, however the major envelope protein GP64 has been 

shown to play a significant role in the process. In AcMNPV, GP64 is an abundantly expressed 

transmembrane protein with a heavily glycosylated extracellular domain and a very short, seven-

amino acid, cytoplasmic domain. An early study with a virus having an insertional mutation in 

gp64 demonstrated a lack of cell to cell virus transmission both in vitro and in vivo (Monsma et. 

al., 1996). This result was somewhat expected considering a previous work had already 

demonstrated GP64 was essential for membrane fusion under low pH conditions, a step 

necessary for BV entry into cells via absorptive endocytosis (Blissard and Wenz, 1992; reviewed 

by Marsh and Helenius, 2006). What was unexpected however was an inability to detect non-

infectious budded virus progeny in the supernatant of primary infected cells. This result 

suggested that GP64 had another important function in addition to membrane fusion related to 

virus egress out of the cell. 

A subsequent study using a gp64 deletion mutant showed virus capsids were able to exit 

the nucleus and enter into the in the cytoplasm of infected cells, but were then unable to egress 

from the cell without GP64. A comparison of a series of C-terminal GP64 truncation mutants 

showed that the BV egress-function involved the cytoplasmic domain and at least a portion 

(seven amino acids) of the transmembrane domain (Oomens and Blissard, 1999). A more recent 

study has further refined this work and in addition to this essential C-terminal region, four 

conserved amino acids of the extracellular domain (T463, G460, G462, and G474) were also 

needed for efficient virus egress (Li and Blissard, 2009). How these various domains and amino 

acids direct the budding and acquisition of the viral envelope is still unknown, although it has 

been speculated that the amino acids of the C-terminal domain make direct contact with viral 

capsid proteins and through a conformation change work to pull the capsid through the 

membrane (Westenberg and Vlak, 2008). 

 

 

The Third Phase: Dissemination of Budded Virus and Systemic Infection  



 32 

 In the pathway of infection of a permissive Lepidoptera host, the production of budded 

virus is first detected with the establishment of secondary infections of midgut columnar and 

goblet cells as well as the pluripotent midgut stem cells. Depending upon both the host’s 

developmental stage and virus used, the advancement of virus infection throughout the midgut 

occurs between four and eight hours post inoculation with ODV (Barrett et. al., 1998; Hass-

Stapleton et. al., 2003; Washburn et al., 1995). This initial spread of infection is driven by the 

release of budded virus from the basolateral surface of the infected epithelial cells which is then 

able to spread laterally to infect nearby cells. The process of infecting these cells by BV is 

similar to the initial infection of the cells by ODV, however there are some subtle differences. 

Budded Virus Attachment 

 To establish the primary infection, ODV attach to the surface of epithelial cells via an 

unknown cellular receptor. The same is true for BV. An early study of AcMNPV using several 

permissive and non-permissive cell culture lines showed that the attachment of BV could be 

inhibited by pre-treating the cells with Proteinase K or trypsin immediately prior to infection. In 

addition, kinetic studies showed virus attachment was saturable for both cell lines permissive for 

AcMNPV infection (6,000 and 13,700 binding sites per cell), and  non-permissive for infection  

(600 binding sites per cell) (Wickham et. al., 1992). The large difference in the number of 

available binding sites on cells suggests receptor mediated attachment may be one of limiting 

steps for the establishment of baculovirus infections among various hosts.  

To identify the viral components responsible for AcMNPV attachment, research initially 

focused on the major glycoprotein found on the virus envelope, GP64. Early work using a 

monoclonal antibody (AcV1) against an undefined epitope of GP64 demonstrated that it could 

interfere in a dose dependent manner with the attachment of AcMNPV to permissive cells 

(Volkman and Goldsmith, 1984). The follow up study using the same antibody under more 

controlled conditions, however, suggested that the neutralizing effects of the antibody were 

primarily due to its interfering with the membrane fusion activity of GP64 and not its role in 

receptor-mediated attachment (Volkman and Goldsmith, 1985) Subsequently, a more refined 

approach was utilized with antibodies against specific segments of the extracellular domain of 

GP64. This work showed the N-terminal region of GP64 (amino acids 21-159) was essential for 

receptor-mediated attachment. Still, even with this refined approach, roughly 30% of virions in 
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this study still bound to the cell surface suggesting additional viral proteins could be involved in 

attachment (Zhou and Blissard, 2008). 

In AcMNPV, as well as a number of other Lepidoptera-infecting baculoviruses sequenced 

to date (Group I NPVs), the other major viral protein present on the BV envelope is the F 

protein. Several studies have demonstrated that AcMNPV’s F protein homolog, Ac23, is a non-

essential protein which cannot functionally substitute for GP64 primarily because a mutation in 

its furin-cleavage site makes it unable to induce membrane fusion (Long et. al., 2008; Monsma 

et. al., 1996; Pearson et. al., 2000). That is not to say however that the F protein from Group I 

NPVs is completely non-functional or incapable of receptor interaction. In fact, a study has 

shown that the deletion of ac23, while not having an effect on BV production in cell culture, 

does delay host mortality (~24 hours) during a per os infection (Lung et. al., 2003). In addition, 

work with BV of a mutant AcMNPV lacking ac23 showed a much more significant decrease in 

attachment in the presence of the anti-GP64 neutralizing antibodies than the wildtype BV 

suggesting that it also functions as a viral attachment protein similar to, but not with the same 

efficacy as, GP64 (Zhou and Blissard, 2008).  

This finding is supported by evidence from the other class of NPVs (Group II) as well as 

Granuloviruses (GVs) which do not encode a gp64 homolog but instead have a single copy of F 

protein. Several studies have demonstrated F proteins from Group II NPVs are localized to the 

BV envelope and facilitate attachment of the virus particles to cell membranes, although from 

competition experiments it is clear that the F protein utilizes a cellular receptor distinct from that 

employed by GP64 (Pearson et. al., 2000; Wickham et. al., 1992; Westenberg et. al., 2007). In 

addition to attachment, the F protein homologs from Group II NPVs and GVs all appear to have 

intact furin-cleavage sites which would allow them to retain their function as membrane fusion 

proteins (IJkel et.al., 2000; Long et. al., 2007;; Westenberg et. al., 2004). Similar to the 

phenotype observed with the deletion gp64, the deletion of the F protein from Group II NPVs 

results in a complete lack infectious BV production although it is unknown at this time whether 

this phenotype is due to a loss of BV egress out of the cell or the inability of the BV lacking F 

protein to attach to cells or uncoat after internalization (Westenberg and Vlak, 2008). 

Interestingly while the effects of gp64 deletion in AcMNPV can be somewhat rescued by the 

expression of several Group II F proteins, the converse is not the case since the expression of 

gp64 is completely unable to compensate for the loss of F protein in a Group II virus (Lung 
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et.al., 2002; Westenberg and Vlak, 2008). This result makes it tempting to speculate that Group 

II NPV F proteins have additional essential functions or unique interacting partners which GP64-

expressing viruses do not have or need. 

Budded Virus Entry 

After the process of attachment, BV need to enter into the cell to establish an infection. 

One potential pathway of entry for BV, receptor-mediated endocytosis, was discovered initially 

by Volkman and Goldsmith with their work with AcMNPV and the α-GP64 antibody, AcV1. In 

their experiments, however, there appeared to be a small fraction of neutralized BV that attached 

to cells but then still entered through a process involving membrane fusion, similar to that seen 

with ODV mediated entry (Volkman and Goldsmith, 1985; Volkman et. al., 1986). Concurrent 

with these experiments, work with another Group I NPV closely related to AcMNPV,  

Trichoplusia ni M Nucleopolyhedrovirus (TnMNPV), seemed to support membrane fusion as the 

primary entry mechanism for BV, and not receptor-mediated endocytosis. This membrane fusion 

peaked 30 minutes post incubation of BV with permissive Spodoptera frugiperda (Sf9) cells and 

appeared to be pH dependent. In addition, the fusion could be significantly increased in the 

presence of the enhancin protein, a metalloprotease, from Pseudaletia unipuncta granulosis virus 

in a manner similar to what was seen with ODV entry (Kozuma and Hukuhara, 1994). Together, 

these two differing results suggested that entry of BV into permissive cells could occur through 

either a membrane fusion process or a receptor-mediated endocytosis process, or a combination 

of both. 

To resolve the issue, researchers first looked at AcMNPV BV entry into permissive cells 

in  the presence of chloroquin and sodium azide, two adsorptive endocytosis inhibitors which 

would not affect membrane fusion. As was the case with neutralizing antibody AcV1, there was 

a decrease (~50%) in BV entry when chloroquine was applied to cells and a significant decrease 

(<95%) when sodium azide was applied. There also appeared to be no visual evidence of 

membrane fusion and, unlike the previous study by Kozuma and Hukuhara, the addition of the 

enhancin protein from TnGV did not improve BV entry  (Wang et. al., 1997). Subsequent studies 

on the kinetics of entry demonstrated BV were internalized into Sf9 cells within 20 minutes after 

attachment via clatharin-mediated endocytosis. The periodic addition of ammonium chloride to 

Sf9 cells to prevent the acidification of the endosomes showed that release of virus from these 

vesicles occurred 15 to 30 minutes after initial internalization (Hefferon et. al., 1999; Long et. 
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al., 2006). The process of membrane fusion between the viral envelope and the endosome, a step 

essential for the eventual release of the capsid into the cell, was shown to be mediated by either 

homo-trimeric GP64 complexes or proteolytically active F protein complexes under low pH 

conditions (Long et. al., 2008; Markovic et. al., 1998). After BV are released from the endosome, 

they are trafficked to the nucleus in the same process as capsids derived from ODV and the 

infection cycle begins anew.  

   Escape from the Midgut 

As mentioned previously, the rapid establishment secondary infections in the midgut 

epithelial cells of a susceptible host is essential for a successful baculovirus infection, but it 

cannot be the only tissue susceptible to BV attachment and entry. Somehow, during the course of 

infection, the virus must move beyond the tissues of the midgut into the hemocoel of the host in 

order to avoid being shed when the midgut is sloughed. Inhibiting the movement of virus into the 

hemocoel is a natural physical barrier, the basal lamina, which serves to exclude large particles 

such as virions by both size and charge (Lieleg et.al., 2009; Reddy and Locke, 1990; Summers, 

1971). It is secreted by virtually all epithelial cells as a continuous sheet with two visually 

distinct layers. The uppermost layer, the lamina lucida, is primarily composed of the 

glycoproteins laminin and entactin, and minor components such as integrins. The lower layer, the 

lamina densa, forms a mesh like layer consisting of type IV collagen coated by perlecan 

(Chapman, 1998; Hynes and Zhou, 2000). Together, these layers form a continuous mesh-like 

structure which effectively prevents the virus from budding out of the infected midgut epithelia 

and directly entering the insect hemocoel. Much like the case with the other physical barrier, the 

peritrophic membrane, Lepidoptera-infecting NPVs may have developed a rather effective 

means of bypassing the restrictions of the midgut basal lamina; they simply utilize the gas 

exchange conduit which transverses the entirety of the host, the insect tracheal system 

(Engelhard et. al., 1994). 

Similar to the tracheal system briefly described earlier for Drosophila melanogaster 

larva, the tracheal network of Lepidoptera larvae originates from the cuticle of the insect. It 

begins with a series of external openings called spiracles arranged along the side of the insect 

which can be manually opened and closed to allow for gas exchange. Among Lepidoptera 

species, there are typically ten pairs of spiracles, two on meso- and meta-thoracic segments and 

eight on the abdominal segments. The spiracles are joined by two main tracheal conduits, the 
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dorsal and ventral tracheal trunks. Each of these trunks is composed of a chitin and protein 

matrix forming a tube-like structure that is supported by spirals of thickened chitin called 

taenidium. The inner chitin tube is encased completely by tracheal epithelial cells arising from 

the ectoderm. From these main tracheal branches, there is an extensive network of secondary and 

tertiary tracheal branches which are similar in structure to the main tracheal branches. 

Eventually, the fine tertiary tracheal branches terminate in very thin (less than 1µm in diameter) 

fluid-filled tubes called tracheoles which are capped by a single cells called a tracheoblasts. 

These tracheoles/tracheoblasts bypass the midgut basal lamina and intercalate into and between 

the epithelial cells to facilitate gas exchange via simple diffusion (Chapman, 1997; Klowden, 

2007).  

Engelhard and others were able to demonstrate the utilization of this tracheal network to 

establish baculovirus infection in the hemocoel by feeding permissive 4th instar Trichoplusia ni 

larvae with ODV from a recombinant AcMNPV expressing a reporter gene lacZ. As previously 

noted, the initial infection by ODV was detected as early as 4 hours post inoculation in midgut 

epithelial cells and a small number of regenerative cells. By 12 hours post inoculation, multiple 

foci of infection were detected throughout the midgut epithelial cells, and by 16 hours, the 

infection of the tracheoblasts servicing the midgut epithelial was also noted. At 24 hours post 

inoculation, the infection had spread throughout the entirety of the midgut. In addition, infection 

could be detected in the tracheolar epithelial cells entering the midgut. 12 hours later, the first 

infection outside the confines of the midgut was observed with distal tracheal branches and 

hemocytes both expressing lacZ. By 48 hours post inoculation, extensive infection of secondary 

and tertiary trachea was noted as well as infection of hemocytes and fat body. Concurrently, the 

lacZ expression of the midgut decreased dramatically with the sloughing of the midgut and the 

clearing of virus infection. By 72 hours post inoculation, virus infection was evident throughout 

the hemocoel and in all the distal tissues serviced by trachea including  salivary glands, muscle 

tissue, malpighian tubules, gonads and the cuticular epidermis (Engelhard et al., 1994). 

Subsequent work examining viral pathogenesis in a variety of hosts has supported the 

conclusions made by Engelhard concerning the importance of infecting tracheal tissue to 

disseminate virus infection throughout the hemocoel (Barrett et. al., 1998 Rahman and 

Gopinathan, 2004). Clearly, based on this body of work, the utilization of the tracheal conduit is 

essential for the systemic spread of a successful baculovirus infection.  
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This finding, in itself, creates a significant problem because tracheal epithelial cells 

secrete their own basal lamina similar in structure to the one surrounding the midgut epithelia.  

How then can BV penetrate this protective coating but not the one between the midgut and the 

hemocoel? There have been two theories advanced to explain this dichotomy. The first, outlined 

by Engelhard and others, suggested that the tracheoblasts are the initial site of tracheal infection 

because these cells lack basal lamina and make direct cell-to-cell contact with midgut epithelial 

cells (Adams et. al., 1978; Engelhard et. al., 1994; Maina, 1989). The infection then proceeds 

along the tracheal epithelial cells by utilizing the unique lateral lymph system and epidermal feet 

of the tracheoles until it bypasses the basal lamina barriers of the midgut (Locke 1985). Once in 

the hemocoel, the infection proceeds to other tissues rapidly through the infection of circulating 

hemocytes which make direct contact with tracheal epithelial at branch nodes (Locke 1997; 

Trudeau et. at 2001).   

An alternative hypothesis to the one offered by Engelhard was presented by Federici who 

proposed that BV makes use of either thin spots in the basal lamina (>20 μm thickness) or carry 

an as-yet-undefined enzyme which degrades the basal lamina to allow for the establishment of a 

virus infection in tissues protected by this barrier (Federici 1997). This alternative hypothesis 

was based on several lines of indirect evidence. First, an early report on the pathogenesis of an 

AcMNPV infection in a permissive host showed that presumably repackaged BV could be 

detected in the hemocoel of infected larvae within 30 minutes of a very high dose (106 occulsion 

bodies per larvae) feeding suggesting that the virus could penetrate the basal lamina barrier 

independent of tracheal infection (Granados and Lawler, 1981). Second, a report on baculovirus 

infection of ovarian tissue demonstrated that the co-injection of clostridial collagenase, a basal 

lamina-specific protease, with BV into the follicular cells of Bombyx mori larvae dramatically 

increased the spread of  infection into the hemocoel compared to injection of BV alone (Smith-

Johannsen et. al., 1986). And last, reports by both Flipsen and Knebel-Mörsdorf showed the 

infection of early second instar Spodoptera exigua midgut tracheoles and circulating hemocytes 

occurred simultaneously and not in the linear progression pattern of infection noted by Engelhard 

(Flipsen et.al., 1995; Knebel-Mörsdorf et.al., 1996). 

 Despite the Engelhard- hypothesis having garnered limited supporting evidence since it 

was formulated, a recent report by Means and Passarelli tracking the pathogenesis of a 

recombinant AcMNPV infection has offered more conclusive proof that basal laminae 
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degradation is the correct one hypothesis for the route of infection. In their work, they 

demonstrated the basal lamina covering of tracheal cells is transiently degraded during a per os 

infection. This degradation is mediated by a viral protein (vFGF) that initiates a cascade of 

activated host metalloproteases and effector caspases and is specific for basal lamina (Means and 

Passarelli, 2010). Thus, based on this evidence, it is clear that the viral-mediated degradation of 

the basal lamina plays a significant role in the secondary infection of trachea and the systemic 

infection of the host.  

The Final Barrier to Infection: the Insect Cellular-mediated Immune Response 

 The infection of tissues in the hemocoel and beyond is essential if the virus is to produce 

sufficient numbers of occlusion bodies to infect additional host organisms. To oppose this, 

various Lepidoptera species have developed complex humoral and cellular defense responses 

including the production of potent anti-microbial peptides, phagocytosis of foreign bodies and 

melanization of infected cells followed by encapsulation (reviewed by Lavine and Strand, 2002). 

While much of the research in this area indicates these responses are effective against bacterial 

challenges, a growing body of work suggests that certain insect species can utilize their cellular 

defense network against viral challenge as well. 

 The cells most often associated with insect immune response in Lepidoptera are 

granulocytes and plasmatocytes, two specific types of circulating hemocytes which increase in 

number during later larval stages until they compromise nearly half of all hemocytes present in 

the hemocoel (Chapman, 1998). Granulocytes are responsible for the phagocytosis of small 

amounts of foreign material as well as apoptotic or necrotic cells and are also associated in the 

very early stages with the recruitment of plasmatocytes to damaged tissues too large to be 

phagocytized. Plasmatocytes are adherent cells responsible for the encapsulation of large foreign 

bodies or necrotic tissue (reviewed by Ribeiro and Brehélin 2002). Together, these cells provide 

a potent method of preventing the spread of pathogens into and throughout the hemocoel. 

  Some of the most compelling evidence that circulating hemocytes also function during 

the course of baculovirus infections was seen with work examining the susceptibility of 4th instar 

Spodoptera littoralis larvae to infection by AcMNPV. When fed per os, these larvae are highly 

resistant to infection even with doses as high as 100,000 occlusions per insect. Inspection of the 

insect midguts after infection with AcMNPV show a large number of melanized, encapsulated 

nodes around tracheal tissues servicing these tissues suggesting a cellular mediated immune 
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response was able to prevent the systemic spread of the virus into the hemocoel. Direct 

intrahemocoelic injection of 2x104 BV or suppression of the immune response resulted in 

efficient systemic spread of the virus infection and subsequent mortality of the host (Rivkin et. 

al., 2006). Other Lepidoptera species have also demonstrated varying degrees of resistance to 

oral infection due to a cellular mediated immune response suggesting an effective immune 

response may be another limitation in the host range of certain baculoviruses (McNeil et. al., 

2010; Trudeau et. al., 2001).  

 To counter the immune response, some researchers have suggested baculovirus “target” 

the host immune cells preferentially to remove them as a protective barrier as well as to spread 

the infection throughout the hemocoel (Barrett et. al., 1998; Hass-Stapleton et. al., 2003). A 

recent report using the cotton bollworm, Helicoverpa armigera, reinforced this assertion by 

demonstrating that AcMNPV could infect all five types of circulating hemocytes including 

granulocytes and plasmatocytes within 36 hours of intrahemocoelic injection. In addition, the 

presence of AcMNPV in the hemocoel marginally triggered the up-regulation of two of twenty 

known immune-related genes, gloverin-like and lysozyme, but it is not known whether either of 

these have anti-viral activities (Wang et. al., 2010).  

It is also important to note at this time that the preferential infection of hemocytes is by 

no means universal even in permissive infections where the host is fully infected. Several reports 

have shown that in certain species, circulating hemocytes are highly resistant to infection, but do 

little to prevent the systemic infection process from occurring (Chikhalya et. al., 2009; Clarke 

and Clem, 2002). In the work by Clarke and Clem, for example, they demonstrated that 

hemocytes of 4th instar Spodoptera frugiperda larvae were highly resistant to infection compared 

to other tissues such as fat body and trachea even when the virus was delivered through 

intrahemocoelic injection. Indeed, at the highest dosages used, only 52 percent of the circulating 

hemocytes recovered from the hemocoel showed signs of infection as late as 120 hours post 

injection. At the same dosage however, 100% host mortality was observed suggesting that even 

though nearly half of the circulating hemocytes present were functional, they could not counter 

the progression of the virus infection. Interestingly, in the same report, 90 percent of the 

hemocytes recovered from Trichoplusia ni larvae injected in the same manner with AcMNPV 

BV showed obvious signs of infection perhaps indicating the susceptibility of hemocytes to 

infection is species specific (Clarke and Clem, 2002).  
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Based on these results, it is therefore quite likely that the cellular mediated immune 

response elicited by hemocytes only provides a barrier to systemic virus infection in a limited 

number of cases. In those cases where the immune response is not effective, the virus may 

preferentially infect circulating hemocytes to remove them as an effective barrier but this is not a 

general mechanism employed by all baculoviruses to circumvent the immune response. Finally, 

even in the cases where hemocytes are effective at preventing one virus strain from entering the 

hemocoel of a host, e.g. AcMNPV and Spodoptera littoralis, they may be completely ineffective 

at preventing other baculovirus strains from replicating in the hemocoel (Simón et. al., 2004).  

The Final Phase: Production and Release of Occlusion-derived Virus  

 After the amplification of BV and systemic infection of various host tissues, the next 

phase of the virus replication cycle is primed to begin. During this phase, there is an abrupt 

transition from BV production to ODV as capsids formed in the nucleus no longer egress but 

instead accumulate in the periphery of the nucleus called the ring zone. Here, either singly or in 

the case of MNPVs bundled together, the capsids acquire the viral envelope necessary to become 

mature infectious ODV. The cause for this transition is not completely understood but it could be 

coupled either to a depletion of early viral proteins required for egress out of the nucleus or the 

accumulation of late viral products essential for ODV formation. In either case, the build-up of 

capsids in the ring zone of the nucleus is the first cytopathological evidence for the very late 

phase of viral gene transcription. 

 Two examples of AcMNPV genes expressed at high levels during this timeframe include 

the occlusion matrix protein gene polyhedrin as well as the cytoskeleton-associative protein gene 

p10. Both of these viral transcripts can be detected as early as 12 hours post infection (pi) but 

unlike late gene transcripts whose levels slowly decline after DNA replication has ended, the 

level of p10 and polyhedrin transcripts rise dramatically beginning 18 hours pi. By 48 hours pi, 

these very late gene products become by far the dominant message present in infected cells 

(Rohel et. al., 1983). Promoter analysis of the polyhedrin and p10 genes has shown that similar 

to the late gene transcription, this phase of viral gene expression requires the consensus initiator 

site, (A/G/T) TAAG and utilizes the virally encoded DNA-dependent RNA polymerase for 

transcription (Rankin et. al., 1988; Wyler and Possee, 1989; Weyer et al., 1990). In addition, for 

maximal expression of polyhedrin, the promoter element consists of an auxiliary 20 nucleotide 

sequence upstream of the initiator site and 49 base pair non-coding leader sequence (Rankin et. 
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al., 1988). Interestingly, the p10 promoter element is significantly larger than that of polyhedrin 

promoter with a 30 nucleotide upstream sequence and a 71 base pair non-coding leader sequence 

involved (Wyler and Possee, 1989). Alignment of the two promoter elements shows that outside 

of a 12 base sequence encompassing the initiator site, there is very little sequence homology 

present between the two elements. 

 The lack of sequence homology between the two promoters suggested that more than one 

viral factor was responsible for enhancing expression of these two very late viral genes. An 

analysis however of a temperature sensitive AcMNPV mutant defective in polyhedra formation 

at higher temperatures showed that the expression of both polyhedrin and p10 was affected by a 

single viral protein, very late expression factor-1 (VLF-1). A sequence homology search 

suggested VLF-1 was a member of the integrase family of proteins involved in site-specific 

DNA recombination as well as variety of other functions including gene regulation (McLachin 

and Miller, 1994; reviewed by Grainge and Jayaram, 1999). Gel shift and in vitro transcription 

assays using purified, recombinant VLF-1 showed that it bound DNA and stimulated the 

transcription of the polyhedrin gene but not the late gene product VP39 (Mikhailov and 

Rohrmann, 2002; Mistretta and Guarino, 2005). The ability of VLF-1 to bind to the promoters of 

polyhedrin and p10 was mapped to the non-coding leader sequences between the consensus 

initiator site and the start codon but there does not appear to be any direct competition between 

these elements for VLF-1 binding (Chaabihi et. al., 1993; Mistretta and Guarino, 2005; Yang and 

Miller, 1999). Deletion of vlf-1 from AcMNPV, as expected, resulted in the dramatic reduction 

of both polyhedrin and p10 expression, but unexpectedly resulted in the inability of the virus to 

propagate. This deficiency was subsequently linked to the defective formation of mature capsids 

suggesting VLF-1’s transactivation of polyhedrin and p10 promoters may be a secondary 

function which occurs after capsid assembly is completed (Vanarsdall et. al., 2004, Vanarsdall et. 

al., 2006). 

 The rapid accumulation of polyhedrin or granulin is a primary step in the process of 

forming occlusion bodies required for the host to host transmission of infection discussed earlier. 

Equally important is the capsid acquisition of an occlusion-derived viral envelope (reviewed by 

Braunagel and Summers, 2007). The proper formation of these envelopes begins with the 

production of major ODV envelope proteins E-66 and E-25 which are integrated into the 

endoplasmic reticular (ER) membrane during translation. Mutational analysis of these proteins 
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has demonstrated they are targeted to the ER by short, hydrophobic N-terminal signal sequences 

roughly 33 amino acids in length (Hong et. al., 1997). In addition to targeting the viral protein to 

the ER, several positively charged amino acids near the C-terminal end of this signal sequence 

have been shown to associate with a cellular protein, Spodoptera frugiperda’s importin-α-16, 

which helps translocate the viral protein through the nuclear pore where it becomes integrated 

into the intranuclear membrane (INM) surrounding the ring zone (Braunagel et. al., 2008; 

Saksena et. al., 2006). In the absence of viral infection however, ODV E-66 and ODV-E25 do 

not translocate to the INM, but instead become embedded in the outer nuclear membrane 

suggesting that importin-α-16 itself is insufficient to direct viral proteins to the ODV envelope 

(Hong et. al., 1997). Several studies with mutant AcMNPV have indicated that at least two 

additional viral proteins, FP25k and Ac141, are required for the proper targeting of essential 

ODV proteins, perhaps by working to stabilize the importin-α-16 complex (Braunagel et. al., 

1999; Braunagel et al., 2009; Fang et. al. 2006).  

  Once essential viral proteins are localized to the intranuclear membrane, microvesicles 

incorporating these proteins need to be formed which will eventually form the ODV envelope 

(reviewed in Braunagel and Summers, 2007). It is unclear whether these vesicles are de novo 

synthesized or derived directly from blebbing of the inner nuclear membrane, however recent 

evidence suggests that a highly conserved viral protein, Ac76, plays an integral role in the 

process (Williams and Faulkner, 1997; Hu et. al., 2010). Interestingly, deletion of ac76 from 

AcMNPV results in not only a lack of microvesicles and enveloped ODV, but a loss in infectious 

BV production (Hu et. al., 2010). Since capsid formation, DNA replication, and packaging all 

appear to be largely unaffected by the deletion of ac76, it is possible that this viral protein also 

plays a significant role in the BV acquisition of the nuclear envelope prior to its egress out of the 

nucleus. 

 After acquiring its microvesicular-derived envelope, ODV become randomly embedded 

in the polyhedrin or granulin protein matrix and occlusion bodies (OBs) are formed. OBs can be 

viewed in infected cells with light microscopy as early as 24 hours post infection and are fully 

formed between 60 and 72 hours. At these later stages, the very late viral protein p10 helps to 

organize a protective calyx sheath around the OBs (Lee et.al., 1996). This calyx is composed of 

bilamellar sheets forming a lattice like structure with porous openings which is fused to the 

polyhedrin matrix by thiol bonds (Whitt and Manning 1988). Substitution of granulin for 
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polyhedrin in AcMNPV, while dramatically reducing the number of ODV embedded in the 

matrix, does not affect calyx formation suggesting that it occurs independently of ODV (Eason 

et. al., 1998).   

 The release of the mature calyx sheathed occlusion bodies from infected cells occurs 

when the cell is ruptured through the action of a combination of cellular and viral proteins. It is 

this loss of cellular integrity in an infected host that subsequently results in the liquefaction of the 

body mass and release of mature OBs into the environment. A genome analysis of AcMNPV 

identified two potential viral proteins which may be involved in this process, chitinase A (Ac-

ChiA) and cathepsin (Ac-vCath). In cell culture studies, both Ac-ChiA and Ac-vCath were 

shown to be late viral gene products with proteolytic functions that could be inhibited with either 

aprotinin or leupeptin (Hawtin et. al., 1985; Slack et. al., 1998). In vivo studies with infected 

Trichoplusia ni larvae demonstrated that the deletion of either ac-ChiA or ac-vcath resulted in 

host mortality but a failure for the insect body to liquefy and release OBs (Hawtin et. al., 1997). 

Intriguingly, the deletion of the anti-apoptotic gene p35 from AcMNPV also resulted in a loss of 

liquefaction for infected Trichoplusia ni larvae, independent of either of Ac-ChiA and Ac-vCath 

(Clem et. al., 1994). It has not been demonstrated however whether p35 is directly involved in 

host liquefaction or indirectly involved, perhaps by increasing the levels or efficacy of Ac-ChiA 

or Ac-vCath in infected cells. 

Putting It All Together: Baculovirus Infection from A to Z 

 A typical baculovirus infection cycle begins with a permissive larva inadvertently 

ingesting occlusion bodies deposited by a previously infected host. The alkaline environment of 

the insect midgut dissolves the protein matrix of the OB, releasing the occlusion-derived virus to 

infect the nearby midgut epithelial cells. Once infected, these cells become mini-factories for the 

production of budded virus which serves to extend the infection, first throughout the midgut and 

then into the adjacent tracheal network. The secondary infection of the tracheal tissues allows the 

virus to escape the physical barriers of the midgut and enter into the hemocoel where it can 

freely infect the entirety of the host. Once the systemic spread of the infection has occurred, the 

production of budded virus diminishes and occluded virus production begins. This phase is 

marked by the accumulation of enveloped capsids in the nucleus and the rapid production of 

matrix proteins which eventually engulf the enveloped capsids forming environmentally 
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protected occlusion bodies. The release of these occlusion bodies from the infected host occurs 

through a liquefaction process involving viral proteolytic proteins.         

Baculovirus FGFs in the Process of Infection  
 With this understanding of the baculovirus infection process, we can now return to the 

discussion of virally encoded FGFs. In AcMNPV infections, the putatively identified Ac-vFGF 

was shown to be an early gene product appearing as early as 3 hours post infection and peaking 

by 12 hours pi. Surprisingly, low levels of vfgf transcript were present at later time points in the 

infection time course along with what appears to be significantly higher levels of a bicistronic 

message corresponding to vfgf and its directly upstream open reading frame, the virally encoded 

superoxide dismutase gene (Detvisitsakun et. al, 2005). In BmNPV infections, the same 

expression pattern was noted with Bm-vFGF appearing as early as 2 hours post infection and 

persisting throughout, although because of the method of detection, it is not know whether the 

expression levels of Bm-vfgf are affected by the presence of a bicistronic message at the later 

time points (Katsuma et. al., 2004). 

The Effects of vFGF in Cell Culture 

 Surprisingly, despite the high degree of conservation initially suggesting an essential role 

for vFGF during infection, deletion of vfgf from the AcMNPV genome showed no apparent 

defects when used to infect SF-21 cells. BV production, viral protein synthesis, and viral DNA 

replication were all comparable between the deletion and wild type viruses. Furthermore, co-

infection followed by the serial passaging of the deletion and wild type viruses demonstrated 

there was no proliferative advantage gained by the presence of vFGF (Detvisitsakun et. al., 

2006). Contrastingly, the deletion of Bm-vFGF from the genome, in BmN5 cell culture studies, 

did show significant defects in BV production, viral DNA replication and late viral protein 

synthesis, but these effects were mostly transient in nature and by late times p.i. the deletion 

vFGF levels were comparable to wildtype (Katsuma et. al., 2006a).  

 The subtle differences in phenotypes between the two deletion mutants suggested there 

were functional variations between Ac- and Bm-vFGF. In order to determine what these could 

be, researchers initially compared the two protein sequences looking for structural alterations. As 

expected from Group I NPVs, the two protein sequences were markedly conserved with only 

nineteen amino acid differences between them. Four of these differences, however, occurred 

specifically in the locations of the two N-glycosylation sites which are present in the Bm-vFGF 
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and conserved among other baculovirus FGFs (Katsuma et. al., 2004; Katsuma et. al., 2006c). 

The amino acid changes in Ac-vFGF at these sites removed the necessary sequence required for 

N-glycosylation, and a Eukaryotic Linear Motif (ELM) scan of the remaining Ac-vFGF 

sequence suggests the protein is devoid of this particular modification (Hunt and Dayoff, 1970; 

Puntervoll et.al., 2003). Western blot analysis of recombinant Ac-vFGF and Bm-vFGF, 

expressed in the presence of an inhibitor of N-glycosylation tunicamycin, further supported this 

in silica finding (Katsuma et. al., 2006c). Certainly, based on the preponderance of evidence, Ac-

vFGF is an unglycosylated viral protein.  

It has been put forth by Katsuma and others that the natural lack of N-glycosylation for 

Ac-vFGF has significant negative consequences with respect to vFGF function (Katsuma et. al., 

2006c). The basis for this hypothesis came from several sources. First, deletion of Ac-vfgf from 

AcMNPV did not result in any apparent defects in cell culture work whereas a similar deletion of 

Bm-vfgf from BmNPV resulted in significant replication defects (Detvisitsakun et. al., 2006; 

Katsuma et. al., 2006a). Additionally, only Bm-vFGF and not Ac-vFGF could be detected in the 

supernatant of Sf9 cells infected with recombinant AcMNPVs expressing either Ac- or Bm-vfgf 

from the ie-2 promoter element (Katsuma et. al., 2006c). Because of the high degree of sequence 

similarity between Ac-vFGF and Bm-vFGF, it was surmised that the lack of N-glycosylation 

directly affected the secretion of the vFGF. This conclusion was supported with the lack of 

secretion of several Bm-vfgf mutants which altered the N-glycosylation sites to resemble the Ac-

vfgf sequence (Katsuma et. al., 2006c).  

Additionally, several examples of the critical nature of N-glycosylation for FGF function 

have been noted for mammalian FGFs. For example, FGF-9 and -16, both of which lack a 

bipartite signal sequence, require N-glycosylation for efficient movement through the ER-Golgi 

network to the cell surface and subsequent release from the EM (Miyakawa et. al., 1999; 

Miyakawa and Imamura, 2003). Moreover, N-glycosylation of FGF-6, was shown to be required 

for the efficient stimulation of cell proliferation (Asada et. al., 1999). Because Ac-vFGF 

naturally lacks N-glycosylation and its deletion results in no apparent defects in cell culture, it 

was suggested that the viral protein is non-functional, an artifact of evolutionary changes in the 

AcMNPV genome.  

If this is indeed true and N-glycosylation is essential for vFGF function, we would expect 

that Ac-vFGF would not be secreted from cells or it were secreted, it would not be functional. 
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Based on the evidence beginning with the initial work with Ac-vFGF by Detvisitsakun and 

others, neither of these conditions actually applies. Recombinant Ac-vFGF, expressed from 

Drosophila’s heat shock protein 70 (hsp70) promoter element, was clearly detected in the 

supernatant of transfected SF-21 cells independent of N-glycosylation (Detvisitsakun et. al., 

2005). Additionally, similar results were obtained from infected SF-21 cells when Ac-vFGF was 

expressed from the polyhedrin promoter using a recombinant AcMNPV (Detvisitsakun et. al., 

2007). The presence of Ac-vFGF in the supernatant is somewhat expected considering that 

unlike the mammalian FGF-9 and -16, Ac-vFGF has a well defined bipartite signal sequence. 

This sequence targets the nascent protein to the endoplasmic reticular pathway and eventual 

secretion independent of the presence of the hydrophobic N-glycosylation sequence. 

Interestingly, the work by Katsuma and others exploring the role of N-glycosylation for vFGF 

utilized a recombinant BmNPV to express mammalian FGF-9. Their work demonstrated that 

neither the bipartite signal sequence nor N-glycosylation was absolutely required for the efficient 

secretion of the FGF  further diminishing the claim that Ac-vFGF is ineffectively secreted due to 

the lack of this post translational modification (Katsuma et. al., 2006c).   

In addition to being secreted, unglycosylated Ac-vFGF also appears to be functional even 

when used in cell culture. Work with partially purified, recombinant Ac-vFGF from transfected 

SF-21 cell supernatant was able to stimulate cell migration in a dose dependent manner 

(Detvisitsakun et. al., 2005). This chemokinetic activity was similar to the one observed with 

partially purified, recombinant Bm-vFGF which was also able stimulate BmN5 cell motility in a 

dose dependent manner (Katsuma et. al., 2006b). The ability to function as a chemo-attractant 

strongly suggests that the vFGFs from both viruses can interact with cellular receptors and 

function as a “traditional” FGF independent of N-glycosylation. It is therefore quite likely that 

the discrepancy between the phenotypes of the two deletion viruses in cell culture was not due to 

a loss of vFGF function, but perhaps due to the alteration of another, unknown viral factor during 

the construction of the recombinant BmNPV virus. Alternatively, it is also possible that the more 

subtle defects seen in cell culture with the deletion of Bm-vfgf were masked during the studies of 

the deletion Ac-vfgf virus either by the presence of endogenous growth factors secreted by the 

SF-21 cells or exogenous growth factors (fetal bovine serum) added to the media.   
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The Lepidoptera (v)FGF Receptor 

Perhaps the most interesting aspect of the cell culture work involving Ac-vFGF and Bm-

vFGF was the identification of cellular FGFR for both Bombyx mori and Spodoptera frugiperda. 

It was clear from the chemotactic work with Ac-vFGF and Bm-vFGF that cellular FGF receptors 

were involved in viral growth factor signaling, but the sequences of these receptors was largely 

unknown. To fish them out, researchers turned to the closest known homolog of an insect FGFR, 

the Breathless receptor from Drosophila. Using this sequence as bait, the Bombyx mori 

Expressed Sequence Tag (EST) database was probed and a putative FGFR sequence was 

identified. The full length Breathless homolog from Bombyx mori (Bmbtl) is predicted to be 856 

amino acids in length with a molecular weight of 97.3 kDa. Similar to breathless, Bmbtl is 

expressed in a variety of host tissues including the insect midgut, trachea and hemocytes, but not 

the fat body or posterior silk glands. In addition, recombinant Bmbtl expressed from a plasmid in 

Sf9 cells could be phosphorylated in a dose dependent manner with Bm-vFGF, ensuring that the 

receptor is indeed responsive to vFGF. Not surprisingly, high concentrations of Bm-vFGF could 

also lead to the phosphorylation of a Spodoptera frugiperda-specific FGFR (Sfbtl), probably due 

to the high degree of conservation between Ac-vFGF and Bm-vFGF. The exact sequence of this 

Spodoptera frugiperda- receptor was identified in the same manner as Bmbtl and it is predicted 

to encode an 847 amino acid protein with a molecular weight of 96.1 kDa (Katsuma et. al., 

2006b). 

An alignment of the three insect FGFRs show they are remarkably conserved with Bmbtl 

sharing 70 percent identity with Sfbtl and 42 percent identity with Breathless (Katsuma et. al., 

2006b). Interestingly, a Blast search showed that the other Drosophila FGF receptor, Heartless, 

had a higher sequence identity (45%) to the Lepidoptera FGFRs compared to Breathless. This 

finding is supported by the fact that an ELM search predicts each of the Lepidoptera FGFRs to 

have the three Ig-like extracellular domains typical of most FGFRs including Heartless instead of 

the five Ig-like domains found in Breathless. Beside the number of extracellular Ig-like domains, 

Bmbtl, Sfbtl, Breathless and Heartless all share the same C-terminal architecture including a 

transmembrane domain and two discrete tyrosine kinase domains. It is not known at this time if 

there are any additional Lepidoptera FGFRs, or whether these receptors can be stimulated by 

other virally-encoded FGFs outside of the two tested here. 

 



 48 

The Effects of Deleting Viral FGFs During a Host Infection  

 The presence of the Lepidoptera FGFR in the host midgut, trachea and hemocytes 

suggested there could be multiple points during the normal course of infection in which vFGF 

could impact viral pathogenicity. To determine which of these points were actually relevant, it 

was necessary to examine permissive hosts infected either per os or through intrahemocoelic 

injection with a recombinant virus deficient in vfgf expression. The outcome of these treatments 

could then be compared to the outcomes of similar infections using a recombinant virus 

expressing normal levels of vfgf.  

These host mortality assays were able to demonstrate the deletion of Ac-vFGF from the 

AcMNPV genome did not affect the lethal concentration (LC50) of the virus when given orally or 

delivered through intrahemocoelic injection. Per os infection did however increased the lethal 

time (LT50) by roughly eleven hours in Spodoptera frugiperda neonates and Trichoplusia ni 

neonates as well as 4th instar Spodoptera frugiperda larvae. This delay in LT50 could be 

circumvented through intrahemocoelic injection of BV, suggesting Ac-vFGF functioned 

primarily in the midgut of the host and was perhaps responsible for the virus escape into the 

hemocoel (Detvisitsakun et. al., 2008). 

If the deletion of the Ac-vfgf slowed the escape of recombinant AcMNPV from the 

midgut, it stands to reason that expressing higher levels of Ac-vfgf would have the opposite 

effect. To see if this was the case, another recombinant AcMNPV was constructed which 

expressed vfgf from the polyhedrin promoter element. The direct effect of placing Ac-vfgf under 

polyhedrin control was a temporal shift in the expression pattern of this gene from early to very 

late in the infection cycle, as well as a dramatic increase in vFGF production. In cell culture, 

these changes resulted in a significantly lower BV titers and increased levels of cell death 

suggesting either the temporal shift or the heightened expression of Ac-vfgf was not totally 

beneficial for the propagation of the virus. However, when insects were infected per os with this 

Ac-vfgf over-expressing virus, there was a significant decrease in both the LC50 and LT50 in 

Spodoptera frugiperda neonates and Trichoplusia ni neonates as well as 4th instar Spodoptera 

frugiperda larvae. Unlike with the deletion Ac-vfgf virus, a similar significant decrease of both 

the LC50 and LT50 could also be seen when the recombinant BV was injected intrahemocoelically 

suggesting Ac-vFGF could have a function outside of the midgut environment. Visually, the 

effects of the over-expression of Ac-vfgf were evident in the per os infected hosts beginning with 
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the rapid melanization of the insect cuticle followed by its subsequent liquefaction nearly 24 

hours before the same effects were seen with AcMNPV infections (Detvisitsakun et. al., 2008).  

Based on this evidence alone, the heightened expression of vFGF had a significant impact 

on the health of the host in the context of a virus infection. Furthermore, it is tempting to 

speculate that the reduction in both the LC50 and LT50 was due to the rapid, vFGF-mediated 

escape of the virus from the midgut and the establishment of tertiary infections in the hemocoel. 

The effects of this virus in cell culture suggest an alternative hypothesis however. It is equally 

plausible to think that the reduction in both LC50 and LT50 was due to vFGF-induced toxicity 

which destroyed host tissues independent of infection. Clearly, more work with this virus is 

needed to determine which speculation is correct.  

Similar host mortality assays done with a recombinant BmNPV lacking vfgf in 4th instar 

Bombyx mori larvae also showed no significant differences in the LC50 when given orally or 

delivered through intrahemocoelic injection. There was, however, a significantly longer delay in 

LT50 (~20 hours) evident with the per os infection using the deletion Bm-vfgf virus. Unlike the 

outcome seen with the deletion Ac-vfgf virus, the intrahemocoelic injection of the recombinant 

BV into 5th instar Bombyx mori larvae could not circumvent the effects seen with per os 

infections resulting in an identical 20 hour delay in the LT50. This finding suggested that Bm-

vFGF functioned during the course of infection in the hemocoel of the host and not in the 

midgut. This conclusion was further refined by evidence that there was a significant decrease in 

circulating BV in the hemolymph when intrahemocoelic injection was used to introduce deletion 

Bm-vfgf virus into the host, an effect markedly similar to the one seen in cell culture studies of 

the same deletion Bm-vfgf virus (Katsuma et. al., 2006a).  

To better understand these results, researchers next modified the deletion Bm-vfgf virus 

and wildtype BmNPV by introducing the jellyfish green fluorescent protein (gfp) gene under ie1 

promoter control into the viral genomes. This reporter product allowed the researchers to visually 

track the progress of infection from both oral feeding of OBs and intrahemocoelic injection of 

BV. For per os infections, the deletion of Bm-vfgf did not appear to impact either the primary 

infection of midgut epithelial cells or the secondary infection of tracheal cells and fat body but 

did impact the infection of hemocytes as there appeared to be significantly fewer infected at late 

times (<96 hours)  pi. Intrahemocoelic injections of the deletion Bm-vfgf virus showed a similar 

defect in the hemocyte infection, but only within 6 hours pi. At later times, the number of 
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infected hemocytes was consistent between the deletion Bm-vfgf virus and wildtype BmNPV 

(Katsuma et. al., 2008).  

It has been suggested by Katsuma and others, based on this evidence, that Bm-vFGF is 

acting as a chemotactic factor which preferentially targets circulating hemocytes for infection, 

perhaps to help disseminate the virus infection throughout the hemocoel or prevent a host 

immune response. This explanation is unlikely, however for several reasons. First, we would 

expect that in the absence of Bm-vFGF and the corresponding infection of hemocytes, there 

would be a delay in the dissemination of the virus which would be evident in fat body and distal 

tracheal tissues. In the reported work, these tissues were infected at the same time, independent 

of the presence of Bm-vFGF. Secondly, with the intrahemocoelic injection of BV, the numbers 

of infected hemocytes were the roughly the same as early as 12 hours post injection, yet there 

was still a significant decrease in BV in the hemocoel as well as a 20 hour delay in the LT50 of 

infected hosts. If the role of Bm-vFGF was limited to chemotaxis and the infection of circulating 

hemocytes, this result makes little sense. It is therefore quite likely that there are additional roles 

for Bm-vFGF during the course of a virus infection of Bombyx mori larvae which have not been 

identified to date.    

Virally-encoded FGFs in Brief 

Virally encoded FGFs have been putatively identified in 48 of the 53 sequenced 

baculovirus genomes. Two of these vFGFs, one from AcMNPV and the other from BmNPV, 

have been somewhat characterized both biochemically as well as in vivo during the course of 

host infections. It has been shown that both are secreted signal ligands which can bind to 

Heparin-Sepharose as well as induce cell motility, presumably through the stimulation of cellular 

FGFR. Neither of these vFGFs is an essential gene, but deletions of Ac-vFGF and Bm-vFGF 

result in a delay in host mortality when the virus is introduced per os.  

Aside from these somewhat superficial attributes, Ac-vFGF and Bm-vFGF appear to 

contribute to several different viral outcomes. Deletion of Bm-vfgf, for example, results in 

decrease production of BV in the hemocoel as well as a number of cell culture defects, none of 

which are seen with the deletion of Ac-vfgf. In addition, Bm-vFGF appears to function in the 

spread of virus after it has escaped the midgut, whereas Ac-vFGF works specifically to help the 

virus escape the midgut, perhaps by causing the de-lamination of trachea.   
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 The discrepancies in the results of the cell culture studies as well as the bioassays are 

somewhat perplexing considering the degree of conservation between the two vFGF ligands. 

One possible explanation is the effects of vFGFs are host specific and dependent upon a variety 

of cellular factors. These factors may include receptor availability, the mechanism of release for 

the sequestered ligand, or the overall context in which the vFGF signaling is occurring. 

Alternatively, Ac-vFGF and Bm-vFGF may have similar functions during the course of 

infection, but these functions are masked either through the action of other viral genes or by 

technical deficiencies which makes it appear as if these two proteins are responsible for wholly 

different processes.    

 

 

 

 

 

 

 

 

CHAPTER 4 - Virion-associated vFGF 

Despite the significant amount of data generated by the biochemical and in vivo studies of 

the two baculovirus FGFs, there were still several important questions which had yet to be 

answered, Chief among them was to determine both the timing and levels of vFGF production 

during the course of infection. In the previous works with both Ac- and Bm-vFGF, detection of 

the protein was only accomplished using a variety of heterologous promoter elements including 

Drosophila’s heat shock 70 and the viral polyhedrin promoter. Based on transcript analysis, 

however, neither of these promoter elements drive the expression of vFGF to the same level or in 

the same temporal time frame as the native promoter element.  

In addition to determining the protein expression levels, it was also important to 

determine the cellular localization of Ac-vFGF during infection. In the various mammalian 

models discussed earlier, FGFs are either localized intracellularly or secreted and retained to the 

extracellular matrix via HSPGs until subsequent release. It has been suggested that the lack of N-
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glycosylation in Ac-vFGF results in a deficiency in secretion and de facto intracellular 

localization. However, indirect evidence from a variety of sources suggests that non-glycosylated 

Ac-vFGF is a still efficiently secreted. Determining whether Ac-vFGF was localized to the cell 

surface would certainly resolve any lingering questions on this subject.  

Another question which was developed during the course of doing a literature review 

involved a potential role for vFGF in virus attachment. In the early days of baculovirus research, 

a great deal of emphasis was placed on utilizing viral OBs, specifically AcMNPV, as an 

alternative to traditional chemical pesticides in managing crop pests (reviewed by Szewczyk et. 

al. 2006). In order to prove the safety of this type of application, several researchers began to 

examine the effects of baculovirus exposure to mammalian systems. Perhaps much to their 

surprise, high concentrations of BV could efficiently transduce a variety of mammalian and 

Dipteran cell lines (Carbonell et. al., 1985; McIntosh and Shamy, 1980; Volkman and 

Goldsmith, 1983). Neither the cell lines tested nor the direct infection of a mammalian host could 

support baculovirus DNA replication however, although a limited number of early viral 

transcripts were detected including the viral trans-activating protein IE1 (Carbonell et. al., 1985; 

Döller et. al., 1983; Murges et. al., 1997). The expression of these viral genes does not appear to 

affect host cellular function which makes recombinant AcMNPV an ideal platform to transiently 

introduce heterologous proteins into a variety of mammalian cell lines and tissues, perhaps even 

in a therapeutic manner (reviewed in Hu, 2008; Kenoutis et. al., 2006).  

Basic research into the process of transduction demonstrated BV entry was temperature 

dependent and occurred via absorptive endocytosis (Duiset et. al., 1999). Subsequent work was 

further able to show the major envelope protein GP64 was sufficient to mediate viral entry into 

mammalian cells much like with entry into insect cells (Tani et. al., 2001). Conversely, 

attachment of BV to mammalian cells was non-saturatable even when a multiplicity of infection 

(MOI) of 5000 plaque forming units (PFU) per cell was employed. It was therefore unlikely that 

cellular surface proteins were acting as receptors for attachment as is the case with insect cells.  

Non-specific, electrostatic interactions were the next likely target considering both 

Adenovirus and Herpes Simplex Virus (HSV-1) had previously been shown to attach to 

mammalian cells in a similar manner (Fuller and Lee, 1995; Summerford and Samulski, 1998). 

To demonstrate this, Duiset and others co-incubated HEK 293 cells and BV in the presence of 

the cationic compound polybrene. Virus transduction of the cells was dramatically inhibited 
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(<90%) over a range of polybrene concentrations suggesting negatively-charged cell surface 

components were responsible for attachment. To determine if there was any specificity to this 

interaction, they attempted competition assays with soluble forms of chondroitin sulfate, 

dermatan sulfate and heparan sulfate. Of the three, only soluble heparan sulfate was capable of 

interfering with BV transduction. In vitro assays with Heparin-Sepharose beads subsequently 

confirmed that BV had a significant affinity for this specific proteoglycans, and removal of the 

HSPG from HEK 293 cells using heparinase inhibited transduction by nearly 50 percent (Duiset 

et. al., 1999). Together, this evidence strongly supported the conclusion that the interaction of 

heparan sulfate proteoglycans with AcMNPV BV is the major mode of attachment in the 

transduction of mammalian cells.  

These results, in light of the intimate relationship between FGFs and HSPGs, prompted 

us to ask the question whether vFGF played any role in BV attachment to cells. Certainly, for 

this to be the case, we would first have to answer two very important questions: 1) Whether the 

in vitro interaction of BV with heparin-Sepharose reported by Duiset and others is mediated by 

Ac-vFGF and 2) Is Ac-vFGF retained on the envelope of BV upon egress from the cell? In 

addition to potentially affecting BV attachment, the presence of Ac-vFGF on the BV envelope 

opens up another interesting avenue of research; specifically whether the BV-associated Ac-

vFGF could interact with and stimulate the cellular FGFR. 

And finally, the in vivo and in vitro results with the virus expressing Ac-vfgf from the 

polyhedrin promoter element were intriguing, but it was difficult to determine if the observed 

phenotypes were due to an increased pathogenicity of the recombinant virus or heightened 

toxicity in response to such high levels of vFGF. Additionally, the very late temporal expression 

of Ac-vFGF was problematic with respect to deducing the role of vFGF on the BV particle. To 

address these concerns, a second recombinant AcMNPV was constructed with Ac-vfgf under 

Drosophila’s heat shock 70 protein promoter control. As noted earlier, this promoter element 

was previously used to drive the high level transient expression of Ac-vfgf in transfected SF-21 

cells as early as 12 hours post transfection without any discernible cell death. It was hoped by 

incorporating the hsp70-vfgf cassette into the virus, an increased level of Ac-vFGF would be 

achieved while more closely mirroring the timing of expression of the native promoter.  
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Effects of Virion-associated vFGF 
Transcription of vfgf has been previously examined; vfgf was classified as an early gene 

since transcription was evident at early times post infection (p.i.) and in the presence of 

cycloheximide (Detvisitsakun et al., 2005; Katsuma, et al., 2004).  However, protein production 

kinetics have not been reported during the infection cycle.  To examine vFGF accumulation 

during infection, we constructed an AcMNPV-based bacmid expressing vfgf with a 

hemagglutinin (HA) tag at the C terminus to facilitate immunodetection.  Briefly, 448 base pairs 

of vfgf (~82% from the N terminus) were replaced via homologous recombination with the 

zeocin resistance gene using the commercially available bacmid bMON14272. The enhanced 

green fluorescent protein gene (egfp) under the Drosophila heat shock protein 70 promoter 

control, a high-level inducible promoter in insect cells, and the polyhedrin (polh) gene under 

polh promoter control were introduced into the polh locus of bMON14272, resulting in AcBAC–

vfgfKO (Detvisitsakun et al., 2006). To construct AcBAC-vfgfHARep virus, egfp and polh 

cassettes, and the HA-tagged vfgf under the control of its own promoter was inserted in AcBAC-

vfgfKO, so that only one copy of the gene was present (Fig.1A). The vfgf promoter, a 207 base 

pair fragment, has been previously shown to support vfgf expression (Detvisitsakun et al., 2006).  

To construct a virus carrying vfgf driven by the Drosophila hsp70 promoter, AcBAC-

HSP70vfgfHA, the 207 base pair vfgf promoter fragment was replaced with the hsp70 promoter. 

The presence of vfgf and its correct insertion location within the viral genome was confirmed 

using PCR (results not shown).  RT-PCR was used to ensure that vfgf was expressed in AcBAC-

vfgfHARep.  We detected vfgf transcripts at 6, 12, 24 and 48 h p.i. (Fig. 1B); AcBAC-vfgfRep 

virus, expressing untagged vfgf from the same promoter, also expressed vfgf transcripts 

(Detvisitsakun et al., 2006).  Although it is possible that vfgf is better expressed at its native 

locus, this 207 base pair vfgf promoter region was sufficient to repair phenotypic defects in 

AcBAC-vfgfKO (Detvisitsakun et al., 2006).   

To evaluate whether insertion of vfgf under either native or hsp70 promoter control in 

AcBAC-vfgfHARep and AcBAC-HSP70vfgfHA, respectively, affected virus replication, we 

performed single-step growth curve analyses. SF-21 cells were infected with either AcBAC-

vfgfHARep, AcBAC-HSP70vfgfHA or AcBAC, a virus in which vfgf has not been perturbed, at 

a multiplicity of infection (MOI) of 5 plaque forming units (PFU)/cell, supernatant was collected 
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at several times p.i., and the titer determined by TCID50.  We did not detect any significant 

growth differences between the viruses throughout the time courses of infections (Fig. 1C).   

We determined accumulation of vFGF driven by its native promoter by infecting TN-368 

cultured cells at an MOI of 5 PFU/cell with either AcBAC-vfgfHARep or AcBAC-

HSP70vfgfHA and immunodetection.   vFGF steady-state levels were observed in immunoblots 

with whole cell lysates prepared from AcBAC-vfgfHARep-infected cells at 24 and 48 h p.i. but 

not at 12 h p.i. or earlier (Fig. 2A and results not shown).  Despite numerous attempts, vFGF 

could not be detected in the supernatant of AcBAC-vfgfHARep-infected cells (Fig. 2B).  

AcBAC-HSP70vfgfHA-infected cells, as expected, exhibited much higher levels of vFGF 

accumulation starting at 12 h p.i., peaking at 24 h p.i. and continuing at 48 h p.i., even though 

25-fold less total protein was loaded per lane than in the AcBAC-vfgfHARep cell lysate (Fig. 

2A).  vFGF was also detected in the supernatant of AcBAC-HSP70vfgfHA-infected cells, 

suggesting vFGF was efficiently secreted and released from cells (Fig. 2B). It is possible that the 

inability to detect vFGF in the medium of AcBAC-vfgfHARep-infected cells, where vfgf 

expression is lower than from AcBAC-HSP70-vfgfHA-infected cells, was due to protein 

detection sensitivity levels. As a signaling molecule, the necessary levels of vFGF for efficient 

function do not need to be high. 

We detected vFGF in whole cell lysates and in cell culture media when expressed at high 

enough levels. When expressed at lower levels, vFGF secretion may be hard to detect.  In 

addition, the presence of vFGF in whole cell lysates could be due to secreted vFGF tethered to 

the surface of cells by heparan sulfate proteoglycan interactions or its presence intracellularly.  

To validate that vFGF was cell surface-bound, SF-21 cells were infected with AcBAC-

HSP70vfgfHA and harvested 24 h p.i.  Infected cells were fixed and immunolabeled with anti-

HA antibody followed by a gold-labeled secondary antibody prior to embedding in resin. Dense 

pockets of gold-labeled antibodies, corresponding to cell surface-bound vFGF, were evident on 

cells, confirming that vFGF was indeed secreted and retained on the surface of cells (Fig. 3A).  

To further strengthen the observation that vFGF binds to cell membranes and have a quantitative 

comparison of cell bound-vFGF from each virus construct, TN-368 cells were infected with 

AcBAC-HSP70vfgfHA, AcBAC-vfgfHARep, or AcBAC-vfgfKO and harvested at 12, 24 and 48 

h p.i. After harvesting, cell surfaces were immunolabeled with anti-HA primary antibody and an 

allophycocyanin (APC)-conjugated secondary antibody, and labeled cells were analyzed using 
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fluorescence-based flow cytometry.  The number of vFGF positive cells was considerably higher 

in AcBAC-HSP70vfgfHA- than AcBAC-vfgfHARep-infected cells at all time points examined 

although with both AcBAC-HSP70vfgfHA and AcBAC-vfgfHARep infections, the number of 

vFGF positive cells increased approximately 5.4 to 6-fold between 12 and 24 h p.i., respectively 

(Fig. 4). Only background levels of antibody were bound to the cell surfaces of AcBAC-vfgfKO-

infected cells at all time points.    

We predicted that if vFGF was secreted from cells and bound to heparan sulfate 

proteoglycans on cell membranes, virions budding from cells would acquire heparan sulfate-

bound vFGF on their envelopes. To examine if budded virions incorporated vFGF on the virus 

particle, budded virions from AcBAC-vfgfKO-, AcBAC-vfgfHARep-, or AcBAC-

HSP70vfgfHA-infected SF-21 cells were purified by gradient centrifugation, fixed onto Nickel 

Formvar/Carbon 200 mesh grids, and vFGF was detected using immunoelectron microscopy.  

Gold-labeled particles specific to HA-tagged vFGF were detected on AcBAC-vfgfHARep virions 

(Fig. 3B); however, these were absent in AcBAC-vfgfKO virions, indicating specificity (Fig. 

3D).  In the majority of experiments, we could only detect three or less gold-labeled particles on 

individual vFGF-HA carrying virions.  In contrast, there were over 10-fold more gold-labeled 

particles conjugated to anti-GP64 that associated with GP64, an envelope associated viral protein 

essential for virus entry (Fig. 3C). Interestingly, the gold-labeled vFGF-HA particles were 

usually localized at one end of the virion.  Virions derived from the AcBAC-HSP70vfgfHA-

infected cells showed increased gold-labeled particles also at the bulbous end of the virion, 

reaffirming the polarization of virions and vFGF (Fig. 3E).  

Since FGFs, including vFGF, have high affinity to heparin-Sepharose, we next compared 

the affinity of AcBAC-vfgfHARep, AcBAC-vfgfKO and AcBAC-HSP70vfgfHA purified virions 

to heparin-Sepharose and determined whether the presence or absence of vFGF on the virus 

surface affected this property.  Equal numbers of infectious virions, calculated prior to use by 

TCID50, were incubated with heparin-Sepharose beads, sulfated and carboxylated 

glucosaminoglycans on Sepharose that yield an overall negative charge and serve as a cation 

exchangers.  To reduce non-specific interactions, the beads were washed with 125 mM NaCl to 

disrupt ionic interactions prior to eluting the bound proteins with a 1.25 M NaCl solution. All 

fractions were dialyzed against TC-100 incomplete media and virus solutions titered. We found 

that dialysis was necessary since high salt concentrations used during washes and elution 
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interfered with infections (Lehiy and Passarelli, unpublished results).   AcBAC-vfgfKO virions 

had less affinity to heparin-Sepharose than either AcBAC-vfgfHARep or AcBAC-HSP70vfgfHA 

virions, with the majority of virions eluting in the unbound fraction, flow through, and wash 

fractions.  In contrast, virions with vFGF on the surface had higher affinity to heparin beads, 

eluting mainly in the presence of high salt concentrations (Fig. 5).  Non-specific virus binding to 

heparin-Sepharose can be attributed to either cellular FGFs incorporated on the viral envelopes, 

FGFs from the serum containing media, or other ionic interactions.  

It has previously been demonstrated that heparin-Sepharose purified vFGF stimulates 

motility of insect cells by stimulating an FGFR and ensuing a subsequent signaling cascade 

(Detvisitsakun et al., 2004; Katsuma et al., 2006); thus, we asked whether virions containing 

vFGF could stimulate cell motility. Using transwells with polycarbonate membrane inserts, 2 x 

104 SF-21 cells were placed in the upper chamber while 1 x 105 to 1 x 107 infectious purified 

AcBAC-HSP70vfgfHA or AcBAC-vfgfKO virions were placed in the lower chamber. After four 

hours, the transwell inserts were removed and cells that migrated to the lower chamber were 

quantified using CellTiter-Glo luminescent substrate that measures ATP production and is 

indicative of live cells. The amount of cell migration to the lower chamber increased in 

proportion to virus titer with 1 x 107virions producing statistically significant differences 

between the three viruses used in the assay (Fig. 6A). At this point, however, we were concerned 

that the amount of migration we were observing at the higher virion concentrations could be due 

to overwhelming virus infection and not to vFGF specifically. To address this, we treated 1 x 

107purified AcBAC-HSP70vfgfHA virions with 1U of Heparinase III, an enzyme known to 

cleave heparin sulfate proteoglycans from the cellular surface. After treatment, the virion and 

supernatant fractions were isolated using centrifugation and used in the same migration 

experiment outlined above. The amount of migration induced from virions decreased 

dramatically after Heparinase III treatment, while the supernatant containing the vFGF was still 

capable of inducing significant cell motility (Fig. 6B).     

vFGFs is a membrane-associated protein that interacts with other membrane proteins, 

including  heparan sulfate proteoglycans and the FGFR.  In addition, a number of viruses 

belonging to several virus families, use heparan sulfate molecules as their receptors (Flint, et al., 

2005). Thus, we were interested in evaluating whether the presence or absence of vFGF on the 

surface of the virions affected virus attachment to and/or entry into permissive insect cells. To 



 58 

this end, virions from AcBAC-vfgfHARep, AcBAC-vfgfKO, and AcBAC-HSP70vfgfHA were 

radiolabed with 35S-methionine and partially purified to remove unbound radioactivity.  

Radiolabeled AcBAC-vfgfHARep, AcBAC-vfgfKO, or AcBAC-HSP70vfgfHA was added at an 

MOI of 1 PFU/cell to chilled SF-21 or TN-368 cells.  At specific times post attachment, the virus 

supernatant (i.e., unattached virions) was removed and the cells washed three times with cold 

PBS. After washing, the cells were lysed and the radioactivity determined in a scintillation 

counter.  SF-21 cells treated with AcBAC-vfgfKO bound less radioactive particles than AcBAC-

HSP70vfgfHA and AcBAC-vfgfHARep at every time point measured (Fig. 7A). Similar defects 

were observed using TN-368, although the binding defects of AcBAC-vfgfKO compared to 

viruses encoding vfgf were not as marked as those in SF-21 cells, and differences were not 

significant 30 minute post attachment (Fig. 7B). We repeated the binding assay at 25 °C using 

SF-21 cells and also observed a defect in attachment at this temperature, which was more 

prominent at early times (Fig. 7C).  

To determine whether the presence of vFGF on the budded virus envelope affected entry, 

we inhibited endosomal acidification, a step required for endosomal membrane fusion, with 

ammonium chloride at several time points after AcBAC-vfgfRep or AcBAC-vfgfKO attachment 

to SF-21 cells (Hefferon et al., 1999). At early times post attachment (0 through 20 minutes), 

treatment of cells with ammonium chloride resulted in an entry defect ranging between 24.6 and 

34.5% for AcBAC-vfgfKO-compared to AcBAC-vfgfHARep-infected cells (Fig. 7D). At 30 and 

60 minutes post attachment, treatment of AcBAC-vfgfKO-infected cells with ammonium 

chloride resulted in an entry defect of 15.9 and 14.1%, respectively, compared to AcBAC-

vfgfHARep.  AcBAC-vfgfRep- and AcBAC-vfgfKO-infected but ammonium chloride-untreated 

cells showed no significant differences (Fig. 7D, control column).  Although we observed entry 

differences between AcBAC-vfgfHARep and AcBAC-vfgfKO, they were too small to infer any 

significance during the normal virus attachment phase. 

Future Work  
In this current study, we observed that AcBAC-vfgfHARep-infected TN-368 cells 

produced low, detectable levels of HA-tagged Ac-vFGF at 24 and 48 h p.i, but not at the earlier 

time points assayed. This is somewhat inconsistent with previous results which showed Ac-vfgf 

as an early gene product, with message present as early as 3 hours p.i., but persisting throughout 

the course of infection. The persistence of the message may indicate that Ac-vFGF accumulates 
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to detectable levels slowly over the course of infection, which explains the detection pattern seen 

here (Detvisitsakun et al., 2005).  We were also able to establish that the Ac-vFGF detected in 

the cell lysate fraction was localized to the cell surface, consistent with the expected model of 

secretion followed by subsequent binding to the EM. 

The inability to detect Ac-vFGF in the supernatant of AcBAC-vfgfHARep-infected cells 

has been attributed by Katsuma and others to be due to a lack of N-glycosylation which inhibits 

efficient secretion. The detection of Ac-vFGF in the supernatant from AcBAC-HSP70vfgfHA-

infected cells suggests this is not the case. Instead, we think that Ac-vFGF is expressed at low 

levels from its native promoter and released from the cell in concentrations under 5 ng/ml, well 

below the detectable limits of our assays, but still quite capable of inducing chemotaxis 

(Detvistsakun, Wu, and Passarelli, unpublished results; Katsuma et al., 2006a). Additionally, any 

of the Ac-vFGF-HSPG complex released from the cell would likely interact with cellular 

receptors and quickly become internalized in the signaling process, further removing it from the 

supernatant fraction.  

The detection of membrane-associated Ac-vFGF during BV production was intriguing, 

so we investigated and were able to detect Ac-vFGF on the envelope of budded virions.  We then 

tested the effects of BV-associated Ac-vFGF, first by measuring the affinity of virions to bind 

heparin-Sepharose in vitro and then by measuring attachment to cells in vivo. In both cases, the 

presence of Ac-vFGF on the virus envelope played a role in mediating attachment, but a closer 

examination of the in vivo results suggests the effects are highly transient particularly at 

temperatures more closely resembling the physiological conditions for infection. This 

observation is consistent with the lack of any observable cell culture defects in attachment from 

deleting Ac-vfgf. It is therefore quite likely that Ac-vFGF only plays a minor role, compared to 

perhaps GP64 and F protein, at mediating attachment to the insect cells. This is not to say that 

vFGFs, in general, are not significantly involved in attachment under certain conditions. In 

mammalian systems, for example, the role of vFGF in attachment has not been ascertained and it 

is quite possible that it plays a significant role in this process. Additionally, Group II viruses and 

Granuloviruses, which lack GP64, may rely more heavily on vFGFs to mediate attachment prior 

to entry.   

The ability for BV-associated Ac-vFGF to stimulate motility was also intriguing, not 

because it was able to stimulate motility, but because it could be an additional method for the 
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release of the functional Ac-vFGF-HSPG signaling complex from the cell. Recent work by 

Means and Passarelli has demonstrated that metalloproteases are activated in the context of 

infection, but only presumably after vFGF release. It is not clear what factor is responsible for 

the initial cleavage of the signaling complex, but the egress of BV with vFGF would accomplish 

this during the course of infection. Certainly, before this hypothesis is accepted, more work 

would have to be placed into understanding what factors if any are responsible for the initial 

release of Ac-vFGF. 
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Virion Associated vFGF: Figure and Legends 

 
Figure 1: Construction of two recombinant baculoviruses expressing a hemagglutin (HA) tagged 

vfgf.  A) Using an AcMNPV bacmid template lacking a functional vfgf gene, an HA-tagged vfgf 

under the control a 207-base pair native promoter element was inserted into the polyhedrin (polh) 

locus along with an enhanced green fluorescent protein (egfp) gene and the polh gene.  To 

construct a recombinant virus with vfgf under heat shock protein (hsp) 70 promoter control, the 

207-base pair promoter element was replaced with the Drosophila hsp 70 protein promoter.  

Confirmation of the transposition site was verified by PCR (results not shown).  B) Transcription 

of vfgf under its native promoter control was confirmed using RT-PCR at various hours (h) post 

infection (p.i.) and vfgf specific primers.   C) One-step growth curve analysis of AcBAC-

vfgfHARep and AcBAC-HSP70vfgfHA. SF-21 cells were infected with AcBAC, AcBAC–

vfgfHARep or AcBAC-HSP70vfgfHA at an MOI of 5 PFU/cell. At indicated h p.i., the 

supernatant was collected and the amount of infectious virus present was determined. 
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Figure 2: Production of vFGF during virus infection.  Intracellular (A) and extracellular (B) 

production of vFGF from TN-368 cells infected with AcBAC-vfgfHA (vFGFHA) or AcBAC–

HSP70vfgfHA (HSP70 VFGFHA) at an MOI of 10 PFU/cell.  Cells were lysed at the times 

(hours, h) post infection (p.i.) indicated at the top and total protein levels were quantified. Lanes 

with vFGFHA lysates have 25-fold more total protein compared to HSP70 vFGFHA lanes.  

After transfer to a PVDF membrane, the samples were immunoblotted using anti-HA antibody.  

Integrated Densitometry Values (IDV) for each lane, normalized to background levels reported 

at the bottom of each panel. NA, not applicable, equivalent to background levels 

 

 

 

 

 



 63 

 

 

 

 

A B

C D

Gp64 labeled

 
Figure 3: Presence of vFGF on the surface of cells and budded virions. (A) SF-21 cells were 

infected with AcBAC-HSP70vfgfHA at a MOI of 5 PFU/cell.  At 24 hours post infection, cells 

were fixed and immunolabeled with anti-HA.11 primary antibody and a gold-conjugated 

secondary antibody. After embedding, cells were examined for the presence of vFGF on the cell 

surface. vFGFHA was detected in dense pockets denoted by the dark label. (B-D) SF-21 cells 

were infected with AcBAC-vfgfHARep (B, C), AcBAC-vfgfKO (D), or AcBAC-

HSP70vfgfHARep (E) at an MOI of 0.1 PFU/cell and virions isolated by high speed 

centrifugation using either sucrose or NycoPrep TM gradients. Virus particles were labeled with 

anti-HA.11 antibody (B, D, E) or anti-GP64 antibody (C) and a gold-conjugated secondary 

antibody. Individual virions were visualized using a Philips MC-100 transmission electron 

microscope. The images are representative of the findings from three independent experiments.  

Bars represent 0.1 μM. 
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Figure 4: TN-368 cells were infected at a MOI of 5 PFU/cell with either AcBAC-vfgfHARep,  

AcBAC-vfgfKO, or AcBAC-HSP70vfgfHA. At 24 and 48 hours post infection (h p.i.), the cells 

were harvested and resuspended in PBS, pH 6.2. The surface of cells was labeled with anti-HA 

and an APC-conjugated secondary antibody. Labeled cells were analyzed for APC fluorescence 

using a FACSCalibur flow cytometer.  The number of cells reported as APC positive are from a 

total of 10,000 cells counted. (***  p< 0.05, ** p<0.01). 
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Figure 5:  Binding of budded virions to heparin-Sepharose beads. Purified virions from either 

AcBAC-vfgfHARep,  AcBAC-vfgfKO, or AcBAC-HSP70vfgfHA-infected SF-21 cells were 

incubated with heparin-Sepharose beads. The beads were washed with a salt-containing solution 

to remove non-specific binding and then with a 1.25 M NaCl solution.  After dialysis, the flow-

through, wash and elution fractions were dialyzed to remove excess salt and the infectious virus 

titered. Virus in the flow-through and wash fractions was combined and is represented in the 

unbound columns. The elution fraction represents the amount of virus that remained bound to the 

column after washing.  (*** p<0.05, **p< 0.01). 
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Figure 6: Virus induced cell migration. (A) SF-21 cells (2 x 104) were placed in the upper 

chamber of a migration chamber with an 8 µM pore size and purified infectious virions from 

AcBAC-vfgfHARep, AcBAC-vfgfKO, or AcBAC-HSP70vfgfHA, were placed in the lower 

chamber. After 4 hours of incubation at 27C, the upper chamber was removed and the number of 

cells that migrated to the lower chamber was determined using Cell Titer Glo Luminescent 

Assay. (B) AcBAC-HSP70vFGFHA virions were treated with Heparinase III to liberate vFGF-

heparin complexes from the virus envelop. Virions were then isolated and reconstituted using 

centrifugation and used in a motility assay along with the supernatant containing vFGF. (*** p< 

0.05, ** p<0.01, * p<0.5) 
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Figure 7: Virus attachment and entry into SF-21 and TN-368 cells.  35S-methionine radiolabeled 

AcBAC-vfgfHARep, AcBAC-vfgfKO, or AcBAC-HSP70vfgfHA virions (MOI of 1 PFU/cell) 

were allowed to attach to SF-21 (A, C) or TN-368 (B) cells at either 4C (A, B) or 25C (C) for the 

specific times (in minutes) indicated at the bottom of each graph. After attachment, the virus 

supernatant was removed and cells washed 3 times prior to harvesting. Radioactivity (CPM) in 

the cell lysate was determined in a scintillation counter. To normalize all samples, the CPM 

counts on all samples were adjusted relative to initial CPM counts.  D) To determine vFGF 

effects on virus entry, AcBAC-vfgfHARep or AcBAC-vfgfKO virions (MOI of 1 PFU/cell) were 

allowed to attach to SF-21 cells for 60 minutes at 4C.  Virus supernatant was removed, cells 

washed, and resuspended in TC-100 complete media. Exit from the endosome was inhibited by 

the addition of ammonium chloride at specific times post attachment (in minutes) or left 

untreated (Control) as indicated at the bottom of the graph. At 24 h post attachment, eGFP 

expression was determined using flow cytometry.   
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CHAPTER 5 - Baculovirus Core Gene Ac-orf109 

Over the course of our examination of Ac-vFGF, we became interested in the functions  

of several baculovirus core genes. Currently, there are 31 genes identified among all the 

baculovirus genomes sequenced to date (reviewed by Herniou and Jehle, 2007; McCarthy and 

Theilmann, 2008). These are divided, based on function, into five broad categories: viral 

transcription, replication, structural proteins, auxiliary proteins, and proteins of unknown 

function. Among the core genes of unknown function which we were interested in characterizing 

was Ac-orf109. Initially identified in the Autographa californica M Nucleopolyhedrovirus 

genome between position 94721 and 95893, Ac-orf109 is predicted to encode a 390 amino acid 

protein with a molecular mass of 44.8 kDa (Ayers 1994). Component analysis of the ODV form 

of AcMNPV has indicated Ac-orf109 is one of 22 proteins associated with the nucleocapsid 

although work with a homolog of Ac-orf109 found in Helicoverpa armigera S 

Nucleopolyhedrovirus (64.6% consensus with Ac-orf109) determined it was also a component of 

both the envelope and capsid components of BV (Fang et.al., 2003 Braunagel, 2003). A BLAST 

search using the protein sequence of Ac-orf109 showed no homologous proteins outside of 

baculovirus and an ELM search revealed no known functional motifs were present (Puntervoll 

et.al., 2003). 

Recently, two independent reports were published on the characterization of AcMNPV 

lacking Ac-orf109. The first of these reports, by Fang and collegues (2009), used homologous 

recombination in Escherichia coli to delete 1142 nucleotides of the open reading frame of Ac-

orf109 from the commercially available AcMNPV-bacmid, leaving only 43 nucleotides of the C-

terminus to act as a promoter element for the downstream open reading frame, Ac-orf108. The 

deletion Ac-orf109 construct was then transfected into Spodoptera frugiperda cells (Sf9) and 

monitored for the production of BV and ODV. Over the course of 96 hours post transfection (pt), 

only the cells initially transfected showed obvious signs of virus infection including enlarged 

nuclei and the presence of occlusion bodies. The lack of virus spread was not due to deficiencies 

in either viral DNA synthesis or late gene expression, and capsid structures were evident in the 

supernatant of transfected cells (Fang et. al., 2009). Based on these observations, they concluded 

the deletion of Ac-orf109 resulted in the production of non-infectious BV. 
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To bolster these observations, Fang and others generated a recombinant virus expressing 

an epitope tagged version of Ac-orf109. Immunoblots of isolated BV and ODV produced from 

infections with this virus showed the protein was present in both structures making Ac-orf109 

one of only eleven baculovirus proteins known to be associated with both virus forms (McCarthy 

et. al., 2007). Fractionation of the infected cells into nuclear and cytoplasmic fractions showed 

Ac-orf109 was equally distributed between the two, congruent with its role in both BV and ODV 

formation (Fang et. al., 2009).    

The second of these reports, by Lin and collegues (2009), used the same recombination 

method to construct their deletion Ac-orf109 construct, but unlike the earlier report, they only 

deleted a 278 nucleotide internal fragment (102-380) from Ac-orf109, leaving a large N-terminal 

fragment unperturbed. The results of this deletion were similar to the ones observed by Fang and 

others with respect to a lack of systemic spread of the virus. Viral DNA replication of the 

deletion Ac-orf109 virus was equivalent to that of the controls through 48 hours pt, but was at 

least 600- to 1000 fold- less at later time points, most likely due to the lack of virus spread to 

nearby cells. Other than enlarged nuclei and electron dense bodies associated with virogenic 

stroma, no other obvious signs of virus infection were noted in the deletion Ac-orf109 virus-

transfected cells including the formation of occlusion bodies or the presence of intact capsids 

(Lin et. al., 2009). The effects of deleting Ac-orf109, in their hands at least, seemed to be much 

more severe than those reported by Fang and others.  

To resolve the discrepancies between these two reports, we constructed a number of 

recombinant viruses (Fig. 8A) using the method outlined by Bideshi and Federici (2000).  The 

first of these deleted 94% of Ac-orf109 including the start codon from the commercially 

available AcMNPV bacmid bMON14272 leaving only a 69 nucleotide C-terminal fragment to 

act as the promoter element for Ac-orf108. Since this bacmid virus lacks the polyhedrin (polh) 

gene, we used the translocation method previously described by Detvisitsakun to introduce polh 

controlled by its native promoter as well as the enhanced green fluorescent protein gene (eGFP) 

under Drosophila heat shock protein 70 promoter control to produce the final product AcBAC-

orf109KO (Detvisitsakun, et. al., 2006).  To ensure that the phenotype observed from deleting 

Ac-orf109 were specific and not due to inadvertent mutations or deletions in other areas of the 

bacmid, we also constructed a repair virus, AcBAC-orf109Rep, using the deletion backbone and 

translocation. In this case, along with eGFP and polh, Ac-orf109 driven by a 49 nucleotide 
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upstream region acting as the promoter element was reintroduced into the genome at the 

polyhedrin locus. After construction of AcBAC-orf109KO and AcBAC-orf109Rep, PCR was 

used to confirm that recombination and translocation occurred as designed (Fig. 8B). In order to 

determine protein levels and temporal expression patterns of Ac-orf109 during an infection, a 

third virus which introduced a C-terminal hemagglutinin epitope (HA) tagged form of Ac-orf109 

into the deletion background was created (AcBAC-orf109glyHA). Each of these viruses was 

then transfected into SF-21 cells and the effects observed with respect to virus replication. 

Results of Deleting Ac-orf109  
Ac-orf109 homologs are predicted in all baculoviruses sequenced to date including those 

viruses infecting members of the orders Diptera and Hymenoptera (Fig. 9).  Protein sequence 

alignments of the 53 predicted homologs using ClustalW software suggest a high degree of 

conservation with over 47% consensus, but a BLAST search shows no significant sequence 

identity with non-baculovirus proteins. Analysis of the promoter element of Ac-orf109 shows a 

TATA element at +8 nucleotides upstream of the start codon and a consensus late gene initiator 

site (G)TAAG at +14 nucelotides.  Consistent with this finding, a Northern blot analysis of total 

RNA extracted from SF-21 cells infected with AcMNPV hybridized with an RNA-specific probe 

derived from Ac-orf109 identifies a  ~1.6 kb message first evident at 9 h p.i. and continuing 

through 48 h p.i. (Fig. 10A). The transcript was markedly reduced in infected cells treated with 

aphidicholine, a viral DNA synthesis inhibitor, consistent with the expression profile of late viral 

genes, but surprisingly was not affected in the presence of cyclohexamide. Consistent with these 

results, Ac-orf109 was detected in SF-21 cells infected with AcBAC-orf109glyHA as early as 12 

hours p.i., and the levels of protein remained consistent throughout the remainder of the time 

course (Fig. 10B)  

To determine the role of Ac-orf109, viral DNA from both AcBAC-orf109KO and 

AcBAC-orf109Rep were transfected into SF-21 cells and then these cells were observed for 

signs of infection. At 24 h post transfection (p.t.), between 10 and 25% of the AcBAC-orf109KO 

and AcBAC-orf109Rep transfected cells were expressing egfp corresponding to the cells initially 

transfected with bacmid DNA (Fig. 11 A and C, respectively). By 48 h p.t., 100% of the 

AcBAC-orf109Rep transfected cells expressed egfp, whereas in AcBAC-orf109KO transfected 

cells, the number of fluorescent cells remained relatively constant (Fig 11 B and D). The lack of 

cell to cell virus transmission seen with the AcBAC-orf109KO- transfected cells strongly 
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suggests a defect in infectious BV production. By 96 h p.t., however, AcBAC-orf109KO- 

transfected cells showed the presence of occlusion bodies suggesting that the viral replication 

cycle was not completely stalled with Ac-orf109 deletion (Figure 11M).  

 To test for the presence of infectious budded virus, supernatant from AcBAC-orf109KO- 

or AcBAC-orf109Rep-transfected cells was used to treat naïve SF-21 cells. By 48 h p.i. all the 

cells incubated with AcBAC-orf109Rep supernatant (Fig 11J) showed obvious signs of infection 

(fluorescent cells with occlusions), whereas none of the cells treated with AcBAC-orf109KO 

supernatant were infected (Fig 11I). To rule out the possibility that this phenotype was due to 

errors generated during bacmid construction, we utilized plasmids containing either Ac-orf109 or 

a frame-shift mutant to trans-complement the deletion virus. The plasmids p109 (containing Ac-

orf109 and Ac-orf110) and p109FS (which introduced a premature stop codon truncating Ac-

orf109 by 40%) were co-transfected with AcBAC-orf109KO into SF-21 cells. At 24 h.p.t., the 

number of egfp-expressing cells were similar to the those observed with the AcBAC-orf109KO- 

or AcBAC-orf109Rep-transfected cells (Fig 11 E and G)  By 48 h p.t., nearly 100% of the cells 

co-transfected with p109 showed obvious signs of infection while the percentage of those co-

transfected with the frame-shift mutant of Ac-orf109 remained constant (~15%) (Fig 11 F and 

H). As before, supernatant from these transfections was used to treat naïve SF-21 cells, but only 

the supernatant from AcBAC-orf109KO co-transfected with p109 produced new rounds of 

infection (Fig. 11 K and L).   

 The absence of budded virus production in AcBAC-orf109KO-infected cells could be 

attributed to many factors including lack of viral DNA replication, late viral gene expression, 

packaging of the capsids, or even shuttling of the intact capsids to the cell surface. To account 

for some of these possibilities, we looked at genome replication and late viral gene expression. 

Using the method outlined by Vanarsdall, SF-21 cells were transfected with 1 µg of AcBAC, 

AcBAC-orf109KO, AcBAC-orf109Rep, or vAcgp64- , a gp64 null mutant capable of replicating 

viral DNA genome, but unable to produce infectious BV (Oomens and Blissard, 1999; 

Vanarsdall et. al., 2006). At specific times p.t., genomic DNA from infected cells was harvested 

and the AcMNPV genomic copy number was determined for all the samples taken.  As expected, 

AcBAC- and AcBAC-orf109Rep-infected cells, produced significantly more copies of viral 

DNA at the late time points compared to AcBAC-orf109KO, attributable to the spread of these 

viruses systemically (Fig. 12A). Interestingly, both AcBAC-orf109KO- and vAcgp64-transfected 
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cells appeared to have more copies of viral DNA at earlier time points (24 and 36 h p.t.) 

compared to either cells transfected with the control virus or AcBAC-orf109Rep. One possible 

explanation for this is both AcBAC and AcBAC-orf109Rep produce infectious BV which exits 

the cell and reduces the total genome copy number at the early time points. Alternatively, the 

disparity in genome copy numbers at the early time points could be attributable to subtle 

differences in the transfection efficiencies of the various bacmids, although the consistency of 

the results over three independent experiments suggests this is unlikely.   

 To determine the ability of viruses to express late viral genes, we used Reverse 

Transcriptase (RT)-PCR and gene specific primer sets to identify the presence of early (lef-1), 

early and late (gp64) and very late (polh) viral transcripts from SF-21 cells transfected with 

either AcBAC-orf109KO or AcBAC-orf109Rep. Viral message from each of the target genes 

could be detected at 12, 24, and 48 h p.t, suggesting that Ac-orf109 deletion did not adversely 

affect transcription of these genes and probably gene transcription at different stages p.i. (Fig. 

12B).  In addition, a western blot using cell lysates from SF-21 cells transfected with AcBAC-orf 

109Rep or AcBAC-orf109KO and immuno-probed for GP64, an early to late viral product, 

showed the protein was present  in both transfected cell lysates at 24 h p.t. In supernatants 

collected at 24, 48, and 72 h p.t., however GP64 could only be detected from AcBAC-orf109Rep 

transfected cells which produce infectious budded virus (Fig. 13).  

Since AcBAC-orf109KO was able to express representative genes in the three temporal 

phases and replicated its genome, the lack of spread for infection coupled with the absence of 

GP64 in the supernatant strongly suggested a failure to produce BV in the deletion mutant. We 

considered that the inability of AcBAC-orf109KO to produce BV was at the assembly stage 

where capsids are packaged with DNA and then shuttled out of the nucleus. To test this 

hypothesis, SF-21 cells were transfected with AcBAC-orf109KO or AcBAC-orf109Rep DNA 

and at set intervals the cells were harvested, fixed in 2% para-formaldehyde and embedded in 

resin. Thin sections of embedded cells were examined for the presence of budded and occluded 

virus. Cells transfected with AcBAC-orf109Rep DNA showed virions in the nucleus (Fig. 14 C 

and D), cytoplasm (Fig. 14C) and BV in the supernatant (data not shown)  at 24 h p.t. In cells 

transfected with AcBAC-orf109KO, however, virions could only be detected in the nucleus and 

not the cell periphery or supernatant suggesting an inability for the capsids to egress from the 

nucleus (Fig. 14 A and B).  
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At late times post transfection, capsids were clearly aligned in the ring zone in both 

AcBAC-orf109Rep- or Ac-BAC-orf109KO-transfected cells (Fig. 15 A and C). The capsids in 

the AcBAC-orf109KO-transfected cells however were devoid of the characteristic ODV 

envelope (Fig. 15 A and B) seen in AcBAC-orf109Rep-transfected cells (Fig. 15 C and D). The 

lack of encapsulation appeared to affect the number of ODV embedded in the polyhedrin-based 

occlusion bodies formed in cells transfected with Ac-BAC-orf109KO (Fig. 16B), but not in the 

cells transfected with AcBAC-orf109Rep (Fig. 16A). 

 A recent study involving Helicoverpa armigera Nucleopolyhedrovirus (HearNPV) 

demonstrated interactions of ODV proteins utilizing a yeast two-hybrid screening method. The 

results of this screen indicated Ha-EC43, a homolog of Ac-orf109, interacted with HA9, the 

homolog of Ac-142 (Peng et. al., 2010). Since the results of two-hybrid studies are sometimes 

mis-leading, we performed interaction studies using plasmids expressing either an HA- or 

FLAG-epitope tagged version of Ac-orf109 or a FLAG-epitope tag version of Ac-142. In these 

studies, Ac-orf109 could be immuno-precipitated with Ac-142 as well as itself suggesting they 

formed a complex during infection (Fig. 17). Interestingly, the deletion of Ac-142, another 

baculovirus core gene of unknown function, from the genome of AcMNPV results in a 

phenotype identical to the one observed with the Ac-orf109 deletion (Vanarsdall et. al., 2007; 

McCarthy et. al. 2008). It is tempting to speculate based on the interaction of the two proteins, as 

well as the similar phenotypes of the deletion mutants, that Ac-orf109 and Ac-142 form a 

functional complex during the course of infection which is essential for the egress of capsids 

from the nucleus for BV formation, as well as the encapsulation of capsids for the proper 

formation of ODV. 

Future Work 
 Based on observations here, Ac-orf109 is an essential baculovirus core gene. It is 

expressed as a late viral gene product with detectable levels of protein produced as early as 12 

hours post infection. Deletion of Ac-orf109 from the genome of AcMNPV results in an inability 

of the virus to spread. This defect can be recovered though either through the re-introduction of 

Ac-orf109 into the genome or the expression of the protein in trans from a plasmid.  

Closer examination of cells transfected with the deletion Ac-orf109 virus showed an 

absence of BV production was responsible for the defect. Viral DNA replication, late gene 

expression, and capsid formation in the nucleus all appeared to be normal. At late times post 
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transfection, multiple occlusion bodies could be detected in the cell suggesting the infection 

cycle continued in the absence of Ac-orf109. 

Of the two previous studies on Ac-orf109, our results most closely mirror those of Fang 

and others, but with one important distinction. In their report, they were capable of detecting 

non-infectious BV in the supernatant of cells transfected with their deletion Ac-orf109 virus 

(Fang et. al., 2009). Despite numerous attempts, we were not able to detect any evidence of BV 

in the supernatant of cells transfected with Ac-BAC-orf109KO, nor were we able to visually 

detect virions exiting the nucleus. There are several potential explanations for this. 

First, our transfection efficiency with our recombinant viruses using SF-21 cells was only 

between 20 and 35 percent across all of the experiments. A lower transfection efficiency, 

compared to the ones achieved by Fang and others, could reduce the amount of non-infectious 

BV in the supernatant to below a detectable threshold. Second, in our attempts to isolate BV, we 

examined supernatant at 72 hours post transfection whereas Fang and others, in their 

experiments, collected supernatant at 96 hours post transfection. The additional 24 hours may 

have allowed for the accumulation of BV to accumulate to detectable levels. 

While both of these explanations are plausible, they are not likely. To begin with, based 

on the data provided, our transfection efficiencies appeared to be roughly equivalent to the ones 

achieved by Fang and others. With similar transfection efficiencies, it is unlikely that the levels 

of non-infectious BV production would be significantly different. Additionally, Fang and others 

were able to detect viral DNA as well as the proteins GP64 and VP39 in the supernatant of 

transfected Sf9 cells at 72 hours p.t., presumably due to the presence of non-infectious BV at this 

time point (Fang et. al., 2009). Based on these results, there appears to be sufficient levels of 

non-infectious BV for detection at this earlier time point, however, we could not duplicate any of 

these results with our recombinant virus. On a side note, the presence of GP64-containing BV in 

the supernatant is particularly troubling considering GP64 by itself can mediate attachment and 

entry into insect cells (Hefferon et. al., 1999; Monsma et. al., 1996). It is therefore unclear at 

what stage the deletion Ac-orf109-produced BV become non-infectious.  

 A third possible explanation, which is more likely considering all the evidence, is the 

capsids, DNA and proteins detected in the supernatant were the product of inadvertently lysed 

cells. In the Materials and Methods section, Fang and others described a collection method that 

involved the initial use of rubber policeman to scrape the transfected Sf9cells, releasing them 
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from the plate into the supernatant. The cell/supernatant mixture was then separated via low 

speed centrifugation and the supernatant removed for later analysis. In our experiments, 

however, the supernatant was removed from the cells while the cells were still attached to the 

plates. It was then clarified by low speed centrifugation to remove any cells or debris prior to 

storage for later analysis. This subtle difference in collection methods may account for the 

identification of non-infectious BV by Fang and others, whereas we could not detect any 

evidence of this.  

The phenotype of the deletion Ac-orf109 virus noted by Lin and others is starkly different 

than the one observed by Fang and others, as well as the phenotype associated with Ac-BAC-

orf109KO. We can only hypothesize that the method of deletion strongly affected the phenotype. 

In the Materials and Methods section of Lin and others, a 278 base pair fragment was deleted 

from the center portion of Ac-orf109 and replaced with an antibiotic-expressing cassette. This 

deletion method results in a large N-terminal Ac-orf109 fragment as well as C-terminal fragment 

roughly twice the size of Fang and others. It is possible that a truncated Ac-orf109 protein is 

produced from the remaining N-terminal fragment, and this protein somehow interferes with 

some aspect of late gene expression and capsid formation but surprisingly not viral DNA 

replication. Alternatively, the phenotype observed with Lin and other’s deletion Ac-orf109 virus 

could be due to an errant mutation occurring during the production process independent of Ac-

orf109. Without more evidence, such as a complementation assay, it is impossible to determine 

which of these explanations has more validity. 

Aside from determining the phenotype arising from the deletion of Ac-orf109, this work 

also demonstrated briefly that Ac-orf109 and Ac-142, two baculovirus core genes, associate 

together, perhaps forming a functional complex essential for directing both capsid egress out of 

the nucleus for BV production and the de novo synthesis of the membrane encapsulating ODV. 

Currently, little is known about the either of these processes, which makes the interaction of Ac-

orf109 and Ac-142 an ideal starting point for further study. Aside from determining the structural 

basis for their interaction, studies could be done to determine which, if any, viral or host proteins 

associate with this complex over the course of infection. In addition, even though these core 

genes are highly conserved, it would be interesting to determine if homologs from Group II or 

Granuloviruses could functionally substitute for Ac-orf109 or Ac-142, either singly or as a pair.  

In the same vein, a small number of Group I and Group II baculoviruses are known to form only 
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singly enveloped capsids prior to their being embedded into the protein matrix to form OBs. It 

would be interesting to determine if this phenotype could be changed to an MNPV phenotype in 

the presence of Ac-orf109 or Ac-142.    
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Baculovirus Core Gene: Figures and Legend 
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Figure 8: Construction of AcBAC-orf109KO, AcBAC-orf109Rep and AcBAC-orf109glyHA 

viruses A) Within the coding sequence of Ac-orf109, 94% was replaced through homologous 

recombination with the chloramphenicol acetyl transferase resistance gene leaving a 69 

nucleotide C-terminal fragment as the promoter element for Ac-orf108. After recombination, 

transposition was used to reintroduce the polyhedrin (polh) gene under native promoter control 

and the enhanced green fluorescent protein (eGFP) gene under the Drosophila heat shock 

protein 70 (hsp70) promoter control. For AcBAC-orf109Rep and AcBAC-orf109glyHA, in 

addition to transposition of polh and eGFP, Ac-orf109 or the HA epitope tagged version of Ac-

orf109 was re-introduced into the AcBAC-orf109KO backbone driven by a 49 nucleotide native 

promoter element.  B) To determine correct recombination and transposition events, PCR with 

specific primer sets was used for both the AcBAC-orf109KO and AcBAC-orf109Rep constructs.  
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Figure 9: Phylogenetic analysis of Ac-orf109 homologs. Putative protein sequences with 

homology to Ac-orf109 were identified from the 53 baculoviruses genomes currently sequenced 

and then aligned using ClustalW software. After the alignments were completed, a phylogenetic 

tree was assembled using Phylip parsimony method for protein sequences. Sequence identity to 

Ac-orf109 ranged from 98% (RoMNPV) to 47% (CuniMNPV). 
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Figure 10: Transcription and protein expression profiles of Ac-orf109. A) cRNA probe 

complimentary to Ac-orf109 was hybridized to a Northern blot of total RNA isolated from 

AcMNPV-infected SF-21 cells (MOI of 20 PFU/cell) at various times p.i. indicated by the 

numbers along the top. One major RNA was identified at roughly 1.6 kb which corresponds to 

the size of the predicted Ac-orf109 transcript. Total RNA was also collected at 12 h p.i from 

cells treated with cycloheximide (12c) 30 minutes prior to infection or aphidicolin (12a) 

immediately after infection. Numbers on the right correspond to standards in kb. B) SF-21 cells 

were infected (MOI 5 PFU/cell) with AcBAC-orf109glyHA. Two wells of cells were  treated 

with either cycloheximide (12c) 30 minutes prior to infection or aphidicolin (12a) immediately 

after infection. At the times indicated (top), the cells were collected, lysed and then placed in a 

SDS-polyacrylamide gel. After transfer to a PVDF membrane, the samples were immunoblotted 

using anti-HA antibody 
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Figure 11: Complementation assay with AcBAC-orf109KO. AcBAC-orf109KO (A,B) or 

AcBAC-orf109Rep (C,D) DNA was transfected into SF-21 cells and then examined for the 

presence of eGFP at the times indicated. At 48 hours post transfection (p.t.), supernatant was 

removed from the transfected cells and used to treat naïve SF-21 cells. At 24 h post infection 

(p.i.), cells treated with AcBAC-orf109KO supernatant (M) or AcBAC-orf109Rep supernatant 

(J) were visualized for eGFP expression. In three replicate experiments, the AcBAC-orf109KO 

transfection failed to produce infectious budded virus. In an attempt to trans-complement the 

deletion phenotype, a plasmid containing Ac-orf 109 under native promoter control (p109) or a 

frame shift mutant (p109FS) were co-transfected with AcBAC-orf109KO into SF-21 cells. By 24 

h p.t., both the p109 (E) and p109FS (G) had green fluorescent cells. By 48 h post transfection, 

infection had spread in the wells co-transfected with p109 (F), but not with the frame shift 

mutant (H). The supernatant from each transfection was collected at 48 h and used to treat naïve 

SF-21 cells. The supernatant from the p109-AcBAC-orf109KO co-transfection contained budded 

virus capable of infecting the SF-21 cells (K) while the co-transfection with p109FS plasmid 

appeared to be devoid of infectious budded virus, similar to the AcBAC-orf109KO (L). By 96 h 

p.t., occlusion bodies are clearly present in SF-21 cells transfected with AcBAC-orf109KO (M). 
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Figure 12: DNA replication of AcBAC, AcBAC-orf109KO, AcBAC-orf109Rep, and vAcgp64.  

SF-21 cells were transfected with 1 µg of either AcBAC, AcBAC-orf109KO, AcBAC-

orf109Rep, or vAcgp64- , a mutant lacking the ability to spread systemically but still able to 

replicate its DNA. At specific time points post transfection, genomic DNA and total RNA were 

harvested from cells. (A) The genomic DNA sample (2 µg total) was treated with Dpn I to 

remove any of the transfected input viral DNA. After treatment, Q-PCR was used to amplify a 

segment of gp41. The number of viral genome copies present in the transfected cells was 

obtained using the standard curve (inset)  (B) Total RNA (2 µg total) from the AcBAC-

orf109Rep- and AcBAC-orf109KO-transfected cells was treated with DNase I to remove any 

viral genomic contamination and then used with specific primer sets to identify viral gene 

expression using reverse transcriptase (RT)-PCR.  
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Figure 13: GP64 expression in AcBAC-orf109Rep- or AcBACorf109KO-transfected SF-

21cells.  SF-21 cells were transfected with AcBAC-orf109KO or AcBAC-orf109Rep DNA and 

then incubated for the time indicated hours post transfection (h p.t.). Supernatant was then 

removed from the cells and centrifuged at 24,000 x g through a 25% sucrose cushion to pellet 

any virus particles. The pelleted material was resuspended in 50ul of protein lysis buffer and 

placed on a SDS-12% acrylamide gel along with a sample of whole cell lysate from each 

transfection. After transfer to nitrocellulose membrane, the blot was probed with α-GP64 V5 

primary antibody (1:1000) and Goat-αMouse-HRP secondary (1:3000) antibody. 

 

 

 

 

 

 

 

 

 



 83 

 
Figure 14: Transmission electron microscopy of AcBAC-orf109KO- and AcBAC-orf109Rep- 

transfected cells at early times.  SF-21 cells were transfected with AcBAC-orf109KO(A and B) 

or AcBAC-orf109Rep (C and D) DNA, and incubated for 24 prior to fixation. Thin slices of 

resin-embedded cells from this time point were visualized for the presence of virus structures.. 

Nu = Nucleus; Cyt = cytoplasm; arrows denote capsids. 
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Figure 15: Transmission electron microscopy of AcBAC-orf109KO- and AcBAC-orf109Rep- 

transfected cells at late times. SF-21 cells were transfected with AcBAC-orf109KO (A and B) or 

AcBAC-orf109Rep (C and D) DNA, and incubated for 72 hours prior to fixation. Aligned 

capsids, as well as the individual capsids, in the AcBAC-orf109KO-transfected cells appeared to 

lack microvesicle envelopment compared to those found in AcBAC-orf109Rep-transfected cells 

(arrows). Nu = Nucleus; RZ = Ring Zone; VS = Virogenic Stroma. 
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Figure 16: Transmission electron microscopy of AcBAC-orf109KO- and AcBAC-orf109Rep- 

transfected cells at very late times. SF-21 cells were transfected with AcBAC-orf109Rep (A) or 

AcBAC-orf109KO (B) DNA, and incubated for 96 hours prior to fixation. Occlusion bodies in 

the AcBAC-orf109Rep-transfected cells showed multiple ODV (arrow) embedded in the 

polyhedrin matrix. The occlusion bodies in the AcBAC-orf109KO-transfected cells formed 

normally but lacked any embedded capsids. 
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Figure 17: Immuno-precipitation of Ac-orf109 with Ac-142. Plasmids expressing either Ac-

orf109HA, Ac-orf109FLAG, or Ac-142FLAG were transfected singly or together into SF-21 

cells. After 24 hours incubations cells were lysed with CHAPS lysis buffer. The lysates were 

then immuno-precipitated with either α-HA antibody or α-Flag antibody and then placed on a 

12% SDS-polyacrylamide gel. After transfer to PVDF membrane, the blot was probed with α-

HA-HRP conjugated antibody. An interaction between Ac-orf109HA and Ac-142FLAG was 

readily detected, as well as a weaker interaction between Ac-109HA and Ac-109Flag.   
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Appendix A - Materials and Methods vFGF 

Cells, viruses, and insects 
The cell line IPLB-SF-21 (SF-21) (Vaughn et al., 1977) derived from the fall armyworm, 

Spodoptera  frugiperda, and TN-368 cells (Hink, 1970) derived from the cabbage looper, 

Trichoplusia ni, were maintained in TC-100 medium (Invitrogen) supplemented with 10% fetal 

bovine serum (Atlanta Biological) and 0.26% tryptose broth as described previously (O'Reilly et 

al., 1994).  

Transplacement vector construction-vFGF 
We constructed a transfer vector to generate a recombinant of AcMNPV expressing vfgf 

under native promoter control.  First, the oligonucleotides (Sac I-F 5’-CTTAAGTCT 

GCAGTTTTAC-3’ and Sac 1-R 5’-ATAAAAATGTTTTTATTGTAAAAT ACAC-3’) were 

used to amplify an 863-base pair fragment from a construct containing HA-tagged vfgf and 

flanking regions.  DNA containing HA-tagged vfgf and 207-base pairs upstream of vfgf that serve 

as promoter region was ligated into the transplacement vector pFastBac–polh+gfp+ 

(Detvisitsakun et al., 2006) at Sac I sites to generate pFastBac−polh+-vFGFHA-gfp+.  The 

correct amplified sequence was verified by nucleotide sequencing analysis. To create the 

transplacement vector with vfgf under Drosophila heat shock protein (HSP) 70 promoter control, 

the 207 base pair native promoter element was removed and the 739 base pair HSP 70 promoter 

element inserted. The correct insertion was also verified by nucleotide sequencing analysis. 

Construction of AcBAC–vfgfHARep and AcBAC-HSP70vfgfHA 
AcBAC-vfgfHA Rep and AcBAC-HSP70 vfgfHA were generated by Tn7-mediated 

transposition by transforming MAX DH10Bac Efficiency competent Escherichia coli 

(Invitrogen) with pFastBac−polh+-vFGFHA-gfp+ or pFastBac−polh+-HSP70 vFGFHA-gfp+.  

Bacterial cells were incubated for 4 hours in SOC media (Invitrogen) at 37 °C and then plated on 

the appropriate selection media and incubated for an additional 18 hours according to the Bac-to-

Bac Baculovirus Expression System Manual (Invitrogen). White colonies resistant to kanamycin 

and gentamicin were selected and the transposition event and flanking regions were verified by 

PCR analysis.  Budded virus was produced by transfection of AcBAC-vfgfHARep or AcBAC-

HSP70vfgfHA DNA into SF-21 cells by liposome-mediated transfection as previously described 

(Crouch and Passarelli, 2002). 
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Virus growth curves and RT 
SF-21 cells were infected at an MOI of 5 PFU/cell with AcBAC-vfgfHARep, AcBAC-

HSP70vfgfHA or AcBAC.  Budded virus was collected at different times p.i. and titers were 

determined by TCID50 (O'Reilly et al., 1994). The graph represents 3 independent experiments 

for each virus. Cells from the AcBAC-vfgfHARep-infections were harvested from plates, lysed 

with Trizol reagent (Invitrogen), and stored at -80 °C until the entire time course was complete.  

Using the standard protocol, total RNA from infected cells was extracted and quantified.  

Aliquots (4 µg) from each time point were treated with 2 units of DNAse I for 2 hours and then 

heat inactivated at 72 °C for 15 minutes. After DNAse I treatment, the Access RT PCR system 

(Promega) was used to amplify vfgf specific transcripts with 1µg of treated RNA as a template 

and oligonucleotides (F5’- GGAGCTGTTTACG GAACCATTG-3’ and R5’-CAGTGC 

CACATACGTCAACTTG-3’) as primers. To control for DNA contamination, parallel samples 

lacking AMV Reverse Transcriptase were tested. PCR conditions were carried out at 45 °C for 1 

hour, followed by 40 cycles of 95 °C for 2 minutes, 45 °C for 30 seconds, and 72 °C for 1 

minute.   

Immunoblotting 
TN-368 cells (2 × 106) were infected at an MOI of 10 PFU/cell with AcBAC–vfgfHARep 

or AcBAC-vfgfKO virus. At several times p.i., cells were collected in 100 μl of Laemeli loading 

buffer. Proteins were resolved in a sodium dodecyl sulfate–12 % polyacrylamide gel, transferred 

to a PVDF membrane, and detected using 1:3000 dilution of anti-HA.11 antibody (Covance), 

1:5000 dilution of goat anti-mouse IgG–horseradish peroxidase (Bio-Rad). The SuperSignal 

West Femto Maximum Sensitivity Substrate (Pierce) was used to detect cross-reactive proteins. 

Densitometry Integrated Density Values (IDV) were calculated using AlphaImager 2200 

software. 

Transmission electron microscopy 
SF-21 cells (2 x 108) were infected with AcBAC–vfgfHARep, AcBAC-vfgfKO, or 

AcBAC-HSP70vfgfHA at an MOI of 0.1 PFU/cell.  At 72 h p.i., cell supernatant was collected 

and budded virus isolated using density gradient centrifugation (O'Reilly et al., 1994). Purified 

virions were removed from sucrose or NycoprepTM Universal (Axis Shield) gradients and 

resuspended in PBS, pH 6.2 (Potter and Miller, 1980).  Virions (1:100 dilution) were bound to 

Nickel Formvar/Carbon 200 mesh grids (Ted Pella, Inc.) and immunolabeled with a 1:1500 
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dilution of anti-HA.11 antibody (Covance) or 1:1500 dilution of anti-GP64 (AcV1) antibody 

(Santa Cruz Biotechnology)  and 1:100 dilution of anti-mouse IgG (whole molecule)–gold 

antibody (Sigma).  Virions were visualized with a Philips MC-100 transmission electron 

microscope.  

Flow cytometry 
TN-368 cells (0.5 x 106) were infected with AcBAC–vfgfHARep, AcBAC-vfgfKO, or 

AcBAC-HSP70vfgfHA at an MOI of 5 PFU/cell.  At 24 and 48 h p.i., cells were harvested, 

washed twice with cold PBS (pH 6.2) and then resuspended in 100 µl of 1:1000 dilution of anti-

HA.11 antibody (Covance).  After 1 h, the antibody solution was removed and cells were washed 

once with PBS.  Cells were then resuspended in 100 µl of 1:2000 dilution of APC-conjugated 

anti-mouse IgG antibody (BD Biosciences) for 1 h in the dark. Unbound antibody was removed 

and the cells were washed 3 times in PBS before fixing in 100 µl of 4% paraformaldehyde-1% 

glutaraldehyde in 0.1 M PBS. Cells were analyzed using a FACSCalibur flow cytometer.  

Heparin binding assay 
SF-21 cells (2 x 108) were infected with AcBAC-vfgfHARep,  AcBAC-vfgfKO, or 

AcBAC-HSP70vfgfHA  and virions were isolated and titered as described above (O'Reilly et al., 

1994).  Heparin SepharoseTM 6 Fast Flow beads (Amersham Biosciences) were washed with and 

resuspended in PBS pH 6.2. Aliquots (100 µl) from a 50% bead slurry were mixed with 5 x 107 

infectious virions and then diluted to a final volume of 1 ml. The virus-heparin-Sepharose 

mixture was incubated overnight at 4 °C with steady rotation. After binding, the flow-through 

was collected and the beads were washed with 1 ml of TC-100 incomplete media. Bound vFGF 

was eluted with 1.25 M NaCl solution (1 ml).  The input, flow-through, wash, and elution 

fractions were dialyzed in TC-100 incomplete media for a minimum of four hours at 4 °C to 

remove excess salt and maintain comparable salt concentrations in the different samples.  After 

dialysis, the amount of infectious virions in each sample was determined by TCID50.  Results are 

reported as a percentage of the total viral infectious units present in each sample treatment. 

Transmigration assay 
SF-21 cell migration was assessed using 8 µM pore size Costar transwells with 

polycarbonate membrane inserts.  Approximately 2 × 104 cells were loaded onto transwell inserts 

and allowed to settle for 30 minutes.  The transwell inserts were then transferred to 24-well 

plates containing virus and incubated for 4 h at 27 °C.  Purified infectious virions (1 x 105  to 1 x 
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107) from AcBAC-vfgfHARep-, AcBAC-HSP70vfgfHA- or AcBAC-vfgfKO-infected cells were 

placed in the lower transwell chamber along with 500 ul of PBS, pH 6.2. After incubation, the 

transwell inserts were removed and cells that had migrated downward were quantified using 

CellTiter-Glo luminescent substrate to measure ATP, according to the protocol provided by the 

manufacturer (Promega).  The level of luminescence was determined with the Wallac Victor3 

1420 Multilabel counter (Perkin-Elmer). To remove virion-bound vFGF, 3 x 107 AcBAC-

HSP70vFGFHA virions in 3 mL final volume of 20 mM Tris-HCl, pH 7, containing 0.1mg/ml 

BSA and 4 mM CaCl2 were treated with 1IU of Heparinase III from Flavobacterium heparinum 

(Sigma Aldritch) at 27 ºC for 4 hours. After treatment, the virions were separated from 

supernatant through centrifugation at 24,000 x G through a 25% Nycoprep cushion. The 

supernatant and cushion were carefully removed and the pelleted virus reconstituted in 1mL of 

PBS pH 6.2. In the assay, 500 uL of clarified supernatant was used to induce motility. 

Virus attachment assay 
SF-21 cells (8 x 107) were infected at an MOI of 0.1 PFU/cell with AcBAC-vfgfHARep, 

AcBAC-vfgfKO or AcBAC-HSP70vfgfHA. The supernatant was removed 29 h p.i. and replaced 

with Grace's Insect Medium lacking L-methionine and unsupplemented (Invitrogen).  After 1 h, 

EasyTag™ EXPRESS 35S Protein Labeling Mix (Perkin Elmer) was added to a final 

concentration of 10 µCi/ml and cells were incubated at 27 °C for 10 h.  Cells were then 

supplemented with 10 mM unlabeled methionine and 10% FBS and incubated for an additional 

48 h.  After incubation, the supernatant was removed and centrifuged at 1000 x g for 5 minutes 

to remove any debris present. The cleared supernatant was centrifuged at 80,000 x g for 75 

minutes at 4 °C through a 25% sucrose cushion to pellet the virus and then resuspended in 10 ml 

of TC-100 complete media supplemented with 10% FBS. The radiolabeled virus was titered 

using TCID50 end point dilution methods for a total of 3 times and radioactivity in the virus 

suspension measured by mixing 10 μl of virus with 1.5 ml of NET lysis buffer (20 mM Tris, 150 

mM NaCl, 0.5% deoxycholate, 1% Nonidet P-40 1 mM EDTA, pH 7.5) and 3.5 ml of EcoLUME 
TM Scintillation fluid (MP Biomedicals). Cells (1 x 106) were plated on a 35-mM tissue culture 

dish and allowed to attach for 1 h at 27 °C before placing at a 4 °C for 3 h.   After chilling, the 

cells were placed on ice blocks and the supernatant removed.  Chilled virus was then added to 

each well (MOI of 1 PFU/cell, 500 µl total volume) and removed at specific time intervals (0, 5, 

10, 20 30 and 60 minutes).   Immediately after, the cells were washed with 3 ml of ice-cold PBS, 
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pH 6.2 and then lysed with 1.5 ml of NET buffer. The lysate was transferred to scintillation vials 

along with 3.5 ml of EcoLume TM Liquid Scintillation fluid. Radioactivity was determined for 1 

minute using a Beckman-Coulter LS6500 Scintillation counter. To normalize all samples, the 

CPM counts on all samples were adjusted relative to initial CPM counts.   

Endosomal acidification assay 
SF-21 cells (1x 10 6) were allowed to attach for 1 h at 27 °C prior to incubation at 4 °C for 

2 h and infected at an MOI of 1 PFU/cell for 1 h at 4 °C with pre-chilled AcBAC-vfgfHARep or 

AcBAC-HSP70vfgfHA. After 1 h, the virus supernatant was removed and cells washed 3 times 

with pre-chilled PBS, pH 6.2. After washing, the cells were treated with warm TC-100 complete 

media and returned to a 27 °C incubator. At 0, 5, 10, 20, 30 and 60 minutes post attachment, 

ammonium chloride was added to the wells (final concentration of 25 mM) to inhibit endosome 

acidification. As a control, a well of infected cells was left untreated allowing endosomal 

acidification to continue normally. 24 h post attachment, the cells were removed from the plates, 

fixed with 100 μL of 4% paraformaldehyde-1% glutaraldehyde in 0.1 M PBS. Cells were 

analyzed using a FACSCalibur flow cytometer and the results of two independent experiments 

were shown here. 

Analysis of data 
Analysis of standard deviations and statistical significance was done using Graphpad 

Prism® software. For comparisons of interaction between three or more experimental conditions, 

two-way Anova analysis was employeed with p values listed. 
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Appendix B - Materials and Methods Ac-orf109 

Cells, viruses, and insects 
The cell line IPLB-SF-21 (SF-21) (Vaughn et al., 1977) were derived from the fall 

armyworm, Spodoptera  frugiperda, and were maintained in TC-100 medium (Invitrogen) 

supplemented with 10% fetal bovine serum (Atlanta Biological) and 0.26% tryptose broth.   

 

Northern Blot 
SF-21 cells (2 x106) were infected with AcMNPV at an MOI of 20 pfu/cell for one hour. 

The virus was aspirated off the cells, and then the cells were washed one time before being 

overlayed with TC 100 media supplemented with FBS (10%). At specified time points post 

infection, the cells were harvested with Trizol (Invitrogen) reagent and RNA extracted following 

the manufacturer’s protocol. For the cycloheximide treatment, 30 minutes prior to infection, cells 

were treated with the protein synthesis inhibitor at a final concentration of 100μg/ml and this was 

maintained throughout the course of infection. For aphidicolin treatment, cells were treated with 

the DNA replication inhibitor immediately after virus infection at a final concentration of 

5μg/ml. Samples of total RNA (20 µg per lane) were electrophoresed on a formaldehyde–1% 

agarose gel, transferred to a nylon membrane, and hybridized to α-32P-radiolabeled riboprobes. 

The probe was generated by first PCR-amplifying Ac-orf109 from the translational start codon to 

the translational stop codon (Ayers et al. 1994).  PCR products were cloned into an expression 

vector using the TA Cloning kit (Invitrogen) and the cRNA probes were synthesized by in vitro 

transcription using T7 RNA polymerase in the presence of a-32P[UTP]. 

 

Transfection of SF-21 cells 
In experiments in which DNA was introduced into 1 x 106 SF-21 cells, 1 µg of  

Bacmid DNA or 2 µg of plasmid DNA was mixed with 4 µl of liposome preparation as 

previously described (Crouch and Passarelli, 2002). Cells were maintained at 27° C for four 

hours in the liposome-DNA mixture, then the media was removed from the cells and the cells 

washed once with TC-100 media. After washing, TC-100 media containing 10% fetal bovine 

serum was placed on the cells and incubated at 27° C until harvesting. The harvesting was done 
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by first aspirating the supernatant from the cells or removing it via pipet. The cells were then 

washed one time with PBS pH 6.2 prior to removal with careful agitation.   

 

Imaging eGFP expression 
Cells were imaged on a Nikon Eclipse TE200 microscope with a 40X lens. Pictures were 

captured with a Nikon Coolpix 955 camera set at maximum resolution. The images shown are 

representative of four independent experiments.   

 

Generation of AcBAC-Δorf109 
AcMNPV DNA was digested with Eco RI and the 4035 fragment (93589-97624) was 

ligated into pBlueScript vector (Stratagene), creating pBIE4-3 plasmid. pBIE4-3 was digested 

with Nde I (96379-96385) and Mlu I (94788- 94793) to remove 1592 bp, including Ac-orfs 111, 

110 and 94% of 109. Using 109MLUI (F 5’- GAACGCGTCGTGATGTATATGTCTTACT 

TCA-3’) and 111NDEI (R 5’- GGAATTCCATATGCATCAGTGACATTGCCT-3’) and pBIE4-

3 as a template, a 492-bp fragment (95893-96384) containing full length Ac-orf 111 and Ac-orf 

110 was obtained using PCR amplification. This fragment was ligated into the digested pBIE4-3 

vector creating pBIE4-3-Δ109. The chloramphenicol resistance gene and promoter was amplified 

from pUC18CMR (ATTC) using the primer set CAT1 (F 5’- GAACGCGTTCCGTCGATCAT 

ATCGTCAA-3’) and CAT2 (R 5’- GAACGCGTCGCCACATAGCAGAACTTTA-3’). This 

1866 bp fragment was ligated into Nde I-Mlu I digested pBIE4-3-Δ109, creating the 

recombination vector pBIE4-3-Δ109CAT.  Following the method of Bideshi and Federici 

(2000), 100 ng of pBIE4-3-Δ109CAT was transformed into BJ5183 cells containing 

bMON14272, the commercially available AcMNPV bacmid (Invitrogen).  After incubation (4 h) 

in Super Optimal broth with Catabolite repression (SOC) media at 37° C, the transformed cells 

were plated on Luria Broth (LB) agar plates supplemented with kanamycin (50 µg/ml) and 

chloramphenicol (100 µg/ml). Colonies growing after 24 h were screened using PCR for the 

presence of the chloramphenicol resistance gene in the Ac-orf 109 locus. The primer sets used 

were P1 and CAT-R primers (F 5’-TGTGCTGCTTACTGTGCCTGTAT-3’and R 5’- 

AACGTTTTCATCGCTCTGGAGT-3’, respectively), and CAT-F and P2 primers (F 5’-

CCAGGTTTTCACCG TAACACG and R-5’- CGACATTAACAAAGAGCCA TTGA, 

respectively). Both P1 (93336-93358) and P2 (97918-97940) were well outside of the possible 
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area of recombination in order to confirm the correct insertion site. Next, bacmid DNA was co- 

transformed into MAX Efficiency DH10B competent E. coli cells (Invitrogen) along with the T7 

translocation helper plasmid pMON7124 and plated on LB plates supplemented with kanamycin 

(50 µg/ml), chloramphenicol (100 µg/ml) and tetracycline (15 µg/ml). A single colony from this 

plate was used to generate the final constructs AcBAC-orf109KO and subsequently AcBAC-

orf109Rep.  

 

Generation of AcBAC-orf109KO 
To construct AcBAC-orf109KO, DH10B bacteria containing AcBAC-Δorf109 and the 

T7 helper plasmid were transformed with the T7 transplacement vector pFastBac–polh+gfp+ 

(Detvisitsakun et al., 2006). After transformation, the bacteria were plated on LB plates 

supplemented with kanamycin (50 µg/ml), chloramphenicol (100 µg/ml), gentamicin (7 µg/ml), 

tetracycline (15 µg/ml), 100 µg/ml 5-bromo-4- chloro-3-indoxyl-beta-D-galactopyranoside, and 

40 μg/ml isopropyl-1-thio-β-D- galactoside as directed in the Bac-to-Bac Baculovirus Expression 

System Manual (Invitrogen). White colonies were selected and screened for the presence of the 

enhanced green fluorescent protein gene (egfp) and the polyhedrin (polh) gene transposition 

using PCR. The primer sets used were M13F (F 5’- GTTTTCCCA GTCACGAC-3’) with P3 (R 

5’- CATGGAC GAGCTGTACAAGTAAAGC-3’), P5 (F 5’-CTGCAACTACTGAAAT CAAC-

3’) with P6 (R 5’- CAAG GAAAACATCCA TCACTTCTTG-3’) and P4 (F 5’-CGAACAT 

GAGATCGAAGAGGCTAC-3’) with M13R (R 5’-CAGGAAACAGCTATGAC-3’). 

 

Construction of AcBAC–orf109Rep 
We constructed a transfer vector to generate a recombinant of AcMNPV expressing Ac-

orf109 under native promoter control.  First, the oligonucleotides (Sac I-F 5’- CGGTACG 

AGCTCACAAATTAAAATAATCTAAAG-3’ and Sac 1-R 5’-GACGTGAGCTC 

CTACAAATAATAGTTGTACTTGA-3’) were used to amplify a 1222-bp fragment from 

pBIE4-3 consisting of a 49 bp leader sequence and the complete Ac-orf109 coding sequence. 

The PCR product was cloned into the transplacement vector pFastBac–polh+gfp+ (Detvisitsakun 

et al., 2006) at Sac I sites to generate pFastBac−polh+-orf109-gfp+.  The correct amplified 

sequence was verified by nucleotide sequencing analysis. DH10B cells containing the AcBAC-

Δorf 109 backbone and T7 helper plasmid were transformed with pFastBac−polh+-orf109-gfp+. 
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Transformed cells were incubated on kanamycin (50 µg/ml), chloramphenicol (100 µg/ml), 

gentamicin (7 µg/ml), tetracycline (15gµ/ml), 100 μg/ml 5-bromo-4- chloro-3-indoxyl-beta-D-

galactopyranoside, and 40 μg/ml isopropyl-1-thio-β-D- galactoside media according to the Bac-

to-Bac Baculovirus Expression System Manual (Invitrogen).  White colonies were selected and 

the transposition event and flanking regions were verified by PCR analysis.  Budded virus was 

produced by transfection of AcBAC-orf109Rep DNA into SF-21 cells by liposome-mediated 

transfection as previously described (Crouch and Passarelli, 2002). 

 

Construction of AcBAC–orf109HA 
 Using the same strategy to create AcBAC-orf109Rep, a recombinant AcMNPV 

expressing an epitope tagged version of Ac-orf109 under native promoter control was 

constructed. To prevent interference with Ac-orf109 function, a glycine linker (gly-gly-gly) was 

employed to provide space between the epitope tag and the C-terminal sequence of Ac-orf109. 

First, the  oligonucleotides (Sac I-F 5’- CGGTACG AGCTCACAAATTAAAATAATCT 

AAAG-3’ and Sac 1-R 5’- CTAGGCGTAATCTGGGACGTCGTATGGGTATCCTCCTCCCA 

AATAATAGTTGTACTTGACG-3’) were used to amplify a 1258-bp fragment from pBIE4-3 

consisting of a 49 bp leader sequence and the complete Ac-orf109 coding sequence, the glycine 

linker and the HA epitope tag. The PCR product was cloned into the transplacement vector 

pFastBac–polh+gfp+ (Detvisitsakun et al., 2006) at Sac I sites to generate pFastBac−polh+-

orf109HA-gfp+. After sequencing, using the same method outlined above, AcBAC-orf109HA 

was constructued. 

Immunoblotting 
SF-21 cells (2 × 106) were infected at an MOI of 10 PFU/cell with AcBAC–orf109HA 

virus. At several times p.i., cells were collected in 100 μl of Laemeli loading buffer. Proteins 

were resolved in a sodium dodecyl sulfate–12 % polyacrylamide gel, transferred to a PVDF 

membrane, and detected using 1:3000 dilution of anti-HA.11 antibody (Covance), 1:5000 

dilution of goat anti-mouse IgG–horseradish peroxidase (Bio-Rad). The SuperSignal West Pico 

Substrate (Pierce) was used to detect cross-reactive proteins.  

For co-immunoprecipitations, SF-21cells were initially transfected either singly with 

pHS-orf109HA, pHS-orf109FLAG, or pHS-142FLAG or in pairs (Ac-109HA/Ac-109FLAG; 

Ac-109HA/Ac-142FLAG). After 24 hours incubation, the supernatant was removed and cells 
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washed one time with PBS pH 6.2. The cells were then lysed with 200 μL of CHAPS lysis buffer 

(Sambrook, Molecular Cloning 3rd edition) and placed at -80°C overnight. The lysates were then 

immunprecipitated with either 0.5 μl of anti-FLAG M2 antibody (Sigma) or 2.0 μl of anti-HA.11 

monoclonal antibody (Covance) bound to 100 μl of a 10% solution of Protein G-Sepharose Fast 

Flow beads (Sigma) at 4 °C overnight. After IP, the beads were mixed with 100 μl of Laemeli 

loading buffer and proteins resolved using a sodium dodecyl sulfate–12 % polyacrylamide gel. 

After transfer to PVDF, the blot was probed with α-HA-HRP (Invitrogen) at a 1:1000 

concentration.  The SuperSignal West Pico Substrate (Pierce) was used to detect cross-reactive 

proteins. 

 

Complementation assay 
SF-21 cells were transfected with 1 µg AcBAC-orf109KO with either 1 µg p109 plasmid 

which contains Ac-orf109 and Ac-orf110 or 1 µg p109FS plasmid which is the p109 plasmid 

digested with Nco1, blunt ended with T4 DNA ligase and then re-ligated to introduce a 

premature stop codon in Ac-orf109. As a control, SF-21 cells were also transfected with 

AcBAC-orf109Rep DNA with 1 µg pBluescript vector. At 24 and 48 h p.t., cells were examined 

for egfp expression. The supernatant from the 48 h p.t sample was removed and placed on 1 x 

106 naïve SF-21 cells. After 1h incubation at 27° C, the supernatant was removed and the cells 

were replenished with TC-100 media supplemented with 10% fetal bovine serum. At 24 hours 

post treatment, cells were observed for egfp expression. 

 

Virus growth curves 
SF-21 cells were infected at an MOI of 5 PFU/cell with AcBAC-orf109Rep or AcBAC.  

Budded virus was collected at different times p.i. and titers were determined by TCID50. To 

calculate the virus growth curve of AcBAC-orf109KO, SF-21 cells were first transfected with 

1µg of AcBAC-orf109KO DNA.  At 48 h p.t., the supernatant was removed from cells, and used 

to infect naïve SF-21 cells. After 1h incubation at 27° C, the supernatant was removed and the 

cells were replenished with TC-100 media supplemented with 10% fetal bovine serum. At 

specified time intervals, the supernatant was collected and assayed for the presence of infectious 

budded virus using the TCID50 method. 

 



 128 

RT-PCR 
SF-21 cells were transfected with 1 µg AcBAC-orf109KO DNA and at specific times p.t. 

lysed with Trizol reagent (Invitrogen), and stored at -80 °C until the entire time course was 

complete.  Total RNA from infected cells was extracted and quantified.  Aliquots (4 µg) from 

each time point were treated with 2 units of DNAse I for 2 h and then heat inactivated at 72° C 

for 15 minutes. After DNAse I treatment, the Access RT-PCR system (Promega) was used to 

amplify viral specific transcripts with 1 µg of DNase I-treated RNA as a template and the 

following oligonucleotides:  gp64 primer set: F 5’- GCGTGTGTTGGGATCCAGCGA -3’ and R 

5’- GCGCATTCTGCCTTTGCGGC -3’; polyhedrin primer set: F 5’- ATGCCGGATTATTCA 

TACCGTCCCACCAT-3’ and R 5’- CCTTTCCTGGGACCCGGCAAGAACC-3’; lef-1 primer 

set:  F 5’- AGTCGTCTGCATTGAACCG-3 and R 5’- GAGAACGTGTCAAGAGTCATG 

TATAC-3’; To control for DNA contamination, parallel samples lacking AMV Reverse 

Transcriptase were subjected to amplification. PCR conditions were carried out at 45° C for 1 h, 

followed by 40 cycles of 95° C for 2 minutes, 45° C for 30 seconds, and 72 °C for 1 minute.   

 

Transmission electron microscopy 
SF-21 cells (2 x 108) were transfected with 1µg of AcBAC–orf109Rep, AcBAC-

orf109KO, or AcBAC DNA.  At 24 and 48 h p.t., cells were collected, fixed with 2% 

paraformaldehyde/0.2% glutaraldehyde overnight and then embedded in resin for sectioning as 

previously described (Lehiy et. al., 2010).  Cell sections were placed on Formvar carbon 500 

mesh grids and then visualized with a Philips MC-100 transmission electron microscope.  

 

Genomic Copy Number 
To generate a standard curve, purified AcMNPV DNA from budded virus was serially 

diluted 5 times from 230 ng/µl to 23 ng/µl.  Using the protocol outlined by Vanarsdall et al. 

(2006), the template DNA along with the gp41 primer set was used with the iQ Sybr Green 

Supermix® (BioRad) and the BioRad ICycler system with Optical system software version 3.1. 

To convert from DNA concentration to copy number, 1 copy of AcMNPV genome used as 

equivalent to 1.34 x 10-4 pg of DNA (Carstens and Wu, 2007).  CT values were plotted against 

log10 genome copy number to generate graph and line slope equations. Sample DNA was 

obtained from the SF-21 cells transfected with 1 µg of AcBAC, AcBAC-orf109KO, AcBAC-
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orf109Rep, or vAcgp64-.   At specified time points, cells were harvested and washed 3 times with 

PBS prior to addition of Trizol reagent (Invitrogen). Following the manufacturers protocol, 

genomic DNA was isolated and quantified using spectrophotometry. DNA (2 µg) was then 

digested with Dpn I for 4 h to remove any input bacmid DNA carried from transfection. Using 

the same protocol outlined earlier, CT values and melt curves were generated for the individual 

samples. Using the standard curve generated from purified viral DNA, CT values were converted 

to genome copy number. 

 

Plasmid Construction 
 To construct the epitope tagged versions of Ac-orf109 and Ac-142, PCR was used 

to amplify the genes using either genomic DNA (Ac-142) or pBIE4-3 (Ac-orf109) as the 

template. To prevent the C-terminal tag from interfering with Ac-orf109 function, a glycine 

linker sequence (gly-gly) was included between the Ac-orf109 coding sequence and the HA or 

FLAG (Invitrogen) epitope tags.  The oligionucleotides sets used for amplification included: F 

5’-CCTAAGGATGGAGTGCCCGTTTCAGATTCAAGTTTGTATT-3’ and R 3’- CCTAA 

GGCTAGGCGTAATCTGGGACGTCGTATGGGTATCCTCCCAAATAATAGTTGTACTTG

ACG-5’ (Ac-orf109HA); F 5’- CCTAAGGATGGAGTGCCCGTTTCAGATTCAA 

TTTGTATT-3’ and R 3’-CCTAAGGCTACTTATCGTCGTCATCCTTGTAATCTCCTC 

CAAATAAAGTTGTACTTGACG-5’ (Ac-orf109FLAG); and F 5’- CCTAAGGAT 

GAGTGGTGGCGGCAACTTGTTGACTCTGGAAAG-3’ and R 3’- CCTAAGGCTA 

CTTATCGTCGTCATCCTTGTAATCTTGTACCGAGTCGGGGAT TAATAAT-5’ (Ac-142 

FLAG). After amplification, the PCR products were cloned into the pHSGFP plasmid previously 

described by Crouch and Passarelli (2002) after restriction digest removal of the GFP coding 

sequence. This resulted in three clones with either Ac-orf109HA, Ac-orf109FLAG or Ac-

142FLAG under hsp70 promoter control. 
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