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1. Introduction

-The one parameter Cauchy,dlsfrlbdfion is defined by the density

function
, (1.1

1 , = ® < X < @

1
flx) === * T x - 92
and distribution function

Fix) =%+ 1 tan™! (x - 8), ~m < x <@, (1.2)
where 6 is the populafgon median, a location parameter.

The Cauchy distribution is of interest due to the similarities
between it and the normal distribution. The Cauchy curve is symmetric
around the value of 6 and has a general bel! shape. The principal
difference is that the Cauchy curve has more weight in the talls of the
distribution than does the normal. By comparison between the standard
normal distribution and the standard Cauchy with 6 = 0, the values of

the abscissa which bracket central portions of the two curves may be

presented as below:

Proportion .80 .90 .95 .99
Norma | 1.282 1.645 1.960 2375
Cauchy 3,078 6.34 12.706 63.657

As can be seen, once the distribution begins to fall away from
the median value, it does so quite rapidly. This property is readily
observed by noting that the standard Cauchy is identical to Student's

t - distribution with 1 degree of freedom.



This paper deals with techniques for estimating the location

parameter, 6 = 0, in the standard Cauchy given by density function
| 1 p = ® < X <>, {1.3)
1+ x2

and distribution function

flx) =

Fix) = £+ 1 _fan 'x, - o < x <@ » S
The usual esfimaf?on techniques fail to provide useful results
when used to estimate the median of a Cauchy dlsfribufton. The maximum
ITkel Thood estimate can only be obtained by an iterative technique in
each separate case. The method of moments does not provide a solution

at all. The sample mean as an estimate Is inconsistent, and therefore

not recommended.

1.1 Maximum Likelihood Estimation. The |ikelihood function for the

one parameter Cauchy Is gliven by

L{x, 8) =
i

=3

fix,/6)
1]

1 n n
Ll !

1+ (x, - 8)
i i

1

Thus, the log ITkellhood Is

n
n L{x, 8) = =n &n7 + I = 2n [1+ {x' - 8)2] .
i =1

Differentiating, we get

2 (x, -8) , (1.5)
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Therefore, the maximum |ikellhood estimate, 6, satisfies
(xi - 8)

e
1 1 + (x' - )

=0 ' : (1.6)

~M 3

There is no explicit form for the solution to this equation, so that
an iterative technique must be used. Thus, maximum |ikelihood estimation

is less than ideal.

1.2 Method of Moments. Estimation by the method of moments is not

possible in the Cauchy distribution., The density function is so tenuous
that the integrals which define the ordinary moments do not converge.

The ususal calculations show that

1 o 1 X
u, = E(X") . dx
! 14 (x - 8)°

il

oo

] 1

—;—-{ (x - 8) tan~! (x - )| =~ s tan”

=00

il

(x - 8) dx }

?

(1.7)

which is not defined. So u1‘does not exist, and therefore higher order
moments also do not exist [5]. The equating of sample and population moments,

then, is not usable.

1.3 Sample Mean. The following argument shows that the sample

mean, is of no value as an estimator of 8. First,

the characteristic functlion of the Cauchy density deflned in (1.1} is

(6]

9, (1) = exp { 110 - ]y | (1.8)



Second, the characteristic function of X is

_ n
¢ ;_(T) = ¢ Xj (1)
. J‘:‘]
n
= N U
b g x (=
J=1
n
= 1 ¢, (-
J=1
n
= I { exp { i-ﬁ%— o - Lﬁ;—[}
J=1
n . n
= exp { I -‘%‘l - I |—1;-—»|}
J=1 J=1

t

nite -n -« _1_ |+|}

L -

exp { it6 - ||} = b, (1) .

‘Thus, the distribution of the sample mean is identical to the distribution
of any che of the x's, and the sample mean is an inconsistent estimator.

Further, the expected value of x does not exist.

1.4 Variance Bound. The Cramér-Rao lower bound for the variance

of an unbiased estimator of @ is given by

]

c {32 en Lix, e)l
)

382 .




By differentiating (1.5) we obtain

-8) +2 (xi -08) 2 (xi

_ 2
- + - - -
a2 L _ g 2 1 (x - 8) (xI 8)
3 o =1 RY.
{ 1+ (xi - 8) }
n =2+2 (x, - 6)2
i
= I
i=1 2
{ Lt (x, -0 }
Thus, by the identical distributions for X
2 o 1 el
. { 3 ng L} =n 0 —. -2 + 2 (x - g)z . 1 S dx
3 8 {1+ (x -0} 1+ (x - 6)
N
& = I 53 dx

{1+ (x -08)7}

IS B
T 2.3 9
(1 + y9)
- A4n o
T ( 8 )
_-n [6]
2

N

(1.9)

Hence, the variance of any unbiased estimator of 6, say 6, must satisfy

4"}
Var (8) =

_A
on_
2

2
n

(1.10)



1.5 Purpose. The problem is to find estimators of 8 that proQide
an efficient unblased estimate. This study looks at estimators which
have been developed and examines Their statistical properties. A compar=-
ison is made in ftwo cases of estimation in smail samples, both among the
estimators, and with their own asymptotic properties.

Since *the usual techniques fail, we turn to "unusual" methods to
provide solutions, The estimators should have a high asymptotic rela-
tive efficiency (ARE), and should be unbiased, at least asymptotically.
The estimators also should be such that there 1s an explicit usable form.
The types of estimators that are examined here are obtained by two methods.
First, we find the simple average of a central portion of a sample.
Secondly, we work with the order statistics of the sample and obtain a

weighted average.

2, Estimators and Thelr Properties

We wish to find estimators of & which provide a good estimate in
various sample sizes. To do this, the estimator must be such that the
extreme values have low (or even negative) weight. The estimators dis-
cussed In this report can be classified as belonging either to the class
of trimmed mean estimators, or to the class of weighted order statistics

estimators,

2.1 Trimmed Mean Estimators. The trimmed mean class of estimators

contains estimators of the form



B ~axm

it mD

where

X

are the order statistics of a sample of size 2n + 1 and X

,a=20,1, ..., n

=n3?* Xn + 102 Kene Koy Xegye = v o

(2.1)

X(n)

is the

(Q)

median. The estimator, then, 1s a simple average of the central portion

of the sample.

m{Q) = X(O)

and the sample mean

1 L
T R R

Included in the class are the median

The median is a consistent estimator, but shows an asymptotic relative

efficiency (ARE} of only 81%. The sample mean is inconsistent, as we

have shown In Section 1.2. Thus, we begin a search for a better (more

efficient) estimator by considering the case

0 <a<n.

Rothenberg, Fisher, and Tilanus [7] investigated this class of

estimators to determine which member of the class gave the highest ARE.

The asymp+6+lc joint probability distribution of two order statistics,

{X(r), X{S)} shows that the covariance of {X(r)’ X(s)} for any continuous

density function is given by

r 5
(1+'r-]-)“-n)

o -~ p
r's 4 F(X, .) f(X

(r) )

(s)
where

r < 5.

(2.2}



For the Cauchy distribution, O becomes

‘ r . 5 2 r 2 ns
g ™ : {1 + -E—ﬂ (1 - =) sec™ ( ;n ) sec” (), r <s .
(2.3}
Using B in (2.1) shows that the variance of m(a) is
| a a
Vim(a)) = - 5 z L cij
(2a + 1) J¥=a [==a
By using the central portion of the ordered sample defined by
k = a/n ora=k-n
we get
2 a a " I
var (k) = —— 5 5 +ba oD sec® Gh sec Gp
. . n n n n
8k™n Jj=-a Ii=-a

which reduces to

Var (m(k))

1= k) pan2 (2K 4 {2 mk 1
{ > } tan (E-J + { 2} tan ( 5 ) K
3 Tk .

Substituting values of k into this expression, the asymptotic
sampl ing variances of the varlous estimators can be found. Rothenberg,
et al., [7] provide a table which shows that as the value of k moves from
0 toward 1, Var (m(k)) first decreases, fhen Increases. The minimum point
is found to be at k = .24, where
Var (m(.24)) = 2.278

Thus the ARE Is glven by



{ Var (m(a)) }-1 - { 2.278/n } =
Var (m(8)) 2/n

—2__
2.278

.8779
Based on the ARE, this estimator represents an improvement over the
median. The opTimum estimate of this class is thus the average or mean

of the central 24% of the data,

.24n
b X (2.4)
i==.24n (i

1
.48n

m(.24n) =

The problem of extreme values is solved in the ftrimmed mean class
of estimators by ignoring them, and only using those values which can
be expected to be tightly clustered around the true population median.
The optimum trimmed mean s thus easy to compufe-for various sample sizes,
However, it is not always easy, in small samples, to determine what values

actually comprise the central 24%.

2.2 Weighted Order Statistics Estimators. The class of weighted order

statistics estimators deals with estimators of the form

where
ay welght applied to the lTh value in the ordered sample,

and



The following three estimators of this class are considered:
1) Best Linear Unblased Estimator (BLUE) [1]
2) Quick Estimator (due to Bloch [2])

3) Optimal Estimator (due to Chernoff, ef al. [3]).

A note about the type of welghts used by members of this class
seems appropriate at this point in that the weight functlions of the
estimators exhibit similar characteristics. First, tThe weights are
symmetric around the median value(s) of the sample. Second, the largest
weight is applied o the median value(s) with successively smaller weights
to the values In the tails, until the exfreﬁe values receive small nega-
tive welghts. Thus, this class of estimators solves the problem of the
extreme value by reducing the amount of its contribution to the estimate,

and reversing the direction.

In the trimmed mean class, the weights were either 1 or 0,
‘ 2a + 1

depending on whether the sample point was to be included in the estimate
or not. In this, a single extreme observation, either large or small,

can throw the estimate off.

2.2,1 Best Linear Unblased Estimate. The best |inear unblased

estimate of 8 is obtained by using the technique of ordered least squares
estimation of locatlon parameters. For a distribution function of the

form

Flx - 8)



1"

the BLUE is

3
@ ey s 1) (2.5)
LE L
where
@ : varlance - covarlance matrix of x

column vector of order statistics

1 : column vector of ones.

—

For ‘the Cauchy distribution, the first two and last two order statis-
tics have infinite variances [1], so we begin the search for a BLUE estimator

by reducing the working sample size to n - 4. That is, zero weights are

applied to X(T)’ X(Z)' X(n T and X(n). Then the jolnt distribution

of the order statistics {X(r), X(S)}, r<s
n!

oy S T G o - T s 9
rs

x FOO [Fy) - FOal S~ T~ Fe] ™7 8 f00f(y)

1

_ nl [ 3+ 1 tan” )4
(r-1D!(s-r=-1D1! (n - s)! m =
-1 -1 s -r -1 i n-
1 tan (y) - tan " (x) X (1 =-%2-_1 tany
(= ] [ R
1 1 ] ’ r<s
n2 -1+ x2 1+ y2

is used to obtain
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Elxy) - E(x)E(y)

Q
1]

rs

m
5> Y
= = fz f tan x tany -

1r = DI (s=r =11 (n=8)1 -1 -1
7 2
e e T Ny ms® TP T (Bl TS g dy -
2 2
, L
[ g o] f2 tan x (%—+ <) 7 1(%—- O T T dx ] e
m {r-11 (h=-r)1 =-n :
2
i,
[ n! # oty e y® T NG T Sy

m(s - 1)1 (n - )1

i
S TE ]

These values are extremely difficult to compute, but Barnett [1] has tabled
them for n = 5(1)16(2)20.

The BLUE Is ébfained by substituting these values }n (2.5) and deter-
mining the weights, ar, for the various order statistics. Using these we!ghfs;
the BLUE can be computed easily from sample data. The disadvantage to the
BLUE is, of course, the costliness of computing the covariances for sample

sizes other than those listed in [1].

2.2.2 Quick Estimator. The quick estimator was proposed by Bloch [2],

who sought to find an esTlméTor based on only a selected number of order
statistics from the sample. The estimator should have the property of
providing a good estimate regardless of the sample size.

The quick estimator is obtalned by safec+lng k order statistics from
the sample.

Let " i i
Xery » X2y v o000 X

1 1 1

Yery » Yeoy v oo Yo

1 ] ] 1

Ay » 2y v e A RO

selected order statistics
corresponding population quantiles

) = Ai
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The ARE of the estimator is given [2] by

o
£ = ———
£ (x) .2
E{{ (0 }}
:2K1
where
¥
k+1 flY ) - LY, )
K-I =7 (l)" ‘(l - 1) [2]
i=1 AT Ay
and
! T
f(Y{O)) = F(Y(k + 1)) =0
L] !
Ao =0, lk + 17 1

If we select k = 5, then we need only maximize K, to get the most

1

efficient estimate. Bloch [2] found that for k = 5, the value of K1 was
essentially maximized when
A= Ogs Ay Ag A, )
= .13 40y 905 B0y B (2.6)
and
e = 95161,

Thus, if we use the order statistics that approximate those population
quantiles, we obtain the optimum estimator for 5 order statistics. The
weights for those order statistics are obtained by using the general

formula for the BLUE.



Using the values of A above and the corresponding values of f(x),
the weights are given as
a = ({11, (]2, (!3., (14, (15,)
= (-.052, .3485, .407, .3485, -.052). (2l d

- The quick estimator, then, for 5 selected order statistics is

5 ]
* =
o E ui X(i) ; (2.8)
=1
with variance
V(e*) = ——2-%3-'—7— | (2.9)
so that
- N
ARE pe: 2'1017 = -95161-

The advantage to the quick estimator over others is that it provides
an easy estimate which can be rapidly obtained from any size of sample.
In addition, it has elimlnated over half of the efficiency loss associated

with the other easy estimates, the optimum trimmed mean.

2.2.3 Optimal Estimator. The final estimator in this class fo be

investigated is due to Chernoff, Gastwirth and Johns [3], This estimator
provides an asymptotically efficient and optimum result based on the

distribution of the order statistics. The general form of the Chernoff,
t al. estimator is given by

— ——

n
T =
E J(u) X(]) (2.10)
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where

—

and
J Is a welght function debendenf on the distribution.

For the parameter 8 in the Cauchy distribution,

- i
ai—J(n+1>

|
n + 1 ) - 1)

i .
Tan oy Geegepmdd (2.11)

sin 41 {

The weights for this estimator are easy to calculate on a computer,
since they depend only on the sample size n. Thus, for large sample
sizes, this estimator is usable when a computer is available for calcu=~

lations.

3. Generation of Data and Discusslion

Since most of the properties of these estimators (e.g., ARE) for
comparison purposes are asymptotic, it is of Interest to compare the
characteristics of these estimators in relatively small sample sizes.
Two sample sizes were chosen, n = 8 and n = 16. These choices were made
to facilitate the use of the optimum trimmed mean, as they made the
central 24% of the sample more readily discernable.

The sample data points were generated using the distribution
function of the standard Cauchy distribution. Equating (1.4) tc an

observation r from the unlform [0, 1] distribution, we get
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F=4+—— tan”! x. (3.1)

o

Solving (3.1) for x ylelds
x = tan {m (r-£)}
where x denotes a random observation from the standard Cauchy.
Uttlizing a uniform random number generator, 100 samples of
each size were obtained using and IBM 360 computer. Each sample thus
generated was then used to obtain an estimate of 8 = 0 by each estimator

discussed. The results were as presented below.

3.1 Samples of Size 8

3.1.1 Optimum Trimmed Mean (OTM). For n = 8, the optimum trimmed

mean (2.4) Is actually the median, i.e., the average of the middle two
values, X(4) and X(5). The asymptotic variance for the trimmed mean is
given by

2.278 _ 2218 . oy
n 8

The 100 ésfimafes were then compiled and their properties determined.
The éample mean of these estimators was 0.0501 with sample variance
0.58843., The estimator thus showed relatively unbiased for é sample as
small as 8. The sample variance, though, was over twice its asymptotic
value.

The values of the estimates are represented by the frequency

distribution below.
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Class _ Frqguehcv
Below =1.75 0
-1.75 ~1.25 i}
=1.28 = .75 4
- .75 - .25 23
- .25 +25 43

25 75 15
#10 1.25 6
1225 1.75 2
above 1.75 2

The estimates are strongly clustered around the true value, 0, but
exhibiT a slight negative tendency. This is offset in the mean by the

two extreme positive values, 1.91 and 4.66.

3.1.2 BLUE. The BLUE estimates (2.5) were obtained using Thé
welghts tabled by Barnett [1], applied Tc_The observations X(zyr =oes Xigy
The BLUE is an asymptotically efficient estimator, so its asymptotic
varlance is glven by

2. _ 2. _
-l ) = .250

The 100 estimates had a sample mean of -.02105, wifhlsamp!e variance
0.57063. Again, the estimates are essentially unbiased in the small sample
case, but the variance exceeds twice the asymptotic value.

A frequency distribution of the obtained values is presented

below,
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Class Frequency
Below ~ -1.75 0
-1.75  =1.25 4
-1.25 - .75 6
- .75 - .25 24
- .25 | LD 42

.25 .75 | 15

B i) 1.25 5
1:85 1.75 2
above 1.75 2

These values differ only slightly from those obtained by the optimum

trimmed mean, agaln exhibiting a slight negative tendency.

3.1.3 Quick Estimator. The quick estimator values were obtained

using (2.8) above. The asymptotic variance for these estimates is given

by
2.1017  _ 20017 | ey
n 8 %

The 100 estimates had a sample mean of -.00044 and a sample variance of
2,19657. Thus, their distribution was centered around the true value
of 8, but has a variance of more than 8 times its asymptotic value. In
comparison with the previous two estimators, we have almost twice as
large a standard deviation of the estimators.

The frequency distribution presented below indicates how this

extimator gives more extreme values.
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Class Frequency
Below -1.75 3
-1.75 =1.25 3
-1.25 - .75 f4
- .75 =~ .25 25
- 2D .25 31

.25 .75 17
#1D 1.25 2
1+25 1.75 1
above 1.75 4

These values do not present the tight clustering that was observed
In the previous ftwo samples, but are also negatively inclined as were
fhg previous two. The presence of the extreme values apparently stems
from the fact that in using this estimator, we use the extreme values

that are not used by the previous estimators.,

3.1.4 Optimal Estimator. The optimal estimator values as described
by Chernoff, et al. [3] were obtained first by using (2.10). On Inspection

of the weights generated according to (2.11), however, it was noted

n
X o =n+1,
i=1

that at least for n = 8, 16. In an effort to improve

the estimate, the value of

|
VO Xy

LI v s

i=1

was normalized by dividing by n + 1 instead of n.
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The asymptotic variance of this esfimaTor.Is

2. - 2 :
T-a—.ZSO

és In the BLUE, since this is an efficlent estimator. The 100 estimates
had a sample mean of ~.10566, with a sample variance of 4,05003, The
sample moments obtained differ frqm the asymptotic moments by amounts
greater than for any of the other estimators. There were more extreme
values, both positive and negative, than for any of the previous estimators,

as can be seen in the frequency distribution below.

Class Freguency
éelow -1.75 7
-1.7% -1.25 2
sledB = oI5 8
- .15 = .25 19
F oyl 25 38

L5 .75 15

o 1.25 4
1.25 1523 2
above 1.75 5

The negative trend of the value Is somewhat present here, but not -
as sharply as in the previous estimators. The values which fall away

from the central class do so more repldly than in the previous estimators.

3.1.5 Summary. As a means of comparison, we can determine The

frequency in each estimator of values occurring no more than one class
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interval from the median class, i.e., between = .75 and .75. The table

below summarizes these results.

Estimator Frequency
0™ 81
BLUE 81
Quick Estimator 73
Optimal 72

From this, we can see that the strongest clustering around the true
value occurred in the Optimum Trimmed Mean and the BLUE, while the Quick
and Optimal estimators were almost identical. |

We can summarize our results, finally, by comparing the values of

the sample moments to both each other, and to their own asymptotic values.

Estimator Samp le Mean Sample Variance Asymptotic Variance
0TM 0.05010 0.588453 0.28475
BLUE -0.02105 0.57063 0.25000
Quick -0.00044 2.19657 0.26271
Optimal -0.10566 4.05003 0.25000

The highest efficiency, then, Is in the OTM and BLUE estimators, both

relative to the other estimators, and to their own asymptotic variances.
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3.2 Samples of Size 16

3.2.1 Optimum Trimmed Mean. The OTM estimator (2.4) for n = 16 Is

the average of'fhe central 4 values, X(T), ceoy X(IO)' The asymptotic
variance is given by

2.278  _  2.2718  _
: = == = 0.1438

For the 100 estimates obtalned from samples of size 16, the samﬁlé mean
was (0,01458 w!Th a sample variance of 0.12705. Thus, the sample varfance
was actually below the asymptotic value, so that as n increased, the OTM
estimates began to cluster more tightly about the true value of 8. The

obtained estimates are represented by the frequency distribution below.

Class Frequency

. Below -=1.75 -0
-1.75 ~-1.25 0
-1.25 = .75 1
- 75 = .25 21
= 425 va D 48
25 .75 30

.75 1.25 | 0
1.25 173 0
above 1.75 0

Thus only one value falls more than one class interval away from the
central class. |In addition, the values now show a positive tendency as

opposed to the negative trend for n = 8.
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3.2.2 BLUE. Agaln using Barnett's [1] welghts on the values X(3), T
X(14), in (2.5) we obtaln an estimate of 8 from each of the 100 sampleas
of size 16. The asymptotic variance of the BLUE is gliven by

2_ -
e = 0.125 .

The 100 estimates had a sample mean of 0.00582 with sample variance
.11602. As was the case for the OTM, the mean is closer to the true
value of 0 and the variance Is slightly below its asymptotic value. The

obtalned estimates are represented by the frequency distribution below.

Class Frequency
Below =-1.75 0
w1s02 =]:25 0
“1.28 ~ 15 1
- 753 = .25 19
- .25 #25 54

<25 s 1D 26
7D 1.25 0
¥.25 1.75 0
above 1.75 0

Again, only one value falls more than one class interval from the
central class, and the curve shows a slight positive trend. There Is

a higher concentration In the central class than was the case for the 0TM's,

3.2.3 Quick Estimator. For n = 16, Bloch's [2] quick estimator (2.8)

has asymptotic varlance given by
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2.1017  _ _2.1017
n 16

= L13136 .

The 100 estimates obtained for n = 16 had a sample meah of ~.05859 with
sample variance of .15847. Thus, by increasing the sample size we have
greatly improved the variance of this estimator. |t is only slightly
above its asymptotic value, while the sample mean remains close to the
true value of zero. The obtained values of the estimate are represented

by the frequency distribution below.

Class Frequency
Below =1.75 0
-1.75 =1.25 1
-1.25 - .75 3
- .75 =..25 26
~ 449 s25 48

.25 .75 20

ot D 125 2

1.25 1.75 0
above 1.75 0

Although this does not approach the previous two estimators fbr
clustering, 1t Is a marked improvement over the case for n = 8, The

values still display a negative fendency, but it is much less pronounced.

3.2.4 Optimal Estimator. The value of

i
. n o+ 1) x(i)
1

F LI o s

1
was again divided by n + 1 = 17 instead of n = 16 as In (2.10) in an
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attempt to improve the estimate. The asymptotic variance of this estimator

is given by
2 _ 2 .
— = 1 = .125.

The 100 estimates obtained had a sample mean of ~-.10064 with sample
variance 0.58844. The variance of thls estimator is still above its
asymptotic value, but has improved considerably over the case for n = 8.
The obtained values of the estimator are represented by the frequency

distribution below.

Class Frequency

Below =-1.75 2
=115 =125 1
~1:25 -~ 35 3
= wid = .28 23
% 2B b 44
25 D 23
15 1:25 | 3
1425 1.75 1
above 1.75 0

These values are virtually symmetric about the central class, with only

the 2 extreme negative values out of balance.

3.2.4 Summary. We can agaln use the frequency of the central three

class intervals as a means of comparison among the estimators.
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Estimator Frequency
OT™ © 99
BLUE 99
Quick 94
Optimal 90

Tﬁe highest concentration, then, occurs in the OTM and BLUE estimators,
as was the case for n = 8. However, the Quick estimator, now, is somewhat
better than the Optimal, Indtcaflng that it improves more rapidly.

A comparison of the sample moments and the asympfofic variances

is presented below.

Sample Asymptotic
Estimator Mean Varlance Variance
OTM 0.01458 0.12705 0.1438
BLUE 0.00582 0.11602 0.1250
Quick -0.05859 0.15847 0.13136
Optimal -0.10064 0.58844 0.1250

The BLUE and OTM perform best again, as for n = 8, but the quick estimator

has become a viable alternative for n = 16.

4., Conclusions

In each case, we obtalned estimates that give a good approximation
to the known value of &, 8 = 0, from each of the four estimators., It
would be expected that this property would hold as well for any value
of 6 as well. The comparisons of the estimators, then, will hinge on

thelr efficlency and ease of computation.
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For saﬁples up to size 20, whare the weighfs are available, the BLUE
is obviously best. Little computation is.requlred, and the BLUE has lowest
sémp!é variance. The OTM Is an easy estimator to use, and performs'wéll
relative to the BLUE. However, as pointed but previously, it is not always
easy to determine what comprises the cenfral'24% In small samples, and may
be somewhat subjective.

The quick estimator s easy to use since it only uses a number of
selected order statistics, In this case, 5. Although it does not approach
Its asymptotic variance as rapidly as the previous two, It Is fairly well-
behaved. |t becomes a valuable estimator for use in various sample sizes,
since the welights do not change from one sample size to the next. It would
be a more useful estimator, yet one which provided viable estimates.

The opTimél estimator does not perform well in the small sample case,
even with the improvement of the 1/n + 1 factor. This proved to be the
most variable, and the only one to produce extreme values in the n = 16
case. For larger samples, though, the weights (2.11) are easily built on

a computer, and this could prove to be a useful estimator.



28

ACKNOWLEDGMENT

The author wishes to express hls sincere thanks and appreciation to
his major professor, Dr. Ray A. Waller for his assistance In the preparation
of this report. . -



[2]

[3]

[4]

[5]

[6]

[7]

29

REFERENCES

Barnett, N. D. (1966). "Order statistics estimators of the location
parameter of the Cauchy distribution", Journal of the American
Statistical Association, 61, 1205-1217.

Bloch, D. (1966). "A note on the estimation of the location parameter
of the Cauchy distribution", Journal of the American Statistical
Association, 61, 852-855.

Chernoff, H., Gastwirth, J. L. and Johns, M. V. (1967). MAsymptotic
distribution of |inear combinations of functions of order
statistics with applications to estimation", Annals of Mathe-
matical Statistics, 38, 52-72.

Johnson, N.L. and Kotz, S. (1970). Continuous Univariate Distributions-1,
Boston: Houghton Mifflin.

Kendall, M. G. and Stuart, A. (1969). The Advanced Theory of Statistics,
Vol. |, New York: Hafner.

Kendall, M. G. and Stuart, A. (1967). The Advanced Theory of Statistics,
Vol. 11, London: Griffin.

Rothenberg, R. J., Fisher, F, M, and Tilanus, C. B. (1964). "A note
on estimation from a Cauchy sample", Journal of the American
Statistical Assoclation, 59, 460-463.




ON ESTIMATING THE LOCATION PARAMETER
OF THE CAUCHY DISTRIBUTION

by

RICHARD EARL THOMAS

B.S., Creighton University, 1968

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1925



ABSTRACT

Estimating the location parameter of the Cauchy distribution pre=-
sents certain difficulties, since the usual techniques of estimation
fail to give ftractable results. As a result, unusual technlques have
been proposed for estimating this parameter.

The two types of estimators investigated are the trimmed mean
class and the welghted order statistics class. Estimators in these
classes have been previously studied in relation to their asymptotic
properties. The behavior of these estimators in sample sizes of 8
and 16 Is Investigated by compiling estimates from 100 samples of each
size from the standard Cauchy distribution. Thelr resulting sample
variances are compared, both to each other and to their known asymptotic

values,



