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Abstract 

 

Wheat lignans are phenylpropane dimers linked by β-β bonds with a 1, 4-diarylbutane 

structure.   They are biosynthesized in the cell cytoplasm through action of enzymes of 

the phenylpropanoid pathway. Pinoresinol lariciresinol reductase (PLR) catalyzes the 

final steps of biosynthesis of wheat lignans. In epidemiological and clinical 

investigations, studies show that high plasma lignan amounts correlate with reduced risks 

of breast, colon, and prostate cancers. However, in some of the studies, the results are not 

consistent. More consistent results are observed when animal and cell culture models are 

used. Our previous studies in the Wang lab demonstrated that treatment of human colon 

cancer cells, SW480 with lignans results in a dose and time dependent inhibition of 

cancer cell growth.  In the first paper, we investigated direct experimental cancer 

preventative characteristics of a wheat lignan, secoisolariciresinol diglucoside (SDG) vs. 

its metabolite enterolactone in human colon cancer SW480 cells. Treatment of cancer 

cells with 0-40 µM SDG or enterolactone resulted into inhibition of cancer cell growth as 

observed by reduction of cell numbers. The reduction appeared related to induction of S-

phase cell cycle arrest rather than cytotoxic effect. Further analysis revealed that SDG 

was more stable in cell culture medium than enterolactone. HPLC-MS/ESI showed that 

enterolactone is the principle metabolite in cancer cells but undetectable SDG or its 

metabolites were in the cells treated with SDG. In the second paper, we investigated over 

expression of the PLR gene and enhancement of lignan levels in transgenic wheat. We 

transformed wheat cultivars (‘Bobwhite’, ‘Madison’, and ‘Fielder’ respectively) with the 

Forsythia intermedia PLR gene under the regulatory control of the maize ubiquitin 



promoter. Of the total 217 transgenic wheat lines, we successfully obtained 7 

transformants with the inserted ubiquitin PLR gene as screened by PCR. Real-time PCR 

further indicated 109-117% PLR over expression over the transgenic control in 3 

transformants of the 7 at T0 generation. In addition, the levels of SDG, as determined by 

HPLC was found to be significantly elevated in one of the 3 positive transgenic plants. 

To the best of our knowledge, this is the first study reported that genetically engineered 

wheat with over expressed PLR enzyme enhancing phytochemical lignan has been 

successfully achieved. 
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Wheat lignans are phenylpropane dimers linked by β-β bonds with a 1, 4-diarylbutane 
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the phenylpropanoid pathway. Pinoresinol lariciresinol reductase (PLR) catalyzes the 

final steps of biosynthesis of wheat lignans. In epidemiological and clinical 

investigations, studies show that high plasma lignan amounts correlate with reduced risks 

of breast, colon, and prostate cancers. However, in some of the studies, the results are not 

consistent. More consistent results are observed when animal and cell culture models are 

used. Our previous studies in the Wang lab demonstrated that treatment of human colon 

cancer cells, SW480 with lignans results in a dose and time dependent inhibition of 

cancer cell growth.  In the first paper, we investigated direct experimental cancer 

preventative characteristics of a wheat lignan, secoisolariciresinol diglucoside (SDG) vs. 

its metabolite enterolactone in human colon cancer SW480 cells. Treatment of cancer 

cells with 0-40 µM SDG or enterolactone resulted into inhibition of cancer cell growth as 

observed by reduction of cell numbers. The reduction appeared related to induction of S-

phase cell cycle arrest rather than cytotoxic effect. Further analysis revealed that SDG 

was more stable in cell culture medium than enterolactone. HPLC-MS/ESI showed that 

enterolactone is the principle metabolite in cancer cells but undetectable SDG or its 

metabolites were in the cells treated with SDG. In the second paper, we investigated over 

expression of the PLR gene and enhancement of lignan levels in transgenic wheat. We 

transformed wheat cultivars (‘Bobwhite’, ‘Madison’, and ‘Fielder’ respectively) with the 

Forsythia intermedia PLR gene under the regulatory control of the maize ubiquitin 



promoter. Of the total 217 transgenic wheat lines, we successfully obtained 7 

transformants with the inserted ubiquitin PLR gene as screened by PCR. Real-time PCR 

further indicated 109-117% PLR over expression over the transgenic control in 3 

transformants of the 7 at T0 generation. In addition, the levels of SDG, as determined by 

HPLC was found to be significantly elevated in one of the 3 positive transgenic plants. 

To the best of our knowledge, this is the first study reported that genetically engineered 

wheat with over expressed PLR enzyme enhancing phytochemical lignan has been 

successfully achieved. 
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CHAPTER 1 - WHEAT LIGNANS AND CANCER PREVENTION-

LITERATURE REVIEW 
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Wheat Lignans and Cancer Prevention 

Summary 

Wheat lignans have phenylpropane dimers linked by β-β bonds with a 1,4-diarylbutane 

structure. They occur in significant amounts mainly as glycosides in aleurone layer of wheat 

kernels after biosynthesis in the cell cytoplasm through the phenylpropanoid pathway. In the 

phenylpropanoid pathway, wheat lignans are synthesized from simple phenyl derivatives such as 

corniferyl alcohols. The initial and final steps in this pathway involves deamination of 

phenylalanine catalyzed by phenylalanine ammonia lyase and reduction of pinoresinol to 

secoisolaciresinol by pinoresinol lariciresinol reductase respectively. On consumption, lignans 

are metabolized in the colon into enterolactone and enterodiol by the bacterial fermentation 

process. Enterolactone and enterodiol are important because they can be used as biomarkers in 

epidemiological studies. Epidemiological studies suggest that high circulating levels of lignan 

metabolites are correlated with reduced risks of chronic diseases such as cancer and 

cardiovascular disease. The same observation has also been observed in animal and cell culture 

models. For example, investigations in the mice induced to develop mammary carcinogenesis 

and treated with a wheat lignan at 0.01% (w/w) in diet showed reduced mammary carcinogenesis 

related biomarkers. Some of the mechanisms that are suggested for wheat lignan health 

protecting roles include anti-oxidant, anti-estrogenic, anti-proliferation, cell cycle induction, and 

apoptosis.   
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Biosynthesis of lignans 

Very little information is available about the wheat phenylpropanoid pathway that occurs 

in the cell cytoplasm. However, earlier work on the contention of phenylpropanoid pathway has 

suggested the endoplasmic reticulum as the main organelle for this pathway (1-3).  Enzymes of 

interest, phenylalanine ammonia lyase (E.C. 4.3.1.5) and pinoresinol lariciresinol reductase are 

among two of the enzymes involved in this pathway that catalyze initial and final steps 

respectively. Phenylalanine ammonia lyase catalyses the first step of the phenylpropanoid 

pathway involving deamination of phenylalanine to produce ammonia ion as a by-product while 

pinoresinol lariciresinol reductase catalyses the sequential reductive fission of pinoresinol to 

lariciresinol and then secoisolaciresinol. Lignans are biosynthesized to form monomeric or 

oligomeric lignans that are packaged as glycosides before release into the wheat aleurone layer 

during the seed development stage such as secoisolariciresinol diglucoside (SDG) (4). 

Monomeric lignans have been found in wheat, in tea (5) while an oligomeric lignan has been 

shown in flax (6). Our focus is primarily on the prominent monomeric lignan, SDG present in 

wheat. 

Other monomeric wheat lignans in the phenylpropanoid pathway (Fig. 1) include 

pinoresinol, lariciresinol, and secoisolaciresinol. The sequential reductive fission of pinoresinol 

to lariciresinol and then to secoisolaciresinol is a key regulatory point in this pathway and is 

catalyzed by pinoresinol lariciresinol reductase as has shown in woody plants (7, 8) and in flax 

seeds (9). Very little information on the enzymatic actions of  pinoresinol lariciresinol reductase. 

In the last decade, Norman and his colleagues at Washington State University have managed to 

isolate the pinoresinol lariciresinol reductase enzyme from Forsthysia intermedia (10, 11). Their 

work and that of others on identification of the DNA sequence of pinoresinol lariciresinol 
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reductase enabled us to isolate the very first partial sequence of the wheat pinoresinol 

lariciresinol reductase gene (Fig. 2) using primers designed based on the Forsthysia intermedia 

cDNA (see appendix B). Wheat pinoresinol lariciresinol reductase shares 50% sequence similar 

with the Forsthysia pinoresinol reductase gene. To the best of our knowledge, this is the first 

time the partial sequence of the wheat PLR sequence has been shown.  

 4



 

 

 

Figure 1:1 Phenylpropanoid pathway for lignan biosynthesis showing last stage lignan 

formation catalyzed by pinoresinol lariciresinol reductase 
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Figure 1:2 Partial sequence (~50% length of forsthysia 1.2 kb PLR sequence) of the 

wheat pinoresinol lariciresinol reductase gene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6



Bioavailability of lignans 

The bioavailability of wheat lignans refers to the amount of wheat lignans that are 

absorbed into the blood stream after passage through the mammalian gut system (12). 

Consumption of wheat lignans and subsequent exposure to enzymatic and bacterial activity in 

the mouth, stomach, intestines, colon and cecal generates lignan metabolites, enterodiol and 

enterolactone. Bacterial activity in the colon results into fermentation of lignans into enterodiol, 

which is subsequently oxidized into enterolactone. Once formed, lignan metabolites are absorbed 

into the blood stream mainly through a passive mechanism. Excess unabsorbed lignan 

metabolites are excreted in urine and fecal matter (13). 

 Commercial foods rich in wheat lignans include shredded wheat cereal, toasted 

wheat bran flasks, and whole wheat bread (14). When these foods are consumed, the chewing 

action of the mouth physically breaks down wheat lignans into small swollenable particles. In 

addition to that, the first step of metabolism may involve removal of the attached sugars in the 

lignan glycosides; a reaction catalyzed by glycosidase. Glycosidase activities can occur in the 

food itself (endogenous or added during processing) or in the cells of the gastrointestinal mucosa 

or can be secreted by the colon micro flora (15). Colon micro floras are also important in wheat 

lignan fermentation process that occurs in the distal end of the digestive system.  

Many factors are suggested to affect the overall efficiency of the bacterial fermentation 

for formation of lignan metabolites, enterolactone and enterodiol. Most important of all these 

factors is the food matrix in which the lignans are bound. Foods which are milled and finely 

crushed will provide a higher mammalian lignan source than others such as wheat bran or ground 

flax seeds (16). Besides milling, extrusion processes may be important in increasing accessibility 

of wheat lignans to the fermentation process. In addition, surgical procedures such as removal of 
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the distal section of the digestive gut such as in colon ileostomy may reduce overall 

enterolactone and enterodiol formation as seen with a rye diet (17).  

Pharmacokinetics relates to the rate of availability and elimination of mammalian lignans 

from different organs within the body. A recent study on the availability of enterolactone and 

enterodiol after a dietary rich lignan meal (18) and after ingestion of purified SDG alone (19). In 

the later study, twenty healthy volunteers on a dose of purified SDG (1.31 μmol/kg body weight) 

show maximum blood plasma levels of enterolactone and enterodiol at 19.7 +/- 6.2 and 14.8 +/- 

5.1 hrs respectively post ingestion. This indicates that enterodiol circulates faster than 

enterolactone. In their discussion, the authors suggest that both enterolactone and enterodiol are 

distributed through way of first order of kinetics. In addition, uptake of enterolactone and 

enterodiol has also been analyzed in vitro using different human epithelial cells (20). Jansen et al 

shows that conjugation and excretion of enterolactone and enterodiol in HT29, CCD841CoTr 

and CaCo-2 cells is complete after 8 hrs except for enterodiol in Caco-2 cells (20).  

After intake, enterolactone and enterodiol are excreted in urine as glucuronates (73-94%) 

or sulfate conjugates (2-10%), as free phenols in feacal matter (21).  In animal models, the 

concentration of enterodiol and enterolactone excreted is dependent on the percentage amount 

consumed. For a diet supplemented with 0% -5% flax seeds, metabolite excretion is observed to 

increase exponentially and before it plateaus off at 5-10% (22).  
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Figure 1:3 Lignan metabolism showing the fate of lignans through the digestive gut and its 

major metabolites, enterolactone and enterodiol 
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Lignans and cancer prevention studies 

Many studies have established that there exists an inverse relationship between lignan 

consumption and reduced cancer risks. Lignan plasma amounts are directly correlated with 

reduced cancer risk as shown in some population studies and proved in animal and cell culture 

models 

Epidemiological and clinical studies 

Although conflicting data does exist, many epidemiological studies suggest an inverse 

relationship between wheat lignan consumption and various cancer risks including breast, colon, 

prostate and other cancers.  

The earliest work on association between wheat lignan intake and the risk of breast 

cancer was done by Adlercreutz and his colleagues (23). In that landmark publication, the 

authors found that lignan excretion high in vegetarian Asian women is accompanied by a low 

breast cancer risk while in omnivorous Boston women, lignan excretion was low accompanied 

with a high breast cancer risk (23). Today, at least 183 publications discuss the epidemiological 

results between lignan intake and breast cancer, a few with conflicting results (24). In a recent 

review article, the authors suggested that the inverse relationship between lignan consumption 

and breast cancer are more consistent in case-control studies vs. prospective studies, in pre-

menopausal women vs. menopausal women, and in analysis of enterolactone vs. enterodiol (25). 

We recently published a book chapter (in press) where we emphasize essentially the same 

conclusions and add that the conflicting data are in part due to inadequate databases used in 

dietary lignan estimation as suggested by others (26). We further add here that estrogen receptor 

status and diet-gene interactions are essential in the analysis of epidemiological intervention data 

of dietary lignans in breast cancer (27). Perhaps, that is why Touillard and colleagues (2007) did 
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observe an inverse relationship between dietary lignan intake (< 1395 µg/day), enterolignan 

exposure and the risk of invasive breast cancer when they considered breast cancers that were 

estrogen and progesterone receptor positive for women who were post menopause (28). 

In colon cancer epidemiological studies, the relationship between lignan intake and colon 

cancer is also summarized by a recent publication conducted in Netherlands that demonstrates 

that a substantial reduction of colorectal adenoma risk is associated with a high plasma level of 

lignan metabolites (29).  In a Ontario based colon cancer population case control study involving 

1095 cases and 1890 control subjects, the authors suggest that dietary lignan intake is associated 

with a significant reduction in colorectal cancer risk [OR (T3 vs. T1) = 0.73; 95% CI: 0.56, 

0.94]. They did not observe any evaluated interactions between polymorphic genes that encode 

enzymes possibly involved in metabolism of phytoestrogens (CYPs, catechol O-methyl 

transferase, GSTs, and UGTs) and the risk of colon cancer (30). 

In prostate cancer epidemiological studies, Arts and Hollman’s review (31) suggest that 

the inverse relationship between lignan intake and prostate cancers is consistent when case-

control studies are used and none when using prospective and nest case control studies. The same 

view is held by other authors (32, 33). In one of the few conflicting case control studies, a 2006 

Swedish population-based case control study, the authors show conflicting results for a 

questionnaire-data for 1,499 prostate cases vs. 1,130 controls. They suggest no association 

between dietary intake of total or individual lignans and risk of prostate cancer. However, on 

further analysis, intermediate serum levels of enterolactone were associated with a decreased risk 

of prostate cancer (34). 

In other cancer related epidemiological studies; women show a 50% (OR, 0.50; 95% Cl, 

0.31-0.68; P=.04 for interaction) reduction in lung cancer risk when both hormone therapy use 
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and intake of enterolactone and enterodiol are analyzed together [ongoing US- base case control 

study (35)]. 

 In the University of Texas M.D. Anderson study, no association is suggested between 

dietary lignan intake and reduction of testicular cancer in young men (36). 

In conclusion, across all the cancers, the inverse relationship between wheat lignan 

consumption and cancer risk reduction are more observable in case control studies than in 

prospective cohort studies (25, 37) especially as seen in breast cancers.  Perhaps, future studies 

should employ improved exposure assessment and multiple sampling techniques to ascertain 

positive associations. Also, the use of other biomarkers such as lignan antioxidant activity and 

sex hormone binding protein levels instead lignan metabolite levels for determination of 

associated cancer risks is suggested (38, 39).   

Experimental animal and cell cultures studies 

Many studies involving cancer inducible animal models and cell culture models test the 

potential benefits of lignans as anti-cancer agents by using either purified lignan preparations or 

foods rich in lignans. Unlike epidemiological studies, more consistent results are evident in 

experimental animal and cell culture studies. A summary of some of the important studies is 

shown below; 
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Table 1.1 Lignan cancer prevention studies in animal models 

Source Causative agent and/ 

animal model 

Effects on Cancer Ref 

10% flax (or equivalent SDG) NMU induced mammary 

tumor genesis in F344 rats 

   number and size of   

   mammary  adenoma  

    carcinomas                    

40 

10 mg/kg enterolactone DMBA induced mammary 

tumorigenesis 

    

    tumor number 

41 

5% or 10% flaxmeal or  

SDG equivalent 

AOM induced Sprague-

Dawley rats 

   number of crypts, foci   

    and cell proliferation 

42 

10% flaxseed or SDG Nude mice injected with 

MDA-MB-435  

    lung and lymph  

    metastases 

43 

0.02% secoisolariciresinol/ 

Matairesinol 

Min Mice      no effect 44 

73-293 µmol/kg SDG or  

2.5-10% flax seeds 

B16BL6 murine melanoma 

cells in C57BL/6 mice 

    tumor number and size 45 

0.01% SDG in diet Azoxymethane induced F344 

rats 

    abberant cryt foci 26 
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In the above studies, carcinogenesis or tumor markers in animal models is induced with 

either azoxymethane or N-nitroso N-methylurea (NMU) or 7, 12-dimethylbenz (α) anthracene 

(DBMA) (41-44, 47) treated along with lignan or lignan enriched diets. In one case, spontanous 

carcinogenesis animal model, Apcmin (mutated adenomatous polyposis coli gene) (45) were 

used. In two cases, human breast cancer cell lines or melanoma cancer cell lines xenografted into 

the animal model caused cancers (44, 46). In almost all animal models, lignan 

supplementation/treatment is started before induction of the carcinogenesis except in a few cases, 

where it was after carcinomas had been established.  Wheat lignan or SDG equivalent diets (that 

is purified SDG of  73, 147 and 293 μ mol/ kg body equivalent to flaxseed at 2.5, 5 and 10% 

w/w) was the most common lignan diet used except two studies that used enterolactone injected 

intravenously (42) and secoisolaciresinol and matairesinol (44).  

The results indicate that wheat lignans are chemo-preventative against initial stages of 

carcinogenesis as seen by reduction in number of early carcinogenesis related markers, such as 

number of ACF (aberrant crypt foci), size and number of adenoma, size and number of tumors 

and number of metastases.  

Unlike the animal model experiments, the cell culture studies on human colon (47 – 49) 

prostate (50) and breast cancer cell lines (51) mostly use enterolactone and enterodiol. Our study 

suggested enterolactone inhibited a human colon cancer cell line, SW480 in a time and dose 

dependent manner (48). The effect may be additive when both enterolactone and enterodiol are 

combined (49).  Enterolactone is also shown to induce apoptosis and inhibit growth in human 

colon cancer cell line, colo-201 (49). In this study, the expression of apoptosis suppressor protein 

and proliferation related PCNA protein is down regulated while apoptosis enhancing protein is 

up-regulated (49). In four other human colon tumor cell lines; LS174T, CaCo-2, HCT-15 and T-

 14



84, enterolactone and enterodiol at 100 µM concentration reduced cell proliferation (39).  In 

human breast cancer cell line (MCF-7), enterolactone at 10 nM significantly inhibited the growth 

of cells (51). At a lower dose (0.5-2 nM), the effect was stimulatory for cell proliferation; the 

dose amount used is the same as the levels of estrogen hormone estradiol circulating under 

normal conditions (1 nM). This and other studies suggested that enterolactone is agonist towards 

estradiol receptors in stimulated MCF-7 breast cancer cells at a low dose but antagonist at higher 

doses, hence indicating a possible mechanism by which it affects growth of estrogen sensitive 

cells (51). In prostate cancer cell lines (PC-3, DU-145, LNCAP), 10-100 μM enterolactone and 

enterodiol significantly inhibit growth of all cell lines (40). In this study, enterolactone (IC 50 of 

57 μM) is more potent than enterodiol (IC 50 of 100 μM) (50). 

Therefore, in conclusion, growth inhibitory effects in the cancer cell lines can be 

explained by several mechanisms; such as anti-oxidant, estrogenic and anti-estrogenic 

mechanisms among others. 

Plausible mechanisms of lignans in cancer prevention 

Many studies suggest that wheat lignans are chemo preventative agents (52) towards 

chronic diseases such as cancer through anti-oxidant, anti-estrogenic and other potential 

mechanisms.  

Anti-oxidant activity 

Wheat lignans are chemo-preventative agents that with high anti-oxidant activity (53). 

Reports ascertain that wheat lignans in physiologically important doses are 3-4 times more 

potent than vitamin E (54). SDG and its metabolites enterodiol and enterolactone have been 

reported to have scavenging ability towards free radicals (55, 56). However, comparison of anti-
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oxidant activity between SDG and its metabolites, enterolactone and enterodiol indicated that 

SDG may have (58).  It is further suggested that lignan’s free radical scavenging ability may 

eliminate potential carcinogens such as reactive oxygen species through participation in phase 1 

reactions. Free radical scavenging mechanism may explain for the plant lignans anti-oxidant role 

in 1) reduction of risks associated with coronary and cardiovascular diseases as in the Zupter 

elderly study (58) and as in Arts review (31), 2) reduction of lipoprotein intake into cells in 

atherogenic lesions.  

A genomic response will result when leaking reactive oxygen species from the 

mitochondria stimulates redox sensor kinases that in turn activate transcription factors through 

the Nrf2 pathway (59). Through the Nrf2 pathway, active transcription of phase 2 metabolism 

enzymes will result and hence further consolidate the detoxification process. Hence, wheat 

lignans can essentially eliminate all these downstream pathways through elimination of reactive 

oxygen species.  Infact, previous work of the Wang lab found that enterolactone was capable of 

inducing detoxification enzyme activity (60) most likely related to phase 2 metabolism.  

Anti-estrogenic activity 

Lignans as phytoestrogens act through estrogen receptor-mediated mechanisms.  

Structural similarity to estrogen receptors allows mammalian lignans to act as estrogenic 

antagonists competing with beta-oestradiol in the estrogen receptor complex.  The levels of 

severity of a estrogen dependent cancer such as breast cancer is lower with high circulating 

levels of lignans and the reverse is also true. Inhibition of aromatase and 17 beta-hydrosyteroid 

dehydrogenase (important enzymes in estrogen synthesis) after a lignan ingestion, are suggested 

as strong evidence for this role (61). In relation to this, is the production of presenilin 2 in MCF-

7 breast cancer cell lines elicited by mammalian lignan, enterolactone.  Presenilin 2 production is 
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directly associated with inhibition of cellular proliferation as seen in breast cancer cells. A 

biphasic growth effect involving induction of cell proliferation at doses <10 µM enterolactone, 

and inhibition of the same at >10 µM has been observed in vitro (62).  

 In addition to this, lignans as phytoestrogens have been suggested to lower 

cholesterol through increased low density lipo-protein receptor activity (63). Wu et al (2006) also 

suggested that lignans ingestion from sesame may improve sex hormones through increased 

levels of sex hormone binding globulin in postmenopausal women (64). 

 However, estrogenic activity of lignans have been correlated with causing adverse 

effects in animals as reviewed by Rickard and Thompson (65) with some contradictions. Ward et 

al (2001) exposed flaxseed or SDG in diets of dams and observed no alteration of reproductive 

indices in male and female offsprings (66). In humans, Mitchell et al (2001) concluded that 

phytoestrogen dose had no effect in male semen quality (67).  

Other potential Mechanisms 

A recent study done in our lab showed that enterolactone, a mammalian phytoestrogen, 

causes a dose and time dependent inhibitory effect on the growth of SW480 cells due to S-phase 

cell cycle arrest (48). Other reports have also indicated a similar trend effect of lignans on cell 

cycle control points, and the apoptosis pathway. In the cell cycle, key control points involving 

tumor suppressor protein; the p53 protein, p21, p15 among others have been suggested to be 

involved in the growth inhibitory effect of lignans. Enterodiol is known to induce apoptotic cell 

death in MCF-7 tumors by increased expression of p21 protein levels and decrease of Bcl-2 

levels (apoptosis suppressing protein), cyclin D1, and Rb protein expression (68). Rb protein is 

important in progression of cells into S-phase. In another study, secoisolariciresinol 

administration to D-galactosamine/lipopolysaccharide (LPS)-induced hepatic injury in mice 
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resulted in direct inhibition of apoptosis mediated by tumor necrosis factor alpha (TNF-alpha) 

(69). 

Supplementation of min mice with a 10% rye (colon rye fermentation produces 

enterolactone) is significantly associated with normalized beta- catenin levels thus reducing the 

associated cell neoplasia in these min mice (70). In a study involving the TMCH mice (mice in 

which neoplasia is induced by Celiobacter rodentium) increased nuclear beta-catenin expression 

was recorded by both biochemical and histological approaches, accompanied by increases of 

cyclin-D1 and c-myc protein expression. When these mice were treated with lignans, levels of 

beta-catenin were normalized (71) resulting into regression of intestinal tumors.  

 Lignans also block TPA-induced phosphorylation of extracellular signal-regulated 

kinases (ERK) and UVB-induced phosphorylation of ERKs and JUN kinases via inhibition of 

AP-1 and NF-B transcriptional factors (72). Proto-oncoprotein c-fos, which constitutes part of 

the AP-1 transcription factor, is stated to be regulated by mammalian lignans in MDA-MB-468 

breast cancer cells. 
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Abstract 

Our previous study demonstrated that lignan metabolites, enterolactone and enterodiol, 

inhibited colonic cancer cell growth by inducing S-phase cell cycle arrest and apoptosis. 

However, the lignan present in our diet is glucoside precursors such as secoisolariciresinol 

diglucoside (SDG). This study is thus focused on the cancer preventative impact of SDG in 

human colonic SW480 cancer cells. Treatment with SDG at 0-40 µM resulted into a dose and 

time dependent decrease in cell numbers which was comparable to enterolactone. The cell 

growth inhibition by SDG seemed not mediated by cytotoxicity, but induced cell cycle arrest at 

S-phase. Furthermore, HPLC analysis indicated SDG in medium for 48 hrs was much more 

stable than enterolactone (95% stability for SDG vs. 57% for enterolactone). When the cells were 

treated by enterolactone at 40 µM for 48 hrs, the intracellular levels of enterolactone detectable 

was 8.3 x 10-8 nmol/cell. However, the intracellular levels of SDG or its known metabolites as 

measured by HPLC-MS/ESI were undetectable. Taken together, these findings provide novel 

characteristics of dietary lignan on colonic cancer cell growth. The stability and intracellular 

level analysis may enhance our understanding of bioavailability of dietary lignans for cancer 

preventation. 

Introduction 

Potential cancer preventive effects of precursor lignan, secoisolariciresinol diglucoside 

(SDG) have been suggested to be mediated through its metabolites, enterolactone and enterodiol 

(1-3) or even its aglycone, secoisolariciresinol (4, 5). Enterolactone and enterodiol are formed 

anaerobically after the bacterial colon fermentation process (6) of SDG.  Specialized bacterial 

strains, Peptostreptococcus sp. SDG-1 and Eubacterium sp. SDG-2 convert SDG into enterodiol 

(7) which may be oxidized to enterolactone. Besides the bacterial fermentation process, 
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enterolactone and enterodiol can also be formed by other cell types and organelles. A recent 

study showed that liver microsomes can generate lignan metabolites from other lignans, 

secoisolariciresinol and matairesinol (8). 

Many studies associate diet supplementation of SDG with cancer preventive properties in 

animal models. Our recent study showed that SDG levels in wheat bran was correlated to anti-

tumor activities in four wheat cultivars (9). Others also found that SDG at 0.01% significantly 

reduced azoxymethane-induced formation of abberant crypt foci (ACF) in mice (10). In addition, 

experimental animal studies show that dietary supplementation with 73-293 µmol/kg SDG 

inhibits experimental metastasis of B16BL6 murine melanoma cells in C57BL/6 mice (11).   

Anti-estrogenic activity of lignans has been suggested as a potential mechanism of anti-

cancer potential of lignans in especially estrogen dependent cancers (12). Structure similarity to 

estrogens allows lignans such as SDG to bind with the β-estrogen receptor and therefore inhibit 

17 β-estradiol activity as seen with decreased aromatase activity in studies involving lignan 

supplemented diets (13-15). Other potential mechanisms by which lignans are cancer preventive 

are discussed in current review (16). Important among suggested mechanisms, is the inhibitory 

effect of lignans on DNA synthesis (17). Inhibition of DNA synthesis may cause programmed 

cell death or apoptosis (18). 

In this study, we investigated direct cancer preventive characteristics of SDG in human 

colon cancer cells, SW480. The effect of SDG on inhibition of cancer cell growth was studied 

through cell cultures. Through chromatographic techniques, SDG was also investigated for 

medium stability compared to enterolactone. Finally, HPLC- MS/ESI was used to find out 

whether SDG or enterolactone were taken up intracellularly into human cancer cells treated with 

lignans hence their bioavailability for cancer preventive effects. 
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Materials and methods 

Cell culture and treatment 

The human colon cancer cells, SW480, were purchased from the American Type Culture 

Collection (Rockville, MD) and cultured in Dulbecco’s Modified Eagle Media supplemented 

with 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis MO). 

The cells were cultured in either 6-well plates or 200 ml volumetric flasks at 37 0C in 5% CO2  

until 60-80% confluence. At this confluence, cells were treated with SDG and enterolactone, at 

0-40 µM for 24 and 48 hrs, at which time the cells had reached < 100% confluence. SDG (99% 

purity) was purchased from ChromaDex (Irvine, CA) while enterolactone was purchased from 

either Sigma-Aldrich (St Louis, Mo) or ChromaDex. The lignans were dissolved in DMSO and 

mixed with fresh medium to achieve the final concentration of DMSO at 0.2%, a concentration 

that did not alter cell growth or cell cycle measurements compared with the DMSO-free media. 

After treatment cells were detached and counted by hemacytometer as our previously reported 

(9). 

Cytotoxicity Assay 

The cell viability was measured in adherent cells by trypan blue staining. The viable cell 

numbers in treated cells were compared with that in vehicle controls. 

Cell cycle analysis 

Cell cycle analysis was done as previously described (9). Briefly, cells were fixed in 

ethanol, centrifuged and the pellet resuspended in phosphate buffer saline solution, pH 7.4, 

containing 20 g/L propidium iodide and 5000 U/L of RNase (Promega) at 37 0C for 30 mins. 
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DNA flow cytometric analysis (FACSCaliber, Becton Dickinson, Newyork, NJ) was performed 

with an excitation at 488 nm and an emission at 630 nm. 

HPLC quantification of SDG and enterolactone in cell culture medium 

HPLC-UV quantification of SDG and enterolactone was done according to previous 

methods (1, 24) with slight modification. Generally, cell culture medium containing remaining 

lignans was separated from cancer cells that had been treated with 0-40 µM SDG or 

enterolactone by centrifugation at 1000 X g for 10 minutes.  SDG and enterolactone were 

separated by HPLC chromatography on a C18 column (5 µm, 250 X 4.6 mm, Alltech), eluted 

with a 5% acetonitrile in pH 2.8, 0.01 mM phosphate buffer (solvent A) over 100% acetonitrile 

(solvent B) at a flow rate of 1 mL/ml. A gradient run of 0-10 minutes, 100% solvent A, 10-30 

minutes, 0-100% solvent B and finally 30-40 minutes, 100% solvent B was determined as 

optimum.  Peaks were detected by monitoring absorbance at 283nm. The enterolactone and SDG 

peak was identified according to both retention time and spectrum by comparison with a standard 

commercial SDG and enterolactone. A linear HPLC calibration curve for both lignans were 

obtained for the concentrations 0-100 µM.  

HPLC analysis of intracellular extracts of cancer cells treated with SDG and 

enterolactone 

SW480 cells treated with 40 µM SDG or enterolactone for 48 hrs were harvested by 

detaching with trypsin-EDTA as previously described (9) and centrifuged at 1000 X g for 10 

minutes. The supernatant was discarded, and the pellet was washed with 0.01 M phosphate 

buffer saline solution, pH 7.4. The collected cells were then re-suspended in washing buffer, and 

sonicated under an ice bucket, followed by three 1:1 diethyl ether extractions. The upper organic 
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phase containing the lignans was obtained and evaporated to dryness by passing a stream of 

nitrogen gas through it. The resulting residue was dissolved in 100% methanol and subjected to 

HPLC using the method described above.  

Mass spectrometry analysis of intracellular extracts of cancer cells treated with SDG 

and enterolactone  

SW480 cells treated with 40 µM SDG or enterolactone for 48 hr were harvested by 

detaching with trypsin-EDTA as previously described (9) and centrifuged at 1000 X g for 10 

minutes. The supernatant was discarded and the pellet washed and re-suspended in 0.01 M 

phosphate buffer saline solution, pH 7.4.  The resulting solution was homogenized under an ice 

bucket followed by three 1:1 diethyl ether extractions. The upper organic phase containing the 

lignans was evaporated to dryness in a water bath set at 350C under high pressure conditions. 

The residue remaining at the bottom of the flask was re-dissolved in 100% methanol and ultra-

centrifuged at 40,000 X g for 30 minutes. HPLC-MS/ESI analysis was performed with a 

Finnigan LCQ Deca XP mass spectrometer (Thermo Finnigan, Dreieich, Germany) coupled to an 

Agilent (Agilent, Waldbronn, Germany) 1100 series HPLC system. Separations were achieved 

with a synergi (Berlin, Germany) RP C18 column (250 .2 mm i.d., 5 µm) using acetonitrile:water 

(containing 0.1% formic acid) for elution in a gradient from 7:3 to 9.5:0.5 in 3 min, followed by 

isocratic elution with 0.5:9.5 between 3 and 21 min, and finally isocratic elution with acetonitrile 

from 24 to 25 min. The flow rate was 0.4 mL/min throughout. The MS/ESI traces recorded was 

positive ions from m/z 100 to1500. A MS software (Applied Biosystem ESI software, CA) was 

used to differentiate between peaks resulting from treatment effect and background noise peaks. 

Only mass/charge ratio [M/Z]+ of peaks resulting from the treatment are shown. 
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Statistical analysis   

All data was analyzed by the SAS statistical system, version 8.2.  The cell number, cell 

cycle and HPLC quantification were analyzed by the 1-way ANOVA protocol using the general 

linear model procedure followed by Fisher’s protected least square difference. For figure 2.1 and 

figure 2.3, the variable was the lignan amount at 0-40 μM. The relationship between lignan 

concentrations remaining in cell culture medium and the original lignan amounts was determined 

by a two-tailed t test. A probability ≤ 0.01 was considered significant as represented by the 

asterisk. 

Results 

Cell growth inhibition  

Human cancer cells treated with either SDG or enterolactone showed a growth inhibitory 

effect. The treatment of SW480 cells with SDG and enterolactone at 0-40 µM resulted in dose 

and time dependent decrease in cell number compared to vehicle control (Figure 2.1). The 

inhibition increased with increasing concentration of SDG or enterolactone. 

Cytotoxicity  

Cell viability was generally >80% in adherent cells, and the treated cells did not differ 

from the vehicle controls (Figure 2.2). 

S-phase cell cycle arrest at 24 and 48 hrs 

The treatment of SW480 cells with either SDG or enterolactone induced cell cycle arrest 

at S-phase in a dose and time dependent manner (Figure 2.3). DNA flow cytometry profiles 

indicated that S-phase was significantly increased with SDG and enterolactone treatment. As the 
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percentage of cells in S-phase increased, the percentage of cells at both G1 and G2/M phases 

decreased correspondingly (data not shown). 

HPLC chromatogram of SDG and enterolactone in medium 

HPLC showed that SDG and enterolactone are depleted in the cell culture medium over 

time. A HPLC chromatogram for reference standards; SDG, enterolactone and enterodiol is 

presented in Figure 2.4A. The order of lignan elution and retention time was SDG, enterodiol 

and enterolactone at 20.5, 25.4 and 28.6 mins respectively. The HPLC chromatogram of medium 

treated with either SDG and enterolactone alone are presented in Figure 2.4B and 2.4C 

respectively. 

HPLC quantification of SDG and enterolactone in medium with and without cells for 

stability analysis 

The quantification of SDG and enterolactone in medium with cells was done with 0-40 

µM SDG and enterolactone respectively for 48 hrs as shown in Figure 2.5. The data was used to 

calculate stability of the lignans in medium. Stability was investigated further with 40 µM SDG 

vs. enterolactone for 48 hrs without SW480 cell usage. 

HPLC chromatogram of SDG and enterolactone in intracellular cancer cell extracts 

HPLC chromatograms for SDG, enterodiol, enterolactone and internal standard, flavone 

is presented in Figure 2.6. The chromatogram for commercial SDG standard is shown by Figure 

2.6A. HPLC analysis of intracellular extracts of cancer cells detected enterolactone levels in 

enterolactone treated cells as shown in Figure 2.6B. However, SDG was not detected in 

intracellular extracts of cancer cells treated with SDG as shown in Figure 2.6C. 
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HPLC-MS/ESI analysis of intracellular extracts of cancer cells treated with 

enterolactone and SDG 

A HPLC-MS/ESI chromatogram showing the fragmentation pattern of commercial lignan 

standard, enterolactone is shown in Figure 2.7A. The major ion had a mass/charge ratio [M/Z]+ 

of 298.5 and can be identified as enterolactone. The intracellular extract chromatogram of cells 

treated with 40 µM enterolactone is shown in Figure 2.7B. Peak with [M/Z]+ of 298.47 confirms 

the intracellular presence of enterolactone in enterolactone treated cancer cells. Peak with [M/Z]+ 

217.98 is a contaminant plastic peak associated with the column used and [M/Z]+ 857.03 was 

determined to be a true fragmentation peak from the enterolactone treatment.  HPLC-MS/ESI 

chromatogram of commercial lignan standard SDG is presented in Figure 2.8A. The major ion 

peak has a [M/Z]+ ratio of 704.09 and can be suggested as SDG combined with a molecule of 

water [M+H2O]+. The commercial standard SDG has molecular mass of 687 and is shown in 

[M/Z]+ of 687.02. The intracellular extract chromatogram of cells treated with 40 µM SDG is 

also shown in Figure 2.7B. Peaks with [M/Z]+ of 341.31, 398.0, 472.12 and 917.09 were 

identified as authentic new peaks that were absent in the HPLC-MS/ESI chromatogram of 

intracellular extract of vehicle control (data not shown). 

Discussion 

Although it is known that SDG undergoes bacterial fermentation to generate lignan 

metabolites that have cancer preventive activity, little information is available about the potential 

cancer preventive property of SDG. In this present study, we show that SDG inhibits colon 

cancer cell growth by inducing S-phase cell cycle arrest in a dose and time dependent manner, a 

characteristic previously associated mostly through its metabolite, enterolactone. In addition, not 

only does SDG inhibit colon cancer growth but it is also more stable (95%) than enterolactone 
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(57%) in cell culture medium. Intracellular extraction of lignans to detect for their bioavailability 

through HPLC-MS/ESI confirmed the presence of enterolactone in enterolactone treated cells 

and potential metabolite peaks in SDG treated cells. 

We used human cancer cell line SW480 for our studies because previous studies had 

indicated that this cell line is sensitive to enterolactone and enterodiol (9) 

In this study, we assessed the effect of different doses of commercially available SDG on 

human colon cancer cell growth. It was found that cancer cell growth was significantly inhibited 

by SDG treatment.  Increasing SDG dosage (0-40 µM) did not kill the cancer cells as cell 

viability was not affected but instead resulted in S-phase cell cycle arrest as measured by DNA 

flow cytometry analysis. 

Stability analysis of lignans through quantification with HPLC showed that SDG is 

almost twice stable (95 %) in medium compared to enterolactone (57%).   Structure stability of 

lignans may be determined by the nature of chemical forces involved in the bonding of the 

inherent structure and by the attached chemical groups. SDG is bulky with two glucose bonds 

attached to its structure and therefore has higher entropy than enterolactone making it more 

kinetically stable. In addition, the bulky glucose moieties in the SDG structure may prevent 

attack from possible electrophiles in cell culture medium. In addition, the presence of methoxy 

groups attached to outer carbon benzene rings in the SDG structure allow for increased electron 

delocalization and hence more stability in the inherent SDG structure (19).  This may also 

explain why SDG remains stable in bread products during baking (20). On the other hand, the 

reactive lactone group on enterolactone tends to make it unstable as has been shown seen in 

antibacterial studies using lactone functional groups (21, 22). In addition, the accessibility of 

enterolactone functional groups to possible attacks by potential electrophiles is high. Although, 
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ChemDraw ultra software (23) predicts a negative overall enthalpy on the enterolactone 

structure, the lactone functional group and the openness of the enterolactone structure tend to 

overshadow this positive effect towards increased enterolactone instability.  However, we did not 

detect any new breakdown peaks in the HPLC stability chromatogram of enterolactone compared 

to SDG (Figure 2.4). 

Intracellular level studies detected enterolactone in intracellular extracts of cancer cells 

treated with enterolactone but four (4) unknown peaks were detected in SDG treated cells. 

HPLC-MS/ESI confirmed enterolactone as a molecular ion with a mass/charge ratio ([M/Z]+ of 

298. A new novel unknown peak with the [M/Z]+ 857 was also identified in enterolactone treated 

cells. Further fragmentation ion analysis, indicated that [M/Z]+ 857 was a true peak probably for 

a new metabolite compound.  We suggest here that [M/Z]+ 857 is probably a high molecular 

weight compound obtained through a 5’ 5’ coupling reaction or through conjugation with other 

compounds. On the other hand, HPLC-MS/ESI chromatogram of cancer extracts treated with 

SDG showed [M/Z]+ 341.31, [M/Z]+ 398, [M/Z]+ 472.12. The [M/Z]+ 341.31, [M/Z]+ 398, and 

[M/Z]+ 472.12 are suggested to be products of SDG breakdown within the cell since their [M/Z]+ 

are less than the SDG [M/Z]+ of 687.02. A high molecular weight peak, [M/Z]+ 917.09 was also 

detected which probably represents a peak formed through a SDG 5’5’ coupling reaction 

occurring intracellular within cancer cells. 

In conclusion, SDG had significant anticancer effects in inhibition of human colon cancer 

cell growth as seen with S-phase cell cycle arrest in a dose and time dependent manner. HPLC 

stability analysis of the cell culture medium treated with SDG or enterolactone indicated that 

SDG was more stable than enterolactone. Bioavailability studies revealed that enterolactone is 
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bioavailable in enterolactone treated cells while the unknown metabolite peaks in SDG treated 

cells could be associated with the cancer preventative impact in these treatments 
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Figure 2:1 Comparison of SDG vs. enterolactone in SW480 cells for cancer growth 

inhibition analysis 

Cells were cultured with either 0-40 µM SDG or enterolactone for 24 and 48 hrs. Cell count was 

performed with a hemacytometer.  Percentage of cells at each treatment was compared to vehicle 

control and is represented as ± SD from 7-11 independent experiments.  Means within a 

treatment without a common letter differ, p ≤ 0.05 
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Figure 2:2 Cell vialability analysis 

Cell vialability analysis to detect for total number of live cells in cancer growth inhibition 

analysis of SW480 cells treated with 0-40 μM concentrations of SDG vs. enterolactone measured 

by trypan blue staining. No significant difference was observed between treatments. 
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Figure 2:3 Comparison of SDG vs. enterolactone in SW480 cells in S-phase cell cycle 

analysis 

Cells were cultured with either 0-40 µM SDG or enterolactone for 24 and 48 hrs and cell cycle 

change was measured through use of DNA flow cytometry.   Percentage of cells in S-phase was 

compared to vehicle control and is represented as ± SD from 5-7 independent experiments for 

SDG treated cells and 3-4 independent experiments for enterolactone treated cells.  Means within 

a treatment without a common letter differ, P ≤ 0.05. 
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Figure 2:4 HPLC chromatogram of lignans treated in cell culture medium 

Representative HPLC chromatograms of commercial lignan standards: SDG, enterodiol and 

enterolactone (A). Cells were treated with 40 µM of either SDG or enterolactone, centrifuged to 

obtain a supernatant that was run on HPLC to detect for remaining enterolactone (B) vs. for 

remaining SDG (C). 
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Figure 2:5 Stability analysis of SDG vs. enterolactone in medium with and without SW480 

cells 

SDG and enterolactone were treated 0-40 μM in SW480 cells for 48 hrs and the concentration of 

lignans remaining quantified by HPLC. Stability analysis was also done without SW480 cells at 

40 μM SDG or enterolactone for 48 hrs. Stability of SDG vs. enterolactone is represented as ± 

SD from 3-4 independent experiments.  Means within a treatment represented by a asterisk 

differ, P ≤ 0.01 
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Figure 2:6 HPLC chromatogram of lignans from intracellular extractions from cancer cells 

Representative HPLC chromatograms of commercial lignan standards: SDG, enterodiol, 

enterolactone and internal standard, flavone (A). Cells were treated with 40 µM of either SDG or 

enterolactone, centrifuged to obtain a pellet containing cancer cells. Cancer cells were then 

extracted for intracellular lignans as described in the material and methods. HPLC 

chromatograms for intracellular detection of enterolactone (B) and SDG (C) are presented.  
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Figure 2:7 HPLC-MS/ESI chromatograms of lignans after intracellular extractions with 

enterolactone 

Representative HPLC-ESI/MS chromatograms of commercial lignan standard, enterolactone is 

shown (A). The major peak is [M/Z]+ 298.5 representing molecular mass of enterolactone. A 

HPLC-ESI/MS chromatogram of intracellular extract from cancer cells treated with 

enterolactone is shown (B). The major peaks [M/Z]+ 217.98 is a plastic contaminant, [M/Z]+ 

298.47 confirms intracellular bioavailability of enterolactone, and [M/Z]+ 857.03 is a unknown 

peak from enterolactone treatment.  
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Figure 2:8 HPLC MS/ESI chromatograms of intracellular extracts of cancer cells treated 

with SDG 

Representative HPLC-MS/ESI chromatograms of commercial lignan standard SDG with [M/Z]+ 

687.02 and SDG [M+ H20]+ 704.09 (A). Unknown peaks (peak 1 to peak 4) with [M/Z]+ of 

341.31, 398.0,  472.12 and 917.09 were detected after intracellular extraction of cancer cells 

treated with SDG. 
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Summary 

Lignans are phytochemicals that have been shown to have cancer preventive activities in 

animal models. Our previous studies demonstrated that the contents of lignans in various wheat 

cultivars were significantly associated with anti-tumor activities. Phytochemical lignans are 

biosynthesized via the phenylpropanoid pathway, in which pinoresinol lariciresinol reductase 

(PLR) catalyzes the last steps specifically for lignan production. To enhance lignan biosynthesis, 

we transformed wheat cultivars (‘Bobwhite’, ‘Madison’, and ‘Fielder’ respectively) with the 

Forsythia intermedia PLR gene under the regulatory control of the maize ubiquitin promoter. Of 

217 putative transgenic wheat lines, we successfully obtained 7 transformants with the inserted 

ubiquitin PLR gene as screened by PCR. Southern blot analysis further demonstrated that 

different copies of the PLR gene were carried in these wheat genomes. Furthermore, real-time 

PCR indicated 109-117% over-expression of PLR gene over the control in 3 positive 

transformants at the T0 generation. In addition, the levels of secoisolariciresinol diglucoside, a 

prominent lignan whose biosynthesis is catalyzed by PLR as determined by HPLC, were found 

to be significantly elevated in one of the three positive transgenic plants. To the best of our 

knowledge, this is the first study that elevated lignan levels in transgenic wheat has been 

successfully achieved through genetic engineering of the over expressed lignan biosynthesis 

enzyme. 

Introduction 

Lignans are phenylpropane dimers linked by β-β bonds with a 1,4 – diarylbutane 

structure [1, 2]. They occur naturally in a number of plant families, including the gramineae and 

oleaceae which contain the monocots and eudicots respectively [3, 4].  In monocots such as 
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wheat, lignans are mostly located in the aleurone layer of seeds [5] and in eudicots such as 

forsthysia, lignans occur in the fruits and stems [6]. Also in eudicots, lignans are formed through 

dimerization of alcohols in the phenylpropanoid pathway through skeletal rearrangements and 

oxygen incorporation [3] while in monocots, literature review on the phenylpropanoid pathway 

is scarce.  

The biological importance of lignans has also recently been reviewed [7, 9]. 

Epidemiological studies show an inverse association between dietary intake of lignans and the 

risk of cardiovascular disease [10, 11]. Lignans also have potential protective roles in breast [12], 

prostate [13], and colon cancers [14, 15]. A recent study done in rats showed that exposure of 

10% flax seed or secoisolariciresinol diglucoside (SDG) during suckling suppressed DMBA-

induced mammary tumorigenesis [16]. Studies in animals are supported by in vitro cell culture 

results that show that lignan metabolites reduce growth and metastasis of breast cancer cells [17]. 

Furthermore, in colon cancer cells, lignan metabolites have been shown to reduce cell growth by 

our previous publication [18]. In both studies, cancer growth inhibition could be correlated to the 

amount of lignans used. More specifically, the correlation between cancer cell growth inhibition 

and anti-tumor activity was found with the lignan, SDG as in our previous study (r = 0.73, p < 

0.02) [18]. Higher SDG amounts may therefore mean higher anti-tumor activity. As a result, 

increase of the SDG levels in wheat plants may provide more lignans for cancer preventive 

effects. 

Cancer preventive SDG in wheat may therefore be increased through genetic 

manipulation methods as shown by others [19, 20]. Genetic manipulation of the phenylpropanoid 

pathway through targeting of enzymes that catalyze entry of first and last lignans into this 

pathway may present a novel approach for enhanced lignan biosynthesis. One of the key control 
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enzymes, pinoresinol lariciresinol reductases (PLR) which catalyzes the last steps of the lignan 

biosynthesis pathway can be genetically engineered to increase lignans [21]. To do this, we may 

use any of the PLR genes already isolated from woody plants (3, 22, 23], and also most recently 

from flax seeds [24]. In wheat, the full-length PLR gene is yet to be isolated. 

The purpose of this study was therefore to enhance SDG biosynthesis in transgenic wheat 

plants by genetic transformation of wheat with the F. intermedia PLR cDNA. To the best of our 

knowledge, this is the first study to apply genetic engineering of wheat for lignan biosynthesis 

enhancement. 

Materials and methods 

Plasmid construction of Ubi PLR 

We obtained the F. intermedia PLR cDNA as a kind gift from Dr. Lewis Norman 

 of Washingston State University. The PLR cDNA was initially cloned into a pGem Teasy vector 

(Promega, Madison, WI) and then subsequently PCR modified by primers BgL 1 F and BgL 1 R 

for insertion of BgL 1 sites at the 3’ and 5’ end (Table 3.1). The PLR gene was then placed under 

the control of the maize ubiquitin promoter, pAHC 17 [25]. The new generated plasmid 

designated as ‘Ubi PLR’ was used for co-transformation purposes with the bar gene, pAHC 20. 

Co-transformation and tissue culture of wheat with Ubi-PLR 

Vector plasmids, Ubi PLR and the selectable marker gene, pAHC 20 [25] (plasmid for 

the bar resistance gene) were co-bombarded into embryogenic calli of wheat (cultivars 

‘Bobwhite’, ‘Madison’ and ‘Fielder’). The method of co-transformation and selection of 

transgenic events have been detailed by Anand et al 2003 [26]. Briefly, premature seeds were 

surface sterilized with 20% sodium hypochlorite and 0.02% TWEEN-20 and embryos aseptically 
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excised on CM4 medium to initiate somatic embryo formation. Somatic embryos that 

proliferated on CM4+ osmoticum (0.2 M mannitol, 0.2 M sorbitol) were co-bombarded with the 

pAHC 20 and Ubi PLR plasmid by use of the particle flow gun. For co-transformation, plasmid 

DNA at a ratio of pAHC 20 to Ubi PLR of 1:1 was precipitated onto tungsten particles and 

applied on a swinney filter holder on the particle inflow gun. Helium gas with a 60 pound per 

square inch microburst was then propelled towards the target embryo. Selection and regeneration 

of transgenic plants were then done as described before [27] with slight modifications and here is 

a brief summary. Sixteen hours (16) after co-bombardment, selection for transformed tissue was 

on CM4 medium containing 5 mg l-1 glufosinate. Sub-culturing was done after 2 weeks to 

medium strength of 10 mg l-1 glufosinate. After 10-15 weeks, growing clumps transferred to 

shoot production medium, MSP containing MS [28] with glufosinate selection until green shoots 

were observed. The cultures were then transferred to elongation and rooting medium (MSE) 

containing 5 mg l-1 glufosinate and cultured 2-3 weeks. Healthy looking plantlets obtained were 

transferred to soil and grown in environmentally green house. 

Leaf painting assay for confirmation of the selectable marker, bar 

To examine the expression of the selectable bar resistance gene in the transgenic plants, 

leaf painting was done as previously described [26] and here is a brief summary. Freshly 

prepared solution of herbicide, liberty (0.2% v/v) was applied on the second/third youngest leaf 

using a cotton plug and marked off with a marker pen. Visual observations were recorded 7-10 

days after painting. Positive lines with resistant green leaves were used for PCR analysis 
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Polymerase chain reactions (PCR) for the bar, PLR and Ubi-PLR gene 

For all the three primer sets, PCR analysis was done with genomic DNA extracted from 

leaves of transgenic wheat plants using the phenol chloroform extraction method [29, 30]. In 

brief, 100-500 ng of genomic DNA from transgenic plants was screened by primer sets; Bar AB 

F and Bar AB R, PLR F and PLR R, and Ubi PLR F and Ubi PLR R (Table 3.1) in a PTC-220 

thermal Cycler (Hybaid Limited, Hastings, UK). Samples were denatured, annealed and 

extended at 940C, 58-60 0C, and 720C for 1 minute, 30 sec and 45 sec, respectively for 35 cycles. 

PCR products were visualized through 1.8% agarose gel electrophoresis. Only transformants that 

tested positive with the three primer sets positive were used for confirmation of transgenic 

success. 

Southern blot analysis of positive transgenic wheat lines for detection of integration of 

the Ubi-PLR gene combination 

About 25 µg of isolated genomic DNA isolated was fully digested with a single enzyme 

cutter, Bam HI and separated by electrophoresis in 0.8% agarose (30V) in 12-14 hrs. Genomic 

DNA was denatured and transferred onto Hybond N+ membrane using a alkaline transfer 

procedure described by Amersham (Amersham, Piscataway, NJ). The detection of introduced 

DNA was performed according to established protocol. Briefly, the nylon membrane was 

hybridized for 24 hrs with the 1.2kb 32P-dCTP labeled F .intermedia PLR gene. After 

hybridization, blotted membrane was exposed in a phosphor imager cassette and developed using 

the Scan Quant software (Molecular Dynamics Inc., Sunnyvale, CA) 

 57



Isolation of the partial Wheat PLR sequence 

To isolate the partial wheat PLR sequence, wheat genomic DNA was extracted as 

described above from wild wheat type (cultivar ‘Fielder’). Primer sets (PLR F and PLR R) were 

used to PCR amplify the wheat PLR fragment (same PCR conditions as above for PLR primers). 

The PCR products obtained were purified using the montage DNA PCR purification kit 

(Millipore Corporation, Bedford, MA) and inserted into the multiple cloning site of the pGem 

Teasy vector (Promega, Madison, WI) before sequencing with pGem Teasy vector primers. The 

sequences obtained from the vectors were then compared to Forsthysia PLR sequence as 

determined by national centre for biotechnology sequence comparison software (NCBI).  

Relative real time PCR quantification of Ubi-PLR expression in positive transgenic 

wheat plants 

To quantify for levels of F. intermedia PLR expression in different positive transgenic 

plants, total RNA was isolated from young leaf tissue by use of the total RNA isolation kit 

(Promega, Madison WI). Total RNA amounts were determined by use of the nanodrop 

(Nanodrop Technologies, Wilmington, DE) through measuring UV absorption at 260. The ratio 

of 230/260 was used determine mRNA purity. First strand cDNA synthesis was performed 

according manufacturer’s instructions using 1 µg of total RNA with AMV reverse transcriptase   

(Promega, Madison, WI). The samples were diluted to an equivalent volume and an equivalent 

amount used for real time PCR analysis. The primer set, PLR RT F and the PLR RT R, (Table. 

3.1) was used to amplify a 99bp fragment of the F. intermedia PLR gene using the SyBr green 

master mix protocol as suggested by the manufacturer (Bio-rad Laboratories, Hercules, CA). 

Real time PCR was performed with a iCycler thermal cycler (Bio-rad Laboratories, Hercules, 

CA). Ten to eighty pg of Ubi PLR was amplified to determine the efficiency of the F. intermedia 
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PLR RT primers. PCR products from the cDNA were then qualified with the iCycler Bio-rad 

software (Bio-rad Laboratories, Hercules, CA). The experiment was repeated three times and the 

results plotted as relative quantification in log CT units. 

SDG identification and quantification in transgenic wheat 

Sample extracts from transgenic wheat T2 seeds were quantified for SDG levels by HPLC 

analysis. Briefly, transgenic and non transgenic seeds (10-30) equivalent to 0.2-0.5 mg were 

ground and defatted using hexane and dried in the hood overnight. Defatted whole extracts were 

then homogenized under cold conditions through addition of liquid nitrogen. Subsequently, the 

supernatant after centrifugation was extracted for lignans with diethyl ether before evaporation to 

obtain a residue that was re-dissolved in 100% methanol. The dissolved residue was then 

subjected to HPLC with 5 mM flavone as an internal standard. HPLC-UV was done according to 

previous methods (34) with slight modification. Generally, extracts were subjected to HPLC 

chromatography on a C18 column (5 µm, 250 X 4.6 mm, Alltech), eluted with a 5% acetonitrile 

in pH 2.8, 0.01 mM phosphate buffer (solvent A) over 100% acetonitrile (solvent B) at a flow 

rate of 1 ml/min. A gradient run of 0-10 minutes in 100% solvent A, 10-30 minutes in 0-100% 

solvent B and finally 30-40 minutes in 100% solvent B was determined as optimum. The SDG 

peak was detected by monitoring absorbance at 280nm and identified by both retention time and 

mass spectrum comparison with a standard commercial SDG. 

Statistical analysis 

All data was analyzed by the SAS statistical software, version 8.2. The real time PCR 

determination of F. intermedia PLR expression levels and HPLC quantification of SDG were 
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analyzed by the one ANOVA protocol using the general linear model procedure followed by 

Fisher’s protected least square difference. A probability of ≤ 0.05 was considered significant. 

Results 

Transgenic wheat plants 

After embryogenic tissue culture selection and regeneration with the shoot production 

medium, 217 liberty painting positive wheat plants were obtained. PCR screen indicated twenty 

four putative transformants to be bar and PLR gene positive as represented (Figure. 3.3A and 

3.3B). Out of these, 3 from wheat cultivar (‘Fielder’) were positive for the Ubi PLR gene by the 

PCR screen (Figure. 3.3C).  

Detection, expression and integration of the selectable marker bar and Ubi PLR 

The selectable marker, bar was detected by both the leaf painting assay and PCR (Fig. 

3.3A). Leaf painting performed on T0, T1 and T2 leaves of transgenic wheat identified putative 

transformants after 7-10 days. Putative transformants showed tolerance to the herbicide liberty, 

but null segregates showed leaf yellowing in the same period.  PCR analysis for the ‘bar’ gene 

confirmed presence of the ‘bar’ resistance gene in some of the putative transformants (24/217 

transformants.  PCR analysis also detected the ‘PLR’ gene and ‘Ubi-PLR’ genes in the bar 

positive plants.  

For southern blot integration of the PLR gene in T0 leaves of transgenic wheat lines, we 

used T0 plant 4995 as the negative transgenic control because it was PCR positive for the ‘bar’ 

gene but not for the ‘Ubi-PLR’ gene as seen in figure 3.3A and 3.3C respectively. In addition to 

plant 4995, we also found out that plant 4907 and 5010 that showed presence of ‘PLR’ as the 

wild type plant (Fig. 3.3B-most extreme right lane) did not show presence of ‘Ubi-PLR’ (Figure 

 60



3.3C) perhaps suggesting to us that we would have detected the indigenous wheat PLR gene in 

these 2 transgenic plants. We later determined this to be true for the 24 positive transgenic plants 

tested (Figure 3.3C). Southern integration patterns of transgenic lines; 4995, 4907 and 5010 

helped confirm the presence of the indigenous wheat PLR gene since they had two integrations 

bands similar to the wild type plant (Figure 3.4). On the other hand, southern integration patterns 

of  3 positive transgenic lines showed more than 2 integrated bands of  PLR with the single 

enzyme cutter i.e. BamH1. T0 plants 4962 and 4909 had similar 3 major hybridization bands 

while T0 plant 4970 with 5 major hybridization bands. 

Real time PCR quantification of the PLR gene in transgenic plants 

Quantitative real-time PCR was used to quantify for the expression of the F. intermedia 

PLR gene (Figure 3.5). Quantification of the relative differences in transgene expression of PLR 

using real time PCR revealed that plant 4970 and 4962 had significantly higher levels (~ 6.2 

relative units)  than the transgenic control plant 4995 (~ 5.4 relative units). 

Detection and quantification of SDG in transgenic wheat T2 seeds 

We then determined the SDG amount in transgenic wheat T2 seeds through HPLC as a 

measure of the functionality of transformation process (Figure. 3.6). The HPLC SDG peak 

confirmed by mass spectrometry had a mass to charge ratio of 688 similar to that of commercial 

SDG.  T0 plant 5010 whose 2nd generation seeds are T2 5010 A2 (A2 - The A represents the 1st 

generation letter annotation used for differentiating between individual transgenic lines in the 

same transformation event while the 2 represents the 2nd generation numeral annotation used for 

individual transgenic lines) is used as the negative transgenic control plant because earlier results 

indicated that it had similar hybridization patterns to the transgenic control plant, 4995.  It was 
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therefore not surprising to find that T2 5010 A2 seeds had the lowest amount of SDG. The SDG 

amount was highest in the T2 wheat seeds of plant 4970 I5 (Figure. 3.6C), which are 2nd 

generation seeds from T0 plant 4970. The seeds of T2 4970 I5 came from T0 plant 4970 whose 

leaf extracts had the highest levels of the PLR transcript as shown earlier (Figure 3.5). T0 plants 

4909, 4970, 4970  whose 2nd seed generations are T2 seeds 4909 E5, 4970 B1 and 4970 A3, 

respectively were also relatively high in SDG amount but not significantly different from 

transgenic control plant 5010. The overall percentage increase in SDG amount varied was about 

3-fold compared to transgenic control or the wild type non-transgenic control.  

Discussion 

Of the 217 transgenic wheat plants obtained after co-bombardment with the  

constructed Ubi PLR plasmid, 3 shown here were positive for ‘bar’, ‘PLR’ genes and Ubi-PLR 

gene combination.  Putative transgenic plants and control lines showed similar morphological 

characteristics. The southern blot indicated integration of one (1) or more additional ‘copies’ of 

PLR in plants that were genetically positive. Relative real time PCR quantification showed an 

increase in relative expression of PLR from 5.4 to 6.2 units, a value equivalent to 109-117% PLR 

over-expression over the control.  Quantification of the PLR biosynthesis product, SDG showed 

a 3 -fold increase in lignan amount compared to the non transgenic control. 

Putative transformants that survived the selection process, were screened for the presence 

of the ‘bar’ gene by leaf painting and then PCR analysis. Plants whose leaves survived painting 

with the herbicide liberty and showed positive PCR bands for the ‘bar’ gene were considered as 

successful transgenic lines for next analysis. Escapes were considered as plants that survived the 

selection process but were in fact not transformed. Such plants were liberty painting positive but 

‘bar’ PCR screen negative. Confirmation by PCR analysis of the ‘PLR’ gene identified 24 
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positive transgenic plants out of 217 transformants for both the ‘bar’ and ‘PLR’ genes. PCR 

analysis of the ‘PLR’ gene turned out to indicate that all plants were positive for the gene 

regardless of its background including the wild type cultivar, fielder. PCR analysis of the Ubi 

PLR gene combination on the other hand detected plants that had  Ubi PLR gene combination.  

In some positive transgenic plants, we detected the ‘bar’ and ‘PLR’ gene but not Ubi-PLR. 

Those plants such as 4995, 4907 and 5010 suggested to us that the detected ‘PLR’ gene could 

have come from another source i.e. the indigenous wheat ‘PLR’ gene. This was later proved 

when we isolated and sequenced the partial sequence of the wheat PLR gene and found that it to 

share 98% sequence similarity to the F. intermedia PLR gene sequence (Figure 3.5). 

To determine the integration pattern of Ubi PLR gene combination in the wheat genome, 

We performed a southern blot where we used a single site enzyme cutter, BamH1 which cuts the 

PLR gene at the 47th position. We also used the same enzyme for wheat genomic DNA digestion. 

When the southern blot was probed with the 1.2 kb gene fragment of the F. intermedia PLR, 

different numbers of integrated hybridization bands were observed. Surprising, all transgenic 

wheat lines including the transgenic control plant 4995 detected the presence of an integrated 

hybridization band at the ~1.2 kb position. This band was also present in the wild type wheat 

fielder cultivar. This further confirmed our initial PCR experiments above which were suggestive 

of the indigenously expressed wheat ‘PLR’ gene in wild type control.  

In addition to that, differences in number and patterns of other hybridization bands [5 

different bands in 4970, 2 in 4909& 4962 and 1 in 4995] were observed and these suggested that 

these plants may have arose from different transformation events. Different transformation 

events will produce plants with different copy numbers of the PLR gene mainly because of the 

unpredictability of the particle inflow gun [31].  BamHI cuts the Ubi PLR gene combination at 
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the 47th  base position from the 5’ end of PLR gene in the gene combination (Figure 3.4) and 

therefore may create two integration bands, one very strong (from the longer length fragment, < 

1.2 kb) and another, weak one (from the fragment length fragment, observed close to the < 0.047 

kb). For negative plants, the second bar will be weak as seen with 4995, 4907 and 5010 as also 

seen with the wild type band because of their single PLR gene copy while for positive transgenic 

plants, the second band will be stronger if there is an additional longer PLR gene fragment as 

observed with transgenic plants 4962 and 4909. Plant 4970, on the other hand showed five major 

hybridization bands probably indicating integration of more PLR genes.  

Also, other authors have suggested that co-transformation experiments with the ‘bar’ 

gene could result into multiple copies of the unselected gene [32]. However, it is not clear 

whether high copy number may translate into higher transcript level of the PLR gene. 

To quantify for relative PLR expression, we used a real time PCR technique to estimate 

for expression levels of ‘PLR’ transcripts in transgenic wheat leaves. Relative real time PCR 

expression indicated a variation in expression from 5.4 to 6.2 units (Figure 3.6). This variation 

was equivalent to a 109-117% over-expression of PLR over the transgenic control. The variation 

in expression would have resulted from the difference in expression of PLR between different 

transformation events.  The variation could have also resulted from difference in expression of 

‘PLR’.  The variation in difference in expression of ‘PLR’ can be evidenced through southern 

blot data which indicates that different transgenic wheat lines had different number of ‘PLR’ 

hybridization bands probably due to difference in copy numbers of PLR being expressed. Lower 

‘PLR’ copy numbers could mean lower PLR relative expression.  However, further analysis 

indicated that transgenic plant 4970 which had 5 hybridization bands (indicative of 5 ‘PLR’ 

copies) had the similar expression level as plant 4909 with only 2 hybridization bands hence 
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suggesting difference in number of integration bands was not sufficient to explain for variation in 

expression levels. Perhaps gene silencing, biological variation or segregation of the ‘PLR’ gene 

would have occupied in the transgenic plants with high copy number of PLR such as plant 4970. 

The later phenomenon usually occurs in genes whose expression is under the control of the 

ubiquitin promoter [33].  

However, stability analysis of the ‘PLR’ gene in T2 seeds did not detect the PLR PCR 

amplicon perhaps suggesting that the experiments above need to be verified. In addition, another 

possible reason for failure to detect for PLR in T2 seeds could be, because the homozygosity of 

the PLR gene was not established. Seeds used for SDG quantification could have come were 

from heterozygous lines and therefore when PCR analysis is performed on these (as per 

mendelian genetics ratio of inheritance of genes assuming independent assortment; 3:1, dominant 

to recessive inheritance), no products will be detected if the seeds were obtained from the 

recessive line. In addition, gene silencing at later generations rather than the T0 generation is 

usual in transgenic wheat plants [34, 35].  Also, the PLR integration bands observed in the T0 

plants could have resulted from transient expression.  

Finally, we determined the levels of SDG, and found that transgenic wheat plants 

showing the highest level of PLR expression had the highest amount of SDG. Comparison with 

the wild type control plant suggested that the levels of SDG were ~ 3 fold significantly higher in 

positive transgenic wheat line, 4970I5 that over-expressed PLR. The elevated levels of SDG 

therefore could have occurred from increased first generation synthesis of SDG. Elevated SDG 

levels also mean increased anti-tumor activity from ~ 30% to 60% as seen in previous study from 

the Wang Lab [26 chapter 2). 
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This is the first report that shows the genetic transformation of wheat for the purposes of 

increased accumulation of SDG.  Stable expression of the F. intermedia PLR gene probably 

through use of a separate promoter or different transformation method is suggested as an 

alternative for SDG manipulation in wheat plants.  Targeting other enzymes such as 

phenylalanine ammonia lyase (PAL) by pathway transformation may provide an opportunity for 

manipulation of more than one gene involved in lignan biosynthesis for enhanced lignan levels. 

Isolation of the full-length wheat PLR gene is a scientific pursuit for future genetic 

transformation purposes. 
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Table 3.1 PCR primers used for plasmid construction and analysis of transformants 

Primer set Primer sequence Position 
in DNA 

Amp 
licon  
size 
(bp) 

PLR Bg1 L  F:  

                    R:    

5’ AGG AGG ATC TGA ATT  CGC CAC GAG 3’ 

5’ AGG AAG ATC AGC AAA ATT CAA CAC TAT TAT T 

3’ 

Insert 

Insert 

N/A 

           PLR  F: 

                    R:    

5’ TCG TAG ACG TAG TAA TCA GCG CCA 3’ 

5’ TCG AGC TCT TTC ACG GAG GCT AAA 3’ 

260 

799 

539 

Ubi PLR      F:  

                    R:    

5’ GAT GCT CAC CCT GTT GTT  TGG TGG TGT 3’ 

5’ AGG AAG ATC AGC AAA ATT CAA CAC TAT TAT T 

3’ 

1974 

2557 

583 

Bar AB        F:  

                    R:    

5’ CCT GCC TTC ATA CGC TAT  TTA TTT 3’ 

5’ CTT CAG CAG GTG GGT GTA GAG CGT G 3’ 

1958 

14 

600 

PLR RT       F:  

                    R:    

5’ ATC CAA GAA CCC TCA ACA AGC TGG TGT 3’ 

5’ TCC CAT GTC TGA ACA ATT CTC 3’ 

110 

209 

99 
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Figure 3:1 The phenylpropanoid pathway showing the final enzymatic stages of lignan 

formation catalyzed by pinoresinol lariciresinol reductase 

The phenylpropanoid pathway showing the enzymatic stages of lignan formation catalyzed by 

other enzymes and pinoresinol lariciresinol reductase. Pinoresinol lariciresinol reductase 

catalyses the last critical final stages of the pathway for SDG biosynthesis. 
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Figure 3:2 A schematic representative of the ‘bar’ and Ubi PLR plasmids showing 

locations of expected amplicon sizes 

‘Bar’ plasmid has the ubiquitin promoter and the nos terminator.  ‘Ubi PLR’ contains the 

ubiquitin promoter, the PLR gene insert and the nos terminator segments. 
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Figure 3:3 PCR screening for transgenic wheat plants run on 1.8% agarose gel 

electrophoresis 

The first lane on the far left on each gel strip, A to C is M for the molecular weight marker used. 

The next seven lanes are representative of different transgenic plants tested. A is the 

representative strip of a 539bp forsthysia PLR amplicon. B is a 600bp bar gene amplicon. Also 

shown in B, the PLR amplicon obtained from PCR analysis of wild type wheat cultivar. C is a 

583bp Ubi PLR amplicon.  
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Figure 3:4 Southern blot analysis showing integration patterns of different positive 

transgenic plants. 

BamH1 was used to cut genomic DNA and the probe used was 1.2 kb forsthysia PLR probe. 

Transgenic T0 plant 4970 has 5 hybridization bands, while 4962 and 4909 have three major 

hybridization bands. Transgenic negative plant 4995, 5010 and 4907 showed two major 

hybridization bands. The PLR bands resulting from running the wild type control DNA are 

shown on the right end blot, together with the molecular weight markers, M. 
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Figure 3:5 The partial sequence of the isolated wheat PLR gene (~ 50% length of the 

Forsthysia 1.2 kb PLR gene). 

Comparison of the partial sequence of the wheat PLR gene through the NCBI database indicated 

98% sequence similarity to the Forsthysia PLR gene. 
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Figure 3:6 The quantification of PLR transcript levels in transgenic wheat lines, T0 

generation plants, 4995, 4962, 4970 and 4909 

Relative PLR mRNA expression was obtained in log CT units (y-axis) in 3-4 independent 

samples. Relative PLR expression is represented as ± SD from 3-4 independent experiments.  

Means within a treatment without a common letter differ, P ≤ 0.05. 
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Figure 3:7 HPLC analysis and quantification of SDG in transgenic wheat 

Representative HPLC chromatograph of commercial SDG (A) and of SDG extract from 

transgenic wheat seeds (B). Representative HPLC MS/ESI of SDG peak in B identified as peak 

with M/Z+ [688] (C). The quantification of SDG in transgenic wheat plants were compared to 

both the non transgenic control (fielder) and the negative transgenic control (plant 5010A2) (D). 
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SDG amount is represented as ± SD from 3-5 independent experiments.  Means within a 

treatment without a common letter differ, P ≤ 0.05. 

 

Appendix A - Detailed methods for Chapter 2 

Cell culture and treatment 

The human colon cancer cells, SW480, were purchased from the American Type Culture 

Collection (Rockville, MD) and cultured in Dulbecco’s Modified Eagle Medium supplemented 

with 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis MO). 

The cells were cultured in either 6-well plates or 200 ml volumetric flasks at 37 0C in 5% CO2  

until 60-80% confluence. At this confluence, cells were treated with SDG and enterolactone, at 

0-40 µM for 24 and 48 hrs, at which time the cells had reached <100 % confluence. To perform 

treatment, SDG (99% purity) and enterolactone was purchased from ChromaDex (Irvine, CA) 

and/ or Sigma-Aldrich (St Louis, Mo) respectively, dissolved in DMSO to make a final 

concentration of 20 mM which served as the stock solution for making other concentrations. To 

make 1000 ml with a final concentration of 40 µM, 2 ul of 20 mM was dissolved in 10 ml of 

medium, vigoursly shaken on table top mixer and added to 990 ml of medium. The same method 

was also used for making other concentrations of SDG and enterolactone. After treatment cells 

were detached and counted by hemacytometer as our previously reported. To detach cells, the 

medium used was first poured, then a aliquot of trypsin/EDTA solution, was carefully added to 

6-well plate containing the cells, put back into the incubator, and allowed to incubate for 5-10 

minutes. Detached cells obtained were transferred into a centrifuge tube for counting. To count, 

cells were stained in a 1:1 ratio with trypan blue and an aliquot transferred to a glass slide and 
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put under a focal microscope. The heamocytometer placed next to the microscope was then 

pressed with each visual count of cells. 

 

Cytotoxicity Assay 

The cell viability was measured in adherent cells by trypan blue staining. The viable cell 

numbers in treated cells were compared with that in vehicle controls. To measure cell viability, 

only live cells were counted as outlined in the cell culture and treatment method above. Live  

were not stained with the trypan blue dye and therefore were clear under the microscope. 

Cell cycle analysis 

To perform cell cycle analysis, cells were obtained after treatment as outlined in the cell 

culture methods and treatment above, except that a cell scrapper was used to detach cells instead 

of  the trypsin/EDTA solution. Cells obtained were fixed in an aliquot of ethanol, centrifuged at 

1500 X g for 10 minutes and the supernatant poured out.  The pellet was resuspended in 

phosphate buffer saline solution, pH 7.4, containing 20 g/L propidium iodide and 5000 U/L of 

RNase (Promega, Madison WI) and incubated at 37 0C for 30 min on a water bath.  DNA flow 

cytometric analysis (FACSCaliber, Becton Dickinson, Newyork, NJ) was performed by blanking 

the flow cytometer with a phosphate saline solution before measurement of either SDG or 

enterolactone treated cancer cells. The excitation wavelength was at 488 nm and emission at 630 

nm. The obtained information was further analyzed with the cytometer software to calculate 

percentages of cells in different cell cycle phases. 
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HPLC quantification of SDG and enterolactone in cell culture medium 

HPLC-UV quantification of SDG and enterolactone was done according to previous 

methods with slight modification. Generally, cell culture medium containing remaining lignans 

was separated from cancer cells that had been treated with either 0-40 µM SDG or enterolactone 

by centrifugation at 1000 X g for 10 minutes.  An aliquot of the supernatant was transferred to 

HPLC vials and run on a HPLC column whose baseline had been stabilized for at least 30 

minutes with 100% solvent A.  SDG and enterolactone were separated by HPLC 

chromatography on a C18 column (5 µm, 250 X 4.6 mm, Alltech), eluted with a 5% acetonitrile 

in pH 2.8, 0.01 mM phosphate buffer (solvent A) over 100% acetonitrile (solvent B) at a flow 

rate of 1 mL/ml. A gradient run of 0-10 minutes, 100% solvent A, 10-30 minutes, 0-100% 

solvent B and finally 30-40 minutes, 100% solvent B was determined as optimum.  Peaks were 

detected by monitoring absorbance at 283nm. The enterolactone and SDG peak was identified 

according to both retention time and spectrum by comparison with a standard commercial SDG 

and enterolactone. A linear HPLC calibration curve for both lignans were obtained for the 

concentrations 0-100 µM.  

HPLC quantification of SDG and enterolactone in cancer cell extracts 

SW480 cells treated with 40 µM SDG or enterolactone for 48 hrs were harvested by 

detaching with trypsin-EDTA as previously described and centrifuged at 1000 X g for 10 

minutes. The supernatant was discarded, and the pellet was washed with 0.01 M phosphate 

buffer saline solution, pH 7.4. The collected cells were then resuspended in washing buffer, and 

sonicated under an ice bucket for 3 minutes. The extract was then subjected to lignan extraction 

with three consecutive 1:1 diethyl ether extractions. The upper organic phase containing the 
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lignans was obtained and evaporated to dryness by passing a stream of nitrogen gas through it. 

The resulting residue was dissolved in 100% methanol and subjected to HPLC using the method 

described above. 

Mass spectrometry analysis of intracellular extracts of cancer cells treated 

with SDG and enterolactone 

SW480 cells treated with 40 µM SDG or enterolactone for 48 hrs were harvested by 

detaching with trypsin-EDTA as previously described and centrifuged at 1000 X g for 10 

minutes. The supernatant was discarded and the pellet washed and resuspended in 0.01 M 

phosphate buffer saline solution, pH 7.4.  The resulting solution was homogenized under for 3 

minutes at high power under ice bucket. Nitrogen gas was then passed through the homogenate 

to avoid reduction conditions. The homogenate was then subjected to three 1:1 diethyl ether 

extractions. The upper organic phase containing the lignans was evaporated to dryness in a water 

bath set at 35 0C under high pressure conditions. The residue remaining at the bottom of the flask 

was re-dissolved in 100% methanol and ultra-centrifuged at 40,000 X g for 30 minutes. HPLC-

MS/ESI analysis was performed with a Finnigan LCQ Deca XP mass spectrometer (Thermo 

Finnigan, Dreieich, Germany) coupled to an Agilent (Agilent, Waldbronn, Germany) 1100 series 

HPLC system. The base line was stabilized with 100% solvent A for 3 minutes. Separations were 

achieved with a synergi (Berlin, Germany) RP C18 column (250 .2 mm i.d., 5 µm) using 

acetonitrile:water (containing 0.1% formic acid) for elution in a gradient from 7:3 to 9.5:0.5 in 3 

min, followed by isocratic elution with 0.5:9.5 between 3 and 21 min, and finally isocratic 

elution with acetonitrile from 24 to 25 min. The flow rate was 0.4 mL/min throughout. The 

MS/ESI traces recorded was positive ions from m/z 100 to1500. A MS software (Applied 

Biosystem ESI software, CA) was used to differentiate between peaks resulting from treatment 
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effect and background noise peaks. Only mass/charge ratio [M/Z]+ of peaks resulting from the 

treatment are shown. 
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Appendix B - Detailed methods for Chapter 3 

Plasmid construction of Ubi PLR 

A cDNA clone for PLR-Fi1 GenBank accession number U81158 encoding 

(+)pinoresinol-(+)lariciresinol reductase from Forthysia intermedia was obtained as a gift from 

Dr Lewis Norman of Washingston State University. 

Primers sets (PRL BgL 1 F and PRL-BgL 1R) (Table 1) were designed according to the 

Primer 3 software to insert BgL 1 sites at the 3’ and 5’ end of the PLR gene. Polymerase chain 

reaction (PCR) was performed using a high fecundity Taq polymerase (Bioline, Randolph MA) 

to reduce wrong sequence insertions during PCR amplication. The obtained 1.2 kb fragment was 

purified using a montage DNA gel extraction kit (Millipore Corporation, Bedford, MA) and 

inserted into a pGEM® T Easy Vector (Promega, Madison, WI). The sequence of the purified 

PLR gene product was determined using pGEM®  T Easy primer sets at the gene sequencing 

facility, plant pathology department Kansas State University. The PLR gene was then digested 

from the plasmid by use of restriction enzyme BgL 1. A plasmid (pAHC 17) that contains the 

ubiquitin gene and the nopathaline Synthetase terminator (nos) was selected and digested at the 

multiple cloning sites with BamH1 (compatible ends with BgL 1).  The purified PLR gene was 

then ligated together with the cut pAHC 17 plasmid. To ligate, 15 µl of pAHC 17 (100 ng/µl), 25 

µl of PLR cut plasmid (79 ng/µl), 8 µl of rapid T4 DNA ligase buffer (Promega, Madison WI), 

and 2 µl of T4 DNA ligase (Promega, Madison WI) was set to incubate at 4 0C overnight. The 

reaction mix was transformed into JM109 component cells (Promega, Madison WI) and selected 

with ampicillin resistance. Positive clones obtained, were grown in Luria broth (LB) medium and 
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plasmid DNA isolated using the QIAprep Miniprep Kit (Qiagen, Hilden, Germany). Restriction 

digestion with Pst I, Ecor I and Bam HI were used to confirm correct directional insertions.  

Selected clones were then, sent for sequencing with both primer sets ‘PLR F and PLR R’ 

and primer sets ‘Ubi PLR F and Ubi PLR R’ which targets the internal sequence of the ubiquitin 

PLR construct. The resulting vector plasmid with both the ubiquitin promoter and the PLR gene 

was designated as Ubi PLR. 

Co-transformation and tissue culture of wheat with Ubi PLR 

Vector plasmids, Ubi PLR and the selectable marker gene, pAHC 20 [25] (plasmid for 

the bar resistance gene) were co-bombarded into embryogenic calli of wheat (cultivars 

‘Bobwhite’, ‘Madison’ and ‘Fielder’). The method of co-transformation and selection of 

transgenic events was based on earlier methods used in the laboratory. Premature seeds were 

surface sterilized with 20% sodium hypochlorite and 0.02% TWEEN-20 and embryos aseptically 

excised on CM4+ osmoticum (0.2 M mannitol, 0.2 M sorbitol) to initiate somatic embryo 

formation. Somatic embryos that proliferated CM4+ osmoticum were co-bombarded with the  

pAHC 20 and Ubi PLR plasmid by use of the particle flow gun. For each transformation event, 

50 mg of tungsten particles were sterilized in a 1.5 ml microcentrifuge tube with 500 µl of 95% 

ethanol for 20 minutes, washed five times with sterile water and resuspended in 500 µl of sterile 

de-ionized water. All transformation was co-bombarded with a pAHC 20 plasmid that encodes 

for herbicide resistance as a selectable marker. The ratio of DNA to selectable marker was 1:1. 

Plasmid DNA used prepared at a concentration of 1 µg/µl and a total of 5 µl of plasmid DNA 

was mixed with 25 µl of the re-suspended tungsten particles and allowed to incubate at room 

temperature for 1 minute. Next, plasmid DNA was precipitated onto tungsten particles by adding 

25 µl of 2.5 M CaCl2 and 10 µl of 100 mM spermidine and then incubated on ice for 4 minutes. 
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Following incubation, 50 µl of the supernatant was discarded and 15 µl of DNA-coated particles 

used for bombardment. For bombardment, 2 µl aliquot of DNA-coated particles was applied on a 

swinney filter holder which was secured to a leur-lock adapter located at the top of the PIG 

chamber. The arranged embryogenic clusters were covered with a 500 um mesh baffle and 

placed in the PIG chamber 15 cm below the filter holder. A vaccum of approximately 94 kPa 

was applied to the chamber and the DNA coated particles were propelled towards the target 

embryo with  60 pounds per square inch microburst of helium gas.  After transformation, 

transformed plants were selected through media containing herbicide of varying strength 

according to published protocols 

Sixteen hours (16) after co-bombardment, selection for transformed tissue was on CM4 

medium containing 5 mg l-1 glufosinate. Sub-culturing was done after 2 weeks to medium 

strength of 10 mg l-1 glufosinate. After 10-15 weeks, growing clumps transferred to shoot 

production medium, MSP containing MS with glufosinate selection until green shoots were 

observed. The cultures were then transferred to elongation and rooting medium (MSE) 

containing 5 mg l-1 glufosinate and cultured 2-3 weeks. Healthy looking plantlets obtained were 

transferred to soil and grown in environmentally green house. 

Leaf painting assay for confirmation of the selectable marker, bar 

To examine the expression of the selectable bar resistance gene in the transgenic plants, 

leaf painting was done as previously described. Leaves from each tiller to be tested were marked 

with a sharpie 2/3 from the leaf base. Using cotton as the brush, freshly prepared solution of 

herbicide, liberty (0.2% v/v) was applied on the topside of the leaf. Visual observations were 

recorded 7-10 days after painting and liberty sensitive tillers were clipped off. 
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Polymerase chain reactions (PCR) for the bar, PLR and Ubi PLR gene 

combination 

For all the three primer sets, PCR analysis was done with genomic DNA extracted from 

leaves of transgenic wheat plants using the phenol chloroform extraction method. To extract 

DNA, 100mg of leaf tissue was grinded in microcentrifuge tube or porcelain pots under liquid 

nitrogen. Grinded tissue was then subjected to the 500 ul of extraction buffer (Glycine-SDS) and 

500 ul phenol: choloform: IAA (25:24:1) and mixed on a vertical shaker. The extract was then 

centrifuged for 15 minutes at 4,000 x g and the supernatant subjected to second extraction with 

500ul chloroform: IAA (24:1). The second extract was mixed for 10 minutes, centrifuged at 4000 

x g and the supernatant transferred to a fresh tube. Sodium acetate (3 M), 1/10 volume and 

isopropanol, I volume of supernatant volume was then used to pellet the DNA. Pelleted DNA 

was washed in 70% ethanol and let dry at room temperature for 10-60 minutes. The pellet was 

subsequently dissolved in 10 mM Tris-HCI buffer under a water-bath set at 65 0C for 10 minutes. 

RNase (1.0 ul) was then added to the DNA sample and DNA amount determined through 

measuring absorbance at 260 nm with the nanodrop (Nanodrop Technologies, Wilmington, DE). 

To perform PCR, 100-500 ng of genomic DNA from transgenic plants was screened by primer 

sets; Bar AB F and Bar AB R, PLR F and PLR R, and Ubi PLR F and Ubi PLR R (Table 1) in a 

PTC-220 thermal Cycler (Hybaid Limited, Hastings, UK). Samples were denatured, annealed 

and extended at 940C, 58-60 0C, and 72 0C for 1 minute, 30 sec and 45 sec, respectively for 35 

cycles and a final extension at 72 0C . PCR products were visualized through 1.8% agarose gel 

electrophoresis. Positive transformants were subjected to southern blot analysis to confirm 

integration of the PLR gene 
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Southern blot analysis for detection of integration of the PLR gene 

Genomic DNA was isolated as described above, digested with a single enzyme cutter, 

Bam HI and separated by electrophoresis in 0.8% agarose (30V) over 14-24 hrs. At the same 

time, the probe to be used was obtained by restriction enzyme digestion of the pGem Teasy 

plasmid with EcoR 1 to obtain the 1.2 kb PLR gene probe. After electrophoresis, the gel was 

stained with fresh ethidium bromide (EtBr) for 10 minutes, rinsed in 2 volumes of double 

distilled H20 and depurinated with 2 volumes of 0.25N HCl until the bromophenol blue dye 

marker turned yellow. DNA in the gel was denatured twice with 0.4M NaOH for 10 minutes. A 

Hybond N+ membrane soaked in the same concentration of NaOH was used for DNA transfer by 

an alkaline transfer procedure according to manufacturer’s instructions (Amersham, Piscataway, 

NJ). Alkaline transfer was performed overnight at room temperature. To detect for introduced 

PLR DNA within the wheat genome, the nylon membrane was hybridized for 12-24 hrs with the 

1.2kb 32P-dCTP labeled F .intermedia PLR gene probe. After hybridization, the blotted 

membrane was washed in phosphate buffer solution containing 20% SDS for 20-40 minutes 

twice and again with the same phosphate buffer solution containing ¼ SDS amount of the first 

solution. The membrane was then exposed in a phosphor image cassette and developed using the 

Scan Quant software (Molecular Dynamics Inc., Sunnyvale, CA). 

Isolation of partial wheat PLR sequence 

Wheat genomic DNA was extracted as described above from non-transgenic wheat 

(cultivar ‘Fielder’). Primer sets (PLR F and PLR R) were used to PCR amplify the 539bp PLR 

fragment from wheat (same PCR conditions as above for PLR primers). The PCR products were 

purified using the montage DNA PCR purification kit (Millipore Corporation, Bedford, MA), 

inserted into the cloning site of the pGem Teasy vector (Promega, Madison, WI) through ligation 
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as described above. To increase plasmid DNA, bacterial transformation was performed using 

JM109 competent cells as described by manufacturer’s instructions (Promega, Madison, WI). 

Positive clones with the inserted PLR gene fragment from wheat were confirmed through PCR 

analysis with the PLR primers as described above and subjected to sequencing at the Kansas 

State University, gene sequencing facility with pGem Teasy primers (Promega, Madison, WI). 

The sequences obtained from the positive clones were then compared to Forsthysia PLR 

sequence by use of the  national centre for biotechnology sequence comparison software (NCBI).  

Relative real time PCR quantification of Ubi PLR expression in transgenic 

wheat lines 

To quantify for levels of F. intermedia PLR expression in different positive transgenic 

plants, total RNA was isolated from young leaf tissue by use of the total RNA isolation kit 

according to manufacturer’s instructions (Promega, Madison WI). Briefly, samples were 

homogenized with the RNA lysis buffer®, transferred to a fresh tube and RNA dilution buffer® 

added and centrifuged to obtain supernatant. The supernatant was mixed with 95% ethanol and 

transferred to a spin column containing cellulose for attachment of poly + (A) RNA. Dnase 

activity was stopped with the Dnase stop solution® and the column washed with the RNA wash 

solution® before elution with nuclease free water. Total RNA was then qualified by use of the 

nanodrop (Nanodrop Technologies, Wilmington, DE) through measuring UV absorption at 

260nm. The ratio of wavelength 230/260 was used to determine for RNA purity. First strand 

cDNA synthesis was performed using 1 µg of total RNA and random hexamer primers with 

AMV reverse transcriptase® according to manufacturer’s  conditions (Promega, Madison, WI). 

The samples were then diluted to an equivalent volume and an equivalent amount used for real 

time PCR analysis. The primer set, PLR RT F and the PLR RT R, (Table. 1) were used to 
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amplify a 99bp fragment of the F. intermedia PLR gene using the Sybr green PCR master-mix® 

(Bio-rad Laboratories, Hercules, CA). Real time PCR was performed according to manufacturers 

instructions with the PCR mastermix® in the iCycler thermal cycler (Bio-rad Laboratories, 

Hercules, CA). Ten to eighty pg of Ubi PLR was initially amplified to make sure that the 

efficiency of the F. intermedia PLR RT primers was 100%. PCR products from the cDNA were 

then qualified with the iCycler Bio-rad software (Bio-rad Laboratories, Hercules, CA). The 

experiment was repeated three times and the results plotted as relative quantification in log CT 

units.  

SDG identification and quantification in transgenic wheat seeds 

Sample extracts from transgenic wheat T2 seeds were quantified for SDG levels by 

HPLC analysis. Transgenic and non transgenic seeds (10-30) equivalent to 0.2-0.5 mg were 

ground using magic mill II (Nutrition life styles®, Gilmer, TX) and defatted using hexane before 

drying in the hood overnight. Flavone was added to the extraction solution (methanol: acetone: 

water, ratio 1:5:4) to make a final concentration of 5 mM. Extraction buffer was then added to 

defatted whole extracts which were homogenized for 2 minutes under cold conditions through 

addition of liquid nitrogen. The homogenate was subjected to centrifugation at 4000 x g for 15 

minutes and the supernatant obtained was kept under reducing conditions through passage of 

liquid nitrogen. SDG was then extracted with 3 diethyl ether extractions as in study 1. The 

residue obtained after evaporation of the diethyl ether was dissolved in 100% methanol and 

subjected to a HPLC and HPLC-MS/ESI protocol as described in study 1. Quantification was 

done by comparing peak area ratio of a known amount of commercial SDG run on the HPLC 

with the internal standard and the peak area ratio of the SDG obtained from individual 

transgenic/wild type wheat plant lignan extracts. 
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