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Abstract 

This thesis addresses the tasks of detecting vegetation and classifying plants into target 

crops and weeds using combinations of machine learning and pattern recognition algorithms and 

models. Solutions to these problems have many useful applications in precision agriculture, such 

as estimating the yield of a target crop or identifying weeds to help automate the selective 

application of weedicides and thereby reducing cost and pollution. The novel contribution of this 

work includes development and application of image processing and computer vision techniques 

to create training data with minimal human intervention, thus saving substantial human time and 

effort. All of the data used in this work was collected from corn fields and is in the RGB format. 

 

As part of this thesis, I first discuss several steps that are part of a general methodology 

and data science pipeline for these tasks, such as: vegetation detection, feature engineering, crop 

row detection, training data generation, training, and testing. Next, I develop software components 

for segmentation and classification subtasks based on extant image processing and machine 

learning algorithms. I then present a comparison of different classifier models developed through 

this process using their Receiver Operating Characteristic (ROC) curves. The difference in models 

lies in the way they are trained - locally or globally. I also investigate the effect of the altitude at 

which data is collected on the performance of classifiers. Scikit-learn, a Python library for machine 

learning, is used to train decision trees and other classification learning models. Finally, I compare 

the precision, recall, and accuracy attained by segmenting (recognizing the boundary of) plants 

using the excess green index (ExG) with that of a learned Gaussian mixture model. I performed 

all image processing tasks using OpenCV, an open source computer vision library. 
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Chapter 1 - Introduction 

Corn (Zea Mays L.) is one of the most responsive crops to agronomic management 

practices (Lauer & Rankin, 2004). It has a limited capacity to compensate for missing plants within 

a row, and hence it is important to get early season stand count thereby helping farmers for efficient 

planning of operations such as re-planting decisions. Automatically determining not only plant 

count but distinguishing weeds from corn plants by classification is a crucial step which helps to 

minimize pollution by allowing site-specific application of weedicides, saving money which 

would otherwise be invested in weedicide application over the whole field. Visual inspection is a 

frequently used practice to get stand count which is labor intensive, time consuming, costly, and 

error-prone. There is a need for better approach which is fast and requires little or no human 

intervention. This work aims to solve the problem at hand using image processing and machine 

learning techniques. The workflow developed requires minimal human intervention in the training 

data creation which would otherwise require lot of labor in labelling the data.  

 

The data consists of RGB images collected using Unmanned Aerial System (UAS) from 

corn fields in practical conditions from two different locations. They are captured in top-down 

view so that they are free from perspective projections. All other conditions like weed pressure, 

illumination, crop row density, etc., are uncontrolled. There is no restriction on the orientation of 

crop rows as the proposed methodology can deal with any orientation of crop rows with respect to 

x-axis.   

 

 A workflow is developed that generates training data by automatically labelling input data. 

It is possible with an assumption that states “all contours that lie in the row region are most 
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probably corn plants and all other contours are most probably weeds”. Feature engineering is done 

to extract features from input data. For this machine learning task, with its ground features, 

different decision tree classifiers are developed in two modes: local and global. In local mode, the 

model is trained and tested on data from the same location, while in global mode, the model is 

trained on data from both locations but tested on data from single location at a time.  

 

 These models are compared using receiver operating characteristic (ROC) curves. The 

effect of the altitude at which these images are captured on the performance of classification 

models is also presented using ROC curves.  
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Chapter 2 - Related Work 

There have been a lot of improvements recently in ground sensors and computer vision 

which made plant counting easy in the field of proximal sensing. Using proximal sensing the scope 

for automation and mechanization improved drastically hence reducing the cost of plant counting. 

Srestha and Steward (2005) presented the use of size and shape of corn plants to estimate several 

attributes like plant density, row spacing by using video frame sequencing, segmentation and 

object classification. In a related context, Shi, Wang, Taylor, Raun, and Hardin (2013) proposed 

the laser line-scan technique to measure stalk locations during corn mid-growth stages. In all these 

methods proximal sensors are attached to ground vehicles to collect data like images or videos. 

However, the reachability of ground vehicles is limited to the terrain conditions and the robustness 

of vehicle being used. Ground vehicles also cause some damage to the crops in the fields and are 

limited to small areas. For effective weed management, there is a need for detailed knowledge on 

the spatial distribution of both crops and weeds. For these reasons, use of unmanned aerial systems 

is gaining importance. Proposed methodology uses UAS for collecting data (top down view 

imagery) from corn fields.  

 

Burks, Shearer, and Payne (2000) proposed a new method to classify different weed species 

using color texture features for selective herbicide treatment. They were able to classify between 

five species of weeds and soil using hue and saturation statistics. In a similar context, Wu and Wen 

(2009) proposed the use of support vector machine as a classifier using texture features, principal 

component analysis was done to reduce the dimensionality. Although most of the related works 

proposed the use of machine learning to solve the problem in hand, only texture features are 

considered which might not capture the whole picture and don’t uniquely represent the corn crop 
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or weeds. The proposed methodology in this work makes use of the fact that corn plants have 

unique geometric shape compared to the shape of possible weeds in the field. The features used to 

train the classifier are based on geometry rather than texture.  

 

Another important step presented in this work that builds upon relevant prior work is row 

detection. There are several approaches to detect rows in a field. Varshney (2017) used 

segmentation to separate vegetation from the background using K-means clustering, Gaussian 

mixture models, support vector machine, Excess green index algorithm and fully connected 

convolutional neural networks. Then, they applied Hough transforms to find the orientation of crop 

rows. Green pixel accumulation is done, and a row template is fitted to identify row regions. The 

limitation of the workflow is that a fixed width template is fitted against possible crop rows 

whereas in the current workflow, an inter-row mask and row-mask are generated which function 

more like an adaptive template to match the width of individual crop rows. The current workflow 

has a step which automatically labels the data without much human intervention, saving a lot of 

time and effort which would otherwise be wasted in manually labeling the data. 
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Chapter 3 - Materials and Methods 

 3.1 Data Collection Sites 

To make the methodology more useful for practical purposes all data collected and used 

for this work is collected in practical conditions and not from controlled environments like 

experimental sites. Different crop growth stages and crop residue were some of the field conditions 

present during data collection. Two fields were selected in the northeast region of Kansas, the US 

for data collection. One site (Site 1) was located in Atchison County, KS and the other site (Site 

2) was located in Jefferson County, KS.  Site 1 was 18 hectares in area and Site 2 was 64 hectares 

in area. Site 1 was managed using water from rainfall and Site 2 was under irrigation. Both the 

fields had an approximate plant density of 7.5 plants m-2. 

 

 

Figure 1. Adapted from (Varela, et al., 2018), Locations of Site 1 and Site 2 
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 3.2 UAS, Sensor, and Data Collection 

An octocopter, the S1000 by Dà-Jiāng Innovations (DJI) was used to collect the imagery 

from both sites. It has an A2 flight controller which is a multirotor stabilization controller that 

ensures the stability of UAS throughout the flight which in turn helps to capture images 

consistently. Out in the field, the conditions might be tough in terms of air currents which is 

undesirable for collecting data as the projection every time an image is captured changes. Thus, 

having the A2 flight controller is advantageous. It is also equipped with a Global Positioning 

System (GPS), enabling it to carry out automated flight missions using location co-ordinates. An 

autopilot software package called PX4 Pixhawk Autopilot 2 is installed in the UAS complimentary 

to the Mission Planner Ground Station, an open-source software developed by Michael Osborne.  

  

 To account for diverse conditions, nine sample areas from each field are marked and data 

is collected from all these sample areas. Size of each of these areas is around 0.2 hectares. Each 

flight mission is programmed such that, UAS moves in four parallel lines capturing images for 

every 4 seconds, finally achieving 25 to 30 images per sample region. During the flight, 

overlapping and side-lapping was set to 20%. If overlapping is further increased the flight time 

increases thereby decreasing the efficiency of data collection process.  

 

 The camera used was SONY, Alpha ILCE A5100 RGB, mounted with a SONY SELP1650 

PZ 16-50 mm lens which makes the sensor resolution 6000 x 4000 pixels. The exposure and 

aperture settings were adjusted before each flight to suit the conditions at the time of flight. The 

shutter speed was set to 1/3000 seconds, aperture to f5, focal length to 16 mm and ISO to 400. 

Wind speed was 2 to 3 meters per second when the data was collected from both sites. On the day 
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of the flight, Site 1 has 2 visible leaves growth stage and Site 2 has 2-3 leaves growth stage. The 

altitude for the flight was set to 10 meters above ground level, thus achieving a spatial resolution 

of 2.4 mm. 

 

 3.3 Workflow 

Figure 2 depicts the workflow that we implemented. Data (images) is collected in RGB 

format. Then each of the images is converted to a binary image using segmentation algorithms 

(ExG, GMM). After segmentation Hough line transformation is applied to find the orientation of 

crop rows which is then used to rotate images so that crop rows are nearly horizontal. Then, row 

and inter-row regions are detected using inter-row-mask and row-mask respectively which is used 

for scaling up the process of labeling data. Feature extraction, training, and testing are then 

performed whose results are discussed in Chapter 4. All the steps mentioned above are explained 

in detail in the following sections. 
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Figure 2. Workflow 
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 3.4 Preprocessing Steps 

 Several preparatory transformations must be applied to the data before training a classifier 

with it. The steps that refine the raw data to be ready for training are discussed in this section.  

 

 3.4.1 Segmentation 

 Excess green index algorithm has been proven in the past to be a good algorithm for 

segmentation of green pixels and background (Woebbecke, et al., 1995). It differentiates green 

objects from the rest in an image. So, ExG has been used for segmentation of vegetation and 

background. Before that, to eliminate noise in the input images, a bilateral filter is applied which 

reduces unwanted noise while keeping edges sharp (Carlo & Roberto, 1998). Keeping edges intact 

is important as we want our segmentation to be as good as possible. Any changes to the edges 

might cause the geometric features to be not able to represent the actual shape of objects. Then the 

ExG algorithm is applied which computes ExG index for each pixel in the input image. ExG index 

helps to decide if a pixel corresponds to vegetation or background. It is computed as follows: 

 

𝐸𝑥𝐺 = 2𝐺′ − 𝑅′ − 𝐵′ 

where 

𝐺′ = 𝐺/(𝑅 + 𝐺 + 𝐵) 

𝑅′ = 𝑅/(𝑅 + 𝐺 + 𝐵) 

𝐵′ = 𝐵/(𝑅 + 𝐺 + 𝐵) 
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ExG represents the excess green index value of a pixel, R is the corresponding intensity 

value of that pixel in the red channel, G is the corresponding intensity value of that pixel in green 

channel and B is the corresponding intensity value of that pixel in the blue channel.  

 

Then, a small modification (scaling) is done to improve the segmentation process. It is 

done as follows: 

𝐸𝑥𝐺′ = {

255                 𝑖𝑓 𝐸𝑥𝐺 > 1
𝐸𝑥𝐺 ∗ 255    𝑖𝑓 𝐸𝑥𝐺 < 1
0                     𝑖𝑓 𝐸𝑥𝐺 < 0

  

 

 𝐸𝑥𝐺′ is the modified Excess Green Index calculated using values obtained from Excess 

Green Index. 

 

 After getting the 𝐸𝑥𝐺′ value of all pixels in the image, it needs to be thresholded in-order 

to have only two classes of pixels (foreground and background) in the image intensities: 255 for 

pixels that belong to vegetation and 0 for all other pixels. So, it results in a black and white image. 

The correct threshold value is determined by using Otsu’s thresholding method which 

automatically decides the best threshold value (Otsu, 1979). It calculates the best threshold value 

to separate the two classes so that the intra-class variance is minimal. The weighted sum of 

variances of two classes which should be minimized is given by: 

 

𝜎𝑤
2 (𝑡) = 𝜔0(𝑡)𝜎0

2(𝑡) + 𝜔1(𝑡)𝜎1
2(𝑡) 

Where weights 𝜔0  and 𝜔1 are the probabilities of two classes of pixels separated by 

threshold 𝑡, 𝜎0
2 and 𝜎1

2 are variances of these two classes. 
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Figure 3. Image obtained after applying ExG segmentation and Otsu's thresholding 

 

 Besides 𝐸𝑥𝐺′, Gaussian Mixture Models (GMM) is also used for segmentation process. 

Before fitting the data with GMM, to eliminate noise, a gaussian filter with kernel size (55,55) was 

applied. Then, data was fitted to GMM with two mixture components as our target was to 

differentiate between vegetation and background. The covariance type used was full. The results 

of using GMM for segmentation leaving the other workflow the same, are presented in Chapter 4.

  

 

 3.4.2 Removing Big Contours 

Now that we have a thresholded image of vegetation and background separated into white 

and black pixels respectively, the next step is to identify crop rows. Note that the pixels 
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corresponding to weeds are also classified as vegetation pixels. From now on all the white pixels 

that are connected are collectively called contours. The current task is to remove contours that are 

too big, which might most probably correspond to weeds, so that they won’t be counted as potential 

crop rows in the next step. If not removed, they result in a peak in greenness accumulation in next 

step which then will be considered as potential crop rows. Hence this step acts as a filter that 

removes very big patches of weeds. By experimentation, it is found that contours that are four 

times greater than average contour size in an image will most probably be a weed. So, all contours 

whose size is greater than four times the average contour size are removed by assigning intensity 

value same as background (0). These contours will be restored after Hough line transform is 

performed. 

 

 3.4.3 Crop Row Orientation 

Now that we have a thresholded image having white contours that represent vegetation and 

rest all black pixels, the next step is to identify the orientation of crop rows. For this purpose, 

Hough Line Transform is used to first identify all possible lines that could exist in the image 

(United States of America Patent No. 3,069,654, 1962). There is a threshold value on the minimum 

length of the line in order for it to be considered. Through experimentation, it is decided that the 

optimal value should be around 150. After the algorithm is applied, set of lines and their orientation 

is returned.   

 

 Instead of averaging orientations of all the lines, a voting algorithm is developed which 

finds the best possible orientation. It is found that the returned orientation values might be only 

positive or only negative or both. In order to determine which is the right orientation, all the 
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negative values are stored in a set and all the positive values are stored in another set. Now the set 

with a maximum number of elements and whose range is less than 20 degrees is selected. The 

average of all the values in this set is determined as the orientation of crop rows. If for an image, 

such value can’t be determined, then that image is discarded. This step is very important in the 

workflow as the quality of training data is affected by the accuracy of the determined orientation. 

This is because we train the model based on features of contours present in crop rows as corn and 

on features of contours present out of crop rows as weeds. Thus, a small error in the assumed 

orientation leads to some corn plants being learned as weeds and vice versa.  

 

 3.4.4 Crop Row Detection 

 Now that we have the orientation of crop rows, the next step is to detect all rows present in 

the image. To achieve this, first, the image is rotated so that the orientation of crop rows is nearly 

horizontal. This is done by rotating the image by the exact amount determined in the previous step 

but in opposite direction. After having the crop rows in the horizontal direction, the intensities of 

all pixels in each row are summed up and a graph is plotted. Sum of intensities in each row are 

plotted on x-axis and y-coordinates of corresponding rows are plotted on the y-axis and the 

obtained graph is smoothened. The resultant graph looks like a wave in the vertical direction where 

crests represent the presence of higher number of vegetation (white) pixels and troughs represents 

lower number of vegetation pixels or no vegetation pixels at all. The background pixels which are 

black contribute nothing to the values in the graph as intensity value of black pixels is zero. Thus, 

the graph represents the distribution of vegetation class pixels. Some of the peaks in this graph 

truly represent crop rows, not all because weeds present in inter-row regions also result in peaks.  

To differentiate between crop rows and all other inter-row peaks a threshold value is to be 
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determined. Before finding this threshold, all points with the sum of intensities less than 10000 are 

adjusted to value 0, because it is found by experimentation that now crop rows will have a value 

less than 10000. But, this value changes with the height at which the images are captured. To find 

the threshold value a simple approach is used, by iterating through all the peaks, if the current peak 

is less than one-third of the previous peak then the threshold value is set to current peak value as 

it is highly likely to be a result of inter-row vegetation. The leftover peaks after thresholding 

represent the peaks corresponding to crop rows. The width of each crop row was equal to the width 

of its crest at the thresholding region. Thus, the width of each crop row was determined 

dynamically unlike previous work (Varshney, 2017), where the width of each row was forced to 

be constant because of fitting a rectangular template.  
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Figure 4. Row peaks with the sum of intensities along x-axis and height of the image along 

the y-axis 

 

Using the outcome from the previous step, a mask (say inter-row-mask) was created 

matching the dimensions of the rotated image and has black rectangular strips in place of inter-

row regions and white rectangular strips in place of crop row regions. Similarly, another mask (say 

row-mask) was generated by performing Bitwise NOT of inter-row-mask.  
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 3.4.5 Training Data Generation 

 The novelty of this work is that there is no need for manual labeling of data. Instead, a 

Bitwise And operation is performed between inter-row-mask from the previous step and the rotated 

image, contours are then detected from the resultant image which are then labeled as “corn class”. 

Similarly, Bitwise And operation is performed between row-mask and rotated image, contours 

detected from the resultant image are labeled as “non-corn class”. With some exceptions, this 

generates a good labeled data set as there is a high chance of the presence of corn plants in row 

regions and a high chance of the presence of weeds or non-corn objects in inter-row regions.  

 

Figure 5. Result of performing Binary And operation on Inter-row mask and rotated input 

image 
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Figure 6. Result of performing row-mask and rotated input image 

 

 3.4.5.1 Feature Engineering 

Since the contours were labeled, next step was to extract geometrical features from 

contours of both classes. Initially, nine geometrical features were considered but after applying a 

feature selection method they were filtered down to five features: aspect ratio, rectangularity, 

thinness, solidity and major axis to diameter ratio. 

• Aspect ratio: It is the ratio of width to height of rectangle with minimum area enclosing 

the contour. 

• Rectangularity: It is the ratio of the area of contour to the area of rectangle with minimum 

area enclosing the contour.  
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• Thinness: It is directly proportional to the ratio of the area of contour to the perimeter of 

contour. 

• Solidity: It is the ratio of the area of contour to the area of convex hull enclosing the 

contour. 

• Major axis to diameter ratio: It is directly proportional to the ratio of major axis length of 

contour to the square root of contour’s area.  

  

 3.4.6 Training and Testing 

 A decision tree classifier was implemented, training with above mentioned geometric 

features and corresponding labels from training data generation step. Decision trees are supervised 

learning methods used for classification and regression (Breiman, et al., 1984). They come under 

non-parametric machine learning algorithms. They predict the target variable value by learning 

decision rules extracted from training data. There are different types of decision tree algorithms 

but the one used in this work was CART. CART uses information gain as a criterion while 

determining which attribute should be placed at which level of the tree. There are many advantages 

with using decision trees: capable of fitting a large number of functional forms which means it is 

flexible, cost of using is logarithmic in the number of training data points, performs well even 

when its assumptions are a bit violated as it has weak assumptions.  

 

Decision trees have their own disadvantages. They are vulnerable to overfitting which 

means they fit well to the training data but do not generalize data well. To avoid this overfitting 

issue there are some parameters that can be tuned to make the tree work well with new unseen 

data. One of such parameters is the maximum depth of the tree. By setting it to a value we restrict 
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the tree from growing big (complex) in the process of overfitting to training data. A stratified K-

Folds cross-validation was performed to determine the best hyperparameters for the classifier. It 

was determined that a maximum depth of 10 levels would work well. The other hyperparameter is 

minimum sample leaves. Very low value of minimum sample leaves will result in overfitting and 

a high value would prevent decision tree from learning decision rules. It was determined that 

setting minimum sample leaves parameter to 20 would work well. It was observed that the data is 

imbalanced as the data is collected in practical conditions where number of corn plants outnumber 

the number of weeds. To solve this issue of class imbalance, I have decided to adjust the weights 

of each class inversely proportional to corresponding class frequencies in the input data. This can 

be easily done in scikit-learn by setting the value of parameter ‘class-weight’ to ‘balanced’ 

(Buitinck, et al., 2013). 

 

 Site 1 Site 2 

Dataset Training  Testing Training Testing 

Images 94 75 87 75 

Contours 17,608 15,378 16,855 15,246 

 

Table 1. Data sets used for training and testing 

 

To evaluate the scalability of the classifier, training and testing was done in two modes: (a) 

local training and local testing (LTLT) (b) joint training and local testing (JTLT). In LTLT, the 

classifier was trained on training data from a location and tested on testing data from the same 

location. In JTLT, training was done on training data from both locations (Site 1 and Site 2) and 

tested on test data from both sites separately. The ground Truth for the test data set is generated by 
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manually labeling the contours present in the output of the classifier. Results from this step are 

discussed in next chapter.   
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Chapter 4 - Results 

 

This chapter presents results in three sections. The first section deals with the comparison 

of two decision tree models, one developed using 𝐸𝑥𝐺′ in segmentation step and the other one 

developed using GMM in the segmentation step. The second section deals with comthe parison of 

decision tree models developed using local training and local testing (LTLT) and joint training and 

local testing (JTLT) training and testing modes. The third section deals with the effect of altitude 

at which images are captured on the performance of classifiers developed using this workflow.  

 

 All model comparisons are done using Receiver Operating Characteristic (ROC) curves. 

Comparison of 𝐸𝑥𝐺′ and GMM steps is also shown in tabular form that has number of contours 

detected in 𝐸𝑥𝐺′, GMM and ground truth.  

 

 4.1 𝑬𝒙𝑮′ vs GMM 

 Table 2 consists of ground truth of number of objects, number of objects detected 

(segmented) using 𝐸𝑥𝐺′ and number of objects detected (segmented) using GMM.  

 

 Ground Truth ExG GMM 

Number of objects 417 391 319 

 

Table 2. Number of plants detected using 𝑬𝒙𝑮′ and GMM. 
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Figure 7. ROC curves of classifiers with GMM and 𝑬𝒙𝑮′ used in segmentation step 

 

 

 Precision Recall F1-score Accuracy 

ExG 0.93 0.92 0.92 0.91 

GMM 0.94 0.89 0.91 0.89 

 

Table 3. Classification report of classifiers with 𝑬𝒙𝑮′ and GMM used in segmentation step 

 

 4.2 LTLT and JTLT 

 

 In this section, comparison of LTLT on site 1, LTLT on site 2, JTLT on site 1 and JTLT 

on site 2 is presented in the form of ROC curves. The precision, recall, and F1-scores are also 

presented for each of the models.  
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Figure 8. Adapted from (Varela, et al., 2018), ROC curves for classifiers trained on Site 1 

and Site 2 data using LTLT and JTLT modes 

 

 

 Precision Recall F1 Score Area Under Curve 

LTLT Site 1 0.93 0.93 0.93 0.95 

LTLT Site 2 0.94 0.94 0.94 0.95 

JTJT Site 1 0.93 0.93 0.93 0.92 

JTJT Site 2 0.92 0.92 0.92 0.93 

 

Table 4. Classification report of classifiers trained on Site 1 and Site 2 using LTLT and 

JTLT modes 

  



24 

 4.3 Effect of Downsampling 

 Downsampling was done to investigate its effect on segmentation step and on the 

performance of the classifier. It helped us understand the tolerance of our workflow with degrading 

resolution (in a sense it is equivalent to increasing the altitude of flight while capturing images). 

The initial resolution of 2.4 mm in site 1 was changed to 4.8, 9.6 and 19.2 simulating 20, 40 and 

80 meters flight altitudes respectively. As a result of this, the amount of loss in percentage of 

detected objects was found to be 6%, 12%, and 42%.  

 

 

Figure 9. Adapted from (Varela, et al., 2018), Effect of downsampling on segmentation step 

 

 

 With decreasing resolution, the boundaries of objects deviated from their original shape 

affecting the geometrical features. So, this had its effect on the performance of classifier which is 

shown below.  
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Figure 10. Adapted from (Varela, et al., 2018), ROC curves of classifiers trained using 

downsampled images up-to four levels 
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Chapter 5 - Conclusions 

In this work, a workflow was implemented to segment plants in a corn field and classify 

them into corn and non-corn (weed) classes. Compared two techniques for segmentation step: 

Excess Green Index and Gaussian Mixture Models. Decision trees were used for the classification 

task and geometric descriptors were used as features for training the model. The novelty of this 

work is that, no or less human intervention is needed for the training process as the manual labeling 

step is replaced with automatic labeling step which scales up the training process. 

  

The LTLT training mode had a slightly better area under curve value compared to JTLT 

training mode, a difference of 0.02 to 0.03 is observed. The difference is that, in case of JTLT false 

positives increased thereby decreasing the recall of “non-corn” class by 0.03. Same effect is 

observed in case of f1-score values of “non-corn” class but no such effect was observed in case of 

“corn” class. We can infer that LTLT performs better than JTLT. Since no or less human effort is 

needed in case of the training process, it is recommended to use LTLT training mode every time 

we need to use this workflow on the new data set.  

 

We also observed that, better the quality of images, better is the quality of segmentation 

and classification task. It is understood that performance of workflow is improved at the cost of 

efficiency of flights (for data collection). Finally, Excess Green Index (modified) outperformed 

Gaussian Mixture Models in segmentation step. It is better to use 𝐸𝑥𝐺′ as presented in this work 

for the segmentation task.  
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Chapter 6 - Future Work 

The current workflow has some limitations: (a) It cannot deal with situations where corn 

plants overlap. (b) It cannot deal with situations where crop rows are not in a (nearly) straight line. 

(c) It is ineffective in presence of high weed pressure such that sum of intensities along the weed 

patch is greater than one-third of the sum of intensities of the previous crop row. Some of these 

limitations could be solved by using Region-Based Convolutional Neural Networks (R-CNN). So, 

building an R-CNN and training it from scratch with two classes (corn and non-corn) could be a 

good option to work in future. Before using deep learning techniques like R-CNN, it is a good idea 

to explore texture features along with geometric features so that another dimension in terms of 

features would be included.  

 

The strength of this workflow lies in automatic labeling of training data thereby scaling up 

the training process, saving a lot of time and effort. This workflow can be improved by using 

segmentation algorithms such as the Watershed transform to solve the issue of overlapping plants. 

It can be extended to other crops by finding the correct set of features that can help distinguish 

target crop from weeds. 
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