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ABSTRACT 

 The cost of wheat is the largest input cost for a flour mill, and as a result, 

profitability in wheat flour milling is determined in large part by milling efficiency – i.e., 

the amount of flour extracted per unit of wheat milled.  In this project the objective was to 

quantify the influence of several measurable variables on flour mill efficiency.  Data was 

collected from two commercial milling units of similar size.  Linear regression was then 

used to estimate the relationship between flour yield and variables measuring grain 

characteristics and environmental factors.  The analysis suggests that increasing ambient 

temperature and the occurrence of downtime both have a significant negative effect on 

flour yield.  A significant difference in flour yield efficiency was also found between the 

two mills.   
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CHAPTER I:  INTRODUCTION  

 Wheat represents the largest input cost in flour milling.  Gwirtz (2005) reported that 

the cost of wheat accounted for 84.2% of flour mill input cost, followed by labor at 10.1%.  

Flour yield, a measure of how much of the wheat kernel is converted to flour, is the most 

important technical and economic factor in wheat milling (Posner and Hibbs, 2005).   

 A wheat kernel (Figure 1.1) is made up of three main parts:  bran, germ, and 

endosperm.  One of the main goals of the wheat miller is to separate the wheat kernel as 

efficiently and completely as possible into these three parts.  How well this is done affects 

the quality and economic values of the three components with the largest economic gain 

coming from complete separation of the bran from the endosperm.  This separation 

determines the percent of the kernel that is converted to flour.  This can be expressed as a 

percentage of the total kernel.  A key consideration is not to remove too much of the bran 

layers with the endosperm.  Removing bran with endosperm causes flour ash content to 

increase which decreases the baking quality of the flour.   

 Managing yield is critical to flour mill profitability.  Consider the impact of a one 

percent variation in yield for a typical mill producing 10,000 cwt of flour per day.  At an 

extraction rate of 75%, 10,000 cwt of flour requires 22,222 bushels of wheat.  If extraction 

is increased to 76%, the daily amount of wheat required falls to 21,930 bushels, a savings 

of 292 bushels/day.  Over the course of 365 days with wheat priced at $7.60/bushel, the 

total savings on wheat purchase cost amounts to over $810,000.  While this example 

ignores a number of factors such as decreased by-product revenue and decreased operating 

cost, it does illustrate the potential economic impact of a relatively small change in 
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efficiency.  For a somewhat more complete example, consider a plant processing 20,000 

bushels of wheat/day.  At a 75% extraction rate, the yield is 9,000 cwt of flour and 3,000 

cwt of by-product.  Increasing the yield to 76% produces an additional 120 cwt of flour and 

a reduction of 120 cwt of by product.  If the price of flour is $22.00/cwt and the price of by 

product $170/ton, the impact on net revenue per day is $1,680, which translates into 

$591,300 for 365 days.  Similar examples are provided by Gwirtz (2002). While the impact 

of varying efficiency depends on wheat, flour and by-product prices, it is clear that under 

most circumstances increasing the efficiency of flour extraction will contribute 

significantly to milling profitability.   

 Commercial flour mills typically operate 24 hours a day, up to 7 days a week.  

Assessment of how well the mill is performing involves measuring each production day’s 

flour yield for each milling unit.  While variations between daily production yields are 

expected to occur, it is nevertheless important for the mill manager to understand what 

factors have the greatest impact on daily yield.  These factors might include grain 

characteristics such as moisture content or kernel weight, or environmental characteristics 

such as temperature and/or humidity in the mill, and if a shift experiences downtime. 

Human factors such as the level of skill or experience of the miller may also play a role in 

explaining variation in yields.   

1.1 Commercial Mill Data 

 Gwirtz (2005) emphasized the importance of knowing how a mill is performing 

over smaller increments of time (i.e., daily versus monthly) as milling margins get tighter.  

For this analysis, daily data were obtained from a mill made up of two separate milling 
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units of similar size that operate 24 hours a day.  Operations consist of each milling unit 

having a shift foreman on each of the three shifts.  The shift foreman (or miller) is 

responsible for cleaning and tempering the wheat, and adjusting the milling machines to an 

optimum level to produce quality flour per company guidelines.  The miller must possess 

mechanical, lab, electrical, and troubleshooting skills.  The efficiency with which this job is 

performed can determine whether the mill shows a profit (Nault, 1964).  

1.2 Objectives 

 The objective of this project is to determine the effect of certain variables on flour 

mill daily yield.  The analysis employs a regression model in which daily flour yield is the 

dependent variable.  Analyzing the effect of grain and environmental characteristics on 

flour yield provides the framework for analyzing the impact of variation in those factors on 

mill profitability.   
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Figure 1.1: Parts of a wheat kernel 

                        

Source: Canadian Wheat Board “From Wheat to Bread.” www.cwb.ca   
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CHAPTER II: LITERATURE REVIEW AND THEORY 

 Previous work examining mill efficiency points to a number of environmental 

factors and grain characteristics that influence the efficiency with which flour is extracted 

from wheat grain.  The dependent variable for this analysis is flour yield.   

 Yield can be calculated in different ways.  Typically, it is expressed as the number 

of bushels of wheat required to produce 100 lbs (1 cwt) of flour.  For example, if 73% of 

the kernel weight is converted to flour, it takes 136.99 lbs of wheat (1 / 0.73) to produce 

100 lbs. of flour.  Since a bushel of wheat weighs 60 lbs, the yield can be expressed as 2.28 

bu./cwt.  In this format, the lower the number the more efficient the yield.  In this study, I 

have chosen to express the yield as a percentage of the kernel extracted – i.e., as 73% in the 

example above.  Recording yield this way allows for a more intuitive understanding of how 

variables correlate with yield since positive changes will represent improvements.  

 Shift yield is computed by taking the weights recorded from process scales at the 

beginning of each day.  The process scales used are those measuring clean tempered wheat 

to mill and flour.  Both scales record in pounds.  Yield is estimated as flour weight divided 

by clean tempered wheat weight. 

 The variables hypothesized to influence daily flour yield include two grain 

characteristics - wheat to roll moisture and wheat to roll total kernel weight (TKW), and 

three environmental factors - temperature, humidity, and whether the day experienced a 

downtime event.  
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2.1 Wheat to roll moisture 

 Wheat to roll moisture measures the moisture content of the wheat as it approaches 

the first grinding machine.  Critical steps in preparing wheat to be processed are cleaning 

the wheat, adding moisture to the kernel, and then allowing it to rest.  This stage toughens 

the bran and mellows the endosperm which allows for easier separation of the two.  

Tempering time should be long enough to allow the moisture in the kernels to come to 

equilibrium and equally toughen the bran and mellow the endosperm of all sizes of kernels. 

Experienced millers know that having clean, consistent, well-prepared wheat at the first 

grinding stage is a key component toward mill balance, which results in the most favorable 

flour extraction and flour quality (Posner and Hibbs, 2005).  Wheat to roll moisture is a 

measurement of how well the wheat was prepared for milling and how well moisture is 

added.  Moisture addition influences both product yield and mill operation (Owens, World 

Grain July 2003).   

 To accurately assess the effect of moisture on yield, one should account for the 

moisture content of both the incoming wheat and the flour produced.  Ideally, the weights 

of both wheat and flour would be adjusted to a given moisture content (e.g., 14.2% for 

flour, 15.2% for wheat) before calculating yield.  In that situation, one would be measuring 

the effect of varying moisture levels on the efficiency of extracting the endosperm.  If there 

is an optimum moisture content that maximizes extraction, and if that optimum level falls 

with the observed range in the sample of data, then one would expect a quadratic 

relationship between yield and moisture content in which yield first rises with increased 

moisture and then falls after the optimum level has been passed.  If that is the case, then it 

would be important to identify that optimum level, and try to determine whether that 
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optimum depends on other factors such as protein content, ambient temperature, etc.  It is 

believed that the optimum moisture level lies in the range of 15-16% and that moisture 

levels outside this range will have a negative effect on yield.  Most commercial mills aim 

for moisture levels near 15%.  

 If grain and flour weights are not adjusted to a fixed moisture level, the effect of 

moisture on yield becomes more complex.  If moisture is lost during the milling process 

and if the moisture content of the flour is less than that of the incoming wheat, then an 

increase in the moisture content of the incoming wheat will show up as a decrease in the 

calculated yield, simply as a result of the additional moisture having a greater effect on the 

denominator in the yield calculation.  On the other hand, if flour retains more of the 

incoming moisture relative to the bran and wheat germ components, increased moisture in 

the incoming grain may result in a higher yield of flour.  The effects related to varying 

moisture content mask the effect of moisture on extraction efficiency and make it difficult 

to determine an optimum moisture level.  Nevertheless, even when wheat and flour weights 

cannot both be adjusted (perhaps because data are not available), it is still important to 

control for varying moisture levels so as not to bias the estimation of other coefficients in 

the model.  Given the possibility of an optimum moisture level, models will be estimated 

that allow for both a linear and a non-linear (quadratic) effect of moisture on yield.   

2.2 Wheat to roll TKW 

 Thousand-kernel weight (TKW) is the weight of 1,000 counted kernels converted to 

a 12% moisture basis.  A sample with more weight per 1,000 kernels should have a higher 

percentage of endosperm than a lighter sample, and thus should yield more flour.  One 
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reason to use TKW over alternative measures such as test weight is that there is very little 

relationship between either kernel size or wheat endosperm content and test weight 

(Stevens, IAOM Bulletin Jan 2005).   

 TKW will be modeled as having a linear relationship with yield.  The expectation is 

that the coefficient on TKW will be positive, thus the following null and alternative 

hypotheses are tested:  Ho: B TKW ≤ 0; Ha: BTKW > 0. 

2.3 Temperature and Humidity 

 Temperature and humidity effects in mills have been studied over the last 70 years 

and the conclusions are that both temperature and particularly humidity play a role in how 

the mill performs.  Air stabilization has been shown to increase stock uniformity, increase 

extraction, and improve flour quality.  Most commercial mills do not have air stabilization 

systems to control temperature and humidity.  Likewise, the mills from which the data were 

obtained for this study did not have air stabilization systems.  Controls used were opening 

and closing windows, and air returned into the plant from the pneumatic systems as 

temperatures dropped.  Temperature and humidity were recorded on the roll floor for this 

study and were included to investigate their correlation with yield.   

 Jeffers and Rubenthaler (1977) found that as mill temperature increased due to 

friction and use, flour yield decreased, with correlations of -0.98 to -0.99 between roll 

temperature and flour yield.  Similarly, Hook, Bone and Fearn (1984) found that an 

increase in temperature within a range from 15C to 25C (59F to 77F) was accompanied by 

a decrease in flour extraction. They also found that a decrease in relative humidity was 

associated with improved extraction.  Given these prior results, the expectation is that 
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increases in temperature and relative humidity will have negative effects on flour yield.  

The following null and alternative hypotheses are tested:  Ho: BTemp, BRH ≥ 0; Ha: BTemp, 

BRH < 0. 

 To investigate the possibility that there are optimum levels of temperature and 

relative humidity, models with quadratic specifications of these variables will also be 

estimated.  Temperatures and humidity falling outside of an optimum range would reduce 

the yield of the mill. 

2.4 Mill 

 Due to differences in design, age, wear and tear, etc., different mill units would be 

expected to vary in terms of their extraction efficiency.  This study used data from two mill 

units identified as Mill A and Mill B.  Mill A was a non-traditional flow mill with a 

designed capacity of 9,000 cwt per day.  Mill B was a more traditional flow mill with a 

capacity of 10,000 cwt per day.  A dummy variable will be used in the regression model to 

investigate variation in extraction efficiency between the two mills.  

2.5 Downtime 

 Downtime occurs when production is shut down for any reason.  Downtime is an 

important variable to track because anytime production is stopped, yield losses occur 

associated with the milling unit going down and starting back up.  Equipment is not 

running at optimum settings anytime downtime occurs.  Restoration of optimum production 

performance can take from one hour to longer following downtime.  Thus, a reduction in 

yield is expected on any day that encounters downtime.   



 10 
 

 Downtime has an obvious effect on profitability in terms of lost production time, 

and the longer a downtime event, the greater the loss.  But the effect on extraction 

efficiency is a consequence not of the length of time production is halted but instead a 

result of the machinery not operating at optimum levels while going down or restarting.  

Thus, extraction efficiency is impacted by the number of downtime incidents and not the 

overall length of time the mill is down.  For the duration of this study, mill operators were 

asked to record whether or not a particular shift experienced downtime.  Using that data, 

two dummy variables, D1 and D2, were created to represent days when either one, or two 

or more shifts experienced downtime.  It is anticipated that the coefficients on both dummy 

variables will be negative, and that the magnitude of the negative coefficient will be greater 

for D2.   

2.6 Other variables 

 The literature suggests that other variables may also have an influence on flour 

extraction efficiency.  One such variable is temper time - the amount of time that the wheat 

rests after water is added to it.  It is important because this rest time allows the moisture to 

come to equilibrium among the kernels of wheat.  During this process the bran is 

toughened and the endosperm mellowed.   

 The mills from which data were obtained aimed for a moisture content between 

16% and 17% at wheat to roll.  Temper time for both units exceeded the 15 hours needed 

for moisture equilibrium (Posner and Hibbs, 2005) with A Mill having 17 hours and B Mill 

having 22 hours of temper time.  For example, Farrell (1935) found that the rate of water 

absorption in Hard Red Winter Wheat came to equilibrium at around 9 hours of temper 
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time.  Because temper time does not vary except between the two mills, it is not used as an 

explanatory variable in this study.  However, as noted above, a dummy variable is used to 

investigate differences in yield across the two mills.  In interpreting the influence of that 

dummy variable, the observed effect may in part reflect the difference in temper time. 

 The amount of wheat flowing to the mill can also have an effect on flour yield.  

Overloading can have a negative effect on mill operation causing poorer yields. Wingfield 

(1985, p 4561) stated that “increasing the load to the mill beyond the optimal level will 

result in lowered flour yields and deterioration of the flour quality.”  Too little wheat going 

to the mill can cause quality issues and lowers the capacity of the mill.  During this study 

the mill load setting was held constant by the shift miller at the milling superintendent’s 

instructed setting.  This was done using a Buhler wheat scale at the input of each mill, set to 

meter tempered clean wheat and verified by real time graphing at the superintendent’s 

office. Thus, since the wheat flow was not varied within each mill, it is not included as an 

explanatory variable in the model.   

 The level of experience of the miller might also influence milling efficiency since 

the miller is responsible for adjusting machine settings, temper time, flow rates etc.  For 

this study, individual shift data were not available on a sufficient number of variables to be 

able to control for the potential effect of an individual miller.  Each data point represents a 

daily average of the (typically three) shifts worked that day.  However, the data collection 

covered a sufficient time period (May 21, 2009 through Oct 11, 2009, 144 days) to allow 

each shift miller to perform several two-week rotations across shift times and across the 

two milling units.  The fact that millers were rotated in this manner should minimize any 
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potential correlation between miller experience and any of the other explanatory variables 

in the model such as temperature or mill unit.  Thus, even if miller experience is a relevant 

variable, the examination of correlation with included variables will indicate the direction 

of any potential bias in the estimated coefficients that results from its omission (see 

Studenmund, p. 170).    

 Other characteristics of the wheat grain such as protein content may also influence 

flour yield.  However, protein content was not recorded for this project.  Each mill pulled 

from the same wheat and the same blends were used for each mill. Differences could arise 

however, from the different performance of each cleaning house and from the fact that each 

mill did not always pull the same blend at the same time. 

 Additionally, measurement devices such as scales, moisture meters, and kernel 

counters for TKW have their own margins of accuracy.  For example, TKW was very 

reliant on how fast the machine counted by using vibration.  The vibration in itself creates a 

density segregation that can lead to errors in the kernels being counted and weighed.  

Process scales are accurate up to plus or minus 1.5%.  All of these factors can create errors 

in the data, and thus add to the error in any regression model.  
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CHAPTER III: DATA, ANALYSIS, AND RESULTS 

 Data were collected from two milling units to allow for estimation of the following 

model relating flour yield to grain and environmental variables.    

(1) Flour yield = f(moisture, tkw, temperature, humidity, downtime) 

3.1 Data Collection 

 Daily data were collected between May 21, 2009 and October 11, 2009, a time 

frame that included a seasonal change in the climate of the mill.  During this period, a total 

of 129 daily observations on flour yield were recorded.  Wheat use was measured using 

process scales for wheat-to-roll (WTR).  Yield was calculated by dividing pounds of flour 

per day by pounds of wheat used per day in each mill.  Flour moisture levels were not 

recorded so it was not possible to adjust flour yield to a constant moisture level.   

 A tempered wheat-to-roll sample was collected for each mill at the beginning of 

each shift.  This sample was taken to the lab where wheat moisture was determined on a 

Foss machine and a TKW count determined using a TKW machine. The shift tempered 

wheat to roll moisture results and TKW results were averaged to create average daily 

values for moisture and TKW. 

 Temperature and humidity data were collected every hour with a remote device on 

the roll floor of the mill.  Hourly readings were averaged to determine daily temperature 

and humidity. 

 Daily production reports were used to identify any occurrence of downtime on 

either A or B mill.  For estimation purposes, downtime is reported using two dummy 
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variables:  D1 – which takes a value of one if one shift experienced downtime, zero 

otherwise, D2 – taking a value of one if two or more shifts experienced downtime.  The 

occurrence of more than one downtime incident on a shift was not recorded.  

3.2 Data Description 

 Tables 3.1 and 3.2 present summary statistics for the data.  From the original data 

with 129 observations, days when fewer than three shifts were worked (11 for Mill A, 12 

for Mill B), or when downtime or other data was not recorded (10 for Mill A, 9 for Mill B)  

were dropped from the sample leaving a total of 108 observations for each mill.  Dropping 

days when only one or two shifts were worked also served to remove some outliers from 

the data set.  Since both mills are contained in the same complex, data on temperature and 

relative humidity are similar for both, with the difference arising from the slight variation in 

the days included in each sample.  

 As noted, both mills have similar capacity with average flour output of 

approximately 9,000 cwt/day in mill A, and 9,700 cwt/day in mill B.  Average yield is 

slightly better in mill B at 77.57% compared to 76.04% in mill A.  Wheat characteristics 

are similar for both in terms of moisture level and TKW measures.  Downtime occurred 

more frequently on A mill with 24 days having one shift experience downtime and 5 days 

with two shifts having downtime.  On B mill, 19 days had one shift experience downtime, 

and 3 days had two shifts experience downtime.  Downtime was not recorded on all three 

shifts on any day during the sample period.  
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Table 3.1: Summary Statistics for A Mill (n=108) 

Variable Definition Mean St.Dev. Min. Max. 

Wheat Cwt of wheat-to-roll 11,831 484 10,039 12,564 

Moisture Wheat-to-roll % moisture 15.32 0.41 14.00 16.34 

Flour Cwt of flour 8,995 391 7,357 9,663 

Yield Cwt flour / cwt wheat (%) 76.04 1.61 71.64 82.95 

TKW Thousand kernel weight (grams) 34.17 1.82 29.66 38.26 

Temp Avg daily temp. (F) 88.90 6.81 70.46 101.46 

Rel.Hum. Avg. daily relative humidity 39.71 6.87 17.15 59.67 

D1 = 1 if 1 shift had downtime 0.222 0.42 0 1 

D2 = 1 if 2 shifts had downtime 0.046 0.21 0 1 

 (79 days with no downtime)     

 

 

Table 3.2: Summary Statistics for B Mill (n=108)

Variable Definition Mean St.Dev. Min. Max. 

Wheat Cwt of wheat-to-roll 12,518 457 10,427 13,112 

Moisture Wheat-to-roll % moisture 15.22 0.38 13.88 16.10 

Flour Cwt of flour 9,709 379 8,136 10,332 

Yield Cwt flour / cwt wheat (%) 77.57 1.53 72.64 82.30 

TKW Thousand kernel weight (grams) 34.64 1.75 30.40 39.00 

Temp Avg daily temp. (F) 88.69 6.96 70.46 101.46 

Rel.Hum. Avg. daily relative humidity 39.53 7.11 17.15 59.67 

D1 = 1 if 1 shift had downtime 0.176 0.38 0 1 

D2 = 1 if 2 shifts had downtime 0.028 0.17 0 1 

 (86 days with no downtime)     
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3.3 Analysis 

 A linear regression model was used to investigate correlations between wheat and 

mill characteristics and flour yield.  The dependent variable in the model is yield, 

calculated as pounds of flour produced divided by pounds of wheat used per day in each 

mill.  The independent variables represent characteristics of the incoming wheat and the 

operation of the mill. The baseline model specification is represented by equation (2) 

(2) Yield = α + β1 Moisture + β2 TKW + β3 D1 + β4 D2 + β5 Temp + β6 RH + ε  

where Moisture and TKW represent the moisture content and thousand kernel weight of the 

wheat, D1 and D2 are dummy variables indicating downtime as described above, and Temp 

and RH are the daily average temperature (in degrees Fahrenheit) and % relative humidity 

respectively.  Quadratic relationships between moisture, temperature, and relative humidity 

with yield will be investigated using specifications adding squared terms on those 

variables.  Separate models are estimated for the A and B mills, but a joint model will also 

be estimated to investigate whether the difference in milling efficiency between the two 

mills, as indicated by the data in tables 3.1 and 3.2, remains after one controls for wheat 

and environmental characteristics, and downtime.   

3.4 Results 

 Table 3.3 and 3.4 presents the regression results for different specifications of the 

models. Table 3.3 presents estimates of the baseline regression model for each mill. Table 

3.4 adds estimates of the quadratic terms for moisture, temperature, and relative humidity. 
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Table 3.3: Linear regression models for wheat yield

Variable  Mill A t-stat Mill B t-stat 

Constant  68.707  110.137  

Moisture  0.764 1.57 -1.487*** -3.04 

TKW  0.020 0.25 -0.147** -1.81 

Temp  -0.060** -2.10 -0.044* -1.71 

Rel.Hum.  0.010 0.44 -0.023 -1.13 

D1  -0.433 -1.21 -0.042 -0.12 

D2  -0.949 -1.38 -2.076** -2.48 

R-Sq  0.228  0.221  

Adj R-Sq  0.182  0.175  

N  108  108  

*, **, *** indicate statistical significance at the 10%, 5%, and 1% levels. 

 

 

 

Table 3.4: Quadratic regression models for wheat yield

Variable  Mill A t-stat Mill B t-stat 

Constant  350.824  -76.898  

Moisture  -36.404** -2.06 26.477 1.35 

Moisture^2  1.213** 2.11 -0.913 -1.42 

TKW  0.003 0.04 -0.143 -1.63 

Temp  0.137 0.31 -0.676 -1.49 

Temp^2  -0.001 -0.42 0.004 1.39 

Rel.Hum.  -0.313** -2.08 -0.013 -0.09 

RelHum^2  0.004** 2.14 0.000 0.03 

D1  -0.226 -0.65 -0.039 -0.11 

D2  -0.730 -1.09 -2.181** -2.60 

R-Sq  0.306  0.251  

Adj R-Sq  0.243  0.183  

N  108  108  

*, **, *** indicate statistical significance at the 10%, 5%, and 1% levels. 
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 Results from the linear models indicate that the independent variables explain about 

22% of the daily variability in yield for both mills.  Adding quadratic terms for moisture, 

temperature and humidity results in a slight increase in the adjusted R-square value for both 

mills. 

 The effect of higher moisture content in the wheat-to-roll is negative and 

statistically significant in the linear model for Mill B, but is positive and insignificant in the 

model for Mill A.  These conflicting results are not unexpected given the narrow range of 

moisture levels represented in the data set – from a minimum of 13.88% to a maximum of 

16.34%.  The fact that the range of moisture levels is so narrow is no accident since those 

moisture levels are targeted to be in the range in which milling efficiency is optimized.  If 

the range of moisture levels been wider, it is likely that the true effect would have been 

clearer.   

 The addition of quadratic terms for moisture content does little in terms of 

clarifying the effect.  For Mill A, the coefficient on the linear term is negative and that on 

the squared term is positive, and both coefficients are statistically significant at the 5% 

level.  The signs indicate that there is a moisture level at which yield is minimized (rather 

than maximized) – which is not what one would expect.  For Mill B, the coefficient on the 

linear term is positive and that on the squared term negative, indicating a moisture level at 

which yield is maximized.  The estimated coefficients imply that the derivative of yield 

with respect to moisture content is given by:  dY/dM = 26.477 – 0.913*2*Moisture.  

Setting that derivative equal to zero indicates that yield is maximized at a moisture level 

equal to 26.477/1.826 = 14.5%.   
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 The scatter plots of yield versus moisture in Figures 3.1 and 3.2 illustrate the 

narrow range of moisture levels in the data and the fact that there is no clear pattern in the 

relationship between moisture and yield within that range. Thus, the difference in the 

regression results from the two mills is not surprising.  The apparent outlying observations 

with low moisture levels in both mills (14.00 in Mill A, 13.88 in Mill B) did not influence 

the regression results.  When the linear and quadratic models were estimated without those 

low moisture observations there were no changes in coefficient signs or significance levels. 

 

Figure 3.1:  Yield vs Moisture (A Mill) 
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Figure 3.2:  Yield vs Moisture (B Mill) 
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 The effect of Thousand Kernel Weight is also not consistent across the two mills – 

being positive for Mill A and negative for Mill B.  Given these estimates, the null 

hypotheses, Ho: B TKW ≤ 0, cannot be rejected.  In other words, we do not have evidence 

that higher TKW values result in greater milling efficiency.  

 As expected, the effect of downtime is consistently negative for both mills, but the 

only statistically significant coefficient estimate is for the variable D2 in Mill B.  The 

estimated coefficient of minus 2.07 indicates that, ceteris paribus, yield is 2.07% lower on 

a day when two shifts experience downtime compared to a day when no shift experiences 

downtime.  To put that number in perspective, assume that a mill grinds 21,000 bu of wheat 
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per day and that average yield is 77% yielding 970,200 lbs. of flour and 289,800 lbs. of by-

product.  If wheat cost $7.60/bu ($0.13/lb.) the cost of wheat is $159,600.  If the prices of 

flour and by-product are $0.22/lb. and $0.08/lb., total revenue is $236,628 and gross 

margin for the day is $77,028.  Now assume that the mill experiences one hour of 

downtime on two shifts, reducing both the total amount of wheat ground (by a factor of 

1/12) and milling efficiency from 77% to 74.93%.  The total amount of wheat ground falls 

to 19,250 bu at a cost of $146,300.  The total amount of flour produced is 865,442 lbs. 

which, with by-product, results in total revenue of $213,562.  The gross margin for the day 

falls by $9,776.  In the sample data, only around 3.5% of days had two shifts with 

downtime, which would translate to approximately 13 days per year.  Eliminating the 

downtime events on those 13 days would increase the annual margin by $126,960.   

 Temperature is the only variable that is statistically significant in both linear models 

and the estimated coefficient is similar for both mills at -0.060 for Mill A and -0.044 for 

Mill B.  The null hypotheses, Ho: BTemp ≥ 0, is rejected and we conclude that higher 

temperatures reduce milling efficiency.  Using a value of -0.05, the approximate average of 

the coefficients in the linear models for A Mill and B Mill, we can investigate the economic 

significance of the effect of temperature. Assume, as above, that a mill grinds 21,000 

bu/day with average yield of 77 % resulting in a daily gross margin of $77,028.  In our 

data, the average daily temperature was approximately 88F with a minimum of 

approximately 70F.  Reducing the average ambient temperature from the 88F to 70F is 

estimated to increase yield by 18*0.05 = 0.90%, from say 77% to 77.9%.  Using the same 
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prices as above, that increase in yield is calculated to increase daily gross margin by 

$1,588.  Over 365 days, the total impact amounts to almost $580,000.   

 Adding quadratic terms for temperature did not appear to generate a significant 

improvement in model fit.  While overall Adj R-Sq does increase when quadratic terms for 

moisture, temperature and relative humidity are added, both the linear and quadratic terms 

on temperature are statistically insignificant in the models for both mills, and, as with 

moisture, the curvature implied by the coefficient signs is different for each mill.  Figures 

3.3 and 3.4 plot yield against temperature and neither provide strong evidence in favor of a 

quadratic specification.   

Figure 3.3:  Yield vs Temperature (A Mill) 
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Figure 3.4:  Yield vs Temperature (B Mill) 
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 The effect of relative humidity was not statistically significant in the linear models 

for both mills. The coefficients were statistically significant at the 5% level in the quadratic 

specification for Mill A – however, the signs were unexpected in that they suggested a 

point where yield was minimized rather than maximized.  Coefficients in the quadratic 

model for Mill B were not statistically significant.  Since the data (see Figures 3.5 and 3.6) 

and analysis fail to indicate a consistent effect of relative humidity on yield, no economic 

analysis is performed for this variable.   
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Figure 3.5:  Yield vs Relative Humidity (A Mill) 

70
75

80
85

Y
ie

ld
-A

20 30 40 50 60
RelHumA

 

Figure 3.6:  Yield vs Relative Humidity (B Mill) 
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3.4.1 Comparing Mill Efficiency 

 The summary statistics (Tables 3.1 and 3.2) suggest that B Mill, with an average 

yield of 77.57%, operates more efficiently than A Mill, where the average yields is 76.04%.  

However, such a comparison based on simple averages can be misleading given that 

milling efficiency is influenced by several variables, the levels of which may not be equal 

for both mills.  Furthermore, the regression results in Tables 3.3 and 3.4 do not allow for 

any inference about comparative efficiency since they are estimated separately for both 

mills.  However, if the data from both mills is pooled, a model can be estimated that allows 

for an inference about relative efficiency holding other variables constant.  The model to be 

estimated is as follows: 

(3) Yield = α + β1 Moisture + β2 TKW + β3 D1 + β4 D2 + β5 Temp + β6 RH + β7 A + ε  

In this model, the variable A is a dummy variable that takes a value of 1 if an observation is 

from A Mill, zero otherwise.  The estimated coefficient on A is an estimate of the 

difference in efficiency between A Mill and B Mill, holding constant the values of the other 

variables in the model.  Thus, if the estimated value for β7 is negative it suggests that A 

Mill operates less efficiently than B Mill.  The regression model estimates for equation (3) 

are presented in Table 3.5.  
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Table 3.5: Pooled model for wheat yield 

Variable  Coefficient t-stat  
 

Constant  87.333    

Moisture  -0.179 -0.49   

TKW  -0.081 -1.32   

Temp  -0.045** -2.22   

Rel.Hum.  -0.004 -0.26   

D1  -0.372 -1.4   

D2  -1.605*** -2.89   

A Mill  -1.495*** -7.00   

R-Sq  0.264    

Adj R-Sq  0.239    

N  216    

*, **, *** indicate statistical significance at the 10%, 5%, and 1% levels. 

 

 The coefficient on A Mill is negative and highly significant, indicating that A Mill 

operates less efficiently than B Mill.  The estimated coefficient indicates that, when 

moisture, TKW, downtime, temperature and humidity are all held equal, the yield from A 

Mill is predicted to be 1.495% lower than that of B Mill.  The daily revenue loss associated 

with that yield reduction is estimated to be $2,637 for a mill grinding 21,000 bu of wheat 

per day and assuming values of $0.22/lb. and $0.08/lb. for flour and by-product.  Over 365 

days, the loss in revenue amounts to $962,571.  
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CHAPTER IV: CONCLUSIONS AND RECOMMENDATIONS 

 The goal of this project was to estimate the effects of different variables on flour 

yield in two commercial wheat mills.  This was done by collecting a sample of data from 

two mills, and using a linear regression model to provide estimates of the effect on daily 

flour yield of each variable.  The economic significance of each variable was estimated 

using coefficients from the regression models and assuming prices for wheat, flour, and 

wheat milling by-product.   Results indicate that mill temperature and downtime have 

significant effects on flour yield.  The effects of moisture, TKW, and relative humidity 

were not statistically significant.  Higher mill temperatures were associated with reductions 

in flour yield.  A pooled regression model investigated comparative efficiency of the two 

mills in the sample.  One mill was found to operate less efficiently that the other with an 

estimated difference in yield of approximately 1.5% holding constant the other variables in 

the model. 

4.1 Recommendations  

4.1.1 A Mill vs. B Mill.  A significant economic benefit would be obtained by increasing 

the efficiency of A Mill to the level currently attained by B Mill.  The annual reduction in 

gross margin due to inefficiency in A Mill is estimated at $962,571.  A comparison of the 

two mills’ flow sheets should be completed, including roll, sifter, and purifier surfaces.  

Plans should be considered to make A Mill’s flow similar to B Mill’s flow.  Equipment 

changes may also have to be considered to improve A Mill’s yield. 

4.1.2 Downtime.  The occurrence of downtime was estimated to have a negative impact on 

flour yield.  The effect was statistically significant in B Mill when a day experienced two or 
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more shifts with downtime.  Compared to a day with no downtime, the occurrence of 

downtime on two or more shifts was estimated to reduce daily gross margin by $9,766.  

The annual cost for days experiencing downtime on two or more shifts was estimated at 

$126,960.  These calculations include production losses associated with the mill not being 

in operation (assuming each downtime event shuts production down for one hour) in 

addition to yield losses.  Downtime can be prevented by identifying and developing 

preventive and predictive maintenance.  Part of each miller’s training should include 

downtime education and a system of communication so that maintenance and performance 

issues can be addressed before they result in unscheduled downtime. 

4.1.3 Temperature on the roll floor.  Higher temperatures in the mill were found to have a 

negative impact on yield.  The effect was statistically significant for both mills.  Reducing 

mill temperature from 88F, the average temperature in the data sample, to 70F was 

estimated to increase daily gross margin by $1,588 in a mill grinding 21,000 bushel per 

day.  Installation of a climate control system in a commercial mill represents a substantial 

capital investment but the potential gains identified in this project suggest that additional 

investigation of the costs and benefits of that investment is warranted.  

4.2 Future considerations 

Data were not available to analyze flour yield on a shift by shift basis for this project. It is 

recommended that such an analysis be performed before any management actions are 

implemented on the basis of findings from this project.  Analyzing yield on a shift by shift 

basis allows for the investigation of effects on yield associated with: a) individual millers 

and b) individual shifts. 
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4.2.1 Shift effects  

Shifts can be organized either in a rotating, a continuous or a discontinuous fashion.  

Shift work in general disrupts biological rhythms, sleep and social life.  In addition, it can 

lead to a number of clinical and non-clinical problems.  It retards human performance and 

increases the likelihood of industrial accidents (Pati, Chandrawanshi, and Reinberg; 2001).  

Although human performance is decreased, shift work is still the most economical way to 

run a flour mill.  Most commercial mills run 24 hours a day, allowing machine cost to be 

spread out over more units.    

It is possible that flour yield varies systematically by shift.  For example, night time 

shifts may consistently produce lower yields than daytime shifts.  Why might that occur? 

One factor is that the day shift has management present and more resources available to 

help and monitor production efficiency.  Consideration could be given to adding 

management supervision to each shift or tying the shift miller’s pay to the performance on 

the shift.  Worker fatigue is another factor.  Millers rotate shifts every two weeks and 

studies show that the human body is negatively affected by this disruption to the biological 

rhythms of the human body.  Consideration could be given to not rotate shifts and 

permanently assign shifts with incentives tied to performance, or shift rotations could be 

shortened and the direction of rotation changed.  Pati, Chandrawanshi and Reinberg (2001) 

reported that shift rotations of 3-4 days and the direction of rotation being 1st-2nd-3rd can 

lessen worker fatigue. 
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4.2.2 Miller effects  

It is also possible that individual millers may have a significant effect on yield, 

perhaps due to skill, training or experience.  If the skill level of an individual miller proves 

to have an impact on yield, then training for all millers with the goal of improving 

performance and making yield more consistent between millers would be beneficial.  A 

mentoring program may help get less skilled and experienced millers to perform better.  

Education classes on milling, distance learning in milling, and incentive programs could be 

considered to raise the awareness of how critical yield is to the profitability of the plant. 

Effects on yield due to shift effects or to the effect of individual millers may help 

explain some of the results obtained in this study such as the difference in yield between 

the two mills.  If shift and miller effects are relevant, they need to be regarded as omitted 

variables in this analysis, thus raising the possibility of bias in the resulting coefficient 

estimates.  For that reason it is recommended that the study be repeated using data from 

individual shifts before any changes are implemented on the basis of the current analysis.  
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