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Abstract: This paper revisits the statistical specification of near-multicollinearity in the logistic regression model. 
We argue that the ceteris paribus clause, which assumes that the maximum likelihood estimator of β remains con-
stant as the correlation ( ρ) between the regressors increases, invoked under the traditional account of near-mul-
ticollinearity is rather misleading. We derive the parameters of the logistic regression model and show that they 
are functions of ρ, indicating that the ceteris paribus clause is unattainable. Monte Carlo simulations confirm 
these findings and further show that: coefficient estimates and related statistics fluctuate in a non-symmetric, 
non-monotonic way as |ρ|→1; that the impact of near-multicollinearity is centered on the estimates of β; and that 
the impact on substantive inferences does not necessarily follow what the traditional account implies.
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1  Introduction
In econometrics, statistics and related disciplines, near-multicollinearity is seen as a pervasive problem that 
can have significant consequences for estimation and the reliability of substantive inference. Traditionally, 
when regressors in a regression model are perfectly or nearly perfectly correlated, estimates of the individual 
regression coefficients become unstable and the inferences based on the model may be misleading. This 
condition is known as multicollinearity (Mason, Webster, and Gunst 1975). Multicollinearity occurs when 
variables in the model are correlated to an extent that individual regression coefficient estimates become 
unreliable. When the regressors have an exact linear relationship, they are said to be perfectly collinear. 
When the relationship between the predictor variables is almost linear (but not exact), this results in the phe-
nomenon known as near-multicollinearity, the problem specifically addressed in this paper and frequently 
encountered in the applied literature.

The problems traditionally associated with near-multicollineairty in the logistic regression model are 
similar to those traditionally found for the linear regression model (Menard 2002). This argument is based 
on the premise that the logistic regression model can be expressed linearly in terms of the log-odds as  
 ln( p/1–p) = β′Xi+ei, where p is the mean of the binary dependent variable (Yi), β is a vector of parameters, Xi is 
a (k × 1) vector of explanatory variables, and ei is a zero mean IID random error term. Therefore, similar to the 
linear regression model, near-multicollinearity in the logistic regression model may lead to near-singularity 
among the columns of X, resulting in numerical instability, inflated variances of the maximum likelihood 
coefficient estimators, and misleading inferences. Many of the diagnostics suggested in the literature use the 
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linear form of the logistic regression for detecting problems with near-multicollinearity (e.g. variance infla-
tion and tolerance factors) (Hosmer and Lemeshow 2000; Menard 2010).

Spanos and McGuirk (2002) challenge the traditional account of near-multicollinearity for the linear 
regression model. The traditional account relies upon a ceteris paribus clause that assumes that the estima-
tors of β and the R2 remain constant as |ρ|→1, where ρ represents the correlation between two regressors. 
However, the estimators of β and R2 are in fact functions of ρ and change as |ρ|→1. This implies that changes 
in associated statistics, such as the variances [Var( β)] and t-ratios [τ( β)] of the estimators will be different 
than previously thought. In fact, Spanos and McGuirk (2002) conclude that “the changes in the relevant 
statistics [Var( β), τ( β)] are rather different than the usual account suggests; the ceteris paribus clause is unat-
tainable and the traditional account needs to be reconsidered (p: 369).” It is the unattainable ceteris paribus 
clause that is also invoked when examining multicollinearity in the logistic regression model that is of major 
concern in this paper. It is the link between the linear regression model and linearized form of the logistic 
regression model in terms of the log odds that makes the findings from Spanos and McGuirk (2002) relevant 
in re-evaluating the statistical specification of near-multicollinearity in the logistic regression model. Deriva-
tions by Scrucca and Weisberg (2004) show that the parameters of the logistic regression model may be func-
tions of ρ. Thus, the ceteris paribus clause is unlikely to hold for the logistic regression model.

The purpose of this paper is to revisit the statistical specification of near-multicollinearity in the logis-
tic regression model under the assumption of linearity of the predictor or index function. Generalizing the 
derivations from Scrucca and Weisberg (2004), we derive the parameters of the logistic regression model in 
terms of the correlation coefficient, ρ, between the regressors in the model. This parameterization allows for 
an investigation of near-multicollinearity in the logistic regression model and why the ceteris paribus clause 
is not appropriate. Evidence from simulations confirm these findings, making the impact of near-multicollin-
earity different than previously thought. The results in this paper extend what Spanos and McGuirk (2002) 
find with regards to near-multicollinearity in the linear regression model to the logistic regression model, 
but differ in that the the regression function is nonlinear and the impacts of near-multicollinearity are more 
related to the changes in the parameter estimates of the regressors.

The paper proceeds as follows. Section 2 reviews the specification of near-multicollinearity for the linear 
regression model. In Section 3, we examine the problem of near-multicollinearity in the logistic regression 
modeling framework. Section 4 simulates a simple logistic model to illustrate the impacts of near-multicol-
linearity on parameter estimates, associated standard errors and asymptotic t-ratios. Section 5 concludes and 
provides some general findings.

2  Background: Multicollinearity in the linear regression model

In the linear regression model y = Xβ+e, perfect multicollinearity occurs when at least one of the columns of 
X is a linear transformation of the others. This situation occurs when the correlation ( ρ) between the regres-
sors is equal to one in absolute value. Perfect multicollinearity results in parameter identification problems 
since the (X′X) matrix is singular. Thus, the OLS estimators, ( 1ˆ ) ,yβ −= ′X X X  and their associated variances/

covariances, � 2 1ˆ ˆ( ) ( )cov sβ −= ′X X  (where 2 ˆˆ e es
T K

′=
−

), cannot be estimated. On the other hand, if det(X′X)≈0 but 
(X′X) is still nondegenerate, then we have the associated problem of near-multicollinearity. Simply put, near-
multicollinearity occurs when |ρ|≈1. When the regressors are highly correlated in this way, the data matrix is 
ill-conditioned, even though the OLS estimators still exist. However, high correlation among the regressors 
may lead to numerical instability in the precision and significance of the estimates of β.1

Spanos and McGuirk (2002) explore in detail the problem of near-multicollinearity in the linear regres-
sion model. They consider the following linear model:

β β β σ= + + + ∼ 2
0 1 2 2 , (0, )t t t t ty x x e e N

1 See Greene (2011), page 256 for a more detailed discussion of the symptoms and consequences of near-multicollinearity.
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Spanos and Mcguirk (2002) show that the OLS estimators of β, σ2 and R2 are:

33 12 13 22 33 22 13 12 22 33
0 1 1 2 2 1 22 2

22 33 22 33

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ, , 
ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 )

y x x
σ σ ρσ σ σ σ σ ρσ σ σ

β β β β β
ρ σ σ ρ σ σ

− −
= − − = =

− −

22
33 12 12 13 22 33 22 132 2 2 23

11 2 2
22 3322 33 11

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ2 ˆˆˆ ˆ ˆ;  1 ;  , where
ˆ ˆˆ ˆ ˆˆ(1 )

R
σ σ ρσ σ σ σ σ σ σσ

σ σ ρ
σ σρ σ σ σ

− +
= − = − =

−

1 2 1 3 2
1

1ˆ ( )( ), , 1, 2, 3;  ;  ;  .
T

ij it i jt j t t t t t t
t

z z z z i j z y z x z x
T

σ
=

= − − = = = =∑

They further show that the estimated variances of the above estimators for β take the form:

2 2

1 22 2
22 33

ˆ ˆ( ) , ( ) ,
ˆ ˆˆ ˆ(1 ) (1 )

Ts TsVar Varβ β
ρ σ ρ σ

= =
− −

 where 
2

2 1
ˆ

;
3

T

tt
e

s
T

==
−

∑

and the corresponding t-statistics, τ( βi) are:

2 21 2
1 22 2 33

ˆ ˆ
ˆ ˆˆ ˆˆ ˆ( ) (1 ) , ( ) (1 )

s T s T
β β

τ β ρ σ τ β ρ σ= − = −

The conventional account of near-multicollinearity in the linear regression model is associated with 
the effects on 1 2 1

ˆ ˆ ˆ( ), ( ), ( ),Varτ β τ β β  and 2
ˆ( )Var β  as ˆ| | 1ρ → , ceteris paribus. The ceteris paribus clause 

assumes that 2ˆ ˆ, ,β σ  and R2 are held constant, when examining the impact as ˆ| | 1ρ →  on the statistics 
1 2 1

ˆ ˆ ˆ( ), ( ), ( ),Varτ β τ β β  and 2
ˆ( ).Var β  However, because 2ˆ ˆ, ,β σ  and R2 are all functions of ˆ ,ρ  the changes 

in the associated varainces and t-ratios will be different than the traditional account implies. Therefore the 
ceteris paribus assumption fails to hold.

The problems traditionally associated with near-multicollineairty in the logistic regression model are 
similar to those traditionally found for the linear regression model (Menard 2002). The analysis, however, 
is not directly applicable to the logistic regression model since the variance-covariance structure of the esti-
mated parameters for the logistic regression model is different than that of the linear regression model and 
the regression is nonlinear. In the next section, the problem of near-multicollinearity in the logistic regression 
model is examined using the probabilistic reduction approach (Bergtold, Spanos, and Onukwugha 2010).

3  Multicollinearity in the logistic regression model
Let Yi represent a Bernoulli random variable with mean parameter p and Xi be a (k × 1) vector of regressors. The 
logistic regression model takes the form Yi = E(Yi|Xi = xi)+ei = [1+exp(–β′Xi)]–1+ei. Bergtold, Spanos, and Onuk-
wugha (2010) show that a sufficient condition for the existence of the model is the compatability between the 
conditional distribution fY|X(Yi|Xi;β) underlying the model and its associated inverse conditional distribution 
fX|Y=j(Xi|;θj). This condition is usually examined in logistic discriminant analysis, and has been explored by, 
among others Kay and Little (1987) and Cox and Snell (1989). The conditional distribution is usually modeled 
in logistic regression, whereas the inverse conditional distribution is modeled in discriminant analysis. While 
discriminant analysis is not commonly utilized in econometrics, the link between logistic regression and 
disciminant analysis provides a strong framework upon which to examine near-multicollinearity in the logis-
tic regression model. The compatability condition provides the basis for a systematic approach to model 
specification and ensures that the underlying joint distribution of Yi and Xi exists, which is a requirement for 
the existence of a model (Bergtold, Spanos, and Onukwugha 2010). Thus, the functional specification of the 

Brought to you by | Kansas State University Libraries
Authenticated

Download Date | 1/7/16 9:31 PM



4      B. Atems and J. Bergtold: Revisiting the statistical specification of near-multicollinearity

logistic regression is intertwined with the inverse conditional distribution that captures the needed probabil-
ity information in the explanatory variables, which is often overlooked (e.g. see Kay and Little 1987; Arnold, 
Castillo, and Sarabria 1999).

The model specification approach [the probabilistic reduction (PR) approach] adopted in this paper pro-
vides a more robust specification for examining near-multicollinearity. Traditional methods of simulating 
conditional binary discrete choice processes (e.g. Ryan 1997; Hosmer and Lemeshow 2000) may not capture 
or produce the true underlying parameters of the model or may impose restrictions upon the model, thereby 
limiting its flexibility. For example, the predictor or index function of the logisitc regression model may be 
nonlinear in the variables. If the inverse conditional distribution is multivariate normal with heterogenous 
covariance matrix, then the predictor or index function will be a quadratic function of the explanatory vari-
ables (McFadden 1976).

Following Bergtold, Spanos, and Onukwugha (2010), the logistic regression model can be expressed as:

 1[ 1 { ( ;  ) }]i i iY exp eη β −= + − +X  (1)

where | 1 1

| 0 0

( ; )
( ;  ) , ,

( ; ) 1
Y i

i
Y i

f pln ln
f p

θ
η β κ κ

θ
=

=

   
= + =   −  

X

X

X
X

X
 and p = Prob(Yi = 1). Equation (1) is usually reparametized 

such that β = β(θj), j = 0, 1. To date, the literature examining near-multicollinearity in the logistic regression 
model has not captured the fact that β = β( ρ), where ρ is the correlation between the explanatory variables 
when fX|Y=j(Xi;θj) is multivariate normal. Thus, one can show that the traditional account of near-multicollin-
earity and the invocation of the ceteris paribus clause are unattainable, as in the case for the linear model.

Following the commonly used specification in the literature of linearity in the variables and parameters 
of the function η(·), assume that fX|Y=j(Xi;θj) is multivariate normal with a homoegenous covariance matrix. 
That is:

 
θ π µ µ

− −−
=

 
= − − −′ ′ 

 

1
12 2 1( ; ) (2 ) | | ( ) ( )

2

k

Y j i j i j i jf expX| X V X V X
 

(2)

where μj is the mean vector for Xi conditional on Yi = j, and V is the covariance matrix for Xi.2 Following 

Day and  Kerridge (1967), a more general distributional functional form θ α µ µ δ−
=

 
= − − −′ ′ 

 
11( ; ) ( ) ( ) ( )

2Y j i j i j i j if expX| X X V X X 

θ α µ µ δ−
=

 
= − − −′ ′ 

 
11( ; ) ( ) ( ) ( )

2Y j i j i j i j if expX| X X V X X  can be expressed, as well. When δ(Xi) = 1, fX|Y=j(Xi;θj) is distributed multivariate normal. 

However, if δ(Xi)≠1, this functional form can represent a wider range of alternatives, including skewed 
 distributions (Byth and McLachlan 1980). Thus, the results from this paper should hold for more general 
specifications of the logistic regression model than when the inverse conditional model is multivariate 
normal. This flexibility may be particularly important in economics when considering cases with a skewed 
distribution.

With the above assumptions, the | 1 1 1 1 1
1 0 0 0 1 1

| 0 0

( ; ) 1 1[( ) ] ,
( ; ) 2 2

Y i
i

Y i

f
ln

f
θ

µ µ µ µ µ µ
θ

= − − −

=

   
= − + −′ ′ ′     

X

X

X
V X V V

X
 giving:

 0( ; ) ,i iη β β β= + ′X X  (3)

where 1 1
0 0 0 1 1

1 1 ;
1 2 2

pln
p

β µ µ µ µ− −   
= + −′ ′   −  

V V  and β = [( μ1–μ0)′V–1].

Without loss of generality, standardize Xi by dividing each element by its respective standard  deviation, 

so  that Var(Xm,i) = 1 for m = 1, …, k. Then repartition the covariance matrix, V so that 
1

,m

m mP
ρ

ρ −

 ′
= 

 
V  where 

cov(Xm, Xs) = ρm,s is the correlation between Xm and Xs;  ρm is the (k–1 × 1) vector of correlation coefficients 

2 Arnold, Castillo, and Sarabria (1999) note that linearity in the parameters and variables for the predictor or index function re-
quires severe restrictions and that many of the applied logistic regression models in the literature may be questionable in light of 
this information. Furthermore, note that the covariance matrix V is not conditional on Yi for this case. 
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between Xm and all the other explanatory variables; and P–m is the remainder of the covariance matrix V, 
with 1 s along the diagonal and correlation coefficients on the off-diagonal elements between the remaining 
regressors. The repartition of V allows us to isolate the parameterization of the coefficient βm for m = 1, …, k. 
Invoking the Schur lemma following Spanos and McGuirk (2002):

 

1 1 1
1

1 1 1 1 1 1
m m

m m m m m m m

P
P P P P

γ γ ρ

ρ γ ρ γ ρ

− − −
− −

− − − − − −
− − − −

 − ′
= − +′ 

V
 

(4)

where 11 .m m mPγ ρ ρ−
−= − ′  Plugging equation (4) into the formula for β in equation (3), gives:

 

1 1 1
1, 0, 1, 0,

1 1 1 1 1 1
1, 0, 1, 0,

( ) ( )
( ) [ ]( )

m m m m m m m

m m m m m m m m m m m m

P
P P P P

β γ µ µ γ ρ µ µ
β

β ρ γ µ µ ρ γ ρ µ µ

− − −
− − −

− − − − − −
− − − − − − −

   − − −′
= =   − − + + −′     

(5)

where μj,m is the mth element of μj for j = 0, 1; and μj,–m represents the (k–1 × 1) vector of μj without μj,m for j = 0, 1. 
Equation (5) illustrates that βm for m = 1, …, k are functions of ρm. Furthermore, βm is affected by the correlation 
between other explanatory variables via 1

mP−
− . Thus, the ceteris paribus clause is unattainable in the logistic 

regression model because β is a function of ρ.
Following Schaefer, Roi, and Wolfe (1984) and Gourieroux (2000), let �( 1| ; ) ( )i i MLE i iProb y F X Fβ β= = =′X  so 

that the asymptotic variance estimator of β can be written as Var( βMLE) = (X′ΩX)–1, where 1= [ (1 )]n
i i idiag F FΩ =−  

and X is the (n × k) dimensional matrix of regressors. Then, Var( βMLE) is a function of ρ through Fi. Consider 
the case where |ρm,s|→1 for some s = 1, …, k. If |βm|→∞, then Fi will aproach 0 or 1, depending on the sign of βm. 
This implies that Fi(1–Fi)→0 as |βm|→∞, suggesting that the Var( βMLE) may follow the shifts in βm as |ρm,s|→1 
for some s = 1, …, k. While changes in β with respect to ρm can be plotted using equation (5), Var( βMLE) and 
asymptotic t-ratios [τ( βMLE)] need to be examined using simulation methods as no closed form expressions 
exist for these statistics (Gourieroux 2000).3

4  Simulation
This section simulates a simple logistic regression model with two covariates to illustrate the impacts of near 
multicollinearity on parameter estimates, associated standard errors, and asymptotic t-ratios.

4.1  Logisitc regression model simulated

Assume that Xi = (x1,i, x2,i)′ conditional on Yi = j is bivariate normal with homogenous covariance matrix. That is:

µ σ ρσ σ

µ ρσ σ σ

    
 = ∼    
       

2
1, 1, 1 1 2

2
2, 2, 1 2 2

| , ji
i

i j

x
Y j N

x

where ρ = Corr(x1,i, x2,i). The inverse conditional distribution function can be expressed as (see Spanos 1986: 
p 119–121 and Bergtold, Spanos, and Onukwugha 2010):

 
( )

1 2 2
2 2

1 1, 2 2, 1 1, 2 2, 
| 1 2 2

1 2 1 2 1 2

( 1 ) 1 1( , ; ) 2
2 2 1

j j j j
Y j ji

x x x x
f x x exp

µ µ µ µρ
θ ρ

πσ σ σ σ σ σρ

−

=

         − − − − −  = ⋅ − + −                −   
X

 
(6)

3 We examine asymptotic t-ratios in this paper, however, similar results hold for other asymptotic test statisitcs, such as the 
 likelihood ratio or Wald test statistics.
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Let 
2 2

1 1, 2 2, 1 1, 2 2, 
2

1 2 1 2

1 1 2 ,
2 ( 1 )

j j j j
j

x x x xµ µ µ µ
ϑ ρ

σ σ σ σρ

        − − − − =− + −        −        
 

 so that equation (6) can be  
 
 rewritten as:

 

1
2 2

| 1 2
1 2

( 1 )( , ; )= { }
2Y j j ji

f x x expρ
θ ϑ

πσ σ

−

=

− ⋅X

 
(7)

Then:

 

| 1 1 2 1 1
1 0

| 0 1 2 0 0

( , ; ) { }
( , ; ) { }

Yi

Yi

f x x exp
ln ln

f x x exp

θ ϑ
ϑ ϑ

θ ϑ

=

=

 
  = = −
  

X

X
 

(8)

Combining equations (6) and (8) for j = 0, 1 simplifying, and rearranging terms gives:

2 2 2 2
1,1 1,0 1,1 2,1 1,0 2,0 2,1 2,0 2,1 2,0 1,1 1,0

1 0 12 2 2 2
1 2 1 21 2 1

1,1 1,0 2,1 2,0
22

1 2 2

2 ( ) 2 ( ) 2( )1
2(1 )

2 ( ) 2( )

x

x

µ µ ρ µ µ µ µ µ µ ρ µ µ µ µ
ϑ ϑ

σ σ σ σρ σ σ σ

ρ µ µ µ µ

σ σ σ

   − − − − −
− =− − + + −   −    

 − −
+ −  

    
(9)

Using the relationships in equations (1), (6), (8) and (9), the corresponding logistic regression model can 
be written as:

 1
0 1 1 2 2[1 { }] .i iY exp x x uβ β β −= + − − − +  (10)

From equations (3) and (9), it follows that:

 

2 2 2 2
1,1 1,0 1,1 2,1 1,0 2,0 2,1 2,0

0 2 2 2
1 21 2

2 ( )1
1 2(1 )

pln
p

µ µ ρ µ µ µ µ µ µ
β

σ σρ σ σ

  − − − 
 = − − +  −  −      

(11)

 

1,1 1,0 2,1 2,0
1 2 2

1 21

2( ) 2 ( )1
2(1 )

µ µ ρ µ µ
β

σ σρ σ

  − −
= −  −      

(12)

 

2,1 2,0 1,1 1,0
2 2 2

1 22

2( ) 2 ( )1
2(1 )

µ µ ρ µ µ
β

σ σρ σ

  − −
= −  −      

(13)

4.2  Simplifications

The simplifications below reduce the dimensionality of the problem being simulated without necessarily 
limiting the generalizability of the analysis, only affecting scaling of the results.

4.2.1  Admissable parameter values

In light of the statistical reparametizations shown above, it is important to determine the range of admissible 
values for which the model exists. The importance of this is emphasized by Spanos and McGuirk (2002). Let Σ 
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denote the the variance-covariance matrix of the inverse conditional distribution, then 
2
1 1 2

2
1 2 2

.
σ ρσ σ

Σ
ρσ σ σ

 
= 

 
  

 
Following this parametization, the above parameters {β0, β1, β2} are valid when (Spanos 1986):

 Σ σ σ ρ= − >2 2 2
1 2( ) (1 ) 0det  (14)

Condition (14) implies that the inverse conditional distribution given by equation (6) will not exist when 
Σ0. Thus, during simulations if det(Σ) = 0 then zeros are assigned for all the parameter values and associ-
ated statistics for that simulation run.

4.2.2  Simplification 1

Standardize the variables x1 and x2 by dividing them by σm for m = 1, 2, so that σ1 = σ2 = 1. It follows that equation 
(14) becomes det(Σ) = (1–ρ2) > 0. Thus, the admissible parameter range for ρ is ρe(–1, 1). Following this simpli-
fication, the parameters {β0, β1, β2} from equations (11) to (13) reduce to:

 

2 2 2 2
0 1,1 1,0 1,1 2,1 1,0 2,0 2,1 2,02

1 1,1 1,0 2,1 2,02

2 2,1 2,0 1,1 1,02

1 [ 2 ( ) ]
1 2(1 )
1 [ 2( ) 2 ( ) ]

2(1 )
1 [ 2( ) 2 ( ) ]

2(1 )

pln
p

β µ µ ρ µ µ µ µ µ µ
ρ

β µ µ ρ µ µ
ρ

β µ µ ρ µ µ
ρ

 
= − − − − + − −  −

= − − −
−

= − − −
−  

(15)

4.2.3  Simplification 2

Further, consider the following mean deviation forms of x1,i and x2,i:x1̅ = x1–μ1,0 and x2̅ = x2–μ2,0, where 
μm,0 = E(xm|Y = 0) for m = 1, 2. Then μm̅,0 = E(xm̅, |Y = 0) = 0 for m = 1, 2, making μm̅,1 = E(xm̅, |Y = 1) = μm,1–μm,0 for m = 1, 2. 
This further reduces the dimensionality of the parameters {β0, β1, β2} from equations (15) to:

 

2 2
0 1,1 1,1 2,1 2,12

1 1,1 2,12

2 2,1 1,12

1 [ 2 ( ) ]
1 2(1 )
1 [ 2 2 ]

2(1 )
1 [ 2 2 ]

2(1 )

pln
p

β µ ρ µ µ µ
ρ

β µ ρµ
ρ

β µ ρµ
ρ

 
= − − + −  −

= −
−

= −
−  

(16)

4.3  Monte Carlo simulation procedure

To generate binary choice data, we use a two stage process following Bergtold, Spanos, and Onukwugha (2010) 
and Scrucca and Weisberg (2004). First, using a binomial random number generator, realizations of the vector 
stochastic process {Yi, i = 1, …, n} are generated. Second, using Yi as the conditioning variable, the vector sto-
chastic process of predictors {Xi, i = 1, …, n} is generated using the bivariate normal inverse conditional dis-
tribution fX|Y=j(Xi;θj) using appropriate random number generators. Given these simplifications, Monte Carlo 
simulations are conducted for different mean pairs of ( μ̅11, μ̅21).4 Monte Carlo simulations involved conduct-
ing 1000 runs for all mean pair combinations for each value of ρ examined, where ρ was varied between 

4 Monte Carlo simulations were conducted for a large number of different mean pairs. All simulations and graphics were con-
ducted in MATLAB. These results are available upon request from the authors.
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8      B. Atems and J. Bergtold: Revisiting the statistical specification of near-multicollinearity

–1 and 1 by increments of 0.005 for the plots in Figure 1, with specific values reported in Tables 1 and 2. The 
means of β β β0 1 2

ˆ ˆ ˆ, , ,  their associated standard errors 0 1 2
ˆ ˆ ˆ[ ( ), ( ), ( )],se se seβ β β  and asymptotic t-ratios 

0 1 2
ˆ ˆ ˆ[ ( ), ( ), ( )]τ β τ β τ β  were calculated across runs.

4.4  Simulation results and discusssion

Simulation results for the mean pairs ( μ1̅1, μ2̅1) = (–1, –0.5), (–1, 1), (–0.5, –0.25), (0.25, 0.5), (0.5, 1), and 
(0.5, 2) for 15 different values of ρ ranging from –0.99 to 0.99 for ˆ

iβ  and ˆ( )ise β  for i = 1, 2 are provided in 

β1
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Figure 1 (continued)
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Tables 1 and 2. Figure 1 provides plots of the mean estimates of 1 2 1 2 1
ˆ ˆ ˆ ˆ ˆ, , ( ), ( ), ( ),se seβ β β β τ β  and 2

ˆ( )τ β  as 
|ρ|→1 for the mean pairs mentioned above. The mean pairs presented here were selected as representative 
of the general findings of the large number of runs conducted. Many of the results from the simulation for 
alternative mean pairs not shown follow the general patterns presented.

In general, contrary to the traditional account, the plots of β β1 2
ˆ ˆ, (and 0β̂ ) for all the mean pairs simu-

lated were not constant as |ρ|→1. Furthermore, as illustrated by the standard error estimates in Figure 1, 
ˆ( )se β did not always substatially inflate as |ρ|→1. Simulation studies by Ryan (1997) support this finding. 

If ˆ( )se β did become inflated, it was not necessarily distinguishable if it would increase as ρ→–1, ρ→1 or 
both. For example, 1

ˆ( )se β and 2
ˆ( )se β for the mean pair ( μ1̅, μ2̅) = (0.5, 2) in Figure 1(F) inflate as |ρ|→1 as 

the  traditional account suggests. However, for the mean pair ( μ1̅, μ2̅) = (–1, –0.5) in Figure 1(A), 1
ˆ( )se β and 

2
ˆ( )se β increases only as ρ→–1; and for the mean pair ( μ1̅, μ2̅) = (–1, 1) in Figure 1(B), 1

ˆ( )se β and 2
ˆ( )se β only 

increase as ρ→1. These results are supported by examining the corresponding changes in the the standard 
error estimates in Tables 1 and 2 for the associated mean pairs, as well. This is contrary to the traditional 
account of near-multicollinearity identified by Schaefer, Roi, and Wolfe (1984). A possible explanation for the 
difference is that traditionally, it is assumed β remains constant as |ρ|→1 (i.e. the ceteris paribus clause) when 
in fact this assumption is not attainable since β is a function of ρ. Of particular interest is that in general, 
the numerical results in Tables 1 and 2, as well as the plots in Figure 1 provide evidence that the estimates of 

ˆ( )se β  tend to follow the changes in β̂.  This is further corrborated by examining changes in ˆ ˆ ˆ( ) / ( )seτ β β β=  
as |ρ|→1. In each of the plots in Figure 1, when ˆ| |β increases, the ˆ| ( ) |se β increases; and for most of these 
cases, ˆ( )τ β was still statistically significant. Thus, τ β >ˆ( ) 1 in many cases, providing evidence that β̂  may be 
increasing at a faster rate than the ˆ( )se β as |ρ|→1. The implications of multicollinearity on statisitcal signifi-
cance are unclear a priori.

The ceteris paribus clause has a strong impact on the implications from near-multicollinearity for the 
logistic regression model. When it is shown that β and other related statistics are functions of ρ, the results 
seem to indicate that the traditional implications may not hold. Figure 1 provides evidence that ˆ( )se β may 
not become inflated and if they do it may not have an appreciable impact on statistical significance. For 
many of the plots examined using different mean pairs, β̂  remained statistically significant at the 5% level 
as |ρ|→1, while the magnitude of the test statistic did fluctuate as |ρ|→1. We expect the same results would 
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Figure 1: Plots of β βˆ ˆ, ( ),se  and ˆ( )τ β  for alternative mean pairs ( μ1̅, μ2̅) as ρ changes.
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10      B. Atems and J. Bergtold: Revisiting the statistical specification of near-multicollinearity

hold for other asymptotic test statistics, as well. The impact of the results was dependent upon the mean pair 
combination simulated and may be somewhat uncertain for a given dataset a priori, even if high correlation 
among the regressors is expected.

We conjecture from these findings that the systematic implications from near-multicollinearity may 
result from changes in β̂  as |ρ|→1 in the logistic regression model. For many of the simulations of different 
mean pairs, as ˆ| | 1, | | ,ρ β→ →∞  or got very large in magnitude. As seen in Tables 1 and 2, the inflation of β̂  
tended to be more severe as the absolute difference between μ1̅1 and μ2̅1 increased, indicating the scale of the 
data plays a role on the impact of near multicollinearity. Scaling tends to be more of a numerical issue and did 
give rise to problems during estimation when the absolute difference between μ̅11 and μ̅21 was larger [e.g. the 
simulation results were more erratic for mean pair ( μ1̅1, μ2̅1) = (–3, –1) in Tables 1 and 2 as |ρ|→1]. Given equa-
tion (10), the inflation in β̂  is expected as the denominator is a function of (1–ρ2), while the numerator is only 
a function of ρ. The findings here are different than the findings for the linear regression model presented by 
Spanos and McGuirk (2002) in that the implications of near-multicollinearity for the logistic regression model 
seem to be tied up with ˆ.β  Near-multicollinearity affects both the standard errors of β̂  and the associated 
t-ratios as in the linear regression model, but changes in the standard errors seem to follow the changes in ˆ.β  

Table 1: Simulation results for 1β̂  and 1
ˆ( )se β  for different mean pairs ( μ1̅1, μ2̅1) as ρ changes.

ρ  
 

( μ̅11, μ̅21) = (–3, –1) 
 

( μ̅11, μ̅21) = (–1,–0.5) 
 

( μ̅11, μ̅21) = (–1,1) 
 

( μ1̅1, μ̅21) = (–0.5, –0.25)

1β̂   1
ˆ( )se β 1β̂   1

ˆ( )se β 1β̂   1
ˆ( )se β 1β̂   1

ˆ( )se β

–0.99  –17.07  1.32e6  –41.63  1601.12  –0.50  0.51  –51.23  20.84
–0.95  –15.96  2299.90  –17.41  3.68  –0.51  0.23  –7.62  0.49
–0.90  –16.66  2.37e5  –7.84  0.67  –0.53  0.17  –3.83  0.24
–0.80  –31.89  1.37e10  –3.92  0.26  –0.56  0.12  –1.95  0.14
–0.65  –7.51  1.88  –2.31  0.15  –0.60  0.10  –1.15  0.10
–0.50  –4.93  0.63  –1.68  0.11  –0.67  0.089  –0.84  0.084
–0.25  –3.54  0.32  –1.21  0.090  –0.81  0.084  –0.61  0.073
0   –3.05  0.25  –1.001  0.082  –1.01  0.088  –0.50  0.069
0.25   –2.97  0.23  –0.94  0.082  –1.34  0.10  –0.47  0.071
0.50   –3.38  0.26  –1.00  0.090  –2.01  0.14  –0.50  0.079
0.65   –4.15  0.34  –1.18  0.10  –2.89  0.20  –0.59  0.090
0.80   –6.30  0.65  –1.69  0.14  –5.07  0.41  –0.84  0.12
0.90   –13.45  3.48  –2.91  0.21  –10.94  1.74  –1.45  0.16
0.95   –82.44  1.03e14  –5.44  0.35  –50.11  5.32e10  –2.72  0.24
0.99   –31.86  1.01e4  –26.16  2.48  –32.10  9507.56  –12.76  0.80

ρ   ( μ̅11, μ̅̅21) = (–0.1, 1)  ( μ̅11, μ̅21) = (0.25, 0.5)  ( μ̅11, μ̅21) = (0.5,1)  ( μ̅11, μ̅21) = (0.5, 2)

–0.99  –0.032  0.46  52.00  21.83  41.55  1650.52  26.16  3.43e4
–0.95  –0.055  0.21  7.51  0.49  17.18  3.47  34.32  5.91e9
–0.90  –0.045  0.15  3.73  0.24  7.54  0.65  17.51  10.35
–0.80  –0.054  0.11  1.81  0.14  3.64  0.25  6.11  0.74
–0.65  –0.056  0.085  1.00  0.099  2.00  0.14  3.16  0.28
–0.50  –0.066  0.075  0.67  0.083  1.34  0.11  2.02  0.17
–0.25  –0.078  0.067  0.41  0.071  0.80  0.084  1.07  0.12
0   –0.10  0.65  0.25  0.068  0.50  0.076  0.51  0.10
0.25   –0.14  0.67  0.13  0.069  0.27  0.076  –0.0012  0.10
0.50   –0.20  0.075  0.0015  0.077  5.6e–3  0.084  –0.68  0.12
0.65   –0.29  0.086  –0.13  0.089  –0.26  0.096  –1.40  0.15
0.80   –0.50  0.11  –0.42  0.11  –0.84  0.13  –3.09  0.26
0.90   –1.01  0.16  –1.06  0.16  –2.11  0.20  –7.02  0.70
0.95   –2.01  0.23  –2.31  0.24  –4.64  0.33  –17.39  4.54
0.99   –10.05  0.67  –12.39  0.79  –25.21  2.40  –40.75  1942.99
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Furthermore, near-multicollinearity may have a direct effect on the magnitude of ˆ,β  related to the difference 
in scale of the explanatory variables involved. These differences highlight the fact that multicollineariy in 
nonlinear models, such as the logisitc regression model, may need to be further examined, as they may differ 
from the consequences of near-multicollinearity for the linear regression model.

In addition, as |ρ|→1, changes in β̂  will have subsequent impacts on odds ratios and marginal effects. 
Odd ratios, which may be calulated as ˆ( )exp β  may grow exponentially large as |ρ|→1, because they are a 
direct transformation of ˆ.β  Marginal effects of the logistic regression model in equation (1) can be expressed 
as (see Bergtold, Spanos, and Onukwugha 2010):

 

( ; )
( 1 )i i

i i
i i

Y
F F

η β∂ ∂
= − ⋅

∂ ∂
X

X X
 

(17)

where all variables and functions are as previously defined. As seen in equation (17), the marginal effects 
are also functions of ρ, since they are functions of β through Fi and η(Xi; β). This implies that changes in the 
estimates of β̂  from near-multicollinearity impact marginal effect estimates, as well.

Table 2: Simulation results for 2β̂  and 2
ˆ( )se β  for different mean pairs ( μ1̅1, μ2̅1) as ρ changes.

ρ  
 

( μ̅11, μ̅21) = (–3, –1) 
 

( μ̅11, μ̅21) = (–1, –0.5) 
 

( μ̅11, μ̅21) = (–1, 1) 
 

( μ̅11, μ̅21) = (–0.5, –0.25)

2β̂   2
ˆ( )se β 2β̂   2

ˆ( )se β 2β̂   2
ˆ( )se β 2β̂   2

ˆ( )se β

–0.99  –16.97  2.01e5  –41.44  1656.25  0.51  0.51  –51.08  20.79
–0.95  –15.58  3172.13  –17.11  3.62  0.53  0.23  –7.49  0.49
–0.90  –15.81  3.06e4  –7.57  0.66  0.53  0.17  –3.70  0.24
–0.80  –28.53  1.31e10  –3.64  0.25  0.56  0.12  –1.81  0.14
–0.65  –6.06  1.58  –2.01  0.14  0.61  0.10  –1.00  0.099
–0.50  –3.52  0.50  –1.34  0.11  0.67  0.089  –0.67  0.083
–0.25  –1.91  0.24  –0.81  0.084  0.81  0.084  –0.40  0.071
0   –1.02  0.17  –0.50  0.076  1.00  0.087  –0.25  0.068
0.25   –0.27  0.15  –0.27  0.076  1.34  0.10  –0.13  0.069
0.50   0.68  0.18  –0.0038  0.084  2.01  0.14  –0.0023  0.077
0.65   1.67  0.24  0.26  0.096  2.89  0.20  0.13  0.088
0.80   4.01  0.51  0.85  0.13  5.07  0.41  0.42  0.11
0.90   10.89  2.93  2.12  0.20  10.94  1.74  1.05  0.16
0.95   74.06  9.30e13  4.66  0.33  50.16  5.22e10  2.33  0.24
0.99   31.21  1.42e4  25.38  2.43  32.08  9494.38  12.37  0.79

ρ   ( μ̅11, μ̅21) = (–0.1, 1)  ( μ1̅1, μ̅21) = (0.25, 0.5)  ( μ̅11, μ̅21) = (0.5, 1)  ( μ̅11, μ̅21) = (0.5, 2)

–0.99  0.069  0.46  52.22  21.92  41.70  1593.70  26.32  2.71e4
–0.95  0.049  0.21  7.64  0.49  17.44  3.51  35.24  5.99e9
–0.90  0.064  0.15  3.86  0.25  7.81  0.67  18.69  11.02
–0.80  0.058  0.11  1.95  0.14  3.92  0.26  6.99  0.82
–0.65  0.067  0.085  1.15  0.10  2.31  0.15  4.09  0.32
–0.50  0.064  0.075  0.84  0.085  1.67  0.11  3.03  0.21
–0.25  0.080  0.067  0.60  0.073  1.21  0.090  2.28  0.15
0   0.10  0.065  0.50  0.069  1.01  0.082  2.01  0.13
0.25   0.13  0.067  0.47  0.071  0.94  0.081  2.02  0.13
0.50   0.20  0.075  0.50  0.079  1.01  0.090  2.36  0.15
0.65   0.29  0.086  0.59  0.090  1.18  0.10  2.92  0.19
0.80   0.51  0.11  0.84  0.12  1.68  0.14  4.50  0.31
0.90   1.01  0.16  1.45  0.16  2.91  0.21  8.36  0.78
0.95   2.02  0.23  2.70  0.24  5.41  0.35  18.96  4.89
0.99   10.06  0.67  12.78  0.80  25.97  2.45  41.44  1659.79
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12      B. Atems and J. Bergtold: Revisiting the statistical specification of near-multicollinearity

5  Conclusion
In this paper, we derive and show that the parameters of the logistic regression model, where the predictor 
is linear in both the variables and parameters, are functions of ρ. Thus, our analysis calls into question the 
ceteris paribus clause in the traditional account of near-multicollinearity for the logistic regression model 
and shows that it is inappropriate. Monte Carlo simulations provide evidence that the parameters and their 
associated variances and t-ratios may be different than the traditional account implies. The implications of 
our findings are that ˆ ˆ, ( ),seβ β  and ˆ( )τ β  can fluctuate in a non-systematic, non-monotonic way as |ρ|→1; 
that changes to relevant statistics are data specific and uncertain; that the impact of near-multicollinearity is 
likely centered on the estimates of β; and the impact on substantive inferences does not follow what the tradi-
tional account would imply. As the probit model may seen as a close approximation of the logistic regression 
model (Amemiya 1981), the results here may extend to that model, as well, though this requires further explo-
ration. In addition, future research needs to extend the analysis to logistic regression models with predictors 
that are nonlinear in the regressors and linear predictors that incorporate binary covariates.
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