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Abstract 

The interaction of an ascending mantle plume and a moving lithosphere produces two 

main surface observations: a volcanic chain and swell. The study of the temporal evolution of the 

magmatic flux, Qv, associated with the volume of magmatic material, and the buoyancy flux, Qs, 

associated with the swell, provides important information on plume phenomenology, plume 

temporal evolution, and its interactions with the large-scale mantle flow and the drifting 

lithosphere.  This study focuses on the temporal evolution of the Louisville hotspot.  We utilize 

the MiFil filtering method to separate the swell and magmatic components.  We translate a 

sliding box along the track to compute the temporal evolution of Qs and Qv.  For the past ~35 

m.y. Louisville’s fluxes have been increasing, indicating an increase in hotspots activity which 

contradicts previous reports about its decline.  This could be caused by variations in the degree 

of melting, an increase in the plume temperatures, or movement of a deep mantle source.  Peaks 

in both fluxes are found at 2, 12, and 23 Ma along the Louisville seamount chain.  Such 

variations, with a 10-20 m.y. periodicity have been reported for the Hawai’i, Walvis, and St. 

Helena chains.  They may be induced by the tilt of the plume conduit.  Variations on a scale of 5 

m.y. are identified along the Louisville chain, and have also been reported on St. Helena, Walvis, 

and Hawai’i.  They may be the result of solitary waves that form within the plume conduit after 

mantle motions have deformed it, allowing instabilities to form and increase plume activity.  We 

find the buoyancy flux, B, associated with the Louisville chain to be 0.65 Mg s-1, similar to the 

value reported by King and Adam (2004), which is consistent with a shallow plume origin. 
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Chapter 1 - Introduction 

 1.1. Hotspot Origins 

The formation of hotspots has been studied since the idea of hotspots originated with J. 

Tuzo Wilson, in 1963.  Originally, it was thought that all hotspots have a mantle source from 

deep within the Earth (Wilson, 1963).  More recently, the most widely accepted hypothesis states 

that plumes originate from the destabilization of a boundary layer (Whitehead, 1975; Courtillot 

et al., 2003).  Between the core-mantle boundary and the surface, the main three boundary layers 

are (1) the D” layer just above the core-mantle boundary (CMB), (2) the boundary layer between 

the lower and upper mantle, and (3) the base of the lithosphere (Sleep 2002; Anderson 2000).  

Therefore, three different types of hotspots will coexist, and each type will have its own unique 

source.  Plumes initiating by the destabilization of the D” layer will then have a deep origin 

(Olsen et al., 1987; Bercovivi et al., 1997).  The second type of hotspot will originate along the 

boundary layer between the lower and upper mantle, and is created along transient domes (i.e., 

the top of superswells) (Anderson, 1998; Courtillot, 2003).  Such a scenario has been proposed to 

account for the French Polynesia hotspot chains.  The plumes creating these chains would initiate 

at the top of the South Pacific Superswell (Davaille et al., 2002).  The third type of hotspot may 

originate from upper mantle features, e.g. where magma passively upwells to the surface through 

lithospheric discontinuities or weakness zones (Anderson, 1998). 

According to Courtillot et al. (2003), a hotspot chain must satisfy five requirements to be 

considered created by a deep mantle plume: an age-progressive volcanic chain, flood basalts at 

the youngest part of the track, a large buoyancy flux, a high 3He/4He isotopic ratio in erupted 

basalt lavas (i.e., exceeding mid-oceanic ridge isotopic values of 7 – 9 Ra (Farley and Neroda, 

1998)), and low shear wave velocities in the mantle.  Based on these criteria, only seven of forty-
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nine hotspots met these criteria (Courtillot et al., 2003).  A more recent study by Jackson et al. 

(2021) reports that there are 30 hotspots that have a deep plume origin. 

A plume can form due to the temperature gradient between the core-mantle boundary and 

the base of the lithosphere.  The hot instability created by the temperature gradient is potentially 

brought up to the surface through mantle convection (e.g., Schubert et al., 2001).  As the 

instability rises, the plume starts to develop a ‘mushroom-shaped’ head with a thinner trailing 

tail.  The interaction between the lithosphere and the upwelling plume head causes flood basalts 

to form while the tail creates a volcanic trail as the lithosphere moves (Richards et al., 1989).  

These features are represented in Figure 1.1. 

 

 

Figure 1.1. Formation of a hotspot from the destabilization of the D" Layer. 

Not to scale cartoon of the formation of a mantle plume and its physical manifestations when it 

interacts with a moving lithosphere.  Each location for a potential mantle plume to form is 

indicated by a bolded black line.  The arrow represents the direction of lithosphere motion. 
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 1.2. Swell Origin 

The interaction between the mantle plume rising to the surface and a moving lithosphere 

creates the two main features along a hotspot chain: volcanoes and a swell (Crough, 1983).  The 

volcanic chain is represented by the trail of volcanoes aligned along the direction of plate motion 

(Figure 1.1).  They display a linear increase in the volcanism age, from the youngest part of the 

chain (sometimes active) to the oldest part of the chain.  Swells are positive depth anomalies, 

generally occurring most prominently in the region of the youngest volcanic edifices of the 

hotspot chain, formed as a plume rises and interacts with a moving lithosphere (Crough, 1983).  

They can have a width of 1000-1500 km and a height of 500-1200 m (Crough, 1983).  If the 

hotspot chains are located on the seafloor, which is the case for the chains discussed in this thesis 

report, the swells are anomalously shallow regions relative to adjacent seafloor (Crough, 1983).   

Several hypotheses have been proposed to account for the origin of swells: sediment 

accumulation (Menard, 1964), crustal thickening (Betz and Hess, 1942; Watts and tenBrink, 

1989), flexural rebound (Walcott, 1970) or deeper compensation (Burke and Wilson, 1976; 

McNutt and Bonneville, 2000).  The latter hypothesis implies that there are regions associated 

with low density magmatic material, situated at different depths.  These low-density regions, the 

origin of which is either thermal or chemical, require an uplift of the seafloor for the isostatic 

equilibrium to be satisfied.  These anomalous regions can be found at the base of the lithosphere 

(Burke and Wilson, 1976) and at base of the crust (McNutt and Bonneville, 2000).  They could 

also be associated with the heating and re-melting of the lithosphere (Detrick and Crouch, 1978; 

Crough, 1983).  Sandwell et al. (1995) propose that swells could be created by lithospheric 

thinning.  A more recent study proposes that dynamic upwellings, such as the ones associated 

with rising plumes, can account for the observed swells (Adam et al., 2010). 
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While the volcanoes and swell form at the same time, the volcanoes will be seen across 

the entire track while the swell will only be observed in association with the youngest part of the 

chain (Crough, 1983; Adam et al. 2010).  Studying the temporal evolution of the magmatic and 

swell fluxes associated with these features may provide information on the variations of the 

plume activity, or on temporal variations in the plume/lithosphere interaction (Sleep, 1990; Vidal 

and Bonneville, 2004; Adam et al., 2007).  Studies have previously been conducted along long 

lived hotspots by Vidal and Bonneville (2004) and Adam et al. (2007) and will be discussed in 

the Background Information section.  This project will involve the study of the magmatic and 

swell flux along the Louisville seamount chain.  We have chosen Louisville as the focus for this 

project because it is a long-lived hotspot that has not undergone such a study before.  

Louisville is located within the southern part of the Pacific Ocean.  This area of the 

Pacific Plate has been moving in a general northwestern direction due to the Kermadec-Tonga 

subduction zone and has created a volcanic chain that is 4300km in length.  The track itself is 

separated into three segments due to two bends in the track, occurring at 47 and 25Ma, 

respectively, that correspond to shifts in plate motion (Davies, 1992).  It has been active for ~80 

m.y. with its oldest activity recorded at the Osborn seamount at 76.7±0.8Ma and its youngest 

activity at 1.11±.04Ma at 50o26’S, 139oW (Koppers et al., 2004; 2011).  Figure 1.2 represents the 

locations, ages, and bends of Louisville’s volcanic chain.  We will be observing the magmatism 

and swell flux of this chain to better understand the plumes activity and to observe how it 

interacts witht the moving lithosphere. 
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Figure 1.2. Track and geological features of the Louisville hotspot. 

Black dots represent volcanoes, green dots are samples from Koppers et al. (2004).  Pink dots are 

samples from Koppers et al. (2011).  Figure from Koppers et al. (2011). 
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Chapter 2 - Background Information 

Vidal et al. (2004) and Adam et al. (2007) have conducted studies on the temporal 

evolutions of the Hawaii chain in the Pacific, and the Walvis and St. Helena chains in the 

Atlantic, respectively.  These studies provide a template for the approach used here to examine 

the Louisville seamount chain.  We, therefore, briefly review the results from these prior studies 

below. 

The Walvis Ridge is located in the Atlantic Ocean (Figure 2a) and volcanism ranges 

between ~130Ma and 1Ma.  It is created by the interaction of a plume with the lithosphere 

(Adam et al. 2007).  The plume first expressed itself on the South American plate, but then 

migrated under the African plate due to westward migration of a spreading axis (O’Connor and 

Duncan, 1990; Schilling et al., 1985).  The volcanoes forming the St. Helena chain display 

volcanism ages between ~81Ma and 1Ma (O’Connor and le Roex, 1992).  The hotspot chain 

consists of scattered seamounts and volcanic ridges that were created as the lithosphere moved 

over the plume and was interacting with a spreading ridge (O’Connor and le Roex, 1992).  In 

Vidal and Bonneville (2004) Hawaii is described as a long-lived hotspot located in the Pacific 

Ocean that has experienced at least 70 m.y. of activity, forming when a mantle plume started to 

interact with the Pacific Plate (Wilson, 1963).  From ages 64.7 to 42.2 Ma, the Pacific Plate 

moved in a 172.5oN direction; from 42.2 Ma plate motion changed to a 110oN direction, creating 

a bend in the hotspot chain at the Daikakuji seamount (Dalrymple and Clague, 1976; Dalrymple 

et al., 1980).  The trends of these tracks are shown in Figure 2.1. 
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Figure 2.1. Tracks of (a) St. Helena, Walvis, and (b) Hawai'i hotspots. 

Trends of Walvis and St. Helena are represented by black lines.  The Hawai’i-Emperor seamount 

chain trend is represented by a red line.  Walvis and St. Helena contain the ages of each 

seamount.  Figure is modified from (a) Adam et al. (2007) and (b) Vidal and Bonneville (2004). 

 

 We are reviewing these studies because we are using the same methods as the authors to 

calculate the temporal evolution of the magmatic and swell fluxes of the Louisville hotspot.  The 

computed fluxes from Louisville will be compared to these studies in order to interpret the trends 

of the plumes activity. 

 2.1. Temporal Evolution Calculation 

In this study, the volume of volcanic material erupted on the seafloor is defined as the 

magmatic flux, Qv, while the buoyancy of the plume is defined as the swell flux, Qs (Sleep, 1990; 

Vidal et al., 2004; Adam et al., 2007).  To calculate the Qv and Qs of these previous studies, the 

volcanic chain and swell of each hotspot were separated from one another. To separate influence 

of the volcanic edifice from the swell, the authors used the MiFil filtering method, developed by 
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Adam et al. (2005).  After the filtering, they computed the volcanism, Qv, and swell, Qs, through 

the “sliding box” method.  The volumes of swells and volcanic edifices encompassed in this box, 

translated along the main axis, are computed for each iteration step.  This allows the computation 

of the magmatism and swell fluxes.  A detailed description of these methods is provided in the 

Methods section. 

These results of previous studies are reported in Figure 2.2.  They show that for Walvis 

and St. Helena, Qv is decreasing as the age of volcanism gets younger.  This means that the 

volume of volcanic material being erupted is decreasing, suggesting that the plume’s activity is 

decreasing (Adam et al., 2007).  For Hawaii, Qv is increasing with decreasing age of volcanism.  

This means that the volume of volcanic material being erupted is increasing, indicating an 

increase of plume activity (i.e., production of magma) (Vidal et al., 2004).  Each hotspot also 

experiences variations in Qv with wavelengths of 10-20 m.y. (Walvis and St. Helena) and 5 m.y. 

(St. Helena, Walvis, and Hawaii).  The 10-20 m.y. variations can be caused by the dip of the 

plume conduit being more than 60o (Whitehead, 1982) or large-scale mantle convection 

(Steinberger, 2000; Whitehead, 1982).  The 5 m.y. variations may be caused by solitary waves 

being present within the plume conduit (Whitehead and Helfrinch, 1990).  The maximum for Qs 

of the Walvis chain occurs at ~10 Ma with two smaller ones at 38 and 54 Ma, while St. Helena 

has a large bump at ~ 30 Ma (Adam et al., 2007).  The Qs for Hawaii has two sharp increases, 

one around 13-15 Ma and another at ~5 Ma (Vidal and Bonneville., 2004).  These variations are 

observed in both the swell and volcanism fluxes in Figure 2.2. 
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Figure 2.2. Swell (blue) and magmatic (red) fluxes of the (a) Walvis, (b) St. Helena, and (c) 

Hawai'i hotspots. 

Figure is modified from Adam et al. (2007). 
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Chapter 3 - Methods 

As mentioned in the Background Information portion of this thesis, the volcanic chain 

and swell are the two main topographic signatures of the interaction between a plume and the 

drifting lithosphere (Crough, 1983).  We studied these features in order to characterize the 

temporal evolution of the volcanism and buoyancy fluxes. 

 3.1. Defining the Main Axis of the Louisville Hotspot Chain 

 The main axis of the Louisville hotspot follows the volcanic trail, representing the chains 

general trend, and is illustrated in Figure 3.1.  We use the main axis defined by Koppers et al. 

(2004; 2011).  In Figure 5, we can see that the Louisville chain is composed by three different 

segments, characterized by slightly different trend orientations.  The bends relating the three 

segments occurred around 47 Ma (191oW) and 25 Ma (199oW) and are caused by small changes 

in the rotational poles (Koppers et al., 2004; 2011).  Koppers et al., (2004; 2011) provide the 

main axis of the Louisville chain, as well the location and age of the volcanoes composing this 

chain.  Table 1 illustrates the location and age of some of the volcanoes composing this chain.  A 

complete table with all volcanoes within the chain is provided in Appendix Table 1. 
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Table 1. Latitude, longitude, and volcanic ages of some of the volcanoes along the Louisville 

hotspot.  Modified from Koppers et al., (2004; 2011). 

Latitude oS Longitude oW Age ± 2σ (Ma) 

25.5 186.0 76.7 ± 0.8 

27.5 185.7 70.8 ± 0.4 

27.5 185.7 69.6 ± 0.5 

27.2 186.8 68.9 ± 0.6 

30.1 186.8 61.4 ± 0.5 

38.2 191.3 50.1 ± 0.4 

38.2 191.3 49.4 ± 0.6 

28.0 191.7 48.4 ± 0.3 

37.1 191.0 47.0 

39.2 192.4 44.7 ± 0.4 

39.7 193.3 43.3 ± 0.4 

39.9 194.0 41.3 ± 0.3 

40.5 194.3 40.4 ± 0.3 

40.8 194.5 39.6 ± 0.3 

40.8 194.5 38.9 ± 1.2 

41.6 195.8 36.5 ± 0.4 

41.9 196.3 34.5 ± 0.4 

40.8 194.7 33.9 ± 0.3 

43.6 198.5 30.3 ± 0.2 

43.6 198.5 29.5 ± 0.3 

44.0 199.4 26.3 ± 0.2 

44.8 201.5 26.0 ± 0.3 

44.6 199.9 25.0 

45.4 202.3 24.6 ± 0.2 

45.4 202.3 23.9 ± 0.3 

46.2 204.1 21.7 ± 0.3 

46.2 204.1 21.5 ± 0.2 

46.2 204.1 21.6 ± 0.2 

46.2 204.1 21.3 ± 0.2 

48.2 211.2 13.2.7 ± 0.2 

50.4 220.9 1.11 ± 0.4 
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Figure 3.1. Louisville chain. 

The color map represents the bathymetry along the chain.  Individual volcanoes are represented 

by the red triangles.  The ages of each seamount, extracted from Koppers et al. (2004; 2011), are 

reported in white next to them.  The black arrows represent the main axis of the Louisville 

hotspot and indicate the present day and past direction of the Pacific plate motion. 

 

We used the main axis and the ages of volcanism published by Koppers et al. (2004; 

2011) to create a discrete field of volcanism age and distance from the youngest volcanoes along 

the main axis of the Louisville chain.  As stated earlier, Koppers et al. (2004; 2011) define the 

main axis by three segments of slightly different orientation.  In Figure 3.2a, a plot of latitude vs. 

longitude, the locations of the volcanoes are reported by blue stars and the extremities of each 
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segment are reported by red open circles.  For each segment, we interpolate the latitude and 

longitude of the main axis, in between these two extremities (red open circles on Figure 3.2a), 

with a constant step of 1 km.  We use the “interp1” function in Matlab for this step.  Along the 

three segments of the main axis, represented in green, black and red in Figure 6a, we obtain the 

longitude and latitude of the main axis.  The distance between two consecutive points is 1 km.  

This allows us to compute the distance from the youngest extremity of the chain (red open circle 

at the right side of Figure 3.2a), along the same points. 

The ages of the volcanoes published by Koppers et al., (2004; 2011) are reported in 

Figure 3.2b as a function of the longitude.  The volcanic ages are scattered because the seamount 

distribution along the chain is not exactly linear, and because some of the volcanoes have not 

been dated.  In order to obtain a regular distribution of the volcanism ages along the main axis 

interpolated with a 1 km increment, we use the “polyfit” function in Matlab.  The extrapolated 

volcanism ages are shown by the green, black and red lines in Figure 3.22b.  In summary, this 

step allows us to obtain the longitude, latitude, distance from the youngest volcano, and the 

volcanism ages, along the main axis, interpolated with a constant step of 1 km. 
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Figure 3.2. Main axis and volcanism ages along the Louisville chain. 

(a.) Location of the volcanoes (blue stars), and extremities of these segments composing the 

Louisville seamount chain (red open circles) (b). Volcanism ages as a function of the chain 

longitude.  The blue stars are the volcanism ages published in Koppers et al., (2004; 2011), and 

the green, black, and red lines, our extrapolation of the volcanism ages along each segment. 

 

 3.2. Obtaining the depth anomaly map 

The depth anomaly is the difference between the observed bathymetry and a theoretical 

depth, describing the deepening of the seafloor as a function of its age.  For the observed 

bathymetry, we used a digital bathymetry map designed by Becker et al. (2009).  It was corrected 

for sediment loading by using the sediment thickness published by Divins (2011).  The 
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theoretical depth was computed by using the Global Depth and Heat Flow Model (GDH1 model) 

from Stein and Stein (1992) and the seafloor age grid data from Müller et al. (2008).  The GDH1 

model predicts the theoretical variation of the seafloor depth as a function of its age.  It has been 

obtained by considering constraints from several types of geophysical data: heat flow, 

bathymetry, and gravity.  The obtained depth anomaly is reported in Figure 3.3.   

 

Figure 3.3. Depth anomaly map. 

Depth anomaly map of the Louisville hotspot area.  The colder colors represent the lower parts 

of the oceanic floor while the warmer colors represent the higher points.  The dark red areas on 

the left represent the Hikurangi (HIK) plateau, the red positive depth anomaly represents the 

Tuamotu swell, the positive depth anomaly around latitude 40oS, longitude 205oE is associated 

with the Valerie seamounts. 
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 3.3. Separation of the volcanic edifice and swell components along the 

Louisville hotspot 

In order to quantify the temporal evolution of the Louisville hotspot, we first have to 

separate the contributions made to the depth anomaly from the swell and the volcanic edifice.  

To do this, we used a filtering method, specially designed to characterize depth anomalies 

emplaced on the seafloor, MiFil (Adam et al., 2005).  This method has been applied to the 2-D 

depth anomaly grid, described in the previous section.  The MiFil method has two stages.  The 

first step involves a minimizing filter, designed to remove any topographic features related to 

volcanism.  In the second step, the minimized grid is filtered with a median filter in order to 

remove any remaining depth anomaly and to smooth the resulting grid (Vidal et al., 2004; Adam 

et al., 2005).  Detailed descriptions of each stage are in the following sections.  

 3.3.1. Minimization 

As stated before, the main goal of the minimization stage is to remove any topographic 

features associated with volcanism from the swell along the hotspot track (Adam et al., 2005).  

For each of the point of the depth anomaly grid, i.e., for each latitude, and longitude (the red 

circle in Figure 3.4 represents an example of one point of the grid), we sweep a region of radius r 

(green circle in Figure 3.4).  The minimal value of the depth anomaly of all the points 

encompassed in this green circle is then imposed in the center of the green circle.  

Mathematical demonstrations show that such filtering eliminates any feature with 

wavelength smaller or equal to λc, where 

      r~ λc/4.              (1) 

(Adam et al., 2005.) 
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Figure 3.4. Illustration of minimizing filter, r. 

The blue dots represent the grid points.  The red circle is highlighting the individual point to 

which we apply the minimizing filter with the r radius.  The green area represents the region in 

which the grid points are within a distance r from the individual point highlighted by the red 

circle. 

 

 3.3.2. Median filtering 

In the filtering stage, we apply a median filter to the minimized depth anomaly grid in 

order to smooth it out by removing any remaining small-scale depth anomalies (Adam et al., 

2005).  The method is relatively similar to the one previously described: for each of the points of 

the depth anomaly grid, i.e., for each latitude and longitude (the red circle in Figure 4 represents 

an example of one point of the grid), we sweep a region of radius R (like the green circle in 

Figure 4, but the radius will be R instead of r).  This time however, the value imposed at the 
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center of the green circle is the median value of the points encompassed in this green circle.  The 

stage removes any topographic anomaly with a wavelength smaller or equal to λ, where  

  𝑅 ≥ √2𝜆.      (2) 

(Wessel, 1998). 

The minimizing and median filters have been applied with the Generic Mapping Tool 

(GMT) software from Wessel and Smith (1991).  In order to enhance the accuracy of our 

characterization of the Louisville swell, we varied the radii of the minimizing (r) and median 

filters (R).  If r is too small, part of the swell and volcanoes will still remain combined together.  

If the r is too large, then the filter will remove the entire swell along with some topography from 

the volcanoes.  If the R is too small, not all of the swell topography will be separated from the 

volcanoes, and the swell will be overestimated.  If R is too large, the swell will be 

underestimated.  These issues, as well as the values considered for the minimizing and median 

filters are discussed in more details in section 4.1 Swell determination.  Figure 3.5 illustrates the 

separation of the volcanic and swell fluxes of the profile, indicated by the black line, along the 

Walvis volcanic chain after Adam et al. (2007). 
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Figure 3.5. The separation of the volcanoes and swell along the Walvis chain. 

(a). Bathymetry and emplacement of the profiles along which we studied the depth anomaly. (b). 

Depth anomaly (black line) and swell (red line) are found by filtering the depth anomaly with the 

MiFil filter. (c). Swell (red line) and volcanoes (black line) components, separated through the 

MiFil method.  Figure is modified from Adam et al. (2007). 

 

 3.4. Sliding Box 

 This study’s main outputs are volcanism and swell fluxes as a function of the volcanism 

age.  To compute the volcanism and swell fluxes, we compute the volume contributions from the 

swell and volcanoes encompassed in the box represented in Figure 3.6. 
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Figure 3.6. The parameters of the translating box. 

The parameters of the sliding box are width (wb), length (lb), and the translation step (tb).  The 

dashed lines illustrate the box at the translation step tn, the center of which is shown by the blue 

star.  The box defined by the solid black lines is the translation box at step tn+1, the center of 

which is shown by the red star.  The distance between the red and blue stars is tb, the translation 

step.  Maximum ages are found at the far-left side of the box while the maximum ages are found 

to the right of each box.  Figure is modified from Vidal and Bonneville (2004). 

 

This box was created perpendicular to the hotspots main axis and has a width, wb, and a 

length, lb.  The center of the box is located along the main axis, which we defined in section 2.1.  

For each iteration step, i.e., for each point along the main axis, the volume of the swell is the 
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volume comprised between the surface defined by the swell (red line on Figure 3.7a) and the 

reference depth anomaly (depth anomaly = 0, hachured red region on Figure 3.7b). 

 

Figure 3.7. Computing magmatic and swell volumes. 

(a & c) The separated swell (red) and volcanic edifice (black). (b &d) Volumes used to calculate 

the swell flux is illustrated by the red hachured region and the volume used to calculate the 

magmatic flux is illustrated by the black hachured region.  Figure is modified from Adam et al. 

(2007). 

 

To compute the volume of the volcanic edifices and compensation root, we had to 

consider that the lithosphere has a finite strength, and therefore flexes downwards when loaded 

by magmatic products (Watts et al., 1975; 1980).  The flexure beneath the volcanic chain has 

been pointed out by studies based on gravity (Zucca and Hill, 1980; Zucca et al., 1982; Watts et 

al., 1985; Hill and Zucca, 1987; Adam and Bonneville, 2008) and seismic data (Watts et al., 

1985; Lindwall, 1988; Watts and ten Brink, 1989).  In particular, seismic reflectors show the 

morphology of the flexure beneath volcanoes (Watts et al., 1985; Lindwall, 1988; Watts and ten 
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Brink, 1989), (Figure 3.8).  The volcanic material is emplaced over the pre-existing oceanic crust 

(Figure 12).  At the beginning, the oceanic crust is not flexed.  After a period of 1 m.y., when 

most of the volcanic material has been emplaced, the lithosphere will then flexure, in response to 

the weight of the volcano (McNutt, 1980).  Ignoring the volume of volcanic material 

encompassed in the flexural root would lead to underestimating the volume of erupted volcanic 

material (Smith and Wessel, 1990; White, 1993; Vidal and Bonneville, 2004; Adam et al, 2007). 

 

Figure 3.8. North-south cross section through the Hawaiian chain, near Oah. 

The structure of the crust has been obtained by integrating seismic refraction data.  Each of the 

solid lines corresponds to a seismic reflector.  The different layers of rocks are identified with the 

legend in the image.  Figure is from Lindwall et al. (1988). 

 

Although the existence of the compensation root is generally agreed upon, the models of 

compensation (regional compensation vs. local or ‘Airy’ compensation) are still debated.  We 

know that the simple Airy compensation is not the actual compensation mechanism for the 

hotspot chains (Watts and ten Brink, 1989), and a regional compensation by an elastic plate must 
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be invoked (Watts and tenBrink, 1989).  In the results section, we investigated the influence of 

the compensation mechanism on the flexure and fluxes computation. 

 Once the flexure is computed, we can then compute the volume of magmatic material.  

This volume is comprised between the surface defined by the volcanoes (blackline on Figure 

3.7b) and the reference flexure (hachured black region on Figure 3.7b).  To calculate the volume 

in this hachured region, we use the ‘volume’ function in MatLab which computes the volume 

between two surfaces (i.e., swell and magmatic hachured region in Figure 3.7b) in 3D (Adam et 

al. 2007). 

 The volumes of swell and volcanoes encompassed in the sliding box are computed at 

each point of the main axis.  The corresponding volcanism age is the volcanism age at the center 

of the sliding box.  We will vary the parameters of the box, such as width (wb), and the length 

(lb), in order to make sure that their choice does not influence the final result.  The box is 

translated along the main axis, in order to compute these volumes all along the Louisville chain.  

The influence of the translation step (tb) will also be discussed.  In particular, we will discuss the 

overlap of the sliding boxes. 

 To obtain the swell and magmatic fluxes, we divide the volume of the swell and 

magmatic material contained in the sliding box by Δt.  Δt is the difference between the maximum 

and minimum volcanic ages that are found in the sliding box along the main axis, for each 

iteration.  For example, if the swell volume encompassed in the sliding box is 300 km3, and Δt = 

1 Ma, the swell flux, Qs, will be 0.0095 m3/s (300 x 109/(1 x 106*365*24*3600 = 0.0095).  The 

volume of swell is generally reported as the buoyancy flux, B, (Sleep, 1990), with 

𝐵 = (𝜌𝑚 − 𝜌𝑤)𝑄𝑠     (3) 
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where m and w are the densities of the mantle and the seawater (m = 3300 kg m-3, w= 1000 

kg m-3).  In the result section, we will report these fluxes as a function of the volcanism age. 
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Chapter 4 - Results 

This section will cover which filter was determined to be the best fit for all three sections 

of the Louisville chain and how we came to that decision.  It will also explain which parameters 

for the sliding box have been chosen and how they affect the calculated fluxes.  Lastly, it will 

include the calculated swell and volcanism fluxes. 

 4.1. Swell Determination 

As stated previously, we have to remove the contribution of the volcanic edifices from 

the calculated depth anomaly by using the MiFil filtering method (Adam et al., 2007).  For 

brevity, we will refer to this in future as the influence of the swell and magmatic components.  In 

this section, we discuss the influence of the radius of the minimizing and median filters on the 

determination of the swell. 

 4.1.1. Segment 1 

Segment 1, defined in the Methods section in Figure 3.1, of the Louisville chain is located 

near the mid-oceanic ridge and contains the youngest volcanoes.  The youngest volcano has a 

1.11 ± 0.4 Ma age and is located at latitude 50.4oS, 220.9oE (Koppers et al. 2011).  This segment 

extends to latitude 44.6oS, and longitude 199.9oE (Koppers et al., 2004; 2011).  As this segment 

of the volcanic chain is associated with the most recent volcanism, we expect the swell to be 

maximal (Vidal and Bonneville, 2004). 
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Figure 4.1. Depth anomaly (a) and swell (b) along the Louisville chain. 

The black line represents the main axis, and the red lines are trajectories perpendicular to the 

main axis for the first segment.  The Mid-Oceanic Ridge (MOR) is reported in magenta.  The 

dark area around latitudes 40-45oS and longitudes 185-195oE is the Hikurangi (HIK) plateau (Ito 

and van Keken, 2007).  The features around latitude 40oS and longitudes 200oE is the Valerie 

seamounts (Clouard and Bonneville, 2005).  The volcanism ages, taken from Koppers et al. 

(2004; 2011), are reported in black and white text in panel a. 



27 

 

The depth anomaly and the swell are displayed in Figure 4.1.  The swell is a low pass 

filter of the depth anomaly.  By filtering the depth anomaly, we remove the short-wavelength 

features (such as fracture zones and individual volcanoes), which allows better observation of the 

long wavelength depth anomalies, such as the swell.  The swell has been computed using a 

minimizing filter of radius 20 km, and a median filter radius of 250 km.  Several positive and 

negative depth anomalies can be observed in the depth anomaly and swell maps (Figure 4.1). 

The positive depth anomalies reported in red in Figure 4.1 are mainly located along the 

youngest part of the Louisville chain, along segment 1, between longitudes 207o to 222oE.  This 

swell is probably formed by the interaction of a hotspot and the drifting oceanic lithosphere 

above.  The largest depth anomaly of the swell is located from latitudes 48o to 52oS and 

longitudes 213o to 219oE, illustrated by the reds on Figure 4.1.  The corresponding volcanism 

ages found in this area are between 13±0.2 and 1.11±0.4 Ma.  Other positive anomalies are 

observed along the Hikurangi (HIK) plateau (Ito and van Keken, 2007), the Valerie seamounts 

and the Tuamotu chain (Clouard and Bonneville, 2005).  These separate swells will not be 

considered in our calculation of the swell and magmatic fluxes. 

As stated in the Methods section, a minimizing filter of radius r will remove the features 

of wavelength λm or lower, with λm~4r.  A median filter of radius R will remove the features of 

wavelength λM or lower, with λM ≤ R/√2 (Wessel, 1998).  The wavelength we try to remove is 

the spacing of the volcanoes.  Along the Louisville chain, the volcanoes have a spacing varying 

between 100 and 200 km (Figures 4.1 and 4.2).  In theory, the corresponding r should then vary 

between 25 and 50 km, and R between 140 and 280 km.  However, as stated in Adam et al. 

(2007), if the value chosen for r is too large, the signature from fracture zones would be 
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exaggerated and the swell underestimated.  In order to study the influence of r and R on the swell 

computation, we considered several values of r and R, chosen by considering the theoretical 

range discussed here.  More precisely, we consider values for r = 10, 20, and 30 km, and R = 

150, 250, and 350 km. 

The influence of varying r is shown in Figure 4.2, a plot that compares the depth anomaly 

and the filtered depth anomalies along the three profiles located in Figure 4.1.  The three profiles 

(red lines in Figure 4.2) were chosen because they are located in the area where a majority of the 

swell is found.  Profiles AA’ and CC’ intersect volcanoes along the main axis, while the BB’ 

profile is not.  The volcanoes along profiles AA’ and CC’ are identified by the black arrows.  

 Following the MiFil method, we first tested the minimizing filters along these profiles.  

We kept the median filter (R) constant at 250 km and varied the minimizing filter (r) at 10, 20, 

and 30 km.  Figure 4.2 illustrates the effects of these filters along the profiles.  In this figure, the 

blue line represents r = 10 km, the red line is r = 20 km, and the green line illustrates r = 30 km. 



29 

 

Figure 4.2. Influence of the minimizing filter radius on the swell calculation for the first 

segment. 

The black line represents the depth anomaly along the AA’, BB’, and CC’ profiles, shown in 

Figure 4.1.  The black arrows represent individual volcanoes the profiles intersect.  The color 

lines represent the filtered depth anomaly.  The radius of the median filter is constant at R = 250 

km.  The radius of the minimizing filter is fixed at 10, 20, and 30 km (color code in the legend). 

 

At a first glance, figure 4.2 shows that that the minimizing filters make little differences 

in the filtered depth anomaly for all three profiles.  Since the filters along profiles AA’, BB’, and 

CC’ are hard to distinguish from one another, we magnified the y-axis of these profiles from a 
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depth anomaly value of -500 to 1000 m.  This is illustrated in Figure 4.3.  Figure 4.2 is useful, as 

it illustrates that our filters provide a good general, basic approximation of the swell. 

 

Figure 4.3. Magnification on the profiles displayed in Figure 4.2. to study the influence of 

the minimizing filter radius on the swell calculation. 

The color schemes are the same from Figure 4.2.  The black arrows represent individual 

volcanoes the profiles intersect.  The profiles along AA’, BB’, and CC’ focus on a more limited 

depth range of -500 to 1000 m to be able to identify any differences between the minimizing 

filters.   

 

The filters have a similar shape and wavelength across all three profiles but departures 

from each other can be noticed.  We saw that by increasing the minimizing radius, r, we decrease 
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the value of the swell (i.e., removing more topography associated with volcanoes).  This means 

that r = 10 km (blue line) removes the largest amount of topography while r = 30 km (green line) 

removes the least, with r = 20 km (red line) removing an average of the two.   

Looking at profile AA’ from latitude 47o to 50oS, at profile BB’ from latitude 45o to 50oS, 

and profile CC’ from latitude 47o to 55oS, we identify the areas where most of the swell is 

located for each profile.  The volcanoes in profiles AA’ and CC’ are identified by the black 

arrows.  In profile AA’ and CC’, we can see that the 10 km filter is passing through the 

volcanoes in this area (i.e., the blue curve is located above the base of the depth anomaly, rather 

than at the base).  This means that the filter is removing too much of the topography because it is 

underestimating the volume of the volcanoes while overestimating the swell. Between latitudes 

40o and 43oS on profile BB’ the 30 km filter (green line) is too low (i.e., the green curve is 

located beneath the depth anomaly, rather than at the base).  This is probably due to the influence 

of the fracture zone, located at latitude 43oS.  This means that the minimizing filter r = 20 km, 

passing at the base of the volcanoes volume, is the best fit for the youngest part of the chain since 

it fully separates the swell and volcano components from one another.   

 To test the median filter, we kept the minimizing filter constant at the chosen r = 20 km.  

We then varied the radius of the median filter at R = 150 km, R = 250 km, and at R = 350 km.  

Figure 16 illustrates the results of these tests.  We see that the blue line represents R = 150 km, 

the red line is R = 250 km, and the green line is R = 350 km. 
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Figure 4.4. Influence of the median filter radius on the swell calculation. 

The black line represents the depth anomaly along the AA’, BB’, and CC’ profiles, shown in 

Figure 4.1.  The black arrows represent individual volcanoes the profiles intersect.  The color 

lines represent the filtered depth anomaly.  The radius of the minimizing filter is r = 20 km.  The 

radius of the median filter is fixed at 150, 250, and 350 km (color code in the legend).  Depth 

anomaly is reported in meters. 

 

Along all three profiles, the filtered depth anomaly profiles created by the three filters are 

indistinguishable.  This is because the vertical scale is set to encompass the maximum depth 

anomaly found in profile AA’.  Viewing the results at this scale shows whether the filters 

provide a good approximation of the swell.  However, to better observe the differences among 
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the depth anomaly curves generated by the three filters along profiles AA’, BB’, and CC’, we 

magnified the vertical scale so that it varies between -500 and 1000 km.  These results are 

illustrated in Figure 17. 

 

Figure 4.5. Magnification of the profiles displayed in Figure 4.4 to study the influence of the 

median filter radius on the swell calculation. 

The color schemes are the same from Figure 4.4.  The black arrows represent individual 

volcanoes the profiles intersect.  All profiles have been magnified from -500 to 1000 m to 

identify any differences between the median filters. 
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The biggest differences among the filtered depth anomaly curves are found along the 

profile CC’, around latitude 57oS.  At this location, the curve calculated using a filter of R = 150 

km drops sharply, thus providing a negative swell.  The amplitude and the wavelength of the 

swell at this location indicate that the curve calculated using a filter of R = 150 km (blue line) is 

not adequate to characterize the Louisville swell.  This filter also shows short wavelength 

variations along the three profiles that are inconsistent with the swell morphology described by 

previous authors (Crough 1983).  We can, therefore, eliminate R = 150 km as a viable median 

filter for explaining the swell at this location.  The curves calculated with the R = 350 km (green 

line) and R = 250 km (red line) filters produce similar results and cannot be distinguished 

unambiguously using this analysis.  We, therefore, consider that results from other profiles, such 

as the main axis and along older segments of the chain, in order to see which median filter best 

characterizes the Louisville swell. 

 4.1.2. Segment 2 

The second segment of the chain extends from latitude 44.6oS and longitude 199.9oE to 

latitude 37.1oS and longitude 191.0oE in between the two bends of the track (denoted by white 

square on Figure 4.6, from Koppers et al. 2004; 2011).  The volcanism ages along this segment 

vary between 25 and 40 Ma (Figure 4.6a).  The swell associated with Hawaii disappears for 

volcanic ages 20 – 30 Ma (Vidal and Bonneville, 2004).  Therefore, we expect the swell to be 

small or non-existent along this segment of the Louisville seamount chain.  Along the profile EE’ 

(Figure 4.7b), we can see a very small swell of amplitude ~100 m.  Along this profile, the main 

axis is located at latitude 43oS.  The curve calculated by the filter r = 10 km (blue line) has 

already been eliminated in the previous sections.  The difference between the calculated curves 

of the r = 20 km (red line) and r = 30 km (green line) filters is minimal.  Along the profile DD’ 
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(Figure 4.7a), there is no more swell associated with the Louisville chain.  Most of the swell we 

see along this profile is the swell associated with the Hikurangi plateau.  Along this profile, the 

main axis is located at latitude 40oS. 

 In Figure 4.8, we test the influence of the median filter radius, R, for the middle segment 

of the Louisville chain.  As the swell is not present along the DD’ profile, we focus our 

discussion on the EE’ profile.  In the previous section, we eliminated curve calculated by the 

filter R = 150 km (blue line).  The curves calculated by the R = 250 km (red line) and the R = 

350 km (green line) filters produce similar results, and both provide a good approximation of the 

swell along this profile. 
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Figure 4.6. Depth anomaly (a) and swell (b) along the Louisville chain. 

The black line represents the main axis, and the red lines are trajectories perpendicular to the 

main axis for the second segment. The Mid-Oceanic Ridge (MOR) is reported in magenta.  The 

dark red area around latitudes 40-45oS and longitudes 185-195oE is the Hikurangi (HIK) plateau 

(Ito and van Keken, 2007).  The feature around latitude 40oS and longitudes 200oE is the Valerie 

seamounts (Clouard and Bonneville, 2005).  The volcanism ages, taken Koppers et al. (2004; 

2011), are reported in black and white in panel a. 
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Figure 4.7. Influence of the minimizing filter radius on the swell calculation for the second 

segment. 

The black line represents the depth anomaly along the DD’ and EE’ shown in Figure 4.6.  The 

black arrow represents individual volcanoes the profile intersects.  The color lines represent the 

filtered depth anomaly.  The radius of the median filter is constant at R = 250 km.  The radius of 

the minimizing filter is fixed at 10, 20, and 30 km (color code in the legend).   
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Figure 4.8. Influence of the median filter radius on the swell calculation along the second 

segment. 

The black line represents the depth anomaly along the DD’ and EE’ profiles shown in Figure 4.6.  

The black arrow represents individual volcanoes the profile intersects.  The color lines represent 

the filtered depth anomalies.  The radius of the minimizing filter is r = 20 km.  The radius of the 

median filter is fixed at 150, 250, and 350 km (color code in the legend).   

 

 4.1.3. Segment 3 

 The third segment is the oldest part of the Louisville chain.  This segment extends from 

the bend in the track at latitude 37.1oS and longitude 191.0oE to the oldest recorded part of the 

chain at latitude 25.5oS and longitude 186.0oE.  That location is the Osbourn seamount, which 

has the oldest recorded volcanic age at 78.8 ± 0.8 Ma (Koppers et al. 2004; 2011).  Since this 

area is the oldest part of the chain, there should be no swell present in the area because the 
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lithosphere associated with this part of the track has migrated away from the mantle plume.  We 

can see this in both the depth anomaly and swell map in Figure 4.9.   

 

Figure 4.9. Depth anomaly (a) and swell (b) along the Louisville chain. 

The black line represents the main axis, and the red lines are trajectories perpendicular to the 

main axis for the third segment. The Mid-Oceanic Ridge (MOR) is demarcated by a magenta 

line.  The dark red area around latitudes 40-45oS and longitudes 185-195oE is the Hikurangi 

(HIK) plateau (Ito and van Keken, 2007).  The feature around latitude 40oS and longitudes 200oE 
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are the Valerie seamounts (Clouard and Bonneville, 2005).  The volcanism ages, from Koppers 

et al. (2004; 2011), are reported in black and white in text panel a. 

 

In Figures 4.10 and 4.11, we can see that there is no swell associated with this part of the 

chain.  Along the FF’ and GG’ profiles, the main axis is located at latitude 32oS and 37oS 

respectively.  The swell observed along the GG’ profile is associated with the Hikurangi plateau.  

All of our filters indicate a lack of swell along this part of the chain.  This agrees with previous 

studies on swells, which are, in general, not found along the older parts of hotspot chains (see 

discussion in section 2.1, Background Information).  The calculated depth anomaly profiles are 

indistinguishable along this part of the chain, regardless of filter parameters chosen. 

 

Figure 4.10. Influence of the minimizing filter radius on the swell calculation for the third 

segment. 
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The black line represents the depth anomaly along the FF’ and GG’ profiles, shown in Figure 

4.9.  The black arrows represent individual volcanoes the profiles intersect.  The black colored 

line represents the depth anomaly.  The radius of the median filter is constant at R = 250 km.  

The radius of the minimizing filter is fixed at 10, 20, and 30 km (color code in the legend). 

 

 

Figure 4.11. Influence of the median filter radius on the swell calculation of the third 

segment. 

The black line represents the depth anomaly along the FF’ and GG’ profiles, shown in Figure 

4.9.  The black arrows represent individual volcanoes the profiles intersect.  The color lines 

represent the filtered depth anomaly.  The radius of the minimizing filter is r = 20 km.  The 

radius of the median filter is fixed at 150, 250, and 350 km (color code in the legend). 
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 4.1.4. Swell along the main axis 

 In this section, we investigate the impact of different filter parameters on calculated depth 

anomaly curves along the main axis of the Louisville chain.  Figures 4.12 and 4.13 illustrates the 

effects of the minimizing filters r = 10, 20, and 30 km along the entire track while the median 

filter remains constant at 250 km. 

 

Figure 4.12. Influence of the minimizing filter radius along the main axis. 

The color scheme is reported in the legend. 

 

 The oldest part of the Louisville chain, from 191.0oE to 186.0oE has no associated swell.  

The swell observed west of longitude 200oE is associated with the Hikurangi plateau, the 

boundaries of which are from 195oE to 190oE.  The large variations in the depth anomaly from 
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190o to 185o could still be caused by the HIK plateau or interference from the Valarie seamount 

chain.  Figure 4.12 shows the swell along the whole Louisville chain, while Figure 4.13 focuses 

on youngest part of the chain, where the swell associated with Louisville is present. 

 

Figure 4.13. Influence of the minimizing filter radius along the main axis. 

Magnification along the youngest part of the chain. 

 

In the previous section, we showed a minimizing filter of r = 20 km produces the 

characterization of the swell.  The same conclusion can be made while looking along the main 

axis.  The curve of filter r = 10 km (blue line) is indeed too high and removes a non-negligible 

part of the volcanoes while the curve of filter r = 30 km (green line) is too low.  It overestimates 

the volume represented by the volcanic products and underestimates the swell volume.  
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 Figures 4.14 and 4.15 show graphically the influence of the median filter, R, on the 

filtered depth anomaly curve.  Figure 4.15 focuses on the youngest part of the chain, where the 

swell is associated with the seamount chain.  In the previous section, we eliminated the curve 

calculated by the filter R = 150 km (blue line) but could not distinguish between the R = 350 km 

(green line) or R = 250 km (red line) curves.  Along the main axis, we can see that the curve 

from the R = 250 km filter provides the best estimate of the swell component.  The curve from 

the R = 350 km filter smooths out too much the long scale variations (wavelength ~500 km), 

which we can see in the depth anomaly (black line in Figure 4.15), and that are generally 

associated with hotspot swells (Crough 1983; Vidal and Bonneville, 2004; Adam et al., 2007). 

 

Figure 4.14. Influence of the median filter radius along the main axis. 

The color scheme is reported in the legend. 
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Figure 4.15. Influence of the median filter radius along the main axis. 

Magnification along the youngest part of the chain. 

 

 4.2. Influence of the compensation root 

Before we compute the swell and magmatic fluxes, we must first consider the 

compensation root.  As stated in the Methods section, in order to compute the volume of 

magmatic products, i.e., the volcanic edifices volume, we had to take into account that the 

lithosphere has a finite strength, and therefore flexes downwards when loaded by volcanoes 

(Watts et al., 1975; 1980).  Previous studies have pointed out that ignoring the volume of 

magmatic material encompassed in the flexural root would lead to underestimating the total 
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volume of erupted magmatic material (Watts et al., 1975; 1980; Smith, 1990; White, 1993; Vidal 

and Bonneville, 2004; Adam et al, 2007). 

 There are two main models of compensation to consider.  The compensation can be local 

(this is called ‘Airy’ compensation) or regional.  If the compensation is regional, its computation 

takes into account the fact that the lithosphere has an elastic thickness (Watts and tenBrink, 

1989).  The elastic thickness depends on the age of the lithosphere at the time of loading, as 

illustrated in Figure 4.16. 

 Calculation of the lithospheric flexure was done by my advisor, Dr. C Adam, so I will 

only briefly summarize this calculation.  It is, however, important to test the influence of the 

compensation mechanism of the fluxes’ computation.  The elastic thickness is generally 

considered to be situated between the isotherms 450oC and 600oC (Watts and Ribe, 1984), as 

illustrated in Figure 4.16.  The youngest volcano along the Louisville chain, (1.1 Ma), is located 

on seafloor that is 45 Ma old (Figure 4.17a).  This corresponds to an elastic thickness of 20 – 25 

km. 

 In Figure 4.17b, I report in blue the flexure computed with an elastic thickness of 25 km, 

and in the red the flexure computed assuming a local or ‘Airy’ compensation, along the AA’ 

profile represented in Figure 4.17c.  When the compensation is local, most of the flexure is 

located immediately beneath the volcanoes.  When the flexure is computed assuming an elastic 

thickness of 25 km, the flexure wavelength is larger, while the amplitude is smaller. 

 In Figure 4.18, I report the magmatic flux computed with the local compensation (in red) 

and with a regional model assuming an elastic thickness of 25 km (in blue).  The means of each 

mode are reported in Table 2.  We have only included the first two segments of the Louisville 
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chain, where the swell is observable.  The estimated fluxes calculated by the two approaches are 

similar, with only a .5 difference between them.  This lack of sensitivity of the magmatic flux to 

the compensation mechanism has already been noticed by Vidal and Bonneville (2004).  The 

Airy approximation gives the same results as the regional model.  This is illustrated in Figure 

4.19, extracted from Vidal and Bonneville (2004).  This can be explained by the fact that the 

flexure volume is the same whatever the compensation mechanism.  The shape of the flexure 

(i.e., its wavelength) and amplitude changes however.  In the following we used a compensation 

root, computed assuming an elastic thickness of 25 km (blue line in Figure 4.18). 
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Figure 4.16. Elastic thickness of the lithosphere as a function of the seafloor age at the time 

of loading 

The isotherms correspond to the plate model (Parsons and Sclatter, 1977).  The seismic thinness 

is from Nishimura and Forsyth (1989).  The arrows indicate the short-term relaxation of the 

seismic thickness. 
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Figure 4.17. Compensation root. 

(a) Seafloor age along the Louisville chain. (b) Profile showing the depth anomaly, in black as 

well as the flexure computed with an elastic thickness of 25 km in blue, and the flexure 

computed assuming a local or ‘Airy’ compensation in red.  (c) Location of the profile along 

which we study the compensation along the depth anomaly map. 
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Figure 4.18. Magmatic flux, Qv. 

Computed assuming a local compensation (in red) and with a regional model assuming an elastic 

thickness of 25 km (in blue). 

 

Table 2. Mode of compensation magmatic fluxes 

Mode of 
Compensation  

Magmatic 
Flux (m3 s-1) 

Elastic Thickness 0.92 

Local ('Airy') 0.95 
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Figure 4.19. Magmatic and swell fluxes along the Hawai'ian chain. 

Correlation between the two calculated parameters: (1) temporal variation of the volume flux of 

magma (left axis) when assuming an Airy compensation (gray line) or a flexural deformation 

(black line) and (2) temporal variation of the volume flux Qs associated with the swell and 

buoyancy flux B (right axis) for the Parsons and Sclater (PS) model (dashed line) and the Global 

Depth and Heat flow model (GDH1) (dotted line) thermal subsidence models  Figure modified 

from Vidal and Bonneville (2004). 

 

 4.2.1. Influence of the filter parameters on the flux determinations 

A minimizing filter of radius r = 20 km and a median filter of radius of R = 250 km 

produces a good estimate of Louisville’s swell.  The difference between the results for a median 
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filter of R = 250 km vs. R = 350 km is relatively small, so we use the R = 250 km filter for the 

remaining calculations. 

In this section, we investigate the influence of these parameters on the preliminary swell 

and magmatic fluxes.  The official swell and magmatic fluxes will be calculated in the next 

section.  As stated previously in the Methods section, we used the sliding box method to 

calculate the swell and magmatic fluxes (Figure 3.6).  The magmatic flux is calculated by the 

sliding box measuring the volcanic edifices volume between the topography and regional flexure 

(i.e., elastic thickness of 25 km) along the filtered depth anomaly.  The swell flux is calculated in 

a similar way.  The sliding box measures the swell’s volume between the base of the seafloor and 

the top of the swell.  To make this a function of time, the volumes of the swell and magmatic 

material will be divided by the volcanic age difference contained within the box.  The influence 

of the parameters of the box (wb, lb, and tb) will be described in the next few sections.   

In Figures 4.20 and 4.21, we show the swell and magmatic fluxes computed while 

varying the filtering parameters.  In Figure 4.21, we magnified the y-axis to observe the youngest 

part of the chain where we can find the Louisville swell.  The mean swell and magmatic fluxes 

for the youngest part of the chain are reported in Table 3.  In Figures 4.20a and 4.21a, we can see 

that varying r has a noticeable effect on the amplitude of the swell flux, Qs.  The differing 

minimizing filters calculate a difference in the mean swell flux of .4 – .5 m3 s-1.  When r is too 

small, as is the case for r = 10 km, we underestimate the volume of the volcanic edifice and 

overestimate the swell volume, as discussed above.  The shape of Qs seems relatively unaffected 

by variations in r.  The magmatic flux, Qv, (Figures 4.20b and 4.20b) also varies as a function of 

r.  However, the amplitude of Qv varies less than the amplitude of Qs.  The difference among the 
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mean magmatic fluxes ranges from .002 – 3 m3 s-1.  Results presented in sections 4.1.1. – 4.1.4. 

and below show that a value of r = 20 km provides the best fit for the minimizing filter.   

 

Figure 4.20. (a) Swell and (b) magmatic fluxes computed along the Louisville chain. 

The different color lines represent the fluxes computed with different filters.  Blue, r = 10 km, R 

= 250 km.  Red, r = 20 km, R = 250 km.  Green, r = 30 km, R = 250 km.  Dashed black r = 20 

km, R = 350 km. 
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Figure 4.21. Magnification of (a) swell and (b) magmatic fluxes computed along the 

Louisville chain. 

Magnification of the youngest part of the chain, from volcanic ages 0 – 35 Ma, where the swell is 

located from Figure 4.20. 

 

Table 3. Summary of swell and magmatic fluxes of varying minimizing and median filters 

Minimizing 
Filter (r) 

Median 
Filter (R) 

Swell Flux 
(m3 s-1) 

Magmatic 
Flux (m3 s-1) 

10 250 0.2746 0.1908 

20 250 0.2092 0.2307 

30 250 0.1623 0.2371 

20 350 0.2018 0.2371 
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 4.3 Influence of the sliding box parameters on the swell determination  

Once the swell and magmatic components have been separated, we used the “sliding 

box” method, (described in Methods section) previously developed by Vidal and Bonneville 

(2004) and Adam et al. (2007), to compute the final swell and magmatic volumes.  During this 

process, a box with characteristic length (lb), and width (wb), is translated along the main axis, 

with a translation step (tb) (Figure 5 in Methods section).  The volume of magmatic material and 

swell encompassed in this box is computed for each translation step.  In this section we tested the 

influence of the sliding box parameters on the swell and volcanism fluxes along the Louisville 

volcanic chain. 

 4.3.1 Influence of the length of the box, lb 

We first tested the influence of the length of the box, lb, on the swell and magmatic flux 

computations.  This parameter depends on the characteristics of the volcanic chain and 

associated swell.  Previous studies on the Hawaiian, Walvis, and St. Helena chains have used lb = 

1000 km (Vidal and Bonneville, 2004; Adam et al., 2007) due to their physically larger and more 

widespread volcanoes.  Since the volcanoes associated with the Louisville chain are smaller and 

less widespread relative to the main axis (Figure 3, Background Information), we also tested 

smaller values.  To test the influence of the length of the box, we considered values of lb = 500 

(black line in Figure 23), 700 (red line), and 1000 km (blue line), while the width and translation 

step of the sliding box are kept constant (wb = tb = 50 km).  The swell and magmatic fluxes 

obtained with these parameters are displayed in Figure 4.22a (magmatic flux) and Figure 4.22b 

(swell flux). 
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Figure 4.22. The influence of length of the translating box on the (a) magmatic and (b) swell 

fluxes. 

For both fluxes, the width and translation step are at 50 km.  The x axis represents the age of 

volcanism and the y axis represents the depth anomaly. 

 

We noticed that increasing the length of the sliding box, decreases the amplitudes of both 

fluxes (Figure 4.22).  This is due to the fact that most of the volcanoes and swell are concentrated 

along the main axis.  If the box is not long enough, the computation will not consider all the 

material created by the Louisville plume, especially towards the end of the track.  As the fluxes 

are the volumes of the swell and the volcanoes encompassed in the sliding box, divided by the 
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surface area of this box, this will lead to an overestimation of the flux amplitude.  Only the 

maximal values of the swell and magmatic volumes will be encompassed in the sliding box.  If 

the box is too long, we underestimate the flux amplitudes, as regions not associated with 

volcanoes or swell will be encompassed in the box.  Based on considerations of the volcano and 

swell characteristics, we decided that the length of 700 km (lb = 700 km) is the best parameter for 

both fluxes along the Louisville chain.  lb = 700 km was chosen because this length encompasses 

all of the volcanoes and the associated swell.  Anything bigger will be gathering unneeded 

information and anything less will be cutting out volcanoes from the measurements.  Figure 4.23 

illustrates the different sizes of the boxes being sent along the chain.

 

Figure 4.23. Illustration of the sliding boxes length along the youngest segment of the chain. 

The swell map was created with a r = 30 km; R = 250 km filter.  The black box represents lb = 

500 km, the purple box represents lb = 700 k, and the red box represents lb = 1000 km. 
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The tests on the length of the box, lb, are necessary to see whether this parameter has any 

influence of the computed fluxes.  As we can see in Figure 25, lb has an influence on the 

amplitude of the fluxes, but the pattern of theses fluxes remains almost unchanged while varying 

lb.  Two exceptions have been noted, however. 

In Figure 4.22b, we see that lb = 500 and 700 km identify the smaller variations 

associated with the swell flux while the flux computed with lb = 1000 km starts to lose these for 

ages less than 20 Ma.  Similarly, the magmatic flux computed with lb = 1000 km show fewer 

details than the other fluxes for ages younger than 5 Ma (Figure 4.22a). 

 4.3.2. Influence of the width of the box, wb 

 Similar to Vidal and Bonneville (2004) and Adam et al. (2007), our test on the influence 

of the box width set the translation step and width of the box equal to one another (tb = wb).  

Previous studies assigned a box width of 100 km for Hawaii (Vidal and Bonneville, 2004) and 

20 km for Walvis and St. Helena (Adam et al., 2007).  In our study, we kept the length constant 

at lb = 700 km, had the translation step equal the width of the box, and varied the width from wb 

= 20, 50, and 100 km. Figure 4.24a illustrates the influence of the width of the sliding box on the 

volcanism flux, while Figure 4.24b illustrates its influence on the swell flux.   
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Figure 4.24. The influence of width of the sliding box on the (a) magmatic and (b) swell 

fluxes. 

For both fluxes, the length of the sliding box is 700 km and the translation step is equal to the 

width for each test.  Blue arrows indicate individual volcanoes. 

 

We noticed that by increasing the width value, wb, the amount of detail in both fluxes is 

reduced.  We see the largest difference are found for the magmatic fluxes (Figure 4.24a).  There 

are almost no differences in the calculated swell fluxes (Figure 4.24b).  The differences between 

the black (wb = 20 km) and red (wb = 50 km) lines in Figure 27a are consistent with the locations 

of individual volcanoes (indicated by the blue arrows).  Since we wanted a flux that illustrates 
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the general trend of the fluxes, without details at the scale of volcanoes, we decided that wb = 50 

km is a better parameter than wb = 20 km.  When comparing the blue (wb = 100 km) and red (wb 

= 50 km) lines in Figure 4.24a, we can see that more variations are seen with wb = 50 km.  Using 

wb = 100 km does not encompass all the variations we want to study.  Therefore, wb = 50 km is 

the most suitable value for this parameter. 

 4.3.3. Influence of the translation step, tb, and overlap of the sliding boxes 

 In previous studies, the translation step is equal to the width of the box (tb = wb), (Vidal 

and Bonneville, 2004; Adam et al., 2007).  This means that there is no overlap between the 

sliding boxes.  Here we test the influence of the overlap of the sliding boxes.  We varied the step 

as tb = 50, 25, and 5 km as we kept the length and width constant at 700 and 50 km respectively.  

The overlap of the boxes when tb = 50 km is 0%.  When tb = 25 km and tb = 5 km, the overlap is 

50 % and 90% respectively.  Illustrations of these overlaps are reported in Figure 4.25.  The 

results of the sensitivity of the fluxes on the translation step are reported in Figure 4.26.  Figure 

4.26a illustrates the volcanism flux while Figure 4.26b illustrates the swell flux. 
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Figure 4.25. Varying the translation step, tb, and the overlap 

For the three cases illustrated here, the length and width of the sliding box are 700 and 50 km 

respectively.  In panel a, the translation step, tb, is 10 km, in panel b 25 km, and in panel c is 50 

km.  The blue and the red rectangles represent the sliding box at two consecutive iterations.  The 

green area represents the overlap between two computation steps.  The overlap percentage in 

panels a, b, and c is 90%, 50%, and 0% respectively. 
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Figure 4.26. The influence of the translating steps on the (a) magmatic and (b) swell fluxes. 

For both fluxes, the length of the sliding box is 700 km and the width 50 km.  The x axis 

represents the age to active volcanism and the y axis represents the depth anomaly. 

 

 In Figure 4.26, we see that increasing the translation step, tb, decreases the amount of 

details seen in the fluxes.  We can also see that there is actually very little difference between the 

magmatic fluxes, Qv, computed with tb = 5 km (blue line, corresponding to a 90% overlap) and tb 

= 25 km (red line, corresponding to a 50% overlap).  The Qv represented in black has been 

computed with tb = 50 km, and therefore, there is no overlap in this case.  Some details in the Qv 
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variations seem to be lost by using this last value.  We decided that a step of 25 km is the most 

adequate, as it gives us a detailed description of the temporal variations of the volcanism flux.  In 

Figure 29b, we can see there is very nearly no difference between the swell fluxes computed 

while varying tb.  To summarize, the box parameters to best approximate the swell and magmatic 

fluxes are lb = 700 km, wb = 50 km, and tb = 25 km. 
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Chapter 5 - Discussion 

In this section, we discuss the temporal evolution for the swell and magmatic fluxes 

along the Louisville hotspot.  We will focus on the Louisville swell and magmatic fluxes for ages 

younger than 35 Ma because any variations seen from the swell fluxes at older ages are 

associated with the Hikurangi plateau (see section 4.1.4; Ito and van Keken, 2007).  The fluxes 

are also compared to the previous studies performed by Vidal and Bonneville (2004) and Adam 

et al. (2007) on Hawai’i-Emperor, Walvis, and St. Helena volcanic chains.  We then discuss the 

potential origin of the temporal variations of the swell and magmatic fluxes. 

 5.1 Temporal evolution of the swell (Qs) and magmatic (Qv) fluxes 

 5.1.1 Variations observed along the Louisville seamount chain 

The calculated swell and magmatic fluxes, computed along the Louisville chain, through 

the methods described in sections 3 and 4 (see for example Figure 4.18 in section 4.2 and Figure 

4.20 in section 4.2) are illustrated in Figure 5.1 in the upper and lower panels respectively.  For 

the past 30 m.y. both of these fluxes have been increasing, which indicates that the plume’s 

activity (i.e., magma production) is also increasing (Figure 5.1).  These trends are highlighted by 

the black lines in Figures 5.1 and 5.2.  The black lines have been computed through linear 

regression between the fluxes and the volcanism age (“polyfit” function in Matlab).   

We observe several maxima in both Qs and Qv at 2, 12, 25 Ma (blue arrows on Figure 

5.1) which occur around every 10 m.y.  We also notice oscillations that occur for ~5 m.y., which 

are identified by dashed green ellipses in Figure 5.2.  These ~5m.y. variations occur from 25 – 

20 Ma, 15 – 10 Ma, and 5 – 0 Ma in both fluxes.  In the following, we discuss the origin of the 

flux’s variations along the Louisville hotspot chain and compare them to the variations observed 

along other long-lived chains. 
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Figure 5.1. Trends and correlations between the (a) swell and (b) magmatic fluxes along the 

Louisville chain. 

The black line indicates the trend of these fluxes.  They have been computed through linear 

regression between the fluxes and volcanism age.  The blue arrows indicate peaks that are found 

simultaneously in Qs and Qv. 
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Figure 5.2. Variations of the (a) swell and (b) swell magmatic fluxes along the Louisville 

chain. 

The green dashed ellipses indicate short wavelength features that occur for 5 m.y. 

 

 5.1.2 Comparison of plume activity 

In Figures 5.1 and 5.2, we observe that the swell and magmatic fluxes along the 

Louisville seamount chain have been increasing for the past 30 m.y.  Similar to the Louisville 

chain’s trend, the Qs and Qv for the Hawai’ian chain have been increasing for the past 30 m.y. 

(Vidal and Bonneville, 2004) (Figure 5.3).  Along the Walvis Ridge and St. Helena chain, the Qs 

and Qv have been decreasing over the past 60 m.y. and 80 m.y. respectively (Adam et al. 2007).  

Interestingly, the Qs and Qv trends are generally well correlated along each hotspot track, which 

indicates a connection between the fluxes.  The St. Helena hotspot track seems to be an 

exception, as the magmatic flux indicates the presence of two plumes (Adam et al., 2007).  This 

pattern makes the interpretation of the temporal evolution of Qs and Qv along the St. Helena 

chain more difficult.   
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For the Hawai’ian chain, the increasing trend in both Qs and Qv has been interpreted as 

evidence for an increase in the plume activity (i.e., increase in magma production) during the 

past 30 m.y. (Vidal and Bonneville, 2004), while for the Walvis and St. Helena hotspots, the 

decrease in both Qs and Qv has been interpreted as a decrease in plume activity (i.e., decrease in 

magma production) during the past 60 and 80 m.y. respectively (Adam et al., 2007).  A previous 

study has reported that the plume activity of the Louisville hotspot has been decreasing for ~20 

m.y. (Lonsdale, 1988).  Lonsdale (1988) reports that the Louisville chain’s plume used to 

produce magma at a rate of ~3-4 x 103 km3/m.y. that this would create an evenly spaced volcanic 

chain with volcanoes averaging ~2-4 x 103 km3 in volume.  At ~25 Ma, this magma production 

rapidly declined, creating a dispersed volcanic chain, in which the volcanoes rarely reach sea 

level (Lonsdale, 1988).  However, while Figure 3.1 does indicate a more sparsely distributed 

volcanic trail, the Qs and Qv provide a clearer image on how a plume’s activity is behaving 

(Vidal and Bonneville, 2004; Adam et al., 2007).  Based off of the observations seen along the 

Qs and Qv trends of the Hawai’ian and Walvis chains, we interpret the increase of these fluxes 

along the Louisville seamount chain as an increase in plume activity.   

Which phenomena could account for an increase in the plume activity, such as the one 

observed along Louisville and Hawai’i?  According to Vidal and Bonneville (2004), the increase 

in activity along the Hawai’ian chain can be accounted for by an increase in plume temperature 

or an increase in the volume of magmatic material from the plume.  White (1993) states that the 

increasing plume activity is caused by the rising melt production rate.  The variations seen in the 

degree of melting could be caused by variations in lithosphere thickness (Regelous et al., 2003).  

However, Harrison et al. (2017) argues against the influence of lithosphere thickness and instead 

proposes a change in the Hawai’ian plume source composition. 
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If the magmatic flux is influenced by lithosphere thickness, then it should also influence 

the 208Pb*/206Pb* isotopic signature (Harrison et al., 2017).  For example, the 208Pb*/206Pb* 

isotopic signature would be lower in lavas that have formed due to higher degrees of melting 

(Pertermann and Hirschmann, 2003; Garcia et al., 2010).  However, both the Emperor seamount 

chain and Hawai’ian volcanic chain experience a similar range of variations regardless of 

lithospheric thickness (Figure 5.4).  The Emperor seamounts have a lithospheric thickness of 

22.4 – 92.2 km and a 208Pb*/206Pb* signature ranging from 0.89 to 0.94, while the Hawai’ian 

chain has a lithospheric thickness of 89.4 – 98.2 km and a ranging 208Pb*/206Pb* signature from 

0.92 to 0.97 (Harrison et al., 2017).  Since the difference between both of these ranges is only 

0.05, it suggests that lithospheric thickness doesn’t affect the magmatic flux (Harrison et al., 

2017).  Harrison et al. (2017) proposes that the enrichment of 208Pb*/206Pb* along the Hawai’ian 

chain is the result of deep-mantle plume movement.  Since the plume source is currently located 

in the ultra-low velocity zone (ULVZ) near the Pacific low shear velocity province (LLSVP), 

Harrison et al. (2017) states that the plume originated outside of this area, but slowly migrated 

into it.  This would mean that the Emperor seamounts low 208Pb*/206Pb* isotopic signature is 

from a depleted material while the Hawai’ian chains high 208Pb*/206Pb* isotopic signature is 

from an enriched ULVZ and LLSVP material (Harrison et al., 2017). 
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Figure 5.3. Swell and magmatic fluxes along the (a) Louisville, (b) Walvis, (c) St. Helena, 

and (d) Hawai'i chains. 

The blue curve represents the calculated swell flux, the red curve represents the calculated 

magmatic flux.  The dashed green ellipses identify the 5 m.y. long variations seen along every 

chain.  The black arrows represent correlations between the maxima of Qs and Qv.  Black line 

represents the calculated trend of the Qs and Qv fluxes, this trend was computed through linear 

regressions between the fluxes and volcanism age.  The Hawai’ian chain has a larger vertical 

scale compared to the other chains to identify the maxima in Qs and Qv.  The figure is modified 

from Adam et al. (2007). 

 



70 

 

Figure 5.4. Correlation between estimated volume flux (magmatic flux) of the Hawai'ian-

Emperor chain and 208Pb*/206Pb* isotopes. 

Different magmatic fluxes of Hawai’i-Emperor seamount chain from previous studies are 

illustrated by the different colored curved lines, becoming more precise with time.  Hawai’ian 

islands are represented by circles, Emperor seamounts are triangles, and the Hawai’ian ridge is 

diamonds.  The radiogenic Pb is the dashed blue line.  Hawai’ian islands have a larger 

concentration of 208Pb*/206Pb* isotopes, and the Emperor seamounts have the smallest.  The 

208Pb*/206Pb* ratio was calculated by 
𝑃𝑏∗208

𝑃𝑏∗206 =
(

𝑃𝑏208

𝑃𝑏204 )𝑆𝑎𝑚𝑝𝑙𝑒−(
𝑃𝑏208

𝑃𝑏204 )𝐼𝑛𝑖𝑡𝑖𝑎𝑙

(
𝑃𝑏206

𝑃𝑏204 )𝑆𝑎𝑚𝑝𝑙𝑒−(
𝑃𝑏206

𝑃𝑏204 )𝐼𝑛𝑖𝑡𝑖𝑎𝑙

.  Figure and equation are 

from Harrison et al. (2017) 

 

 However, we don’t have any isotopic data like in Harrison et al. (2017) along the 

youngest part of the Louisville chain.  Fitton et al. (2021) conducted a study along the older 
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segments of the Louisville and Hawai’ian chains, a detailed description of this study can be 

found in Section 5.3.  They could not confirm that the variations seen in the melt production 

were dependent on the differences in lithospheric thickness (Fitton et al. 2021).  The authors 

were able to confirm that the potential temperature under the Louisville chain would be cooler 

than the potential temperature under the Hawai’ian chain (Nichols et al. 2014; Fitton et al. 2021).  

Thus, the increase in Qs and Qv can be associated with an increase in melt production rate (these 

variations are unrelated to lithospheric thickness variations), increase in plume temperature, or a 

change in the plume’s source composition.  

 5.1.3 Comparison of variations 

The 10 m.y. wavelength features from the Louisville track have also been noticed in the 

maxima of the Walvis, St. Helena, and Hawai’ian chains (Vidal and Bonneville, 2004; Adam et 

al., 2007).  Along the Louisville hotspot track, we observe maxima at 2, 12, and 23 Ma that 

coincide with maxima in in Qs and Qv (blue arrows on Figure 5.1).  Other studies point out 

similar peaks at 10, 38, and 54 Ma for the Walvis Ridge, along with 10 and 30 Ma for the St. 

Helena (Adam et al., 2007), and 3 and 15 Ma for the Hawai’ian chain (Vidal and Bonneville, 

2004) (Figure 39).  In general, plumes located on the Pacific plate (Louisville and Hawai’i) have 

peaks occurring roughly at the same long-term variation periods in Qs and Qv, 10 m.y. (Vidal and 

Bonneville, 2004).  The Atlantic plumes (Walvis and St. Helena) have corresponding Qs and Qv 

peaks that occur at a 20 m.y. period (Adam et al., 2007).  Several hypotheses have been 

suggested to explain such variations with a 10 – 20 m.y. periodicity.  Whitehead (1982) and 

Steinberger (2000) propose that these variations are due to a plume conduit that is tilted.  The tilt 

of the plume conduit is created by the lithosphere drifting at the top of the plume.  Over time, as 

the lithosphere is moving, the tilt will continue to increase (Whitehead, 1982).  This tilt could be 
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caused by large scale mantle advection, and if the tilt is more than 60o from the vertical, then the 

conduit begins to break up, causing a cease in magmatism (i.e., becomes unstable), and may 

produce oscillations (Whitehead, 1982).  Steinberger (2000) reports that the tilt of the Louisville 

plume conduit may be 78o, 74o, or 55o.  Even though the tilt of Louisville’s conduit could be 

larger than 60o, Steinberger (2000) states the plume can still survive.  The explanation is based 

on the viscosity of the surrounding mantle.  If the surrounding mantle is highly viscous (≥ ~3 x 

1022 Pas), then the conduits instability will slowly develop, allowing magmatism to continue.  If 

the surrounding mantle has low viscosity (≤ ~5 x 1021 Pas), then broken pieces of the conduit 

will rise quickly through the conduit, allowing magmatic material to continue to flow through it 

(Steinberger, 2000).  This mechanism has already been invoked by Koppers et al. (2004) to 

account for the scattered seamount distribution and their volcanic ages, along Louisville. 

 The short-term, 5 m.y. long variations seen along the Louisville chain (green dashed 

ellipses on Figure 5.2) have also been observed in the Qs and Qv along the St. Helena, Walvis, 

and Hawai’i chains (Vidal and Bonneville, 2004; Adam et al., 2007).  For the St. Helena, Walvis, 

and Hawai’ian chains, these variations are identified as dashed green ellipses in Figure 5.3.  They 

can be caused by the presence of solitary waves found within the plume conduit (Whitehead and 

Helfrinch, 1990; Vidal and Bonneville, 2004; Adam et al. 2007).  These could form in the plume 

conduit after it has been deformed by mantle motions, or form due to plume flux variations, or to 

pressure variations (Olson and Christensen, 1986; Schuber et al. 1989; Olson, 1990).  Olson and 

Christensen (1986) created a model for solitary wave formation by combining two fluids with 

low viscosity and density into a matrix fluid with a higher viscosity and density.  Fluid A was 

made up of water and ethyl alcohol, fluid B was made up of a sucrose solution, water, and ethyl 

alcohol, and the matrix fluid is a water and sucrose solution (Olson and Christensen, 1986). They 
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found two different forms of waves could form: solitary waves that travel up the conduit quickly, 

and periodic waves tarins that travel slowly (Olson and Christensen, 1986).  Figure 5.5 illustrates 

the formation of the waves found plume conduits in a laboratory-based setting.  As these waves 

are generated, they travel upward towards the surface without any changes to their physical 

features (i.e., shape and size) (Data et al. 2018).  The presence of solitary waves has been used to 

explain isotopic heterogeneities (West et al. 1987) and why plume material rises quickly through 

the conduit (Whitehead and Helfrich, 1988; 1990).  This upwelling model occurs ten to fifteen 

times faster than those proposed through fluid mechanics (Whitehead and Helfrinch, 1988).  In 

this study, we are able to confirm that all long-lived hotspots exhibit variations at ~5 m.y. 

wavelengths. 

 

Figure 5.5. Waves within a plume conduit. 

Modified from Olson and Christensen (1986).  Both panels illustrate the results from Olson and 

Christensen experiment of fluid A interacting with the matrix fluid. (a.) A solitary wave traveling 

up the plume conduit.  (b.) Propagating wave train traveling up the plume conduit.   
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 5.2 Quantitative comparison with Hawai’i  

Before comparing the total volumes of all four chains, we want to take a closer look at 

the Louisville seamount chain and Hawai’ian volcanic chain. The comparison with Hawaii is 

particularly interesting, as Louisville and Hawaii are both located on the Pacific plate. The 

amplitude of the swell and magmatic fluxes differs between Hawaii and Louisville because the 

swell associated with Hawai’i has a larger width.  In Figure 5.5, the amplitude of the Hawai’ian 

swell is about 1200-1500 m, while the swell associated with Louisville has a 300 m amplitude.   

In Figure 39, The maximum Qs for Hawaii is 2 m3s-1, while for Louisville the maximal Qs values 

are around 0.4 m3s-1, these values are compared to one another in Table 4.  Between these two 

observations, the ratio Qs Hawaii/Qs Louisville varies between 4 and 5.  Moreover, the swell 

associated with Hawai’i has a larger width.  The swell morphology accounts for the different Qs 

ranges found for these two chains. 
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Figure 5.6. Swell maps of the (a) Louisville and (b) Hawai'i-Emperor seamount chains. 

(a) Present study, (b) from Vidal and Bonneville (2004). 
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Table 4. Qs Hawai'i/Qs Louisville and Qv Hawai'i/Qv Louisville 

  
Qs Hawai’i/Qs 

Louisville 
Qv Hawaii/Qv 

Louisville 

Ratio  4/5  7/8 
 

 The Qv ranges are also different when comparing Hawaii and Louisville in Table 4. Qv 

has a maximal value of 20 m3s-1 along the youngest part of Hawaii. For volcanism ages older 

than 5 Ma, Qv varies between 0 and 10 m3s-1 along this chain. Such a drastic spike in Qv for 

young ages is not observed along the Louisville chain. Along Louisville, Qv varies between 

varies between 0 and 1.4 m3s-1. The ratio Qv Hawaii/Qv Louisville is around 7-8. This is 

explained by considering the volume of the volcanoes (Figure 5.6). The radii of the Louisville 

volcanoes vary between 40 and 50 km, and their height between 3200 and 4400 m (Figure 5.6a, 

b). For Hawaii, the radii of the volcanoes are 100-150 km, and their height varies between 5000 

and 9200 m (Figure 5.6 a, b).  We calculated their respective volumes of the volcanic edifices by 

using the formula for the volume of a cone, V = π(r)2*(h/3), where h is the cone height and r its 

radius. The volume of the Louisville volcanoes varies between 7 and 8 x103 km3.  Profile CC’ 

passes through the big island of Hawai’i which is made up of five different volcanoes.  While 

profile CC’ is mainly crossing through Mauna Loa, it also intersects Mauna Kea which is 

acceptable because the volcanic edifice can be composed of several volcanoes.  The volume 

calculated for Mauna Loa and Mauna Kea is 116.6 x103 km3.  Profile DD’ passes through the 

Maui island and intersects the West Maui volcano.  profile has a volume of 54.2 x103 km3. The 

ratio between the volume of the volcano located along the DD’ profile and the volume of the 

volcano located along the BB’ profile is 7.3, similar to the ratio Qv Hawaii/Qv Louisville ratio.  

Although this may seem circular, we had to make sure the values we provide for Qs and Qv are 

correct, and that they can be accounted for by the morphology of the volcanoes and the swell. 
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Figure 5.7. Volume of volcanoes along (e) Louisville and (f) Hawai'i hotspot tracks. 

Depth cross sections showing the bathymetry along Louisville (a, b), and Hawai’i.  The maps in 

panels e and f show the locations of the profiles.  Volcanic edifices are often composed by 

several volcanoes. 

 

 5.3. Total volumes and fluxes 

 The magmatic and swell volumes for the Louisville seamount chain are compared to the 

results from Vidal and Bonneville (2004) and Adam et al. (2007) in Table 5.  Louisville has the 

smallest magmatic volume at 6.23 x 105 km3 while Hawai’i has the largest at 61.80 x 105 km3.  

Louisville also has a low swell volume at 2.85 x 105 km3, but St. Helena has the smallest at 2.33 

x 105 km3. 

 The Louisville buoyancy flux, B, is 0.65 Mg s-1.  In previous studies done Sleep (1990) 

and Davies (1988), the Louisville buoyancy flux is reported to be 0.9 Mg s-1 and 3.0 Mg s-1 
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respectively.  King and Adam (2014) assess the uncertainties associated with the determination 

of the buoyancy flux by studying the uncertainties of several factors required to compute the 

buoyancy fluxes, and placed the buoyancy flux between 0.38 and 0.63 Mg s-1 for Louisville.  

Here we find a similar value, B = 0.65 Mg s-1. 

While comparing the buoyancy flux along the different long-lived hotspot chains, we can 

see that Hawai’i has the largest value (B = 1.75 Mg s-1) while St. Helena has the smallest (B = 

0.37 Mg s-1).  The value of the buoyancy flux has been used as a criterion to distinguish between 

deep plumes, for which B > 1 Mg s-1, and shallow plumes for which B < 1 Mg s-1 (Albers and 

Christensen, 1996; Davies, 1988; Sleep, 1990; Courtillot er al., 2003; King and Adam, 2014). 

According to the value found in the present study, (B = 0.65 Mg s-1), and to the values 

found by King and Adam (2014) (B = 0.38 – 0.63 Mg s-1), Louisville’s plume would be a 

shallow plume which could potentially initiate at the boundary layer between the upper and 

lower mantle (see discussion in the Introduction and Courtillot et al. (2003)).  However, the 

reliability of using the buoyancy as a way to distinguish a deep or shallow origin is debated 

(King and Adam, 2014).  As such, we need to consider other arguments for constraining the 

origin of the Louisville plume. 

Table 5. Magmatic and swell volumes and fluxes for the Louisville, St. Helena, Walvis, and 

Hawai'i chains. 

Data for St. Helena, Walvis, and Hawai’i are from Adam et al. (2007). 

  
Magmatic Volume 

(x105 km3) 
Swell Volume 

(x105 km3) 
Magmatic 

Flux (m3s-1) 
Swell Flux 

(m3s-1) 
Buoyancy 

flux (Mg s-1) 

Louisville 6.23 2.85 0.84 0.28 0.65 
St. Helena 11.10 2.33 0.76 0.16 0.37 
Walvis 21.40 8.79 1.00 0.41 0.96 
Hawai'i 61.80 10.00 4.70 0.76 1.75 

 



79 

According to other authors, the Louisville chain is not created by a plume (Jackson et al., 

2021; Fitton et al., 2021).  Jackson et al. (2021) used a seismic model modified from the Boschi 

et al. (2007) tomography model to measure the ‘connected conduit length’ (i.e., fraction of 

mantle depth over negative seismic velocity anomalies of the conduits).  They found that on 

average, plume conduits extend across 60% of the mantle (Jackson et al., 2021).  They use this 

value to define whether or not a hotspot is the product of a deep mantle plume, i.e., if the conduit 

extends over ≥60% of the mantle, then there is a plume present.  Jackson et al. (2021) report that 

the average length for Louisville hotspot conduit is about ~50%, meaning that it does not 

originate from a deep-mantle plume.  However, tomography models such as the one they 

considered have a lateral resolution on the order of ~200-400 km.  This resolution can 

complicate identification of small plumes (Jackson et al., 2021).  Based on the small size of the 

Louisville volcanoes, and small swell fluxes, the Louisville plume should be relatively small.   

Fitton et al. (2021) studied the geochemistry (i.e., major- and trace- elements, REE, and 

isotopic data) on some of the older seamounts along the Louisville and Hawai’ian chains.  Along 

the Louisville chain, they found that the seamounts are made up of alkali basalts.  For these 

basalts to form, there had to be ~1.5 – 3% partial melting of a garnet-lherzolite mantle.  

Meanwhile, the Emperor seamounts are composed of tholeiitic and alkali basalts which formed 

with a 2 – 10% partial melting of a spinel- to garnet-lherzolite mantle (Fitton et al., 2021).  They 

propose a decompression melting model to explain the composition of the Louisville seamount 

chain, where a cool plume (1350 – 1400o C) experiences dehydration melting of the mantle 

(Fitton et al., 2021). Or there may not be a plume at all, and the seamount chain formed due to 

the peridotite-based mantle sources undergoing decompression melting that contain silica-

oversaturated and carbonated eclogite in the upper mantle flow (Fitton et al., 2021).  This 
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contradicts other geochemical studies, such as one done on 3He/4He isotopic data by Hanyu 

(2014). 

Helium, and other noble gases, isotopic data are used to measure the amount of degassing 

the Earth has gone through, to observe the composition of the mantle, and to understand how the 

atmosphere formed (Farley and Neroda, 1998).  Helium is a unique noble gas because it’s rarely 

found in Earth’s atmosphere, with a measurement of 1.39 RA (1.39 x 10-6) compared to the range 

of values found throughout the mantle, 3 – 30 RA (Farley and Neroda, 1998).  Mid-oceanic 

ridges (MORBs) generally have a 3He/4He ratio of 7 – 9 Ra (Farley and Neroda, 1998; Hanyu, 

2014).  If a hotspots 3He/4He ratio is larger than the MORB’s average, than it’s plume source is 

found in the deep mantle, if the ratio is lower than it has a shallower plume source (Farley and 

Neroda, 1998; Courtillot et al., 2003; Hanyu, 2014).  Hanyu (2014) reports that lavas from the 

Louisville seamount chain have 3He/4He ratios ranging values similar to Pacific mid-oceanic 

ridge basalts up to 10.6 Ra.  Since this ratio is larger than the MORB range, Hanyu (2014) 

proposes that Louisville’s plume may have a deep mantle origin.  If we are using the 

classification from Courtillot et al. (2003), as mentioned in section 1.1, Louisville would have a 

deep plume initiating at the core-mantle boundary. 

A strong argument for the existence of a plume (shallow or deep) at the origin of the 

Louisville chain is the trail of volcanoes, created continuously in the past 80 m.y. (Figure 3.1).  

Such a volcanic track only forms if a mantle plume interacts with a moving lithosphere moving 

on top of it (Crough, 1983).  Thus, it is difficult to find an alternative explanation for the 

existence of the volcanoes composing the Louisville chain, characterized by a linear age 

progression (Figure 3.1). 
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To summarize, there is still an ongoing debate on the origin of the Louisville chain.  

Chemical studies provide arguments for a shallow to a deep plume origin or for an absence of a 

plume, while geophysical studies, point to a shallow origin.  Based off of this study, the 

calculated B value is smaller than 1 Mg s-1, indicating a shallow origin for the Louisville plume 

(King and Adam, 2014). 
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Chapter 6 - Conclusions 

The goal of this research was to examine the temporal evolution of the swell (Qs) and 

magmatism (Qv) fluxes along the Louisville hotspot in order to characterize the temporal 

evolution of the plume activity, and its interaction with the lithosphere drifting at the surface 

mantle.  To do this, we used the MiFil filtering method (Adam et al., 2005) to separate the swell 

and magmatic components of the dynamic topography.  The MiFil method is a two stages 

calculation that requires a minimization step plus filtering through a median filter.  We show that 

the best filter radius to characterize the swell along Louisville is 20 km, whereas the radius for 

the minimizing median filters is 250 km.   

The sliding box method was then used to assess the temporal evolution of the swell and 

magmatic fluxes along the Louisville seamount from 0 to 35 Ma.  We consider the youngest part 

of the chain because the bathymetry of the older segment is influenced by Hikurangi plateau (Ito 

and van Keken, 2007).  The swell and magmatic volumes encompassed in this box are computed 

for each iteration step.  We tested the parameters of this box (length, width, translating step) in 

order to make sure that these parameters do not have an influence on the computed fluxes.  We 

showed that the length of the box has to be 700 km in order to encompass the swell and 

volcanoes associated with the Louisville chain.  We showed that the width of the box has to be 

50 km in order to identify all the fluxes temporal variations, while excluding variations at the 

scale of volcanoes.  By testing the translation step, we were testing the influence of the 

overlapping of the sliding boxes.  We presented our results with a translating step of 25 km, 

corresponding to a 50% overlap of the sliding boxes.   

Our results show that the swell and magmatic flux associated with the Louisville hotspot 

have been increasing for the past ~35 m.y., suggesting an increase in plume activity over that 
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time frame.  This contrasts with the results of Londsdale (1988) who suggest that the Louisville 

plume has been in decline. 

Similar to the Louisville hotspot, fluxes for the Hawai’ian have been increasing for the 

past ~30 m.y. years, whereas the fluxes for the Walvis and St. Helena hotspot have been 

decreasing for the past ~60 – 80 m.y. (Vidal and Bonneville, 2004; Adam et al., 2007).  The 

increase in plume activity for the Louisville and Hawai’i hotspots could be caused by increase in 

material supplied by the plume, an increase in plume temperature, variations in the degree of 

melting not related to variations in lithosphere thickness (White, 1993; Regelous et al., 2003; 

Vidal and Bonneville, 2004).  The plumes activity could also increase if the plumes source 

composition were to change (Harrison et al., 2017).  As the Hawai’ian chain’s magmatic flux has 

been increasing, so has the signature of 208Pb/206Pb isotopes, whereas the Emperor seamounts 

isotopic signature remained constant (Harrison et al., 2017).  This is because the Hawai’ian 

plume migrated from a depleted mantle outside the large low shear velocity providence 

(LLSVP), to a more enriched environment in the LLSVP, indicating that the plumes source 

composition can influence the magmatic flux (Harrison et al., 2017). 

Qs and Qv, i.e., the swell and magmatic fluxes, exhibit peaks along the Louisville chain at 

2, 12, and 23 Ma.  Such peaks with a 10 – 20 m.y. periodicity have also been reported for both 

the Hawai’ian chain, and at a 20-30 m.y. periodicity for the Walvis, and St. Helena chains 

(Adam et al., 2007).  These variations have been attributed to a tilt in the plume conduit 

(Whitehead, 1982; Steinberger, 2000).  A similar explanation may apply to the Louisville hotspot 

chain. 

Along the Louisville chain, we also observe shorter wavelength variations (~5 m.y.) in 

both Qs and Qv.  Such variations, with a 5 m.y., periodicity have also been reported for the 
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Hawai’ian, Walvis, and St. Helena chains (Vidal and Bonneville, 2004; Adam et al., 2007).  

These variations have been attributed to the presence of solitary waves within the plume conduit 

(Whitehead and Helfrinch, 1990; Vidal and Bonneville, 2004; Adam et al. 2007).  The solitary 

waves are believed to be the result of interaction between the ascending plume and the 

convection mantle (Olson and Christensen, 1986; Schubert et al. 1989; Olson, 1990).  

We calculated the magmatic and swell volumes to be 6.23 x 105 km3 and 2.85 x 105 km3 

respectively.  Of the four hotspot chains we considered, i.e., Louisville, Hawai’i, Walvis, and St. 

Helena, Louisville has the smallest magmatic volume, while St. Helena has the smallest swell 

volume.  The mean values of the magmatic and swell fluxes along Louisville are 0.84 m3 s-1 and 

0.28 m3 s-1, respectively.   They are higher than the fluxes of St. Helena, but smaller than the 

fluxes found for Walvis and Hawaii.   

According to a recent geodynamic study by Jackson et al. (2021), the Louisville hotspot 

is classified as a non-plume, but this analysis conflicts with geochemical studies based on noble 

gases that indicated a deep origin for the Louisville plume (Hanyu, 2014).  The results of this 

thesis shed light on this controversy.  We find the buoyancy flux, B, associated with Louisville is 

0.65 Mg s-1, similar to the values reported by King and Adam (2014).  The value of the buoyancy 

flux has been used as a criterion for distinguishing between deep plumes, for which B > 1 Mg s-1, 

and shallow plumes, for which B < 1 Mg s-1 (Albers and Christensen 1996; Davies, 1988; Sleep, 

1990; Courtillot et al., 2003; King and Adam, 2014).  The value found in the present study, (B = 

0.65 Mg s-1), gives distinctive evidence that Louisville’s plume has a shallow origin, most likely 

initiating at the boundary layer between the upper and lower mantle.   
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Appendix A - Latitudes, Longitudes, and Volcanic Ages 

Table 6. Latitudes, longitudes, and volcanic ages of volcanoes along the Louisville chain. 

Original data was presented in degree, minuet, seconds.  We converted the data to decimal 

degrees using https://www.rapidtables.com/convert/number/degrees-minutes-seconds-to-

degrees.html.  Original data is from Koppers et al. (2004; 2011). 

Latitude 
oS 

Longitude 
oW 

Age ± 2σ 
(Ma) 

25.5 186.0 76.7 ± 0.8 

25.5 186.0 78.8 ± 1.3 

27.5 185.7 70.8 ± 0.4 

27.5 185.7 70.8 ± 0.4 

27.5 185.7 69.6 ± 0.5 

27.2 186.8 68.9 ± 0.6 

30.1 186.8 61.4 ± 0.5 

38.2 191.3 50.1 ± 0.4 

38.2 191.3 49.4 ± 0.6 

38.2 191.3 50.2 ± 0.5 

28.0 191.7 50.9 ± 0.5 

28.0 191.7 48.4 ± 0.3 

28.0 191.7 47.4 ± 0.5 

37.1 191.0 47 Ma 

37.0 190.2 46.3 ± 0.9 

38.3 192.3 45.5 ± 0.8 

39.2 192.4 43.9 ± 0.3 

39.2 192.4 44.7 ± 0.4 

39.5 192.7 45.1 ± 0.3 

39.7 193.3 43.3 ± 0.4 

39.9 194.0 41.3 ± 0.3 

40.5 194.3 41.0 ± 0.5 

40.8 194.5 39.6 ± 0.3 

40.5 194.3 39.9 ± 0.6 

40.5 194.3 39.4 ± 0.2 

40.5 194.3 40.4 ± 0.3 

40.5 194.3 39.8 ± 0.3 

40.8 194.5 39.6 ± 0.8 

40.8 194.5 38.9 ± 1.2 

41.9 205.3 34.5 ± 0.2 

https://www.rapidtables.com/convert/number/degrees-minutes-seconds-to-degrees.html
https://www.rapidtables.com/convert/number/degrees-minutes-seconds-to-degrees.html


92 

41.9 196.3 33.7 ± 0.5 

41.9 196.3 34.5 ± 0.4 

41.9 196.3 34.7 ± 0.5 

40.8 194.7 33.9 ± 0.3 

41.6 195.8 36.5 ± 0.4 

43.6 198.5 30.3 ± 0.2 

43.6 198.5 29.5 ± 0.3 

43.6 198.5 32.2 ± 0.3 

44.0 199.4 29.3 ± 0.3 

44.0 199.4 26.3 ± 0.2 

44.0 199.4 26.7 ± 0.2 

44.3 200.2 25.6 ± 0.2 

44.9 201.5 26.0 ± 0.3 

44.9 201.5 26.2 ± 0.2 

44.9 201.5 26.3 ± 0.3 

44.6 199.9 25.0 

45.4 202.3 24.6 ± 0.2 

45.4 202.3 23.9 ± 0.3 

45.4 202.3 24.6 ± 0.3 

46.2 204.1 21.7 ± 0.3 

46.2 204.1 21.5 ± 0.2 

46.2 204.1 21.6 ± 0.2 

48.2 211.2 13.2 ± 0.2 

46.2 204.1 21.3 ± 0.2 

50.4 220.9 1.11 ± 0.4 

 

 

 


