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1. INTRODUCTION

The study of the genetic structure of natural populations is basic
to the understanding of the mechanism of evolution. The investigation
of this structure may lead to a better understanding of the processes
by which a species evolves. Work in the field of population structure
began shortly after the development of Mendelian heredity in 1900. The
investigations of Fisher (1922) and Haldane (1924) were of major importance
in laying the groundwork in this field. Both Fisher and Haldane restricted
their treatments to simple situations. Haldane regarded the change in
gene frequencies to be deterministic. This treatment is valid only if
a population is infinitely large and is in an environment which remains
constant or changes in deterministic ways. Fisher was the first to
introduce the method of partial differential equations as a technique
for studying the gene frequency distribdtion in a natural population.
Fisher's method is equivalent to the method intrduced by Wright (1945)
which makes use of the Fokker-Planck equation. v

In this paper population structure will be dealt with under three
different models. The first two models, the "island" and "continuum",
to be presented were developed by Wright. The "stepping stone model"
was developed by Kimura. Wright's island model will be treated extensively
since it is believed to present the most favorable conditions for evo;utionary
advancement,

The probability distribution of gene frequency will be derived in
two ways. The first, developed by Wright, is based on moments about
the mean and will be presented in detail. The second, largely established

by Kimura, is based on a consideration of the change in gene frequency



as é stochastic process and will be presented in a somewhat less detailed
manner,

While the contributions of other investigators are by no means
insignificant, Wright and Kimura present the most extensive and complete
coverage of this field. Hence, this paper will be primarily concerned
with the investigations of these two men, and for the most part, restricted

to the case of a single locus with two alleles.



2. GENERAL DISTRIBUTION FORM

There are tﬁo processes that cause changes in gene frequencies,
The first is a directed process arising from systematic pressures
(mutation, migration and selection); the ;ecoud, a random process
arising from random sampling of gametes in reproduction and random
fluctuations in systematic pressures (Wright 1951). The systematic
pressures lead to direct changes in gemne frequency and the random
processes to a gene frequency change indeterminate in direction but
determinate in variance.

The random processes alone or coupled with directed processes
operate to determine a probability distribution of gene frequencies.
Such a distribution is stationary if the opposing forces of systematic
pressures and random deviations are in balance.

The stationary distribution of a géﬁe frequency may be viewed in
several mathematically equivalent ways. For the purposes of the
following discussions the distribution will be viewed as follows.
Consider a panmictic population which consists of a large number of
isolated or partially isolated groups. Assume that each group is the
same size and subject to the same systematic pressures. Then the expected
distribution of a particular gene at a given time among all groups is
the distribution under consideration. This is commonly referred to as
the "island" model of population structure.

The derivation of the general distribution form is based on the
moments about the mean of the distribution. If a stationary distribution

has been reached due to a balance between systematic pressures (Aq) and



random deviations (§q) then the moments about the mean in one generation
must equal those in the next generation. Let f(q) and £(§q) be the class
frequencies of qrand §q respectively. Thus, 5f(q)=1 and 3f(sq)=l. Assume
Aq and §q are not correlated and that the mean of the random deviations is
zero. Since the range of q is 0O<q<l the range of §q must be -q<8q<l-—q.

Now, the nth moment about the mean in one generation will be given by

$(q-) " (q) .

In the next generation the class frequencies of q will change by the
amount (Aq+§q) so that the nth moment in the next generation will be

given by

sE{(q-g+Aq+sq) M E(Q E(5q) ).

If equilibrium has been reached the following relation will hold.

!

(2.1) £7{ (q-q+aa+5a) " (q) £ (5q) }=2(q-q) " (q) .

Expanding the left-hand member and simplifying (2.1) becomes

n-2 2
9q

ntl

(2.2) 2{ (@™ aaf (@ 2 (- ™ o2 £(2)1=0

Terms involving (Aq)z, (5q)2, (Aq)((sq)2 and their higher powers were
neglected in (2.2). Consequently, it is assumed that the systematic
pressures and random deviations between generations are small, so that
the loss from the neglected terms will be small.

As indicated above, the distribution of gene frequencies is discrete.
However, in a group of N diploid individuals ¢ can assume only the values

0, 1/2N, ..., (2N-1)/2N, 1, so that when N is large q may be approximated



by a continuous random variable. If we let ¢(q)dq=f(q) and Aqe(q)dgq=dx(q)

then (2.2) becomes
(2.3) fala- ds @) (k1) /213 (0D ™ s #(a)da=0.

Integrating the first term by parts and letting n=1 we obtain x(0)=x(1).
By definition the expression x(q) does not involve n, so that x{0)=x(1)

for all values of n. Using this relation, in general, we have

rd @0 ax(@)=tx(a) (a- ™ 15- (a-1)7 (@) (a-D ™ g

1, —n-2 — n-2
=(n—1)X(1)IOCQ'Q)n dq-(n—l)féx(q)(q—q)n dq.
Substituting the above expression in (2.3) and simplifying we obtain
)
£o¢a-D™ 2 (x(1)-x (@) 502 2 (0) }dg=0.

This expression must be true whatever the value of n. This implies
7

(2.4) | x(q)-x(1) =0 0 ().

Taking the differential of the logarithm of the left-hand membef.and

substituting Aqd(q)dq for dx(q) (2.4) becomes

d Log{x(q)-x(1)}=2aqda/a% .
Integrating, we have

Log{x(q)-x(1)}=2/Aqda/o} +C.
Therefore,

(2.5) x(q)-=x(1)=C EXP{Zqu/cquq}.



Equating (2.5) and (2.4) we have
(2.6) 8(q)=C, /o>, exp(2/(aa/c>, )dq)
1" "sq 8q ’

where C1 is a constant such that

j‘é@(q)dq=l .

Expression (2.6) gives not only the distribution of gene frequencies
among groups at a given time but also gives the distribution of gene
frequencies for one group over a long period of time.

Now consider the variance of the random deviations (cgq). A group
of N monoecious diploid individuals may be regarded as the result of
drawing 2N gametes at random from the preceeding generation. When
considering only one locus with two alleles, the probability that any
group should take on a particular valuet qj=j/2N, in the next generation

is given by

(2§)p2N_jqj-

Let E-be the mean of the entire population. Thus, ﬁq=quE and E(§q)=0.

The variance of g§q will be
02 =q(1-q) 2N
5q e’

where Ne is the effective size of a group (see Appendix A). (2.6) may

now be written
(2.7) ¢(q)=C/q(1~q) exp{4N,f(aq/q(1-q))dq}.

The constant C will depend on the type of systematic pressure (Aq) and

will be determined for specific cases. It should be noted here that (2.7)



is not the exact distribution form because certain terms were neglected
and integration was used to approximatersummatioﬁ. However, it should
be a good approximation when N is large, Aq and §q are small, and 0O<q<l.
The last assumption is necessary since the integral substitution may
produce some distortions at the terminal classes (g=0 or 1). While
(2.7) is the desired distribution function, as will be seen later, it
may not be in its most useful form.

Consider a population in which the groups are cdmpletely isolated
and the effects of mutation and selection are ineffective. In this case,

as an approximation, we may take aq=0. Thus (2.7) becomes
$(q)=C/q(1-q).
Here C is easily determined.
1/C=Igdq/q(1—q)52 Log(2N-1).

where g=1/2N and ¢=(2N-1)/2N. This distribution is U-shaped with most
of the groups having values of q near zero or one. It must be.ﬁointed
out here that the distribution takes the above form when Aq is very
small but not exactly zero. If Aq were zero the distribution would
be nearly uniform since there would be no reason for one value of q
to be favored éver another. 1In this case random deviations would
dominate the situation. The eventual fate of each group would be
fi#ation at q=0 or 1.

The preceeding derivation of the probability distribution of gene

frequencies is the work of Sewall Wright (1942). The underlying

assumption is that the population has reached an equilibrium state;



or that the moments in one generation equal the corresponding moments
in the next generatiom. This approach leaves mo indication of the form
of the distribﬁtion-before equilibrium has been reached.

Kimura (1955) considered the process of change in gene frequency
as a chance event evolving in time, that is, as a stochastic process.
'He reasoned that for a matural population to ;ssume a dominant role
in evolution it should consist of a large number of individuals so
that gene frequencies may be regarded as continuous random variables.
Also the changes in gene frequency in such a population must be ﬁery
slow.A Accordingly, the process of change in gene frequency may be
regarded as a continuous stochastic process. Assuming that the probability
distribution at a gilven time é depends only on the gene frequencies at
a preceeding time to’ the change in gene frequency may be considered as
being Markovian. Using the above assumption a brief sketch of Kimura's
derivation will now be presented. ’

Consider two alleles with respective frequencies p and 1-p. Let
¢(p-,p;t) be the conditional probability that the frequency of allele
A is p at time t, given that the initial frequency was p~ at time t=0.
Also let g(§p,p;6t,t) be the probability density that the gene frequency
changes from p to p+§p in the time interval (t,t+§t). Now the process

of the change in gene frequency may be represented as

a(p”,pst+ét)=ro(p~,p-sps;tig(dp,p-sp;:dt,t)d(ép).

This expression is a direct result of the assumption that the process
is Markovian. Essentially it means that the probability that the gene
frequency is p at time t+§t is the total of all the probabilities of

ways in which the gene frequency is (p-8p) at time t and all the ways



the gene frequency may increase by the amount §p in the time interval
(t,t+8t). The integral is taken over all values of §p, wherersp may
assume any value such that O<p-6p<l.

Expanding the right side by Taylor's expansion we have

3(sg) , (6p)2 32(eg) _ (8p%) 3(sg) ,
3P

where s=0(p~,p;t) and g=g(sp,p;sot,t).
Therefore, ¢=¢fgd(6p)¥'5%i{@f(ép)gd(ép)+

* zgpz {6/ (5p)2gd (6p) =2+,

assuming that the order in which the various operations are performed
may be changed. Now, noting that [gd(sp)=1, the above expression may

be written in the form

o(p-,pst+st)-o(p-,p3t) -
st

- 32 (o5es (sped (sp)

2 1
+ % 5%5'{¢ng(ap)2gd(6p)} —ee s

Lim 1 _
Let Stoo BC S(8p)gd(sp)=M(p,t)

Lim _1 2 _
stoo 3t J (8P)%ed(6p)=V(p,t)
Lim-_}_

6t+0 Gt I(GP)ngd(ﬁp)=O for n33n

and assume

Therefore, taking the limit of the above expression we have

3%

2
22 - % 227 (v(p,000)- o (u(p, 0)a) .

Since all quantities which cause gene frequency to change are measured

with one generation as a time unit, Kimura sﬁggested replacing V(p,t)
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P P

per generation. Thus,

and M(p,t) by V_ and M__ the variance and mean of change in gene frequency

(2.8) a@/at=1532(vap¢)/ap2—acm %)/ op.

P

Kimura (1955) showed.that the first and second terms on the right side

of (2.8) give the rate of change in the probability distribution due

to random fluctuations and systematic pressures respectively. Equation
(2.8) is referred to as the Kolmogrov forward equation by mathematicians
and the Fokker-Planck equation by physicists. Because (2.8) is dependent
on time t it may be used to study the probability distribution of gene
frequencies before a state of equilibrium has been reached. This aspect

of the distribution will be expanded later for specific examples.
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3. RANDOM GENETIC DRIFT

Random genetic drift is the process by which gene frequencies change
from generation to generation due to random sampling of gametes in
reproduction. Previously, genetic drift was treated in conjunction
with systematic pressures. However, in finite populations with little
or no systematic pressures random genetic drift becomes a dominating
factor.

The problem of drift was first treated mathematically by R. A.
Fisher using differential equations. He termed this type of change
in gene frequency the Hagedoorn Effect. Fisher's general approach to
the problem was adequate, however, his conclusions were incorrect.

The correct solution for the case of a single locus with two alleles

was first obtained by Wright with his method of path coefficients.

Due to the random sampling of gametes ig each generation, the ultimate
fate of a gene in a population subjected to only random drift will be
complete fixation or loss. The process by which a finite population
reaches complete fixation is known as the 'decay" of variability because
the population gradually loses its capacity to change genetically.

Both Fisher and Wright in their treatments assumed that a steady state
of decay had been attained, but little was known about the process by
which a steady state was reached. Kimura (1954) obtained a complete
solution to this problem for the case of a single locus with two alleles.
He (Kimura 1955a, 1955b) later extended his treatment to an exact solution
for the tri-allelic case and an approximation to the multi-azllelic case.
A general treatment of Kimura's solution will be presented here.

Consider a random mating population of N diploid individuals and
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and assume that the effects of systematic pressures are so small that
they may be neglected, Furthermore, let N be small enough to allow

gene frequency to change from generétion to generation due to random
genetic drift. Using Kimura's notation, the mean and variance of the
change in gene frequency per generation for a single locus with two
alleles will be given by M6P=O and V5P=p(1~p)/2N, where N is the variance
effective number. Substituting these into (2.8) we obtain the partial

differential equation (Kimura 1954).

- 1 2.
%% = zﬁ'gﬁi'{p(l—p)¢}, O<p<l.

Kimura (1954) gave the solution of the above equation in the form
#(p*»p;it)=5bp-(1-p+) exp(-t/2N)+30p-(1-p~) (1-2p~)(1-2p) exp(-3t/2N)+...

For t>0 the series is uniformly convergent. This can be seen by noting
that the exponential term rapidly appro;ches zero,

Figures 3.la and 3.1b show the change in the probability distribution
of gene frequencies for p=.5 and .l respectively. The area undér the
curves represents the probability that both genes still exist in the
population.

It may be seen from these figures that this probability gradually
decreases with time. The fixed classes (p=0 or 1) gradually "absorb"
probability until the curves become horizontal; at such time a steady
state of decay has been reached. This rate is given as 1/2N per
generation.

Kimura (1956) obtained the exact solution for the case of a tri-allelic

locus by an extension of the method used in the previous case. It was



t = N/10

o(q)

3(q)

Fig. 3.1a and 3.1b. The change in the probability distribution of
gene frequencies due to random genetic drift.

13
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found that the final rate of decay is 3/2N per generation as opposed to
1/2N for a pair of allglea.

To my knowledge the exact solution for the general case of N alleles
has not been derived. However, Kimura has obtained the following approximation.
Consider a population which contains N alleles, Al’ A2, ‘% 3 An with
respective frequencies Pys» Pgs cves Ppo The probability density that the
population contains K alleles with respective frequencies Xps eees X in

the tth generation is given asymptotically by
- - ‘ - ' -— -—
¢1’2...k(pl...pk,xl...xk,t)m(Zk 1).(iﬁ1pj) exp{-k(k-1)t/4N},

where K<N. This expression depends on the assumption that the population
size N is much larger than the.number of alleles. The results obtained

by Kimura indicate that as the number of alleles in a population increases,
the rate at which alleles are eliminated from the population also increases.
Thus, random drift may be effective in keeping the number of alleles in

a population relatively small.
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4. DISTRIBUTION UNDER MUTATION PRESSURE

Let the rate of mutation of a given gene to its allele be u and
let v be the rate of reverse mutation. Assume that u and v are the
same for all groups. The amount of change in-the frequency of the

given gene per generation is given by
Aq=up(gain)-vq(loss)
1) =u(1-q)-v(q).

From the above expression it can be seen tﬁat the increase or decrease

of g depends upon the relativ; size of the gain or loss per generation.
If, in any given generation, the gain is larger than the loss the value
of q will increase. However, as q increases so must its loss increase,
so that eventually the amount of loss will balance the gain. When the

loss does balance the gain we will have up=vq or Aq=0. Under such a

condition the equilibrium points are determined; .
=u/(u+v) and p=v/(utv).

Because of the random deviations the equilibrium points will never be
continually realized in all groups. One point should be repeated here;
it is a balance between the systematic pressures and random deviations
that will lead to a stationary distribution of a gene frequency.

Assuming that migration and selection are ineffective, the distribution
function of q under recurrent mutation pressure is obtained by substituting

- (4.1) in the general distribution function (2.7). Thus,
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¢(q)=C/q(1~§) eX?{4Nf(u(1—q)—V(q))/q.(l—q)dq}
=C/q(1-q) exp{4Nu Log q+iNv Log (1-q)}.
Put 4Nu=U and 4Nv=V, then &(q) beéomes
s(@)=cq’ -9 ",

which is in the form of a simple Beta distribution. Hence, the constant

C is determined.
C=T{(U+V) /T ()T (V).

Because of the available form of the distribution the mean and variance

are easily found to be;

q=U/ (T4+V) =u/ (utv)
and

c§=uv/ (V) 2 (U+VH1)=q (1-q) / {4N(utv)+1}.

The mean of the distribution and the equilibrium value of q are equal.
Accordingly, the distribution of q under recurrent mutaticn pre;sure
will vary around the equilibrium value, as would be expected.

Figure 4.1 gives the form of the distribution for various effective
sizes. It can be readily seen that the relative population size depends
. not only on N but also on the mutation rate, The larger the mutation
rate becomes the smaller N may be for the population to be considered
large (U=V>2). Various other conclusions are immediately available

from examination of the figure.



8(q)
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B=V=very small U=v=1

3 (q)

U=vV=10 U=v=20

Fig. 4.1. Distribution of q under recurrent mutation pressure.
The symmetry of the distribution is caused by the assumption u=v.
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5. DISTRIBUTION UNDER MIGRATION PRESSURE

Assume that the effects of mutation and selection on each group
are-totally ineffective. Further assume that each group exchanges a
proportion m of individuals with a random saﬁple of equal size from
the entire population every generation. This assumption is actually
artificial. Any given group may actually exchange a higher proportion
of individuals with neighboring groups than with.groups that are
distantly removed. As a result, the immigrants will not constitute
a random sample from the entire population. This problem will be dealt
with more extensively later.

I1f q is the frequency of a given gene in one generation then the

frequency of the same gene in the next generation will be given by
q*=(1-m)qtmq=q-m(q-q),

where E-is the frequency in the entire populationm.

Therefore,
Aq=q°-q=-m(q-q)=mq-mq.

Before proceeding to the general distribution form the variance
must be considered more extensively than it was in previous sections.
If the migration scheme hypothesized above is continued for an extended
period the immigrants will tend to move the group gene frequencies toward
the average of the total population. 1In one generation the deviation
of a group frequency from the population average is (q—a); in the next

generation after migration the deviation will be
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q4”-q=(q-m(q-9))-q=(1-m) (q-q) -
The variance of q among all groups in the next generation will be

cg,=E{(Q’-Ejz}=(1-m)2E{(q-ajz}=(1—m)zd§,

where (cé) is the variance of q in the first generation. It was assumed,
in the derivation of the general distribution function, that the moments
about the mean remained constant from generation to generation. Therefore,
the variance of q must remain constant. For this to be true the decrease
in variance due to immigrants must be compensated for by the sampling
variance of the new gene frequency. Now, for groups of effective size

N the sampling variance of each group in the next generation will be
(q+aq) (1-q-Aq) /2N.
The average value of this sampling variance for all groups is
02 = 5t 1{q-n(q-9) H1-gtn(a-a) }e(q)d
sq 2N 0 q-miq—-q g Tmiq-q q)4q.

After integration we obtain

5.l 2 =rq(l-g)-(1-m)242
(5.1) 95q {q(1-q)-(1-m) cq}/ZN-
which is the contribution of random deviations to the variance. Therefore,

the variance in the next generation will become (Wright 1953)

(5.2) g ={q(1-q) }/{2N-(28-1) (1-m)2}.

=g

If the percentage of immigrants m is small we may take q(l-q)/2N

as an approximation of (5.1). Therefore,
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8(q)=C/q(1-q) exp{4N/{nq-nq}/q(l-q)dq}
=C/q(1-q) exp{4Nmq Log q+4Nmp Log (1-g)}.
Let U=4Nmq and V=4Nmp then,
(5.3) s(@=ca” ta-9"
where C=r(U+v)/T(U)T (V).
From (5.3) the variance of q is
02=q(1-q)/ (4Nmt1) .

This is a good approximation of (5.2) when m 1s small.

Let us consider now the probability distribution of gene frequencies
before a state of equilibrium has been reached. Let A and a be a pair
of alleles in the respective proportions p and 1-p from a random mating
population of effective size N. Suppose that the population exchanges
a proportion m of its individuals with a random sample from some larger
area each generation. Then the mean and variance of the rate of change
per generation may be given in Kimura's notation by M6p=m(p_p) and

v6p=P(I_p)/2N’ where p is the frequency of gene A in the immigrants.

6P

equation, Kimura and Crow (1956) obtained

Substituting M__ and Vdp in (2.8) and solving the resulting differential

o e ; i-1
¢(p”,p;t)=zX,(p) exp{-i(m+ Nt
as a solution. In this expression

Xi(p)=pB_1(1—p)(A_B)*IF(A+1—1,—i,A—B,l—X)

[ (A-B+i)r(A+2i)T(A+i-1)

. ‘+'— - - _ -
F(A+i-1,-1,A-B,1-P) 700 p)T (B+1)T (A+21-1)
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6(q)

Fig. 5.1, Asymptotic behavior of the distribution assuming a finite
population, m=0.5 and p=0.2.
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A=4Nm and B=4Nmx. F denotes the hypergeometric function. Figure (5.1)
shows the form of this distribution for three values of t.

As t becomes large the distribution curve gradually approaches
the steady state gene frequency distribution that was previously derived

under Wright's island model. That is

Lim
o

®(p~,p3t)=2(p)

where &(p) is equétion (5.3).
It should be noted here that mutation pressure may be included
in the previous discussion by putting m=mtut+v and mp=m§4v where u and

v are the mutation rates as previously defined.
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6. DISTRIBUTION UNDER SELECTION PRESSURE

The primary assumption when considering selection is that some
genotypes in a population have a distinct advantage over other genotypes.
Consider one locus with two alleles A and a. There will be three possible
genotypes with respect to the locus; AA, Aa, and aa. Let w denote the
fitness of a genotype. That is, if w=1 for genotype AA and w=(1-s) for
genotype aa then, in any given generation, for every one individual of
the AA type surviving there will be (l-s) individuals of the aa type.

The number s is such that O<s<l and is usually known as the coefficient
of selection.

To determine a general expression for selection pressure let the
fitness of the three genotypes AA, Aa and aa be 1, (l-sl) and (1—52)

respectively, where s, is constant from generation to generation. Assume

i
that the three genotypes are produced in the proportion p2, 2pq and q2.

The average fitness for the entire population is given by
;¥p2(1)+2pq(1—sl)+q2(1—52)=1—251pq—52q2.
The change in frequency of the recessive gene a per generation is
8q={pq(1-s )+q2(1-s,)}/w-a=pa(-s +(2s,-s,)q}/u.
Noting that d;/dq=2{—sl+(251—52)q}

Aq may be written in the form (Wright 1937)

_aq(1-q) dv
(6'1) AQ‘ 2w dq .

Equation (6.1) assumes that the fitness of a genotype is independent
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of selection or that the coefficients of selection remain constant regardless
of the frequency of a genotype.
The distribution function ¢(g) under selection pressure alone becomes

(Wright 1937)

$(q)=(C/q(1-q))exp{4Ns 9-(213—:'-)—% dq/q(1-q) }

=d§2N/q(1—q).

The final form of &(q) will depend on the type of selection that is
involved. As an example assume that a is a recessive lethal gene. In

this case s=1 and

= 1- - 2= 1=
w=1 Zslpq S,9 1 251pq
2N
Thus, 2(q) = C(1-2s,pq)" /q(1-q).

Under most types of selection a stable gene frequency equilibrium
point will exist and may be determined by putting Aq=D.- Consider the
case of selection favoring the genotype Aa. For convenience let the
three genotypes AA, Aa and aa have fitnesses of (l—sl),.l and (1—52)

respectively, where O<s<l. s, and s, are assumed to be constant.

1 2
Then
g=l-g n2-ac a2
w=1 $1P 8,9
and Aq=pq(slp—szq)/(1—slp2—52q2).

Putting Aq=0 and solving for p we obtain

p=52/(sl+52) and q=sl/(51+52).
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The equilibrium value p and q are independent of the initial gene frequencies
and since ) and s, are constants this is a stable equilibrium condition.

Let us assume that selection is against the heterozygote. In this
case the fitness of AA, Aa and aa will be 1, (1-s8) and 1 respectively.
Again assume that the population is random mating and that the initial
proportions of the three genotypes are p2, 2pq and q2 before selection.

Proceeding as before we obtain

w=1-2spq
and
49=spq(2q-1)/(1-2spq).

Assuming that s is very small Aq may be expressed in the form
Aq=2spq(1-¥) .

From inspection of the above expressionrit can be seen that aq=0 when
g=%, so that gq=% is the equilibrium point. However, this is an unstable
equilibrium point because if q is greater than ¥, Aq will be positive
and the frequency of q will increase. A similar condition exis;s when
q is less than %. 1In the absence of other systematic pressures the
ultimate fate of this type of selection in a large panmictic population
is fixation at either q=0 or 1. The distribution functions for the
above two cases may be obtained quite simply by substituting the given
expression of Aq in the general form of &(q).

During the previous discussion of selection pressure it was assumed
that the coefficient of selectiﬁn (s) remained constant between generations.

However, random fluctuations of selection intensity may be an important

factor in causing random fluctuations in gene frequency. To isolate
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the effect of random fluctuations of selection intensity, Kimura (1955)
proposed‘a population large enough to allow the effects of random sampling
to be neglected. Considering only a pair of alleles A and a such that

if p is the frequency of A in generation t then the frequency of A in
generation (t+1) will be given by p+sp(l-p). Also assume that s=0 over

a large number of generations and that the variance of s(VS) is constant.
Under the above assumptions M6p=0 and v6p=vsp2(1_p>' Substituting these
expressions into (2.8) and solving the partial differential equation
assuming that the initial condition is a fixed gene frequency we obtain

(Kimura 1955)

. \Y P._(_I_ZP‘_),}Z } o
st>(p‘,p;t)=(:zwvsr)'li exp |- % B i {Logzélzjh} (p~(1-p ;32
s (p(1-p))

Figure (6.1) shows the process of change in the gene frequency distribution.
As t increases the distribution becomes U-shaped. The gene frequency
accumulates near fixation and loss but ﬁever becomes lost or fixed completely.

If the genes are not neutral, that is s=0, then M6p=0 should be replaced
by M6P=§b(1—p) in the partial differential equation. However, to my

knowledge, no exact solution for this form has been found.
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t=10

t=28

¢(q) P

=100

t=500

Fig. 6.1. The process of change In the gene frequency distribution
assuming random fluctuations of selection intensity with s=0.



28

7. DISTRIBUTION UNDER JOINT PRESSURES

The previous discussion of distribution form is unrealistic in the
sense that a natural population would rarely be subjected to only one
type of pressure. More realistic would be the simultaneocus consideration
of two or more types of pressures. Consider the combined effects of
mutation and migration under the same general assumptions that were
previously given. The changes in gene frequency per generation under
the influence of mutation and migration were giveﬁ previously, so that
the change in frequency from these joint effects may be given as the

sum of the individual changes. Thus,
Aq=up-vq+mq-mg=up-vq+mqp-mpq
=(utmq) p- (V+mp)q.

/

Substituting q in the general expression for ¢(q) w~e have
9(q)=C/q(1-q) exp{4Ns{(u+mq) (1-q)-(v+mp)q}/q(l-q)dg}
=C/q(1-q) exp{&N(u+mE) Log q+4N(v+mp) Log (lﬁq)}.‘
Put U=4N(utmq) and V=4N(v+mp)
then, o(@=cd" -9,

The distribution under the joint systematic pressures is a Beta distribution
with U and V equal to the sums of the corresponding terms from the Beta
distributions under the single systematic pressures. The mean and variance

of the above distribution are given by
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q=V/ (utv)
and
cé=§(1—§)/{4u(m+u+v)+1}.

If conditions are the same in all groups the mean and variance given
above are not only the mean and variance among all groups at any given
time but also they are the variance for one group over a long period
of time.

Following the above procedure the distribution under the joint

effects of mutation and selection will be found to be (Wright 1942)

v-1

—2N U-1
Nq (1-q)

(7.1) $(q)=Cw

where U=4Nu and V=4Nv.
This form of the distribution function is very general. If U and V are

given the values

/

U=4N (u+mq)
and
V=4N(v+mp)

then (7.1) becomes the distribution function under the combined effects

of mutation, migration and selection. By letting U and V assume the
appropriate values one can obtain the distribution function under migration
and selection. Assuming that there is no selection (w=1) 67.1) will assume
the distribution form previously given for mutation, migration and the
joint effects of mutation and migration. Also, by letting U=V=0 (no
mutation or migration effects) (7.1) becomes the distribution function
under selection pressure. Thus equation (7.1) is as general as (2.7)

and may be preferred because the various distributions are more readily
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obtainablé.

In the derivation of the previous distribution functions, it was
assumed while not explicitly stated; that the effects of systematic
pressures on one locus is independent of all other loci. A more general
treatment requires that the interactions between different loci be taken
into account. In general, the fitness of a genotype will depend on a
particular combination of genes rather than on the presence of a single
gene, The joint distribution function for k loci can be written as

the product of k distributions of the form given in (7.1). Thus,

_ 2N U.-1 v,-1
(7.2) ¢(qlsq23"‘QR)_ Cw iﬁ]_ qil (l_qi) *
where Uy = AN(myqytvy)

PET, v, = 4N(mp Hv,).

The average fitness over all genotypes is represented by w. For k pairs
of genes the joint distribution (7.2) will be represented by a surface

in k+1 dimensional space.
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8. ISOLATION BY DISTANCE

Wright (1942) pointed out that the island model of population
structure is not likely to be realized in nature; namely because of
the unrealistic assumption that the immigrants to a group comprise a
random sample from the entire population. As indicated previously,
the immigrants are not likely to be representative of the entire
population but rather of neighboring groups. To take this into account,
Wright (1942) proposed the continuum model of popﬁlation structure which
assumes that the population is distributed uniformly over a wide area
and that mating individuals are limited to a "neighborhood" of limited
distance. Thus, the farther two individuals are apart the less chance
they will have of mating. Wright (1942) examined the above model in
terms of departures from random mating by using the average inbreeding
coefficient relative to the total population. This coefficient (F)
has been defined as "the correlation between uniting gametes with respect
to the gene complex as an additive system". 1In order to give the coefficient
(F) a more concrete meaning recall that the variance of q under migiation

pressure was given as
c§=3(1-a') / (4¥m+1) .
Dobzhansky and Wright (1941) gave
F=1/(4Nm+1)

as a good approximation to F when m is small. As is expected, under
the island model, the smaller the proportion of immigrants to any group

the larger the value of F. Thus a group is completely inbred (F=1)



32

when m=0. For a more complete discussion of the inbreeding coefficient
see Appendix C.

The development of Wright's continuum model is based on two important
theorems from the theory of path coefficients. Only that portion of the
theory of path coefficients which is necessary to the development of
Wright's model will be presented here.

THEOREM 8.1. The correlation between two variables is the sum
of the products of the chains of individual path coefficients along
all the paths by which they are connected.

THEOREM 8.2. Let an effect x be produced by two correlated causes

A and B. Also let a and b be the path coefficients from causes A and B
to effect x respectively. Then

a24b2+2abr=1

where r is the correlation coefficient between causes A and B.

For an elementary discussion of path coefficients and proof of
the above two theorems see Appendix B. ’

Before developing Wright's continuum model based on the inbreeding
coefficient F, some relationships between path coefficignts and F must
be established.

A zygote may be considered as being equally and linearly determined
by each of its gametes. Consequently the two path coefficients from
the gametes to the zygote mﬁst be equal (Fig. 8.1). Let a be the path
coefficient between a gamete and a zygote and let F be the correlation

between uniting gametes. The primes represent corresponding values in

the preceeding generation. By Theorem 8.2 we have the following relation.

2a°2423°2F=1
or

1
(8.1) a*=(1/2(1+F"))2
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Fig. 8.1. Path for one generation.

Now consider the paths from the zygote to its gametes in Fig. 8.1.
Since the zygote produces gametes by the random process of segregation
the two gametes should be produced in equal frequency. Thus, the path
coefficients from a zygote to each of its gametes are equal and the
gametes are not correlated. As a result, by Theorem 8.1, the correlation
between a zygote and one of its gametes is the path coefficient from the
zygote to the gamete. This correlation must be the same as that between

the zygote and one of its gametes from the preceeding generation. Therefore,
b=a“+a“F.

Substituting the expressicn for a“given in (8.1) we have

(8.2) b={(14F~)/2} .

The zygotic generation path coefficient (the path coefficient from a

zygote to a zygote) is given by

E

(8.3) ba=%{ (1+F~)/ (14F)}
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and the gametic generation path coefficient (the path coefficient from a

gamete to a gamete) is given by

(8.4) ' 2 b={2(14F ) } E{(14F)/2)" = &

It should be noted here that expressions (8.3) and (8.4) are not correlation
coefficients. That is, a-“b is not the correlation between a preceeding

generation gamete and a present generation gamete. This correlation is

given by
r=a “b+F “a-b=b2=(1+F ) /2.

Let r be the correlation coefficient between mating individuals.
Using Theorem 8.1 in reference to Fig. 8.2 it can be easily seen that

we have the following relationship between F and r.

(8.5) F=brb.

Fig. 8.2, Correlation between uniting gametes in terms of correlation
between mates. )

To proceed with the development of Wright's model, consider a
"neighborhood" of N monoecious diploid individuals whose gametes unite
~at random in every generation, including the possibility of self fertilizatiom.

Now,

pr(2 gametes of the same individual unite) 1/N

and

pr(2 gametes from different individuals unite) (N-1)/N,
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In the first case the correlation between mating individuals is r=1.
If two gametes from different individuals unite there will be four paths

_in going from z, to z, (Fig. 8.3). r~ denotes the correlation between

1

mating individuals in the preceeding generation. From Theorem 8.1

r= 4r-a-2b-2..

Fig. 8.3. Correlation between remote relatives.

Thus, the average value for the entire group will be

T= = +(N-1)/N-4a-2b-2¢~,

2|

Simplifying by use of (8.5) we have

(8.6) F= -1% b2+(N-1) /N+4b2a~2b -2y -,

From (8.2), (8.4), (8.5) and (8.6) we have the fundamental relation

el o, N=1..
(8.7) F—Nb+(N JFy,
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Now let the size of a neighborhood be N, that is, the two parents
of any individual are from a neighborhood consisting of N individuals.
Assume that the distribution of individuals over a neighborhood is uniform
so that N is directly proportional to the size of the neighborhood. Thus
the four grandparents of any individual may be considered as drawn at
random from an area of size 2N. 1In general Qe may think of the ancestors
of any generation K as being drawn at random from an area of size KN.

Let F be the correlation between uniting gametes for a neighborhood
of size N and FK be that correlation for an area of size KN (a group of

KN individuals). Let the primes denote the correlation from previous

generations. Using the above notation, (8.7) may be written as

(8.8) F,= 4

N-1
= b24+(—YF "~
1= § PHGROES

where Fi denotes the correlation for a group of 2N individuals in the
previous generation. It should be noted here that expressions (8.7)
and (8.8) are identical, only the nctation has changed. From (8.2) and

(8.8) we have

1+F7

1,71, N-1_.
e xa My
1+F7
Similarly, Pg= %ﬁ- 21 )+ ZgglFé‘,
oo 1L .o .
37 38 2 3N T4ttt

If the population has reached an equilibrium state the primes may be
dropped because F will not change from generation to generation.

Furthermore, let F.=F. Then

1
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1 N-1, 28-1, 1 N-1y 2N-1, 3N-1

1+F
I S By 1

_ 14F 1 .N-1
(8.9) F= N 1+ 2( = Y+

I+,

This expression will hold for some finite group with random mating neighborhood
of basic size N. 1In general, the value of F for an area K times the basic
neighborhood is obtained by summing the first K-1 terms of (8.9) assuming
Fi=0’ i>K. When the population size becomes very large the value of F must
approach unity. This implies that the sum of the series within the brackets
of (8.9) is N.

Let t, represent the ith term in the series within the brackets of

b
(8.9), then

F= il%il B,
N i

or

(8.10) F=Eti/(2N—Zti).

In general, the kth term in the series (ti) may be written in the form

_1 L L {(k-1)N-1}
5T X 1E1 (- 70 = iy Cp1®

Fom this relation it may be shown that the sum of the first k-1 terms

of (8.9) is
zti=N(1—ktk)
gso that (8.10) may be written as

F=(1-kt, )/ (L+ke) .

Figure 8.4 (Wright 1951) shows some relationships between F and selected

values for K and N.
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1
N=10
¥ N=20
N=100
— N=1000
0
9
1 X 10

Fig. 8.4, Relationships between F and selected values for K and N.

The relationship between F and the variance of gene frequencies under
the island model (assuming only migration pressure) is presented in Fig.
(8.5) (Wright 1951).

Before developing a formula for the distribution of gene frequencies
under the continuum model a random breeding unit within the population
must be defined. Consider a continuous population of size N wh?ch is
divided into'H subpopulations each of size NS. Let each subpopulation
be composed of K random breeding groups each of size Ng. The inbreeding
coefficient F will be zero relative to the random breeding groups, FS
relative to the subpopulations and Ft relative to the total population.

Given a single locus with two alleles, A and a, the proportion of
heterozygotes in a population with inbreeding coefficient F has been

shown to be (Wright's equilibrium law, Appendix C)

(8.11) P=2q(1—q)(1—Ft).



F=0,005

¢ (q)

F=0.83

Fig. 8.5. The relationship between F and the variance of gene
frequencies under the island madel.
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If Ft remains constant from generation to generation the proportion of
heterozygotes will also remain constant. Under the population hypothesised
above P may also be represented as the average heterozygosis of the

subpopulations.

P= od) 20,00 F )y
(8.12) = 2(1-F ) (q-zq3/H) .
The variance of q among subpopulations is given by
(8.13) 2 oL sq2 g2

Uq H qi .
Substituting (8.13) in (8.12) we have
= = q(1-g)-g2
P = 2(1-F_ ) {q(1-q) oq}‘

From (8.11)

f

2q(1-9) (1-F,) = 2(1-F ) {g(1-) =2}
or
(8.14) 02 = {q(1-) (F-F )}/ (1-F ).

Equation (8.14) was derived under the continuum model. However, equations
(8.11), (8.12) and (8.13) also apply to the island model if H is considered
as the number of groups rather than the number of subpopulations. Thus
(8.14) is applicable to either model. Recall that the variance of q under
the island model for the joint effects of mutation and migration was

given by
og = q(1-q)/ (4N (m+utv)+1}.

Equating the two expressions for ci we have
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m+v+u=(1—Ft)/(Ft~Fs)4N.

The mean of %(q) under the island model for mutation and migration pressure

is
q=v/ (u+v) .
Thus mw/E=(1-Ft) /(F -F )4N.

The distribution of gene frequencies under the continuum model, assuming
only mutation and migration pressure, may be found by substituting the
above expression in ¢(q) derived under the island model with corresponding

assumptions. The distribution is given approximately by

(8.15) #(q)=cq" 4 (1-q) V1)1
where U=(1-Ft)/(Ft—FS)
and C=T‘(UE)F(U(1-E'))/1"(U) .

The distribution under migration, mutation and selection may be
obtained by multiplying (8.15) by (;QN) where w is the average fitness
for the type of selection involved.

As can be seen from the previous discussions, the island and continuum
models are similar in many respects. The main difference between the two
models is that neighboring groups should be similar under the continuum

model but uncorrelated under the island model.
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9. STEPPING STONE MODEL OF POPULATION STRUCTURE

Kim;ra and Weiss (1964) proposed a third model of population structure.
Their stepping stone model is actually a rough combination of Fhe two
models by Wright which were discussed earlier. Under the island model
of population structure Wright postulated a natural population consisting
of many partially isolated groups each of which exchange a proportion m
with a random sample of the entire population every generation. It was
this assumption that led Wright to postulate his continuum model of
population structure. The population hypothesised by the stepping stone
model consists of many groups or colonies exchanging a given proportion
of individuals with adjacent groups and a given proportion with the entire
population every generation. Essentially the stepping stone model consists
of the island model with the added assumption that each group exchanges a
given proportion of individuals with adjacent groups every generation.
Wright analized his continuum model by considering the correlation between
uniting gametes; Kimura and Weiss were interested in the correlation of
gene frequencies between two colonies which are a given distanc; apart.

The two methods of considering correlation are actually equivalent.

One Dimensional Case
The simplest situation under the stepping stone model is constructed
by considering an infinite array of groups with their position represented
by integers on a line. Consider a single locus with two alleles A and a.
Assume that individuals in any given group can migrate at most "one step"
in either direction each generation and that the gene frequency in each

group may change by mutation, migration and random sampling of gametes.
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Selection will be dealt with later. Kimura and Weiss, in order to simplify
the treatment, further assumed the generation time to be discrete. Let
Py be the frequency of gene A in the ith colony in any given generation.

Then the frequency in the next generation will be given by

A P _ m - '
(9.1) pi—(l m+n)pi+vqi upi+ > (pi—1+pi+1)+np+€i’

where m is the rate of migration from a group to adjacent groups such

that a proportion m/2 is exchanged between adjacent groups each generation.
The proportion of individuals from each group excﬂanged with a random
sample of the entire population every generation is represented by n.

Also u and v are the mutation rates as previously defined and €q is the
change in the frequency of pi-each generation due to random sampling

of gametes. As previously shown, €4 follows a binomial distribution

with mean and variance given by

f
E6(51)=0
and
2y= =2
Ea(ei) pi(l pi)/ZNe

where Ne is the effective size of a group and E_ is the expectation

)
with respect to a single group.

After simplification (9.1) may be written in the form

m

‘(9.2) pi=(1—m-v—u—n)pi+ > Y+vi+npte

(Py_1¥Pi4 it

Kimura and Weiss have stated that the effect of exchanging a given
proportion n of each group with a random sample from the entire population

1s formally equivalent to mutation. Without loss of much generality

(9.2) may be written in the form
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pe f T m _—
(9.3) pi—(l m n}pi+ > (pi_l+pi+l)+np+5i.

Let di denote the deviation of the gene frequency in the ith group

from the population mean, that is di=pi;;. Then (9.3) becomes

— —_ m _ _
dj+p=(1-m-n) (d +p)+ 5 (d;_,+d, ,+2p)+npte,,

or
(9.4) £=adi+g(di_l+di+1)+ai

where g=l-m-n and g=m/2.

Let V be the variance of gene frequency among groups.
= 2
\ E¢(di)'

Let rk'be the correlation coefficient of the gene frequencies between

two groups which are k steps apart.

rk=E¢(didi+k)/v'
In the above two expressions E¢ is the expectation with respect to gene
frequency among all groups.

To obtain an expression for the variance of gene frequency amo.g

colonies begin by squaring both sides of (9.4) to obtain

2= _n2 2 2 2 2
di=api+ae(dy_;+2d;_;d; ,Hdg, ) ¥eftejad e  (dy +dy ) +Ba(d; ;d;+d;+1d)).

Taking the expectation of the above expression assuming

E(eidi)=0 and E(gi€i+k)=0

we have



45

V’=E®(d£2)=a2V+2V32(1+r2)+4VaBrl+E¢{pi(1—pi)/ZNe}
=a2VHiapVr +2p2V(14T,) -V/2N_+p (1-p) /2N,

If the population is in an equilibrium state the variance will not change
from generation to generation, hence, V-=V and the above may be written

in the form
(9.5) v'p{l-aZ-aagrl-zgz (1+r2)+%Ne}=;(1-5) /2N .

A more definite form of the variance will be found when the expressions

for rl and r2 have been obtained,

An expression for the correlation coefficient between two groups
which are k steps apart can be obtained by finding the expected value
of the product (didi+k): d{ and d£+k are equal to corresponding

expressions in the form of (9.4). Thus,

s

“:2 2
dfdf  mafdydy  #850dy qdy 1ty die 1ty et d )

i+l it+k+1

+g(d +d

stie-1 5 1ep1 Jod 83yt dadyy

Taking expectations and dividing both sides by V we have
e 2 2
ro=a’r 48 (2rk+rk_2+rk+2)+2a3(rk_1+rk+1).

If the population is at equilibrium then r.é=rk and

(9.6) (252+a2—1)rk+32(r )=0.

o2 T-2) e (T g4y

This expression (9.6) holds for k>1. If k=1 then r_y should be replaced
by T because no distinction is made between correlation in positive and

negative directions. Thus, 1f k=1 (9.6) becomes
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(9.7) (a2+282-1)r1+52(r3+r1)+203(r2+1)=0,

noting that r0=1.

To solve the difference equation (9.6) let r k and substitute

K
this in (9.6). Accordingly,

B2AM+24R2 34+ (g2+282-1) 324242 +p2=0.

The above 4th order equation in ) has the following four roots:

N T ((Lma)+(1-)2-(28)21 )
M 7 (1) ((1-0)2-(20)2) )
Ay= e {(14a)+{(14+4)2-(2p) 2 15}
3 28 o { a B }

Y

M - 7 () - () 2-(28)2} )

vhere A1>1, 0<A2<1, A3<-1 and A4<0- The required general solution to
(9.6) should then be a linear combination of the four roots or

_bo Kk
Te=121%12 ¢

where the C's are constants. These constants may be determined in the

following manners. In order that

Lim

ko rk=0
we must have C1=C3=O, because both Al and AB are greater than one in
absolute value. Also r, must equal one so that
0 0_ _
rO—C2A2+C4A4-C2+CA—1.
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From the above requirements plus the requirement that r must satisfy

(9.7), 02 and C, are determined.

4

C2=R1/(R1+R2) and 04=R2/(R1+R2)
where R ={ (1+a)2-(28)2}
i R,={ (1-a)2-(28)2} ™.

Let r(k)=rk. Then

.k k
(9.8) r(k)—Cz)\2+C4A4

is the correlation of gene frequencies between groups which are k steps
apart.
Solving (9.8) for r(l) and r(2) and substituting these in (9.5)

we obtain
=p(l—p)/(1+2NeCO)
where CO=2R1R2/(R1+R2).

Let m=0 so that there is no migration between neighboring groups.
Under this assumption the stepping stone model reduces approximately

to the island model of population structure and the variance becomes
V=p(1-p)/{1-2N,(2n-n?)}.

This expression for the variance agrees with Wright's formula for
variance under the island model except for the term n? in the denominator.
In most cases the difference between the two expressions should be

negligible since n? will be very small.
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If m is much larger than n then Rl and R2 can be approximated by

R1=2(l—m);5 and R2=(2mn)%.

In this case the variance reduces to

V=p(1-p) /{1+4X _(2m) 7} .
Furthermore, Kimura and Weiss gave
(9.9) r(k)= exp{—(Zn/m)%k}

as a close approximation to (9.8).

In the previous treatment of the dimensional stepping stone model
it was assumed that migration was restricted to one step per generation.
Suppose in any generation individuals can migrate p steps per generation.
In this case Kimura and Weiss suggested using the variance of migration
distance per generation in place of m. Therefore, (9.9) may be approximated

by

r(k)= exp{—{(Zn)%/dm}k}

2. 12
where cim jEIJ mj

and mj/2 is that proportion of individuals exchanged between groups
which are k steps apart.

The probability distribution of gene frequencies under the stepping
stone model is of the same form as the distributiqn under the island model

which was given previously as

8(q)=T (T+V) /T (T (V) +p° L (1-p) V7
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where U=4Nmp and V=4Nmp. Under the island model m corresponds to n under
the stepping stone model. To distinguish between the two values of m

let my be the proportion exchanged between adjacent groups under the
stepping stone model. The value m under the island model is the proportion
of individuals from each group exchanged with a random sample from the
entire population. Accordingly, under the stépping stone model we may

take
m=m, +n

to be that proportion migrating to each group. However, now the immigrants
do not constitute a random sample from the entire population; the immigrants
between adjacent groups being-correlated by the amount r(l). Consider two
groups that have r(l)=1 and exchange a proportion m every generation. Since
the correlation is one the immigrants will not cause the gene frequency to
change in the two groups so that this case is formally equivalent to having
m=0. In the same manner, if two groups are correlated by the amount r(l)

and exchange a proportion m, this is equivalent to assuming that the stepping

stone model, we may take
m=n+m1(1—r(l))

to obtain the approximate gene frequency distribution. When n 1is very

small the variance of p may be approximated by
V=p(1-p}/{1+4N_m, (1-r(1))}.

It can easily be seen that the variance is dependent on the size of the

correlation between adjacent groups. The variance will be minimum when
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r(l)= -1 and will increase with r(l), becoming maximum when r(l)=1. Kimura

and Welss gave
r:(1)-*—1-(211/‘1111);'5

as an approximation to r(l) when n<m1<1.
Two and Three Dimensional Cases

In the two dimensional case, assume that the population consists of
an array of groups in a square lattice with the gfoups located at the
intersections of the linmes, Each group occupies a point which may be
denoted by a pair of integers (kl’kZ)' Assume that each group exchanges
a given proportion m of its individuals each generation with adjacent
groups in the horizontal direction and a given proportion mY with adjacent
groups in the vertical direction. Also, that the effective number of
each group remains constant from generation to generation. Now the
proportion of individuals which migrates to the four neighboring groups
is given by

m=mx+my.

If we let n denote the proportion exchanged each generation with a random
sample of the entire population, the entire proportion of individuals

exchanged in each generation for a single group is given by
m=m_-+m_+4n.
Xy

The computations involved in deriving the general expression for the
correlation coefficient in the two and three dimensional cases are very

complicated. Only the general form of the correlation coefficient will
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be presented in these cases,
When the population is at equilibrium, Kimura and Weiss (1964) gave
Al(kl,k2)+A2(k1,k2)
A1(0,0)+A2(0,0)

r(kl,k2)=

as the correlation of gene frequencies between groups which are kl steps

apart in the horizontal direction and k2 steps apart in the vertical direction.

In the above expression

k.8 )cos(k,8,)
1 21,27 cos(k, 6, 2°2
A (k)= g7 Iy My i, (1-cos (8,))+m, (1-cos(6,)) d8,d9,
and
k.8 dcos(k,6,)
1 o aptos (k8 2°2
AZ(klkZ)— g2 IO fO 2—n—mx(l—cos(61))—my(l-cos(ez)) deldGZ'

In the three dimensional case consider the same general assumptions
as previously presented except now the population is represented as a cubic
lattice with each group occupying a point denoted by three integers (kl’ kz,
k3). In this case migration will be in three directions with respective
rates m_, m_ and m_.
x' 'y z
The correlation of gene frequencies between groups which are kl’ kZ

and k, steps apart in the x, y and z directions respectively is givaen by

3
Al(k1k2k3)+A2(k1k2k3)
A1(0,0,0)+A2(O,0,0)

r(k1k2k3)=
where
cos(klal)cos(kzaz)cos(kBGB)deldesz3
n+mx(1-cos(81))+my(l—cos(82))+mz(1—cos(63))

1 AT, .7
A (kkk)= 73 ol /g

and
cos(k.08,)cos(k,0,)cos(k,6,)ds.d9,da
Al T e Y 1 FUpTT 171 272 3°3 1772773
2 717273 2r3 ‘0’00 2-n-mx(1—cos(81))—my(l—cos(ez))—mz(l—cos(83))
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10. DISCUSSION

The concept of population structure is of major importance in evolution.
A change in gene frequency may be considered as a basic elementary step in
an evolutionary process. As a consequence any pressure which causes gene
frequency to change can be regarded as an essential factor in evolution at
the population level. Generally speaking, the relative size and form of a
natural population determines which pressures are most important in changing
gene frequency.

In large random mating populations the effects of random drift are
negligible and the counteracting systematic pressures assume a dominate
role. If the systematic preséures remain constant over a large number of
generations they will determine certain equilibrium conditions for each
locus involved. When all genes reach their equilibrium points there will
be very little, if any, further genetic change in a population under constant
environmental conditions. Only when environmental conditions change will the
selective values of various genotypes change. At such time new equilibrium
conditions will be determined and the gene frequencies will begin tJ move
in a new direction. Depending on the extent of the environmental change,

a natural population may approach extinction if the required genotypes are
not readily available.

In small completely isolated populations random drift assumes a dominate
role. In these populations the genes and thus genotypes will tend to become
either fixed or lost. Because most genotypes will consist of gene combinations
fixed at random they may not be the most favorable for the evolution of the

population. Populations of this type will be largely nonadaptive and their
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ultimate faﬁe is probably extinction.

Populations of intermediate size present the most favorable conditions
for evolution of a species. Selection will be effective to a certain éxteut
in determining the favorable genotypes while random drift will pérmit a wide
variety of genotypes to exist. The existence of a wide variety of genotypes
will permit selection to act in many ways if énvironmental conditions should
suddenly change. )

Along with the problem of continued existence of.a species the problem
of the formation of a new species has attracted much attention. Wright
recognized two distinct ways in which species formation may occur: (a) the
transformation of a population as a whole into a completely new species (b)
the division of a population into one or more new species. Wright advocated
the hypothesis that the most favorable population for the formation of a
new species or continued existence of an established one is a population
which is subdivided into a number of partially isolated groups and has a
balance between all pressures which cause gene frequency to change. Such
a population has several advantages over a random mating population of
comparable size. A subdivided population will tend to maintain more alleles
at each locus as opposed to the establishment of one type of allele at each
locus in a panmictic population. Because of the local variability and number
of alleles at each locus a subdivided population may maintain more genotypes
that are of an optimal type than will a panmictic population. A subdivided
population will be more suitable than a ranéom mating population to an area
in which the conditions are not uniform. Perhaps the most important asset
of the subdivided population is that it may evolve continuously without change

in the environmental conditions. If the environmental conditions do change
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this population will be able to adapt itself to the new conditions quite
readily.

The importance of the three models discussed can be seen from the
previous evolutionary implications. The island and continuum models,
established by Wright, are considerations of two extreme cases. The actual
form of a population may be a mixture between the two models. It is likely
that when considering a population over a large area the form will approach
the island type; but when considering a population over a relatively small
area the form will approach the continuum type. .When the continuum model
was considered it was assumed that the population was uniformly distributed
over a given area. Actually, the distribution of a natural population will
be anything but uniform. The differential density of populations from area
to area is an important factor when considering the distribution of gene
frequencies. If the distribution of a population is very irregular the
variance of the distribution of gene frequencies may be much larger than
previously indicated.

Kimura's stepping stone model is a rough combination of Wr}ght's
models. A natural population, without restricting assumptions placad

on it, may more nearly conform to Kimura's model than either of Wright's.
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APPENDIX A
Effective Population Number

In a natural population the total number of individuals in a given
generation may be large, while the total number of individuals contributing
to the next generation may be quite small., Not every individual will reach
maturity and mate. Some mating individuals may not leave progeny that survive
to sexual maturity and mate in the next generation. Regardless of their
genotypes, those individuals that do not mate will not contribute to the
genetic composition of the next generation. Even if all capable individuals
do mate and contribute to the next generation the expected number of progeny
may not be the same for all individuals. Thus, there is a need for some
standard measure of population size,

An ideal population is defined as being a population of N breeding
individuals, half females and half males, mating at random with the

I

variance of the random deviations of gene frequencies given by
2 =q(l-q)/2N.
05q a¢ Q/

Furthermore, in an ideal population each individual has an equal expectation
of progeny. Under this assumption the distribution of the number of progeny
per parent approaches the Poisson distribution. Kimura and Crow (1962)
indicated that in most natural populations the distribution of progeny

has a variance greater than the corresponding Poisson value. An ideal
population is the standard measure with which other populations are
compared. The actual size of a population is reduced to a number equivalent
to that in an ideal population.

The effective number of a population is defined as the size of an
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idealized population that would have the same amount of inbreeding or of
random gene frequency drift as the population under consideration. Any
natural population will actually have two effective numbers; an inbreeding
effective number and a variance effective number., Under many conditions
these numbers will be identical or very similar. As will be seen the
inbreeding effective number depends primarily on the number in the parent
generation whereas the variance effective number depends on the number in
the progeny generation.

The concept of an effective population numbe? has been discussed by
Wright, Haldane, Morton and Crow. The following treatment i1s primarily

that presented by Kimura and Crow (1962},

Inbreeding Effective Number

Consider a monoecious diploid population in which mating is entirely
at random. The inbreeding effect may be found as follows. Let P, be the
probability that a pair of homologus genes in an individual in generation
t come from the same parent in generation t-1. Also let ft be the inbreeding
coefficient in generation t or equivalently ft is the probability taat a
pair of homologus genes came from a common ancestor. That ancestor may
have been in the (t-1)st generation or in some preceeding generation. Two
gametes coming from the same individual in the (t-1)st generation have a

probability % of carrying the same gene. Thus
%pt=pr (two gametes are from the same parent and carry the same gene).

If the genes in the uniting gametes are different they have, by definition,

a probability of ft—l of being from a common ancestor. This holds whether
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or not the genes come from the same individual in the (t-1)st generatiomn.
Thus

%ptft ] = PT (two gametes are from the same parent, carry different
genes and come from a common ancestor) .

and

(1-—pt)ft_1 = pr (two gametes are from different parents and are
derived from z common ancestor).
The inbreeding effect in the tth generation is given by the sum of the

previous three probabilities.

=1 1 _ .
£, =t o £+ P

If a gamete is equally likely to have come from any of the potential

parents in the previous generation we have

p, = L/N__

t 1°

where Nt—l is the number of contributiné individuals in the (t-1)st generation;

the inbreeding effective number is defined simply to be

Ne = llpt.

When a gamete is not equally likely to have come from any contributing
individual p, may be determined as follows. Consider a population of N
monoecious diploid individuals each of which contributes a variable number
(k) of gametes to the next generation. The mean gamete number will be
given by §¥zk/Nt_1 and the variance by Vk=zk2/Nt_1-E2, where the summation
is over the Nt-l contributing individuals in the (t-1)st generation. The
number *of ways two gametes from one parent may be selected is k(k-1)/2.

The total number of ways two gametes from the same parent may be selected
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is k(k-1)/2. The total number of pairs of gametes is Nt_IEth_lE;l)IZ.

Therefore
(A.1) pt=2k(k—1)/Nt_lk(Nt_lk—l).
From the definitions for the mean and variance we have Ekz:Nt—lvk+Nt—1Eé

and zk=Nt_1E: Substituting these expressions in (A.1) the inbreeding

effective number becomes
(A.2) Ne=1/pt=(Nt_1k-l)/(k—l+Vk/k).

As previously stated, in an ideal population each gamete has a
probability l/Nt_l of coming from any particular individual in the
preceeding generation. The pfobability that k randomly chosen gametes
will come from a given individual has a binomial distribution with mean
k and variance Vk=Nt_1k(1/Nt_l)(1—1/Nt_1)=k(1—1/Nt_1). Substituting these

expressions in (A.2) we have Ne=Nt_1 as expected under an ideal population.

Variance Effective Number )

As before, assume that the population consists of Nt-l individaals
each contribution a variable number (k) of gametes to the next generatiom.
Consider a single locus with two alleles A and a, such that the frequency
of A is p=p1+p2 where P, is the frequency of the homozygote and Py is
that proportion of p furnished by the heterozygote. The number of
homozygotes and heterozygotes in the (t-1)st generation will be n1=Nt_1pl
and n2=2Nt_1p2 respectively.

The number of A genes contributed to the next generation will be

j=]

3

"1
&1 kyt L

3

[}
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where L, is the number of A genes contributed by the jth heterozygote. The

3

difference in the number of A genes from the (t-1)st generation to the tth
generation may be given by

n n

o 1 2 —
(A.3) N__ kép=z K +I"L,-N__ k(p +p,)

pland P, may be written as

n, n,_ _

py = L U/N,_; = TK/N_ K

and n,_ B
p, = L K/2N _ k.

Accordingly, (A.3) may be written in the form

- o= M =T
= - 1 - -
(A.4) Nt_lksp z (ki k)+sE (ki K)+2 (Li k/2),
Letting E denote expectation the variance is given by V__ = E(sp)?

ép

since E(8p) = 0. Squaring both sides of (A.4) and taking expectations
we obtain

n

— 1, = .02, = M
(A.5) (N k)?-v6P = E{2 (k-k)+41" (k-k) }24+E{z°(L-k/2)}?.

t-1

The terms in the two expectations of (A.5) are assumed to be uncorrelated.
Therefore, the expectation of the cross product is zero. Now, performing
the indicated operations and simplifying (A.5) becomes

oK

1 (n1+n2/4)—(n1+n2/2)2}+ —_

)2 -
(A.6) (N, _ 02V, = V. /N :

P k t—l{Nt

Let ¢ be a measure of the departure from Hardy-Weinberg proportions

so that P; = p(l-p)(1-a). Then the following relations hold
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n1+n2/2 = Nt—lp
n, = 2N _,p(1-p)(1-a__;)

n1+n2/4 = Nt_l(p—plfﬁ) & Nt-l p—p(l—p)(l—at_lfﬁ)

Substituting the above relations into (A.6) and simplifying we obtain

‘ M A4 = Nt_l _V_IS. (1__ )+(1_ )
p(1-p) p N _ -1 Kk %e-1 )

has the value p(l—p)/ZNe in an ideal population we obtain (Kimura

Since Vép

and Crow 1962).
= - 2
N ZNt/(l at_1+(l+at_1)8k/k)

Z(R—E)Z/(Nt 1—1), for the variance effective number.

where Si =
In the preceeding brief derivations a monoeciocus diploid population

was assumed. Analagous results may be obtained assuming separate sexes.
Under the assumption of separate sexes the inbreeding and variance effective

numbers become respectively

N, = Up, = (N _,k-2)/(k-1+V, /k)

and
_ _ 5 o
Ne 2Nt/(l at_l+(1+at_1)Sk/k).

The above variance effective number was derived assuming the progeny

distributions are the same for both sexes of parents.
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APPENDIX B
Method of Path Coefficients

The method of path coefficients was developed primarily by Sewall
Wright. It has proved to be an effective technique for many problems
in theoretical genetics and statistical analysis of cause and effect
in a system of correlated variables.

Suppose the variable X is determined completely and linearly by

0
the variables Xl, XZ""’ Xn. Also suppose that all variables are

measured from their respective means. Using linear regression methods

the following relationship may be realized.
. = o
(B.1) Xy = B X;48,%, +8 X,

where the g's are the respective regression coefficients. Let X, = Xi/Uii’

then (B.l) becomes

’

X000 = B1¥19111B %000 B X0y

n
or CI'
a a
X = Bl Ell'x1+82 Ezg'x2+...+s -EE'xn.
00 00 B Han
T 6; = 84055/0qgg» then
(B.2) Xy = 81x1+81x2+...+8nxn.

The §'s are defined as path coefficients and are equivalent to standard
partial regression coefficients. A standard partial regression coefficient

of x, on x

0 will be a path coefficient when all variables included in the

i

regression equation are causes of Xy and all relevant causes are included.

Let V(xi) denote the variance of the ith variable and rij the correlation
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"between the ith and jth variables. Squaring both sides of (B.2) and taking

expectations we have

2': 2F &
E(XO) BfE(xf)+...+enE(x§)+i%ﬁgiejE(xixj).

Since all variables are standardized, E(x%) = V(xi) = 1 and E(xixj = rij'
Thus,

2 2 =
(B.3) 81+e%+"'+en+i;jeiejrij 1

and if all variables are independent
24024 +52 =
el 92 i » en 1.

The quantities e%, e%, WiE & wefe termed coefficients of determination by

Wright. If Xpy +ue, X are kept constant such that g maintains the same

amount of variability as before, then the variability in X would be gf

or equivalently the variance in XO would be eioe%. In this way e% measures

the proportion of variability in XO which is directly attributable to Xi.
Consider two variables X and Y which are the result of n; common causes

(Ai), n, causes (Bi) which effect only variable X and n, causes (Ci) which

effect only variable Y. Let n, of these causes be correlated and let

n = n,+n,+n

1'72°73°

variables may be represented by

Considering all variables in standardized form, the X and Y

X = b1B1+b2B2+...+bn +a1Al+a2A2+...+an An

2 171

Y = c1C1+c202+...+cn30n3+aiA1+a£A2+...+an1Anl,

where the small case letters denote the corresponding path coefficients.
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Multiplying the expressions for X and Y given above we obtain

a0, 040y n o, n,n
(B.4) XY = " ¢e,C,b,B. 4L L c.C,a, A4+ L aJAb.B .+ L ajA.a_ A,
171737 ii373 iTi7ij 1I"171ij

Since all variables are standardized E(XY) = rxy’ E(CiBj) =,rCiBj’

E(CiAj) =Toa E(AiBj) =T, g and E(AiAj) ST Thus, taking
i3 i7] i7]

the expectation of (B.4) we obtain

(.5) r = Lic.b.r +Ifc.a.r +IZZa’b.r +Lfala.r ;
Xy i’i CiBj i j CiAj i7j AlBj i3 AiBj

Now, (n—n4) of the above correlation coefficients will be zero. Accordingly,

(B.5) may be written in the form

(B.6) T ™ ala1+azaz+...+anlan +;Z

where pi denotes the procduct of the path coefficients for the ith correlation
coefficient, ’

Rather than work directly with standardized equations Wright advocated
applying the method of path coefficients directly to a path diaéram in which
the dependent variables are represented as additively and completely determined
by others.

It should be noted that expression (B.3) is a generalization of Theorem

2,2 and expression (B.6) is equivalent to Theorem 2.1.
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APPENDIX C
Inbreeding Coefficient F

Inbreeding is a genetic term referring to a mating system in which
mated individuals are more closely related than with random members of
the population as a whole. The inbreeding coefficient F has been defined
as the probability that two genes at a given locus are identical. In this
definition the term identical refers to two genes being identical because
they are copies arising in the reproductive process of one gene occuring
in some previous generation. In general, inbreeding in natural populations
will lead to a correlation between uniting gametes.

Consider a single locus with two alleles A and a which occur in the
proportions p and q respectively. Under random mating the probability
that two A gametes will unite is p?. If a certain degree of inbreeding
exists in the population then the probability that two A gametes will
unite will be greater than p2. Let p2+¢ be this probability where
O<g<l-p2. Let g represent the gametes from one sex and g~” the gametes
from the other sex, such that g=g~“=1 for A gametes and g=g~=0 for a
gametes. From Table 1 we have g=g~*=p, 02=o§,=pq and g2 ,=c2, Therefore,

g
the correlation between uniting gametes is, by definition,

F = i . =
Ggg /Ugcg E/Pq

or

e = Fpg.

With a given degree of inbreeding the zygotic proportion will be

(Wright 1922)

(c.1) p2+Fpq 2pq(1-F) q2+Fpq.
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If the inbreeding coefficient F remains constant from generation to generation

Table 1. Correlations between uniting gametes.

\a”~ 1 0 total
q
2
1 p te Pq-e P
2
0 Pa-€ q te q
P q 1

the zygotic proportions will also remain constant. Expression (C.1) is a

generalization of the Hardy-Weinbery Law in which a random mating population

(F=0) was assumed and is generally referred to as Wright's equilibrium law.
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The genetic structure of natural populations is considered primarily
under three models. The "island" and "continuum" models were developed
by Wright and represent two extreme forms of population structure. The
"stepping stone' model was proposed by Kimura and Weiss. This model is
a rough combination of Wright's two models and probably represents a
natural popﬁlation better than either of them. Wright analized his
continuum model by considering the correlation between uniting gametes;
Kimura and Weiss, through their stepping stone model, examined the correlation
of gene frequencies between two colonies which are a given distance apart.
These two methods of considering correlation appear to be equivalent.
The distribution of gene frequencies is considered in two ways. First,
the probability distribution is derived under the island mocdel assuming a
balance between random deviations and systematic pressures. This steady state
distribution is also shown to be applicable to the continuum and stepping
stone models. The effects of migration, mutation and selection are considered,
both jointly and independently, on the steady state distribution. Second,
the distribution of gene frequencies before a steady state has been reached
is considered by treating the change in gene frequency as a stochastic process.
Kimura has shown that this treatment of change in gene frequency leads to the
Fokker-Planck equation. Using this equation the effects of random sampling
of gametes and random fluctuations of selection pressures are isolated.
Consideration of the effective population number, the method of path
coefficients and the inbreeding coefficient is necessary to the development
of the three models presented. Brief treatments of these three topics are

presented in the appendices.



