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Abstract

A cyber physical system (CPS) is an intelligent integration of computation and commu-

nication infrastructure for monitoring and/or control of an underlying physical system. In

this dissertation, we consider a specific class of CPS architectures where state of the system

is spatially distributed in physical space. Examples that fit this category of CPS include,

smart distribution gird, smart highway/transportation network etc. We study state esti-

mation and control process in such systems where, (1) multiple sensors and actuators are

arbitrarily deployed to jointly sense and control the system; (2) sensors directly communi-

cate their observations to a central estimation and control unit (ECU) over communication

links; and, (3) the ECU, on computing the control action, communicates control actions to

actuators over communication links. Since communication links are susceptible to random

failures, the overall estimation and control process is subjected to: (1) partial observation

updates in estimation process; and (2) partial actuator actions in control process. We an-

alyze stochastic stability of estimation and control process, in this scenario by establishing

the conditions under which estimation accuracy and deviation from desired state trajectory

is bounded. Our key contribution is the derivation of a new fundamental result on bounds

for critical probabilities of individual communication link failure to maintain stability of

overall system. The overall analysis illustrates that there is trade-off between stability of

estimation and control process and quality of underlying communication network.

In order to demonstrate practical implication of our work, we also present a case study

in smart distribution grid as a system example of spatially distributed CPSs. Voltage/VAR

support via distributed generators is studied in a stochastic nonlinear control framework.
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Chapter 1

Introduction

Cyber-Physical Systems (CPS) are intelligent systems where computation and networking

infrastructure is integrated with physical system. Typically, CPS involves the cooperation

of embedded computers, performing coordinated monitoring and control of the underlying

physical system. The coordination is supported via network infrastructure which results in

flexible, low cost, and easy to install / maintain system architecture. Thanks to advance-

ment in embedded systems, CPS can play a transformative role in diverse areas such as,

aerospace, automation, chemical processes, energy, health care, manufacturing, transporta-

tion, entertainment and consumer appliances. In this dissertation, we specifically consider

CPS architectures, where states of the underlying system are spatially distributed in phys-

ical space. Examples of such systems include, smart distribution grids, smart highway /

city traffic networks, smart irrigation networks, etc. Since these are large dynamical sys-

tems, multiple sensors and actuators arbitrarily deployed over the physical space are more

appealing and practical for monitoring and control. This dissertation discusses estimation

and control solutions in this scenario, and analyzes the impact of communication network

on stability of the estimation and control process.

In this chapter, we provide a brief discussion on estimation and control in spatially

distributed CPS - the primary topic of interest in this dissertation. In section 1.1, we first

discuss CPS in general, and then specifically layout the challenges in estimation and control

of spatially dispersed CPS 1.2. Section 1.3 presents a review of prior efforts related to

1



estimation and control of physical system over a network. We briefly discuss the limitations

and open research questions in this area. In section 1.3, we present an overview of our

analysis and contributions of this dissertation. Finally, 1.4 outlines the organization of this

dissertation.

1.1 Background

The recent confluence of computation and communication capabilities in embedded systems

has created applications of enormous societal impact and economic benefits [1]. Such system

architecture, integrating the cyber-space of computation and communications with physical

systems, are known as cyber physical systems (CPS). CPS are designed architectures which

monitor, control, coordinate, and integrate physical systems by computation and communi-

cation cores called embedded computers. This integration of cyber-space with the physical

world ranges from the nano-world to large-scale, wide-area systems. If Internet is considered

as revolution in information exchange between the computation cores, CPS is expected to

revolutionize how embedded cores interact and control physical world around us.

The diverse application areas of CPS include, medical devices and systems, aerospace

systems, transportation vehicles and intelligent highways, defense systems, robotics systems,

process control, factory automation, building and environments control, and smart spaces.

In the past, the system and control engineers in these areas have successfully developed the

analysis and design tools, such as time and frequency domain methods, state space analysis,

filtering/prediction, optimized control, etc. At the same time, advances in computer science

has developed new programming languages, real time computing techniques, visualization

methods, compiler designs, embedded systems architecture etc. Similarly, communication

engineering has advanced in networking protocols, bandwidth utilization, energy minimiza-

tion etc. CPS research aims to exploit knowledge and advancements in all such engineering

disciplines to develop new interdisciplinary science and supporting technology.

As stated earlier, the CPS application area extends to large scale complex dynamical sys-

2



tems. A subset of such systems are spatially distributed systems such as smart distribution

networks, smart highways / city traffic transportation network, smart irrigation networks,

etc. Broadly speaking according to modalities of operation and behavior analysis, such CPS

architectures can be differentiated into four major groups:

• A large physical system with state associated nodes distributed over the physical space.

• Multiple sensors arbitrarily deployed over the area to jointly observe the complete

system.

• Multiple actuators arbitrarily deployed over the area to jointly control the complete

system.

• A network infrastructure assisting in information exchange from sensors to a central-

ized estimation and control unit (ECU), and from the ECU to the actuators.

A symbolic view of such a CPS architecture is shown in Figure 1.1.

In Figure 1.1, we also show spatially located dynamical agents which collectively define

the dynamics of the underlying physical system. We are using agents as the generic term in

this work denoting, for example (1) local load fluctuations and randomly distributed gen-

eration in power distribution networks; (2) streams coming from rivers for irrigation hydro

power network; (3) vehicles entering the city from highways or from residential/office cam-

pus for city traffic networks etc. The state vector in such physical systems is the collection

of states of arbitrary nodes spatially distributed over physical place. For example, the state

vector in a power distribution network comprises voltage phasors at arbitrary locations;

similarly, the state of a city traffic network is the congestion at signal posts located across

the city; and, the state of an irrigation network is the water level at various distribution

points. Additionally, these state elements are nonlinear function of the system dynamics

defined by coupling of agents (for example, voltage state is nonlinearly related to the power

flow equations defined by load and distributed generation). Thus, if behavior of agents are

3
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Figure 1.1: Spatially distributed Cyber-Physical Systems - Estimation and Control over
Network

modeled statistically, then the complete physical system model is a nonlinear stochastic

system model. Now, inclusion of network infrastructure for estimation and control in such

systems presents new challenges in signal processing, which in effect determines the safe

and efficient operation of considered physical system. This dissertation aims to address

these challenges by proposing appropriate estimation and control solutions and analyzing

the impact of communication network on stability of overall control process.
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1.2 Challenges

As mentioned in previous section, CPS demands an interdisciplinary perspective, and solu-

tions to challenges in CPS require expertise from several engineering disciplines [2],[3]. In

this section, we present some research challenges related to signal processing for estimation

and control in CPS architecture. A diagrammatic view of these challenges is shown in Figure

1.2.

Cyber-Physical
 Systems
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Hybrid
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Figure 1.2: Cyber-Physical Systems - Estimation and Control Challenges

Hybrid System Modeling : One of the challenges in CPS is the integration of hybrid

system models of physical systems and digital signal processing units. By hybrid system

models we mean: (1) Coexistence of continuous and discrete time process: Physical systems

in CPS operate in time continuum, where as other CPS subsystems are composed of discrete

time operations [4]; (2) Quantized system models: Physical models have continuous states,

while signal processing is performed on quantized states [5]; (3) Stochastic systems: Physical

5



systems can not be completely defined by deterministic models, and dynamical CPS models

may include a combination of stochastic and deterministic processes [6]; (4) Nonlinear system

models: Physical system models are mostly nonlinear systems, and controller design gets

very complicated for large dynamical systems [7],[8]. Thus, the goal of CPS research is

co-designing and analyzing integration physical system model with computation models.

Controller Design: After system modeling, the next step in CPS architecture is controller

design. The controller design for a hybrid system model includes: (1) State estimation: This

is an important design consideration for stochastic system models as one essentially desires

to minimize the estimation error; (2) Control computation: Next important design consid-

eration is control solution computation based on minimization of a certain cost function of

state and control vectors. Both these designs must be adaptive and predictive as the CPS

needs to be responsive to changing system conditions and must anticipate and track the

changes in physical process [9],[10].

Scalability and Complexity : Considering large dynamical systems, the controller deigns

need to be computationally efficient and easy to implement [11],[12]. One way of addressing

the computational complexity is by approximating the nonlinear system models by Taylor

series expansion, or by finite dimensional orthogonal functions. However, the impact of

approximation error on stability and accuracy of controller design needs to be considered

in such cases. Another approach is to have distributed or decentralized implementation of

controller design, in which small subproblems of much lower complexity are cooperatively

solved at several computational cores. However in this case, one needs to take care of

convergence and degree of cooperation and its effect on the stability of the overall system

[13],[14].

Sensing and Actuation: Sensing and actuation is another challenging research area,

especially considering low-power wireless sensors and actuators [15]. The objective is to

enable much richer measurement and control of physical processes than what is affordable

with wired systems. To achieve better and more reliable performance, issues like, low
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power transceiver design, sensor/actuator localization, distributed data modeling, timing

synchronization etc. needs to be addressed carefully.

Communication Infrastructure: The emergence of communication network infrastructure

for estimation and control in CPS has brought new challenges in signal processing [16]. One

of the biggest challenge is to accommodate stochastic nature of communication network in

controller design and analysis. By stochastic nature of communication network we mean: (1)

random packet drops; (2) random packet delays; (3) random reordering of packets, etc. The

network challenges can be addressed by: (1) analyzing the impact of network infrastructure

on stability of controller design; (2) establishing the critical network conditions for ensuring

stability of control process; (3) robust controller design; (4) communication protocol design

etc.

Cyber Security : Designing a secure CPS architecture is an important consideration in

practice [17]. It includes: (1) Resilience: ability of CPS to continue operating satisfactorily

when stressed by unexpected inputs, subsystem failures, or environmental conditions or

inputs that are outside the specified operating range; (2) privacy: protecting information

from unauthorized access; (3) malicious attacks: protection from hackers, viruses etc.

In the next section, we present some relevant prior research work in estimation and

control of physical systems.

1.3 Prior Work & Motivation

In this section, we first present estimation and control in general for linear and nonlinear

physical system models, followed by estimation and control over network.

1.3.1 Controller Design - Stochastic Nonlinear System Models

The estimation and control process in most physical system models is subjected to some

degree of uncertainty. Even when the fundamental system dynamics are mathematically

modeled, the existence of some probabilistic parameters or unknown random disturbance
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can not be ignored. Additionally, nonlinear mathematical models aggravates the complexity

incurred in solving the problem. Thus, the traditional deterministic linear control theory

becomes inadequate when the process uncertainties and nonlinearity becomes significant.

Research interest in nonlinear stochastic systems is not new, since it applies to most practical

systems. In 1970, [18] formulated a scheme for continuous time stirred reactor, by which

the corresponding nonlinear system dynamics with noise corrupted observations can be

controlled. The scheme was based on a nonlinear Kalman filter in the feedback loop, and a

controller designed to minimize an instantaneous cost criterion based on estimated states.

A different approach was used in [19] for controlling a statistical mechanics problem,

where emphasis was on the applicability of linear control theory concepts for a class of

nonlinear stochastic systems. The research showed that under certain conditions on pro-

cess noise, the Hamilton-Jacobi-Bellman (HJB) equation can be written in form of partial

differential equations. Thus, the solution was obtained from path integral of modified HJB

equation. Similarly, [20] analyzes nonlinear stochastic dynamics for three typical model:

(1) bilinear models; (2) Hammerstein models, and (3) model with output nonlinearity. The

analysis finds that it is impossible to have a global stability results for a high-order polyno-

mial nonlinear systems.

The traditional Lyapunov based framework is deployed in [21], designing an adaptive

control methods for a multi variable discrete time nonlinear system with exogenous bounded

amplitude disturbance. Similarly, [22] designs a sliding mode control to deal with nonlin-

earities in actuator.

It can be noticed that, most of above research [18]-[20] exploits the certain nonlinear

behavior which is specific to the considered system model. Additionally, above efforts on

control solutions for nonlinear system models are very computationally complex to exploit

it for large scale spatially distributed systems. Thus, exploration of new estimation and

control solutions specifically suited to spatially distributed systems is necessary.

Another thrust in control systems literature is to state optimality of the solution, along
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with global stability of the system. The optimality and stability of a control solution de-

pends on present and future state of the observed physical system [23]. Thus, it is necessary

to first investigate the design of an accurate dynamic state observer. However, the sepa-

ration principle of breaking down the control problem into: (1) accurate observer design,

and (2) optimal and stable feedback controller design, is not valid for nonlinear stochastic

systems [24]. Considering complexity in nonlinear control solutions, several researches have

shown applicability of separation principle locally around a known state equilibrium point;

especially when exponential feedback stabilizers and exponential observers are used [25].

Thus, with the objective of reducing computational cost along with ensuring almost

optimal solution, it is worthy to investigate local stability and optimality for estimation and

control solution in nonlinear spatially distributed CPS.

1.3.2 Estimator Design - Nonlinear Discrete-time Stochastic Sys-
tem

An accurate state estimator design is one of the challenging problems in the broader area

of nonlinear stochastic control. Since control input is constructed based on state estimates,

an exponentially stable state estimator design needs to be investigated for assuring stability

of overall controller synthesis. Considering single input/output nonlinear uncertain system,

a sliding mode observer is proposed in [26] for state estimation. The adopted strategy is

shown to guarantee convergence of estimation error to some bounded region. A new concept

of change of co-ordinates is presented in [27], which transforms the nonlinear discrete time

system with inputs into a linear system with output injection. This leads to linearized error

dynamics, which results in exponential convergence of estimated state to the actual state in

new co-ordinates.

An information theoretic framework is presented in [28] for nonlinear estimation prob-

lem using Renyi entropy as a measure of state uncertainty of the system. The observer

design problem is formulated as a finite horizon stochastic optimal control problem with an

objective to minimize the estimated state uncertainty. The problem is solved based on a
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neural network approach. Similarly, [29], [30] assumes that an additional physical insight

of the problem is known in form of constraints on state and disturbances. The observer

problem is solved using finite horizon optimization problem with an objective to reduce the

estimation error. An unscented Kalman filter based state estimation approach is used in

[31] for system where both state and measurement process are modeled as stochastic non-

linear difference equation. Under some assumptions on model parameters, an asymptotic

convergence of state estimates is established. Similarly, [32] assumes that process model is

affine with respect to the unmeasured disturbance and any measured state variable. The

disturbances are considered as an additional state variables, and a nonlinear observer is

designed for the augmented state space system. Considering computational efficiency and

hence practical applicability for large scale nonlinear system, several research work [33]-[29]

have analyze the robustness and stability of extended Kalman filter for nonlinear stochastic

process and measurement model. Extended Kalman filter is a linear extension of Kalman

filter (optimal state estimator for linear systems) for nonlinear systems.

Now, considering computational cost incurred in nonlinear state estimator design, it is

worthy to investigate applicability of extended Kalman filter for spatially distributed CPS.

A stability analysis establishing conditions on system parameters which in effect limits the

linearization error will be a suitable approach in investigating use of extended Kalman filter

for state estimation process.

1.3.3 Control Solution - Nonlinear Discrete-time Stochastic Sys-
tem

Next, considering optimality of control solution, model predictive control (MPC) has emerged

as a powerful tool for feedback control design of constrained linear and nonlinear system.

The underlying idea for MPC is stated as: At every sampling instant t, MPC computes

and minimizes, a cost function of control and state over a short time horizon T . While

corresponding optimal control inputs for the entire time horizon is calculated, only the first

step control is implemented as control action for the system. Due to the wide acceptability
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of MPC for controller synthesis of practical dynamic systems, there has been extensive re-

search results available in analyzing its performance in terms of robustness, optimality and

stability [35].

However, for nonlinear stochastic systems there are still some unanswered questions.

Considering stability as major performance criterion, [36],[37] establishes stability in terms of

region of attraction properties for nonlinear MPC. The formulation is an unconstrained finite

horizon optimization problem; and with proper terminal cost settings, stability of candidate

Lyapunov function is ensured. [38] emphasizes on practical difficulties in implementing

nonlinear MPC, when the optimization problem is non convex and computation time is

limited. The research proposes a sub-optimal controller design, and establishes conditions

under control solution is stable.

Similarly, [39] considers nonlinear problems which can be modeled as a set of piece-

wise linear, or affine systems. Stability and robustness conditions are then established for

piecewise affine systems. Considering perturbation of discrete time nonlinear model, [40]

establishes exponential stability theorems that allows to retain asymptotic stability in face of

decaying perturbations. [41] investigates robust MPC for constrained discrete time nonlinear

systems with additive uncertainties. The controller uses a terminal region constraint, which

are computed to get robust feasibility of closed loop system for a given bound on admissible

uncertainties. [35], focuses on the robust stability of nonlinear MPC when it is integrated

with extended Kalman filter as state estimator. The analysis establishes that the EKF error

is not influenced by control action of nonlinear MPC.

Now, control solution in most spatially distributed physical systems is subjected to some

system constraints. Further, most system models being nonlinear and stochastic and of large

dimension, conventional nonlinear control strategies like sliding mode control, manifold /

passive control theory, etc. are impractical. Thus, it is important to investigate applicability

of MPC solution for spatially distributed CPS. Additionally, some simplification in non

convex optimization formulation for nonlinear system model can be investigated to reduce

11



the computation cost with consideration of limiting approximation error.

1.3.4 Estimation Solution Over Network

For state estimation in cyber physical systems, the measurements are packetized and are

communicated to central estimation unit over a network. These measurement packets are

susceptible to abnormalities in communication links resulting in measurements getting de-

layed or lost due to packet drops. Addressing the impact of intermittent observation on

performance of stability of Kalman filter based state estimation, [42] models the arrival

rate of observations though the lossy network as Bernoulli random process. The analysis

investigates the statistical convergence properties of the estimation error covariance, and

further shows the existence of a critical value for arrival rate of the observations, beyond

which state error covariance is unbounded. A similar analysis is done for extended Kalman

filter in [43],[44], where sufficient system conditions are derived for bounded EKF error

covariance. The analysis is valid if noise covariance, and initial estimation error are small.

In another approach, [45] models packet loss effect on Kalman filtering as a two state

Markovian chain. The normal operating condition state when packet arrives, and no mea-

surement case when there is transmission failure. Based on sojourn time of each visit to

failure or packet reception state, behavior of estimation error is analyzed, and a notion of

peak covariance is introduced. Further, sufficient conditions for stability of peak covari-

ance is established. Addressing the delay and reordering of packets, variants on modeling

the packet arrival are discussed in [46]-[50], with corresponding design modification in the

recursive least square estimator for linear system.

It needs to be noticed that spatially distributed CPS are large dynamical systems, and is

prudent to arbitrarily deploy multiple sensors over the physical space to completely observe

the system. In such scenario, there will be multiple communication links relaying local sensor

measurements, resulting in reception of partial measurements at centralized estimation unit.

Thus, for spatially distributed CPS architecture, the estimation process stability is still as
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open question that we seek to address in this work.

1.3.5 Control Solution Over Network

: Similar to state observer stability, the feedback control stability over a lossy network has

received considerable attention in past few years. In [51], a model based stabilization of a

nonlinear system is investigated, with the assumption that both feed forward and feedback

paths are subjected to network induced constraints. To overcome network effects like transfer

interval, time varying communication delay, and possibly packet loss, a communication

protocol is proposed to synchronizes the packet transfer between controller and actuator.

Considering network impact in form of quantization and packet drops, [52] investigates

the stability of nonlinear control problem using global Lipschitz arguments. Modeling the

packet drops as independent Bernoulli sequence, an observer based controller is designed to

exponentially stabilize the networked system in mean square sense. Similarly, [53] considers

network impact in form of packet reordering and random delay, and establishes a new

closed loop model based on Markovian jump process. The authors further use Lyapunov

function and LMI arguments to establish sufficient stability conditions and an upper bound

on closed loop performance index. [54] considers networked control systems with arbitrarily

large constant delays, and proposes novel stability conditions based on input output models

of the subsystems and scattering transforms.

Exploiting nonlinear characteristics of a class of nonlinear systems, [55] presents sufficient

conditions for robust asymptotic stability in presence of uncertain network delays. Further,

an upper bound on network induced delay is derived to ensure system stability. Similar to

above research, [56] develops a framework for stabilizing controller design of discrete time

nonlinear models, with time varying sampling intervals, potentially large time varying delays

and packet drop outs. Subsequently, sufficient conditions for the global exponential stability

and semi-global practical asymptotic stability are provided.

Once again, considering large scale dynamics of spatially distributed CPS, it is realistic
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to deploy multiple actuators over the physical space to have complete control of under-

lying physical system. Also, similar to network facilitated estimation process, there will

be multiple communication links relaying control inputs to individual actuators from cen-

tral estimation and control unit. The, control process stability in such distributed CPS

architecture is still unexplored and needs to be investigated.

In next section, we present an overview of our analysis and approach that attempts to

address the

1.4 Contribution

In this dissertation, we analyze the impact of communication network on stability of esti-

mation and control in spatially distributed CPS. As discussed in section 1.1, these systems

generally exhibit nonlinear stochastic dynamical system model. Considering optimality and

analytical tractability, we consider the first order Taylor series approximation of the under-

lying system model in estimation and control solution computation. This essentially results

in computing estimation and control solution for linear system model valid locally around

the computation time step. Thus, we first consider state estimation and control solution

stability in linear system models.

1.4.1 State Estimation over Network in Spatially Distributed Phys-
ical System

Considering Kalman filter based state estimation, our work presented in chapter 3 is the

first attempt in analyzing estimation stability in spatially distributed CPS. We consider

state estimation process in practical spatially distributed system shown in Figure 1.3, with

sensor measurements communicated to centralized state estimation unit over individual

communication links. Figure 1.3 presents a conceptual view of the considered spatially

distributed CPS, where nodes (with a state associated) are distributed all over a physical

area. Arbitrarily located sensors jointly observe the complete system. Each sensor makes
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Figure 1.3: State estimation of spatially distributed physical system over a network

a measurement which is related to the nodes/states in its neighborhood. The observation

space of neighboring sensors typically overlaps, resulting in redundancy in state information.

These sensor measurements are sent to a central estimation unit over lossy networks resulting

in measurements getting delayed or lost due to packet drops. Thus, at any state estimation

step, received measurements may not be enough for observing all states of the system. We

denote this system configuration as dispersed measurement scenario, which is completely

different from well studied gathered measurement scenario [57]-[62] where measurements are

collected and then sent to estimation unit over a communication link. We assume delayed

measurements can not be used for state estimation and are considered equivalent to lost

measurements. As discussed [57], the error covariance matrix iteration and the Kalman

filter updates are stochastic and depend on randomness of measurement losses. Thus, we

study the statistical properties of error covariance matrix iteration, and establish necessary

and sufficient conditions for boundedness of error covariance matrix in steady state. The
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key contributions of this research are:

• We first study statistical convergence properties of error covariance matrix under dis-

persed measurement scenario. Based on information theoretic concepts, we establish

a connection between gathered and dispersed measurement scenario: we then exploit

this connection to obtain bounds on error covariance at steady state.

• After computing the error covariance bounds, we distribute the observation loss of

gathered measurement scenario to dispersed measurement scenario. We accomplish

this by formulating an linear equality constrained feasibility problem with probabilities

of all possible measurement loss scenarios as its variables. Since this is a convex

formulation, after obtaining the lower and upper bound on critical probabilities for all

loss combination scenarios, the lower and upper bound on individual critical sensor

link probability is computed.

• We exploit spatial correlation (a conceptual spatial correlation footprint is shown in

Figure 1.3) in determining its impact on critical packet drop rates. We use a Wiener

filter [63] to estimate the lost measurements from received measurements, with the as-

sumption of known spatial correlation between the states. This analysis finally results

in redefining the received measurement vector comprising of actual received measure-

ments, and reconstructed measurements, followed by computing new measurement

loss rates.

• We consider the scenario of correlated communication link failures (also shown in Fig-

ure 1.3) with the assumption of joint probability mass function of random link failures

being stationary and known. Thus, new constraints resulting from joint probability

mass function are then incorporated into the formulation for computing lower and

upper bound on critical measurement rates.

• Finally we can state, our theoretical analysis quantifies the performance trade-off be-

tween state estimation accuracy and quality of the underlying communication network.
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Details of our analysis and simulations are presented in chapter 3, and in publications,

[64]: S.Deshmukh, B.Natarajan and A.Pahwa, “State estimation in Spatially Distributed

Cyber-Physical systems: Bounds on Critical Measurement Drop Rates”, (accepted in) IEEE

9th International Conference on Distributed computing in Sensor Systems, IEEE DCOSS

2013, 20-23 May 2013, Cambridge, Massachusetts.

[65]: S.Deshmukh, B.Natarajan and A.Pahwa, “State Estimation over a Lossy Network

in Spatially Distributed Cyber-Physical Systems”, (under review in)IEEE Transactions on

Systems, Man, and Cybernetics: Systems.

1.4.2 LQR Controller over Network in Spatially Distributed Phys-
ical Systems

Considering linear quadratic regulator (LQR) based control solution, our work presented in

chapter 4 is the first attempt in analyzing control stability in spatially distributed CPS. In

this work, we consider an extension of scenario in Figure 1.3, with control solution commu-

nicated to actuators over individual communication links. Figure 1.4 presents a conceptual

view of the considered system. In order to separate the analysis of estimation process, we

assume that the underlying state estimation process in stable and the error in state estimates

is accommodated as process noise in controller design. Thus, we are primarily concerned

about the communication of computed control actions to actuators over individual commu-

nication links. Compared to conventional system models where there is one communication

link between actuator and controller (denoted as unified actuator case), we denote the sce-

nario in Figure 1.4 as dispersed actuator case. The control space of neighboring actuators

typically overlaps, resulting in redundancy in control implementation. Further, due to net-

work characteristics, actuator inputs are susceptible to delay, reordering and drops. At any

control step, control implementation may not be enough for controlling all states of the

system. Thus, use of communication network (while providing operational flexibility), can

eventually adversely effect the stability of control process. The key contributions of this

work are,
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Figure 1.4: Control implementation of spatially distributed physical system over a network

• Due to process noise in system model and random packet loss in multiple commu-

nication links, we consider stochastic Lyapunov function for analyzing stability of a

given linear quadratic control. We study statistical properties of Lyapunov function

iterations and establish the existence of critical probability of successful packet trans-

mission ensuring boundedness of Lyapunov function in steady state.

• Since, stochastic analysis and computation of critical probability require on-line infor-

mation, we study convergence in mean of Lyapunov function and establish upper and

lower bound on critical probability.

• Next based on analogy between Kalman filter based state estimation and linear quadratic

control, we establish similarity in converges properties of Lyapunov function and er-

ror covariance matrix in state estimation; this helps in effectively using the stability

results of unified actuator scenario in dispersed actuator scenario, thereby getting the
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same bounds on convergence of Lyapunov function iteration in steady state.

• Next based on converging solution of Lyapunov function iteration, we distribute the

critical control loss in unified actuator scenario to dispersed actuator scenario. We

accomplish this by formulating a linear feasibility problem, establishing same bound

on Lyapunov function convergence for dispersed actuator scenario.

• We provide an upper and lower bound on convergence of Lyapunov function in steady

state along with corresponding upper and lower bound on critical probabilities. This

analysis quantifies the performance tradeoff between stability and quality of underlying

communication network.

Details of our analysis and simulations are presented in chapter 4, and in publications,

[66]: S.Deshmukh, B.Natarajan and A.Pahwa, “LQG Control with Intermittent Actuator

Inputs”, (submitted in) IEEE Multi-conference on Systems and Control, IEEE MSC 2013,

28-30 Aug. 2013, Hyderabad, India,

[67]: S.Deshmukh, B.Natarajan and A.Pahwa, “LQR Controller over a Lossy Network in

Spatially Distributed Cyber-Physical Systems”, (under review in)IEEE Transactions on

Automatic Control.

1.4.3 Case Study: Voltage/VAR Control In Smart Distribution
Network

As discussed in section 1.1, most spatially distributed CPS have nonlinear stochastic system

model. In our work in chapter 5, we consider a practical spatial distributed CPS architec-

ture and present case study on voltage/VAR support in smart distribution network. The

presented study essentially integrate the three aspects of voltage/VAR support: (1) non-

linear stochastic system modeling; (2) nonlinear state estimation; and (3) nonlinear control

solution computation in single framework. A diagrammatic presentation of such a frame-

work, with measurement and control information communication over network is presented

in Figure 1.5. The key contributions of this work are,

19



 
 Spatially Distributed 
          System 

    Nonlinear 
State Estimator

NMPC Controller

 Dynamic 
Optimizer

Cost Function 
        +
 Constraints

       STVL 
   Approx. to 
    Nonlinear 
System Model

X

U Y tt

t
est

Network

Network

tU

Figure 1.5: Nonlinear Control framework for DG integrated at Distribution network level

• First, as part of modeling efforts, we capture load fluctuations and DG power variabil-

ity as a first order auto-regressive (AR(1)) time series with time varying coefficients.

Since, relationship between voltage phasor and power is nonlinear, the resulting dy-

namic model is a stochastic discrete-time nonlinear time varying model.

• Next, we intend to design an accurate state estimator and controller which efficiently

injects reactive power through DGs, for maintaining the voltage/VAR support at

distribution network level. Now for nonlinear stochastic systems, we can not globally

separate the problem into (1) accurate observer design, and (2) optimal feedback

controller design [68]. However, separate designs can be done locally if we linearize

the nonlinear state model around a state equilibrium point [69]. Thus, a locally

optimal state estimator and feedback controller design is investigated in this work.

Further, it should be noted that local applicability of separation principle does not

ensures global optimality and stability [70]. Thus, we separate design local observer

and control process for the underlying power distribution system.

• Considering nonlinear, time varying and stochastic properties of our system model, we
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propose an EKF based state estimation approach for distribution networks. Further

we quantify conditions on system parameters and communication network for stability

of state estimate error covariance matrix.

• As reactive power injection has a natural trade-off relative to real power injection by

DGs, it is crucial to optimally use the reactive power of DGs. Additionally, the control

design needs to be predictive, based on dynamics of the system. Thus, a quasi-infinite

nonlinear model predictive control (NMPC) problem is formulated, with an objective

of computing minimum distributed reactive power required for voltage/VAR support.

Our formulation also places constraints on minimum and maximum reactive power

a DG can inject based on economic viability and limitations of power electronics

interface. To address the computational complexity incurred in searching optimal

solution for large scale nonlinear control problems, we further propose a successive

time varying linear (STVL) approximation to our voltage/VAR control problem.

More detailed discussion our case study in smart power distribution networks is presented

in chapter 5, and in publications,

[71]: S.Deshmukh, B.Natarajan and A.Pahwa, “Voltage/VAR control in distribution net-

works via reactive power injection through distributed generators”, IEEE Transactions on

Smart Grid, March 2012,

[72]: S.Deshmukh, B.Natarajan and A.Pahwa, “Stochastic State Estimation for Smart Grids

in the Presence of Intermittent Measurements”, 4th IEEE Latin-American Conference on

Communications, LATINCOM 2012, 7-9 Nov. 2012, Cuenca - Equador.

[73]: S.Deshmukh, B.Natarajan and A.Pahwa, “State estimation and voltage/VAR control

in distribution networks with intermittent measurements”, (under review in)IEEE Trans-

actions on Smart Grid.
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1.5 Dissertation Organization

Following is the the chapter wise organization of this dissertation. In chapter 2, we discuss

the existing control and estimation solutions for discrete time system models. The chapter

first considers linear models in both deterministic and stochastic scenario, and later extends

it to nonlinear system models.

Chapter 3, presents the stochastic stability of Kalman filter based state estimation pro-

cess in spatially distributed cyber physical systems. The analysis establishes necessary and

sufficient network conditions for ensuring boundedness of state estimation error, followed

by computation of upper and lower bound on critical packet drop rates of individual sensor

communication link.

In chapter 4 we consider stability of control operation for cyber physicals systems in both

unified and dispersed actuator scenario. The analysis considers boundedness of Lyapunov

function as stability criterion, and establishes necessary and sufficient network conditions

along with computation of upper and lower bound on critical probabilities of packet drop

in individual actuator communication links.

A case study on estimation and control in smart distribution network is presented in

chapter 5, where a extensive discussion on nonlinear stochastic system modeling and ex-

tended Kalman filter based estimation and nonlinear model predictive control based volt-

age/VAR support is presented. The chapter later presents a discussion through simulations

on network impact on estimation and control process to support the theory presented in

previous chapters.

Finally, in chapter 6 we summarize our major contribution and discuss ideas for future

work.
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Chapter 2

Estimation and Control of
Discrete-time System Models

The description of physical systems by a mathematical model was discussed in Chapter 1.

It was also pointed out that discrete time models are an approximation of continuous time

system models; and, study of such descriptive models are necessary because of sampling

sensors and digital controllers. Further, discrete time system models are appealing for

analysis of cyber physical systems. The estimation and control in these systems is subjected

to delays between the instant measurements are sampled to the instant actuator implements

the control action. However, dynamics of most cyber physical systems are slow, and along

with advancement in signal processing / communication strategies, the delay is usually

ignored. Thus, practical continuous time models of cyber physical systems are approximated

by discrete time system models.

This chapter is devoted to the discussion of existing control and state estimation solutions

for discrete time system models. We start our discussion by first considering linear models in

both deterministic and stochastic scenario. In later sections, we consider nonlinear discrete

time models and discuss the applicable state estimation and control strategies.
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2.1 Deterministic Linear System Model

Consider a deterministic, discrete time linear dynamical system model,

xt+1 = Atxt +Btut (2.1)

where, xt ∈ R
n represents the state vector of the underlying system; At ∈ R

n×n is the state

transition matrix; ut ∈ Rm represents the input control vector for driving the underlying

system towards desired trajectory; and Bt ∈ Rn×m is the control input matrix. Since this

is deterministic model, the estimation of next state xt+1 is directly obtained by equation

(2.1). In other words, due to absence of randomness in the system model, we do not consider

measurements, and thus state estimation algorithms are also not required. So, in following

subsections we directly consider the two popular control strategies for linear system model.

2.1.1 Linear Quadratic Regulator

In this subsection we first considers homogeneous or constant coefficient linear system mod-

els, i.e. the model matrices At, and Bt are independent of time. In later discussion we

show, how the presented analysis can be directly applied to more general time varying

linear system models. Thus, consider a homogeneous linear system model,

xt+1 = Axt +But. (2.2)

Next, let the system be at some initial condition x0 = xinit; and in this setup, we aim to

compute small control inputs u0,u1, · · · such that state trajectory move towards desired

trajectory. It should be noted that these two objectives: (1) minimizing different between

current and desired state trajectory; (2) minimizing control input, are complementary to

each other, i.e., a large control input can be computed which will rapidly drive the state

trajectory xt to desired state trajectory faster. In general, the desired state trajectory

is considered as 0 (else, xt can be modified to denote the difference between desired and

current state trajectory); then, the linear quadratic theory is used to addresses this problem
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by defining a linear quadratic cost function,

J(U) =
T−1
∑

τ=0

x′
τQxτ + u′

τRuτ + xTQfxT (2.3)

where, U := {u0,u1, · · ·uT−1}; Q = Q′ ∈ R
n×n,� 0 is the state weight matrix; Qf = Q′

f ∈

R
n×n,� Q is the final state weight matrix; and R = R′ ∈ R

m×m,≻ 0 is the control input

weight matrix. Variable τ ∈ t, and T represents the duration of finite control horizon. The

infinite horizon scenario is discussed in later in this section. So the problem is to compute

optimal control input sequence U∗ that minimizes the cost function (2.3), which essentially

will satisfy our control objectives.

Least Square Solution

The solution of linear quadratic cost function (2.3) can be obtained by formulating a least

square problem. In this approach, we first expand the system model for horizon period T

in matrix form,

[

x0

x1
...xT

]

=















0 · · · · · · · · ·
B 0 · · · · · ·
AB B · · · · · ·
...

...
...

...
AT−1B AT−2B · · · B















[

u0

u1
...uT−1

]

+











I
A
...

AT











x0, (2.4)

where, x0 = xinit is the starting state of horizon period T . It is easy to notice that,

equation (2.4) represents the state trajectory X := {x0,x1, · · ·xT} as linear function of the

control input sequence U := {u0,u1, · · ·uT−1} and the initial state vector x0. Expressing

X = GU+Hx0, the linear quadratic cost (2.3) can be expressed as,

J(U) =
[

diag
(

Q1/2, · · · Q1/2
)

(GU+Hx0)
]2

+
[

diag
(

R1/2, · · · R1/2
)

U
]2
. (2.5)

The optimal control action is now easily computed by setting the derivative of (2.5) with

respect to U to zero. It is easy to notice that, this computation strategy will require

formulating a least square problem with size N(n + m) × Nm at every time step. For a

large physical system with thousands of state elements, this will be highly computationally
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expensive, specifically an order of O(N3nm2) if the naive methods like QR factorization are

used. More details of least squares solution in linear quadratic regulators can be followed

in [74],[75]. In next subsection we discuss a more practical recursive control solution based

on dynamic programming.

Dynamic Programming Solution

Dynamic programming is an efficient and practical viable recursive method to solve the linear

quadratic problem. In this approach, we first define a value function Vt(x0) := R
n → R

representing linear quadratic cost to go, starting from initial state xinit at time t to T − 1,

Vt(xinit) = minut,···uT−1

∑T−1
τ=0 x

′
τQxτ + u′

τRuτ + xTQfxT
s.t. x0 = xinit & xτ+1 = Axτ +Buτ

(2.6)

It can be noted that value function (2.6) at first step t = 0 is essentially a quadratic

function of initial state xinit, i.e., V0(xinit = x′
initPtxinit, whre Pt � 0. Thus, the recursion

of quadratic function of state trajectory can be expressed as,

Vt(xinit) = x′
0Qx0 +min

u

(u′Ru+ Vt+1 (Ax0 +Bu)) . (2.7)

Above value function recursion (2.7) is also called DP, Bellman or Hamilton-Jacobi equation.

Once again, value function at step t + 1 is essentially Vt+1(xinit) = x′
initPt+1xinit, with

Pt+1 � 0. Substituting xt+1 from system model in (2.7) we obtain,

Vt(xinit) = x′
initQxinit +min

u

(

u′Ru+ (Axinit +Bu)′ Pt+1 (Axinit +Bu)
)

(2.8)

Equation (2.8) can be solved by setting derivative with respect to u to zero. Thus, the

optimal control input is computed as,

u∗ = − (R+B′Pt+1B)
−1

B′Pt+1Axinit (2.9)

Substituting the optimal control solution in value function (2.8) and with algebraic simpli-

fication we get,

Vt(xinit)

= x′
init

(

Q+A′Pt+1A−A′Pt+1B (R+B′Pt+1B)−1 B′Pt+1A
)

xinit
= x′

initPtxinit

(2.10)
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Thus, the backward recursive equation for Pt is expressed as,

Pt = Q+A′Pt+1A−A′Pt+1B (R+B′Pt+1B)
−1

B′Pt+1A (2.11)

Finally, the linear quadratic regulator solution via dynamic programming can now be sum-

marized as,

1). Initialize the final PT = Qf

2). Recursive compute in backward direction, i.e., t = T − 1, · · · 1, Pt−1 = Q + A′PtA −

A′PtB (R+B′PtB)−1 B′PtA

3). Recursively compute in forward direction i.e., t = 0, · · ·T − 1, control gain Kt :=

− (R+B′Pt+1B)−1 B′Pt+1A

4). Finally, compute the optimal control for horizon period T , u∗
t = Ktxt for t = 0, · · ·T−1.

The dynamic programming solution can also be extended for infinite horizon scenario,

also known as steady state solution. The corresponding recursive equation (2.11) is called

discrete time algebraic Riccati equation and is expressed as,

Pss = Q+A′PssA−A′PssB (R+B′PssB)
−1

B′PssA (2.12)

where, Pss is the converging solution of iteration (2.11). The solution for (2.12) can be

obtained by either iterating the Riccati recursion or by direct methods. Once, the convers-

ing solution Pss is computed, the infinte horizon linear quadratic solution os essentially a

constant linear feedback solution, ut = Kssxt, where Kss = − (R+B′PssB)−1 B′PssA.

More details of dynamic programming solution in linear quadratic regulators can be

followed in [74],[75]. There a several other strategies of computing the linear quadratic

control solution. One ways is to directly formulate an optimization problem with: (1)

minimization of quadratic cost function as the objective function; (2) initial state and the

system model as the constraints; (3) and solving the problem via Lagrange analysis or other

convex optimization methods. We show this setup as model predictive solution in next

subsection.
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2.1.2 Model Predictive Control Solution

One way of designing a control strategy is greedy approach in which immediate future state

xt+1 is only considered in computing the solution, and impact of computed control action

on future state trajectory is ignored. This is essentially a greedy approach and typically

preforms very poorly in long run. Model predictive control (MPC) solution, address this

problem in linear system models, by formulating a convex optimization problem. At each

time step t
min.

∑∞
τ=t l (xt,ut)

s.t. ut ∈ U ,xt ∈ X , τ = t, · · ·∞
xt+1 = Axt +But, τ = t, · · ·∞

(2.13)

where, l(.) is a cost function of state trajectory and control input; and X and U are polyhe-

dral constraining the state trajectory and feasibility of control action. MPC is also known

by many other names (with some variants in general formulation), e.g. dynamic matrix

control, infinite horizon control dynamic linear programming, rolling horizon planing, etc.

One simple variant of MPC is with quadratic cost function, similar to cost function in linear

quadratic regulator solution,

min.
∑∞

τ=t x
′
tQxt + u′

tRut
s.t. ut ∈ U ,xt ∈ X , τ = t, · · ·∞

xt+1 = Axt +But, τ = t, · · ·∞
(2.14)

Notice that without state space and control space constraints quadratic cost MPC problem

(2.15) is simply a steady state LQR problem with solution expressed by equation (2.12).

However, due to these constraints it difficult to express an analytical solution. Instead, the

MPC problem is transformed to finite horizon MPC problem,

minimize
∑t+T

τ=t l (x
′
tQxt + u′

tRut)
subject to ut ∈ U ,xt ∈ X , τ = t, · · · t+ T

xt+1 = Axt +But, τ = t, · · · t+ T − 1
(2.15)

At this point we define the model predictive control solution computation steps as,

1). Compute optimal control solution ut t = 0, · · ·T − 1by solving optimization problem

(2.15)
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2). Implement u0 as the control input solution for current sampling instant

3). Update the time step t := t+ 1 and repeat the control process for for time step t+ 1

Finite horizon MPC is also called receding horizon or rolling horizon MPC. More details

about MPC solution can be found in [76]. There are several other variants of MPC and can

be followed in [77]. In next section, we consider disturbance or noise in our system model;

and discuss corresponding state estimation and control strategies.

2.2 Stochastic Linear System Models

In this section, we consider system models influenced by process noise, which eventually

result in state trajectory as a random process. Since, there is randomness involved in

computing the future states, a measurement based feedback mechanism is essential to better

estimate the future state trajectory. Further, the control algorithms also have to consider the

stochastic nature of system model in order to maintain stability of underling physical system.

In following discussion, we discuss the state estimation and optimal control computation

strategies dealing with stochastic linear system models.

2.2.1 Kalman Filter

Kalman filter is most popular state estimation algorithm for linear dynamical systems. It

is also known as linear quadratic estimator, as it minimizes means square state estima-

tion error. So, first consider a stochastic linear dynamical system observed by a series of

measurements,

xt+1 = Axt +wt

yt = Cxt + vt
(2.16)

where, vector yt ∈ R
m represents observed measurements; C ∈ R

n×m represents measure-

ment matrix; and, vector wt ∈ R
n, vt ∈ R

m represent process and measurement noise, re-

spectively. We assume that the initial state xinit = x0 and noise sequencesw0,w1, · · · ,v0,v1, · · ·

are independent of each other; All random processes are assumed to be second order sta-

tionary processes, with Gaussian distribution and mean E[wt] = E[vt] = 0 and varince
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E[wtw
′] = Q,E[vtv

′] = R. Further, the mean initial state is denoted as E[x0] = x̄0 with

variance E[(x0 − x̄0)(x0 − x̄0)
′] = Σ0. Now, it is easy to notice that the state sequence

{x1, · · · } and observation sequence {y1, · · · } are linear function of x0, Q and R, and thus

we can conclude that they are all jointly Gaussian. Based on the assumption that process

and measurement noise are independent of state sequence {x1, · · · }, we can further conclude

that xt is Markov process, i.e.,

xt|x0,x1, · · ·xt−1 = xt|xt−1

Thus, our dynamical model (2.16) is linear Gauss Markov process, with mean x̄t+1 = Ax̄t =

Atx̄0, and covariance Σx(t + 1) = AΣx(t)A
′ +Q. Next, based on observed measurements

{y1, · · ·yt−1} we want to improves our estimate of state xt. Thus, we specifically focus on

two step estimation problem,

• Estimating the current state of the system xt|t based on the current and past observed

measurements

• Predicting the next state of the system xt+1|t, based on current and past observed

measurements

The standard formula of minimum mean square estimate (Wiener filter) to compute xt|t is,

xt|t = x̄t + Σxt,Yt
Σ−1

Yt

(

Yt − Ȳt

)

(2.17)

where, Σxt,Yt
is cross covariance between xt and Yt; ΣYt

is covariance of Yt; and Yt

denotes set of observed measurements {y1, · · ·yt}. It is easy to notice that the computation

of state estimate xt|t grows with iteration t. Kalman filter based state estimation is an

intelligent method of recursively computing xt|t and xt|t+1, and thus avoiding the growth in

computational complexity. Let us first express xt|t and Σt|t in terms of xt|t−1 and Σt|t−1.

The measurement yt conditioned on past measurements Yt−1 is given by,

yt|Yt−1 = Cxt|Yt−1 + vt|Yt−1 = Cxt|Yt−1 + vt
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as vt and Yt−1 are independent. xt|Yt−1 and yt|Yt−1 are jointly Gaussian with mean and

covariance given by,
[

xt|xt−1

Cxt|xt−1

]

,

[

Σt|t−1 Σt|t−1C
′

CΣt|t−1 CΣt|t−1C
′ +R

]

Next using the standard formula (2.17), we can state

xt|t = xt|t−1 + Σt|t−1C
′
(

CΣt|t−1C
′ +R

)−1
(yt −Cxt|t−1)

Σt|t = Σt|t−1 − Σt|t−1C
′
(

CΣt|t−1C
′ +R

)−1
CΣt|t−1

(2.18)

Equation (2.18) is called measurement update, since it gives updated estimate of xt based

on the measurement yt becoming available. After applying the measurement update, we

can preform time update as,

xt+1|t = xt+1|Yt = Axt|Yt +wt|Yt

= Axt|Yt +wt

= Axt|t

(2.19)

as wt and Yt are independent of each other. The error covariance time update is computed

as,
Σt+1|t = E

[

(xt+1|t − xt+1)(xt+1|t − xt+1)
′
]

= E
[

(Axt|t −Axt −wt)(Axt|t −Axt −wt)
′
]

= AΣt|tA
′ +Q

(2.20)

A more detailed discussion about Kalman filter based state estimation can be found in [78].

Some variants of Kalman filter for linear dynamical system can be followed in [79],[80]. In

next subsection, we discuss control strategies considering randomness in system model.

2.2.2 Linear Quadratic Stochastic Control

In this subsection we extend our analysis on deterministic linear quadratic control to stochas-

tic linear system models. Continuing after state estimation, we assume that the estimated

state is the true state with some finite error covariance. The state estimation error is accom-

modated in process noise for underlying dynamical system model. So, once again consider

a stochastic linear dynamical system,

xt+1 = Axt +But +wt (2.21)
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where, wt ∈ R
n is stationary Gaussian process noise with E[wt] = 0 and E[wtw

′
t] = Q.

Further we assume initial state x0 is is also Gaussian random process independent of noise

wt with mean and variance E[x0] = 0, E[x0x
′
0] = X. We aim to compute the optimal control

input u∗
t such that the following objective function is minimized,

Jt = E

[

∑T−1
t=0 (x′

tQxt + u′
tRut) + x′

TQfxT

]

(2.22)

Notice that because of stochastic system model, we are minimizing expected cost function,

else cost function itself is stochastic. Further, due to stochastic system model, we do do not

consider least square approach for control solution. Instead, we directly discuss dynamic

programming solution for stochastic linear systems.

Dynamic Programming Solution

The value function or cost to go function for (2.22) is defined as,

Vt(xinit) = minut,···uT−1
E

[

∑T−1
τ=0 x

′
τQxτ + u′

τRuτ + xTQfxT

]

s.t. x0 = xinit, xτ+1 = Axτ +Buτ +wτ

(2.23)

Similar to deterministic Linear quadratic regulator problem, the final value function at time

step t is given by VT (x) = x′
TQfxT . Value function at other time steps can be computed

by backward recursion,

Vt(xt) = x′
tQxt +minu [u

′Ru+ E[Vt+1(Axt +Bu+wt)]] (2.24)

for t = T − 1, · · · , 0. Thus, the optimal control action has the form,

u∗
t = argminu [u

′Ru+ E[Vt+1(Axt +Bu+wt)]] (2.25)

Since, this is analytically intractable, let value function is a quadratic function, with form

Vt(xt) = x′
tPtxt + qt,

for t = 0, · · ·T with Pt � 0. Assuming PT = Qf , qT = 0 and value function iteration as

Vt+1(x) = x′Pt+1x+ qt+1, the Bellman recursion is given by,

Vt(xt) =
x′
tQxt +minu {u′Ru+ E [(Axt +Bu+wt)

′Pt(Axt +Bu+wt)] + qt+1}
= x′

tQxt + tr(QPt+1) + qt+1 +minu {u′Ru+ (Axt +Bu)′Pt+1(Axt +Bu)}
(2.26)
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where we represent E[w′
tPt+1wt] = tr(QPt+1). It can be easily noted that, recursion in equa-

tion (2.26) is same as recursion for deterministic LQR with added constant. Thus the optimal

control is linear state feedback given by u∗
t = Ktxt where, Kt = −(B′Pt+1B+R)−1B′Pt+1A

(same as deterministic LQR). Substituting the optimal control in value function iteration,

we get,

Pt = A′Pt+1A−A′Pt+1B (B′Pt+1B+R)−1 B′Pt+1A+Q
qt = qt+1 + tr(QPt+1)

(2.27)

Thus, stochastic LQR is same as deterministic LQR with another running term contributed

by process noise. Further the steady state control solution is also constant linear feedback

solution. More details about stochastic dynamic programming can be found in [75]. In

following subsection, we discuss model predictive control extension for stochastic linear

dynamical system.

2.2.3 Model Predictive Stochastic Control

In this subsection, we extend the discussion of model predictive control solution for linear

deterministic systems to stochastic systems. Similar to deterministic MPC, at each time

step t
min.

∑∞
τ=t l (xt,ut)

s.t. ut ∈ U ,xt ∈ X , τ = t, · · ·∞
xt+1 = Axt +But +wt, τ = t, · · ·∞

(2.28)

Now, as we assume the process noise to of zero mean, the expected state trajectory evolution

is same as of deterministic system model. Thus, considering the quadratic cost function,

and optimizing control solution for horizon t, the general model problem (2.28) transforms

as,
min.

∑t+T
τ=t l

(

x′
t+1Qxt+1 + u′

t+1Rut+1

)

s.t. ut ∈ U ,xt ∈ X , τ = t, · · · t+ T
xt+1 = Axt +But, τ = t, · · · t+ T − 1

(2.29)

Thus, the model predictive control solution for stochastic system is same as control solution

for deterministic system model. For more dentals about model predictive control solution,

interested readers can follow [77]. In next section, we discuss the estimation and control

strategies for nonlinear system models.
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2.3 Deterministic Nonlinear System Model

In this section, we consider nonlinear discrete time system models and discuss control strate-

gies for this scenario. Similar to deterministic linear model case, deterministic nonlinear

state trajectory is computed directly from the system model. So, we directly discuss the

control strategies for nonlinear system model.

2.3.1 Nonlinear Model Predictive Control

Consider the following nonlinear discrete time nonlinear system model,

xt+1 = ft (xt,ut) (2.30)

where, ft() and ht() are the nonlinear functions. Similar to model predictive control for linear

system models, the nonlinear model predictive control problem is solved by formulating an

optimization problem. At each time step t,

min.
∑∞

τ=t l (xt,ut)
s.t. ut ∈ U ,xt ∈ X , τ = t, · · ·∞

xt+1 = ft (xt,ut) , τ = t, · · ·∞
(2.31)

The nonlinear model predictive control problem can reformulated for quadratic cost function;

however due to nonlinearity in system model, (2.31) is in general a non convex problem;

and is generally solved by nonlinear optimization solver. The computational complexity

of solution generally depends on: (1) order of nonlinearity; (2) the horizon length T ; and,

(3) optimization algorithm to solve. In next subsection we formulate an alternate MPC

problem; a suboptimal control solution with a lower computational complexity compared to

generalized nonlinear MPC (2.31).

Linear Time Varying MPC Approximation

Consider the state x0 ∈ X and the input u0 ∈ U ; and x̂0 be the state trajectory obtained

after applying control sequence ut = 0, then the LTV approximation of nonlinear system

model is given by,

xt+1 = At,0xt +Bt,0ut + dt,0 (2.32)
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where, At,0 = ∂f
∂x

∣

∣

x̂t,u0
; Bt,0 = ∂f

∂u

∣

∣

x̂t,u0
; and dt,0 = x̂t+1 − At,0x̂t − Bt,0u0. Equation

(2.32) is first order approximation of system around a nominal state trajectory x̂t, t > 0.

Substituting linear approximation in our nonlinear model predictive control formulation, the

finite horizon linear time varying MPC formulation with quadratic cost function is expressed

as,
min.

∑t+T
τ=t x

′
tQxt + u′

tRut
s.t. ut ∈ U ,xt ∈ X , τ = t, · · ·T

xt+1 = At,0xt +Bt,0ut + dt,0, τ = t, · · ·T
(2.33)

Since, (2.33) is linear optimization problem to solve, the dynamic approach taken in de-

terministic linear system model can now be easily applied. It must be noted that this is

suboptimal approach, one needs to be careful about considering linearization error. In next

section we finally discuss the estimation and control strategies in presence of process noise.

2.4 Stochastic Nonlinear System Model

Similar, to linear system model influenced by process noise, in this section we consider

nonlinear system model in presence of process and measurement noise. We first discuss

state estimation strategies followed by nonlinear control strategies for nonlinear stochastic

system models.

2.4.1 Extended Kalman Filter

Extended Kalman Filter (EKF) is an extension of Kalman filter to a form linearization about

the current state estimates. Over the past several years, EKF has undoubtedly been the most

widely used nonlinear estimation technique. When it does not works, the underlying system

model is severely nonlinear system or noise variances are relatively large; for such system

models higher order EKFs can be exploited by including the higher order Taylors series

terms. This improves the performance of EKF at the price of much higher mathematical

and computational complexity. First consider the nonlinear system and measurement model,

xt+1 = ft (xt,ut,wt)
yt = ht (xt,vt)

(2.34)
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where, ft() and ht() are the nonlinear functions; and other variables have notion similar to

subsection (). First computing the Jacobian matrices for the nonlinear system model,

At =
∂ft
x

∣

∣

xt|t
Wt =

∂ft
w

∣

∣

xt|t
(2.35)

The time update of state estimate and error covariance are expressed as,

xt+1|t = ft
(

xt|t,ut,0
)

Pt+1|t = AtPt|tA
′ +WtQW′

t.
(2.36)

Once again, computing the Jacobian matrices for nonlinear measurement model,

Ct =
∂ht
x

∣

∣

xt+1|t
Vt =

∂ht
v

∣

∣

xt+1|t
(2.37)

The measurement update of state estimate and error covariance is expressed as,

xt+1|t+1 = xt+1|t +Kt+1

(

yt+1 = ht(xt+1|t,0)
)

Pt+1|t+1 = (I−Kt+1Ct+1)Pt+1|t
(2.38)

where, Kt+1 = Pt+1|tC
′
t+1

(

Ct+1Pt+1|tC
′
t+1 +VRV′

)−1
is called the Kalman gain.

EKF extends the capability of Kalman filter for nonlinear system models, but EKF has

following drawbacks: (1) Linearization can produce unstable filter performance if the time

sampling step is not sufficiently small (the local linearity is not valid); (2) The composition

of Jacobian matrix is non trivial and in some applications leads to unstable performance;

(3) Sufficiently small time step intervals require high sampling rate and high computational

complexity; (4) Hardware implementation is difficult and and tuning is not possible; (5)

EKF using higher order approximations can be very computationally complicated. Other

variants of EKF can be followed in [81],[82]. In next subsection, we discuss an alternate

state estimation technique for nonlinear systems, which aims in reducing estimation error.

2.4.2 Unscented Kalman Filter

Nonlinear filtering requires a complete description of the conditional probability density

function; and to define it requires an unbounded number of sample points to approximate

the density function. As mentioned earlier, EKF is based on approximating the nonlinear
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function or transformation (up to first order terms of Taylor series) instead of probability

density function; therefore if higher order terms in Taylor series are dominant, EKF will

result in poor filter performance. One approach in nonlinear filtering is particle filter,

essentially an extension of Monte Carlo method; as it uses thousands of sample points to

fulfill this process, particle filter is rarely used due to its computational burden.

Unscented Kalman filter (UKF) is recent approach in nonlinear filtering with reduced

computational complexity, and exhibits less estimation error in many application. It is es-

sentially based on two important principles: (1) perform a nonlinear transformation on to

a single point; (2) select a set of points in state space (called sigma points) whose sample

probability density function can represent the true density function of state vectors. There-

fore, based on the information from these sigma points, we can approximate the statistical

properties of the true nonlinear transformation.

Consider the same model represented in equation (2.34); denoting κ as a tuning factor,

the time update of state estimates and error covariance is computed by first approximating

the n dimensional state vector xt (with mean xt|t and covariance Pt|t) in terms of (2n+ 1)

weighted samples or sigma points,

xt,0 = xt|t
xt,i = xt|t + x̃i, i = 1, · · · 2n
x̃i =

(√

(n+ κ)Pt|t

)′

i
, i = 1, · · ·n

x̃n+i = −
(√

(n+ κ)Pt|t

)′

i
, i = 1, · · ·n

(2.39)

where,
(√

(n+ κ)Pt|t

)′

i
is the ith row or column of the matrix square root of (n + κ)Pt|t.

Next, (2n+ 1) weight coefficients are computed,

W0 = κ
n+κ

Wi = 1
2(n+κ)

, i = 1, · · · 2n. (2.40)

Initiating each sigma point through the process model, xt+1,i = f(xt,i,ut,0), the apriori

mean and covariance are computed as,

xt+1|t =
∑2n

i=0Wixt+1,i

Pt+1|t = Q+
∑2n

i=1Wi

(

xt+1,i − xt+1|t

) (

xt+1,i − xt+1|t

)′
.

(2.41)
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The measurement update of state estimate and error covariance is computed by first initial-

izing the observation sample points, i.e., yt,i = ht(xt+1,i,0). Then, predicted observation is

calculated as ỹt+1 =
∑2n

i=0Wiyt+1,i. Since, measurement noise is AWGN with covariance R,

the covariance of predicted measurement is given by,

Py = R+
2n
∑

i=1

Wi

(

yt+1,i − ˜yt+1|t

)

(xt+1,i − t+ 1|t)′ (2.42)

Similarly, the cross correlation is computed as,

Pxy =
2n
∑

i=1

Wi

(

xt+1,i − xt+1|t

)

(xt+1,i − t+ 1|t)′ (2.43)

Finally, the posterior state estimates and error covariance is computed using Kalman filter

equations as,
Kt+1 = PxyP

−1
y

xt+1|t+1 = xt+1|t +Kt+1 (yt+1 − ỹt+1)
Pt+1|t+1 = Pt+1|t −Kt+1PyK

′
t+1

(2.44)

In following section we discuss control strategy for nonlinear stochastic system models.

2.4.3 Stochastic Nonlinear Model Predictive Control

Consider the following nonlinear discrete time nonlinear system model,

xt+1 = ft (xt,ut,wt) (2.45)

where, wt is the process noise influencing the nonlinear system model. Similar to nonlinear

model predictive control for deterministic models, the nonlinear model predictive control

problem is solved by formulating an optimization problem. At each time step t,

min.
∑∞

τ=t l (xt,ut)
s.t. ut ∈ U ,xt ∈ X , τ = t, · · ·∞

xt+1 = ft (xt,ut,wt) , τ = t, · · ·∞
(2.46)

Similar, to non convexity problem of deterministic nonlinear model predictive control, in

next subsection we formulate an alternate stochastic linear time varying model predictive

control; with a quadratic cost function and propose a suboptimal control solution with a

lower computational complexity compared to generalized nonlinear MPC (2.46).
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Stochastic Linear Time Varying MPC Approximation

Consider the state x0 ∈ X and the input u0 ∈ U ; and x̂0 be the state trajectory obtained af-

ter applying control sequence ut = 0, then the stochastic linear time varying approximation

of nonlinear system model is given by,

xt+1 = At,0xt +Bt,0ut +Wt,0wt + dt,0 (2.47)

where, At,0 =
∂f
∂x

∣

∣

x̂t,u0
; Bt,0 =

∂f
∂u

∣

∣

x̂t,u0
; Wt,0 =

∂f
∂w

∣

∣

x̂t,u0
; and dt,0 = x̂t+1 −At,0x̂t−Bt,0u0 −

Wt,0wt. Equation (2.47) is first order approximation of system around a nominal state

trajectory x̂t, t > 0. Substituting linear approximation in our nonlinear model predictive

control formulation, the finite horizon linear time varying MPC formulation with quadratic

cost function is expressed as,

min.
∑t+T

τ=t x
′
tQxt + u′

tRut
s.t. ut ∈ U ,xt ∈ X , τ = t, · · ·T

xt+1 = At,0xt +Bt,0ut +Wt,0wtdt,0, τ = t, · · ·T
(2.48)

Now, if we consider that process noise is a zero mean process, then the nonlinear stochas-

tic control reduces similar to control solution for nonlinear deterministic system. More

discussion and variants in nonlinear model predictive control solution can be found in [83].

2.5 Summary

In this chapter we discussed estimation and control strategies for various discrete time

system models. Firstly, linear system model in both deterministic and stochastic scenario are

considered, and respective control strategies like linear quadratic control, model predictive

control are presented. For state estimation in stochastic linear system model, Kalman filter is

presented. In later sections, nonlinear discrete system models in deterministic and stochastic

scenario is considered; and control strategy based on nonlinear model predictive control is

presented. State estimation based on extended Kalman filter and unscented Kalman filter

is presented for nonlinear stochastic system models.
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Chapter 3

Estimation with Intermittent Sensor
Measurements

In this chapter, we analyze the stochastic stability of state estimation process in spatially

distributed cyber physical systems. We first present the system framework where, Kalman

filter is considered for state estimation of stochastic linear dynamical system. The states

of underlying dynamical system are spatially distributed over physical space; and sensors

are arbitrarily deployed over the area to jointly observe the complete system. In this sys-

tem setup, there are two possible measurement communication strategies: (1) gathered

measurements: sensor measurements are collected first and then sent to estimation over

a communication link; (2) Dispersed measurements: sensors directly communicate their

measurements to central estimation unit over individual communication links. Since, we

are considering large dynamical systems with states distributed over the physical space,

dispersed measurements is more appealing feasible implementation strategy. However, the

communication links in both these strategies are susceptible to random failures, results in:

(1) random measurement losses; and (2) partial observation updates in Kalman filter.

We analyze the stability of the state estimation process in this stochastic scenario by:

(1) characterizing the statistical properties of error covariance iteration; (2) and then estab-

lishing the necessary and sufficient network conditions under which the steady state error

covariance matrix is bounded. In later sections of this chapter, we exploit the possible exis-

40



tence of spatial correlation among states in filtering process; and characterize its impact on

critical measurement loss probability. We further extend our analysis by considering corre-

lated loss in communication links. The overall analysis presented in this chapter quantifies

the trade-off between state estimation accuracy and the quality of underlying communica-

tion network. Further, analysis demonstrates that by exploiting spatial correlation among

states, a higher degree of information loss (or lower network quality) can be tolerated to

achieve a certain estimation accuracy. Since estimation accuracy directly impacts the sta-

bility of control operation, this analysis is critical in ensuring safe and efficient operation of

a cyber-physical system.

3.1 Estimation Process Framework

In this section we discuss the state estimation framework for spatially distributed cyber

physical system, where measurements are communicated over a lossy network. More specif-

ically, we consider the systems where: (1) system states are distributed in physical space;

(2) sensors are arbitrarily deployed such that they jointly sense the complete system; (3)

a network infrastructure is used for communicating measurements to a central estimation

unit; (4) states may be spatially correlated, and (5) communication links connecting sensors

to estimation unit are susceptible to possibly correlated failures. These characteristics (1)-

(5) listed above can impact the accuracy of estimated states and can result in an unstable

estimation process.

Figure 3.1 presents a conceptual view of the considered system, where nodes (with a

state associated) are distributed all over a physical area. Arbitrarily located sensors jointly

observe the complete system. Each sensor makes a measurement which is related to the

nodes/states in its neighborhood. The observation space of neighboring sensors typically

overlaps, resulting in redundancy in state information. These sensor measurements are sent

to a central estimation unit over lossy networks resulting in measurements getting delayed

or lost due to packet drops. Thus, at any state estimation step, received measurements may
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Figure 3.1: State estimation of spatially distributed physical system over a network

not be enough for observing all states of the system. We denote this system configuration as

dispersed measurement scenario, which is completely different from gathered measurement

scenario where measurements are collected and then sent to estimation unit over a commu-

nication link. In the analysis shown in later sections, we assume delayed measurements can

not be used for state estimation and are considered equivalent to lost measurements.

Figure 3.1 also shows an example footprint of physical area where states exhibit spatial

correlation. In addition to temporal correlation, many practical physical systems exhibit

spatial correlation between the nodes/states. For example, distributed solar/wind genera-

tion in a power distribution systems typically are correlated across space. This results in

correlated voltages in neighboring nodes, which are essentially the state elements of power

distribution system. Similarly, because of flood/drought in rivers in irrigation networks;

localized traffic congestion in city traffic networks, the states of these physical systems may

also be spatially correlated. In later sections of this chapter, we show how spatial correlation
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can be exploited to estimate lost measurements from received measurements. This results

in redefining the received measurement vector comprising of actual received measurements,

and reconstructed measurements; essentially modifying measurement updates in estimation

process. Thus, we present how we can achieve better estimation stability by exploiting

spatial correlation among states.

Additionally, considering the arbitrary general nature of communication link between

the sensor and central state estimation unit, the communication link failure can be either

independent or correlated to each other. However, in practice the communication links are

susceptible to correlated failure as illustrated in the Figure 3.1. This occurs mostly in cases

where there is local network congestion resulting in high probability of loosing measurements

from an area. Additionally, if measurements are routed through a common router that is

heavily loaded, measurements in the corresponding communication links will experience

similar quality of service. Thus, it is important to consider correlated measurement loss

in practice. There is still a need to understand how spatial correlation between states and

correlated packet drops in communication links affect estimation accuracy under a dispersed

measurement scenario.

Kalman filter based state estimation and its variations have found wide acceptance in

many application areas including networked control systems. In following sections we present

Kalman filter for state estimation of system framework presented in this section. Later,

we discuss the stability of the process by characterizing the statistical properties of error

covariance iteration, followed by establishing the necessary and sufficient network conditions

for ensuring boundedness of state estimation error at steady state.

3.2 Kalman filter over Intermittent Observations

Minimum mean square error (MMSE) based Kalman filter (KF) is a popular state estimation

approach for practical dynamical systems. In this section we present the system model

and the problem setup for Kalman filter based state estimation when measurements are
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communicated over a lossy network. We essentially present, the instability attributed in

estimation process under packets drops, with the assumption that underlying system is

completely observable under lossless network.

3.2.1 System Model

Consider a discrete time linear dynamical system model,

xt+1 = Axt +wt

yt = Cxt + vt (3.1)

where, xt ∈ R
n is the state vector; A ∈ R

n×n is state transition matrix; yt ∈ R
m is the

measurement vector; C ∈ R
m×n is the measurement matrix; and, wt ∈ R

n and vt ∈ R
m are

the corresponding process and measurement noise. We first consider the scenario without

spatial correlation among states i.e., E[xtx
′
t] = In. In later sections, we extend our analysis

by including spatial correlation among states and using it to estimate lost measurements.

We assume both wt and vt are Gaussian vectors with zero mean and covariances Q � 0

and R ≻ 0, respectively. Additionally, we assume wt and vt are independent of each other.

The elements of measurement vector yt ∈ {yt,1,yt,2, · · ·yt,k} consists of measurements

from multiple sensors received over a communication network. Thus, there are k measure-

ment sensors, sensing the complete state information. Further, the sensor measurement yt,j

is local in nature, capturing information about state elements located in its observation

space j. The observation space of neighboring sensors normally overlap, resulting in state

information being captured by more than one sensor. These measurements received over

the network, may be lost or delayed. In our system model, we consider network impact

in form of packet drops, and assume that the delayed packets are similar to lost packets.

Further we assume that measurements are packetized in single packet, i.e., lost packets are
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equivalent to lost measurements. The measurement model of (3.1) can now be restated as,











yt,1
yt,2
...

yt,k











=











γt,1 (Ct,1xt + vt,1)
γt,2 (Ct,2xt + vt,2)

...
...
...

γt,k (Ct,kxt + vt,k)











(3.2)

where, yt,j ∈ R
mj is the measurement received from sensor j; Ct,j ∈ R

mj×n and vt,j ∈ R
mj

are the corresponding measurement matrix and measurement noise, respectively; and γt,j

represents the binary random variable taking values 1 for successfully received packet and

0 for dropped packet. For practical physical systems, the random variables indicating mea-

surement loss γt,1, · · · , γt,k can be either correlated or independent of each other. In ei-

ther case, we assume that the joint probability mass function Pr (γt,1, · · · , γt,k)is known.

In our initial analysis, we consider independent γt,1, · · · , γt,k, i.e. Pr (γt,1, · · · , γt,k) =

Pr (γt,1) · · ·Pr (γt,k), followed by extending the analysis for general correlated loss scenario.

3.2.2 Problem Formulation

Let γt = [γt,1, γt,2, · · · , γt,k]′, γt0 = {γ0, γ1, · · · , γt}, and yt0 = [y0,y1, · · · ,yt]′. Then following

KF approach, we define

x̂t|t = E[xt|yt0, γt0],
Pt|t = E[(xt − x̂t|t)(xt − x̂t|t)

′|yt0, γt0],
x̂t+1|t = E[xt+1|yt0, γt0],
Pt+1|t = E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)

′|yt0, γt0],
(3.3)

where, xt, x̂t|t and x̂t+1|t denotes true, estimated and predicted state vector; and Pt|t and

Pt+1|t are the corresponding posterior and a priori error covariance matrix. The prediction

stage of KF is independent of the observation process, and is expressed as,

xt+1|t = Ax̂t|t,

Pt+1|t = APt|tA
′ +Q. (3.4)

The measurement update stage depends on random variable γt,1, γt,2, · · · , γt,k and is thus

stochastic in nature. When γt,1 = γt,2 = · · · = γt,k = 1 then the system is completely
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{γt,1, γt,2, γt,3, γt,4} αλ1,λ2,λ3,λ4
0, 0, 0, 0 (1− λ1)(1− λ2)(1− λ3)(1− λ4)

0, 0, 0, 1 (1− λ1)(1− λ2)(1− λ3)λ4

0, 0, 1, 0 (1− λ1)(1− λ2)λ3(1− λ4)
...

...

0, 0, 1, 1 (1− λ1)(1− λ2)λ3λ4

0, 1, 1, 0 (1− λ1)λ2λ3(1− λ4)
...

...

1, 1, 1, 1 λ1λ2λ3λ4

Table 3.1: Possible measurement sets for 4 sensor network

observable and the measurement update can be expressed as,

x̂t+1/t+1 = x̂t+1/t +Pt+1/tC
′[CPt+1/tC

′ +R]−1(yt+1 −Cx̂t+1,t),

Pt+1/t+1 = Pt+1/ −Pt+1/tC
′[CPt+1/tC

′ +R]−1CPt+1/t+1 (3.5)

When γt,1 = γt,2 = · · · = γt,m = 0, then the system is completely unobservable and the

measurement update is same as prediction stage (3.4), i.e. xt+1|t+1 = xt+1|t; and Pt+1|t+1 =

Pt+1|t. Apart from being completely observable and unobservable, there are other possible

scenarios. Specifically, depending on received set of measurements, the system may be

observable or unobservable. In these scenarios, the sensor measurements with packet drops

are assumed to have infinite noise variance, and the measurement update is only based on

successfully received sensor measurements. Let Ht and Rt denote the measurement matrix

and the measurement noise vector for the received measurement set, then the measurement

update for stochastic packet drops can be expressed as,

x̂t+1|t+1 = x̂t+1|t +Pt+1|tH
′
t[HtPt+1|tH

′
t +Rt]

−1(yt+1 = Htx̂t+1,t),

Pt+1/t+1 = Pt+1/ −Pt+1/tH
′
t[HtPt+1/tH

′
t +Rt]

−1HtPt+1/t+1 (3.6)

Substituting Pt|t from (3.6) in expression of Pt+1|t (3.4), and denoting Pt = Pt+1|t, the

recursive state error covariance prediction can be expressed as,

Pt+1 = APtA
′ +Q−APtH

′
t[HtPtH

′
t +Rt]

−1HtPtA
′
t (3.7)
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The stability of Kalman filter depends on convergence of error covariance matrix Pt to some

finite matrix. In case of ideal communication network with no packet drops, the hypothesis

of stabilizability of pair (A,Q), and detectability of the pair (A,C) ensures convergence

of Pt to unique value from any initial conditions [84]. However, because of random packet

drops, we no longer have unique deterministic error covariance matrix in the steady state.

Further it can be noticed that the received measurement set is random and there are 2k

possible measurement sets. In our analysis we consider packet drops as Bernoulli random

variable with Pr(γt,j = 1) = λj as probability of successfully receiving a packet from sensor

j. Thus, we can compute probabilities for all 2k possible measurement sets. For example, if

total number of sensors is 4, then possible set of received measurements with their respective

probabilities αλ is shown in table (3.2.2). Our goal is to determine the critical rates for packet

drops from individual sensors, sufficient to bound the estimation error to a desired value. In

next section, we focus on the statistical properties of the Kalman filter in presence of these

partial observation losses.

3.3 Stability Analysis: Statistical Properties

It was observed in section 3.2.2 that the error covariance update equation (3.7) is function

of measurement matrix Ht which depends on random packet drops. Thus, the error covari-

ance matrix propagation along the time {Pt}∞t=0 is a random process for any given starting

point P0. This section focuses on statistical convergence properties of {Pt}∞t=0, yielding to

stability analysis of state estimation error. Since Pt is random process, we are considering

convergence in mean i.e. E[Pt+1] = E[E[Pt+1 |Pt]] ≤ ∞ as t→ ∞. Further, it can be noted

that we consider two expectation operations: (1) as error covariance is itself stochastic the

outer expectation taken over Pt; (2) and inner expectation over random packet drops at

given iteration t, i.e. over γt,1, γt,2, · · · , γt,k. We define E[Pt+1|Pt], as modified algebraic

Riccati equation with a short hand notation E[Pt+1|Pt] = gα(X) expressed as,

gα(X) = AXA′ +Q−
∑2k−1

i=1 αiAXH′
i[HiXH′

i +Ri]
−1HiXA′

t
(3.8)
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where, αi = αλ1,··· ,λk is the probability of receiving ith set of measurements. Next, we define

an auxiliary function whose properties are closely related to gα(X). Let

φ(K1,K2, · · · ,K2k−1,X) = α0(AXA′ +Q) +
∑2k−1

i=1 αi (FiXF′
i +Vi) (3.9)

where, α0 = (1−∑2k−1
i=1 αi); Fi = A+KiHi; Vi = Q+KiRiK′

i; andX � 0. This equation in-

tuitively is a balance between various measurement update scenarios (FiXF′
i +Vi) and not

receiving any measurement (AXA′ +Q); with the balancing weights α0, · · · , α2k − 1. Ob-

serve that, FiXF′
i+Vi is quadratic function of Ki; further one can verify (A+Kx

iCi)XC′
i+

Kx
iRi = 0; thus, argminKi

FiXF′
i +Vi is KX

i = −AXH′
i (HiXH′

i +Ri)
−1. These observa-

tions further quantify our observations as,

gα(X) = φ(KX
1 ,KX

2 , · · · ,KX
2k−1

,X) � min .K1,··· ,K2k−1
φ(K1, · · · ,K2k−1,X) (3.10)

Thus from (3.10), the auxiliary function φ(· · · ) acts as an upper bound to gα(X). Next, we

present some useful properties of gα(X), which will allow us to bound the steady state error

covariance matrix limt→∞E[Pt]. The proofs of the following lemmas appear in appendix A.

Lemma 3.1. gα(X) is concave function in X, for X � 0. Thus, by Jensen’s inequality

E[gα(X)] � gα(E[X]).

The concave nature of function gα(X) helps us in establishing an upper bound on E[Pt+1]

as a function of E[Pt].

Lemma 3.2. gα(X) is monotonously nondecreasing function of X. Thus if, if 0 � X � Y,

then gα(X) � gα(Y).

This monotonous nondecreasing property helps us in proving the convergence of recursion

Pt+1 = gα(Pt). Thus, if Xt+1 = gα(Xt) and Yt+1 = gα(Yt), then initial conditions X0 �

Y0 � 0 ⇒ Xt � Yt for all iterations t.

Lemma 3.3. Fixing packet drop rate for all sensor measurements except for one sensor j,

such that λ1j ≤ λ2j , then for corresponding α1 and α2, gα1(X) � gα2(X)
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This property intuitively explains that regular sensor measurements will better stabilize

the estimation process. Thus, if arrival probabilities of sensor measurements increases, the

underlying system is better estimated. In other words, the convergence of Pt is faster as

the measurement receiving rate increased. This lemma eventually helps us in determining

instability region for the recursion E[Pt] = gλ(Pt).

Before, discussing other properties, we define another auxiliary function that captures

the linear part of φ(K1, · · · ,K2k−1,X). Let

L(X) = α0AXA′ +
2k−1
∑

i=1

αiFiXF′
i (3.11)

It can be easily observed that L(X) is linear function of X and due to X � 0, L(X) � 0.

Furthermore, we can identify auxiliary function φ(K1, · · · ,K2k−1,X) as an affine function

of X, with φ(K1, · · · ,K2k−1,X) = L(X) + V , where V = α0Q +
∑2k−1

i=1 αiVi. Notice, since

Q � 0 and Vi � 0, V � 0.

Lemma 3.4. Let there exists a bounded solution of L(X), such that Y � L(Y), then, (1)

∀ W � 0, limt→∞L(W) = 0; (2) For V ≥ 0, Yt+1 = L(Yt) + V. Thus, for any arbitrary

initial condition Y0, Yt is bounded.

This property gives a condition that the recursion of linear auxiliary function L(X)

converges to 0, which in turn leads to convergence of recursion of affine auxiliary function

Yt+1 = L(Yt) + T for bounded initial condition Y0.

Lemma 3.5. If there exists some K̄1, · · · , K̄2k−1, and P̄ ≻ 0, such that P̄ ≻ φ(K̄1, · · · , K̄2k−1, P̄),

then for any arbitrary initial condition P̄0 � 0, P̄ = gtα(P̄0) is bounded.

This lemma establishes the condition for the recursion of P̄t+1 = gλ(P̄t) to be bounded

for any arbitrary initial condition P̄0. In the following section, we use above properties to

establish the conditions for convergence of recursion gλ(X).

In following subsection we use above properties of gα(X), to analyze the conditions for

convergence of error covariance matrix.
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3.3.1 Convergence conditions

It can be observed that, Lemma 3.5 establishes conditions for boundedness of auxiliary

function, which further ensures boundedness of error covariance matrix. We formally put

these conditions in form of following theorem, (proof follow in appendix A)

Theorem 3.1. Let there exists a bound X ≻ φ(K1, · · · , K2k−1,P) for X � 0, then (1)

limt→∞Xt = limt→∞gα (X0) = X, for any starting X0 � 0; (2) converging solution X is

unique.

This theorem proves the convergence of Pt+1 = gα(Pt) under some given conditions. It

also shows the uniqueness of solution when it converges. Next theorem establishes existence

of stability region boundary such that the expected error covariance becomes unbounded if

packet drop rates are beyond the specified critical values. Next theorem establishes existence

of stability region boundary such that the expected error covariance becomes unbounded if

packet drop rates are beyond the specified critical values.

Theorem 3.2. Given a stable system i.e. matrix pair (A,Q) and (A,C) are controllable

and observable, then ∃ 0 ≤ {λc1, · · · , λck} ≤ 1 such that limt→∞E[Xt] = ∞ if all sensor

packet drop probabilities are at critical rate except one sensor j, i.e. 0 ≤ λj ≤ λcj.

In general, we can not explicitly compute the critical probabilities of successful trans-

mission, but we can compute both and upper and lower bounds on {λc,1, · · · , λc,k}. Now, as

we have established conditions for existence of converging solution, in following section we

analyze the lower and upper bound on converging solution, along with corresponding lower

and upper bound on critical measurement drop rates.

3.4 Bounds on Critical Measurement Loss

The stability of state estimation error depends on convergence of (3.7),(3.8), which in turn

depended on probability of measurement drop rates. Further due to randomness of packet
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drops in received measurement set, solving for bounded error covariance at steady state is

extremely difficult. In the following analysis, we compute upper and lower bounds on con-

verging solution followed by computation of corresponding upper and lower bound on critical

measurement drop rates. This results in a concatenated k-dimensional regions (assuming k

independent sensors) where: (1) inside inner region, the system is definitely unstable; (2)

outside outer region, the system is definitely stable; (3) the in between region system is

indeterminate. To proceed further in our analysis, we first compare the considered system

model with the measurement scenario studied in [57].

3.4.1 Gathered / Dispersed Measurements Analogy

S

S

S

S

SEU

s

s

s

s

SEU

(a) (b)

S - sensor
SEU - state estimation unit

Figure 3.2: Measurement transmission strategies: (a) gathered information (b) dispersed
information

Consider two strategies of communicating measurements to state estimation unit: (1)

measurements from multiple sensors are first gathered and then sent over the communication

network, as shown in Figure 3.2(a); (2) dispersed measurements are individually sent over

the communication network as in Figure 3.2(b). For ideal loss free communication network,

the observed information is same in both the scenarios as received set of measurements

is identical. Thus, the Fisher information matrix (FIM) of state vector x in observed
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measurements y1, · · · ,yk is the same and corresponds to,

J (x) = −E

[

∂

∂x
log (f(y1, · · · ,yk|x))

]2

,

where, f(.|.) is conditional density. Following the discussion in [85], the recursive equation

for FIM can be expressed as,

Jt+1 = Q−1 −Q−1A
(

Jt +A′Q−1A+C′R−1C
)−1

AQ−1 (3.12)

Further, Kalman filter being optimal for linear dynamic system under known Gaussian

noise covariance, the error covariance recursive equation (3.5) and FIM recursive equation

(3.12) converge to same matrix, i.e., limt→∞Pt = J −1
t Cramer-Rao lower bound (CRLB). In

the case of lossy communication network, information for state estimation unit is reduced.

However, as effective information required to observe the states depends on dynamics of

the underlying system, the Kalman filter can still be stable. Thus, every system can afford

a critical amount of information loss before becoming unobservable. This critical informa-

tion loss can be accommodated in both the communication strategies shown in Figure 3.2.

Since, the Riccati equation for error covariance in these two strategies are different, the

corresponding recursive equations for FIM in gathered and dispersed measurement scenario

can be re-derived as,

(Gathered) J s
t+1 = Q−1 −Q−1A

(

J s
t +A′Q−1A+ λsC

′R−1C
)−1

AQ−1

(Dispersed) Jms
t+1 = Q−1 −Q−1A

(

Jms
t +A′Q−1A+

∑2k−1
i=1 αiH

′
iR−1

i Hi

)−1
AQ−1

(3.13)

With the underlying system dynamics being same, the trajectories of recursive equations in

(3.13) will converges to same FIM in both communication strategies for the same amount

of loss of critical information loss. Additionally, Kalman filter being optimal in both these

communication strategies, the corresponding Riccati equations for error covariance will also

converge to same matrix, limt→∞Ps
t = Pms

t = (J t
s )

−1 = (Jms
t )−1. In the following analysis

we use the above intuition to compute bounds on critical measurement drop rates.
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3.4.2 Lower bound on packet drop probabilities

The error covariance iteration for gathered measurement exchange is expressed as,

Pt+1 = APtA
′ +Q− λAPtC (CPtC

′ +R)
−1

CPtA
′ (3.14)

At every iteration, the error covariance can be in either converging or diverging state with λ

Div Cov1-

1-

Figure 3.3: Error covariance convergence and divergence for gathered measurements

being the transition probability, as shown in Figure 3.3. The lower bound on critical packet

drop rate (or transition probability) is determined by computing the minimum arrival rate

which will keep the diverging state bounded. Thus, the lower bound on probability of packet

drop in gathered measurement scenario is given by, 1 − λcs,lb = max[1, 1
ρ2
A

], where ρA is the

maximum eigen value of A [57]. Further, lower bound on error covariance at convergence

can be obtained by solving,

Ps = (1− λ̂cs,lb)APsA
′ +Q (3.15)

where, λ̂cs,lb > λcs,lb. It should be noted that λcs,lb is the probability of Ps getting unbounded.

So we need to solve (3.15), at probability slightly higher then λcs,lb.

Now at steady state, the error covariance iteration for the considered spatially distributed

system is expressed as,

P = APA′ +Q−∑2k−1
i=1 αiAPH′

i (HiPH′
i +Ri)

−1 HiPA
′ (3.16)

Let C =

[

H
G

]

where, H is the received set of sensor measurement matrix, and G is the

corresponding set of lost measurements. Figure 3.4, represents an equivalence to gathered
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measurement case, with Hi contributing to convergence and Gi contributing to divergence

for ith measurement set. Now expanding C′ [CPC′ +R]−1 C we get,

C′ [CPC′ +R]−1 C =
[

H′ G′
]

[[

H
G

]

P
[

H′ G′
]

+

[

RH RHG

RGH RG

]]−1 [
H
G

]

[

H′ G′
]

[

HPH′ +RH HPG′ +RHG

GPH′ +RGH GPG′ +RG

]−1 [
H
G

]

=
[

H′ G′
]

[

A B
C D

] [

H
G

]

= H′AH+G′CH+H′BG+G′DG

(3.17)

Further, representing HPH′ + RH = K , HPG′ + RHG = L, GPH′ + RGH = M , and

GPG′ +RG = N , the expressions for block matrix inverses can be stated as,

A = K−1 +K−1L (N −MK−1L)
−1

MK−1

B = −K−1L (N −MK−1L)
−1

C = −N−1M (K − LN−1M )
−1

D = N−1 + N−1M (K − LN−1M )
−1

LN−1

Rearranging the terms in (3.17) we get,

H′ (HPH′ +RH)
−1 H = C′ (CPC′ +R)−1 C−F (H,G,P) (3.18)

where,

F (H,G,P) = H′K−1L (N −MK−1L)
−1

(MK−1H−G)

+G′N−1M (K − LN−1M )
−1

(LN−1G−H) +G′N−1G

Finally, substitutingH′ (HXH′ +RH)
−1 H in (3.16), the error covariance iteration for multi

sensor case in steady state can be expressed as,

P = APA′ +Q−
[

∑2k−1
i=1 αi

]

APC′ (CPC′ +R)−1 CPA′

+
∑2k−2

i=1 αiAPF (Hi,Gi,P)PA′
(3.19)
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The corresponding auxiliary function similar to (3.9) can be expressed as,

φ(K,X) = α0 (AXA′ +Q) + (1− α0) (FXF′ +V)

+
∑2k−2

i=1 αiAXF (Hi,Gi,X)XA′
(3.20)

where, F = A+KC; and V = Q+KRK′. Next, we present a lemma providing a universal

lower bound on steady state error covariance P (proof follows in appendix A). Note that we

are interchanging terms gα(X) with P.

Lemma 3.6. For any X � 0, and R � 0,

gα(X) � α0AXAT +Q+
∑2k−2

i=1 αiAXF (Hi,Gi,X)XA′ (3.21)

Consider the two recursive sequences Xt+1 = gα(Xt), and X̂t+1 = α0AXAT

+Q+
∑2k−2

i=1 αiAXF (Hi,Gi,X)XA′ with same initial condition, then at time step t, Xt ≻

X̂t. Thus, if X̂t+1 diverges, then Xt+1 = gα(Xt) also diverges. This allows us to find the

lower bounds on critical sensor probabilities {λc1, · · · , λck} that lead to convergence of Xt.

Lemma 3.7. Since, X � 0 is a random matrix,

α0AE[X]A′ +Q+
∑2k−2

i=1 αiAE [XF (Hi,Gi,X)X]A′

� E[gα(X)] � gα(E[X])
(3.22)

(proof follows in appendix A). This property combines concavity property of lemma

3.1 and bounded condition of lemma 3.6 and lead to both an upper and lower bound on

E[gα(X)].

Using Lemma 3.7, we are now able to compute both upper and lower bound on expected

error covariance matrix. The lower bound can be obtained by solving,

P = α0APA′ +
2k−2
∑

i=1

αiAPF (Hi,Gi,P)PA′ +Q (3.23)
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Comparing to gathered measurement case solution (3.15), let Ps = QsDsQ′
s be the eigen

decomposition of converging solution, then

Ps = A(1− λ)PsA
′ +Q

= AQs ((1− λ)Ds)Q′
sA

′ +Q (3.24)

As established in section 3.2.1, both gathered measurement scenario and dispersed mea-

surement scenario will converge to same solution. Then comparing (3.23) and (3.24) we

get,
AQs(1− λ)DsQ′

sA
′ =

AQs

[

α0Ds +
∑2k−2

i=1 αiDsQ′
sF (Hi,Gi,Ps)QsDs

]

Q′
sA

′ (3.25)

To compute α0, · · · , α2k−2 (thus, λc1,lb, · · · , λclb,k) satisfying equation (3.25), we propose so-

lution by formulating an optimization problem,

min . trace(S)

st.























(1− λ) = α0 + ds(1)
∑2k−2

i=1 αiq
′
s(1)F (Hi,Gi,Ps)qs(1) + s1

(1− λ) = α0 + ds(2)
∑2k−2

i=1 αiq
′
s(2)F (Hi,Gi,Ps)qs(2) + s2

...
... · · · ...

(1− λ) = α0 + ds(n)
∑2k−2

i=1 αiq
′
s(n)F (Hi,Gi,Ps)qs(n) + sn

(3.26)

where, λ > λcs,lb; ds(i) is the ith diagonal element of Ds; q
′
s(i) is the ith eigen vector; and

S = diag(s1, · · · , sn) is the slack matrix. Further, adding constraint S � 0, assures that

the converging solution of dispersed measurement scenario is always bounded below the

converging solution of gathered measurement scenario. It is easy to notice that, the for-

mulation (3.26) is a minimization problem with linear constraints in probability variables

α0, · · · , α2m−2 and slack variables s1, · · · , sn. Since,
∑2k−1

i=0 αi = 1 and α2k−1 6= 0 (prob-

ability of receiving all measurements), placing an additional linear inequality constraint
∑2k−2

i=0 αi < 1, will optimally solve for variables α0, · · · , α2k−2. Thereafter, the lower bound

on individual critical sensor probabilities λc1,lb, · · · , λck,lb can be computed, as probabilities

of all possible loss scenarios is now known.
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3.4.3 Upper bound on packet drop probabilities

The upper bound on critical packet λcs,ub drop rate in gathered information case is obtained

by solving following optimization problem [57],

λcs,ub = argmin.λΨλ (Y,Z) ≻ 0,
st. 0 � Y � I

(3.27)

where, Ψλ (Y,Z) =





Y
√
λ (YA+ ZC)

√
1− λYA√

λ (A′Y +C′Z′) Y 0√
1− λA′Y 0 Y



 .

This a quasi-convex optimization problem in variables (λ,Y,Z) and solution can be obtained

by iterating LMI feasibility problems and using bisection of variable λ.The upper bound on

error covariance Pub is obtained by solving following semidefinite problem,

argmax.P trace(P)

st.











[

APA′ +Q−P
√
λAPC′

√
λCA′ CPC′ +R

]

� 0

P � 0

(3.28)

with λ = λcs,ub. Above optimization problem is essentially a Schur compliment of following

expression,

P � APA′ +Q− λcs,ubAXC (CXC′ +R)
−1

CXA′ (3.29)

Again following our discussion in section 3.2.1, if Pub is the solution of optimization problem

(3.29), then the corresponding equation for our considered problem can be expressed as,

Pub � APubA
′ +Q−

∑2k−1
i=1 αiAPubH

′
i[HiPubH

′
i +Ri]

−1HiPubA
′ (3.30)

Thus, for (3.29) and (3.30) to converge to same solution following condition must be satisfied.

λcs,ubQ′
sC

′ (CXC′ +R)−1 CQs =
∑2k−1

i=1 αiQ′
sH

′
i[HiPubH

′
i +Ri]

−1HiQs (3.31)

where, Qs is the unitary matrix corresponding to eigen decomposition of Pub. To com-

pute α1, · · · , α2m−1 (thus, λ
c
1,ub, · · · , λcub,k) satisfying equation (3.31), we propose solution by
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formulating an optimization problem,

min . trace(S)

st.























λcs,ubq
′
s(1)G(C,Pub)qs(1) =

∑2k−1
i=1 αiq

′
s(1)G(Hi,Pub)qs(1) + s(1)

λcs,ubq
′
s(2)G(C,Pub)qs(2) =

∑2k−1
i=1 αiq

′
s(2)G(Hi,Pub)qs(2) + s(2)

... · · · · · · ...

λcs,ubq
′
s(n)G(C,Pub)qs(n) =

∑2k−1
i=1 αiq

′
s(n)G(Hi,Pub)qs(n) + s(n)

(3.32)

where, G(C,X) = C′ (CXC′ +R)−1 C and G(Hi,X) = H′
i[HiXH′

i + Ri]
−1Hi; qs() is the

eigen vector; and S − diag(s(1), · · · , s(n)) is slack matrix. Again, adding additional con-

straint S � 0 ensures that the converging solution of dispersed measurements is bounded

below the converging solution of gathered measurement case. Also, we notice that the for-

mulation (3.32) is a minimization problem with linear constraints in probability variables

α1, · · · , α2k−1 and slack variables s1, · · · , sn. Further placing a linear inequality constraint
∑2m−1

i=1 αi < 1 (as
∑2k−2

i=0 αi < 1 and α0 6= 0), α1, · · · , α2k−1 can be optimally computed.

Thereafter, the upper bound on individual critical sensor probabilities λc1,ub, · · · , λck,ub can

be computed, as probabilities of all possible loss scenarios is now known. In next section, we

analyze the impact of exploiting spatial correlation in state estimation process on critical

measurement loss rate of individual dispersed sensors.

3.5 Estimation of Spatial Correlation States

Let the states of spatially distributed system be spatially correlated with a stationary co-

variance matrix, given by E
[

(x− E[x]) (x− E[x])′
]

= Σxx. Further, let yH and yG be the

vectors of received and lost measurements at any filtering instant t, such that the original

sensed measurement vector y = [yH ;yG]. Based on spatial correlation of states Σxx, we

aim to estimate the lost measurement vector from the received measurement vector. Since,

we are considering linear dynamic system, the best linear minimum mean square estimate

(Wiener filter) of lost measurements is given by, ŷG = ΣGHΣ
−1
HHyH , where ΣGH is cross

covariance between lost and received measurements and ΣHH is covariance of received mea-

surement vector [63]. The cross covariance between received and lost measurement vector
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can be computed as,

ΣGH = E
[

(yG − E[yG]) (yH − E[yH ])
′]

= E
[

(Gx+ vG −GE[x]) (Hx+ vH −HE[x])′
]

= E
[

G (x− E[x]) (x− E[x])′ H′
]

+ E [vGv
′
H ]

= GΣxxH
′ +RGH

(3.33)

The final expression comes from assumption that the state x and measurement noise v are

independent of each other. Additionally, as we assume measurement noise as zero mean

random process, the mean of lost and received measurement vector is given by, E[yH ] =

HE[x], and E[yG] = GE[x]. Similarly, the covariance of received measurements is expressed

as, ΣHH = HΣxxH
′ + RH . Next, the estimate of lost measurement vector ŷG can be

introduced in our packet drop analysis as the actual lost measurement vector with different

measurement noise v̄G, i.e.,

ŷG = ΣGHΣ
−1
HH (Hx+ vH)

= Ḡx+ v̄G
(3.34)

where, Ḡ represents only those rows of G which combine states having spatial correlation

with states in H of received measurement vector. Thus, even if one state in the row is

spatially uncorrelated and can’t be estimated from received measurement vector, then we

consider the entire measurement corresponding to that row being lost. The new noise v̄G

can be effectively expressed as,

v̄G =
(

ΣGHΣ
−1
HHH− Ḡ

)

x+ΣGHΣ
−1
HHvH (3.35)

Further, the covariance of v̄G can be computed as,

E
[

(v̄G − E[v̄G]) (v̄G − E[v̄G])
′] =

(

ΣGHΣ
−1
HHH− Ḡ

)

Σxx

(

ΣGHΣ
−1
HHH− Ḡ

)′

+
(

ΣGHΣ
−1
HH

)

RH

(

ΣGHΣ
−1
HH

)′
(3.36)

Next, let ȳH be the final vector of measurements which are actually received and the ones

which can be estimated because of spatial correlation i.e., ȳH = [yH ; ŷG]; let ȳG be the final

vector of lost measurements i.e., those which are lost and can not be estimated. The new

upper and lower bound on critical probability of receiving measurements is computed by
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redefining ȳH and ȳG for all 2k − 1 possible scenarios of loosing measurements, and then

following the analysis of section III.B.2 and section III.B.3. It should be further noted that

if the physical system is spatially correlated over most of the physical area, then most of

the lost measurements can be estimated from the received measurements; In other words,

Ĝ is empty for most of the measurement receiving scenarios. This adversely affects the

computation of lower bound on individual sensor critical measurement loss rates based on

(3.26), as most of corresponding loss scenario probabilities αi can not be computed. One way

of circumventing this problem is by understanding that this scenario of either loosing all the

measurements or recovering and receiving all measurements is equivalent to the gathered

measurement scenario. Thus, it is expected that in such scenarios, the upper and lower

bound on individual sensor critical loss probability will get closer to upper and lower bound

on critical loss probability of gathered measurement case.

3.6 Estimation over Correlated Communication Link

Failures

In this subsection, we relax our assumption of independence of binary random variables

{γt,1, γt,2, · · · , γt,k}; where γt,j takes value 1 for successfully receiving and 0 for loosing the

measurement from sensor j at any time t (in equation (3.2)). Let Z := {γzt,1, γzt,2, · · · , γzt,kz}

represents the set of communication links effected by local congestion resulting in correlated

measurement loss. For a large cyber physical system, there can be several such sets of

communication links exhibiting correlated statistics, with communication link in one set

being independent of communication link in other sets. In the following analysis, we assume

that the joint probability mass function Pr(γzt,1, γ
z
t,2, · · · , γzt,kz) for a given set Z is known and

is stationary. Now, the probability of successfully receiving a measurement from any sensor

i, λi = Pr(γzi = 1) is function of probability of successfully receiving the measurement from
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the sensor j. Thus,

λ1 = Pr(γ1 = 1)
λ2 = Pr (γz2 = 1|γz1 = 1)λ1 + Pr (γz2 = 1|γz1 = 0) (1− λ1)
λ3 = Pr (γz3 = 1|γz1 = 1)λ1 + Pr (γz3 = 1|γz1 = 0) (1− λ1)
· · · · · ·
λkz = Pr

(

γzkz = 1|γz1 = 1
)

λ1 + Pr
(

γzkz = 1|γz1 = 0
)

(1− λ1)

(3.37)

where, Pr ((γj = 1)|(γ1 = 1)) is the conditional probability of successfully receiving the mea-

surement from sensor j, given measurement from sensor 1 is successfully received. Above

relationship between probabilities (3.37) for every correlated set Z can be added as con-

straints in the formulations (3.26) and (3.32). Once again, the solution to the optimization

problems will yield in computing the lower and upper bound on critical measurement re-

ceiving probabilities of individual sensors. In following section, we present some system

examples illustrating theory developed in this paper.

3.7 System Examples

This section validates the analytical results from previous sections by finding stability re-

gions (defined by lower and upper bound on measurement loss rates) for several example

systems. The upper and lower bound on expected error covariance matrix is computed

first from the gathered measurement scenario, and then measurement loss is distributed

to dispersed measurement scenario by solving the optimization problems (3.26) and (3.32).

In the numerical examples of generalized system, we also present performance trade-off in

estimation accuracy and quality of underlying network defined by measurement loss rate.

3.7.1 Decoupled system with no overlap in observation space

Consider a simple system of two nodes with: state transition matrix A =

[

1.25 0
0 1.5

]

; and

two dispersed sensors with C1 = [1 0] and C2 = [0 1] as their measurement matrix. We

assume noise covariance matrix Q = 20I2 and R = 2.5I2.

First, considering gathered measurement scenario, the critical measurement loss prob-

ability 1 − λcs has lower bound as λcs ≥ λcs,lb = (1 − 1/1.52) ≈ 0.56, and upper bound
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Figure 3.5: Stability region - Decoupled System

as λcs ≤ λcs,ub ≈ 0.56. Both upper and lower bounds coincide as C = [C1;C2] is invert-

ible [58]. Now, considering dispersed measurement scenario, the stability region defined by

critical measurement loss rates 1 − λc1 and 1 − λc2 is shown in Figure 4.3 (shown. by ∗).

Both upper and lower bounds coincide, with λc1 = λc2 = 0.56. However, it is easy to no-

tice that this system is completely decoupled and each sensor directly measures the states.

The estimation process is essentially of two independent scalar system with critical rates

λc1 > 1 − 1/1.252 ≈ 0.36 and λc1 > 1 − 1/1.252 ≈ 0.55 (shown, by o in Figure 4.3). Thus,

bounds computed using (3.26) and (3.32) are relaxed; so it is prudent to first decouple the

system and then compute the bounds.
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3.7.2 Coupled system with completely redundant measurements

Consider another simple system of two nodes with: state transition matrix A =

[

1.25 0
1 1.1

]

;

and two dispersed sensors with C1 =

[

1 0
0 1

]

and C2 =

[

1 0
1 1

]

as their measurement matrix.

We assume noise covariance matrix Q = 20I2 and R = 2.5I2. It is easy to notice that both

sensor measurements are self-sufficient in sensing the system, and their critical measurement

receiving probability can be individually computed as λc1 = λc2 = 1− 1/1.252 ≈ 0.36. Now,

if the measurements are jointly received for state estimation, we expect a reduction in the

individual critical rate.
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Figure 3.6: Stability region - Completely redundant measurements

Figure 4.4 shows stability region when state estimation is performed when both the sensor

measurements are communicated for state estimation. It can be observed that both lower

and upper bound solutions coincide and critical probability of receiving the measurements

is reduces to λc1 = λc2 ≈ 0.24. thus, at the cost of deploying two sensors for overlapping
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measurements, we can afford lower quality of underlying communication network.

3.7.3 Generalized system

o

nodes
sensor
footprint

Figure 3.7: Radial system with overlap in sensor observation space

Next consider a radial cyber physical system system sensed along overlapping sensor

measurements as shown in Figure 4.5. There are 8 nodes sensed by 3 overlapping sensor

measurements. We assume noise covariance matrix Q = 20I8 and R = 2.5I2 for each sensor

measurement. Following are the considered state transition and measurement matrices.

A =

























1.1 0.2 0 0 0 0 0 0
0.2 0.3 0.3 0 0 0 0 0
0 0.3 0.5 0.2 0 0 0 0
0 0 0.2 1.1 0.3 0 0 0
0 0 0 0.3 0.2 0.4 0 0
0 0 0 0 0.4 0.4 0.3 0
0 0 0 0 0 0.3 0.5 0.3
0 0 0 0 0 0 0.3 1.1

























C1 =

[

1 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0

]

C2 =

[

0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0

]

C3 =

[

0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1

]
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Figure 3.8: Critical measurement receiving probability - lower bound

First considering gathered measurement scenario, the lower bound on critical probability

of successfully receiving the measurements is given by λcs,lb = (1 − 1/ρ2) ≈ 0.39, where

maximum eigen value of state transition matrix ρ = 1.28. Similarly, the upper bound on

λcs can be obtained by solving (3.27), and is computed as λcs,ub = 0.42. The corresponding

lower and upper bound on converging error covariance can be computed by solving (3.15) and

(3.29); and bounds on critical probabilities of each sensor can be computed by solving (3.26)

and (3.32). Repeating above steps for λcs,lb > 0.39 → 1, and λcs,ub > 0.42 → 1 we can compute

the trade off in state estimation accuracy with quality of underlying communication network.

Figure 4.6 and 4.7, shows the lower and upper bound on critical probabilities of each sensor

vs trace of converging error covariance matrix. Now, depending on the required accuracy in

estimated states for stability of control operation, the corresponding requirement in quality

of network infrastructure can be easily inferred from Figures 4.6 and 4.7. For example, if the

demanded trace(P) at steady state is 300, then for λ1 < 0.27, λ2 < 0.12, λ3 < 0.31 system
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Figure 3.9: Critical measurement receiving probability - upper bound

is definitely unstable, while for λ1 > 0.70, λ2 > 0.37, λ3 > 0.69 is definitely stable. Thus,

this analysis plays a crucial role in safe and efficient operation of cyber physical systems.

3.7.4 Generalized system exploiting spatial correlation

Let us assume that because of physical effects there is spatial correlation among the states

of the system (defined in section V.C), with the following covariance matrix,

Σxx =

























1.0 0.5 0.1 0 0 0 0 0
0.5 1.0 0.5 0.1 0 0 0 0
0.1 0.5 1.0 0.5 0 0 0 0
0 0.1 0.5 1.0 0 0 0 0
0 0 0 0 1.0 0.5 0.1 0
0 0 0 0 0.5 1.0 0.5 0.1
0 0 0 0 0.1 0.5 1.0 0.5
0 0 0 0 0 0.1 0.5 1.0

























It can be noticed from structure of Σxx, that spatial correlation is separated in two regions

{x1, x2.x3, x4} and {x5, x6.x7, x8}. Thus, if measurement from sensor 1 is only received,
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then only first row of measurement from sensor 2 can be estimated by exploiting spatial

correlation. However, if measurement from sensor 2 is only received, then measurements

from both sensor 1 and 3 can be estimated. Thus, considering all such scenarios we redefine

the received measurement vector for all measurement loss combinations. Further, system

being spatially correlated for most of the physical space we only compute the upper bound

on critical critical probabilities of receiving measurements (3.32).
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Figure 3.10: Exploiting spatial correlation in critical measurement receiving probability -
upper bound

Figure 3.10 shows the upper bound on critical probabilities of receiving sensor measure-

ments vs trace of converging error covariance matrix. It can be observed that because of

spatial correlation critical probability of receiving measurement decreases for sensor 1 and

3, with slight increase for sensor 2. The reason for this behavior is due to the critical prob-

abilities varying as a group, i.e., if there is a change in critical probability of one sensor,

then there is an appropriate change in critical probabilities of other sensors such that the
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overall system states are observable. In the system without spatial correlation, more value

is placed on sensor 1 and 3 which are able to completely observe the system, while less

value is given to sensor 2 which acts as redundant measurement. However, after considering

spatial correlation sensor 2 itself is capable of observing the whole system; resulting in an

increase in its value in terms of critical probability, and corresponding decrease in the prob-

abilities for sensors 1 and 3. Also, because of spatial correlation over most of the physical

area, the system is equivalent to either loosing all the measurements or receiving all the

measurements. This behavior is almost equivalent to gathered measurement scenario, as

critical probabilities of all the sensors are getting closer to 0.42 (upper bound for gathered

measurement case). Thus, we can further conclude that the lower bound on individual

sensor measurement receiving probability will be closer to 0.39 (lower bound for gathered

measurement case).

3.7.5 Generalized system with correlated packet drops

Let us again consider the system defined in section V.C, with correlated measurement loss

from sensor 1 and 2, and measurement loss from sensor 3 being independent of loss from

sensor 1 and 2. Further, let random variables indicating successful arrival of measurements

from sensor 1 and 2 have a joint probability mass function given by,

Pr(γ1, γ2) =
γ1\γ2 0 1
0 0.4 0.1
1 0.1 0.4

The equivalent functional dependence on probability of successful reception of measurements

between sensors 1 and 2 can be expressed as,

λc2 = λc1Pr(γ2 = 1|γ1 = 1) + (1− λc1)Pr(γ2 = 1|γ1 = 0)

where, conditional probabilities can be computed from joint probability mass function

(Pr((γ2 = 1)|(γ1 = 1)) = 0.8, and Pr(γ2 = 1|γ1 = 0 = 0.2). The above functional de-

pendence is placed as an equality constraint in our optimization formulation for computing

upper and lower bound on critical probabilities of packet drop rates (3.26) and (3.32).

68



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

λ
1,lb
c , λ

2,lb
c , λ

3,lb
c  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>

tr
a

c
e

(P
lb

) 
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

>

 

 

λc
1,lb

λc
2,lb

λc
3,lb

Figure 3.11: Critical measurement receiving probability with correlated λ1 and λ2 - lower
bound

The lower and upper bound on critical packet drop rate vs trace of converging error

covariance matrix, under this scenario is shown in Figure 3.11 and 3.12 respectively. It

can be observed from both the Figures that correlated measurement loss increases critical

probability of receiving measurement of sensor 2. This eventually reduces critical probability

of receiving measurement from sensor 3, as critical probabilities varying with each other in

a group. Thus, correlation among measurement loss can be substituted as a constraint in

our formulation, and new bounds can be computed.

3.8 Summary

In this chapter, we address the Kalman filter (KF) based state estimation for spatially

distributed cyber physical system in presence of random measurement loss. The measure-

ments are taken by dispersed sensors, and are encoded in packets to be sent over a lossy
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Figure 3.12: Critical measurement receiving probability with correlated λ1 and λ2 - upper
bound

network. Since, random measurement loss results in stochastic error covariance iteration,

we establish the lower and upper bounds on expected steady state error covariance as func-

tion of probability of receiving measurement from individual sensors. We use information

theoretic concepts to establish the analogy in convergence with gathered measurement sce-

nario. Using this analogy, we compute upper and lower bounds on critical loss probability

of individual sensors, by formulating a optimization problem. The feasibility solution dis-

tributes the measurement loss of gathered measurement scenario to loss in dispersed sensor

measurements. The analysis is further enhanced by exploiting spatially correlation between

states in estimating lost measurements from received measurements. This eventually results

in redefining new set of measurements for all possible measurement loss configurations, fol-

lowed by conclusive analysis that a higher degree of information loss or poor network quality

can be tolerated to archive a certain estimation accuracy. The analysis also accommodates
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correlated link failure scenario by placing constraints of joint probability mass function in

computation of lower and upper bound on critical measurement loss rates.
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Chapter 4

Control with Intermittent Actuator
Inputs

In this chapter, we analyze the Lyapunov stability of stochastic linear quadratic controller

over a network in spatially distributed cyber-physical systems. We first present the system

framework where, linear quadratic controller is considered for computing control solution of

stochastic linear dynamical system. Similar to chapter 3, the states of underlying dynam-

ical system are spatially distributed over the physical area; and actuators are arbitrarily

deployed over the physical space to jointly control the complete system. In this system

setup, there are two possible strategies of communicating control actions to actuators: (1)

Unified control: control actions are collectively communicated to actuators over a single

communication link; (2) dispersed control: control actions are communicated to actuators

over individual communication links. Since, we are considering control solution for large

dynamical solution, dispersed actuators is more appealing feasible implementation strat-

egy. However, the communication links in both these strategies are susceptible to random

failures, resulting in: (1) random actuator loss; (2) partial control action implementation.

We analyze the stability of the linear quadratic regulator in this stochastic scenario

by: (1) characterizing the statistical properties of stochastic Lyapunov function iteration;

(2) and, then establishing the necessary and sufficient network conditions under which the

steady state Lyapunov function is bounded. These conditions essentially establish existence
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of critical probabilities of successful control input transmission from control unit to individ-

ual actuators; followed by computation of upper and lower bound on corresponding critical

probabilities. The overall analysis quantifies the trade-off between stability and the qual-

ity of underlying communication network. Thus, our analysis on impact of communication

network on stability of control operation is critical in ensuring safe and efficient operation

of underlying cyber-physical system.

4.1 Control System Framework

In this section, we discuss the control system framework for spatially distributed cyber

physical system, where control actions are communicated to actuators over lossy network.

More specifically, we consider the system where: (1) system state are spatially distributed

in physical space; (2) actuators are arbitrarily deployed such that they jointly control the

complete system; (3) and, a network infrastructure is used for communicating control action

to actuators. These characteristics (2)-(3) can impact the stability of control process.

Figure 4.1 presents a conceptual view of the considered system, where nodes (with a state

element associated) are distributed all over a physical area. The sensors for measurements

are not shown as we assume that underlying state estimation process is stable and the error

in state estimates is accommodated as process noise in the controller design. Therefore,

we are specifically consider the communication of computed control action to actuators

over individual communication links. Compared to conventional system models where there

is one communication link between actuator and controller (denoted as unified actuator

case), we denote the scenario in Figure 4.1 as dispersed actuator case. The control space of

neighboring actuators typically overlaps, resulting in redundancy in control implementation.

Further, due to network characteristics, actuator inputs are susceptible to delays, reordering

and drops. At any control step, control implementation may not be enough for controlling

all states of the system. Thus, use of communication network with its attractive advantages,

can eventually adversely effect the stability of control process. In this analysis, we assume
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Figure 4.1: Control of spatially distributed physical system over a network

delayed actuator actions are not applicable for control and are considered equivalent to lost

actions.

Linear quadratic regulator (LQR) based control solution and its variations have found

wide acceptance in many application areas including networked control systems. In the

following sections we present LQR based control for controlling the system framework pre-

sented in this section. Later, we will discuss the stability of the process by characterizing

the statistical properties of stochastic Lyapunov function iteration, followed by establishing

necessary and sufficient network conditions for ensuring boundedness of Lyapunov function

at steady state.
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4.2 Linear Quadratic Controller over Intermittent Ac-

tuator Inputs

Linear quadratic controller (LQR) is a popular control computation strategy for practical

dynamical systems. In this section, we consider stability of a discrete time linear system

model under packet dropping in multiple controller to actuator communication links (Figure

4.1),

xt+1 = Axt + γt,a1B1ut,1 + γt,a2B2ut,2 · · · γt,akBkut,k +wt

where, γt,a1 · · · γt,ak are the random variables denoting packet drops in the corresponding

communication links. We assume that the state estimation process is stable and the error

in state estimates can be accommodated as process noise in controller design. Thus, con-

troller stability under random packet drops in forward direction is analyzed independently

of the state estimation process. In this section we essentially present, the instability at-

tributed in control process under packet drops, with the assumption that underlying system

is completely controllable in loss less network scenario.

4.2.1 System Model

Consider a discrete time linear dynamic system model,

xt+1 = Axt +But +wt (4.1)

where, xt ∈ R
n is the state vector; A ∈ R

n×n is state transition matrix; ut ∈ R
m is the

control vector; B ∈ R
n×m is the control matrix; and, wt ∈ R

n is the process noise. We

assume wt is a Gaussian random process with zero mean and covariance W � 0.

We consider control action ut is implemented by k dispersed actuators. Thus, the el-

ements of control vector ut ∈ {ut,1,ut,2, · · ·ut,k} consists of control actions for multiple

actuators communicated over a communication network. These control inputs transmitted

over the network, may be lost or delayed. In our system model, we consider network impact

in form of packet drops, and assume that the delayed packets are similar to lost packets.
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Further we assume that control action for a actuator at time step t is packetized in single

packet, i.e., lost packets are equivalent to lost control action for corresponding actuator.

The system model of (4.1) can now be restated as,

xt+1 = Axt + [B1,B2, · · · ,Bk]











γt,1ut,1
γt,2ut,2

...
γt,kyt,k











+wt (4.2)

where, ut,j ∈ R
mj is the control action for actuator j; Bt,j ∈ R

n×mj is the corresponding

control matrix for actuator j; and γt,j represents the binary random variable taking values

1 for successfully transmitted packet and 0 for dropped packet.

4.2.2 Problem Formulation

Since, the underlying dynamic system is stochastic, consider an expected linear quadratic

cost function,

J = E

[

limN→∞
1

N

N−1
∑

t=0

(x′
tQxt + u′

tRut)

]

(4.3)

where, Q ∈ R
n×n and R ∈ R

m×m are the positive definite weight matrices. Similarly, for

stability analysis we consider stochastic Lyapunov function Vt, the expected value of which

is defined as,

E[Vt] = x′
tPtxt + qt (4.4)

where, Pt is a symmetric positive definite matrix; and qt is the contribution of process noise.

At a discrete time instant t+ 1, the evolution of equation (4.4) can be expressed as,

E[Vt+1] = x′
t+1Ptxt+1 + qt

= x′
tPt+1xt + qt+1

(4.5)

where, Pt+1 and qt+1 denotes the respective recursion of Pt and qt over time. For dynamic

system defined in (4.1) to be Lyapunov stable, the iterations of E[Vt] must converge, implying

the sequence of {Pt} and qt must also converge. In the following analysis, we develop

recursive equations for Pt and qt considering the system model defined in (4.1) and stochastic
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linear quadratic regulator (SLQR) control strategy. We define mean of Lyapunov function

(4.5) as the cost to go function and the optimal control input can then be expressed as,

u∗
t = minut

[u′
tRut + E[Vt+1]]

= minut

[

u′
tRut + (Axt +But)

′ Pt (Axt +But) + qt
]

.
(4.6)

u∗
t can be computed by setting the derivative of (4.6) with respect to ut to zero,

u∗
t = (R+B′PtB)

−1
B′PtAxt.

Note that expression for u∗
t is similar to optimal control input obtained from solving

Hamilton-Jacobi Bellman equation, with Pt being the matrices computed from backward

recursion [86]. Next consider, the implication of this control input being applied over a lossy

network, such that system follows dynamic model presented in equation (4.2). Notice, that

matrix R is the weight over control input, and for multiple actuators the quadratic control

cost can be expressed,

[

ut,1,ut,2, · · ·ut,k
]











R11 . · · · .
. R22 · · · .
...

...
... · · · ... ...

. . · · · Rkk





















ut,1
ut,2
...

ut,k











where, Rii is the weight matrix corresponding to control actuator i. Now, if control in-

put for actuator i is lost (i.e., γt,i = 0), the apriori effect on quadratic control cost can

be accommodated by considering corresponding weight matrix to be infinity, such that

Rii → ∞,⇒ ut,i → 0. Let for simplicity of discussion, consider ut to be implemented

by two actuators i.e. ut = [ut,1,ut,2]
′. Further, let γt,1 = 1 and γt,2 = 0, i.e., only first

actuator control action is successfully transmitted while second actuator action is lost. The

corresponding weight matrix is defined as,

R̃ =

[

R11 R12

R21 σ2
2I

]

= R+

[

0 0
0 σ2

2I−R22

]

where, σ2
2 is weight for second actuator action. The corresponding optimal control input is

stated as,

ũ∗
t =

(

R̃+B′PtB
)−1

B′PtAxt.
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and effect on state xt at time t + 1 is Bũ∗
t = B

(

R̃+B′PtB
)−1

B′PtAxt. Notice that the

factor B
(

R̃+B′PtB
)−1

B′ can be simplified as,

B
(

R̃+B′PtB
)−1

B′ = B

(

R+

[

0 0
0 σ2

2I−R22

]

+B′PtB

)−1

B′

=(a) B

(

R+

[

0 0
0 σ2

2I

]

+B′PtB

)−1

B′

=(b) B

[

M11 −M12M−1
22 M21 0

0 0

]

B′

=(c) B

[

(R11 +B′PtB)−1 0
0 0

]

B′

=(d) B (R11 +B′PtB)−1 B′

where, (R+B′PtB)−1 =

[

M11 M12

M21 M22

]

(4.7)

and (a) follows since σ2
2 → ∞, (b) is outcome of low rank adjustment of matrix inversion

[87] and σ2
2 → ∞, (c) is due to the alternate formula of inversion of a partitioned matrix

[87], and (d) is outcome of multiplication of partitioned matrices. So, effectively the state

is controlled as, B1 (R1 +B′
1PtB1)

−1 B′
1PtAxt.

Thus, for general k actuator implementation the control matrix B is random with its

realization depending on which actuators successfully receive the control actions; thus there

are 2k possible control matrices. Representing control matrix at time t by Ht,i, such that ith

combination of actuator successfully receive the control actions, the dynamical state model

can be expressed as

xt+1 = Axt −
2k−1
∑

i=1

δt,iHt,i

(

Rt,i +H′
t,iPtHt,i

)−1
H′
t,iPtAxt +wt (4.8)

where, δt,i is binary random variable taking variable taking 1 if ith combination of control

inputs get applied, and 0 if that combination is not applied; and Rt,i is corresponding weight

matrix. Substituting (4.8) in Lyapunov function (4.5) we get,

Vt+1 =
(

Axt −
∑2k−1

i=1 δt,iHt,i

(

Rt,i +H′
t,iPtHt,i

)−1
H′
t,iPtAxt +wt

)′

Pt

(

Axt −
∑2k−1

i=1 δt,iHt,i

(

Rt,i +H′
t,iPtHt,i

)−1
H′
t,iPtAxt +wt

)

+ qt
(4.9)
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The Lyapunov function in (4.9) is stochastic in terms of two random process: (1) process

noise, and (2) packet drops. We first take the expectation with respect to process noise wt,

E[Vt+1] = x′
t

(

A′PtA−
∑2k−1

i=1 δt,1A
′PtHt,i

(

Rt,i +H′
t,iPtHt,i

)−1

(

2I−H′
t,iPtHt,i

(

Rt,i +H′
t,iPtHt,i

)−1
)

H′
t,iPtA

)

xt

+E [w′
tPtwt] + qt

(4.10)

where, the cross product terms are set to zero as δt,iδt,j = 1 only if i = j at any iteration t.

Comparing, equation (4.10) with (4.5), we express the recursive equations for Pt and qt as,

Pt+1 = A′PtA−∑2k−1
i=1 δt,iA

′PtHt,i

(

Rt,i +H′
t,iPtHt,i

)−1

F(Ht,i,Pt)H
′
t,iPtA

qt+1 = qt + tr (WPt)

(4.11)

where, F(Ht,i,Pt) := 2I−H′
t,1PtHt,1

(

Rt,i +H′
t,iPtHt,i

)−1
, and tr (WPt) = E [w′

tPtwt]. It

can be observed that the recursion of Pt is also stochastic, and its convergence properties

depends on the random variables δt,i which are effectively determined by γt,1, γt,2, · · · , γt,k.

If γt,1 = γt,2 = · · · = γt,k = 0 ∀ t, i.e., there is no control input, then Pt diverges as A

is unstable, limt→∞Pt → ∞. Additionally, as Ft,i � 0 ∀ Pt � 0, if γt,1 = γt,2 = · · · =

γt,k = 1 ∀ t, i.e., there is no control input loss over the network then the recursion of

Pt converges. Now, if Pt converges then qt also converges and the system is interpreted as

Lyapunov stable. In our analysis we consider packet drops as Bernoulli random variable with

Pr(γt,j = 1) = λj as probability of successfully transmitting a packet to actuator j. Thus,

we can compute probabilities for all 2k possible control action sets. For example, if total

number of actuators is 4, then possible set of control actions getting successfully transmitted

with their respective probabilities αλ is shown in table (4.2.2). Our goal is to determine

the critical rates for packet drops to individual actuators, sufficient to bound expectation of

Lyapunov function to a desired value. In the following analysis we characterize the statistical

properties of recursion of Pt in order to establish the conditions for its convergence.
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{γt,1, γt,2, γt,3, γt,4} αλ1,λ2,λ3,λ4
0, 0, 0, 0 (1− λ1)(1− λ2)(1− λ3)(1− λ4)

0, 0, 0, 1 (1− λ1)(1− λ2)(1− λ3)λ4
...

...

1, 1, 1, 1 λ1λ2λ3λ4

Table 4.1: Possible control input sets for 4 actuator network

4.3 Stochastic Lyapunov Function: Stability Proper-

ties

It was observed in section 2 that the Pt update equation (4.11) is function of control ma-

trix Ht,i which depends on random packet drops. Thus, the error Pt iteration along the

time {Pt}∞t=0 is a random process for any given starting point P0. This section focuses

on statistical convergence properties of {Pt}∞t=0, yielding to Lyapunov stability analysis

of underlying system. Since Pt is random process, we consider convergence in mean i.e.

E[Pt+1] = E[E[Pt+1 |Pt]] ≤ ∞ as t → ∞. Further, it can be noted that we consider two

expectation operations: (1) the outer expectation over stochastic nature of Pt−1; (2) and

inner expectation over random packet drops at given iteration t, i.e. over γt,1, γt,2, · · · , γt,k.

We define E[Pt+1|Pt], as modified algebraic Riccati equation (MARE) with a short hand

notation E[Pt+1|Pt] = gα(X) expressed as,

gα(X) = A′XA−∑2k−1
i=1 αiA

′XHi(HiXH′
i +Ri)

−1F(Hi,Ri,X)H′
iXA (4.12)

where, αi = αλ1,··· ,λk is the probability of receiving ith set of measurements. Next, we define

an auxiliary function φ(K1,K2, · · · ,K2k−1,X) whose properties are closely related to gλ(X).

φ(K1, · · · ,K2k−1,X) = α0A
′XA+

∑2k−1
i=1 αi (F

′
iXFi +Ti) (4.13)

where, α0 = (1−∑2k−1
i=1 αi); Fi = A +HiK′

i; Vi = KiRiK′
i; and X � 0. By differentiating

the quadratic form of F′
iXFi +Ti with respect to Ki and setting it to zero, the KX

i which

minimizes the quadratic form is given by Ki = KX

i = −A′XHi (Ri +H′
iXHi)

−1. Fur-

ther, substituting KX

i in auxiliary function (4.13) results in MARE equation (4.12). These
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observations further quantify our observations as,

gα(X) = φ(KX
1 , · · · ,KX

2k−1
,X) � min .K1,··· ,K2k−1

φ(K1, · · · ,K2k−1,X) (4.14)

Thus from (4.14), the auxiliary function φ(· · · ) acts as an upper bound to gα(X). Now, we

present some useful lemmas as properties of the function gλ(X), whereX � 0 for establishing

the convergence conditions of equation (4.12). The proofs of the lemmas appear in Appendix

B.

Lemma 4.1. The MARE equation (4.12) is concave function in X, for X � 0. Thus, by

Jensen’s inequality E[gλ(X)] � gλ(E[X]).

The concave nature of function gλ(X) helps us in establishing an upper bound on E[Pt+1]

as a function of E[Pt].

Lemma 4.2. gλ(X) is monotonously nondecreasing function of X. Thus, if 0 � X � Y,

then gλ(X) � gλ(Y).

This monotonous nondecreasing property helps us in proving the convergence of recursion

Pt+1 = gλ(Pt). Thus, if Xt+1 = gλ(Xt) and Yt+1 = gλ(Yt), then initial conditions X0 �

Y0 � 0 ⇒ Xt � Yt for all iterations t.

Lemma 4.3. Fixing packet drop rate for all actuator communication links except for one

actuator j, such that λ1j ≤ λ2j , then for corresponding α1 and α2, gα1(X) � gα2(X)

This property intuitively explains that regular control inputs will better stabilize the

system. Thus, if arrival probabilities of control input increases, the underlying system is

better controlled. In other words, the convergence of Pt is faster as the control input rate is

increased. This lemma eventually helps us in determining instability region for the recursion

E[Pt] = gλ(Pt).

Let B =
[

H G
]

where, H is the portion of control matrix denoting successfully trans-

mitted control inputs, and G is the corresponding portion of lost control inputs. Now
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expanding B (R+B′XB)−1 F(B,R,X)B′ we get,

B (R+B′XB)−1 F(B,R,X)B′ =

Hi (RHi +H′
iXHi)

−1 F(Hi,RHi,X)H′
i + Z (Hi,RHi,Gi,RGi,X)

(4.15)

where, expression for Z (Hi,RHi,Gi,RGi,X) is derived in appendix B. Finally, substituting

(4.15) in (4.12), the gα(X) iteration is expressed as,

gα(X) = A′XA−
[

∑2k−1
i=1 αi

]

A′XB (R+B′XB′)−1 F(Hi,Ri,X)B′XA

+
∑2k−2

i=1 αiA
′XZ (Hi,RHi,Gi,RGi,X)XA

(4.16)

The corresponding auxiliary function similar to (4.13) can be expressed as,

φ(K,X) = α0 (A
′XA) + (1− α0) (F

′XF+T)

+
∑2k−2

i=1 αiA
′XZ (Hi,RHi,Gi,RGi,X)XA

(4.17)

Next, we present a lemmas where we exploit above discussion for establishing convergence

condition on recursion of gα(X) .

Lemma 4.4. For any X � 0, and R � 0,

gα(X) � α0A
′XA+

∑2k−2
i=1 αiA

′XZ (Hi,RHi,Gi,RGi,X)XA (4.18)

Consider the two recursive sequencesXt+1 = gα(Xt), and X̂t+1 = α0A
′X̂A+

∑2k−2
i=1 αiA

′X̂Z
(

Hi,RHi,

with same initial condition, then at time step t, Xt ≻ X̂t. Thus, if X̂t+1 diverges, then

Xt+1 = gα(Xt) also diverges. This allows us to find the lower bounds on critical actuator

probabilities {λc1, · · · , λck} that lead to convergence of Xt.

Lemma 4.5. Since, X � 0 is a random matrix,

α0A
′
E[X]A+

∑2k−2
i=1 αiA

′
E [XZ (Hi,RHi,Gi,Gi,X)X]A

� E[gα(X)] � gα(E[X])
(4.19)

This property combines concavity property of lemma 4.1 and bounded condition of

lemma 4.4 and lead to both an upper and lower bound on E[gα(X)]. Before, discussing
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other properties, we define another auxiliary function that captures the linear part of φ(K1,

· · · ,K2k−1,X). Let

L(X) = α0A
′XA+

2k−1
∑

i=1

αiF
′
iXFi (4.20)

It can be easily observed that L(X) is linear function of X and due to X � 0, L(X) � 0.

Furthermore, we can identify auxiliary function φ(K1, · · · ,K2k−1, X) as an affine function

of X, with φ(K1, · · · ,K2k−1,X) = L(X) + T , where T =
∑2k−1

i=1 αiTi. Notice, since Ti � 0,

T � 0.

Lemma 4.6. Let there exists a bounded solution of L(X), such that Y � L(Y), then, (1)

∀ W � 0, limt→∞L(W) = 0; (2) For T ≥ 0, Yt+1 = L(Yt) + T . Thus, for any arbitrary

initial condition Y0, Yt is bounded.

This property gives a condition that the recursion of linear auxiliary function L(X)

converges to 0, which in turn leads to convergence of recursion of affine auxiliary function

Yt+1 = L(Yt) + T for bounded initial condition Y0.

Lemma 4.7. If there exists some K̄1, · · · , K̄2k−1, and P̄ ≻ 0, such that P̄ ≻ φ(K̄1, · · · , K̄2k−1, P̄),

then for any arbitrary initial condition P̄0 � 0, P̄ = gtα(P̄0) is bounded.

This lemma establishes the condition for the recursion of P̄t+1 = gλ(P̄t) to be bounded

for any arbitrary initial condition P̄0. In following subsection we use above properties of

gα(X), to analyze the conditions for convergence of Pt matrix.

4.3.1 Convergence Conditions

It can be observed that, lemma 4.5-4.7 establishes conditions for boundedness of auxiliary

function, which further ensures boundedness of matrix Pt. We formally put these conditions

in form of following theorem (proofs follow in appendix B).

Theorem 4.1. Let there exists a bound X ≻ φ(K1, · · · , K2k−1,X) for X � 0, then (1)

limt→∞Xt = limt→∞gα (X0) = X, for any starting X0 � 0; (2) converging solution X is

unique.
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This theorem proves the convergence of Pt+1 = gα(Pt) under some given conditions. It

also shows the uniqueness of solution when it converges. Next theorem establishes existence

of stability region boundary such that the expected Lyapunov function becomes unbounded

if packet drop rates are beyond the specified critical values.

Theorem 4.2. Given a stable system i.e. matrix pair (A,W) is controllable, then there

exists critical control input successful transmission probabilities 0 ≤ {λc,1, · · · , λc,k} ≤ 1 such

that limt→∞E[Xt] = ∞ if all actutor packet drop probabilities are at critical rate except one

actuator j, i.e. 0 ≤ λj ≤ λc,j. Further, E[Pt] � Pmax ∀ t, if λc,j < λj ≤ 1 ∀ j = 1, · · · , k

and initial condition P0 � 0.

In general, we can not explicitly compute the critical probabilities of successful trans-

mission, but we can compute both and upper and lower bounds on {λc,1, · · · , λc,k}. In

following section we first analyze the lower and upper bound on converging solution, and

then we compute the corresponding lower and upper bound on critical control loss rates.

4.4 Bounds on Critical Actuator Loss

In the following analysis, we compute upper and lower bounds on converging solution of

Pt iteration by exploiting the analogy between dispersed and unified control. This under-

standing enables us to effectively use the stability results of unified actuator scenario for

the dispersed actuator scenario, followed by computation of corresponding upper and lower

bound on control action critical probabilities. The analysis finally results in a concatenated

k-dimensional regions (assuming k independent communication links) where: (1) inside in-

ner region, the system is definitely unstable; (2) outside outer region, the system is definitely

stable; (3) the in between region system is indeterminate. So, we first discuss and establish

stability conditions for unified actuator scenario, followed by developing the the analogy

between dispersed and unified control.
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Figure 4.2: Measurement transmission strategies: (a) gathered information (b) dispersed
information

4.4.1 Unified Control Over a Network

Consider the two strategies of communicating the control actions to actuators: (1) control

input is transmitted over a single communication link (unified control) as shown in Figure

4.2(a); (2) control action for actuators is transmitted over individual communication links

(dispersed control) as shown in Figure 4.2(b). It is easy to deduce that if λ is the probability

for successful transmission of control input in 4.2(a), the corresponding iteration for Pt in

form of MARE is given by,

gλ(X) = A′XA− λA′XB (R+B′XB)
−1 F(B,X)B′XA. (4.21)

Equation (4.21) satisfies all statistical properties and convergence condition discussed in

section 4.3 (more details are discussed in our publication [66]). The lower bound λc,lb on

critical value λc satisfies the following proposition,

∃Plb s.t. λc,lb = argmin fλ (Plb = (1− λ)A′PlbA) = 1− 1

ρ2A
(4.22)
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where, ρA = maxi{|σi|}; and σi are the eigen values of A. Similarly, upper bound λc,ub on

critical value λc satisfies the following proposition,

∃
(

K̂, X̂
)

s.t. λc,ub = argmin fλ

(

X̂ ≻ φ(Pub, K̂)
)

(4.23)

Using Schur compliment decomposition and matrix analysis on proposition (4.23), λc,ub is

obtained by solving following optimization problem,

λc,ub = argminλΨλ(Y,Z) ≻ 0, st. 0 � Y � I (4.24)

where, Ψλ(Y,Z) =





Y
√
λ (YA′ + ZB′)

√
1− λYA′

√
λ (AY +BZ′) Y 0√

1− λAY 0 Y





This is quasi-convex optimization problem in variables (λ,Y,Z) and solution can be ob-

tained by iterating LMI feasibility problems and using bisection of variable λ.

The lower bound Plb for E[Pt] is easily obtained by iterating Xt+1 = (1 − λc,lb)A
′XtA

starting with some initial condition X0. Similarly, the upper bound Pub can be computed

by iterating MARE for λc,ub starting with some initial condition X0. In both these iteration

we can put the convergence of Lyapunov function as converging condition.

4.4.2 Unified / Dispersed Actuator Analogy

Once again, consider the two strategies of communicating the control actions: (1) unified

control, as shown in Figure 4.2(a); (2) dispersed control Figure 4.2(b). For ideal loss free

communication network, the control action implementation is same in both these strategies

as computed optimal control action is same for both the cases. Thus, at steady state the Pt

iteration will converge to same Pss, i.e., limt→∞Pt → Pss for both these strategies. This

statement can be further verified if we reverse the analysis of equation (4.7) and reconstruct

the unified control from dispersed control for lossless network scenario. Now, considering

unified control strategy under lossy network, the Pt iteration can still converge, depending

on the probability of successful actuator input transmission λ [66]. At critical value λc,

the systems at the verge of getting uncontrollable; the iteration Pt converges to Pc,ss, i.e.,
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limt→∞Pt → Pc,ss ≻ Pss. Thus, at steady state, MARE for unified control strategy at λc

is,

Pc,ss = A′Pc,ssA− λcA
′Pc,ssB (R+B′Pc,ssB)

−1 F(B,Pc,ss)B
′Pc,ssA. (4.25)

It can be noticed from equation (4.25), that (1− λc)A
′Pc,ssB (R+B′Pc,ssB)−1 F(B,Pc,ss)

B′Pc,ssA is the critical loss beyond which the Pt iteration diverges. Now, as underlying

dynamical system is same for both unified and disperse control strategy, the affordable

critical loss must be same for both the cases independent of the strategies of communicating

actuator actions. Thus, in dispersed actuator scenario, we expect to distribute this critical

control input loss among the individual actuator communication links. With the argument

that affordable critical control input loss is same in both the strategies, we can further

argue that the Pt iteration will converge to same Pc,ss for both these cases. In the following

analysis we use the above intuition to compute bounds on critical measurement drop rates.

4.4.3 Lower Bound on Packet Drop Probabilities

Comparing to unified control action scenario, let the lower bound solution to Pt iteration

be Plb = QlbDlbQ′
lb where, Qlb,Dlb is the eigen decomposition of converging solution, then

at steady state

Plb = (1− λ)A′PlbA
= A′Qlb ((1− λ)Dlb)Q′

lbA
(4.26)

Then following argument that both dispersed and unified control strategy will converge to

same value at steady state, we can utilize the computed lower bound Plb of unified actuator

case for dispersed actuator case. Comparing (4.26) and (4.11) we get,

A′Qlb(1− λ)DlbQ′
lbA =

A′Qlb

[

α0Dlb +
∑2k−2

i=1 αiDlbQ′
lbZ (Hi,Gi,Plb)QlbDlb

]

Q′
lbA

(4.27)

To compute α0, · · · , α2k−2 (thus, λ1,lb, · · · , λk,lb) satisfying equation (4.27), we propose so-

lution by formulating an optimization problem,

87



min . trace(S)

st.























(1− λ) = α0 + dlb(1)
∑2k−2

i=1 αiq
′
lb(1)Z (Hi,Gi,Plb)qlb(1) + s1

(1− λ) = α0 + dlb(2)
∑2k−2

i=1 αiq
′
lb(2)Z (Hi,Gi,Plb)qlb(2) + s2

...
... · · · ...

(1− λ) = α0 + dlb(n)
∑2k−2

i=1 αiq
′
lb(n)Z (Hi,Gi,Plb)qlb(n) + sn

(4.28)

where, λ > λc,lb; dlb(i) is the i
th diagonal element of Dlb; qlb(i) is the i

th eigen vector; and

S = diag(s1, · · · , sn) is the slack matrix. Further, adding constraint S � 0, assures that the

converging solution of dispersed actuator scenario is always bounded below the converging

solution of unified actuator scenario. It is easy to notice that, the formulation (4.28) is a

minimization problem with linear constraints in probability variables α0, · · · , α2k−2 and slack

variables s1, · · · , sn. Since,
∑2k−1

i=0 αi = 1 and α2k−1 6= 0 (probability of successfully trans-

mitting all actuator inputs), placing an additional linear inequality constraint
∑2k−2

i=0 αi < 1,

will optimally solve for variables α0, · · · , α2k−2. Thereafter, the lower bound on individual

critical link probabilities λc,1,lb, · · · , λc,k,lb can be computed, as probabilities of all possible

loss scenario is now known.

4.4.4 Upper Bound on Packet Drop Probabilities

Again following our discussion on analogy between dispersed and unified actuator case, if

Pub is the upper bound on Pc,ss (obtained form unified actuator case), then

Pub � A′PubA− λc,ubA
′PubB (R+B′PubB)

−1 F(B,R,Pub)B
′PubA. (4.29)

Next utilizing the upper bound Pub computed from unified actuator case in dispersed ac-

tuator case, the corresponding equation for dispersed actuator scenario can be expressed

as,

Pub � A′PubA−∑2k−1
i=1 αiA

′PubHi (RHi +H′
iPubHi)

−1

F(Hi,Pub)H
′
iPubA.

(4.30)

Thus, for (4.29) and (4.30) to converge to same solution following condition must be satisfied,

λc,ubQ′
ubB (R+B′PubB)−1 F(B,R,Pub)B

′Qub =
∑2k−1

i=1 αiQ′
ubHi (RHi +H′

iPubHi)
−1 F(Hi,RHi,Pub)H

′
iQub

(4.31)
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where, Qub is the unitary matrix corresponding to eigen decomposition of Pub. To compute

α1, · · · , α2k−1 (thus, λc,1,ub, · · · , λc,ub,k) satisfying equation (4.31), we propose solution by

formulating an optimization problem,

min . trace(S)

st.



















































λc,ubq
′
ub(1)G(B,Pub)qub(1) =

∑2k−1
i=1 αiq

′
ub(1)G(Hi,Pub)qub(1) + s(1)

λc,ubq
′
ub(2)G(B,Pub)qub(2) =

∑2k−1
i=1 αiq

′
ub(2)G(Hi,Pub)qub(2) + s(2)

... · · · · · · ...

λc,ubq
′
ub(n)G(B,Pub)qub(n) =

∑2k−1
i=1 αiq

′
ub(n)G(Hi,Pub)qub(n) + s(n)

(4.32)

where, G(B,X) = B (R+B′XB)−1 F(B,R,X)B′; qub() is the eigen vector; and S =

diag(s(1), · · · , s(n)) is slack matrix. Again, adding additional constraint S � 0 ensures

that the converging solution of dispersed actuators is bounded below the converging so-

lution of unified actuator case. Also, we can again notice that the formulation (4.32) is

a minimization problem with linear constraints in probability variables α1, · · · , α2k−1 and

slack variables s1, · · · , sn. Further placing a linear inequality constraint
∑2k−1

i=1 αi < 1 (as
∑2k−2

i=0 αi < 1 and α0 6= 0), α1, · · · , α2k−1 can be optimally computed. Thereafter, the upper

bound on individual critical actuator probabilities λc,1,ub, · · · , λc,k,ub can be computed, as

probabilities of all possible loss scenario is now known.

4.5 System Examples

This section validates the analytical results of previous sections by finding stability regions

defined by lower and upper bound on critical probability of successful actuator input trans-

mission for several system examples. The upper and lower bound on convergence of Pt

iteration is computed first from the unified control scenario, and then actuator input loss

is distributed to dispersed actuators scenario by solving the optimization problems (4.28)

and (4.32). In the numerical examples of generalized system, we also present performance

trade-off in stability and quality of underlying network defined by actuator input loss rate.

89



4.5.1 Decoupled system with no overlap in control space

Consider a simple system of two nodes with: state transition matrix A =

[

1.25 0
0 1.5

]

; and

two dispersed actuators with B′
1 = [1 0] and B′

2 = [0 1] as their control matrix. We assume

process noise covariance matrix W = 20I2 and control weight R = 5I2.
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Figure 4.3: Stability region - Decoupled System

First, considering unified actuator scenario, the critical probability of successful actuator

input transmission λc has lower bound as λc ≥ λc,lb = (1−1/1.52) ≈ 0.56, and upper bound

as λc ≤ λc,ub ≈ 0.56. Both upper and lower bounds coincide as B = [B1 B2] is invertible (It

is easy to notice that by setting K′ = −B−1A results in F = 0). Now, considering dispersed

actuators scenario, the stability region defined by critical probabilities of individual links
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λc,1 and λc,2 is shown in Figure 4.3 (shown. by ∗). Both upper and lower bounds coincide,

with λc,1 = λc,2 = 0.56. However, it is easy to notice that this system is completely

decoupled and each actuators directly control the states. The control process is essentially

of two independent scalar system with critical probabilities λc,1 > 1 − 1/1.252 ≈ 0.36 and

λc,2 > 1− 1/1.252 ≈ 0.55 (shown, by o in Figure 4.3). Thus, bounds computed using (4.28)

and (4.32) are relaxed; so it is prudent to first decouple the system if the system can be

decoupled and then compute the bounds.

4.5.2 Coupled system with completely redundant actuator inputs

Once again consider system model of subsection (4.5.1) with: state transition matrix A =
[

1.25 0
1 1.1

]

; and two dispersed actuators with B′
1 =

[

1 0
0 1

]

and B′
2 =

[

1 0
1 1

]

as their

control matrix. It is easy to notice that both actuators are self-sufficient in controlling the

system, and their critical reception probability can be individually computed as λc,1 = λc,2 =

1− 1/1.252 ≈ 0.36. Now, if the two actuators are jointly deployed to control the system, we

expect a reduction in the individual critical probability.

Figure 4.4 shows stability region when control is performed when corresponding control

actions are communicated to both the actuators. It can be observed that both lower and

upper bound solutions coincide and critical probability of successful actuator input trans-

mission is reduces to λc,1 = λc,2 ≈ 0.255. Thus, at the cost of deploying two actuators

for overlapping control actions, we can afford lower quality of underlying communication

network.

4.5.3 Generalized system

Next consider a radial cyber physical system system controlled along overlapping actuators

as shown in Figure 4.5. There are 8 nodes controlled by 3 overlapping actuator actions.

We assume similar system model of subsection (4.5.1) with following state transition and

control matrices.
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Figure 4.5: Radial system with overlap in actuator control space
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A =

























1.15 0.2 0 0 0 0 0 0
0.2 0.3 0.3 0 0 0 0 0
0 0.3 0.5 0.2 0 0 0 0
0 0 0.2 1.1 0.3 0 0 0
0 0 0 0.3 0.2 0.4 0 0
0 0 0 0 0.4 0.4 0.3 0
0 0 0 0 0 0.3 0.5 0.3
0 0 0 0 0 0 0.3 1.11

























B′
1 =

[

1 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0

]

B′
2 =

[

0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0

]

B′
3 =

[

0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1

]

First considering unified control scenario, the lower bound on critical probability of

successfully transmitting the control action is given by λcs,lb = (1 − 1/ρ2) ≈ 0.39, where

maximum eigen value of state transition matrix ρ = 1.28. Similarly, the upper bound on

λcs can be obtained by solving (4.24), and is computed as λcs,ub = 0.42. The corresponding

lower bound Plb on converging Pt can be computed by iterating Pt+1 = (1 − λc,lb)A
′PtA

starting with some initial condition P0. Similarly, the upper bound Pub for unified case

can be computed by iterating the corresponding MARE for λc,ub starting with some initial

condition X0. Then, the bounds on critical probabilities for each actuator can be computed

by iterating (4.28) and (4.32). Repeating above steps for λcs,lb > 0.39 → 1, and λcs,ub >

0.42 → 1 we can compute the trade off in stability with quality of underlying communication

network. Figure 4.6 and 4.7, shows the lower and upper bound on critical probabilities for

individual actuators vs converging Lyapunov function at steady state. Now, depending

on the required stability of control operation, the corresponding requirement in quality of

network infrastructure can be easily inferred from Figures 4.6 and 4.7. For example, if the

demanded Vss at steady state is 250, then for λ1 < 0.37, λ2 < 0.37, λ3 < 0.65 system is

definitely unstable, while for λ1 > 0.80, λ2 > 0.75, λ3 > 0.75 is definitely stable. Thus, this

analysis plays a crucial role in safe and efficient operation of cyber physical systems.
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Figure 4.6: Critical actuators receiving probability - lower bound

4.6 Summary

In this chapter, we address the stochastic Lyapunov function based linear quadratic con-

troller stability for spatially distributed cyber physical system in presence of random ac-

tuator action loss. The control action is computed at centralized control unit, encoded in

packets and communicated to dispersed actuators over a lossy network. Since, random ac-

tuator action loss results in stochastic Lyapunov function iteration, we establish the lower

and upper bounds on expected steady state Lyapunov function. We utilize the stability

results of unified actuator scenario and compute upper and lower bounds on critical loss

probability for individual actuators, by formulating optimization/feasibility problem. The
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Figure 4.7: Critical actuators receiving probability - upper bound

feasibility solution distributes the control action loss of unified actuator scenario to loss in

individual communication links of dispersed actuators.
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Chapter 5

Case Study: Voltage/VAR Support
Over Network In Smart Distribution
Grid

In this chapter we present voltage/VAR support via distributed generation in smart distri-

bution network as an example of spatially distributed CPS architecture. Reactive power

injection in smart grid distribution networks via distributed generators is envisioned to play

a vital role in voltage/VAR support. In this case study, we integrate the three aspects of

voltage/VAR support: modeling, state estimation and network control in a single frame-

work.

Firstly, we develop an input to state nonlinear dynamic model that incorporates power

flow equations along with load and distributed generation (DG) forecasts. Then, consider-

ing an extended Kalman filter (EKF) approach for nonlinear state estimation, we analyze

the impact of dropped packets on stability of estimation process. Finally, we apply sep-

aration principle locally around some known state estimates, to design a nonlinear model

predictive control (NMPC) based voltage/VAR support strategy. The control problem aims

to minimize the aggregate reactive power injected by DG with the following constraints:

(1) voltage regulation; (2) phase imbalance correction, and (3) maximum and minimum

reactive power injection by individual generators. Considering computational complexity

incurred in search for the optimal solution for large scale nonlinear control problems, we
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propose a successive time varying linear (STVL) approximation to our voltage/VAR control

problem. The control framework approach and the analytical results presented in this paper

are validated by simulating a radial distribution network as an example.

5.1 Distributed Generation In Smart Distribution Grid:

An Overview

Distributed generation (DG) is expected to play a vital role in future smart grid based power

networks [88]. Integrating DG at the distribution network level is expected to increase power

supply capacity within the existing infrastructure [88], [89]. However, inclusion of DG in

distribution network negates the traditional approach of considering distribution network

as passive. Addition of dynamic active components (DG) at distribution network level can

destabilize the system in terms of: (1) power quality; (2) voltage regulation; (3) protection;

(4) reliability, and safety issues [88]. Although, DG poses challenges for smart grid stability,

some researchers [90], [91] have shown that reactive power contributed by DG can support

voltage/VAR at distribution network level. Thus, a well controlled integrated operation of

DGs with the grid is required for maintaining distribution network stability.

The first step in designing an efficient control for DG is to effectively model the impact

of DG on dynamics of distribution network. Authors in [92] propose a zero point analysis

method for analyzing the DG-feeder interaction. This approach focuses on discovering and

mitigating the points at which DG unit output render zero power flow. Considering model

based approach, statistical and deterministic models of of load and DG are respectively

used in [93],[94] to analyze the impact of DG penetration on voltage regulation. Similarly,

probabilistic approach in characterizing the impact of stochastic behavior of DG in voltage

profiles is used in [95]. Addressing the huge dimensionality of distribution network, authors

in [96] have used special techniques based on: (1) linearization; (2) state space representa-

tion; (3) coherency identification; (4) load and generator aggregation, for order reduction

and aggregation of distribution network with DG. In spite of the plethora of efforts in DG
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integrated distribution network modeling, a comprehensive dynamic model relating voltage

vector as states and DG as control inputs is currently lacking. A proper input to state

dynamic model is an essential ingredient in designing a control problem.

The state of a power network is defined by phasor voltages observed at different nodes.

These state estimates play a crucial role in computing optimal control actions which affects

the overall grid performance [97],[98]. Traditionally, distribution networks were considered

as static with marginal load variations.Hence, most of the state estimation techniques avail-

able in the literature are static, such as those based on weighted least squares [99]. However,

with increase in underlying load fluctuations and the stochastic nature of DG, there is an

increase in uncertainty of phasor voltage profile with time. Also, with the addition of com-

munication and smart metering technologies as part of smart grid’s infrastructure, state

estimation is now feasible at all levels of the distribution network. Therefore, for real time

efficient control of grid and DG, several dynamic state estimators like Kalman filter in [100]

and unscented Kalman filter in [101] have been proposed. Further, considering complexity

associated with large scale estimation problem, approaches like network reduction and do-

main decomposition have been respectively proposed in [102], [103] for distribution network.

Unfortunately, most of these prior efforts do not analyze stochastic stability of their state

estimate considering uncertainty associated with both load and generation. Additionally,

estimation is dependent on measurements that are typically transmitted through a commu-

nication network. Therefore, it is critical to quantify the effect of packet delay, packet drops

etc. on the quality and stability of state estimate. This paper aims to bridge this gap.

Finally, many research work [91]-[104] have demonstrated that, reactive power injected by

DG can be used for voltage/VAR support of distribution networks. The primary focus is on

two aspects of DG’s contribution to voltage control: (1) effective interfacing of DG at point of

coupling (PCC) [105],[106], and (2) managing and optimizing multiple DG reactive power

contribution [107],[108]. [109] investigates, both coordinated and uncoordinated voltage

control with DG involvement. In uncoordinated control reactive power interface operates
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locally; while in the coordinated control, reactive power interface is controlled considering its

effect on whole distribution network. The results indicates superiority of coordinated control

over uncoordinated control in reducing voltage fluctuations and system losses. Authors in

[110],[104] have presented a real time control framework for controlling the end-user reactive

power devices to mitigate low voltage problems. However, most of the prior efforts related

to voltage/VAR control are typically single shot strategies that ignore some basic economic

assurances/policies regarding DG reactive power injection. DG at distribution network are

owned by customers who are only paid for real power. Additionally, distributed generators

have limits on maximum and minimum reactive power injection based on power electronic

interface used. In our publication [111], we have illustrated the feasibility of reactive power

injection from DGs for voltage/VAR support. That is, at each time instant t, using the

approach in [111], we can identify the most appropriate injected real power Pg and reactive

power Qg for each DG.

Thus encouraged by importance of integrating DG and optimally utilizing the reactive

power injection, we present an voltage/VAR support via DG in CPS architecture setup.

5.2 Cybyer Physical Framework: Voltage/VAR sup-

port via Distributed Generation

In this section we present voltage/VAR support via DG in CPS framework. A conceptual

description of framework is presented in figure 5.1. Following are the key features of this

framework:

• Voltage/VAR support via DG is related by a nonlinear power flow equations. Also

load fluctuations are time varying and distributed generation is stochastic process.

Thus, input (reactive power injection) to state (voltage phasors) system model in

smart distribution network is a nonlinear stochastic system model.

• Considering nonlinear, time varying and stochastic system model, a nonlinear state

estimation approach is required for smart distribution network. Next considering esti-
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Figure 5.1: Nonlinear Control framework for DG integrated at Distribution network level

mation stability, conditions on system parameters and communication infrastructure

(for communicating measurements) needs to be quantified.

• Finally, as reactive power injection has a natural trade-off relative to real power injec-

tion by DGs, it is crucial to optimally use the reactive power of DGs. Furthermore,

the reactive power injection computation needs to be predictive, based on dynamics

of the system.

In next section, we preset the system model followed by estimation and control solution for

considered smart distribution network scenario.

5.3 Smart Distribution Grid: Dynamic System Model

For simplicity in modeling and analysis in this case study, we only consider randomness

caused by load and distributed generation in the power dynamics. In [112],[113], it is shown
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that the load and DG can be modeled via statistical models. Following this, we assume

that real and reactive load, and power generated by DGs are modeled by first order auto-

regressive process. To extend the generality of the AR(1) model, we allow for coefficients

to vary with time. The time series representation for real load (Pl), reactive load (Ql) and

apparent power of DG (Sg) can be expressed as

Zt+1 −DZ
t+1 = αZt (Zt −DZ

t ) +WZ
t , (5.1)

where, Z ∈ {Pl,Ql, Sg}, i.e., Z is common notation for Pl, Ql and Sg; α
(·)
(·) is the corre-

sponding AR(1) coefficient; D
(·)
(·) is the corresponding deterministic component; W

(·)
(·) is the

corresponding noise component of the time series model; and t is time index. Furthermore,

a time series model similar to (5.1) can be developed to capture the DG contribution. In

following analysis, we use above statistical models to derive time dependent dynamic of

power distribution system.

The power flowing at every observed node in the network is a linear combination of

real and reactive component of load and generated power. Hence, the net real and reactive

power entering or leaving can be expressed via an AR(1) model. Let Pgt and Plt represent

net real power generation and load on the node. Then, the net real power Pt injected at

t+ 1 can be expressed as

Pt+1 = Pgt+1 − Plt+1

= αP lt Pt + βPt Pgt + LPt +W P
t . (5.2)

where, βPt = αPgt − αP lt ; LPt = αP lt (DPg
t − DP l

t ) + (αPgt − αP lt )DPg
t + DPg

t+1 − DP l
t+1; and

W P
t = W Pg

t −W P l
t . Similarly, net reactive power flowing through a node can be expressed

as

Qt+1 = αQlt Qt + βQt Qgt + LQt +WQ
t . (5.3)

It can be noticed that in our modeling we are assuming generation capability at every

node. However, in practice generation capability may be limited to very few nodes. For
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those nodes our model is still applicable with Sgt = 0. Consider now a three phase dis-

tribution network, with state defined by a vector of phasor voltages at observable nodes.

Let V abc
t := [V a

t (i), V
b
t (i), V

c
t (i)]

T , θabct := [θat (i), θ
b
t (i), θ

c
t (i)]

T denote the three phase volt-

age vector magnitude and phase at node i, with a, b, c representing the corresponding

phases; then the three phase power flow equations for real and reactive power defined by ,

P abc
t := [P a

t (i), P
b
t (i), P

c
t (i)]

T and Qabc
t := [Qa

t (i), Q
b
t(i), Q

c
t(i)]

T , at node i can be expressed

as

P abc
t (i) = V abc

t (i)⊙∑n
k=0 V

abc
t (k)⊙

(

Gabc(i, k)cos(θabct (i, k))
+Babc(i, k)sin(θabct (i, k))

)

Qabc
t (i) = V abc

t (i)⊙∑n
k=0 V

abc
t (k)⊙

(

Gabc(i, k)sin(θabct (i, k))
−Babc(i, k)cos(θabct (i, k))

)

,

(5.4)

where, θabct (i, k) := θabct (i) − θabct (k); Gabc(i, k) and Babc(i, k) are three phase conductance

and susceptance matrices between node i and k, respectively; The detailed analysis and

derivation of (5.4) is investigated in our publication [111]. Defining state vector Xt :=

[V abc
t (1), θabct (1) · · ·V abc

t (n), θabct (n)]T , and F(Xt) := [P abc
t (1), · · · , P abc

t (n), Qabc
t (1), · · · , Qabc

t (n)]T ,

the nonlinear dynamic state model can be stated as

F(Xt+1) = AF
t F(Xt) +BF

t Ut + LFt +WF
t , (5.5)

where,

AF
t := diag(αP lt (1), · · · , αP lt (n), αQlt (1), · · · , αQlt (n)),

BF
t := diag(βPt (1), · · · , βPt (n), βQt (1), · · · , βQt (n)),

Ut := [Pgt(1), · · · , Pgt(n), Qgt(1), · · · , Qgt(n)]T ,

LFt := [LPt (1), · · · , LPt (n), LQt (1), · · · , LQt (n)]T ,

WF
t := [W P

t (1), · · · ,W P
t (n),W

Q
t (1), · · · ,WQ

t (n)]
T ,

and n represents the total number of observed nodes. We assume that WF
t is i.i.d. noise

with Q as covariance matrix. It can be observed that the dynamic model (5.5) can be
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controlled by control input Ut, the real and reactive power injected by DG. However, the

design of the control input Ut is dependent on the knowledge of the state Xt of the system.

5.4 Nonlinear State Estimation

State estimation in nonlinear dynamical system has been well studied and many methods

have been proposed over last two decades. For our system, we propose the use of Extended

Kalman filter (EKF) for state estimation for the following reasons: (1) Estimators based on

Monte Carlo approaches like Unscented Kalman filter and Particle filter are computationally

inefficient for large networks; (2) The nonlinear state model expressed in (5.5) is not one-

to-one mapped, i.e., it is possible to have more than one voltage distribution corresponding

to a give power distribution. Therefore, propagating the sigma points of Xt may result in

more than one distribution of Xt+1.

5.4.1 EKF based estimation

EKF is a minimum mean square error (MMSE) estimator based on first order Taylors series

expansion of the nonlinear state evolution model. Linearizing (5.5) results in

F̄t+1 + JF

t+1(Xt+1 − X̄t+1) = AF

t (F̄t + JF

t (Xt − X̄t)) +BF
t Ut + LF

t +WF

t (5.6)

where, X̄t is a linearization point at some t; F̄t is real and reactive power at time t evaluated

by F̄t = F(X̄t); J
F

t+1 is the Jacobian of F(Xt) evaluated at X̄t. It can be observed that

equation (5.6) requires knowledge of linearization points X̄ at t and t + 1. Since power

distribution at these observable nodes are known at t and can be obtained for t+1 by time

series forecasts, the linearization points can be obtained by solving power flow equation.

Linearization represents a local characterization of the nonlinear function. Selection of

linearization points close to true state values is expected to reduce linearization error. In

our analysis, we use Newton’s algorithm to search linearization points X̄t and X̄t+1 in the

neighborhood of known state Xt at time t. After obtaining the linearization points, the
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linearized time varying state model can be expressed as

Xt+1 = AtXt + Lt +Wt, (5.7)

where,

At = JF
t+1A

F

t J
F

t

Lt = X̄t+1 − JF
t+1A

F

t J
F

t X̄t − JF
t+1(F̄t+1 −AF

t F̄t) + JF
t+1(L

F

t +BF
t Ut)

Wt = JF
t+1W

F

t & JF := (JF)−1 (5.8)

Typically, state is estimated based on measurements across the power network. The mea-

surements in the power network are either direct measurements like voltage at the node

or current flowing between adjacent nodes, or indirect measurements like real and reac-

tive power flowing through the network. A general measurement model corresponds to

Yt := G(Xt)+WY
t , where, Yt is the measurement vector; G(Xt) = [g1(Xt), · · · , gm(Xt)]

T ,

with gj(·) representing the local measurement at node j which can be a linear or nonlinear

function of some elements of X; WY
t := [W Y

t (1), · · · ,W Y
t (m)]T is the process noise.

5.4.2 Intermittent measurement model

The measurements in a smart grid network are typically transmitted over a communication

network to a local fusion center or a back office controller where state estimation is per-

formed. In this process of communication, it is possible that the measurement data packets

may get delayed, reordered or even dropped. In this subsection, we accommodate the im-

pact of dropped packets on EKF based state estimate. Towards this end we assume that

the dropped packets are modeled as independent and identically distributed, i.i.d. Bernoulli

random process. The measurement vector Yt for intermittent measurements, is expressed

as

Yt = Γt(G(Xt) +WY
t ) (5.9)

where, Γt := diag(γt(1), · · · , γt(m)), γt is a binary matrix; γt(j) is a Bernoulli random

variable with Pr(γt(j) = 1) = λt(j). The measurement noise in our analysis is assumed to
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be i.i.d. with R as covariance matrix. Denoting, Ŷ(t) = ΓtG(Xt/t−1) where, Ŷ is the

predicted measurement; Xt/t−1 is the predicted state at time t; Ht := [∂G
∂X t

], and Ht := ΓtHt,

Kalman filter equations for localized linear state estimation are stated as

Prediction Cycle

Xt+1/t = AtXt/t + Lt; Pt+1/t = AtPt/tA
T
t +Qt (5.10)

where, Xt/t−1 and Xt/t are the predicted and estimated state vectors; similarly Pt/t−1 and

Pt/t are the predicted and estimated error covariance matrix for linearized model; and

Qt = (JF
t+1)

TQJF
t+1 is the covariance of process noise.

Filtering Cycle

Kt+1 = Pt+1/tH
T
t+1[Ht+1Pt+1/tH

T
t+1 +R]−1

Pt+1 = [In −Kt+1Ht+1]Pt+1/t

Xest
t+1 = Xt+1/t +Kt+1[Yt+1 − Ŷt+1] (5.11)

where, Kt is Kalman gain and In is nxn identity matrix. In following section, we analyze the

stochastic stability of our state estimate considering randomness due to model mismatch,

linearization error and intermittent measurements.

5.5 Stochastic Stability Analysis of State Estimate

The nonlinear state estimate defined in (5.10),(5.11) can be considered as stable, if the

estimation error covariance matrix remain bounded over time. The conditions for stochastic

stability of discrete time EKF has been investigated in [114],[115]. It is shown that under

small noise covariance and initial estimation error, and with certain system regulation,

stochastic stability of EKF with intermittent measurements can be achieved. In our analysis,

we follow similar arguments and establish conditions for stochastic boundedness of the

estimation error and error covariance matrix for our system.

Firstly, it should be noted that matrices Pt+1/t and Pt/t (5.10,5.11) represents the error

covariance matrices for the linearized model, and hence are not equal to error covariance

105



matrices for true nonlinear state evolution model represented by (5.5). So, we first quantify

deviation between the estimated state Xt/t obtained from the linearized model and the true

state Xt of the nonlinear system. For this, consider a hypothetical function F(·), which

performs inverse mapping from F(Xt) to Xt, i.e. F(F(Xt)) := Xt. Using the Taylors

expansion, we establish

Xt+1 = F(AF
t F(Xt/t) +DF

t+1 −AF
t D

F
t ) +At(Xt −Xt/t) + JF

t+1W
F

t

+φ(Xt,Xt/t,W
F

t )
Xt+1/t = F(AF

t F(Xt/t) +DF
t+1 −AF

t D
F
t )− ψ(Xt,Xt/t,W

F

t )
Yt = G(Xt) +WY

t

= G(Xt/t−1) +WY
t +Ht(Xt −Xt/t) + χ(Xt,Xt/t−1)

(5.12)

where,Xt is the true state vector, and functions φ(·), ψ(·), χ(·) represent the remainder terms

corresponding to linearization error. Defining the estimation errors as et+1/t = Xt+1−Xt+1/t,

et+1/t+1 = Xt+1 −Xt+1/t+1, and using (5.12) we derive

et/t = (In −KtHt)et/t−1 −Kt

(

WY
t + χ(Xt,Xt/t−1)

)

et+1/t = At(In −KtHt)et/t−1 + rt + st
(5.13)

where,

rt = φ(Xt,Xt/t,W
F

t ) + ψ(Xt,Xt/t,W
F

t )−AtKtχ(Xt,Xt/t−1)
st = JF

t+1W
F

t −AtKtW
Y
t

(5.14)

For our state estimate to be stable, the estimation error et/t−1 ≤ et/t and et/t must be

bounded.

5.5.1 Boundedness of estimation error

Theorem 5.1. The estimation error et+1/t is exponentially bounded in mean square, (i.e.

E[||et+1/t||22] ≤ κ, where E[·] is expectation operation, || · || is euclidean norm of vector, and

κ is a positive constant) under following system regulations:

1. ||At|| ≤ ā: bounded state transition matrix.

2. ||Ht|| ≤ h̄: bounded Jacobian of measurement matrix.

3. ||JF
t+1|| ≤ j̄: bounded Jacobian of dynamic model.

106



4. pIn ≤ Pt+1/t+1 ≤ Pt+1/t ≤ p̄In: bounded error covariance.

5. qIn ≤ Q ≤ q̄In: bounded model mismatch.

6. rIn ≤ R ≤ r̄In: bounded measurement noise.

7. ||φ(Xt,Xt/t,W
F

t )||2 ≤ ǫφ||Xt −Xt/t||22: bounded model linearization error.

8. ||ψ(Xt,Xt/t,W
F

t )||2 ≤ ǫψ||Xt −Xt/t||22: bounded linearization error for prediction.

9. ||χ(Xt,Xt/t−1)||2 ≤ ǫχ||Xt −Xt/t−1||22: bounded linearization error for measurements.

where, ā, h̄, j̄, p, p̄, q, q̄, r, r̄, ǫφ, ǫψ, ǫχ > 0;

Proof. The proof follows similar to [115] section III.

Condition (1) and (3) can be established for our power network if: (1) j ≤ ||JF
t|| ≤ j̄, i.e.

Jacobian must be nonsingular and bounded for all t. Since Jacobian for our system is rate

at which power flow changes with change in voltage, the only instants it can be unbounded

is under some abnormalities like short circuit. So in normal operating conditions Jacobian

is always bounded; (2) al ≤ ||AF
t || ≤ āl, since AF

t is matrix of load AR(1) coefficients so

it is always bounded. Thus regulations of Theorem 1 can be satisfied for our system under

normal operating conditions.

However, our measurement model is probabilistic and if Pr(γt(i) 6= 1), i ∈ {1, · · ·m}

for some large number of t or i, the system may become unobservable. Thus, we need to

establish network conditions on packet drop rate for boundedness of Pt+1/t+1 and Pt+1/t.

5.5.2 Boundedness of the error covariance matrix

The algebraic Riccati update equation for error covariance matrix of linearized model Pt+1/t

is given by

Pt+1/t = AtPt/t−1At +Qt −AtPt/t−1H
T
t (HtPt/t−1H

T
t +Rt)

−1HtPt/t−1At (5.15)
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Since At, Ht are time varying, it is difficult to give general conditions on uniform bound-

edness of error covariance Pt+1/t. Authors in [114] have studied this problem, with the

condition that all measurements are received from single source. The analysis shows exis-

tence of critical packet drop rate for boundedness of error covariance matrix Pt+1/t. For our

system, we simplify the analysis by making following assumptions,

Assumption 5.1. Packet drop rate for all sensors are assumed to be i.i.d. with parameter λ.

Thus Pr(γt(1) = 1) = · · · = Pr(γt(m) = 1) = λ. So the number of received measurements

denoted by Mt at time t is a Binomial distribution. Further we assume for satisfying the

observability condition, we require at least k measurements at every sampling instant t. This

requirement puts condition that Mt ≥ k, or over time E[Mt] = λm ≥ k.

Assumption 5.2. The final assumption we make is that if we have less than k measure-

ments at any sampling instant then the effect of measurement on Riccati update equation

(5.15) is negligible. Thus error covariance matrix update with less then k measurements is

approximated as, Pt+1/t = AtPt/t−1At + Qt.

It can be observed that, with Assumptions(5.1,5.2), we are approximating our measure-

ment model behavior with model in [114]. The probability Λ that error covariance matrix

will get updated with measurements is given by

Λ =
m
∑

j=⌈λm⌉

(

m

j

)

λj(1− λ)m−j (5.16)

The analysis in [114] has found analytical expressions for lower and upper bound on critical

packet drop rate. In our analysis, we only concentrate on lower bound expressed as, Λc ≥

1− 1/ρ(At)
2, ∀t, where ρ(At) is the spectral radius of the linearized state evolution matrix

(At).

Thus, if λc is the critical packet drop rate then

m
∑

j=⌈λcm⌉

(

m

j

)

λjc(1− λc)
m−j ≥ 1− 1/ρ(At)

2 (5.17)
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Lemma 5.1. Under the condition that Jacobian JF

t is perturbed minimally at every time

step, the packet drop rate can be bounded as

m
∑

j=⌈λcm⌉

(

m

j

)

λjc(1− λc)
m−j ≥ 1− 1/ᾱP l (5.18)

where, ᾱP l is largest AR(1) load coefficient.

Proof. Let ǫj be the maximum perturbation for the Jacobian JF

t as the system evolves

in time, then JF

t = JF

t+1 + ǫjIn. Spectral radius of the linearized state evolution matrix is

expressed as

ρ(At) = ρ(JF
t+1A

F

t J
F

t )

≤ ρ(JF
t+1A

F

t J
F

t+1) + ρ(JF
t+1A

F

t ǫjIn)))

≤ ρ(AF

t ) + ǫjρ(J
F
t+1A

F

t )

For ǫj ≈ 0, ρ(At) ≈ ρ(AF

t ). Since AF

t is a diagonal matrix of load AR(1) coefficients,

ρ(At) ≈ ᾱP l.

In next section, we formulate a nonlinear control problem to determine the injected DG

reactive power for voltage/VAR support at distribution network level.

5.6 Nonlinear Voltage/VAR control

In this section, we formulate a nonlinear control problem to determine the optimal reactive

power injection by DG in order to satisfy the following requirements: (1) voltage is main-

tained within safety limits; (2) phase imbalance is mitigated, and (3) individual distributed

generator minimum/maximum reactive power constraints are met. For simplicity in this

work, we assume a quadratic penalty function, i.e., φ(Qgxt (i)) = (Qgxt (i))
2 as the objective

to minimize. Further, for phase imbalance correction, we limit the phase difference between

any two phases to 2πǫ
3
radians, where 0 < ǫ < 1 is the tolerance of phase imbalance. From a
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control perspective, the first two constraints are the state constraints and the final constraint

is on the control input. The nonlinear control optimization problem can be expressed as

min .
∑n

i

∑

x∈{a,b,c} α
x
t (i)(Qg

x
t (i))

2 ∀i = 1...n,

subject to







































C1 : F(Xt+1) = AF
t F(Xt) +BF

t Ut + LFt ,

C2 : (Sgxt (i))
2 = (Pgxt (i))

2 + (Qgxt (i))
2,

C3 : (Qgx(i))min ≤ Qgxt (i) ≤ (Qgx(i))max,

C4 : 0.95 ≤ V x
t (i) ≤ 1.05,

C5 : |θxt (i)− θyt (i)| > 2π/3 ∗ ǫ,
∀i = 0...n, x, y ∈ {a, b, c}, & 0 < ǫ < 1.

(5.19)

In (5.19), the objective function αxt (i) are the regressors indicating preference of generators in

reactive power contribution; equality constraints, C1 represent the dynamics of distribution

network (5.5); C2 is the limit on net power generation capacity of individual generators

obtained from the time series; C3 captures the limits on maximum and minimum reactive

power injected by individual distributed generators; C4 represents 5% voltage regulation,

and C5 represents tolerance on phase imbalance. It needs to be noticed that (5.19) is a

one step optimization problem. The obtained solution does not consider impact of reactive

power injection on future dynamics of distribution network. In the following subsection,

we extend the control problem formulation in (5.19) to a finite horizon nonlinear model

predicitive problem.

5.6.1 Quasi-Infinite Horizon NMPC

The nonlinear model predictive control (NMPC) approach formulates a finite horizon open

loop control problem subject to nonlinear system dynamics and constraints involved in

state and control input. At every sampling instant t, NMPC computes and minimizes

a cost function of control and state over a short time horizon T. While corresponding

optimal control inputs for the entire time horizon are calculated, only the first step control

is implemented as control action for the system. Also the ideal state for every node is

to have 1.00 pu, with phase angle separation of 2π
3
. Further, because of very small phase

deviation between adjacent nodes, the observed phase angles at the nodes is very close to
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the phase angle of grid. Thus, grid phase angle can be considered as the ideal phase for

every node. The cost function considering deviation from the ideal state and control input

at every instance t can be stated as

J(Xt,Qgt) = QgTt RtQgt + (Xt −Xo)
TSt(Xt −Xo) (5.20)

where,Qgt := [Qgat (1), Qg
b
t (1), Qg

c
t (1), · · · , Qgct (n)]; Rt := diag(αat (1), · · · , αat (n)); Xo

is ideal state of system comprising 1.00 pu as voltage magnitude and grid phase as ideal

phasor; and St is a diagonal matrix that allows us to place weights on achievable ideal

state at a node (which depends on structure of distribution network). In order to enforce

stability within finite prediction horizon, we apply methods of quasi-infinite horizon NMPC.

For our problem, we achieve this by placing heavier weights for state deviation in the final

cost function. Thus quasi-infinite horizon NMPC for distribution system with T as horizon

period can be formulated as

min . J(Xt,Qgt) =
∑t+T−1

t (QgTt RtQgt + (Xt −Xo)
TSt(Xt −Xo))

+(Xt+T −Xo)
TSf (Xt+T −Xo)

subject to Constraints C1-C5 (5.19),
(5.21)

where, Sf is final cost on state deviation, and for stability Sf ≥ St ∀t = 1 · · ·T−1. To obtain

an optimal solution for (5.21), the inequality and the equality constraints, must be convex

functions and affine, respectively. However, the equality constraints in our formulation,

especially the dynamic system model constraint C1 is highly nonlinear. Also, the inequality

constraints C1, C5 are non convex. Therefore, in next subsection we propose to apply a

heuristic approach based on successive time varying linear (STVL) approximation to obtain

an approximately feasible sub-optimal solution.

5.6.2 STVL approximation to Quasi-Infinite horizon NMPC

Linear time varying approximation of (5.21) requires T step linearization of the dynamic

state model (5.5) around known linearization points. The linearization points for t, t +
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1, · · · t + T can be obtained by: (1) predicting the power flow for for t, t + 1, · · · t + T time

steps; (2) obtain the linearization points by solving power flow equations. The linearization

error can be reduced if the linearization points are very close to true predicted states.

However, directly solving power flow equations does not ensure this condition.

X

F

t

F1

t 1

X
min

t 2

F
2

X max

X t

oo
o

o

o

o

o

X t +e

X -et

X +et ’

X -et ’

Figure 5.2: Linearization of nonlinear state model

Figure 5.2 shows a three dimensional view of the nonlinear state evolution model where,

Xt is the known true state at time t. To get a linearization point at t, using Newtons method

we search for a solution of F(Xt) in neighborhood of Xt. The neighborhood is denoted by

e, a very small n dimensional space around Xt. Similarly, linearization point at t + 1 can

be obtained by searching the solution space of F(Xt+1) in neighborhood of Xt. However,

this neighborhood denoted by e′ will be greater that e. Since linearization error depends on

this neighborhood, linearization error will increase at every step. Linearization error can be

reduced, if we restrict the search space of Newtons method around true predicted state at

every step. To bring linearization points closer to the predicted states, we propose a novel
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method in which linearization is done iteratively. At every iteration a linear optimization

problem is solved and the model is predicted one step further by obtaining solution using the

Newtons method. The open loop control optimization algorithm starting at the estimated

state Xt, and using SLTV model approximation can be stated in a flowchart shown in figure

5.3. The linearized control problem to be solved at every iteration is stated as

min .
∑t+T−1

t (QgTt RtQgt + (Xt −Xo)
TSt(Xt −Xo))

+(Xt+T −Xo)
TSf (Xt+T −Xo)

subject to,







































































C1 : F̄t+1 + JF

t+1(Xt+1 − X̄t+1)

= AF

t (F̄t + JF

t (Xt − X̄t)) +BF
t Ut + LF

t

C2 : (Sgxt (i))
2 = Pgxt (i)P̂ g

x

t (i) +Qgxt (i)Q̂g
x

t (i)

C3 : (Qgx(i))min ≤ Qgxt (i) ≤ (Qgx(i))max,

C4 : 0.95 ≤ V x
t (i) ≤ 1.05,

C5 : θbt (i)− θat (i) ≥ ǫ2π
3
, θct (i)− θbt (i) ≥ ǫ2π

3
,

θct (i)− (θat (i) +
2π
3
) ≥ ǫ2π

3

∀i = 0...n, 0 < ǫ < 1ǫ & t ∈ {t, t+ 1 · · · t+ T − 1}

(5.22)

where, C1 is obtained by linearizing dynamic system model (5.6); C2 is the linearized form

of (Sgxt (i))
2 = (Pgxt (i))

2 + (Qgxt (i))
2, with P̂ g

x

t (i) and Q̂g
x

t (i) as expected real and reactive

injected power following real to reactive power ratio of step t− 1; C5 assumes that if phasor

relationship at time t is θat (i) < θbt (i) < θct (i) then the same relationship is maintained for

the time horizon. This is a reasonable assumption as long as the sampling duration and the

horizon time are not large.

5.7 Stability Analysis on Nonlinear Control

In this section, we investigate the local stability conditions for our voltage/VAR support

control formulation (5.21). Our analysis is based on standard Lyapunov stability results for

uniform asymptotic stability of discrete time nonlinear systems. Further in this analysis,

we assume that the control problem is always feasible, i.e., there always exists sufficient

aggregate grid and DG injected reactive power for voltage/VAR support. Let V ∗
T
(t,Xt) :
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Figure 5.3: STVL approx. Quasi-Infinite horizon NMPC

R+×Rn → R, represent Lyapunov function for our control problem. Then for local uniform

asymptotic stability, the Lyapunov function V ∗
T
(t,Xt) is:

• locally positive definite function i.e., V ∗
T
(t,0) = 0 and α(|X|) ≤ V ∗

T
(t,X) ≤ β(|X|), ∀X ∈
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ΩX ,

• locally decreasing function i.e., V ∗
T
(t+ 1,X) ≤ V ∗

T
(t,X)

where, α(·), β(·) are K class function; ΩX is n dimensional space containing all feasible

phasor voltage vectors (constraint C4).

Generally, for model predictive control algorithms, cost functions is selected as Lyapunov

function, i.e.,

V ∗
T
(t,Xt) = J(Xt,Qgt)

=
∑t+T−1

t (QgTt RtQgt + (Xt −Xo)
TSt(Xt −Xo))

+(Xt+T −Xo)
TSf (Xt+T −Xo)

= [XT
t Qg∗T

t · · ·Qg∗T
t+T

]Θt[X
T
t Qg∗T

t · · ·Qg∗T
t+T

]T

(5.23)

where, Qg∗T
t · · ·Qg∗T

t+T
is the sub-optimal solution of problem (5.22), and Θt is (n +

Tn)x(n + Tn) matrix. Elements of Θt can be computed from Rt · · ·Rt+T−1, St · · · St+T−1,

Sf , J
F

t · · ·JF

t+T
, AF

t · · ·AF

t+T
and BF

t · · ·BF
t+T−1. For V ∗

T
(t,Xt) to be positive definite and

bounded, Θt needs to be bounded as, Qg∗T
t and XT

t are always bounded by constraints C3

and C4 of (5.22). Since, Rt, St, Sf , A
F

t BF

t are bounded ∀t, for Θt to be bounded, Jacobian

JF

t must be bounded ∀t. As stated in stability conditions of state estimate (section IV.B),

Jacobian is always bounded under normal operating conditions. Also, the cost function

is always greater than zero. So, the Lyapunov function V ∗
T
(t,Xt) is always bounded and

positive definite.

The decreasing condition for Lyapunov function is satisfied by quasi-infinite behavior

of control problem (5.21). By setting higher weight on final state deviation and thus final

state cost, the Lyapunov cost function decreases along the horizon period. Thus with the

persistent feasibility condition and boundedness of Jacobian with time, the local uniform

asymptotic stability can be guaranteed. It can be noticed that this stability assume as accu-

rate estimate of state Xt. Also linearization errors are neglected in this analysis. Stochastic

stability and robustness analysis under linearization error and bounded disturbances will be

analyzed as part of our future work.
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5.8 Simulation
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Figure 5.4: Three phase radial distribution network with DG

In this section, we apply the proposed estimation and control strategy on a three phase

radial distribution network. The network model is shown in figure 5.4. Following is the

simulation setup:

• System base values: 4.16kV and 100kVA

• Number of nodes: Grid + 10 nodes

• Inter node distance starting from grid:

{800, 1200, 400, 1200, 800, 400, 1600, 800, 1200, 400}ft.

• Constant line impedance per mile:




0.3465 + 1.0179i 0.1560 + 0.5017 0.1580 + 0.4236i
0.1560 + 0.5017i 0.3375 + 1.0478 0.1535 + 0.3849i
0.1580 + 0.4236i 0.1535 + 0.3849i 0.3414 + 1.0348i





• Load distribution:

{Slabc1 , Slabc2 , Slabc2 , Slabc3 , Slabc3 , Slabc3 , Slabc2 , Slabc3 , Slabc1 , Slabc3 },

where Slabc(·) := Plabc(·) +Qlabc(·) i; Pl
abc
(·) and Qlabc(·) are the time series waveform.

• DG distribution:

{0, Sgabc1 , 0, 0, Sgabc2 , 0, Sgabc3 , 0, 0, Sgabc4 },

where Sgabc(·) are the time series waveform.
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• Phase imbalance tolerance: ǫ = 0.96, i.e. phase difference between any two phases is

between 115o to 125o.

• Reactive power injection constraint: Qgmax ≤ 0.6Sgmax, i.e., upto only 60% of total

power is avilable for reactive power supply by individual distributed generators.

• The time series waveforms are modeled by AR(1) process with following deterministic

component:

(for load) D
(·)1
t = D+0.05sin(6t/T+0.1)π+0.01sinπt/T ; D

(·)2
t = D+0.025sin(6t/T+

0.2)π + 0.1sinπt/T + 0.025sin(6t/T + 0.3)π; D
(·)3
t = D + 0.15sin(t/T )π where D =

0.6 for D
(P l)·
· and 0.3 for D

(Ql)·
· .

(for DG) D
(·)1
t = D+0.05sin(6t/T+0.1)π+0.01sinπt/T ; D

(·)2
t = D+0.025sin(6t/T+

0.2)π + 0.1sinπt/T + 0.025sin(6t/T + 0.3)π, with D = 0.35;

Setting a lower scalar constant (D) for distributed generators, relative to that of load

ascertains that distributed generators are of low capacity, and they can’t themselves

support the distribution network. Time series waveforms are considered for 24 hours

period, and with sampling time of 10mins, T = 144. The deterministic component are

chosen to be sinusoidal to represent PV based DGs [112]. AR(1) coefficients for load

and generator are assumed to be within the range [0.6, 1.5] and [0.6, 1], respectively.

• Measurements: Three phase inter node current phasor Iacbi,j between node {i, j} =

{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}; Voltage phasor [V abc
i ; θabct at node i= {2, 4, 6, 8, 10}

• Nonlinear process and measurement noise: zero mean i.i.d. Gaussian with covariance

of order of 10−3 per unit values.

Firstly, we consider the state estimation analysis, and verify Lemma 1, relating critical

packet drop rate with load AR(1) coefficients. To simplify the discussion, we assume only

one phase is active over the network. The time invariant Jacobian condition (JF
t+1 ≈ JF

t)

is satisfied by setting a small sampling duration of 10mins. Figure 5.5 shows estimated
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Figure 5.5: Voltage magnitude estimate of node 5 with packet drop

voltage magnitude of node 5 with four different rates of packet drop. When the drop rate

is below 35%, voltage estimate closely track the true state. This behavior is typical of all

nodes. However, at some sampling instants because of large packet drop rate there is large

deviation. These intermittent large deviation can limit the operation of smart grid. In our

simulation setup, the largest AR(1) coefficient for load is 1.5. According to Lemma 1, the

critical probability for measurement update Λc for the bounded error covariance matrix must

be greater that 0.555. Placing Λc = 0.555 in (5.16) gives λc = 0.63. This critical packet

drop rate (1− λc) is 37%. This can be verified from figure 5.6, where the estimation starts

getting unbounded around packet drop rate of 37%. This verifies the theoretical analysis.

Figure 5.7 shows tracking of voltage estimate with the sampling duration of 10mins and

20mins. The drop rate is set to 30%. This ensures that for 10mins sampling duration,

JF
t+1 ≈ JF

t and voltage estimate tracks true value without large deviations. For sampling

duration set to 20mins, we cannot ensure JF
t+1 ≈ JF

t for all time instants. This is shown in
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Figure 5.6: RMS estimate error with different packet drop rates

figure 5.8, where spectral radius of the state transition matrix exceeds 1.5 (maximum load

AR(1) coefficients). This increse in spectral radius causes estimate to deviate from the true

value as shown in figure 5.7. Thus sampling duration plays a crucial role in computing the

critical packet drop rate.

Next, we consider the three phase distribution network for voltage/VAR support by

DG. Figure 5.9, shows the aggregate reactive power injected by DG with different time

horizons (T = 1, 2, 3, i.e., 10mins, 20mins and 30mins). It can be observed that by not

computing control input myopically, we can better manage the reactive power resource. That

is, with an increase in time horizon, the aggregate injected reactive power needed for meeting

the distribution network constraints gets reduced. Also, the decremental improvement in

reactive power requirement is more when horizon time is incremented from T = 1 to

2, compared to T = 2 to 3. Further, with increasing horizon time there is an increase

in computational complexity and computation time. Hence, for a real time voltage/VAR
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Figure 5.7: State estimate with different sampling duration at drop rate of 30%

control, a reasonable time horizon must be selected based on trade off in performance and

computational complexity. Another observation from figure 5.9 is reduction in variability

of required aggregate reactive power. With increase in time horizon, the reactive power

requirement gets averaged over time. This is an important characteristic of model predictive

control where, present control input is computed considering the prediction of future control

inputs. Thus a sudden increase in reactive power requirement (at time step 12) is avoided

by increasing the time horizon.

5.9 Summary

This chapter presents a CPS case study on control framework for voltage/VAR support

via DGs in smart distribution networks. Firstly, a dynamic nonlinear input to state model

is formulated for the control framework, which accommodates power flow equations along
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Figure 5.8: Spectral radius with different sampling duration at drop rate of 30%

with load and DG forecasts. Then, an EKF based dynamic state estimation approach is

designed, followed by establishing the system conditions under which the stochastic stability

can be ensured. The analysis considers communication network impact by modeling packet

drops as independent Bernoulli random process. It is shown that under certain system

conditions, a relation between the largest AR(1) coefficients of load and the critical packet

drop rate can be established such that error covariance matrix is bounded. Finally, a

NMPC problem is formulated for voltage/VAR support by DG injected reactive power. A

successive time varying linear approximation strategy is proposed to linearize the nonlinear

control problem with consideration of minimizing the linearization error. The proposed

approach and analysis is validated by simulation of a radial distribution network.
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Figure 5.9: Aggregate reactive power injection with different horizon time
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Chapter 6

Conclusion & Future Work

In this concluding chapter, we summarize the contributions of this dissertation and discuss

future research directions.

6.1 Conclusion

This dissertation addresses estimation and control solutions for spatially distributed cy-

ber physical systems (CPS). Spatially distributed CPS are physical systems such as smart

distribution networks, smart highways and city transportation networks, smart irrigation

networks, etc., where state of the underlying system is spatially distributed in physical space.

Since such systems are typically large dynamical systems, we essentially consider the mea-

surement scenario with multiple sensors arbitrarily deployed over physical space to jointly

sense the complete system. The sensed measurements are collected at central estimation

and control unit (ECU) via individual sensor to ECU communication links.

Similarly, for implementing control solution we consider multiple actuators arbitrarily

deployed over physical space to jointly control of all state of the system. Further, the

computed control solution at ECU is communicated to individual actuators via separate

communication links. We denote these scenarios as dispersed sensor and dispersed actuator

scenario. Since, in practice communication links are susceptible to random failures, the

overall estimation and control process is subjected to: (1) partial observation updates in

estimation process; and (2) partial actuator action implementation in control process. Thus,
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we study statistical properties of estimation error and Lyapunov function iteration over time,

and establish necessary and sufficient network conditions for ensuring stability of overall

ECU operation.

First addressing state estimation, we consider Kalman filter for state estimation in spa-

tially distributed CPS. The measurements are sensed by dispersed sensors, and are encoded

in packets to be sent to ECU over individual communication links. The random drop of

packets over communication links result in: (1) random measurement loss; and (2) partial

observation updates in Kalman filter. This in effect results in stochastic error covariance

iteration over time, making offline stability analysis very difficult. Thus, we study statistical

properties of error covariance iteration, and establish existence of critical probabilities on

sensor communication links for ensuring convergence of error covariance matrix. Next, we

use information theoretic concepts to establish the analogy in convergence with gathered

measurement (measurements are first collected and then sent over single communication

link) scenario. Using this analogy, we compute corresponding upper and lower bounds on

critical probability of successful measurement reception from individual sensors by formu-

lating a optimization / feasibility problem.

The analysis is further enhanced by exploiting spatially correlation between states in

estimating lost measurements from received measurements. This eventually results in re-

defining new set of measurements for all possible measurement loss configurations, followed

by conclusive analysis that a higher degree of information loss or poor network quality can

be tolerated to archive a certain estimation accuracy. The analysis also accommodates

correlated link failure scenario by placing constraints of joint probability mass function in

computation of lower and upper bound on critical measurement loss rates.

Next, addressing control solution implementation, we consider linear quadratic regulator

in spatially distributed CPS. The computed control solution is encoded in packets and is sent

to respective actuators over separate communication links. The random drop of packets over

network result in: (1) random actuator input loss; and (2) partial control solution imple-
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mentation. We study Lyapunov stability of control process in this scenario. The Lyapunov

function iteration over time is a stochastic process, making offline stability analysis very

difficult. Thus, we study statistical properties of Lyapunov function iteration, and establish

the existence of critical probabilities on individual actuator links for ensuring convergence of

Lyapunov function. We utilize the stability results of unified actuator (all actuator actions

are communicated over single link) scenario and compute upper and lower bounds on critical

probabilities of individual actuator links, by formulating optimization/feasibility problem.

The feasibility solution distributes the control action loss of unified actuator scenario to loss

in individual communication links of dispersed actuators.

Finally, we present a case study on networked control framework for voltage/VAR sup-

port via distributed generation at distribution network level. Firstly, a dynamic nonlinear

input to state model is formulated for the control framework, which accommodates power

flow equations along with load and DG forecasts. Then, an EKF based dynamic state esti-

mation approach is designed, followed by establishing the system conditions under which the

stochastic stability can be ensured. The analysis considers communication network impact

by modeling packet drops as independent Bernoulli random process. It is shown that under

certain system conditions, a relation between the largest AR(1) coefficients of load and the

critical packet drop rate can be established such that error covariance matrix is bounded.

Finally, a NMPC problem is formulated for voltage/VAR support by DG injected reactive

power. A successive time varying linear approximation strategy is proposed to linearize the

nonlinear control problem with consideration of minimizing the linearization error. The pro-

posed approach and analysis is validated by simulation of a radial distribution network. The

overall case study illustrates how a CPS architecture can be effective within the distributed

Smart Grid framework.

In summary, following open question on estimation and control in spatially distributed

CPS are addressed in this dissertation:

• We analyze Kalman filter based state estimation process stability in spatially dis-
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tributed CPS scenario, monitored by multiple sensors individually communicating the

measurements to central estimation unit.

• We analyze LQR based control solution stability in spatially distributed CPS scenario,

implemented over multiple actuators with control actions communicated over separate

communication links from central control unit.

• We discuss CPS architecture for voltage/VAR support in smart distribution networks

via distributed generation by formulating a dynamic nonlinear input to state model.

• We discuss extended Kalman filter based state estimation solution in smart distribu-

tion networks, with direct and indirect local measurements communicated to central-

ized state estimation unit via individual communication links.

• We discuss nonlinear model predictive control solution in smart distribution networks,

with necessary reactive power injection input computed by linear time varying ap-

proximation strategy.

6.2 Future Work

In this section, we present possible future research direction in estimation and control for

spatially distributed CPS. We first discuss some extensions to our work proposed in chapter

3-5.

• In our stability analysis in chapter 3-4, we assumed time homogeneous linear model

as the dynamical system model of underlying spatially distributed CPS. Our analysis

can be extended to time varying linear system model by: (1) performing worst case

stability analysis; (2) perturbation analysis of eigen values of state transition matrix.

• Our stability analysis for spatially distributed CPS in chapter 3-4, can be extended for

extended Kalman filter and nonlinear model predictive control considering nonlinear

system model. In this case we have to consider the impact of linearization error along
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with maximum value of Jacobian matrix in error covariance iteration and Lyapunov

function iteration, respectively. Similar to time varying system model, approaches

like, (1) worst case stability analysis; and (2) eigen value perturbation analysis can be

adopted.

• The linear quadratic control solution analyzed in chapter 4 can be extended for zero

order hold condition in actuator implementation. In this configuration, whenever

there is control action loss actuator continues to implement the same control action

communicated to it in previous time steps. Thus, the system model needs to be

modified appropriately followed by similar convergence analysis for Lyapunov function

iteration.

• Another possible extension of our work is to exploit spatial correlation in estimating

lost control action at the actuator. Here, we essentially require computation capability

in actuators. This enables us to estimate lost control action by communication with

neighboring actuators and spatial correlation model.

Next, we present some new areas of investigation in estimation and control for spatially

distributed cyber physical systems. A subset of possible future research works is discussed

below.

• Compressed sensing : Estimation and control solution in spatially distributed CPS can

be efficiently implemented by exploiting concepts of compressed sensing [116],[117],[118].

Compressive sensing in state estimation is essentially use of l1 regularization for recon-

structing state vector from few random sample measurements. Compressive sensing

for spatially distributed CPS architecture is still an unexplored area and is important

to investigate estimation process stability in this configuration.

• Network delay : In our stability analysis on estimation and control, we assumed de-

layed measurements and control actions are not applicable for measurement updates

in Kalman filter, and control updates in linear quadratic solution. However, delayed
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measurement and control inputs can be exploited with limited information, and can

improve the estimation and control accuracy in poor network conditions [119], [120].

Thus, it is worth exploring inclusion of delayed measurements and control actions in

stability analysis of spatially distributed CPS.

• Quantization: The physical system operates in analog domain, while digital signal

processing occurs with quantized data. The quantization error in our analysis is

accommodated as process noise, and measurement noise. However, some researchers

have separately analyze design of quantizer in order to reduce quantization error [5],

[121]. Thus, one can explore new designs in quantizers for spatial distributed CPS

architectures, considering its impact on overall stability of estimation and control

process.

• Distributed/decentralized signal processing : Our work in this dissertation considers

centralized computation of state estimation and control solution. In future efforts,

decentralized/distributed computation of estimation and control solution in spatially

distributed CPS architecture can be investigated in order to address computational

cost incurred in centralized computation [122], [123].
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Appendix A

Proofs of Chapter 3

A.1 Proof of lemma 3.1

Consider two matrices X,Y � 0 and let Z = αX+ (1− β)Y, where β ∈ [0, 1], then

gα(Z) = φ(KZ,1, · · · ,KZ,2k−1,Z) = φ(KZ,1, · · · ,KZ,2k−1, βX+ (1− β)Y)
=(a) βφ(KZ,1, · · · ,KZ,2k−1,X) + (1− β)φ(KZ,1, · · · ,KZ,2k−1,Y)
�(b) βφ(KX,1, · · · ,KX,2k−1,X) + (1− β)φ(KY,1, · · · ,KY,2k−1,Y)
= βgα(X) + (1− β)gα(Y)

where, (a) follows due to auxiliary function φ(KX,1, · · · ,KX,2k−1,X) being affine in X, and

(b) is due to equation (3.10). Thus, gα(X) is a concave function of X � 0.

A.2 Proof of lemma 3.2

Consider two matrices such that 0 � X � Y, then gα(X) = φ(KX,1, · · · , KX,2k−1,X) �

φ(KY,1, · · · ,KY,2k−1,X) � φ(KY,1, · · · ,KY,2k−1,Y) = gα(Y) where, first inequality is

due to equation (3.10) and second inequality is due to quadratic form of auxiliary function

φ(KX,1, · · · ,KX,2k−1,X) with X � 0. Thus, gα(X) is monotonously nondecreasing function

of X � 0.
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A.3 Proof of lemma 3.3

Here, we prove lemma 3.3 for control solution implementation via two actuators, and then

extend it for generality. let fix λ2 then,

gλ1
1
λ2(X) = −(λ11 − λ21)λ2

(

AXC′ (CXC′ +R)−1 CXA′
)

(λ11 − λ21)
(

AXC′
1 (C1XC′

1 +R11)
−1 C1XA′

)

+λ2(λ
1
1 − λ11)

(

AXC′
2 (C2XC′

2 +R22)
−1 C2XA′

)

= (λ21 − λ11)λ2
[

AXC′ (CXC′ +R)−1 CXA′

−AXC′
1 (C1XC′

1 +R11)
−1 C1XA′

]

+(λ21 − λ21)(1− λ2)
(

AXC′
2 (C2XC′

2 +R22)
−1 C2XA′

)

Now, given λ11 ≤ λ21, we have (λ21 − λ11)(1 − λ2)(AXC′
2 (C2XC′

2 +R22)
−1 C2XA′) � 0.

Also,
AXC′ (CXC′ +R)−1 CXA′ −AXC′

1 (C1XC′
1 +R11)

−1 C1XA′

= AXC′ (CXC′ +R)−1 CXA′ −AXC′
(

CXC+ R̃
)−1

CXA′

= AXC′

[

(CXC+R)−1 −
(

CXC′ + R̃
)−1

]

CXA′

where, R̃ = R+

[

0 0
0 σ2I

]

with σ → ∞. Clearly,

(R+CXC′)−1 �
(

CXC′ + R̃
)−1

→ (CXC′ +R)−1 �
(

CXC′ + R̃
)−1

and equivalently,

AXC′
[

(CXC+R)−1 − (C1XC′
1 +R11)

−1]C1XA′ � 0.

Thus, gλ1
1
λ2(X)− gλ2

1
λ2(X) � 0, for λ11 � λ21.

A.4 Proof of lemma 3.4

(1). Since, ∃Y � 0 such that Y ≻ L(Y) (by selecting proper λ for individual actuator

communication links), we can select a scalar 0 ≤ r < 1 such that L(Y) ≺ rY . Next,

∀W � 0, we can select m ≥ 0 such that 0 � W � mrY . Further, L(Y) being monotonically

nondecreasing linear function of Y we get, 0 � L(W) � L(mY) = mL(Y) � mrY . After

N iterations we get, 0 � LN(W) � mrNY . As, N → ∞, rN → 0, ⇒ LN(W) → 0 for any
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W � 0.

YN = L(YN−1) + V = LN(Y0) +
∑N−1

t=0 Lt(V)
� m0r

NY +
∑N−1

t=0 mvr
NY = (m0r

N +mv
1−rN

1−r
)Y

� (m0 +
mv

1−r
)Y

Thus, the recursion of Yt is bounded.

A.5 Proof of lemma 3.5

Consider the matrices, F̄i = A + K̄1C and the auxiliary function L(P̄) = α0(AP̄A′) +
∑2k−1

k=1 αi(F̄iP̄F̄′
i). Notice that, P̄ ≻ φ(K̄1, · · · ,K2k−1, P̄) = L(P̄) +

∑2k−1
k=1 K̄iRiK̄′

i � L(P̄).

Thus, by lemmas 3.4 and 3.1 we have,

Pt+1 = gα(Pt) � φ(K̄1, · · · , K̄2k−1,Pt) = L(Pt) +
2k−1
∑

k=1

K̄iRiK̄′
i

and we conclude that the sequence Pt is bounded.

A.6 Proof of theorem 3.1

Let MARE (4.12) be initialized at matrix X0 � 0. Then, Xt = gtα(X0). Following the

lemma 4.2, we deduce X0 � X1 � X2 · · ·MX0
. Here we use lemma 4.6 to show that the

trajectory converges and is bounded, i.e. limt→∞Xt = X̄. We also notice that, X̄ is a fixed

point in MARE iteration and is solution of MARE at steady state.

Next we show that MARE initialized at Y0 � X̄ also converges, and also to same limit

X̄. Let,
K̄i = −AX̄H′

i(HiX̄H′
i +Ri)

−1 & F̄i = A+ K̄iHi

L̂(Y) = α0(AYA′) +
∑2k−1

k=1 F̄iYF̄′
i

Observe that, X̄ = gα(X̄) = L(X̄) +
∑2k−1

k=1 K̄iRiK̄′
i ≻ L̂(X̄) . Thus, L̂ meets condition of

lemma 3.4, i.e. limt→∞L̂t(Y) = 0. Now suppose, Y0 � X̄, then Yt = gtα(Y0) � X̄ ∀ t as
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gα(.) is non decreasing function. Additionally, we can notice 0 �

(Yt+1 − X̄) = gα(Yt)− gα(X̄) = φ(KYt,1, · · · ,KYt,2k−1,Yt)
−φ(KX̄,1, · · · ,KX̄,2k−1, X̄)
� φ(KX̄,1, · · · ,KX̄,2k−1,Yt)− φ(KX̄,1, · · · ,KX̄,2k−1, X̄)

= α0A(Yt − X̄)A′ +
∑2k−1

i=1 FX̄,i(Yt − X̄)F′
X̄,i

= L̂(Yt − X̄)

Thus, 0 � limt→∞(Yt − X̄) → 0, proving the unique convergence to X̄.

A.7 Proof of theorem 3.2

Let all sensor probabilities be set at {λc1, · · · , λck} except for sensor j, such that X = gα (X)

is unbounded when λj = 0 and bounded when λj = 1. Since, gα is monotonically nonde-

creasing function in λj (Lemma 4.3), one can choose λcj = {inf.λ∗j : λj > λ∗j} ⇒ E [Pt] is

bounded ∀P0 � 0.

A.8 Proof of lemma 3.6

X � 0 ⇒ FiXF′
i � 0; Similarly, R � 0 ⇒ KiRK′

i � 0, ∀i = 1, · · · , 2k − 1. Thus,

gα(X) = φ(KX,1, · · · ,KX,2k−1,X) � α0AXA′ +
∑2k−2

i=1 αiA
′XF (Hi,Gi,X)XA.

A.9 Proof of lemma 3.7

Taking expectation over both sides of (3.21) and following Lemma 3.1, we can get (3.22).
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Appendix B

Proofs of Chapter 4

B.1 Proof of lemma 4.1

Consider two matrices X,Y � 0 and let Z = αX+ (1− β)Y, where β ∈ [0, 1], then

gα(Z) = φ(KZ,1, · · · ,KZ,2k−1,Z) = φ(KZ,1, · · · ,KZ,2k−1, βX+ (1− β)Y)
=(a) βφ(KZ,1, · · · ,KZ,2k−1,X) + (1− β)φ(KZ,1, · · · ,KZ,2k−1,Y)
�(b) βφ(KX,1, · · · ,KX,2k−1,X) + (1− β)φ(KY,1, · · · ,KY,2k−1,Y)
= βgα(X) + (1− β)gα(Y)

where, (a) follows due to auxiliary function φ(KX,1, · · · ,KX,2k−1,X) being affine in X, and

(b) is due to equation (4.14). Thus, gα(X) is a concave function of X � 0.

B.2 Proof of lemma 4.2

Consider two matrices such that 0 � X � Y, then gα(X) = φ(KX,1, · · · , KX,2k−1,X) �

φ(KY,1, · · · ,KY,2k−1,X) � φ(KY,1, · · · ,KY,2k−1,Y) = gα(Y) where, first inequality is

due to equation (4.14) and second inequality is due to quadratic form of auxiliary function

φ(KX,1, · · · ,KX,2k−1,X) with X � 0. Thus, gα(X) is monotonously nondecreasing function

of X � 0.
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B.3 Proof of lemma 4.3

Here, we prove lemma 4.3 for control solution implementation via two actuators, and then

extend it for generality. Firstly, notice that FHi,X := 2I−H′
iXHi (Ri +H′

iXHi)
−1 � 0, ⇒

A′XHi (Ri +H′
iXHi)

−1 FHi,XH
′
iXA � 0. Next, let fix λ2 then,

gλ1
1
λ2(X) = −(λ11 − λ21)λ2

(

A′XB (R+B′XB)−1 FB,XB
′XA

)

(λ11 − λ21)
(

A′XB1 (R11 +B′
1XB1)

−1 FB1,XB
′
1XA

)

+λ2(λ
1
1 − λ11)

(

A′XB2 (R22 +B′
2XB2)

−1 FB2,XB
′
2XA

)

= (λ21 − λ11)λ2
[

A′XB (R+B′XB)−1 FB,XB
′XA

−A′XB1 (R11 +B′
1XB1)

−1 FB1,XB
′
1XA

]

+(λ21 − λ21)(1− λ2)
(

A′XB2 (R22 +B′
2XB2)

−1 FB2,XB
′
2XA

)

Now, given λ11 ≤ λ21, we have (λ
2
1−λ11)(1−λ2)(A′XB2 (R22 +B′

2XB2)
−1 FB2,XB

′
2XA) �

0. Also,

A′XB (R+B′XB)−1 FB,XB
′XA−A′XB1 (R11 +B′

1XB1)
−1 FB1,XB

′
1XA

= A′XB (R+B′XB)−1 FB,XB
′XA−A′XB

(

R̃+B′XB
)−1

FB,XB
′XA

= A′XB

[

(R+B′XB)−1 FB,X −
(

R̃+B′XB
)−1

FB,X

]

B′XA

where, R̃ = R+

[

0 0
0 σ2I

]

with σ → ∞. Clearly,

(R+B′XB)−1 �
(

R̃+B′XB
)−1

→ (R+B′XB)−1 FB,X �
(

R̃+B′XB
)−1

FB,X

and equivalently,

A′XB
[

(R+B′XB)−1 FB,X − (R11 +B′
1XB1)

−1 FB1,X

]

B′
1XA � 0.

Thus, gλ1
1
λ2(X)− gλ2

1
λ2(X) � 0, for λ11 � λ21.

B.4 Proof of lemma 4.4

X � 0 ⇒ F′
iXFi � 0; Similarly,R � 0 ⇒ KiRK′

i � 0. Thus, gα(X) = φ(KX,1, · · · ,KX,2k−1,X) �

α0A
′XA+

∑2k−2
i=1 αiA

′XZ (Hi,Gi,X)XA.
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B.5 Proof of lemma 4.5

Taking expectation over both sides of (4.18) and following Lemma 4.1, we can get (4.19).

B.6 Proof of lemma 4.6

(1). Since, ∃Y � 0 such that Y ≻ L(Y) (by selecting proper λ for individual actuator

communication links), we can select a scalar 0 ≤ r < 1 such that L(Y) ≺ rY . Next,

∀W � 0, we can select m ≥ 0 such that 0 � W � mrY . Further, L(Y) being monotonically

nondecreasing linear function of Y we get, 0 � L(W) � L(mY) = mL(Y) � mrY . After

N iterations we get, 0 � LN(W) � mrNY . As, N → ∞, rN → 0, ⇒ LN(W) → 0 for any

W � 0.

YN = L(YN−1) + V = LN(Y0) +
∑N−1

t=0 Lt(V)
� m0r

NY +
∑N−1

t=0 mvr
NY = (m0r

N +mv
1−rN

1−r
)Y

� (m0 +
mv

1−r
)Y

Thus, the recursion of Yt is bounded.

B.7 Proof of lemma 4.7

Consider the matrices, F̄i = A + BK̄′
1 and the auxiliary function L(P̄) = α0(A

′P̄A) +
∑2k−1

k=1 αi(F̄
′
iP̄F̄i). Notice that, P̄ ≻ φ(K̄1, · · · ,K2k−1, P̄) = L(P̄) +

∑2k−1
k=1 K̄iRiK̄′

i � L(P̄).

Thus, by lemmas 4.6 and 4.1 we have,

Pt+1 = gα(Pt) � φ(K̄1, · · · , K̄2k−1,Pt) = L(Pt) +
2k−1
∑

k=1

K̄iRiK̄′
i

and we conclude that the sequence Pt is bounded.

B.8 Proof of theorem 4.1

Let MARE (4.12) be initialized at matrix X0 � 0. Then, Xt = gtα(X0). Following the

lemma 4.2, we deduce X0 � X1 � X2 · · ·MX0
. Here we use lemma 4.6 to show that the
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trajectory converges and is bounded, i.e. limt→∞Xt = X̄. We also notice that, X̄ is a fixed

point in MARE iteration and is solution of MARE at steady state.

Next we show that MARE initialized at Y0 � X̄ also converges, and also to same limit

X̄. Let,
K̄i = −A′X̄Hi(Ri +H′

iX̄Hi)
−1 & F̄i = A+HiK̄′

i

L̂(Y) = α0(A
′YA) +

∑2k−1
k=1 F̄′

iYF̄i

Observe that, X̄ = gα(X̄) = L(X̄) +
∑2k−1

k=1 K̄iRiK̄′
i ≻ L̂(X̄) . Thus, L̂ meets condition of

lemma 4.6, i.e. limt→∞L̂t(Y) = 0. Now suppose, Y0 � X̄, then Yt = gtα(Y0) � X̄ ∀ t as

gα(.) is non decreasing function. Additionally, we can notice 0 �

(Yt+1 − X̄) = gα(Yt)− gα(X̄) = φ(KYt,1, · · · ,KYt,2k−1,Yt)
−φ(KX̄,1, · · · ,KX̄,2k−1, X̄)
� φ(KX̄,1, · · · ,KX̄,2k−1,Yt)− φ(KX̄,1, · · · ,KX̄,2k−1, X̄)

= α0A
′(Yt − X̄)A+

∑2k−1
i=1 F′

X̄,i
(Yt − X̄)FX̄,i

= L̂(Yt − X̄)

Thus, 0 � limt→∞(Yt − X̄) → 0, proving the unique convergence to X̄.

B.9 Proof of theorem 4.2

Let all actuator probabilities be set at {λc1, · · · , λck} except for actuator j, such that X =

gα (X) is unbounded when λj = 0 and bounded when λj = 1. Since, gα is monotonically

nondecreasing function in λj (Lemma 4.3), one can choose λcj = {inf.λ∗j : λj > λ∗j} ⇒ E [Pt]

is bounded ∀P0 � 0.

B.10 Derivation of equation (4.15)

Let B =
[

H G
]

, then B (R+B′XB)−1 can be expanded as,

=
[

H G
]

([

RH RHG

RGH RG

]

+

[

H′

G′

]

X
[

H G
]

)−1

=
[

HA+GC HB +GD
]
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where, if K = RH+H′XH; L = RHG+H′XG; M = RGH+G′XH; and N = RG+G′XG′

then
A = K−1 +K−1L (N −MK−1L)

−1
MK−1

B = −K−1L (N −MK−1L)
−1

C = −N−1M (K − LN−1M )
−1

D = N−1 + N−1M (K − LN−1M )
−1

LN−1.

Next, F(B,R,X) = 2I−B′XB (R+B′XB)−1 is expressed as,

F(B,R,X) =

[

2I−H′XHA−H′XGC −H′XHB −H′XGD
−G′XHA−G′XGC 2I−G′XHB −G′XGD

]

Similarly, B (R+B′XB)−1 F(B,R,X)B′ is expressed as,

(HA+GC ) (2I−H′XHA−H′XGC )H′ (a)
+ (HB +GD) (−G′XHA−G′XGC )H′ (b)
+ (HA+GC ) (−H′XHB −H′XGD)G′ (c)
+ (HBGD) (2I−G′XHB −G′XGD)G′ (d)

Lastly, expanding part (a) and substituting expression of A and K we get,

H (RH +H′XH)−1 (2I−H′XH (RH +H′XH)−1)H′

+HK−1L (N −MK−1L)
−1

MK−1 (2I−H′XHK−1)H′ (e)

+HK−1
(

2I−H′XHK−1L (N −MK−1L)
−1

MK−1
)

H′ (f)

(B.1)

Thus, we can finally express

H (RH +H′XH)−1 (2I−H′XH (RH +H′XH)−1)H′ =

B (R+B′XB)−1 (2I−B′XB (R+B′XB)−1)B′ −Z (H,G,X)
(B.2)

where, Z (H,G,X) = (b) + (c) + (d) + (e) + (f).
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