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I. INTRODUCTION

Since knowledge representation is a major part of artificial
intelligence, an effort started in the 1970's to find ways to
represent knowledge in a form compatible with a computer. Con-
ceptual graphs, a form of logic notation, led to the use of logic
as a means of representing knowledge in the form of a programming
language (1:137). PROLOG is the most popular logic programming
language and is based on predicate calculus (first-order logic).

PROLOG gained worldwide attention when the Institute for New
Generation Computing Technology (ICOT) of Japan selected PROLOG
as the kernel language for their fifth generation computer system
(2:160) . Although LISP has dominated the attention of research
in this country as an artificial intelligence language (3:395),
there has been increasing interest in PROLOG since ICOT's an-
nouncement.

Interest in PROLOG leads to a search for a machine architec-
ture on which the language will run efficiently. In order to
arrive at such an architecture, it is certainly necessary to
understand the inference mechanism on which PROLOG is based.
This report outlines an algorithm and data structures for a
PROLOG interpreter. The algorithm and data structures herein are
based upon a high level algorithm by Hogger (4:190). Al though é

full implementation was not done, approximately 1500 lines of C



code were written to test many of the concepts,

The organization of this report is as follows. Chapter II
gives an overview of the PROLOG language, including syntax and
semantics. Chapter III introduces the high level algorithm and
major data structures the interpreter uses. Chapter IV presents
a scheme for codifying the PROLOG database in a form that is
compact and conducive to qguick unification (pattern matching).
It should be mentioned that the literature is sparse for this
portion of the interpretive process. Chapters V through IX
detail the important steps of the interpreter, with a summary of
the process given in Chapter X. Suggestions that merit more
research for computer architectures on which to run PROLOG more

efficiently are given in Chapter XI.



II. OVERVIEW OF THE PROLOG LANGUAGE

A PROLOG program is a collection of special first order
logic clauses called Horn clauses (5:222). Also known as proce-
dures, these clauses are analogous to natural language sentences,
a feature that makes PROLOG relatively easy to use. These PROLOG
procedures can be used to represent either assertions or rules.
The interpreter uses the database of rules and facts to determine
if a query made by the user to the database can be deduced using
a technique called resolution (6:80). A description of the
syntax and semantics of PROLOG, along with an overview of resolu-
tion follow in this chapter.

The literal is the fundamental unit of a logic program. A
literal has a predicate part and a sequence of zero or more
arguments. The number of arguments is referred to as its arity.
For example, "a(b,c,d)" is a literal with predicate "a" and
arguments "b", "c", and "d" for an arity of three.

The arguments of a literal are also called terms. Terms can
be constants, variables, or a compound term. This implies a
recursive definition of the language. This allows structured
arguments and the possibility to represent the literals as tree
structures. An example tree representation for the literal

"a(b,c(d,e),f)" is shown in Figure 1.



FIGURE 1

Tree Representation of a Literal

The constants of PROLOG are either numbers or atoms, the
latter being a sequence of characters starting with a lower case
letter. variables, which must be capitalized in PROLOG, stand
for an undetermined object, and are local to a particular proce-
dure.

A procedure consists of a head and body, separated by ":-",
the implication symbol. The head is made of zero or one literal.
A procedure with no head is called the goal statement or query.
There 1is only one headless procedure in a PROLOG program. The
body 1is comprised of zero or more literals, known as calls.
Examples of a headless and a headed procedure are shown below.

:t= da.
b :- ¢, d.

The semantics of a PROLOG rule is interpreted such that the
procedure head 1is true if all the calls of the body are true.
For example, the rule, "today is Monday if yesterday was Sunday",

can be represented by:

today (monday) :- yesterday (sunday).



The assertions of the database are those procedures without
calls. A possible assertion to represent is "Yesterday was

Sunday".
yesterday (sunday).

A possible goal statement is the query corresponding to

"What is today?"
s—today (X) .

How a query is solved will now be discussed. Resolution,
discovered by J. Alan Robinson, is the principle on which the
PROLOG interpreter is based. Resolution is an inference rule in
which attempts to show that a query is a logical consequence of
the database by proving that the negation of that query is incon-
sistent.

What this amounts to is the following scenario. A match is
attempted between the goal and the head of one of the <clauses.
In order for a succeesful match to be made, the predicate and
arguments must match. A variable will match with anything if it
has no value bound to it or has an identical value as the argu-
ment in gquestion. Each call of the procedure's body is matched
to heads of others procedures in the database. If any of these
procedures have calls, all of these calls must also be matched to
procedures. This 1is continued until all literals have been
matched, or until no solution can be found. To illustrate, the
previous example is used.

today (monday) :- yesterday (sunday).

yesterday (sunday).
:= today (X).



The goal, ":- today (X)", is matched with the head of the
first rule, binding the variable "X" to the atom "monday". This
leaves one unmatched 1literal, “yésterday (sunday)". It is
matched with the second clause, and the query is solved.

A high level algorithm and associated data structures used

by the interpreter will now be described.



IITI. BIGH LEVEL ALGORITHM AND MAJOR DATA STRUCTURES

This chapter serves to outline the major steps of the
algorithm and to introduce the data structures (4:182). Detailed
descriptions of each step in the algorithm will be covered in the
following chapters, along with a more detailed description of the
data structures associated with each step. The data structures
that will be introduced are:

a. codified facsimile area
b. frame stack

c. trail stack

d. global registers

e. atom heap

The codified facsimile area is an area of memory where the
database procedures are stored in an efficient, coded form. This
allows for a quicker unification than if the database was stored
in its original, textual format.

The frame stack is an area of memory for storing data as-
signments to variables, and for storing information the inter-
preter needs to determine the next call to solve. A frame is
created for each successful unification (match) of a call with a
procedure head. Frames are deleted upon backtracking, a process
of undoing the effects of searching a fruitless path.

The trail stack is necessary because of backtracking. When

backtracking occurs, all recently created frames up to and inclu-



ding the previous backtrack point are deleted. Any data
assignments that were made to variables of earlier frames due to
the creation of the more recent frames must be undone. The trail
stack keeps track of these variables.

The global pointer registers wused include MOST RECENT
BACKTRACK, CURRENT PROCEDURE, CURRENT CALL, NEXT CANDIDATE, MOSY
RECENT PARENT, and TOP OF TRAIL. MOST RECENT BACKTRACK indicates
the frame for which untried candidate procedures remain for a
call. CURRENT PROCEDURE is a pointer to the location in the
facsimile where the procedure being matched to the call to be
solved is encoded. CURRENT CALL points to the facsimile of that
call. NEXT CANDIDATE points to the next untried procedure in
the database which has not been tried in a unification attempt
with the current call to be soclved. MOST RECENT PARENT indicates
which frame the CURRENT CALL resulted from. Finally, TOP OF
TRAIL is the trail stack pointer.

The high level flow of the interpreter is shown in Figure 2.
The organization and purpose of the data structures just intro-
duced will become more apparent as each step of the interpreter

algorithm is described in the following chapters.
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FIGURE 2

High Level Flow of Interpreter Control



Iv. CODIFICATION

The database as the user defines it is not in a form
conducive to efficient unification. Some preprocessing is done
to break the database into tokens, attach a tag £o-the tokens
that describes what they are, and then organize the tagged data
in a uniform manner so that the intepreter can easily find the
needed information. Because the database statements can be quite
complicated as a result of their being comprised of recursive
structures, an intermediate form of the statements is produced.
Final codification is then done on the intermediate form.

The data structures used by the codification step will be
described, followed by the algorithms that operate on them to

perform the codification.

Data Structures

The major steps of the codification process deal with sev-
eral important data structures that will be described. These
structures include the following:

a. binary tree

b, facsimile area

¢. atom hash table

d. variable heap

e, procedure hash table and nodes
f. codification stack

10



Binary Tree. Since structures can be represented as a
binary tree, this was chosen as the intermediate form to put the
statements in. Figure 3 shows an example of a procedure repre-
sented in binary tree form. Note the left branch corresponds to
going down a level within a structure to obtain the parameters.,
Likewise, traversing the right branch corresponds to obtaining

the next argument of a given level of the structure.

a(B,c(d,E)) :- gth).

a g
’\\
PROCEDURE| [! >|caLL ||,
HEAD S v
” /
c -\
7
| i\ E __
VARIABLE|_0 i/ >} ATOM | ) | l /} (A'ron l ‘W’
v / RPN R— R -
a
N . —
aTomM |° ";‘VARIABLE f_l/w
FIGURE 3

Example of Tree Structure of a Procedure

Facsimile Area. The final codification amounts to putting

the binary tree in a linear form so that less indirection is used

11



during unification., Parameters at the same level in the binary
tree, connected by the right branch pointer, are in sequential
order in the data base. If any of the parameters are themselves
structures, then the skeleton of the structure 1is accessed
through the left pointer of the binary tree node. Because suc-
cessive 1locations are already used to remove the need for the
right pointer in the facsimile, the need for the left pointer
remains for the codified facsimile in order to retain the struc-
ture information. This pointer is called the skeleton pointer.

Some additional bookkeeping information is also put in the
facsimile entry for a procedure. A pointer to the next procedure
with the same name is put in the facsimile so that candidate
procedures for a call to be solved are easily found during unifi-
cation. Also a count of the number of variables in the procedure
is saved so that the amount of memory necessary for recording
their values during unification is easily calculated. The same
example above in final form is shown in Figure 4.

The advantages of linearizing the binary tree are a savings
of time and memory. The binary tree form requires a left and
right pointer for each parameter for the child and next sibling
pointers, respectively. With the linear form, no sibling pointer
is used. It is assumed that the next sibling is in the next
memory location after the current parameter, thus less indirec~-
tion 1is necessary. The pointers that do remain are the first
child (left subtree) pointers which are called structure skeleton

pointers in the literature.

12



Facsimile Area

NEXT
CANDIDATE

'
i
i
!
!
H
7y

VARIABLE
COUNT 2

VARIABLE _0

STRUCTURE

CALL

ATOM ——+—=> h

STRUCTURE -
DEFINITION —1l> ¢

ATOM RN |

,  VARIABLE 1

Figure 4

Example of Final Codified Form of a Procedure

Atom Hash Table. All atoms in the data base are stored in
an area referred to as the heap when put in codified form
(7:135). Each atom is separated by a null character. All en-
tries in the atom heap are unique, regardless of the number of
times the atoms appear in the source code. This is done for two
reasons. First, there is a savings in memory if one copy of an
atom appears in the heap when it may show up numerous times in
the database source code. Secondly, during unification it is
necessary to determine if two parameters are equal. If distinct

copies of the atoms were Kkept, a character by character

13



comparison would have to be done. With the unique atom scheme,
only one comparison is necessary--that of the pointers to the
atoms.

One problem during codification is that of determining if an
atom has been used before. If all atoms were in a sorted 1list,
at best it would take approximately n log n operations, where n
is the number of atoms. An alternate method, and that used 1in
this implementation, is the use of a hash table. A hash function
is applied to the atom which results in a number used to index
the hash table. The entry in the hash table consists of a point-
er to a linked list of atom nodes of information. An atom node
contains two pieces of information. The first field is a pointer
to the atom in the heap area. The second is a link to another
atom node in case an atom collided (has the same hash value) with
a previous atom. If no collision occurs, the field is nil. An
example of a hash table and atom nodes is shown in Figure 5.
Here atoms "apple" and "mary"” hash to the same value in the hash
table. Thus the "mary" atom node is accessed through the colli-

sion pointer of the "apple" atom node.

h(apple), h(mary) —— 1~ apple mary junior

[ {1

h(sally) | ——4::——\Ns§;ly
SRR L ‘

FIGURE 5

Atom Hash Table

14



Yariable List. The variables are not kept in a hash table.
This is because varibles have a scope of reference only within a
procedure. Thus "X" in one procedure is not the same "X" as in
another. Instead, variables within a procedure are given an
index number starting with zero. Each distinct variable is given
a distinct index number. The index number turns out to be much
more convenient than the actual variable name or a pointer be-
cause any value bound to a variable can easily be found. They
are Kkept in an order determined by their index value in a frame
built for a particular call-procedure head unification.

For «codification purposes, an array is build with the con-
tents of a particular element location being the actual string
representation of the variable. When determining if a variable
has been used in the procedure previously, a scan is made of the
array. If it is not found, it is put at the end of the 1list.
The entry after the end of the list is a null character. In the
example shown in Figure 6, two variables have been defined thus
far. "My_var" has been given an index of zero and "Your_var" an

index of one.

_0 | My_var

1l | Your_var

2 | null

FIGURE 6

Example of Variable List Used During Codification

15



Procedure Hasb [Table and Nodes. The organization of the
collection of codified procedures is done in a similar manner as
the atoms. A hash table is used to gain access to a group of
procedures with identical names using a hash of the procedure
name. Once again, collisions may occur so the procedure nodes
are kept in a linked list. The procedure node has three entries.
The first is a pointer to the actual procedure name stored in the
atom heap. The second is a link to the next procedure node
should there be a collision. The third is a pointer to the
codified facsimile of the first of the set of procedures with the
name specified in the first field. Since more than one procedure
may have the same name, the first entry in the codified facsimile
of any procedure is the link to the codified facsimile for the
next procedure with the same name, Figure 7 illustrates this.
"likes", "hits", and "steals", all hash to the same value. So a
procedure node is allocated for each, and the nodes are linked by
collision pointers. The group of procedure facsimiles named
"likes" make up the second dimension of the data structure.

Not only are nodes made for procedure heads put in the
linked 1ist, but for call names also. Then if a procedure is
later codified that has the same name as a previously defined
call, a procedure node will have already been built. This is why
Figure 7 shows no codified facsimile for "rich" and "hits". They
result from calls of procedures in the database, and are not
procedures themselves. There may be cases where a procedure does
not exist with the same name as the earlier defined call. So why

even bother defining a procedure node? The major reason is that

16



h(likes), h(hits), h(steals)

h(rich)

<

likes

hits

FACSIMILE AREA

—\\ PROCEDURE

BASE
IABLE

likes (mary, tom). ——

likes (X,Y)

steals (john;foodi.

%—_.__./

FIGURE 7

Procedure Hash Table and Node Organization
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a procedure can be defined at run time via the built-in predicate
called assert. It would be attached to the procedure node. Any
call entry previously defined wifh the same name as the new
procedure would be pointing to the correct procedure node.
Codification Stack. The last major data structure used by
the codification step is a stack that is used for storing infor-
mation for structures that have not undergone final encoding.
The need for the stack arises from the design decision to 1lin-
earize the binary tree of a procedure to save memory. Parameters
that occur at the same level in the tree are put into £final
codified form one after another. If a parameter happens to be a
structure, the skeleton of the structure (organization of its
parameters) is defined elsewhere in the facsimile area. So the
entry for the structure must contain a pointer, called a skeleton
pointer, to where the structure skeleton is fully defined.
Two pointers are saved on the stack each time a structure is
encountered during linearization of the binary tree. One points
to the binary tree node which contains the root of the interme-
diate form of the structure. The other points to the locaticn in
the codified facsimile area allocated to the current parameter,
the structure. The second entry is saved so that that location
can Jlater be filled in with the skeleton pointer to the actual
structure definition. This is illustrated in Figure 8. Here,
the second parameter is a structure, "f(x)". The facsimile entry
is given a tag denoting it to be a structure. One pointer on the
stack points to the facsimile entry. The other pointer points to

the binary tree node containing "f(x)".

18



a(b,£(X))

Bipary Tree Forn

a
/]\
PROCEDURE| | i]
. / r
u . _
| ATOM ,STRUCTURE ! |
/ ~
— |
v
jvar!_o//
Facsimile

alb,£(X))

NEXT CANDIDATE

VARIABLE COUNT| 1

ATOM >k
STRUCTURE ?/ < ~
o [ : ! stack
FIGURE 8

Use of Codification Stack
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Now that the data structures used by the codification
step have been described, it is now possible to explain the

actual codification process.

CLodificatiop Algorithms

The codification process includes three major steps that are
performed on every procedure of the database.

a. Build binary tree

b. Linearize tree into final form

c. Link the final form to the end of the list of procedures

with the same name

Build Tree. The build tree function is recursive, which is
reasonable since the structure it is building is recursive. The
parts of the binary tree in this context have the following
meaning. The left subtree corresponds to the first child, that
is, a pointer to the first parameter df a particular structure.
The right subtree is the sibling of the current parameter.

The main task of this procedure is to determine when it
should build a left subtree or a right subtree. The rules are
rather simple. When obtaining tokens of the source PROLOG state-
ment, if a left parenthesis is encountered, it is known that the
next token will be a parameter of the current one. Thus a left
subtree is allocated in anticipation of the upcoming parameter.
If the token obtained is a comma, then it is known that the next
token will be simply another parameter, thus a sibling (right

subtree) node is allocated. The algorithm is outlined in Figure

9.

20



build_tree (tree_node_pointer)
{
get a token

if token is an atom
£fill node with atom
return (build_tree (tree_node_pointer)

if token is variable
put variable information in node
return (build_tree (tree_node_pointer)

if token is '"(°'
/* Last atom must have been a structure name or procedure
name., */
set tag field of node to denote structure defintion
tree_node_pointer -=> child_pointer = newly allocated node

/* Go left to get parameters. */
build_tree (tree_node_pointer->child_pointer)

/* Continue right. */
return (build_tree (tree_node_pointer))

if token is ','
/* Another parameter or call is coming up. */
tree_node_pointer->sibling = newly allocated node

/* Continue right. */
return (build_tree (tree_node_pointer))

if token is ':-!
/* A call is coming up. */
set tag of node to indicate call identifier
tree_node_pointer->sibling = newly allocated node
return (build_tree (tree_node_pointer->sibling))

if token is ')'!
/* Done with this level, so go up a level. */
return (success)
if token is '.!
/* Completely done with procedure. */
return (success)

FIGURE 9

Algorithm for Building Binary Tree for a Procedure
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Lipk Procedure. The second step of the codification process
is to link the facsimile area for the procedure to the end of the
linked 1list of procedures with the same name. This allows for
easily obtaining another candidate procedure for unification in
case one fails in the unification attempt.

When preparing to linearize the intermediate binary tree
form of the procedure, it is known where the final form of the
procedure will be put. It is laid down immediately after the
previous procedure, in the facsimile area. Figure 10 shows the
pertinent data structures, To link the procedure to the end of
the 1linked list of procedures with the particular name, it 1is
necessary to gain access to the head of the linked list. This is
done by using the hash value of the procedure name to index the
procedure hash table, The hash table entry points tc the head
procedure node for all procedure names that hash to that value.
If one does not exist, it is created.

Once the correct procedure node is found, then access to the
second dimension of this structure is gained. This is the linked
list of codified procedures with identical procedure names. This
list is traversed until the end is reached, signified by a nil
link. This 1ink is changed to point to the procedure currently
being codified. Since the procedure currently being codified is
now the last procedure of the linked list, its link entry. the

NEXT CANDIDATE pointer, is set to nil.

22



Hash Table

h(likes) e e likes

Facsimile Area ]

| <
I likes

1 j

likes
2

e

likes
n-1

This 1link
must be made.

likes ol

FIGURE 10

Linking a Procedure to the List of Procedures
with 1Identical Names

Lipearizing the Bipary Tree. The last major task of the
codification function is to put the binary tree in a linear form.
This function is somewhat more involved. After the area reserved
for the procedure being codified has been linked into the list of
procedures with identical names, the codified procedure can be
laid down in that reserved space. Two pieces of Dbookkeeping
information are included, followed by the linear form of the

information in the binary tree. The important steps of this

23



function are:
1. Insert bookkeeping information in facsimile area .
2. Codify the procedure head
3. Codify the calls

4, Codify any structures stacked in perfeorming the above
steps

The first entry in the codified facsimiile is the link to
the next candidate, which, as mentioned previbusly, is set to
nil. The second entry in the codified procedure is the variable
count of the procedure. That is the number of distinct variables
in the procedure. A list of the variables is made during codifi-
cation into the binary tree structure, thus the procedure vari-
able count can be found by countiﬁg the entries in this list.

The next entries in the space of the codified procedure are
the call and parameter entries, The order of laying down the

information is shown.

NEXT CANDIDATE
VARIABLE COUNT
procedure head parameters
first call identifier
first call parameters

last call identifier |
last call parameters
structure skeletons

FIGURE 11

Codified Procedure Format
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In order to lay down this information in the correct order,
some important principles of binary trees are used. Recall that
all nodes of the binary tree connected by the next sibling
pointer (right subtree) are considered to be of the same level,
whereas a node pointed to by the child pointer (left subtree)
defines the first parameter of a sublevel. By the scheme used,
the highest level elements (linked by right subtree pointers) are
nodes for the procedure and call names. The left subtree pointer
of any of these nodes accesses the first parameter of the respec-
tive procedure and calls. The parameters of the same tree level
are accessed by the right subtree pointer. If any of these
parameters of the procedure and call nodes have 1left subtree
pointers, then these parameters are structures. Furthermore,
parameters of structures themselves can be structures due to
their recursive definition.

The scheme for 1linearizing the binary tree is to first
obtain the first level parameters, This is done by moving down
the tree from the first node, the procedure name node, using the
left subtree pointer. The procedure head's first level parame-
ters are retrieved by traversing the nodes connected by the next
sibling (right subtree) pointers. This concept is shown in
Figure 12, _If any of these parameters are themselves structures,
then it must be remembered to come back later and lay down the
structure skeleton after all the first level nodes are processed.
This is done by saving the binary tree location on the codifica-
tion stack along with the location of the entry in the codified

facsimile that will have to be filled in with a skeleton pointer.
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Procedure: afe,f(m,n),g) :- b(cl.

Binary Tree Form

Order of Initial Facsimile Entries

NEXT CANDIDATE
VARIABLE COUNT
entry for "e"
entry for "f"
entry for "g"

FIGURE 12

Obtaining Top Level Parameters of Procedure Head
An example of how the codification stack would 1look after

all of the top level parameters of a fact "a(b(c),d(e))" are

codified is shown in Figure 13.
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Facsimile Area Bipary Tree Formn of Procedure

a

!
NEXT |PROCEDURE| ' | -
CANDIDATE nil /
VARIABLE [0 :

COUNT [strocTuRE[, | ;| —>|sTRUCTURE| |
\L AN 7 \L
| STRUCTURE |?
| <\ . h
| STRUCTURE |?
: aToM|  [] ' |aron] [ ]/
‘ ML

3
e

Y s

codification 1 = J
stack pointer = i S

FIGURE 13

Stacking of Structure Information
During Linearization of Binary Tree

After the first level procedure head parameters are put 1in
place, the <calls can be processed. The calls are acccesed by
traversing the right subtree pointers of the highest level in the
binary tree, What is put in the codified facsimile that corre-
sponds to the call name is not a pointer to the call name itself.
Rather it is a pointer to a procedure node for procedures of the
same name as the call. This pointer is referred to as the call
identifier. As mentioned before, the reason for using a pointer

to the procedure node is that this provides quick access to
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potentially matching procedures when unification is attempted for

the call. Figure 14 illustrates the use of the call identifier.

Procedure: a :- b.

facsimile of "a:-b." procedure node for "b"
ber- | | +—>
s . — =
call identifier — e
| 2 collision pointer

facsimile of a procedure
named "b"

e

;o

FIGURE 14

Use of Call Identifier

After the call identifier is put in place, the call's first
level parameters are put in place, Jjust as the procedure head's
parameters were. Stacking of structure information is done as
before. This process is repeated for each call.

After a particular level of a tree branch is codified, the
stack is popped so that codification of a saved branch can start.
A pointer to the facsimile entry where the skeleton pointer for
the structure branch just popped is to be can be filled in. Its
value is the address of the next available entry in the facsimile
where the structure branch will now be codified. The pointer to

the branch of the tree holding the structure is the other entry
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popped from the stack. The flowcharts of Figure 15 and 16
describe the linearization of the binary tree. The latter is the
flowchart for a subroutine used by the first.

Once all the calls and their parameters are in place, the
stacked structures are put in the codified facsimile area next.
A similar scheme is used as before with only parameters of the
same level in the binary tree being put in sequence in the fac-
simile, with structures information being stacked. Codification
is complete when all stacked structures have been processed.

After a procedure's binary tree form has been linearized
into its final form, its nodes are deallocated with a recursive
procedure,

This entire process of putting a procedure into an
intermediate binary tree form and then linearizing the ¢tree is
repeated for all procedures in the database. Once the entire
data base has been codified, the interpreter can go to work

obtaining and solving queries to the data base.
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start)

i 1ink this procedure into hash|
| table list of entries for |
|___procedures with this name |

f
NEXT CANDIDATE tag and |
nil value !

]
[second codified entry gets
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- [
get first level parameters

of procedure head = |
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//is current
node a call ) :
defintionl//-no
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T yes

make a procedure node
for the hash table
corresponding to this call
|
[get first level parameters|
of call , |

is -
// codification. yes

Sy
\\ stack empti//
?
"~ no

A"

| pop saved tree branc
pointer from stack |

| e

copy structure name and tag
from tree to next
facsimile area pointer |

i .
iget £first level parameters
of this structure \P
return
FIGURE 15

Linearize Tree Flowchart
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(start)

initialize traversal pointer to
first child node of structure

|

- <

is
yes traversal pointer\§
J S S
return no
/

// does )
__/ current node tag indicate structure _

definition
2
no yes
‘Copy tree node entry iéﬁééﬁftraversal pointer and

‘entry in facsimile area entry in facsimile area

I‘

‘into next available [pointer to next available

'
i

i e
Iset traversal pointer to next sibling

FIGURE 16

Get First Level Parameters Flowchart
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V. INITIALIZATION

The initialization routine obtains the user's query and
initializes the stacks and registers. The flow diagram for the
initialization step is shown in Figure 17.

The input goal is codified in the same manner as procedures
except the procedure name is nil. A pointer is saved to the
point in the codified facsimile space where the goal begins so
that the memory can be reclaimed after the attempt to solve the
goal. As part of the 1initialization process, the CURRENT
PROCEDURE pointer is set to the location of the main goal's coded
form.

The MOST RECENT PARENT pointer keeps track of which frame
was created for a procedure whose call the interpreter is cur-
rently trying to solve. Recall its purpose is to identify the
frame that indicates which call is to be solved next. That call
is pointed to by the RETURN pointer of the parent frame. Each
frame has at a minimum a PARENT FRAME pointer and a RETURN point-
er. The initialization routine initializes these two entries to
nil for the input goal frame since it has no parent, and thus no
return call. The trail stack is initialized as empty since no
bindings have been made to any variables. Space is allocated on
the frame stack for any main goal variables.

Once the initializations take place, the interpreter can
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determine the first call to be solved. This is done by the call

selection routine, and will be described in the hext chapter.

(stare)

l save pointer to the location
of the codified form of the main goal

TbURRENT PROCEDURE :QW:> location of codified form of main goall

o R

[MOST RECENT PARENT := nil

|MOST RECENT BACKTRACK := nil

| ToP OF TRAIL := -> trail stack|

lframe s= 17|

|PARENT FRAME (1) := nil|

| RETURN (1) := nil|

¥ - I

aliocate space on frame stack |
for main goal variables

|

‘go to Call Selection steg‘

FIGURE 17

Initialization Flowchart
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VI. CALL SELECTION

The call selection step of the interpreter determines the
next call to be solved. There are two ways control passes to
this portion of the algorithm. The most common way is after.the
frame creation step, in which a frame is created on the stack for
a procedure just successfully unified. The other way is from the
initialization step in which a frame is created for the main
goal. The 1latter case is treated no differently from the first
as far as the call selection routine is concerned.

The call selected is the first call of the just successfully
unified procedure if that procedure is not an assertion. For
example, if the procedure just unified is "a :- b, ¢, d.", then
"b" is the call selected to be tried in the next unification
attempt.

If the procedure just selected is an assertion, then it has
no calls to solve. First the interpreter looks at the RETURN
pointer just put into the frame by the frame creation step. LE
that pointer is null, then the interpreter looks to see if the
frame created for the parent procedure, indicated by the MOST
RECENT PARENT, has any calls to solve by looking at its RETURN
pointer. If the RETURN pointer indicates that no more wunsolved
calls are in the parent frame, then the RETURN pointer of the

grandparent frame is examined through the use of the PARENT FRAME
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pointer located in the frame pointed to by the MOST RECENT
PARENT, The search continues until an unsolved call is found, or
until the MOST RECENT PARENT frame pointer is nil. The algorithm
is described by the flow diagram of Figure 18.

Once a call is found, it is determined if the call has the
same name as any procedure in the data base. This is determined
by 1looking at the CALL IDENTIFIER, pointed to by CURRENT CALL.
The CALL IDENTIFIER points to the head of a linked list of proce-
dures that have an identical name. This is shown in Figure 19.

At first glance, it might appear advantageous to take out a
level of indirection and have the CALL IDENTIFIER point directly
to the facsimile of the first matching procedure. The reason
this is not done, as mentioned earlier, 1is because if there
initially are no matching procedures, the pointer value is nil.
But if a matching procedure is later added via the assert predi-
cate (allows for a dynamic database), no access to it will be
possible through CURRENT CALL.

Assuming a list of candidate procedures has been found, it
must be determined if any of the candidate procedures will unify
with the call pointed to by CURRENT CALL. Unification requires
that the parameters of the call and the candidate procedure to

match, and is described in the next chapter.
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// is the
CURRENT PROCEDURE

P
ino . an assertion
?
i \P yes
CURRENT CALL := CURRENT CALL := :
first call of RETURN POINTER of current frame
CURRENT PROCEDURE - T i
is
CURRENT CALL pointer null "
no and MOST RECENT PARENT not
wm___frame 17

\} yes

‘CURRENT CALL := RETURN POINTER of!
 MOST RECENT PARENT frame !
[
'MOST RECENT PARENT := PARENT FRAME of,
‘MOST RECENT PARENT frame
1 s

<a caygsfound >_T\V
?

yes \¥ [output solution

backtrack to find more solutions

NEXT CANDIDATE :=
procedure pointer corresponding
to CURRENT CALL

any N s
candidates /' - no
\\ ? / ;
yes |go to backtrack step,

lgo to procedure]
; selection step

FIGURE 18

Call Selection Flowchart

36




FPacsimile Area Procedure Node
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]

CURRENT CALL ;. CALL IDENTIFIER: —

: Vo7
f:

call name

{—->

first procedure

~——| with matching
name

/N

second procedure
with matching name

FPIGURE 19

Accessing Procedures Matching Call Name
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VII. PROCEDURE SELECTION

This routine attempts unification between the current call
and the procedure whose name matches until a success is found, or
until it runs out of candidates. Aléo, any variable bindings
necessary during unification are made.

Use is made of the space beyond the current frame where a
new frame will be created when a successful unification occurs.
Some of the data that is stored in a new frame, especially varia-
ble bindings, is determined during the unification attempt. If
the wunification is successful, then an advantage is that less
information needs to be filled in during the frame creation step.
If an unsuccessful unificaticn occurs, no harm is done because
the invalid data will eventually get written over,

The procedure selection routine calls a recursive function
called Unify to do the actual unification attempt. It is natu-
rally recursive, considering it is operating on the recursive
structures of the candidate procedure and the current call.
The flowchart for the procedure selection step is shown in Figure
20. Prior to calling the recursive routine, the algorithm saves
TRAIL POINTER and CURRENT CALL in the next frame to be created.
This is because their contents will be modified during a unifica-
tion attempt and will have to be reset for a new attempt. As
mentioned before, the pointers have to be saved in the new frame

anyway if it is a backtrack frame (Figure 21).
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FIGURE 20

Procedure Selection Flowchart
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Upnification

Control is passed to the unification routine once a proce-
dure has been found that matches the current call by name. More
restrictive filtering could be done here by also assuring that
the number of parameters also matches.

Unify is a recursive routine because it operates on a recur-
sive data structure, the tree. Even though it is put in a linear
form for memory savings, conceptually it is still a tree. Unifi-
cation is performed by attempting to match each parameter of the
current call with the corresponding parameter of the current
procedure. The search algorithm is a commonly used preorder
binary tree traversal. The algorithm is presented by Kruse and is

given below (8:195).

procedure preorder (root: pointer);

begin
if root <> nil then
begin
visit (root)
preorder (root->right)
preorder (root->left)
end
end

FIGURE 22

Binary Tree Traversal Routine

The recursive algorithm first checks to see if the root
nodes are equal. It then calls itself to see if the right nodes
are equal. What was the right node becomes the root in the new
call.

When the routine has gone right down the tree as far as it

can, it checks to see if the left nodes are equal by a recursive
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call. Figure 23 shows the order the nodes of a tree are

searched.

atb, c(d, e), flg)).

/{@3 @4
®6/ e? 5

Order of Tree Traversal

FIGURE 23

In order for atom nodes to match, their string pointers
simply have to be checked for equality since there is only one
copy of a string in the heap. The unification process is compli-
cated because of the possibility of parameters that are vari-
ables. Variables that have not been bound to a value can be
bound to structures, atoms, or even to other variables (bound or
unbound). This means that if a variable is matched with a struc-
ture, the nodes for the structure and all of its children do not
even have to be traversed. In this case, unification is simpler.
But if the variable does previously have a value bound to it, its
value must be matched to the corresponding parameters of the

other tree. An example is shown in Figure 24.
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atb, c(d, e), f£(g)) matched with a( b, X, Y)

FIGURE 24

Matching Variables with Structures

Variable "X" gets bound to "c(d,e)" and "Y" gets bound to
"f(g)". Three nodes do not have to be visited in this case.

Parameters can be one of three types; variables, atoms, or
structures, Thus, there are nine possible ways to try to match
parameters. The rules are presented below in Figure 25.

In more precise terms, the unification process is started
with the CURRENT CALL pointer pointing to the initial entry of
the call facsimile, the pointer to the linked list of candidate
procedures, The CURRENT PROCEDURE pointer points to the first
entry in the codified facsimile of the procedure, its variable
count. The first parameter of the respective trees are the next
entries in the respective facsimiles. The unify procedure starts
by incrementing each pointer to make them point to the first

parameter,
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PARAMETER PARAMETER RULE
atom atom Matches if pointers are equal.
atom variable Matches if variable is unbound or
bound to atom with same atom
variable atom pointer.
atom structure Never matches because atom has no
children.
structure atom
variable structure Matches if variable is unbound or if
variable is bound to a structure
structure variable whose parameters match according to
the rules in this table.
structure structure Matches if all parameters match
according to rules of this table.
variable variable Matches if at least one variable is

unbound. Matches if both are bound
and the values they are bound to
match according to the rules of this
table.

o e B i B Sk ke Bk e Sy S e S S S S, Sy B iy B S S S . S S o Sl T T T T S S S S i S Bt T S S St S i S S T . s e . S gt Sy S e e .

FIGURE 25

Parameter Matching Rules
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call facsimile

CURRENT CALL ——> to linked list
CALL of candidate
l procedures
parameter
1

procedure facsimile

CURRENT VAR COUNT | N
PROCEDURE
N parameter 3
1 ?
FIGURE 26

Initializing Pointers for Unification Process

As parameters are matched, the CURRENT CALL and CURRENT
PROCEDURE pointers are normally each incremented to allow compar-
ison of successive parameters. The simplicity is destroyed when
a structure is encountered. This corresponds to the necessity to
search left in the binary tree analogy. This is achieved by
conceptually following the 1left link, known as the skeleton
pointer, to the facsimile entries that defines +the structure.
Once there, the recursive traversal continues with the usual
sequential nmwatching of the respective parts until the encoun-
tering of another structure requiring yet another skeleton

pointer indirection. The indirection is illustrated in Figure 27.
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Current Call Current Procedure

alb, c(d@)) atb, c(d))

@/ |

call facsimile

ATOM ——— b ‘
CURRENT — | STRUCTURE B skeleton
CALL e \:> pointer
STRUCTORE |
DEFINITION —)
ATOM e
d
procedure facsimile
ATOM > b
CURRENT —> | STRUCTURE ™~ skeleton
PROCEDURE ; pointer
STRUCTURE
DEFINTION —_
r !
. ATOM S
i 1 d
FIGURE 27

Skeleton Pointer Indirection
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As stated earlier, if an attempt is made to match a variable
with a structure, the left traversal in the binary tree, that is,

the skeleton pointer indirection, does not take place.

Yarisble Binding

When variables of a procedure are encountered, space is
allotted in the new frame of the frame stack for it. Three
pieces of information are stored for each variable on the stack.
The first is a tag that indicates whether the variable is un-
bound, bound to a variable, bound to an atom, or bound to a
structure. The second piece of information is a pointer to the
variable's value. Its value may be may be a binding to an atom,
another variable, or a structure. When it is bound to a struc-
ture, the skeleton of the structure is specified by the codified
facsimile of it. Thus, the pointer would point to a location in
the facsimile area. The structure itself may contain variables
whose values are defined in another frame of the stack. This
creates the necessity for the third piece of information asso-
ciated with each variable entry of the stack, the environment
pointer. It indicates the frame in which any variables of the
structure are defined in the frame stack.

Since the scenario is quite involved, it is best described
with an example. This example will also illustrate the previous
unification concepts. The example has a database of four rules
and one main goal. The rules and their codified facsimile are

shown in Figure 28.
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Original Database

a{M, N) :- b(N, M). :
b{c(X), d(¥)) :- e(Y), £(X).
e(g).

f£(h).

= a(IpJ) .

Codified Facsimile

NEXT CANDIDATE
a{M,N} VARIABLE COUNT
:= b(N,M). VARIABLE
VARIABLE

CALL

VARIABLE
VARIABLE

NEXT CANDIDATE
VARIABLE COUNT
STRUCTURE
b(c(X),d(Y)) - | STRUCTURE

t- e(Y),£(X). CALL

VARIABLE

CALL

VARIABLE

STRUCTURE SKELETON
VARIABLE

STRUCTURE SKELETON
VARIABLE

"NEXT CANDIDATE 7
elg). VARIABLE COUNT 0
ATOM

ST B,
NEXT CANDIDATE /
f(h). VARIABLE COUNT 0o
ATOM ——> h
/
2
_—
0

GOAL

VARIABLE COUNT
t=- a(1,J). CALL

VARIABLE
EVARIABLE 1

4

L T

FIGURE 28

Database for Unification Examples
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The first frame built for the main goal, ":- a(I, J)", has
variable entries allocated in the frame stack for "I" and "J".
They are initially unbound. The environment pointers have no
meaning since the variables are not bound to structures. Their
value pointers are nil. The PARENT FRAME and RETURN POINTER will

be ignored in this example.

parent frame
frame 1 for return pointer

:- a(I1,J). UNBOUND /| /
UNBOUND / /
FIGURE 29

Frame for Main Goal

The procedure "a(M,N) :- b(N,M)" is selected to be the
current procedure. Unification will be attempted with it and the
current call, "a(I,J)", the only call in the main goal. The
parameters of the current procedure, "M" and "N", match with "I"
and "J", respectively. This is because unbound variables auto-
matically match. The value pointers for "M" and "N" then point

to the frame entries for "I™ and "J".

parent frame

frame 1 for | return pointer \

- alI, . UNBOUND AR A
UNBOUND / /‘V:

parent frame
frame 2 for return pointer

]

a (M, N) BOUND TO VARIABLE |/ ./
:~ b(N,M). | BOUND TO VARIABLE |/

FIGURE 30

Frame Stack After One Unification
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The current call now becomes "b{(N,M)", and "b(c(X),d(Y)) :-
e(Y), £(X)" becomes the current procedure. Now the parameter by
parameter unification provides an interesting result. The struc-
ture "c(X)" is matched with variable "N", which is in turn bound
to variable "J". Thus variable "J" can be assigned "c(X)". This
is done by making the tag for "J" denote that it is bound to a
structure. Its skeleton pointer (value pointer) points to the
facsimile for "c(X)". Note that the structure "c(X)" contain a
variable "X". "X" gets allotted a frame entry in frame three
because it is the frame created for the current procedure, which
contains "X". Thus variable "J" has an environment pointer indi-
cating that frame three defines the values for the variable in
the structure "c(X)". A similar situation occurs for "d(Y)"

being unified with "M". which is in turn bound to "I".

parent frame )
frame 1 for return pointer ., d(y
- a(I,J). | BOUND TO STRUCTURE/3 | 7= c(X)
BOUND TO STRUCTURE; 3 .

T skeleton pointers
parent frame A

frame 2 for return pointer
a(M,N) BOUND TO VARIABLE | /

:- b(N,M). BOUND TO VARIABLE : /
i

AN

frame 3 for parent frame i
b(c(X),d(Y)) | return pointer j

:~- e(¥Y),f(X). UNBOUND / /i
{ UNBOUND f 7]

‘ O

FIGURE 31

variables Bound to Structures
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The current call now becomes "e(Y)". The procedure "e(g)"
becomes the current procedure. The atom "g" is matched with
variable "Y" of frame three. Variable "Y" gets a tag indicating
it 1is bound to an atom. Its value pointer points to the heap
representation of "g", and its environment pointer is undefined
since the variable is not bound to a structure.

The current call now becomes "f£(X)" and the current proce-
dure becomes "f£(h)". The binding of atom "h" to variable "X" can
be made. The final frame structure is shown in Figure 32. Note
the wvalues of "I"™ and "J" have the values "d(g)" and "c(h)",

respectively.

The Trail

For every binding of a variable of the frame stack, an entry
is made in the trail stack. This is done so that if backtracking
occurs due to a dead end (no successful unification of a proce-
dure and a call), variables in earlier frames can be reset. This
is necessary because values aquired along the way to a dead end
are invalid. The value of the trail stack pointer is saved in a
backtrack frame. A backtrack frame is a stack frame built for a
procedure-call unification that has other untried candidate pro-
cedures. That way, when backtracking occurs, the o0ld trail
pointer can be retrieved and all variables pointed to from the
top of the trail stack to the saved trail stack pointer are
reset, Since bindings are made before the new frame is created,
the top of the trail must be saved in the location of the yet-to-
be-created frame. Figure 33 introduces an example that shows the

use of the trail stack.
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parent frame ?
frame 1 for return pointer |
t- a(1,J). BOUND TO STRUCTURH 3 | -

BOUND TO STRUCTURE 3 -

a(y)
_} c(X)

skeleton pointers

parent frame
frame 2 for return pointer =
a(M,N) BOUND TO VARIABLE | / -///

frame 3 for | parent frame

b(c(X),d(Y)) | return pointer
:~ e(Y),£f(X). BOUND TO ATOM /i —> h
BOUND TO ATOM /N g

frame 4 for parent frame
e(g). return pointer

frame 5 for parent frame
£(h). return pointer

FIGURE 32

Frame Stack after all Variables are Instantiated
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Data Base

:= a(B).

a({c) :~ d(e).
d(e) :- £f.
a(g).

frame 1
for :- a(B). ‘'UNBOUND / /| <———variable entry for B

TOP OF TRAIL
\\_ trail stack

N
-

FIGURE 33 ’

Use of Trail Stack

Initally the trail stack is empty. The current call,
"a(B)", 1is matched with "a(c)". However, an untried candidate
exists, "a(g)", so frame two is a backtrack point. The previous
top of trail is saved in a backtrack frame. Now "d(e)" is the

current call. It matches with "d(e) :- f", so a frame is created

for it.
frame 1 ' ¥
for :- a(B) 5
BOUND TO ATOM —S——3> <C

R %
frame 2 for T . L\L
al(c) := dfe). TRAIL POINTER ~. TOP OF TRAIL-;)
frame 3 for :
d(e) := £ . .

FIGURE 34

State of Frame Stack Prior to Backtracking
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At this point, "f£" becomes the current call, but no proce-
dures match. Backtracking must occur. Variable "B" was bound to
the atom "c"™ in a frame created along the way to the dead end.
Thus "B" is reset, frames two and three are discarded, and the
top of the trail is set equal to the value saved in frame two.
Now the trail stack is empty once again. The example ends with
"g" being bound to "B".

The frame not only contains variable bindings and saved
trail pointers, but also some other bookkeeping information. The
rest of the frame information is filled in by the frame creation

step which will be described next.
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VII. FRAME CREATION

The frame stack serves two main purposes., First it records
variable assignments. Secondly, it records information needed by
the interpreter to determine the next call to be solved.

A frame is created on the stack every time a call is unified
with a procedure head. Any variable contained in the procedure
has space allocated for it in the frame. Each frame also has
associated with it, as a minimum, a RETURN pointer and a PARENT
FRAME pointer.

The RETURN pointer points to the facsimile of the next call
to be solved. It is normally the call after the current call.
If the <current call is the last one of a procedure, then the
RETURN pointer 1is set to nil. The call selection routine de-
scribed in Chapter VI uses the RETURN pointer to determine the
next call to be solved. If the call selection routine encounters
a nil RETURN pointer described above, then the RETURN pointer of
the parent frames are examined until a valid RETURN pointer is
found. This implies the necessity to record what £frame the
parent frame is, so this is the motivation for the second pointer
of a frame. The PARENT FRAME pointer points to the frame created
for the procedure in which the current call is found.

The possibliity of the need to backtrack in the solution

search is evident from the following scenario. It may be the
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case that a matching procedure cannot be found for the current
call. It may also be the case that earlier in the inference
process, a particular procedure was selected for unification when
there may have been other untried candidate procedures that might
also have unified. Finally, it may be the case that had the
interpreter selected one of those other candidate procedures
earlier, it might not have hit a dead end later. Provisions have
been made in the interpreter to take care of just this scenario.
When a dead end is hit, the interpreter backtracks to the last
step that had an untried candidate procedure. How the back-
tracking occurs will be discussed in the next chapter. But some
information has to be saved in the frame during the frame crea-
tion step in order to allow backtracking to take place later.

Four additional §ointers are saved in a frame when other
candidate procedures exist for the current call. They are called
PREVIOUS RETURN, NEXT CANDIDATE, PREVIOUS BACKTRACK, and TRAIL
POINTER.

The PREVIOUS RETURN pointer is set equal to CURRENT CALL.
Thus when backtracking occurs to this frame, the CURRENT CALL
pointer 1is reset to the value of the PREVIOUS RETURN pointer to
partially reestablish the state the interpreter was in.

The NEXT CANDIDATE pointer is set equal to the location in
the codified facsimile of the next untried procedure that has the
same name as the current call. Thus when backtracking occurs,
the CURRENT PROCEDURE pointer is set equal to the NEXT CANDIDATE
pointer.

The PREVIOUS BACKTRACK pointer is a record of the backtrack

frame that existed before the current one. This is necessary so
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that backtracking can occur to backtrack points even further back
in time if necessary. The TRAIL POINTER as described in the
unification section is saved in order to determine which wvari-
ables in the stack must be unbound upon backtracking. The back-
track frame format is shown in Figure 35. The algorithm for the

frame creation step is described in flowchart form in Figure 36.

PARENT FRAME
RETURN POINTER
PREVIOUS RETURN POINTER
NEXT CANDIDATE
PREVIOUS BACKTRACK
TRAIL POINTER

variable tag | value pointer (skeleton pointer)
0 | environment pointer

variable tag | value pointer (skeleton pointer)
n | environment pointer T

FIGURE 35

Backtrack Frame Format
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(st;rt)

|increment current frame number

save most recent parent pointer
in first frame entry

N/

is
yes CURRENT CALL the \ no
; last call of the / :
\ procedure //
\_ ?

|

set RETURN POINTER set RETURN POINTER to call

to NIL following CURRENT CALL
- S ] < ;
are
there other candidate
\\L procedures no
?

yes

: Y

save NEXT CANDIDATE pointer
in frame's fourth entry

'save MOST RECENT BACKTRACK
pointer in frame's fifth entry

pointer to this frame |

|
|
|
|
i
|
1
| set the MOST RECENT BACKTRACK | )

(end)

FIGURE 36

Frame Creation Flowchart
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IX. BACKTIRACKING

Backtracking occurs when a dead end is reached in the solu-
tion process due to no procedures being found to successfully
unify with a current call. Backtracking may also occur after a
goal has been completely solved and other solutions are desired
to be found by exploring different solution paths.

When one of the above conditions exist, the interpreter
examines the MOST RECENT BACKTRACK register to determine what
frame was created at the last backtrack point. When this is
determined, a pointer to the next candidate procedure to try in
the unification process is found in the backtrack frame. The
call to be solved at that point is found in the PREVIOUS RETURN
POINTER of the frame, so CURRENT CALL is set equal to this.

All frames at and beyond the backtrack point are discarded
because they now contain invalid data. Also, all variable tags
pointed to by entries in the trail stack up to the saved TRAIL
POINTER in the backtrack frame are reset to signify their being
unbound because their values are invalid now. Finally, the
global MOST RECENT BACKTRACK register is set to the saved
PREVIOUS BACKTRACK pointer of the frame so that if further back-
tracking must take place, the interpreter can find the most
recent backtrack point again. The flow of the algorithm is shown

in Figqure 37.
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is \ no oo R,

there a backtrack terminate bacause
\\ point // there are no
solutions
Yes . / | B nm

reset NEXT CANDIDATE register
to the saved NEXT CANDIDATE
entry of the frame

reset CURRENT CALL register
to PREVIOUS RETURN POINTER

discard frames at and beyond
this backtrack point

77777 is
// TOP OF TRAIL > \
save TOP OF TRAIL entry , ‘
in the frame ///-_‘—_;;_—
?
WV yes

reset tags of variables

pointed to by contents

of top trail entry to Y
UNBOUND

decrement TOP OF TRAIL |

reset MOST RECENT BACKTRACK
~ register to saved
PREVIOUS BACKTRACK pointer |

go to PROCEDURE SELECTION stepi

FIGURE 37

Backtracking Flowchart

60



X. SUMMARY OF INFERENCE ENGINE

The follwing pseudo-code outlines the control algorithm used
by the interpreter to perform inferences. It is a modified form

of an algorithm by Christopher Hogger.

Step 1 (Initializaiton)

The first frame is created
for the input goal, which
is not a backtrack point.

frame := 1

CURRENT PROCEDURE := -> input goal
MOST RECENT PARENT := NIL

MOST RECENT BACKTRACK := NIL

TOP OF FRAME STACK := -> frame stack
PARENT FRAME (1) := NIL

RETURN POINTER (1) := NIL

allot space for variables on frame stack
TOP OF TRAIL := -> trail stack

~8 wa e

Step 2 (Call selection)

if CURRENT PROCEDURE -> is an assertion
then CURRENT CALL := RETURN POINTER (frame)
while CURRENT CALL := NIL and MOST RECENT PARENT <> 1
do
CURRENT CALL := RETURN POINTER (MOST RECENT PARENT)
MOST RECENT PARENT := PARENT FRAME (MOST RECENT PARENT)
if CURRENT CALL = NIL
then output goal solution
go to backtracking step
else CURRENT CALL := -> first call in CURRENT PROCEDURE->
else CURRENT CALL := => first call in CURRENT PROCEDURE->
MOST RECENT PARENT := frame

if no candidates exist for CURRENT CALL->
then go to backtracking step
else NEXT CANDIDATE := -> first candidate

If the current procedure is an assertion, then
the next call is found from the return pointers
of the frames. Otherwise the next call is the
the first call of the current procedure.

e ™8 w8 wg
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Step 3 (Procedure selection)

in case of
a backtrack
frame

TRAIL POINTER (frame + 1) := TOP OF TRAIL
PREVIOUS RETURN POINTER (frame + 1) := CURRENT CALL

"l wme g

while no successful unification and candidates remain
attempt unification between CURRENT CALL and candidate
procedure.
f variables are bound
during unification

~e

if CURRENT PROCEDURE = NIL
then go to Backtracking step
else go to Frame creation step

unsuccessful unification
successful unification

~e W

Step 4 (Frame creation)

frame := frame + 1
PARENT FRAME (frame) := MOST RECENT PARENT

if CURRENT CALL-> is the last call in a procedure
then RETURN POINTER (frame) := NIL
else RETURN POINTER (frame) := -> call following CURRENT CALL->

if NEXT CANDIDATE <> NIL
then
NEXT CANDIDATE (frame) := NEXT CANDIDATE pointer
PREVIOUS BACKTRACK (frame) := MOST RECENT BACKTRACK
MOST RECENT BACKTRACK := frame

go to Call selection step

Step 5 (Backtracking)

if MOST RECENT BACKTRACK = NIL
then terminate execution
else
NEXT CANDIDATE pointer
CURRENT CALL :=
PREVIOUS RETURN POINTER (MOST RECENT BACKTRACK)
MOST RECENT PARENT := PARENT FRAME (MOST RECENT BACKTRACK)
frame = MOST RECENT BACKTRACK -1

= NEXT CANDIDATE (frame)

while (TOP OF TRAIL > TRAIL POINTER (MOST RECENT BACKTRACK)
unbind variable pointed to by TOP OF TRAIL->
decrement TOP OF TRAIL

MOST RECENT BACKTRACK :=

PREVIOUS BACKTRACK (MOST RECENT BACKTRACK)
go to Step 3
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To better illustrate the operation of the interpreter and
the nature of the frame stack, a simple example will be shown.
To help focus attention on the meaning of the global and frame
pointers used, structure parameters are not used in this example.

The data base in this example consists of four procedures,
along with the input goal of "likes(bob,Y¥Y)". The semantics of
the inguiry can be interpreted as finding out who Bob likes.

Data Base
likes (bob, X) :- pretty(X), rich (X).
likes (bob, susan).
pretty (mary).
rich (ellen).

Inguiry
:— likes (bob, ¥).

FIGURE 38

Database and Query for Interpreter Operation Example

In the initialization step, the first frame is built and
CURRENT PROCEDURE is set to point to the facsimile representation
of the input goal. The first frame has no parent. There cannot
be any previous backtrack points, so the global pointer MOST
RECENT PARENT and MOST RECENT BACKTRACK are set to nil. The
trail stack is initially empty. The PARENT FRAME and RETURN
pointer entries for the first frame are set to nil because there
can be no parent for the first frame, and thus, no calls in a
parent frame to return to. The input goal cannot be a backtrack
point because there can only be one headless procedure in PROLOG.

The ﬁext step is the call selection step. Because the input

goal 1is not an assertion, CURRENT CALL is set to the first call
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of CURRENT PROCEDURE. Looking to the database for candidate
procedures for "likes(bob,X)", it is seen there are two possibil-
ities, "likes(bob,Y):- pretty(X), rich(x)" and

"likes(bob,ellen)"., The first of these becomes the candidate.

frame = 1
CURRENT PROCEDURE = => :- likes (bob,Y)
TOP OF TRAIL > - -
| empty
itrail
?stack
frame stack
frame 1 for PARENT FRAME: NIL
:= likes (bob, Y) RETURN POINTER:| NIL
Y: UNBOUND / /

MOST RECENT PARENT = frame = 1

CURRENT CALL = -> likes(bob,Y)

NEXT CANDIDATE = ->likes(bob,X) :- pretty(X), rich(X).
FIGURE 39

Data Structures After Main Goal Frame is Built

The next step is the procedure selection, which attempts
unification between the candidate procedures and the current
call. The unification is successful in this case with "X" being
bound to "Y". A frame is built. Because another untried candi-
date procedure exists, "likes (bob, ellen)", the second frame is
a backtrack frame. The RETURN pointer is set to nil because the
parent procedure (the input goal) has no other calls to solve.

Control passes to the call selection step. Here, the cur-
rent call 1is set to the first call of the current procedure,

"pretty(X)".
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Unification is attempted with "mary" being matched with
variable "X" of frame two, which is in.turn bound to "Y" of frame
one. A frame is constructed, but is not a backtrack frame be-
cause no other candidate procedures exist for the current call.
A trail entry is made. The state of the frame stack at this

point is shown in Figure 40.

MOST RECENT PARENT = 2
CURRENT CALL = -> pretty(X)
NEXT CANDIDATE = -> pretty(mary).

frame = 3
frame stack
frame 1 for PARENT FRAME: NIL
:= likes(bob,¥). |RETURN POINTER: NIL )
Y: BOUND TO ATOM / A———% mary
F.
frame 2 for PARENT FRAME: NIL !
likes(bob,X):~- RETURN PQINTER: NIL i
pretty (X), PREVIOUS RETURN **—%ﬁlikes(bob,x)
rich(X). NEXT CANDIDATE: ——>1ikes{(bob,ellen)
PREVIOUS BACKTRACK: NIL |
TRAIL POINTER: —— /
X: BOUND TO VARIABLE / |—"
frame 3 for ,'
pretty(mary) . PARENT FRAME: 2 i
RETURN POINTER: ——> rich(X)
Co
L trail
- >
4

TCP OF TRAIL

FIGURE 40

Frame Stack after Three Frames are Built
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Control passes to the call selection step again. The cur-
rent call is set to the return pointer of the current frame
because the current procedure is an assertion. Searching for
candidates for "rich(X)" results in finding "rich(ellen)". How-
ever, when unification is attempted during the procedure selec-
tion step, the parameter of the current procedure will not match
with the variable parameter of the current procedure because it
is bound to "mary". Thus control passes to the  backtracking
step.

A backtrack point exists, occurring at frame two according
to MOST RECENT BACKTRACK. The next candidate is set to NEXT
CANDIDATE of frame two. The current call is set to PREVIOUS
RETURN pointer of that frame also. The trail variables are
reset, with the trail pointer restored to its saved value. Now
MOST RECENT BACKTRACK is set to nil because no more backtrack
points exist. Frames two and three are discarded, 1leaving the

state shown in Figure 41.

frame = 1

MOST RECENT BACKTRACK = NIL
CURRENT CALL = -> likes(bob,X)
MOST RECENT PARENT = 1

NEXT CANDIDATE = likes(bob, susan)

frame stack

frame 1 PARENT FRAME: NIL
¢= likes(bob,¥Y) |RETURN POINTER: NIL
¥Y: UNBOUND / /
FIGURE 41

Frame Stack After Backtracking
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Unification 1is attempted and successful for the next candi-

date and current call., "susan" gets bound to variable "Y".

frame stack

f

frame 1 for PARENT FRAME: NIL |

:- likes(bob,Y). |RETURN POINTER: NIL |
Y:BOUND TO ATOM / ——> Susan

;

frame 2 for PARENT FRAME 1 |

likes(bob,susan). 'RETURN POINTER NIL

[

FIGURE 42

Frame Stack after Goal is Solved
When control passes back to call selection, no more «calls

are found and no more backtrack points exist, so the solution is

output and execution terminates.
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XI. CONCLUSIONS

The principle effort of this feport was the description of
an algorithm and the associated data structures for a PROLOG
interpreter. A scheme for encoding the PROLOG database in a form
that is compact and conducive to quick unification was described.
It is this part of the interpreter that is most sparsely
documented in the literature.

The algorithm and data structures presented provide
sufficient groundwork for actually implementing a PROLOG
interpreter. Moreover, the interpreter described gives some
insight as to a computer architecture on which to run PROLOG more
efficiently. Considerable use is made of tagged data fields and
stacks, and thus are appropriate foci for future research of a

suitable architecture.
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ABSTRACT

PROLOG has been the focus of much interest in the area of
artificial intelligence. It has been selected by the Institute
for New Generation Computing Technology as the kernel language
for their fifth generation computer system. This has sparked
interest in the language and computer architectures tailored to
3 This report describes the inference mechanism of a PROLOG
interpreter in terms of algorithms and data structures. The
approach 1is based on a scheme by Hogger. The majority of the
effort 1is concentrated on describing the data structures for
encoding the PROLOG database in a form that is compact and con-
ducive to efficient solution search. The interpreter described
suggests that tagged architectures and stack architectures merit
more research as possible architectures on which to run PROLOG

more efficiently.



