THE DESIGN PROPOSAL OF A 16-BIT
MICROPROGRAMMED STACK MACHINE

by
DON RHEA HUSH

B. S., Kansas State Univgrsity, 1980

A MASTER'S THESIS
submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE

Department of Electrical Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

Approved by:

S s At

Major ProfeSsor

‘ IAllEUB 569509 |

Spec. TABLE OF CONTENTS
Coll-
LD
2l & £
717 SECTION PAGE
/‘7&>:L 1 Statement of Objectives « & v v &+ & + ¢ 4 2 v e . 1
1187 2 Definitions and TerminologY . . « « v v « v « + « & = +» & » 2
Cs 2
3 An Overview . v « ¢ 4 s 4 4 4 s e e 4 s e 4 a s s e e e s s b
4 A Block Diagram View v & + ¢ v & ¢« v & s ¢ » + « B
4.1 Arithmetic and Logic Unit ; 6
4.2 Main Memory . . « « ¢ ¢« ¢« 4 4 s 4 s 4 4 4 s 4 4« 4 . 8
4.3 The Comsole . . & « « v & + « & 4 « v o o« o« = « + .+ . 8
Aody Diveek TPD ~ « o = w ¢ & w oo s o wo o w m ow 8 § wog &« 5 9
4,5 The Control Unit . somom 5 owowm o8 7 o wowm v v owmow ¢ o3 10
4.6 The Clock and Timing « . . 11
5 The System BUS . . + « & v + v « « & & « & + o« 4+ « o « « o 16
5.1 Memory Bus Controls . . « « + ¢ v v +v v v = « =« « + . 186
5.2 I/OBus Controls « -« + v & + o & o o & « o o « + + « . 18
5.3 Bus Timing Controls . . . + « « v & « & « « + = « . . 21
6 Macroinstruction Formats . .+ « « + « & o & & & & o o« o & . 22
7 ALU Hardware Design . . « . « & & & o v 4 &« & « o s+ « + o 30
7.l Tha 2901 o w ¢ &+ w5 3 3 £ & ¢ « ¥ & ¢ 8 @ & ¢ » @ .2 ¢ 30
7.2 The ALU Design . . . A BT -
7.3 The Stack Tender/Register Select O % .
7.4 The Data Select/Sign Extend Logic 66
8 The CPU Bus Interface . « . + « & o « o o o« & v o + o « « + 71
9 Main Memory Design . . . « ¢« v + & ¢« 4 & v ¢« v « s « &+ o+ 15
10 Divect I/0 « 5 4 & v % & & 5 & % & « & & 4 % » % & % » & &« 80
10.1 Input Interface Design + « « « + « +« - « . . 83
10.2 Output Interface Design . . e owmow o8 owmowm o8 8 oW ow s 84
10.3 Interrupt Level Interface Design ETEEEEEEEEE:

10.4 Genmeral I/ODesign . . . + ¢« v v + v o + o o« o « « . 91

11 The Control Unit . . . « & v &« v v v & & 4 « v « v v o « . 93
11.1 The 2910 P oE v s M o§ § oW @ v omom & 3D
11.2 The Control Unit DeSlgn R B 0§ 8 @& §omm 1O

11.3 The Macroimstruction Logic Design e o 71

TABLE OF CONTENTS (Continued)

SECTION
12 The Clock Circuit Design « + v « &+ « + .
13 The Control Store Design « « « « .+ « « .
14 The CHUEBLE & o 5 » o & 6 % ¢ 5 5 & & & = & 3
14,1 Conscle Operation . . « + + « v o o & o & & ‘
14.2 Console Design . . . + + + + « + + o o o+ &
15 Control Bit Summary . . « + « « « & + 4 « o « o 4 . s
16 On the Assembly of Microinstructions
17 Microinstruction Routimes p
17.1 Approach to the TRAP Cendition i
17.2 General Approach for the Presentation of
Microinstruction Routines . . . I
17.3 The Macroinstruction Fetch Routine &
17.4 Microcode for Memory Reference Instructions P
17.4a Calculating the Effective Address with
respect to the Program Counter . i
17.4b Calculating the Effective Address w1;h
respect to the Stack Pointer . . -
17.4c The PUSH Macroinstruction
17.4d The TRAP1 Microinstruction Routine ;
17.4e The POP Macroinstruction
17.4f The TRAP2 "fix it" Routine .
17.5 Microcode for I/0 Instructions
17.5a The OUTPUT Macroinstruction
17.5b The INPUT Macreinstructionm
17.6 The Conditional Jump Macroinstruction
17.7 The Shift/Rotate Macroinstruction .
References .« ¢« + v v v 4 v v 4 s e s e e e e e e e e

Appendix A - READ and WRITE Cycle Timing for Main Memory .

Send an Address to the MAR . .
Read Data from Memory . . +. + +« +« + « + &
Write Data to Memory ,

gl ool
W =

PAGE

112

121

124

137
145
147
147
148
152
159
160
162
171
173
176
179
182

182
186

191
1383

197
198
199

201
204

ii

iii

TABLE OF CONTENTS (Continued)

PAGE
Appendix B - Console Operation with the Control Store and

Main Memory « + v v+ v v v v o 4 s 4 e e s owow s o«o. 207
B.l Initialdizatdion . + + & ¢ o « w & @ « « » = = « » 208
B2 Halt the€PY & 5 5 s @ v s % @ ¢ @« w % ¢ # @ « » 209
B.3 Single Step . . W K 3 #E % s W8 o mm e s 210
B.4 Activate CONSOLEON A B
B.5 Load the CSAR . . . i oo v e o w212
B.6 Read a 16-bit wvalue from the CS i e o ¥ s s & 5 213
B.7 Write a 16-bit value to the CS 215
B.8 Load the PLR Vomzome B 4w ke e o w a BLT
B.9 Send a value to the MAR i ww 8 s wow 8 @ ow ow s 218
B.10 Read a value from Main Memory 220
B.11l Write a value to Main Memory 222

FIGURE

4-1

4=2

4-3

7-11

LIST OF FIGURES

Computer Block Diagram
System Clocks .

Bus Timing Example
System Bus Connections

Macroinstruction Formats

Computation of the Effective Address using various

Addressing Schemes

2901 Block Diagram

2901 ALFU Function Controls .

2901 Source Operand controls

2901 ALFU Destination/Shift Controls
2901 Cascaded Shift Connections .

The ALU Design

Single Word Shift & Rotate Operations .

Double Word Shift & Rotate Operations .

RAMygp Shift Multiplexer Operation
RAM, o1 Shift Multiplexer Operation
Qusb Shift Multiplexer Operation
Q1gp Shift Multiplexer Operatiom
CARRY Multiplexer Operations

PUSH Operations with the Stack

POP Operations with the Stack .

Illustration of the "Not Enough' TRAP .

Illustration Pertaining to Computation of the

BOS Register

PAGE

12
14
17

23

28
31
32
32
34
35
37
40
41

43

54

56

iv

FIGURE

7-18

7-19

7-20

7-21

i

7-22

8-1

9-2

10-1

10-2

10-3

10-4

10-5

11-3

11-4

11-5

12-2

12-3

LIST OF FIGURES (Continued)

The Stack Tender/Register Select Circuit

Definition of the ASEL and BSEL Fields for
Fast Stack Registers « & & ¢ & o o v v v v 0w

Stack Condition for Illustration of Fast Stack
Register Computation . . . + + « o « « o o « o «

Functional Description of the Mode Bits M & MO :

The Data Select/Sign Extend Circuit,
CPU Bus Interface+ . « « « « « « .

Main Memory Block Diagram« . « « .« . . .
Memory Design « « « « ¢ o« o @ ¢ & o o« &

Input and Output Interface Diagram « . .
Input Bus Interface Design . . .

Qutput Bus Interface Design « « v « + « + « « .
Interrupt Level O Bus Interface Design

Intelligent I/0 Device Block Diagram
The Control SETUCEUT® .« « v« « v v v & o & o & o o 4

Pipelining Illustration for Microprecgram Conditional Jump

The 2910 Block Diagram + + « « « v v « « v W«
The 2910 Imstructiom Set + + « « v v « + « o &
The Control Unit Design « « . + « + « + + & .+ .

Macroinstruction Logic Design .

Control Store Memcry Map

Use of ﬁl, ﬁi, and'ﬁ3 Througheout the System
Inhibiting 55 on a TRAP « v v « ¢ v v o & 4 . .

The Clock Circuit Design . . . « « « « « « & « + + « &

PAGE

58

59

61
64

68

76
77
82
85
86
89
92
94
96
98

100

102

105

110

113

114

116

\T

FIGURE

12-4

13-1

14-1

14-2

14-3

17-1

17-2

LIST OF FIGURES (Continued)

Clock Timing Diagram

The Control Store Design
Console Block Diagram .

The Conéole Interface Design

Port A Control Word Definitions .

Summary of Control Bits with Computer Block Diagram .

Summary of Varicus Control Fields .

PAGE
118
122
129
131
133/134
150

151

vi

ACKNOWLEDGEMENTS

First and foremost I would like to thank Dr. E. Haft for his
guidance and hard work that helped make this thesis possible. I
think through our combined effort we managed to learn a great deal
about the design of computers that is often times overlooked in the
literature. I would also like to thank the Electrical Engineering
Department of Kansas State University for its financial and emotional

support.

1 Statement of Objectives

This paper presents the design of a relatively simple, yet complete

computer system., The following 1s a list of objectives set forth in the

design of this system.

The

in large

The primary_objective is to develop a complete computer system
that can be built and tested by students interested in computer
design. Once built, the system would provide an excellent
educational tool in such areas as microprogramming, machine

instruction sets, and computer design.

The hardware design should favor that of a stack machine.

The Control Unit should be microprogrammed with a writable
Control Store. In addition, provisions should be made so that
this memory can be easily modified from a Conscle Terminal,

thus previding for ease of firmware development.

The hardware design should be relatively straight forward and

easy te follow.

system that follows contains some characteristics seen mostly

computers, and others seen only in minicomputers and micro-

processors. Although 1t may appear to have many restrictions, it can be

seen to exhibit some very powerful features. A strong attempt has been

made to use the power of simplicity to develop a complete system that runs

at a reasonable speed.

2 Definitions and Terminology

The following defines the symbols and abbreviations used throughout

this paper.

Many of them will reflect no useful operation to the reader

until they're encountered in the text. All are presented here, however,

to provide a universal reference.

Logic Definitions

A
\"4

high

low

GO

It

Abbreviations

msh

1sb

MSB -

LEB -

IR -

PLR -

cs -

ALU -

Logical AND

Logical OR

= 1 = TRUE
0 = FALSE
active high signal, the function indicated by the

signal name, GO , is activated when the signal is a 1.

active low signal

most significant bit

least significant bit

most significant byte

least significant byte

Instruction Register, or the Macroinstruction Register
(they are the same)

Pipeline Register (could also be called the micro-
instruction register)

Control Stere, also referred to as the Microprogram
Memory

Arithmetic and Logic Unit; Throughout this paper the term
ALU is most often used in reference to the entirety of

hardware designed to help perform arithmetic and logic

ALFU

I/0
EC
SP

MSP

TOS

TGS
IX
CPU
FS
EA

NA

ns
Definitions
cyce

per

F,
L

functions, i.e. the Stack Tender/Register Select circuit,
the Data Select/Sign Extend logic, and the 290ls are all
part of the ALU.

- Arithmetic and Logic Function Unit; the ALFU is a set of
logic within the 2901s which actually performs arithmetic
and logical operations.

- Input/Output

- Program Counter

~ logical Stack Pointer

- Memory Stack Pointer

- A 2-bit counter which points to the top of the Fast Stack

register - the 2901 register that currently holds the value
at the top of the Fast Stack.

- Index Register

- Memory Address Register

- Central Processing Unit; In this paper the term CPU

encompasses both the Control Unit and the ALU.

- Fast Stack

- Effective Address

- Next Address; the NA is the address of the next micro-
instructicn fetched from the CS.

% -9
- nanoseconds, or 10 secconds

le - one microinstruction ecyecle, 300us
iod - one of three time divisions of a cycle, i.e. each

cycle is divided into three l00Ons periods

— the ith bit in the F field
I the ith and jth bit in the F field
, — bits i through j in the F field

3 An Overview

The computer presented in this paper is a 1é6-bit machine. That is,
all registers in the Arithmetic and Logic Unit (ALU) are 16 bits wide.
There are a total of 16 such registers. TFour of these function as a
"Fast Stack" (FS), which is like a small cache memory for the top four
locations in the stack. The remaining 12 registers perform the functions
of a Program Counter, Stack Pointer, Index Registers, and any other
functions required by the machine instruction set. ALU operations include
the basic arithmetic functions of addition and subtraction along with the
logical functions OR, AND, EXCLUSIVE OR, and EXCLUSIVE NOR. Integer
multiplication and division are easily implemented in firmware due to
the presence of an additional ALU register called the Q-register. The
Q-register can easily be chosen to function as a 16-bit extension of
any ALU register. Hardware multiplexing provides the capability of
performing ten basic shift and rotate operations, each of which can be
performed on both single and double width operands.

The Control Unit in this machine is based on a microprogrammed
architecture. Thus, machine language instructions, (hereafter referred
to as macroinstructions), are carried ocut via a sequence of micro-
instructions. Microinstructions in this machine exhibit a dominantly
horizontal structure, which is reflected in the relatively large width
of the Control Store word., A microinstruction sequencer supplies the
microprogram memory (Control Store) with a 12 bit address, thus providing
up to 4K possible microinstructions. The basic microinstruction cycle
is 300ns, comparable to many of teday's mini-computers.

Main memory consists of up to 64K bytes of static semiconductor

storage. Memory is accessed via a 16 bit wide communication Bus which
carries both address and data. Data can be accessed in both "word"
(16 bits) and '"byvte'" modes. To accomplish this, the hardware treats
all memory addresses as byte pointers. When memory is accessed in the
word mode the least significant bit of the address is ignored. Thus,
all words are accessed at even byte boundaries. In the byte mode, all
Bus information is transferred over the lines that carry the 8 least
significant bits of data. Information transferred between the most
significant byte of memory in this mode is multiplexed onto the least
significant data lines at the memory —Bus interface. When writing a
byte to memory, the 8 most significant data lines are ignored. When
reading from memory these lines are 3stated., Special hardware at
the ALU input allows these lines to be either set to zero, or serve as
a sign extension of the least significant data byte.

The type of I/0 presented in this paper is most commonly refarred
to as Direct or Programmed I/0, which implies that all I/0 operations
are carried out under CPU contrel., Direct I/0 devices in this machine
are said to be non-memory mapped. That is, a separate Bus control line
is used to signify a transaction with one of them as opposed tc main
memory. Each I/0 device is addressed according to its device code.
Input and output devices are treated separately and thus require different
device codes. I/0 devices are capable of interrupting the CPU from any
one of the 16 interrupt levels. Interrupts are serviced on a priority
basis which is enforced in hardware. The design of a Direct Memory
Access, (DMA), device for this computer requires further development

which is beyond the scope of this paper.

4 A Block Diagram View

4.1 Arithmetic and Logic Unit

A block diagram of the computer is shown in Figure 4-1. The 16-
regzster ALU is centered around the 2901A, which is a 4-bit slice. Each
slice contains 16 general purpose registers, a multi-function ALU, and an
additional Q-register which is used primarily for multiplication and
division routines. Carry look-ahead is implemented by the 745182 look-
ahead carry generater chip. Various shifts and rotates are created by
gsimply multiplexing the shifted inputs and outputs of the 2901s, Most
of the ALU status signals are provided by the 2901. These include the
carry, sign bit, 2's complement overflow, and zerc result.

A special circuit called the Stack Tender is designed to make the
first four 2901 registers function as a Fast Stack. This means that as
many as 4 of the top entries in the stack may actually reside in fast
ALU registers. Thus, the average speed of stack operations is greatly
increased.

The logic network entitled "Data Select/Sign Extend" provides for
input to the ALU and its registers from a variety of sources. The ounly
16-bit source is the system Bus. All other sources (8-bit sources)
enter the ALU through the least significant byte. At times the least
significant byte of the Bus will be the only paft carrving valid infor-
mation. This happens when a byte is read from memory or an input is
received from an 8-bit device. Any 8-bit socurce to the ALU can be
sign extended to 1l6-bits. If it's not sign extended, the upper 8 bits

are set to zero.

1~ 2andty

wexdetq yooTg Jeindwoy

r sng ML
$3OUNOS
. y my . _
. ML pr—
YILNI - 1 .
3V4UT LN Fovauin uu<umwmw_ Ha1S193M
509 O/ AYOWIW _ Lot == NOLLDOYLSNIGHDY W
H H- I] - . ILAE ONZ Ew%%.w;
O 28 9 | e _ D d
" SR S
g »ﬂwiwz i wred. w __
133910 ¥ /35 yiva SI0ULNO? w v
- - VETITS) 1901
angnt viva) 108.LN0D e
e ADVAYILNI LSNIOYOVH
10621 - —
13 nay NOUINGD MV ' Z
‘syaLsioau xIani ¥3LS193Y 91 L. [b "
 _ HILNIOd MDVLS (aLnoax3) | (i) m £
¥ILNNG) WYYI0Ud HILSI9IY AN3dd | [=
MIVLS 1SV EN - n%.u CH M
= NOILDNULSNIOUDIN 5 o o 1z
103135 ‘93 . T 301A30
FONIL MOVIS (<o ia nb) in M o 3105N0D
. vois L ___|2 {2 9 = I
O | eeernend 1
g oMz T I0Y1INOD z B2 - :
m m w 1
$S3YAQV e 2 '
1X3N th 5 L
SNLVIS Y0) L » ‘ 0 e
n 3 . 10162) 2 m g
SALVIS /i . m uwwo-_ :Hw__h: ¥IININDIS Y1 w0
ABAL 1 WYH90Y JOUIIN A
SNLVAS Ny~ . \—|I|I

4,2 Main Memory

The main memory can have up to 32K 16-bit locations. This memory
is designed using Hitachi's HM6116P-3 chip, a 2K word by 8-bit high
speed static CMOS RAM with an access time of 150ns. The memory design
includes a 16-bit Memory Address Register (MAR). The upper 15 bits are
always interpreted as a word address, while the least significant bit
(1sb) is used to choose between bytes of the selected word when the
byte mode is specified. 1In the word mode the 1sb is ignored. This
forces words to be accessed at even byte boundaries independent of the
1sb value. There is no Memory Buffer Register for this system. Memory
is accessed without a handshake, much like typical microprocessor
systems. To read, the CPU sends an address in one cycle and receives
data in the next. Writing is similar in that the address is sent in
one cycle followed by the data in the next. The timing for this memory
has been carefully worked out with the 6116's. Although this type of
design lacks generality, it simplifies the CPU, Bus, and memory design

significantly.

4.3 The Console

There are two types of I/0 pictured in Figure 4-1. The Console
1/0 device allows the user to communicate directly with main memory.
It also has such features as run/halt and single step. These are
implemented at the microinstruction level rather than the macroinstruction
level. When the machine is halted, the Console has the capability of

reading and writing directly to the Control Store. In fact, it is

through the Console that this memory is initialized during start-up.
All of the operations performed by the Console are carried out with

the CPU in halt mode. Only one Console device exists in the system.

4.4 Direct I/0

The other type of I/0 is Direct I/0. Devices like those shown in
Figure 4-1 are the target of all programmed I/0. Many such devices may
exist within the system. The CPU communicates with these devices over
the system Bus. A simple handshake circuit is required tc synchronize
data transfer. Although these devices are connected to the system Bus,
they are unable to communicate directly with memory. All data transfers
between I/0 and memory must first pass through the CPU. Each Direct
I/0 device has the capability of interrupting the CPU on 1 of 16 interrupt
levels. The CPU can however mask interrupts from any or all interrupt
levels by enabling the appropriate interrupt mask bits. Interrupts are
acknowledged by the CPU on a priority basis. This is accomplished in
hardware with a daisy chain. Associated with each dewvice is a Device
Code with which it responds once its interrupt has been acknowledged.
Input and Output devices are treated separately, each has its own Device
Code. The CPU uses the Device Code to determine the source or destination
of all I/0 operations. An I/0 device is selected by placing its Device
Code on the Bus concurrently with the appropriate set of Bus control
signals. I/0 data transfers occur in the cycle directly following the
Device Code, much in the same way memory data transfers follow memory

addresses.

10

4.5 The Control Unit

The Control Unit in this machine is microprogrammed. That is, the
sequence of operations required to fetch and execute macroinstructions
is carried out by a series of microinstructions. Microinstructions are
kept in the microprogram memory, often referred to as the Control Store,
or simply CS (see Figure 4-1). The CS in this machine has 4K locations,
each of which is 88 bits wide. It is composed of the same type of
memory chips used in main memory, 6116's, which for this purpose is
slow but adequate. When a microinstruction is to be executed, it is
placed in the Pipeline Register.

Every microinstruction has two major parts. The first part provides
the fundamental control signals required by the other units in the
computer. Examples of such signals include the shift, carry, add, and
read/write controls for the ALU and memory. The second part of every
microinstruction helps determine the CS address for the microinstruction
to follow. For simplicity, this address will be referred to as the
Next Address. The operation is such that the fetch of the next micro-
instruction is overlapped with the execution of the current one, hence
the concept of pipelineing.

The Next Address is a 12-bit number supplied by the Microinstruction
Sequencer, alsc called the Next Address Generator. The Next Address
Controls of the current microinstruction, coupled with the selected
Test Result provide all the information necessary for the Sequencer to
choose the Next Address. The Microinstruction Sequencer in this machine
iz a bipolar LSI device, the 2910, which is a member cf the 2900 micro-

computer logic family.

11

There are a total of 5 possible sources for the Next Address.
Two of these are shown in Figure 4-1; the Instruction Address Source
(from the Macroinstruction Logic), and the Next Address Field (from
the Pipeline Register). The other three reside in the 2910. The first
of these is referred to as the MicroProgram Couqter, or 4PC. It performs
a similar function to that of the Program Counter for main memory. The
2910 also contains a 4 rvegister stack, providing for the capability of
microprogram subroutines. The third source of the Next Address in the
2910 is a general purpose counter/register. Although there are a total
of 5 Mext Address sources, only 2 of the 5 are potential candidates at
any given time. The 2910 uses the Test Result to determine which of
the two will actually supply the Next Address. The Test Result may be
any one of the machine status bits, selected by a field in the Pipeline
Register via a hardware multiplexer. The decision making capability of
the entire machine is based on the ability of the 2910 to make a 2-way
jump in a microprogram routine based on the selected Test Result. A
detailed explanation of the 2910 operation is given when the Control

Unit hardware is presented in detail.

4.6 The Clock and Timing

This machine has a microinstruction cycle time of 300ns. This
cycle is divided into 3 equal periods of 100ns. The clock signals for
the system are as ghown in Figure 4-2. These signals, ﬂl, ﬁé, and gé,
along with their complements (which are also generated, but not shown),
provide the necessary timing for the entire system.

The rising edge of ﬁl signifies the beginning of a microinstruction

12

Z2-4 2andtd

4

!

1

]

]

1

]
]

I
" /
_ :
"]
_ |
_ 1
_ !
“ _
| _

:

I
“ m
. 1
. !
| [
|]
.)
| 1
| 1
_]
_ |
:

“ m
; su ooy !] "
< “ Su 00l i i
gom3ad v)

“)) 2 aoyad 1 Su 00l
“ " e 1 00143d
] : _ V.._
u 1
) su gog IV T

SHOOTH wajsAg

ZHW O\

071D
YIALSVYIW

L3

periocd. This edge is used to load the Pipeline Register with the new
microinstruction. It is also used to load the Status Register with the
results of the previous microinstruction. In addition, @1 and its
complement, Ei, are used to synchronize all information transfer on the
system Bus (see Figure 4-3). Information is transferred on the Bus
during periods 2 and 3 (most likely by enabling a set of 3-state
buffers). As soon as Gl goes high, signifying the beginning of period
1 for the next microinstruction, controls are provided to disable these
3-state buffers, and hence remove the information from the Bus. These
controls are delayed slightly with respect to 91 due to some unavoidable
control logic. The 3-state buffers themselves contribute an additiomal
delay. Thus, the information placed on the Bus by Device #1 will not
be effectively removed until sometime during period 1 of the next micro-
inseruction. Therefore period 1 is set aside to compensate for these
delays. It is not until period 2 that Device #2 will begin to place its
informaction on the Bus. In this way, the potential overlap of information
from both devices on the Bus is avoided.

53, the complement of 93, is the clock signal used by the ALU. For
this reason it is referred to as the Execution Clock.

The Console Device has ultimate control over the system clock signals.
The Conscle can halt the CPU by simply stretching these signals, i.e.
holding them at a fixed level. The CPU is always halted at the beginning
of a microinstruction cycle. That is, ﬂl is held high while 62 and @4
are held low. In the halt mode, a Single Step is carried out by allowing
the clocks to proceed through one complete cycle, after which they are

again halted. In the Run Mode, the clocks are normally allowed to proceed

in an undisturbed manner. 93, the Execution Clock, is the only exception

NMONMNN -4 2andtg

3 b,umrm!m ,\ m;rmrrmlm

. 7 T E 7 % # _
W _“ % “ _
[“ “
“ | _
| Sng > 340 e |
| 1wy Eqﬁc_u.,ME “ g:..._C..ﬂ.m?s “
1 I)
| o " |

7 : _ y _
i /R / _
;]
_ u "
| lw_k_ -] \,_T “
“ sng Mt 3, sng ojuo “
" Pwiny WM LW “ Py Wi |
i | :
| _ |
L |
“ |
| |
1 | !
| 1
: '
_ | . . i
t t m ¢ dotvay | 2 aowag | 1 qewag _ goowag | 2 ooy | g aowy
1 1 “
k——371DAD QN2 —k 3IDAD AST—

aTdwexy Futwi] sng

NOLIYWYOANT
—4# AAA0

NOLLYWYHOAINI
T A2WA3(Q

15

here. Under certain conditions the Stack Tender circuit will generate
a hardware trap signal which will require a temporary modification of
Bé. The operation will be discussed in detail when the Stack Tender and

Clock Circuit hardware designs are presented.

16

5 The System Bus

The system Bus consists of 16 information lines labelled BUS0
through BUS;5. The information transferred over these lines include
memory addresses, I/0 Device Codes, instructions, and data. These lines
are connected between variocus parts of the computer as shown in Figure
5-1. BUSO - BUS, is referred to as the low byte of the Bus, and BUSg -
BUS,5 as the high byte. Sequential bytes are accessed from memory
locations in a "low byte', '"high byvte'" fashion. The low byte is accessed
with an even valued address, and the high byte with an odd address,
one value larger. The low byte is shown on the left rather than the
right for reasons related to the placement of variable length instructions
in memory. This topic is discussed more thoroughly in the next section.
As a consequence, the Most Significant Byte (MSB) of data to/from the
ALU travels the low byte of the Bus, and the Least Significant Byte
(LSB) travels the high byte. All single byte data, from I/0 or memory,
travels the high byte of the Bus so that it enters (exits) the LSB of
the ALU.

In normal program mode, all Bus transfers are carried out via controls
provided by the CPU. (When the CPU is in halt mode, the Console Device
supplies the necessary controls). There are basically three types of
control lines for the Bus; memory controls, I/O controls, and timing

controls.

5.1 Memory Bus Controls

The Bus controls associlated with main memory are defined as follows.

Ipows athg vy

~

le ﬂmﬁ; r_.rn& SN 16 2andtyg 3Tq Jued[JTudIS JSea] SOTIARD m..Hm:m
11q JuedTITUITS JSow SITIIED om:m
A1Mg HOY S'sog - Ssng
1~ 1 T y, N
"k\
“ 3LAG MOT) Lsog —%sng
-_" it
_Fllw ! u\ \
_ié
4 | ‘ A 9 ﬁ!!. \
- & W 300 d0)
o . 451185 B31K0 ON2fa) g 1) 3DWIN3A
) - D ul_ < . . O_ w\u_\/uo
. “ Y3ILSION e 8 370SNOD
O [MO NQLL MY LSNIOY DY W)
HOIH | MQT
- P qsT qsu
o o “ &
o . _rﬂn L Tq|%

AHOWHIN

SUOT08UU0) sng walsAg

18

1. LDMAR - Load Memory Address Register
When high, this signal causes the information on the Bus to

be placed in the Memory Address Register.

2. MEM SEL - Memory Select

When low, this signal signifies a data transfer with main memory.

3. R/W - Read/Write
If MEM SEL is low, this signal, when low, signifies a write to

main memory. A read operation is performed when this signal is

high.

5.2 I/0 Bus Controls

Due to their asynchronous nature, I/0 devices must communicate with
the CPU via some sort of handshake. The handshake is accomplished by
providing each I/0 device with a Ready Flag. When this flag is high it
signifies that the device is ready. Each time data is transferred from
the CPU to an output device its ‘Ready Flag is set low. As soon as the
output device 1s ready to receive another piece of data it returns the
Ready Flag to the high state. An input device signifies the presence
of data available by setting its Ready Flag high. This flag 1s returned
low when the CPU reads the input data. The Ready Flag status for all
I/0 devices is returned to the CPU via a 3-state Bus line called
I/0 READY.

I/0 devices can interrupt the CPU from 1 of 16 interrupt levels.

Interrupts from all levels are initiated by pulling low an open-collector

19

interrupt line. Interrupts are acknowledged on a priority basis via a

hardware daisy chain. The CPU has the capability to mask interrupts

from any or all levels by setting the appropriate iInterrupt mask bits.
A total of 7 Bus control lines are provided to carry out the I/0

operations specified above.

1. I/0 SEL - I/O Select
When low, the current Bus transaction is directed to an I/O
device. NOTE: 1I/0 SEL should mnever be low concurrently with

LDMAR high or MEM SEL low.

2. T/0 STAT/DATA - I/0 Status/Data
(1f T/O SEL is high, this signal has no meaning.) I/O STAT/DATA
high signifies that status information (the Ready Flag) from the
selected I/0 device should be placed on the I/0 READY Bus line.
Devices are selected by placing their Dewice Code on the Bus
information lines concurrantly with the activaticn of the T/0 SEL
line. I/0 STAT/DATA low signifies that the current Bus trans-
action is 1 of the 2 operations required to transfer data
between an I/0 device and the CPU. These 2 operations are both
performed with I/0 SEL and I/0 STAT/DATA in the low state,
and must be carried out sequentially. The first operation
entails the selection of the device by sending its Device Code
down the Bus information lines. The actual I/0 data transfer

occurs during the second operatiom.

6.

74

20

I/0 READY

This is a 3-state Bus line shared by all I/0 devices. When
a device's status is requested via the I/0 STAT/DATA line,
the state of the Ready Flag for the selected device is placed

on this line.

INTERRUPT
This is an open=collector Bus line shared by all 16 interrupt

levels. An interrupt is requested by pulling this line low.

INTACK - Interrupt Acknowledge

This line is pulled low by the CPU to acknowledge an interrupt.
It serves as an input signal to a daisy chain network through
which it propagates to the highest level interrupting device.
Any interrupting device receiving an acknowledge should place
its Device Code on the Bus information lines, thus identifying

itself to the CPU as the interrupt socurce.

MSKEN - Intarrupt Mask Enable

This signal is used by the CPU to mask interrupts from any or
all of the 16 interrupt levels. It is pulled low concurrently
with the placement of a 16-bit mask word on the Bus information
lines. Interrupts are disabled by setting the corresponding

bit of the mask word to 1.

BRST -~ Bus Reset

When low, this signal places all devices on the Bus in a known

21

state. This signal should be asserted during system init-

ialization.

5.3 Bus Timing Controls

The timing controls for the system Bus consist of the ﬂi and ﬁa
clock signals generated in the CPU. These signals are used to gate
all information on the Bus during periods 2 and 3, leaving period 1
as a transient period as previously discussed. gl is used primarily

with I/0, while ﬁl is used primarily with main memory.

22

6 Macroinstruction Formats

This machine has been designed to handle variable length instructions
of 1, 2, 3, and 4 bytes. The actual operations performed by these
instructions depends mostly on the microcode. Their formats, however, are
largely a function of the hardware design. The hardware design places
various restrictions on the Macroinstruction's Format and its placement
in memory. The Op Code for all of these instructions must occupy the
first byte. In addition, multi-byte instructions (2, 3, and 4 bytes)
must be fetched from memory at an even byte address (i.e. a word boundary).
Only l-byte instructions can be fetched from an odd memory address. This
implies that all instructions whose last byte occupies an even numbered
address must be followed by a l-byte instruction. In situations where
the succeeding operation requires a multi-byte instruction, an 8-bit
NO~OP must be inserted to satisfy the above criterion. This 1s similar
to the way variable length instructions are handled in the HP3000 [1].

The Instruction Register, IR, in this machine holds 16 bits, i.e. the
Op Code and one additional byte. An instruction fetch from an even byte
address will place a full l6~bits in the IR. A fetch from an odd numbered
address will place only an 8-bit Op Code in the IR, This is due primarily
to the manner in which information is read from memory. In the 3 and 4
byte instructions, the information contained in the last one or tweo
bytes is always destined for the ALU. Thus, this portion of the instruction
is fetched during the execution phase and transferred directly to the
ALU, completely by-passing the IR. Typical Macroinstruction Formats
for this machine are shown in Figure 6-1.

Stack Operations consist of ‘a single 8-bit Op Code. These instructions

MACROINSTRUCTION FCRMATS 23

1-BYTE Instruction Format

Stack Overations

OP CODE

2=BYTE Instruction Formats

I/0 Instructions General Instruction
DEVICE ADDITIONAL

QF CODE CODE Q0P CQDE CONTRQL

Branch Instructions Register Reference Instructi
RELATIVE

0P CODE ADDRESS 0P CODE L L

Source Register-¥T
Destination Register —

ALU Instruction .

_ 8-BIT
0P CODE OPERAND

3&N4<BYTE Instruction Formats

(Memory Reference Instructions)

3-BYTE
ADDRESIING | RELATIVE
OF CODE | SCHIME ADDRESS
4-BYTE
|
- | ADDRESSING | DIRECT -or- RELATIVE
0F CODE | "seuznz ADDRESS

Figurs 56-1

24

perform a variety of ALU functions including addition, subtraction, and
logical operations. Operands for these instructions lie in wvarious
locations at the top of the stack. These instructions typically make
up a significant portion of the total Macroinstruction Set.

A variety of instruction types fit into the 2-byte catagory. Here
the secoﬂﬁ byte is used to supplement the Op Code with additional
information pertinent to the instruction. For example, I/0 instructions
require a Device Code field and Branch instructions require a relative
address field. Other instructions may require an B8-bit operand or even
additional control information. In the classical register machine, ALU
operations require register select fields in the instructlon format to
determine the source and destinatilon registers. This machine has been
designed so that it can be operated in just this manner. That is, the
stack hardware can be disabled (via microcode), in which case the second
byte of the Instruction Register is divided into two register select
fields, each capable of accessing any one of the 16 ALU registers. To
perform the various functions described above, the second byte of the
IR serves as an input to the Stack Tender/Register Select circuit, the
Data Select/Sign Extend logic, and the Macroinstruction logic (see
Figure 4-1).

Three and four byte instructions in this machine are designed as
Memory Reference Instructions. The second byte of these instructions is
used to specify various addressing schemes used to calculate Effective
Addresses for memory operands. The remaining byte (8) function as an
address field. For 3-byte instructions the last byte supplies an 8-bit
relative address. In the 4-byte instruction, the last two bvtes can be

used to access any location in memory, either directly or in a relative

25

fashion.

Effective Addresses for Memory Reference Instructions are typically
computed using a variety of addressing techniques, such as Relative,
Indexed, and Indirect. In addition, each of these techniques can be
applied with respect to numerous base or pointer registers. The Program
Counter and Stack Pointer are the two of the most commonly used pointer
registers. Additional pointer registers, asscciated with both code and
data portions of memory, are also found in typical Stack Machines. For
example, the HP3000 has a total of 6 pointer registers [ﬂ . Two of these,
P and PB, are pointers to the code area of Memory. The remaining four,
S, Q, DB, and DL, are pointers to various data areas in memory. Other
registers, called Index registers, will also exist in a machine that
has Indexed Addressing. These registers hold an index, or relative
value, (not an address), used in computing the Effective Address when
Indexed Addressing is specified. The HP3000 has cone Index register.

In some Stack Machines, the various addressing techniques are
applied in a slightly different fashion depending on the base register
type. For example, the HP3000 makes a distinction between Code and Data
addressing EJ. That is, Effective Addresses for Code areas are computed
slightly differently than for Data areas. To complicate matters even
more, relative addresses can be computed in only a positive direction
with respect to some polnter registers, a negative direction for others,
and both directions for the rest. Thus, it is apparent that computation
of Effective Addresses in a Stack Machine may requires a considerable
number of algorithms.

In this machine, Effective Addresses are computed in microcede.

Each of the different algorithms for computing these addresses requires

26

a separate microilnstruction routine. This machine provides up to 32
different voutines for calculating the Effective Address. These routines
are specified by a 5 bit field in the second byte of the instruction

register. The format for this byte is the following.

REGISTER SELECT

bs By Pig Pu1 P2 P13 Py

\\—N\.—J_

ADDRESSING SCHEME

bys

The first five bits, b8 through blz)specify the addressing scheme, and

are directed to the Instruction logic in the Control Unit. The last

four bits, blzthrough blS’SeleCt an ALU register to play a part in the
computation of the Effective Address. The overlap of blzbetween the

twe fields occurs here because the Register Select field is the same

4-bit field used to specify the source register for an ALU operation

when functioning as a register machine. For Memory Reference Instructions
this field will most likely be used as an Index Register Select field.

It would be impractical, however, to suggest that all 16 ALU registers
function as Index registers. Perhaps the best way to organize this

field 1is to designate blZaS the Index Addressing bit. When blZiS 1,

Index Addressing is specified, and the Register Select field can choose
any one of the upper 8 ALU registers to play the part of an Index Register.
When blzis 0, the Register Select field is ignored. Specification of the
various pointer registers is encompassed in the first 5 bits because
Effective Addresses are often computed differently for each of them.

The following example shows how the individual bits might be arranged to

27

perform the various addressing schemes found in the HP3000 Dﬂ.

b b b b

10 P11 P12 Py3 Py bBys

L"‘v‘_—) M_/
L INDEX REGISTER SELECT

INDEX ADDRESSING BIT

INDIRECT ADDRESSING BIT

CODE/DATA ADDRESSING BIT

BASE REGISTER SELECT

This configuration provides for up to 8 Index registers as opposed
to the 1 found in the HP3000. The Effective Addresses are computed in
accordance with the specified addressing scheme as summarized in Figure
6-2. Note, since there are only two registers used in Code Addressing,
P and PR, 8 of the possible 32 schemes are duplicated in the table,
resulting in 24 distinct ways of computing the Effective Address. The
above organization of the second byte is just an example. The actual
definition of bits bB through bliis up to the microprogrammer. Examples
of microcode written tc compute Effective Addresses using the above
scheme will be presented in detail later.

In summary, the Macroinstruction Formats for various types of
instructions have been presented. The Op Code for all instructions
always occupies the first 8-bits. Thus, this machine can perform up to
256 different instructions. In addition, the organization of the second
byte in the Instruction Register provides multi-bytre instructions with a
wide range of capabilities. Instructions more than 2 bytes long are

designated as Memory Reference Instructions. All information beyond the

Computation of the Effective Address using various
Addressing Schemes

b1 Pyo

o
—
o

o
w

Pg

R2

=
2
-
o
pee|
’._.l

EA, Effective Address

HH!—'HHHHHHH!—'!—'HHHHOOOO'ODOOODO-DOOOO
HH 2 HHH O OO OOO®OOH I KR KHIEBEIRI B IPFP-ROOOOOOOO
HH HEH O OOOHI MIEPMIEPMIMFEMOOOOIMRMIPMMMBEOOOO-RHMKIEMEMEOOOO|AJ
HHFPOOHMOOHMFEFOOHMKFE,OOMFHEOOHKFEFOOQOMHREHKMOOHRIMOO
r—'OI—'Ol-JC)I—‘-C)i—‘Oi—'C)I—'OI—‘OI—‘OE—'O.HOHOI—-‘OI——‘OHOI—-'C‘.;

|

[
(P;

w

O

[AV]

PB+n

Pan

PB+n

Prn

DB+n

Q*n

S-n

DL+n
PB+n+IX
Ptn+IX -
PB+n+IX
PEn+IX
DBEtn+IX
QEtn+IX
S~ L X
DL+n+IX
PB+n+{FB+n)
Pin+{P*n)
PB+n+(PB+n)
PEn+(P£xn)
DB+(DB+n)
DB+ (GEn)

DB+ (S-n)
DB+(DL+n)
PB+m+(PB+n)+IX
Ptn+(Ptn)+IX
PBEnt(PR+)+IX
Prn+(Ptn)+IX
DB+(DB+n)+IX

 DBH(Qtn)+IX

DB+(S-n)+IX
DB+(DL+n}H+IX

28

second byte is treated as an address field and is transferred from
memory to the ALU during calculation of the Effective Address. The

Effective Address can be computed using as many as 32 different schemes,

29

30

7 ALU Hardware Design

7.1 The 2901

The major ALU component is the 2901 LST processor device, a block
diagram for which is shown in Figure 7-1 Eﬂ . The two most important
features of this device are the 16 word by 4-bit dual ported RAM, and
the high speed Arithmetic and Logic Function Unit (ALFU). The 2901
is a 4-bit slice which is easily cascaded to form a 16-bit ALU. The
16-words of RAM function as general purpose registers, any two of
which can be accessed in parallel and sent to the ALFU as operands.
These registers (RAM locations) are selected by two sets of address
lines. A3 through AO are the A register select lines. They select
one of the 16 RAM locations to be latched at the Port A ocutput of
RAM. Likewise, B through BO are the B register select lines which
select the RAM location to be latched at the Port B output of the RAM.
An additional register, separate from the RAM registers, called the
Q-register, is used primarily for multiplication and division routines
that require a double length operand.

The ALFU has two operand inputs, R and S, and a result output, F.
The 2901 control inputs Is, I, and I select from 8 possible ALFU
operations as shown in Figure 7-2 [Z]. The ALFU operands, S and R,
can be supplied from a variety of sources which include the Q-register,
RAM Port A, RAM Port B, zero, and a set of direct data inputs whose -
values are externally supplied. The sources are referred to as Q, A,
B, 0, and D respectively and are selected via the I, I;, and I control

inputs as shown in Figure 7-3 [?].

31

e

(il

T4 8Jngty

0

A

£ ()

oY LNOD)

T3 aws-g
ER

‘ ¥OwW

8 —
| > —{—ouney
Ly 1ams 3
—-c__;—.(—,___.—mwc

N > ny
‘-

O

12 QUND
L T .
Law
=4 U.u
AN NOUDNN
1201 DIUHLIHY 30m3(<5
...U k= O _%¢ oy, ¢ ROILDNMO Y] .w_
| S- .i.il!!.a!il..mm‘ltmxll oy
N_ [C— 300030 — %1 \—a . _m_
1 . anNviy3ado] KOw Xow
| = FIUNCG ﬁlﬁm Ve 1 468 S
[+] U\.'ll Ny 4
. 1 S1LNAN]
L = wava
_ . — - B0 123110
ﬁ | o HOUVT |
] d luod | | v 1vod do
°6-*b o !ui\P N TV v
11 waisway - 423135 8y U-d v e
%0 -fg a 19 Wvy | ——<1'y LoFas
%I.I.JIL #—M—.—h_.wuﬁ_ HG = Avad wog —=_1 .ﬂ(v
_ PO €3 [>——{ 119 b 18 Quom g |——<] By YILBIDTY
af UVOTL/Lg01S T i s, cclr,.ﬂ
Lv_lﬂ..m gvonb || T
.“_,F—, _ XOwW
o av o/ LG
mclﬁYh-lAva
wvd
welsetqd {O0OTd T06Z

2901 ALFU FUNCTION GONTROLS

Control Inputs

15

I4

3

Function

-~~~ 0O O O O

H 2 O O - B O O

H O M O HOMHO

Figure 7~

W o ol ™o v o

2

plus S
minus R
minus S
OR S

AND S
AND S
EX-CR S
EX-NOR S

2901 SQURCE OPERAND CONTROLS

Control Inputs ALFU Source Operands
I2 Il I0 R S
0 0 0 A Q
0 0 1 A B
0 % 0 0 Q
0 L 1 0 B
i 0 0 0 A
1 0 b D A
pi i 0 D Q
1 I P D 0

Figure 7-3

32

33

The ALFU result, F, can be stored in 1 of the 16 RAM registers
and/or the Q-register. The B register select lines always determine
the location of the stored result in RAM. Before the result is stored
it can be shifted either right or left by a set of multiplexers positioned
at the RAM and Q-register inputs. F, as well as the selected A register
value (RAM Port A), can be made available externally through the 2901 Y
outputs. These outputs are 3-state to allow for direct connection to

a system Bus. The I I_, and I

8’ 77 6

operation, the destination of F, and the selected Y output as

control inputs determine the shift

summarized in Figure 7-4 [2] .
In order to cascade a group of 290ls, various shift and carry
information must be made available externally. In Figure 7-1, Cn and
C.y, are the "carry in" and "carry cut" respectively. The ALFU features
internal carry look-ahead to enhance the speed of arithmetic cperations.
The carry generate and propagate signals, G and ?} supply the informaticn
needed to extend the carry look-ahead operation over a group of 2901s.
A 745182 (carry look-ahead generator) can be used directly with a group
of four 290ls to form a complete 16-bit ALU with carry look-ahead.
The RAMB, RAMO, QB’ and QO signals provide for the necessary
shiftiﬁg connections between cascaded 290ls. The interconnections for
two successively ordered 2901s are shown in Figure 7-5. On a right shift,
the RAM_ and QO outputs of devicer#n+l are shifted into RAM

0 3

device #fn. On a left shift this operation is reversed. Thus, these lines

and Q3 of

are necessarily bi-directional. The RAM3, RAMO, Q3, and Q0 signals are

3-state internal to the 2901. A right shift opens the buffers for

RAM_ and QO’ and a left shift opens them for RAM

0 and Q3.

3

The 2901 also generates various ALU status information. OVR

3

—4 eanITy)
. 99T 3JTys=zdn
JYITI 4FTYS=UuUMOp
8Jed 4 ,uop=X
330N
£o X €d ONI | auou X g+Jz| dn T 1 T
£o ONI Cd ONI d b« B2 dn g+Jz| dn 0 T 1
X 0d ENI 0 d auou X | €+2/d4| umop T 0 T
NI 0d NI 0d | bez/b| umop| deg/d| umop 0 0 T
X X X X d auou X g<-d| euou 1 T 0
X X X X v auou ¥ geJd| auou 0 T. 0
X X X X E) suou | X suou| ¥ T 0 0
X X ¥ X d D<«Jd | euou suou X 0 0 0
£o 0d EWVY | OWvY | 3hdang peoT | 3JTYS PeOT| 3JTUS 9I LI 8l
J93.JTUYS WYY X |uotgoung Faa-d| uotrioungd Wvy sindul foIjuop

J93JTUS D-

T0I3U0) 3JTYS/UOT4RUTISSd NJTY

\

35

LA) i

cc.n. W

G-/ 2an3dtyg

S9UTT TEUOI]D2IIPIM

OWVY

00

V1062

uf

/

CINVY

mdam

<

OnvY

00

V1062
THUf

Ewvy

£o

FUITY 1JTYS

V\
1797 2JTUS

SUOT)08UU0) 1ITYS PapeBIOSE) V1062

36

(see Figure 7-1) is activated by an arithmetic operationm resulting in

2's complement overflow. The msb of the ALFU result, F3, is also brought
out as status. This bit typically functions as a sign bit for 2's
complement numbers. A zerc result is detected and supplied at the

F=0 output. This output is high when the ALFU result is zero. F=0

is an open collector output so it can be wire AND'ed with the corresponding
output on each of the cascaded 290ls. In this way a zero result is
signified only when the F=0 output i1s high for all 290ls.

Timing for the 2901s works in the following manner. When the clock
input, CP, is high, the selected A and B register values are read from
RAM. The Port A and Port B latches are transparent during this time.
When CP goes low these latches will close and retain the previously
entered value. If enabled, the ALFU result, F, is stored in the selected
B register while CP is low. If F is to be stored in the Q-register it
is loaded on the low-to-high transition of CP. CP is connected to the
Execution Clock, Bé, in this machine. Thus, during periods 1 and 2
the source operands (R and 5) are selected and the ALFU operation is
performed. The result, F, is either stored in the selected B register

during period 3, or loaded into the Q-register at the end of this period.
7.2 The ALU Design

Figure 7-6 shows the 16-bit ALU in its entirety. As previously
mentioned, the 748182 carry lookahead generator is connected directly
to the 2901s to provide full 16-bit carry lookahead. The A and B
register select inputs are supplied by the Stack Tender/Register Select

circuit, the details of which will be discussed in the next sectiom.

=/ aandtiy

STAOY1INOD SOYLNOD NOILDINNS
31Y10Y /L 31HS
~ | i —
i ¥y 0N 4 N.—Z. :.r —. —.I. gail. o, v > da
d
Lo oV b Mofvel wfy o | 11
' ' T T B _
1 _— h__ Vil ﬁ
oty v ;.oJ_ i
1oV K_...E = = o1t - iy
I =) e) ”nw_ 00t
: 1at Yy Q, ¥iu 1 *RIZ Uy £y € Iﬁw sng o ’ 1o}t
R | S— rﬁ DY '2d D U™ 999G s AXYYD
100} —gau 100 vy
| 30 oo0} . | o™ 1nok ' 10 o
T, Y 4| x:wﬂ
= e 11— il wigy -}
S !
R 4 _ _ /o —
—ﬁ1.z -] — P
;;ﬁﬁll:_ T ‘I‘Wwwﬂ.\i!T\\ﬁl{\mwl.kr-ﬂufzelwl4. i o MHWMwsTEHP
iy 9d30 A 9 “3 94 30A %-° 294 304 49 “3 94 30A 2%
Fhavy — 2wy €y ————[Lavy Cpavy - [hvy vy [{vy Epny |4 QWY
951y —-| © €l .]® LY SR . 173 I (-] € F—71- 95w
. 9 yiogz © ® yiosz B Y yioez e ' vioez +zwﬁwg b
Y¥AO
@! m.ﬂl.ﬁ @ - ﬂ.@ 1 Azoﬁu 4 —_—
0o=4 g V O o:4 8 V 4 o4 89 v Q Q:4 8 V g w m
oL.,\(/\HH AU IS DO - I *I D W — . _ B __
A5+ rFi --ﬁlh,EWL-*:11,:1iRHﬁ;--LMWIJ_ _ ﬁi 9Hﬁf§
«_.9 a . e S r wqb i Iy of- W1y
Ty 4 R _ — 30 00f— 1o
i v L
it H e b K_._..}_ o [s]elo]8 p._ T |
on 7.| AbYyv) gy . RIS | 1.2 1o0}— [ool Pligvy
LI EER Y 2 Y S I VI e il Lo
— oot Jo373s 9y 9 T ¥'sng tob-—14 by ol g5
(£ B | baanaL wovis aNILX3 NOIS |21 I []
olo} /1273135 viva o 1 | v gy
100} 5wy - Q1 *03_9) i ;m.
_39 oo y/g :m._lw Hel E& o|¢m HIEEIPL 1 Q Q
Tty «] P z:E

qu<._. 0y

ustseq NIV @Ul

38

The Data Select/Sign Extend circuit, also presented in a subsequent
section, supplies values for the 2901 direct data inputs. The Y outputs
of the 2901 are connected directly to the system Bus. They are enabled
onto the Bus by a control signal from the CPU Bus Interface circuit,
YOUT. The Execution Clock, E}, is used to clock the 290ls as described
earlier.

The 2901 control inputs, IS through IO, are supplied directly from
the Pipeline Register. I6, however, is inverted while the others are
not. In this way the placement of zercs in these 9 bits for a particular
microinstruction has the netreffect of a No Op for the 2901s. This
feature simplifies the microinstruction assembly process by requiring
bits in this field to be set only for microinstructions that perform
an operation with the 290ls,

The sign bit, F3, and overflow, OVR, status signals for the ALU
are taken from the leftmost 2901 (which works with the 4 most significant
bits). These two signals, along with the wire AND'ed F=0 signal, are
gated through a 2-to-1 multiplexer as inputs to a 3-bit portion of the
machine status register. The outputs of this register are made available
not only to the Control Unit (for decision making purposes), but also to
the system Bus in anticipation of storing these values in memory when a
change of context occurs (i.e. an interrupt or jump to subroutine). This
register is easily restored to its original context since the same Bus
lines that are used to store the register are also made available at the
register input via the 2-to-1 multiplexer. This multiplexer is operated
by the Return Status, RS, control bit in the Pipeline Register. When
high, the RS bit selects the Bus lines as inputs to the register, and

when low the current status values are selected. The register is clocked

39

by ﬁg, but wi}l lead only if the Set Status, S5, bit in the Pipeline
Register is set.

The remaining circuitry in Figure 7-6 implements the desired shift,
rotate, and carry functions. A complete set of the shift and rotate
operations implemented in this design are shown in Figures 7-7 and 7-8.
The control signals supplied by the Pipeline Register to perform these

operations are defined as follows.

1. D - Double
D=0 Selects a single width (16 bit) shift or rotate.

D =1 Seleects a double width (32 bit) shift or rotate.

2. IC - Include CARRY

IC

0 Will exclude the CARRY from the shift or rotate operation.

ic

1 Will include the CARRY in the shift or rotate operation.

3. R - Rotate
R =0 Selects a shift operation.

R =1 Selects a rotate operation.

4., ARTH - Arithmetic

This control has an affect only when a shift operation is selected.

ARTH = 0 Selects a logical shift.
ARTH = 1 Selects an arithmetic shift.
5. 0/1

This signal supplies a 0 or a 1 to be used directly in various

shift operatioms.

Single Word Shift and Rotate Operations

40

1. Arithmetic Shift Right

7 [i;ﬂ—*_} _chf;ﬁ.___é

C RAM . Q

2. Arithmetic Shift Left
<—Qﬂ

c RAM - Q

o/l

A

3. Logiecal Shift Right

w/o Carry
Cwe —_— | Qﬂﬂa —g
C RAM . Q

L. Logical Shift Left

w/o Carry
— o [
C RAM Q

5. Logical Shift Right

with Carry
CVI%.____§'

c RAM Q

A 4

6. Logical Shift Left -

with Carry
=Y [
2 RAM Q

7. Rotate Right w/o Carry

= =

8 RAM ' Q

8. Rotate Left w/o Carry

—i =

c RAM Q

9. ‘Rotate Right with Carry

| =

C RAM ‘ Q

v

10. Rotate Left with Carry

4=

Flgure 7.7

Double Word Shift and Rotate Operations

41

1. Arithmetic Shift Right

4
W

2. Arithmetic Shift Left

=

C RAM - Q

Aol

A

3. Logical sShift Right
w/o Carry

of8

C RAM ‘ - Q

A 4
Y

k. Logical Shift Left
w/o Carry

=)

e
Y T

c RAM)

5. Logical Shift Right
with Carry

b 4
y
k4

6. Logical Shift Left
with Carry

A
A
L

7. Rotate Right w/o Carry

I 1

v

—~
o

8. Rotate Left w/o Carry

—u

{_——1

A

9. 'Rotate Right with Carry

=y J

C RAM Q

W
v

10. Rotate Left with Carry

=

A
A

Figure 7-8

42

6. I7
This is one of the 9 control bits supplied to the 2901s. When

a shift (or rotate) operation is selected, this bit determines

the direction of the shift.

[l

I, 0 Selects a shift right.

I

7 i Selects a shift left,

As seen in Figure 7-6, these signals control a group of multiplexers
positioned at the 2901 shift inputs (outputs). The various multiplexer
operations are summarized in tabular form. Figure 7-9 defines the
multiplexer operation for shifts into the msb of a selected RAM location.
Figure 7-10 describes a similar operation for shifts into the 1sb of a
RAM location. Figures 7-11 and 7-12 are the Q-register equivalents of
7-9 and 7-10. It should be noted that all 4 multiplexer outputs are
3-stated , and each is enabled according to the shift direction
specified by I7.

The CARRY bit in this machine conmsists of a D flip-flop clocked
by ﬁs and loaded from 1 of 4 sources. The first of these is the CARRY
bit itself, i.e. its walue remains unchanged. The second is the system
Bus which is used to restore the Carry when returning from a change of
context. The third is the "carry out", Coyy» of the leftmost 2901.

The final source for the CARRY bit is the shifted or rotated value,

This value is determined by a 4-to-1 multiplexer under the control of

the D and I7 bits from the Pipeline Register. A summary of the operation
for this multiplexer along with that of the CARRY multiplexer is shown in
Figure 7-13. Note, the shifted value of the CARRY is selected only for an

arithmetic shift, or a rotate which includes the CARRY. The CARRY is

RAM

=iy Shift Multiplexer Operation

ISiI?lIszliO’X

(Shift/Rotate Right into B Register)

43

Pipeline Register

RAM3 shifted

Controls input to
D I R Operation leftmost 2901
0 0 0 Single Word, Logical Shift Right,| 0/1
(ARTH=0) w/o Carry, Figure 7-7(3)
0 0 0 Single Word, Arithmetic Shift Fmsb
(ARTH=1) Right, w/o Carry, Figure 7-7(1)
0 0 1 Single Word, Rotate Right, RAM, oy,
w/o Carry, Figure 7-7(7)
0 1 0 Single Word, Shift Right, CARRY
with Carrv, Figure 7=7(5)
0 1 1 Single Word, Rotate Right, CARRY
with Carrvy, Figure 7-7(9)
1 0 0 Double Word, Logical Shift Right,|0/1
(ARTH=0) w/o Carry, Figure 7-8(3)
1 0 0 Double Word, Arithmetic Shift Fmsb
(ARTH=1) Right, w/o Carry, Pigure 7-8(1)
1 0 1 Double Word, Rotate Right, leb
w/0 Carry, Figzure 7-8(7)
1 1 0 Double Word, Shift Right, CARRY
with Carrv, Figure 7=-3(5)
1 1 1 Double Word, Rotate Right, CARRY

with Carry, Figure 7-8(9)

RAMlsb Shift Multiplexer Operation

e

(Shift/Rotate Left into the B Register)

IS.I?,Iézl,l,X

44

Pipeline Register

RAMO shifted |

. Controls input to
D IC R Qpveration rightmost 2901 |
0 0 0 Single Word, Shift Left, 0/1
w/o Carry, Figure 7-7(2 or 4)
0 0 1 Single Word, Rotate Left, RAMme
w/o Carry, Figure 7-7(8) |
0 1 0 Single Word, Shift Lef%, CARRY |
‘ with Carry, Figure 7-7(6)
0 1 1 Single Word, Rotate Left, CARRY
with Carry, Figure 7-7(10)
1 0 0 Double Word, Shift Left, Qmsb
w/o Carry, Figure 7-8(2 or 4)
1 0 1 Double Word, Rotate Left, Qmsb
w/o0 Carry, Figure 7-8(8)
% 1 0 Double Word, Shift Left, Qmsb
with Cazrry, Figure 7-8(5)
1 1 1 Double Word, Rotate Left, Qmsb
with Carry, Figure 7-8(10)

Pigure 7-10

Q b Shift Multiplexer Operation

ms

18:I7116:liolo

45

(Shift/Rotate Right into the Q Register)

Note: IC has no affect -on this input

Pipeline Register Q3 shifted
Controls input to

D IC ‘R Operation leftmost 2901

0 X 0 Single Word,Shift Right, 0/1
Figure 7-7(1,3, or 5)

0 X 1 Single Word, Rotate Right, leb
Figure 7-7(7 or 93)

1 X 0 Double Word, Shift Right, RAMle
Figure 7-8(1,3,0r 5)

1 X 1 Double Word, Rotate Right, RAMle
Figure 7-8(7 or 9)

Figure 7-11

Q gp Shift Multiplexer Operation

18,17.16:1”1,0
(Shift/Rotate Left into the Q Register)

Pipeline Register ' Q0 shifted

~ Controls input to

D 1G R Overation rightmost 2201

0 0 0 Single Word, Shift Left, 0/1
w/o Carry, Figure 7-7(2 or L)

0 0 1 Single Word, Rotate Left, Qmsb
w/o _Carry, Figure 7-7(8)

0 1 0 Single Word, Shift Left, 0/1
with Carry, Figure 7=7(6)

0 1 1 Single Word, Rotate Left, - Qmsb
with Carry, Fiszure 7-7(10)

1 0 0 Double Word, Shift Left, 0/1
w/o Carry, Figurs 7-8(2 or &)

i 0 1 Double Word, Rotate Left, RAMmsb
w/o_Carry, Figure 7-8(8)

1 1 0 Double Word, Shift Left, CARRY
with Carry, Figure 7-8(&)

1 1 1 Double Werd, Rotate Left, CARRY
with Carry, Pigure 7-8{10)

Figure 7-12

47

CARRY Mux Operations

e smy

PLR Tontrols

(RAIC)VARTH RS SS D input to CARRY

0 0 0 CARRY

0 0 Cyyy Trom ALU
0 1 BUS15

0 1 1 CN+4 from ALU
1 0 0 Shifted Carry
1 0 1 Shifted Carry
1 L 0 Shifted Carry
1 1 1 Shifted Carry

WSpifted Carry Mux

PLR Controls

D I? Shift Generated Carrgﬁ
0 0 RAMl &% T
0 1 RAM %

L 0 leb

L 1 RAM. v

Figure 7-13

48

unaffected by all other shift or rotate operatioms.

The "Carry in" to the ALU can be set under microprogram control
via the CIN controel bit. This bit allows the ''carry in" to be set to
0, 1, or the value of the CARRY bit. If Cpy = 0, the "carry in" is
determined by the 0/1 bit in the Pipeline Register. Cyy = 1 selects
the CARRY bit itself as the source of the "carry in'".

In summary, the complete ALU is presented in Figure 7-6. Two
circuits have yet to be defined » the Stack Tender/Register Select,

and the Data Select/Sign Extend. The former is presented in the

following sectiom.

7.3 The Stack Tender/Register Select

The "Stack Tender/Register Select' circuit supplies the appropriate
A and B register select addresses to the 290ls. The Stack Tender hardware
has been designed to make the first four 2901 registers function as a
Fast Stack. The remaining 12 play the roles of a Stack Pointer, Program
Counter, Index Register, and various other registers required by the
stack architecture. The Fast Stack is like a 4 location cache memory for
the top four entries in the stack. It may hold anywhere from 0 to 4
valid entries at a time. At no time, however, are these entries duplicated
in the Memory Stack. Thus, the top of the stack in this machine will
often lie in the Fast Stack. Only when the Fast Stack is empty will
the top of the stack actually lie in main memory. TFor this reason, a
true Stack Pointer register is non-existant. Instead there is a Memory
Stack Pointer (MSP), a Fast Stack Pointer (called TOS), and a counter that

keeps tract of the number of valid entries in the Fast Stack (NIS).

49

The value of a logical Stack Pointer, SP, can be computed using the

following equation.

SP = MSP + NIS * 2

The NIS value is multiplied by 2 here so that it represents the number
of bytes in the Fast Stack rather than the number of words. Obviously,
if the number of valid entries in the Fast Stack is 0, then the logical
Stack Pointer is equal to the Memory Stack Pointer and the top of the
stack lies in main memory.

TOS is a 2-bit counter which points to the 2901 register considered
to be at the top of the Fast Stack. Hereafter, this register will be
referred to as the TOS register. The four Fast Stack registers work
as a circular buffer. Their mode of operation is illustrated in the
following examples. Figure 7-l4a shows the condition of the Fast Stack,
Memory Stack, and associated registers upon initialization. The initial
value of MSP has been arbitrarily chosen. The initial TOS register
is 00, which is actually meaningless since the Fast Stack is empty
(NIS = 000). Figure 7-14b shows the result of a push onto the stack.

As indicated by the Figure, a push operation first increments TOS, then
places the data wvalue in the resulting TOS register. In this way, TOS

always points to a valid entry in the Fast Stack rather than one ahead

to an empty location.

Figure 7-l4c shows the result of two additional pushes. TOS is

2 respec-

now 11. Registers 10 and 0l are referred to as TOS - 1 and TOS -
tively. On the next push, seen in Figure 7-14d, the TOS counter wraps

around to 00, hence the motion of a circular buffer. As a result of

PUSH Operations with the Stack =

(a) Initialization Fast Stack (b) PUSH 5 Past Stack
TOS ‘ ;I X 00 TOS X 00
00 X 0l 0l 5 0l
NIS ¥ 10 NIS % 10
000 X 11 o1 £ 11
VMSP Memory Stack MSP Memory Stack
A > y .__1)
lu()Olé < 100016 4
L_—’—_
(¢) PUSH 6 (d) PUSH 8
PUSH 7 Fast Stack Fast Stack
TOS X 00 TOS 8 00
11 5 01 | 00 5 01
NTS 6 10 NTS S 19
011 5 11 100 " 11
M3 P Memory Stack MSP Memory Stack
100016 X 100015 > X
. _...—__J
(e) PUSH 9 (step 1) (step 2)
FPast Stack Fast Stack
T0S 8 Q0 TnsS 8 00
00 X 0l 0l 3 0l
NTS 6 10 NTS 6 IlO
| o1z 7 11 169 7 i1
MSP Memory Stack MSP Senory S3ack
190236 N 5 10024 ¢4 3
‘_--"_—*__ = L/\ i

51

this push, the Fast Stack is now full (NIS=100). The next push will

place data in Fast Stack register 01, but before this can happen the
contents of this register must be transferred to the stack in main memory.
Figure 7-14e summarizes the steps required to perform this operatien.

The effect of step 1, which transfers the contents of register 0l to

the Memory Stack, is to free a location in the Fast Stack without

changing TOS. This allows step 2 to carry out the push operatiom in a
normal fashion, since the Fast Stack is no longer full (NIS=011).

The condition just described, where a push operation is attempted when
the Fast Stack is full, is called a trap. This condition is detected
in hardware and sent to the Control Unit (microcode) as an important
status signal. In response, the Control Unit must free a location in
the Fast Stack by transferring the TOS-3 register to the Memory Stack
before proceeding with the push instruction.

Pop operations with the stack are performed in the following manner.
As long as NIS is non-zero, pops are performed by first removing the
data value from the TOS register, then decrementing TOS. This process
is i1llustrated in Figure 7-15. Figure 7-15b shows the result of a pop
from the stack in 7-15a. The effect of a pop operation is essentially
that of decreasing the number of valid entries in the Fast Stack by
one. Many of the common stack operations have the same effect. Figure 7-15¢
shows the result of an ADD instruction. Here the top two values on the
stack are added, the result is placed back in the stack, and the two
operands are deleted from the stack. This process can be summarized

with the following set of equatioms.

POP Operations with the Stack 52
(a) Initial State Fast Stack
T0S 4 00
01 5 0l
NIS X 10
© 011 3 11
MSP Memory Stack
10004 ¢ h%%
(b) POP Fast Stack %/
TOS L 00
00 X 01
NIS X 10
010 3 11
MSD Memory S+tack
100016 X
— !
(e¢) ADD Fast Stack J!
mAS X 00
1I X 0l
NTS X 10
001 7 N1
MSP Memory Stack
100016 X

Figure 7-15

53

(TOS - 1) «< (TOS) + (TOS - 1)
TOS <« TOS -1

NIS < NIS -1

Some instructions, such as a double precision add, operate on the top 4
values in the stack and actually reduce the number of stack entries by
two.

A problem arises in all the operations above when the number of
entries in the Fast Stack is insufficient to perform the desired instruc-
tion. Consider for example, a single precision add with only one entry
in the Fast Stack. The second operand must be fetched from the top of
the Memory Stack. Figure 7-16 summarizes the steps required to perform
this operation. Step 1l transfers a value from the Memory Stack to the
Fast Stack increasing the number of entries in the Fast Stack by one,
and allowing step 2 to perform the add operation in normal fashion.

An insufficient number of entries in the Fast Stack is the second of

two trapping conditions associated with the stack hardware. When this
signal is generated the Control Unit must respond by transferring a value
from the Memroy Stack to the Fast Stack. It is apparent that the destin-
ation register for this transfer could be any one of the four Fast Stack
locations (TOS through TOS - 3) depending on the situation. In each

case, however, the data value should be placed in the first empty location
at the bottom of the Fast Stack (called the BOS register). This location

can always be computed with the following 2-bit subtractien.

BOS = TOS - NIS

Illustration of the "Not Enough™ TRAP

(a) TRAPPING Condition Fast Stack
T0S X 100
01 6 01l
Needed NIS X 10
010 00l X 11
MSP Memory Stack
B e
(b) STEP 1 Past Stack
TOS 3 00
0l 6 0l
Needed NIS X 10
010 010 X a1
MSP Memory Stack
100016 = X
e S
(¢) STEP 2 Fast Stack
(ADD) 9 00
TGS
Q0 X 0l
Nesded NIS X |10
000 001 X 11
MSP . Memory Stack
100016 . X

Figure 7-16

55

For example, suppose a double precision add instruction is desired
with the stack in Figure 7-17a. Obviously, two values are needed from
the Memory Stack. Since the number of entries in the Fast Stack is
insufficient, a trap is generated. A data value is fetched from the

Memory Stack and placed in the BOS register.

BOS = TOS + 2's COMPLEMENT OF NIS

]

TOS 10

2's of NIS = 10

BOS

00

The result of this operation is showm in Figure 7-17b. A trap conditiomn
still exists however since the number of entries in the Fast Stack is
still insufficient. Once again a data value is fetched from the Memory

Stack and placed in the BOS register.

TOS = 10
2's of NIS = 01
BGS = 11

The result is pictured in Figure 7-17c. The double precision add can
now be performed. The final result is shown in Figure 7-17d.

In summary, the Fast Stack occupies the first four 2901 registers
and operates as a cilrcular buffer. A 2-bit counter register, TOS,
always points to the register at the top of the Fast Stack. A 3-bit
counter, NIS, keeps track of the number of wvalid entries in the Fast

Stack. The Memory Stack Pointer, a 290l register, always points to the

56

Illustration Pertaining to Computation of the BOS Register

|
: 1
(2) TRAP Condition (b) STEP 1 (TRAP still exists)!
|
TCS Fast Stack ToS Tast Stack §
10 X 00) 10 0416 Q0
1A 01 1A 01
NTQ 16 NTS 15
010 | 10,4 fLO 011 10,4 |10
X p | X 11
needed # needed
100 ' 100
S P siemory Stack
100215 | 3 93¢
X
—m—
(¢) STEP 1 (azain) (d) STEP 2 (ADD) 191414
, +040377
SUEE
1%10. ¢
TOS Fast Stack T0OS Tast Stack
NIS tArg | OL NIS L oL
100 g |19 010 L b
03 11 1D 11
needed 15 # needed 18
100 000
neP Memory 3+ack MSP Memory S+zack
X - X
1000 Npg 1000, ,
15 o 15 7
A
I R

57

data value at the top of the stack in memory. Two hardware traps are
generated as a result of Fast Stack conditions. The first is generated
by a push instruction when the Fast Stack is full. The second condition
occurs when the number of entries in the Fast Stack is insufficient to
perform the present instruction. Both traps cause the Contrel Unit to
respond with a transfer of data between the Fast Stack and the Memory
Stack. This transfer will always modify the value of NIS, and leave

TOS unchanged.

Figure 7-18 shows the hardware design for the Stack Tender/Register
Select Unit. TOS and NIS both exist as 4 bit Up/Down counters, 74LS191's.
Only the 2 low order bits are used for TOS, and the 3 low order bits
for NIS. Both counters are clocked by the Execution Clock (E%), and are
initialized to zero by the master reset signal at power up. The counters
are controlled by 3 bits in the Pipeline Register. U/D determines the
direction of the count. A 0 will count up and a 1 will count down. The
counters can be enabled separately by placing a 1 in the appropriate
EN TOS or EN NIS fields.

The four Fast Stack registers are accessed in the following manner.
Since thesea registers work as a circular buffer, they are dynamic. That
is, the actual register pointed to be T0S is changing with time. It is
desiragble; however, for the microcode to access the TCS register in a
unique manner, The same is true of the other 3 Fast Stack registers,

08 - 1, TOS - 2, and TOS - 3. The Stack Tender has been designed so

that these registers can be selected using the first four binary values

of the A SEL and B SEL fields as defined in Figure 7-19. The TO0S register
can always be accessed in microcode by placing a 0000 in the appropriate

SEL field. Similarly, the TOS - 1 register is always accessed with a 0001.

58

b SE—

1062 ‘1H33s
IERENIE} IR Y]
oL

Aill
1062 ' 1D373s
yiisioay v
01,

31TNOIT) 300185 J93sT

OO0

XN

I
b}
avno

1

avnd j

h S

@z\hmﬁ:me }oe31s auyy,

QT~4 2an3Ty

o
AYN0S5

b a)
1S90

(309> J40)
= NWAS BN U |

HILS193Y NOLLDNYISHNIOWIVK

rmmm T T E B mw%m”z
ﬂ—l—Q -»llﬂﬂ\ N—ﬂ \9 on —ﬂ{‘m.&_:wf\- .q.w_w N3 H—\\—yﬁw Yan -ZZ NN |
WAN a__ _ .
0S IS o5 €5 | %
co w.
" [
-y 19 - L3 a
9 0% v of
€4 ==m<% _ oy, S0 o}
213 8IS PA <ﬁ. /_w_.
14 v okl a5
04 ov o)
AX ") £ 13534
== i
- IAA ?[_ 2 0o
1S 25 €S 1D o‘%
) . Oean?
g) B
& _ - ; Vo t
19]-
wr Mw hﬂ\ ﬂ G¢ i m
" m% I saLnd
24 _m“m - 05 IS 25 €5 rgﬂ |1_ Hw
- a/a
mmu &
1a (GBSkL)
mzs.ZoJ
9<v 9:=v a>Vv

O 3 HSHY)
Tovyl

|

(1D NONI LON)
2dvdlL

59

Definition of the ASEL znd BSEL Fields for
Fast Stack Registers

ASEL or BSEL field

Selected FS Register

0
0
9]

0
0
0

H M O o
H o F o

Figure 7-19

60

Fast Stack locations are accessed any time the upper two bits of the SEL
field are zero. The actual Fast Stack register lccation in the 2901

is determined by the lower two bits using the following 2-bit equation,

FS REGISTER = TOS - SEL

The following is an illustrative example.

Assume the condition of the Fast Stack is that given in Figure 7-20.
The TOS register is accessed in microcode by placing 0000 in the appro-
priate SEL field. The upper two bits of the resulting register select
field are 00 (unchanged), while the lower two are computed using the

above equatiom.

TOS + (2's complement of SEL)

TOS = 10

2's of SEL 00

FS REGISTER = 10

Thus, the selected 290i register is 0010 which is the desired TOS register.
To select the TOS - 2 register a 0010 is placed in the SEL field. Again,

the lower two bits are computed.

TOS = 10

2's of SEL

]

10

FS REGISTER = 00

Stack Condition for Illustration of
Fast Stack Register Computation

Fast Stack

TOS 3 | Bl
10

4 01
NIS

5 10
100

2 11

Figure 7-20

62

The select field actually sent to the 2901 in this case is 0000, the
address of the TOS - 2 register. Further examples can be easily
verified by the reader.

The above subtractions are carried out in hardware via a pair of
745181 ALU's, one for the A SEL field, and the other for the B SEL
field (see Figure 7-18). Both of these chips are designed to perform
two operations. If the upper two bits of the appropriate SEL field
are both zero (indicating the selection of a Fast Stack location), the
745181's will carry out the 2-bit subtraction, TOS - SEL. If the upper
two bits are non-zero, the 745181s will pass the lower two SEL bits
unmodified [3].

A composite 4-bit select field is then formed by concantinating
the upper two bits of the SEL field with the 2-bit output of the 745181,
The A and B register select fields generated in this fashion will be
referred to as the Pipeline Register Select Fields.

Recall that the trapping condition brought on by an insufficient
number of entries in the Fast Stack requires knowledge of the BOS
register address. This address is computed by the third 745181 in
Figure 7-18. It performs the 2~bit subtraction TOS - NIS. The full
4-bit BOS register address is formed by adding two high order zero bits
to this 2-bit result.

Trap signals are generated in the following manner. TRAP1 results
from an attempt to perform a push onto a full Fast Stack. This operation
is detected by monitoring the TOS counter controls, and the number of
entries in the Fast Stack. When the T0S counter is enabled to count up

and the Fast Stack is full (NIS = 100), TRAPl is generated.

TRAPL = (NIS,) A (EN TOS) A (G/D)

Similarly, TRAP2Z is generated when the number of entries in the Fast
Stack is insufficient te perform the present microinstruction. This
signal is formed using a 74585 magnitude comparator whose output is
activated any time the NUMBER NEEDED field in the Pipeline Register
is larger than the current value of NIS. The NUMBER NEEDED field
should always hold a binary number from 000 to 100 indicating the
number of Fast Stack entries needed by the current microinstruction.
Both traps are sent to the Control Unit as status information.

The mode bits, M, and My, in Figure 7-18 determine the actual A
and B register select inputs to the 2901ls. They control a set of
multiplexers whose inputs include the Pipeline Register Select Fields,
the BOS select field, and two 4-bit select fields supplied directly
from the second byte of the Instruction Register. The four modes of
operation determined by M; and My are summarized in Figure 7-21.

The first mode, 00, gives the microcode exclusive access to the
ALU registers. Here, both the A and B registers are selected by the

Pipeline Register Select Fields. Simple Stack operations, where both

63

operands come from the top 4 entries in the Stack, are performed in this

mode. For example, the operands for an instruction invelving the top
two values in the Stack are selected by placing 0000 and 0COl in the
A SEL and B SEL fields respectively. Operations on the remaining 12
ALU registers are also performed in this mode. In addition, these
registers can be transferred directly to and from the Stack by mixing
Fast Stack and register addresses in the A SEL and B SEL fields. This

type of transfer is useful during a change of context when register

FMunctional Definition of the Mode Bits Ml & M

64

0

My MODE A Register Select [B Register Select
o Normal Pipeline Register Pipeline Register
Select Field Select Field
determined by determined by
ASEL BSEL
z TRAP 2 Pipeline Register | BOS Register
Select Field Select Field
determined by
ASEL
0 Index IRA , Instruction IRB , Instruction
Addressing Register Select Register Select
Field A Field B
1 Register | IR, , Instruction | IR, , Instruction
Machine & 3
Register Select Register Select
Field A Field B
(source register) (destination reg.)

Pigure 7-21

65

values must be saved or restored,

The second mode, 01, is used primarily whén TRAP2 occurs. Recall,
this condition requires a transfer of data from the top of the Memory
Stack to the BOS register in the Fast Stack. In this mode, the desti-
nation register, B, is always the selected BOS register. The other
register, A, is chosen by the corresponding Pipeline Register Select
Field.

Mode 10, the third mode, is designed for use primarily with Memory
Reference Instructions. Here the A register is selected by a 4-bit field
from the second byte of the Instruction Register. In Memory Reference
Instructions this field is used to select an Index register for use in
computing the Effective Address as described earlier. The B register
is selected by its corresponding Pipeline Register Select Field. In
this manner the Index Register can be added to any one of the 2901
registers chosen by the microcode to form the Effective Address.

The last mode, 11, allows this computer to operate as a reglster
machine. Both the A and B registers are selected by two 4-bit fields
in the second byte of the IR. In this mode, the SEL fields in the
Pipeline Register are ignored, and the Stack Tender hardware is essen-
tially disabled.

In summary, the Stack Tender/Register Select Unit supplies the A
and B register select addresses to the 2%90ls from a variety of sources.
There are a total of 16 control bits in the Pipeline Register associated
with this unit. Most of the hardware in this unit is dedicated to
performing the various functions required by the Fast Stack. A set of
multiplexers controlled by Ml and MO provide four possible modeg of
operation. 1In one of these modes, the Fast Stack hardware is disabled,

and the computer is allowed to function as a register machine.

7.4 The Data Select/Sign Extend Logic

The purpose of the Data Select/Sign Extend circuit is 3-fold.
Its primary task is that of selecting a value for the direct data
inputs (D inputs) to the 290ls, Possible sources for these inputs

include;

The Bus Information Lines
The Instruction Register
The NIS Counter

The Pipeline Register

The Bus can supply both 8 and 16 bit values. 8 bit values always
travel the high byte of the Bus. The Instruction Register supplies
an 8-bit value from its second byte. This byte often carries infor-
mation that must be added or subtracted from varicus ALU registers.
The NIS counter is made available to the ALU for the purpose of

computing a value for the logical Stack Pointer. Recall,

SP = MSP + NIS * 2

The NIS counter value 1s doubled here so that it represents the number
of bytes in the Fast Stack, rather than the number of words. This
doubling is accomplished by adding a least significant bit of 0 to the
3-bit counter output. Four additional O's are used as upper bits to
form an 8-bit source for the D inputs. The fourth possible source for

the D inputs is an 8-bit register. This is an extremely useful feature

because it allows the microcode to supply values directly to the ALU.
Thus, such tasks as adding 2, 4, or 8 to various ALU registers can be
performed in a single microinstruction rather than using a series of
increments.

Any of the 8-bit sources mentioned above can be sign extended to
16 bits. This is the second task performed by this circuit. TIf these
sources are not sign extended, the upper 8 bits are set to zero.

The third task performed by this circuit is quite specialized.
It provides the option of forcing the D inputs to zero based on the
value of a selected status signal. This feature is particularly
useful when implementing conditicnal branch instructions in microcode.
The normal method of implementing a conditional branch would require

two microinstructions, one to test the status, and the other to add

67

the relative value to the PC if the test is true. However, this feature

allows the equivalent operation to be performed in a single micro-
instruction. The microinstruction always adds a walue to the PC as
if the test were true. 1If the test is false however, 0's are forced
into the D inputs, leaving the PC unchanged.

The hardware design for the Data Select/Sign Extend circuit is
shown in Figure 7-22., Controls from the Pipeline Register are defined

as follows.

1. BUS - Select Bus Value

When high, the D input source is taken form the Bus.

2. Ds DS. - Data Select 1 and Data Select 0

1 0

These two controls determine the source for the D inputs when

68

1

2e~{ 2anidtyg

Num

35

TTSTaEZ VO
syndut g of
gl 8
gs7 EE e asw
h XOW [:2 s
| Q0 10 O\ 1] i Q
ouIZ . 3108
..O-—
3%
ou3Z
>
m —Urv it Qq w\.\
qQ.. m.-_O_ Q-
@ i 10j0- .
—luu [s10) 31 114 . €4 . t gt
ﬁ ﬁ A ANV,_ANV— IIANV Lsng - “sng
) 1
SNy P.g O.wdu .WO 40 Ipw| iv :O.. O, .m._nma 1.wm—l-m

HAINNOD
SIN

313 ONe

3009 40

3 TNOJT) pualxy udtg/108Tas eied ayy

69

the BUS signal is low. They select from the WIS counter,
the second byte of the IR, and the Immediate Field in the

Pipeline Register.

BYTE - Byte Select

When this bit is high, and BUS is high, only the high byte

of the BUS is propagated to the D inputs. The other byte can

be sign extended or set to 0's. This bit has no further meaning
here when BUS is low. It does, however, perform an additicnal
function in the CPU Bus Interface circuit to be described

later.

SE -~ Sign Extend

When high, the 8 bit value at the high byte of the D inputs
will be sign extended to 16 bits. That is, the msb of the
high byte will be propagated through the upper 8 bits. If
an 8-bit source is selected while this bit is low, the upper

8 bits will be set to 0.

TE - Test Enable

When high, the selected status from the Control Unit, CC, is
allowed to force the D inputs to zero. If CC is low, the test
is false and the D inputs are forced to zero. If CC is high,
the test is true and the D inputs are determined in the normal
fashion. When TE is low, the above action on the part of CC

is disabled.

70

The hardware design in Figure 7-22 is relatively straightforward.
When TE is high and the selected status signal is false, (CC is low),
then a ZERO signal is generated (active low). Otherwise ZERO is high.
The Data.Select controls, DSl, and DSO’ select one of three 8-bit
sources via a 2-to-4 decoder. The selected source serves as one of
three inputs to the LSB multipléxer. The other two inputs are the
high byte of the Bus and zeros. When ZERO 1is high the output of the
LSB multiplexer comes from either the Bus or the selected 8-bit
source depending on the value of the BUS signal. When ZERO is low,
the output is always zero, independent of the BUS signal. The
MSR multiplexer selects between the lew byte of the Bus and the Sign
Extended value. As long as a full 16-bit value is chosen from the Bus
and ZERO is high, the low byte of the BUS is propagated through.
Otherwise the Sign Extended value, which is forced to 0 if SE is low
or ZERO = low1 is propagated through all 8 bits of the MSB

multiplexer.

71

& The CPU Bus Interface

The CPU Bus Interface is shown in Figure 8-1., All 9 of the Bus

control signals,

LDMAR,

R/W,

BYTE,

170 SEL,

I/0 STAT/DATA,
INT ACK,
3ﬁﬁaﬁ§, and

BRST

come directly from the Pipeline Register. Of these signals, four are
associated with main memory, and five with I/0. The function of each
has been defined in Section 5 on The System Bus. Many of these signals
are active low. Inverter buffers for those that are have been placed
between the Pipeline Register and the corresponding Bus control line
so that each can be activated by setting the contrel bit to 1. Note,
all 9 signals can be disabled by the Console, When the CONSOLEON signal
is activated, the control signals from the Pipeline Register are 13-
stated. This effectively transfers Bus control to the Console. 1In
normal operating mode the CONSOLEON signal is low.

The CPU places information on the Bus with the Bus Select control

bits, BS1 and BSO' Through the use of a 2-to-4 decoder these two bits

72

-8 2an81y

1519

'?

K4

ST

RIS ENIN

FasW

MoV il

YIYO71IVIE O/l

BEMNAL
ALAY

Yo
MY

93T WIW

HOATISNOD

bla‘

0-Slsng

9

S5ng

Ylona

irgﬂg

o1
L)
Qo)

e

YW3IQOH3I0 b-oL-2

AN

\ o/

Anuvo
MO4U3A0

s

- Iy
NAUS ™

=

g

1 Bses
V 1

1

-

|

Ysna

| _

10 0O " oy 190 o0

XOW 1:b

A

- —
Q

I

{

a 34

1 Jovam
of

rasp—{
b

———t T

oy3az AGVAB

of

TAA |

LU

a

AW

AN

vivd
/1v1S

QN

13as
on

M

T3S
Wan

o'y

sh

:_
<Y [¢] tw
b

g YALSIDIY
_ ﬂ% zoC.u:z»mz_oguSL

W
BEINE]
NalS
/10713
Yivo

o S10G6¢

a0BJa9quUl

sng NdD

LN OYINGD) 9}

select one of three sources for Bus transfer. A 0l selects the Y
outputs of the 2901 and a 10 the 6-bit status register. A 11 is
reserved for selection of a third source which as yet is undetermined.
Note, the decoder outputs are enabled by ﬁl to ensure that information
is placed on the Bus during periods 2 and 3 of the microinstruction
cycle. When the Bus Select bits are 00, no source from the CPU is
enabled onto the Bus.

The LDIR (Load Instruction Register) control bit is used to load
the Instruction Register from the Bus. The Instruction Register will
be loaded on the rising edge of gl when this bit is set to 1.

Four of the six status bits shown in Figure 8-1 come from the
ALU. These include the CARRY, QOVERFLOW, SICGN, and ZERC bits. The
other two, INTERRUPT and I/0 READY come from the Bus. A D flip-flop
is associated with each. Both can be saved in memory along with the
other 4 status bits. All status is restored from memory when the RS
(Return Status) control bit is set to 1.

The mode of operation for the interrupt flip-flop is as follows.

It is set to 0 at the end of the first cycle in which the INTERRUPT

73

line is pulled low. It remains in this state until the CPU acknowledges

the interrupt by activating the INT ACK control bit. This will reset
the flip-flop to 1. The 4-to~1 multiplexer at the input to this flip-

£lop insures this mode of operation. When INT ACK is high, the D input

to thig flip-flop is a hard-wired 1. When INT ACK is low, the interrupt

flip~flop will be set according to the INTERRUPT Bus line unless the RS

bit is set, in which case the input to this flip-flop comes from a Bus

information line. The Q output of this flip-flop is sent to the Coutrol

Unit as an active high status signal.

74

The I/0 READY flip-flop functions somewhat differently., It is
set according to the I/0 READY Bus line only when such action is
requested by the CPU. Otherwise it simply retains its past value.
The operation of this flip-flop is also governed by a 4-to-1 multiplexer.
When the I/O STAT/DATA control bit is high, this flip~flop is set
according to the I/O READY Bus line. When I/0 STAT/DATA is low it
simply retains its past value, unless the RS control bit is set in
which case the D input to this flip-flop comes from a Bus information
line. The a'output of this flip-flop is sent to the Control Unit as

an active high status signal just like that of the interrupt flip-flop.

75

9 Main Memory Design

Main Memory contains 64 K-bytes of storage arranged as 32 K-words
of 16 bits each. It has been designed using the 6116 which is a 2Kx8
bit static CMOS RAM. A fully populated memory requires 32 of these
RAMs arranged in two 8-bit banks of 16 blocks each (see Figure 9-1).
The low and high bytes of a word in memory are stored in the same
location of the left and right banks respectively. Individual bytes
can be accessed by chosing a value from either the left or right bank
of a selected word. The 16-bit Memory Address Register, MAR, for this
system holds a byte address. The upper 15 bits address a word location
in the RAM while the least significant bit, 1sb, selects between the
left and right bank location. During word transfers the 1lsb is ignored
and the location in both banks is used.

The complete hardware design for Main Memory is shown in Figure 9-2.
The 16 bit MAR works as a latch. It is loaded from the Bus information
lines during periods 2 and 3 (] is high) when the LDMAR line is
activated (high). The upper 4 bits of the MAR select one of sixteen
2K RAMs in each bank while the next ten bits are used to address a
location within the selected RAM. The 1lsb of the MAR is combined with

the BYTE control line from the Bus to generate two signals, LEFT and

RIGHT. LEFT will be low when byte information is to be transferred to/
from the left bank of memory. Similarly, RIGHT will be low when byte

information is to be transferred to/from the right bank. During word

transfers both LEFT and RIGHT are high.
Information is transferred between Memory and the Bus via 3 groups of

byte wide tranceivers labelled A, B, and C. Transceiver groups A and B

‘Main Memory Block Diagram

LEFT BYTE . RIGHT BYTE
2K x 8 Block O 2K x 8
2K x 8 Block 1 2K x 8
2K x 8 Block 2 2K x 8
2K x 8 Block 3 éK x 8
2K x 8 Block &4 ZE x 8
2K x 8 Block 5 2K x 8
2K x 8 Block 6 2K x 8
2K x 8 Block 7 2K x 8.
2K x 8 Block 8 2K x 8
2K x 8 Block 3§ 2K x 8
2K x 8 Block 10 2K x 8
2K x 8 Bleck 11 2K x 8
2K x 8 - Block 12 ; 2K x 8
2K % 8 Block 13 2K x 8
2K x 8 Block 14 2K x 8
2K x 8 Block 15 2K x 8

LOW BYTE HIGH BYTE
(most significant byte) (least significant byte)
BUS ,-BUS, Fhmums Gl BUSSTBUSI5

v

2

-6 2ansdtyg

N) - T T T T T T mmee T - - - - e o e e s e g |dﬂ&‘i —_—l B T —
_ o I] B T1KD -t
- -t - UMY T s i
e S S S S = e e i e o D e e — ey
11)] My
1 - e N . SU. NN
_ Sleng-%sng [T _
Jia o 1T
L snE-sn
wn O ||t | | By ; i
N3JOo — NERL - 4
_ ‘..—11 »_ P 1437 Oﬁl_llmDI
2 yld 2 o 9 W0 R 14310
[g M % 35 “ s v| Lar wor
‘ ’ astjov ¥
) ok | ;
_,—VOHM v
g 31A0 | HOIH 31A8 | MO £y
by
o/t
A am ooy m YT ooyt ——5v
130 SIXPolg $D 15 {30 §1MPe1lg 5D Tid Iy
el z - d F o rmmtice e S L 2
V €IES,
_ :iiIMI&_:_ ¥ -
o/l o/1 =11 | 1% wvw
b— |- 3am v - M °y-'v | £ dion Sy
—30 vI2\g $O —130 kI s ——poll My
| = - 3 .
I _ m'n: 101 Hy
. . . ./ \. . . . tvm SICT e Ely
. s . v « i : 4 —dioo) vy
S
_ 9119 _ -WA:SO_ Sty
ey P e N o Zdino _\
g —1—3M V=" 4@ M vy f— m'ho__c .
g S — 30 | M20|d S ; 20 I ¥2olg SO me loro
! ' = _(puio
.\'mmé_ 100
o/1 . o/1 —-}2100 ¥ 100730
_‘m_HB vy b WS = EL / Ov -y | — —£diooo ek
2o o sof—y TP 30 owme go - —gpooo
TILYM T — MHvE 1337

MNVE AHI\Y

udtsa(q Aaouws

78

are used during word transfers, and B and C are used during byte
transfers., Byte information is always transferred on the high byte
of the Bus. The C transceiver group is used to move bytes between
the left bank of Memory and the high byte of the Bus when LEFT is
activated. The A transceiver group is used only in the word mode

(i.e. when BYTE is low), and the B transceiver group is used for all

transfers except when LEFT is activated. The directional controcl on
all the transceivers is determined by the R/W control line. When the
MEM SEL signal is activated, the appropriate transceiver groups are
enabled to pass data during periods 2 and 3 of the microinstruction
cycle.

A read operatiocn with memory requires two consecutive microinstruc-
tion cycles, one to send the address, and the other to receive the data.
In the 6116s, data access begins as soon as the MAR is loaded and the
chip select signals have propagated through the 4-to-16 decoder. Since
the MAR works as a latch, data access actually begins during the latter
part of the first microinstruction cycle. The Output Enable, EE, control
on the 6116s comes directly from an inverted R/W signal, and is therefore
activated very early in the first period of the data transfer cycle.

This makes the data available for Bus transfer very early in the second
period of this cycle. As a result, read data is available from the
6116s just as it's being enabled onto the Bus during the second periocd
of the data transfer cycle.

A write operation also requires two consecutive microinstruction
cycles, one to send the address and the other to send the data. The
first of these two is identical to that for a read operation. Hence,

the 150ns write operation in the 6116 also begins in the first micro-

79

instruction cycle. In the second cycle, the Write Enable, ﬁE, control
on the 6116s is pulled low during periods 2 and 3 concurrent with the
transceiver enable signals which supply data at the 6116 inputs. During
byte transfers, the WE control will be enabled for one bank only. If
a byte is to be written into the right bank, the WE control for the left
bank is held high. Similarly, if a byte is to be written into the left
bank, the WE control for the right bank is held high.

A more detailed analysis of both read and write cycle timing fcr
memory is presented in Appendix A.

In summary, the hardware design for main memory has been presented
in detail. 1Its major components are the 16-bit MAR and the 32K word
by l6-bit storage composed of 6116s. A memory buffer register is not
needed in this system because no handshaking is required for memory
transfers. Both reads and writes are performed in two microinstruction
cycles, one to send the address, and the other for the data transfer.
Memory can be accessed in the byte mode by activating the BYTE Bus
control line. This signal controls only the routing of data, and
therefore need be activated only during the data transfer cycle. Byte
data always traverses the high byte of the Bus. During a word transfer
with memory, the lsb of the MAR is ignored. Thus, words are always

read from and written to even byte addresses.

80

10 ' Direct I/0

Data is transferred between the CPU and Direct I/0 devices via
the Bus information lines. Each I/0 device requires a Bus Interface
Cirecuit to synchronize its interaction with the CPU. A simple inter-
face contains a data buffer register, Device Code decoding logic, and
a device Ready Flag. The Ready Flag is used to implement a full hand-
shake between the CPU and the I/0 device.

The handshake for an Input device functions in the following manner.
The interface enters the ready state when the Input device places data
in the Input Buffer Register, IBR. It is returned te the not ready state
by the CPU when it reads this walue. To the CPU, the Ready Flag indicates
the validity of data in the IBR. The same Ready Flag tells the Input
device when the IBR has been emptied.

The handshake for an Output device functions in a similar manner.
The interface will enter the not ready state when the CPU places data
in the Output Buffer Register, OBR. It is returnmed to the ready state
by the Output device when it empties the OBR. Thus, the Ready Flag
tells the CPU when the OBR can receive more data. To the Output device,
it signifies the walidity of the data in the OBR.

The variocus contrel, data, and status signals between the interface

and the Bus include

T/0 SEL,

1/0 STAT/DATA,
T/0 BUSY,

B

BRST ,

and the Bus information lines.

The function of each of these signals has been defined earlier in
section 5. Recall, the Bus information lines carry Device Codes as
well as data. The various signals supplied by the actual I/0 devices
will differ slightly between Input and Output interfaces (see Figure
10-1).

An Input device must provide the interface with the data and two

81

control signals. In return it receives a status flag, EMPTY, When EMPTY

is low, the IBR is empty. To place a value in the IBR the Input device

must perform the following three operations;

1. Supply data to the IDATA lines.

2. Enable the IBR by pulling the LDIBR line low.

3. Load the data into the IBR by supplying a low-to-high trans-

ition at the ICLOCK input.

As soon as the data is loaded by the clock transition the interface is
placed in the ready state and the fﬂﬁf§‘flag is returned high., It will
remain in this state until the IBR is read by the CPU.

An Output device must also supply the interface with two control
signals, In return it receives a status flag, DAV, and data from the
OBR. A low state of DAV signifies the presence of data in the 0BR. To

take this data the Output device must;

82

¢1
*h\\\;

sna-Ysna

T-0T 2InZTJ

JOIAHd
LNdENO

pa—

toqa

‘I9p00a(g apoY 3VTAY(]

4000 @0IAUA 00100
HDOTD0
VIva T r——
HEOIVE
Ty -] H0VANTINT
snd

isng 0/1 INAINO [Tvad

YIVA/IVIS 07T .
S)

TdS 0/T 1f/smw

Lsud

dAq0D FDIAUA

viva

Ly

xsnd 0/1

YLVA/IVIS O/1

AR

SautT Snd

TdS 0/1

HOVAYALNI
sndg
LNANT

—

Y —
HO0TOT

dd1d1

Vival

e
AL

weddeT #9eBJIoqu]l jndanQ pue pzmcw

‘+dey aaging anding/yndug

‘Fer1d Asng

83

1. DPlace the 0BR value on the ODATA lines by pulling the TAKOBR

line low.

2. 8Signify the completion of the transfer by supplying a low—to-

high transition on the OCLOCK line. (Note: TAKOUBR rust

remain low during the COCLCCK transition.)

On the low-to-high transition of CCLOCK, the Cutput Interface 1s placed
in the ready state and the DAV signal is returned high. A CPU write to

the OBR will again place this interface in the not ready state.

10.1 Input Interface Design

The hardware design for an Input Bus Interface is shown In Figure
10~2, The Device Code for this interface is 1, as determined by the &
input NAND gate at the left of the figure. The input of this gate
will go low when Device Code 1 is placed on the Bus. This interface
contains an &-bit IBR (which could just zs easily be 16-bits}. The
1DIBR signal from the Input device controls the load enable on the
IBR. It also serves, indirectly, as an input to the Asynchronous Ready
flip-flop. Thus when the ICLOCK tramsition occurs, the IBR is loaded
from the IDATA lines and the Asynchronous Ready flip-flop is set to 0.
A second Ready flip-flop is used to synchronize the setting of the Feady
Flag with the Bus timing. This flip-flop is set to 1 on the fiIrst low-
to-nigh transition of Gl after the IBR has bsen loaded with data. When
Device 1 is selected, and the I/C STAngzfg line is high, the wvalue cof

this flip-flop will be transferred to the CPU over the I/C READY Bus

84

line. (Note, the'a output of the Data Select flip-flop is normally 0.)
Two microinstruction cycles are required for a CPU read from the
IBR. In the first cycle the Device Code is placed om the Bus and the
1/0 SEL line pulled low, much the way an address is sent to memery. In
the same cycle the I/O STAT/DATA line is pulled low to distinguish this
operation from one that simply reads the Ready Flag. As a result the
Déta Select flip-flop in the interface circuit will be set to 0 at the
end of the cycle. In the second cycle data is transferred to the CPU.
Once again the I/0 SEL and I/O STAT/DATA lines must both be low. The
content of the IBR is then placed on the Bus for transfer to the CPU
during the second and third periods of this cycle. During the data
transfer, the Asynchronous and Synchronous Ready flip-flops are set
and cleared respectively, thus placing the interface in the not ready
state. Note, the Data Select flip-flop will automatically return to
1 at the beginning of the next (3rd) cycle, insuring that the transfer
occurs only during the second cycle. The application of a Master Bus
Reset, BRST, has the effect of clearing the Synchronous Ready flip-flop
and setting the Asynchronous Ready flip-flop, hence placing the interface

in the not ready state,
10.2 Output Interface Design

The hardware design for an Output Bus Interface is shown in Figure
10-3., It strongly resembles that of the Input interface and works in a
very similar manner. The Device Code for this interface is 0. The 8-bit
OBR is easily extended to 16 bits. The output of the OBR is 3-stated
so it can be connected directly to a 3-state Bus. The TAKOBR signal,

supplied by the Qutput device, is used to place the OBR output on the

85

Z-0T @andtg

isuyd
_ﬁw -
Aavad O/t -
WYiva /1vis o/l
- 3as 0:
5'-%ng
YI00I3AQ
8-01-€ S1-Olgng
51-8 v
sng RW N30-
Qoli1 NI
Y g
o) —qQi1ot - CES
G.a._uc] ﬁ 001
9 Ww|>m+
gl 1o

Vi'ss RERGES Y
LT k QI

g8 oD,

W
ALdW3

— {71

Vival

MD01D1

yglan

—————-qoio Vv

11735 VYiva
gloo
(¢ '@
a4 Qooo

ugtsaq

soeJaajul sng anduj

-0t aang Ty

1599
- '%
” Aav3ay O/t
viva /1vis /)
13s 0/1
h?o.wsw
H3qo>23$3Q 1ol
8-0L-€ Tsng
1
/% e
aot w,.moii
Q
I3S —-Jioyr D =
51-8¢ng b y Q1335
b g oot
ORAVIY INKS 9 Agt
dito
weo 91 1 -
19-g Al.._& S— > Mo I |
! \&J @135 VIvVO
Q
/ @AQV3Y m?w» *]) \% q'°
“INAS N
Gﬁvaa.l— _\ ® 0 QoD
o ¥ VAVOO [yaouna ISYe ¥I07100

udtse soeJasiul sng ndinQ

87

ODATA lines. It will also, on the low-to-high transition of the OCLOCK
signal, activate the Asynchronous Ready flip-flop. Again, a second
Ready flip~flop is used to synchronize the setting of the Ready Flag
with the Bus timing. The value of this flag is transferred to the CPU
when Device 0 is selected and the I/0 STAT/DATA line is high.

A CPU write to the OBR requires two microinstruction cycles. During
the first, the Device Code is placed on the Bus, and the I/0 SEL and
I/0 STAT/DATA lines pulled low. This causes the Data Select flip-flop
to be set to 0 at the end of this cycle. 1In the seceond cycle, data is
transferred from the CPU to the OBR. Both I/0 SEL and I/0 STAT/DATA
are again pulled low and work with the Data Select flip—flop to activate
the load enable on the OBR. Thus, at the end of this cycle, the OBR is
loaded from the Bus. The Data Select flip—flop also sets the Asynchronous
Ready flip-flop during this cycle. As a result the Synchronous Ready
flip-flop is cleared at the end of this cycle by the same clock pulse
that loads the OBR. Thus, the interface is placed in the not ready
state, and the DAV signal indicates the presence of data in the OBR.
At the end of the second cycle the Data Select flip-flop is returned
to 1, thus enabling the data transfer for the second cycle only. A

Master Bus Reset will place this interface in the ready state.

10.3 1Interrupt Level Interface Design

Devices that use the interfaces described above are passive in
nature. That is, they are unable to initiate a transaction with the
CPU. To do this, additional circuitry must be added to provide inter-
rupting capabilities. This system supplies up to 16 different interrupt

levels for I/0 devices. Numerous devices can share the same level. In

88

this case, however, some sort of priority system must be arranged
between these devices to handle multiple interrupt conditions. If
no more than 16 I/0 devices are to be connected to the system, each
device can reside at a different interrupt level eliminating the need
for an additional priority system.

Interrupts to the CPU are generated and handled in the following
manner. An interrupt is initiated at one of the 16 levels by pulling
the INTERRUPT Bus line low in synchronism with the rising edge of Gl.
When its ready, (perhaps a few microinstructions later), the CPU responds
by pulling the INT ACK line low. This signal propagates through a daisy
chain network to the highest priority interrupting interface. The
interface at this level must break the chain and place the Device Code
of the interrupting device on the Bus so that the CPU can determine the
source of the interrupt. The CPU has the capability of masking interrupts
from any of the 16 levels. Associated with each level is an Interrupt
Mask Bit which when set to 1 will disable all interrupts from that level.
The CPU sets the state of these bits by placing a 16-bit mask word (1 bit
for each level) on the Bus Information lines and pulling the MASKEN line
low. In this way the interrupt mask bits for all levels can be set/
cleared in one operation.

The hardware design for the interface at interrupt level 0 is
shown in Figure 10-4. An interrupt is initiated in this interface by
setting the Asynchronous Interrupt flip flop to l. This is accomplished
through proper application of the INTRPT and I/0 CLOCK inputs. Next, if
the Mask flip-flop is not set (6 = 1), the Synchronous Interrupt flip-
flop will be activated (Q = 1) on the neuxt low-to—high transition of

Ql. In this way, the INTERRUPT Bus line is pulled low at the beginning

89

LJNYMALNI
1syd

#1-01 aandtyg

'8

NIASH

M.Mrowsm 4

1

mvx 300D IRIAAA
ﬂ_ds.u—

p)
s .

NNt

@OV LM

DAINT DNAS

QLN DNAS

TNALNI
m..J* AR 90\Aap
2uo m..co LE

10&31...61 2q uod v

MoV AN _VO QN3LNI

—

NIVHD AS\va
@ 3AAIN

CREVRE]

MN2072 oN
LY LN

0
ﬁ 135
_ly
Jo'13
ana|® ¢
MSY I ,

'eng

®AN|
INASY

miu<gz_o>¢

ugdiseq ©oBIIO3UI sng 0 T[9aeT 3dnaxsjur

90

of a microinstruction cycle. It will remain low until all unmasked
interrupts have béen serviced.

To service an interrupt, the CPU first pulls the INT ACK line
low, expecting in return to receive the Device Code of highest priority
interrupting device. The INT ACK signal functions as the input to a
daisy chain network. The daisy chain connections for this interrupt
level are shown in Figure 10-4.

In general, INTENL 1is a signal supplied by the i - 1 interface
level. If high, the Interrupt Acknowledge from the CPU has propagated
through all the higher levels, (0 to 1 - 1). If this interface is not
interrupting (E?EEE‘EETE = 1), then the signal is propagated forward
to the next interface level, INTENi+l . However if this interface is
interrupting, a 0 is propagated to INTENi+] , which in turn is prop-
agated through the remaining i + 2 to 16 levels. In addition, an
INT ACKi & signal and its complement are generated for use by the local
interface circuit.

In Figure 10-4 it is apparent that the INT ACKO signal, along with
@1, is used to place a Device Code on the Bus. If there is only ome
device at this interrupt level then the Device Code can be a hard-wired
value, otherwise the Device Code must be that of the I/0 device allowed
to interrupt at this level, 1In the latter case, the Device Code will
most likely be supplied by some additional priority logic designed
solely for devices at this interrupt level. The INT ACKO signal is also
used to clear the Asynchronous Interrupt flip-flop, which in turn clears
the Synchronous Interrupt flip-flop on the rising edge of @1. This is
an indication to the interrupting device that its request has been

acknowledged.

91

The Interrupt Mask flip-flop at level 0 is set via the Bus15
information line by Gl when the MASKEN line is pulled low. Masks for
the remaining 15 levels are set in a similar fashion according to the
states of the other 15 Bus information limes. A Master Bus Reset will
set the Mask bit in all devices to a 1, thus inhibiting interrupts at
any level., It will also clear both interrupt £lip-flops, nullifying

interrupts that may have been pending.

10.4 General I/0 Design

The interfaces presented above are quite general. Figure 10-5
illustrates a simple way to make an intelligent I/0 device for this
system. Here the I/0 Ports from a typical microprocessor system are
used to communicate with the Input, Output, and Interrupt interfaces.
The actual Input and Output devices are part of the microprocessor
system. Microprocessor RAM can be used to buffer both Input and Qutput
data. Both devices can function at the same interrupt level. Software
in the microprocessor can be used to prioritize between the two, and
Device Codes for each can be supplied to the Interrupt interface via
the microprocessor LI/0 Port. This system can be easily expanded to
incorporate even more I/0 devices by simple replication of existing

circuitry.

92

SaUTT TO0.13.U0)

G-01 2andTyg

% snd waiskg

0MDV INI 0/I

20BJI2QUT aoeJJIajul aoBJIQjUT
snd
T TaAdT SNd snd
rdnaasjuy indul andjno
A
SRwl v
ey ﬁ_; ALJWH _m m 5, >.a.5 m W S
[eIRN =1 &) o] I = = =
qcmxw 0 W w| P -3 ol |o
"Bl B TR = ER
vx A
LVLE L Mv _u _u
@) 1j
T13p00a0 e
m\.\ ¢N|OM.|N m
[§-
4104 0/1 o
nd3no
20TA9(///
. wagskg
J0559001d 0O T
30TAB(Q
P-JQP%—O \

welgerq 300Td @9TaaQ O/I FULSTITLIUI

93

11 The Contrel Unit

The Control Unit for this machine is microprogrammed (see Figure
1I-1). The sequence of steps required to carry out the fetch and
execution of macroinstructions is performed by a series of microinstruc-
tions. Microinstructions are 88 bit control words that reside in the
Control Store, CS. Microinstructions to be executed are read into the
Pipeline Register, PLR. Individual bits of this register supply controls
needed by various units throughout the computer. Microinstructions
are usually divided into two major fields. The first field provides
controls needed to execute an operation with the ALU, memory, or I/O.

The second field provides controls which determine the next microinstruc-
tion. Both sets of controls work in parallel. That is, the fetch of

the next microinstruction is overlapped with the execution of the current
one. The longer of these two operations determines the length of a
microinstruction cycle.

Instrumental in the fetch of the next microinstruction is the
microprogram sequencer (also called the Next Address Generator). This
unit supplies the CS with the address of the next microinstruction
(the Next Address). This address can come from 5 possible sources,
two of which are shown in Figure 1l1-1, the Next Address field from the
PLR and the Macroimstruction Input. Determination of the Next Address
is a function of both the Fetch Controls in the current micreoinstruction,
and the Conditional Control, CC, obtained from the status register. The
Fetech Controls generally narrow the Next Address selection from 5 sources
to 2, while the Conditional Control chooses from the remaining two.

Selection of the Next Address based on the Conditiomal Contrel input is

94

T-T1 SJINITJd

— 51 Insay sniels L
J21s1day
vy > snlels
STOoa3uo]) XN
PI=2Td VN
§T0a7U0) VIV —
) $171d
J93sTdaYy mﬂﬁﬂamﬂm1iﬂ R STOJI3U0D) 1 STOJIJUOD snjels
agnoaxy | yoged
¥o0T1) . 2
UOT19oNI}SUTOIDTI
&
ot
n.
(Kaoway weaBoadoaoTy) ol
81015 TOJIQUO) 5
A
SSaJppyY 1XoN
(x03eI9UBY
SS8JIpPPY 1X9N) ¢
Jdaouanbag
UOTYONI)SUTOID T TeUO T TPUO) XOW pe
andug
U0139NJI] SUTOIORY

2an39nI3S TOIFUOD BYL

95

the root of all decision making in this machine.

All pipelined structures experience a degradation in performance
when an attempt is made to alter their normal flow of operation. Such
degradation is experienced here as a result of conditional jumps at

the microinstruction level. Consider the following sequence of operations.

o €—

/\

D G

Here B follows directly after A. The operation to follow B, however,
may be D or G depending on the result of B.

Figure 11-2 shows the sequence of microinstructions required to
carry out the above sequence. During Cycle 1, microinstruction B is
fetched while A is executed. In Cycle 2, B is executed. Since the
status results of B are not available until the end of Cycle 2, B
itself is unable to make the decision between D and G. Instead, a
microinstruction C is introduced whose sole purpose is to fetch either
D or G based on the status results of B. The introduction of C here
results in a degradation of performance since it performs no useful

execution, it simply fetches the next microimstruction.
11.1 The 2910

The microprogram sequencer in this machine consists primarily of

the 2910, a2 member of the 2900 family of microcomputer devices. A

96

Z-TT °2an314g

He
(e
. i 9 q yoyad
Teuot)y
- {puon uoT)ONIJSUTOID T
"}SuUtT
~0J2TI
5 0 d - vV |sntoaaad
woIJ R wo.xJ Wwo.aJ woaJ woxJ S1Uaq1uU0n
sqInsay s1Tnssy 51 TNsSay s1Insay s1Insay J91s199y snjels
9 CHRE a 4] f ¥ 2N08 XY
UOT3ONIFISUTOIDTIY
fy ook | e f ®TOAD € oT0AD 2 8T94£D T 9I2AD

dunp [Bu013[puo) WeIgoadoJIdT) I0F UOT1BIFSNTTI Jutulredid

97

structural block diagram of the 2910 is shown in Figure 11-3, The

Next Address is supplied to the Control Store via the Y outputs of

this device. These outputs are 3-state to allow the address to be
supplied from a different source if so desired. Within the 2910 are
four sources for the Next Address; the Microprogram Counter (y4PC),

the Stack (F), the register/counter (R): and the externally supplied
input (D). The 2910 performs 16 instructions (operations) determined
by the four instruction inputs, I3 - ID. Note that all registers in
this device (PC, R, F, and the Stack Pointer) are loaded on the rising
edge of the clock input, CP.

The 4PC is used to sequence microinstructions in a manner similar
to which the Program Counter sequences macroinstructions. The yPC
register is preceded by an incrementer which is controlled by the CI
input. If CI is high, the 4PC will be loaded with Y + 1, i.e. the
address of the next sequential microinstruction. If CI is low, the
MPC is loaded with ¥, the address of the same microinstruction currently
being fetched. Through proper control of the CI input, a microinstruction
can be executed repeatedly until a chosen status condition occurs.

The function of the register/counter in the 2910 is two-fold. It
can be used to held a Next Address value supplied by an external source
or it can be used as a counter, to determine the number of times a
series of microinstructions are performed. The second function is quite
useful when implementing fixed point multiplication and division routines
in microcode. To execute a routine N times, the register/counter must
be loaded with N - 1. Independent of its function, this register is
loaded from the D inputs. The RLD input controls this operation. When

low, the register/counter is loaded on the rising edge of the clock.

98

CP
D U
RLp [>— Register/ ¢ > Stack
Counter Pointer > FULL
ZERO
Detect i
%> 5 word by
12 bit
L. Stack
#d
e 5 OUT F
é% o N
)
H)
& J
% D R F 4PC
N g HYX
5 —7 pC
76 ME
C 49 |]
| J =
Q
= =]
Q i
o =]
+ wn
9]
£ 5 | PUSH/PoP | HOLD/CIEAR P 12 3
13_0c3>¥___ 55 = IMCREVENTER
4 2 CLEAR/COUNT .
=
Uy t
ﬂlﬂa[&l
Qg<nio
=1
=
OE C— N
12
Y

Figure 11-3 The 2910 Block Diagram

g9

This register is also loaded by two of the 2910 operations independent
of the RLD control.

The 2910 contains a 5 word_stack. Values are pushed onto the
Stack from the 4gPC. The stack is used primarily for microinstruction
subroutining, which can be up to 5 levels deep. The Stack Pointer
always points to the last word written in the stack. A FULL signal
is generated when the stack is full. Pushing a value onto a full stack
simply overwrites the top entry. Poping from an empty stack provides
a meaningless value, but otherwise has no effect. 1In addition to its
use with subroutines, the stack also plays a special role in 3 other
2910 operations. Details of these operations will be presented in
tabular form.

The D inputs to the 2910 serve as the fourth possible source of
the Next Address. It is through these inputs that the Next Address
Field from the Pipeline Register, and the Macroinstruction Input are
made available to the Control Store.

A summary of the 16 operations performed by the 2910 is presented
in Figure 11-4 Eﬂ. Eleven of these operations perform a conditional
jump. Ten perform 2-way jumps based on the result of a single testing
condition. The other uses two test conditions to select from three
sources for the Next Address. The remaining 5 operations always supply
the Next Address from the same source, independent of the test conditions.

The primary test condition is the Conditional Control input, CC.
This input affects instructions 1, 3, 5, 6, 7, A, B, D, and F. When
this input is low, the test is said to pass. 1In thils case, the Y output
and stack operation is read from the PASS column in the table. When

CC is high, the test is said to fail, and the operaticns are read from

100

#~11 2aIN8TY

€

/61 £1e1qr1 ®Bieq 1930dWOd0IOT B[OI0ION 230TdNG) oyl woI] uayel
a3 —— PEOT 0S4 ‘DPIOH 'T=D) pue Q=N4D) JI :y1oioy
14 p1Toy dod | od BT e 0=
T 530 A0d | od TPIOH | a4 | oF HaMBE Lo 2Rty Ll g
13 pLoy PLOH | Dd P1oH | og X anujuo) JNOD a]
Td proj d0d | od prov | a4 X doo puy 3sa] 4007 a
“Id puoq BTOH | 0d PN | o4 X | enurjuop ¥ a3ju) Q1 10071)
Td | P1oH dod | d PIYH | ng ¥ | 404 % 74 dunp pud) ddrd q
‘19 pIO} Jod | 4 PIYH | od ¥ HIY puoy NIHD i
Td P1Yii PToH | 0d P1oll | 0d 0=
VR
Td 2ag PICH | d PTOH { a (trd 0 J3u) "Il Lay Lody 6
..Hp* 1 UHD: Am O\— Uﬂm &Onm Unh y e
T yon PTON | d v | ox 0 T3UD*AOOT Li¥ | 104y B
Il o) | PICH | € pron | u ¥ d/y dungp puop Jurp L
IouA | pToON PTOH | «a PIoH [0d | ¥ 203004 dunp puoy ALD 9
14 pIUY Hend | @ usna | o X 1d/4 dSr puoy duse 5
"Ll To30H Hend | 0d HEO | od X J1UD Q1 puoen/HSnd Heng - 4
1d PTOH PICH | @ PTOH | Od X Td dunp puop drd £
RATIY PIOH PLoH | aq PICH | ¥ dvi dunp dvir 2
T4 | PIOH ysnd | a P1OH | 0d X Td gSr puoe) Sr0 T
1d PIOH Jea3rp | o Jes1d | 0 X oxaz dunp %e 0
aTqueuqg Uy ¥2e3g X HOE3}Q b4 13U auwe VpUQWIUR leu
© b /Fon (0500 U T=RUDO | =00 ¥ OSNIO0T /dud ; XIH
S5Vd TIVd

}8g UOT3ONAGSUT QT6HZ UL

101

the FAIL column in the table. The CC input can be disabled via the
CCEN control. When CCEN is high,‘EE is disabled and all tests are
forced to pass. When CCEN is low, the CC input determines the con-
dition of the test in the manner described above.

The register/counter provides a second possible test condition
used by three of the 2910 operations. The contents of this register
are tested for zero by instructions 8, 9, and F. Both 8 and 9 are
used to terminate a microprogram loop. Instruction F uses both test
conditions, CC and the counter value, to perform a 3-way jump.

The PL, MAP, and VECT outputs of the 2910 are designed to provide
3-state . enables for possible D input sources. Only one of the three
is activated at a time. PL is designed to enable the Next Address
field from the Pipeline Register. MAP is meant to be used with the
Macroinstruction Input, and the VECT signal with an interrupt of some
kind. The right hand column in Figure 11-4 shows which- signals are
activated for the various 2910 operations.

For a more detailed discussion on the 2910 and its operation see

G

11.2 The Control Unit Design

The hardware design of the complete Contrel Unit is shown in
Figure 11-5. Both the Instruction Register and the 2910 are clocked
by @l. The Pipeline Register is clocked by gl(PLR) which in normal
operating mode is identical to Gl. In fact, gi(PLR) is taken from
the same clock signal as @;. However, they are supplied to the computer

via separate gates. When the CPU is halted, and the Consocle Device

102

G-TT 2anSTJd

A _ t) CCIFTAV
Ll A °€is31 [mwd|®'sia | ow] <€ %3y .m—@
faial.l_- / l_..
L J N\ 1
g8 { it 1
ulw —{ Q000 -
Rewvd —|1eeo 28 X Mb
MONAY AN —{ 0100 F
wowg — 1 foo E ma@%m
e EY wo__o T . 10YW.LNOD
aany —1 10 lo gt
wmuww o/1—otto o 1O xals SS3Ya0V
Tdvel — L 110 x:zLU | 055101 Iy LIX3N |4y
2dVYL —[O00 1} |.gj 1 |
—jiool 22 gy A Opn_)
— 0101 9 O_mm
i il B iy and~ B
—qo1y) a
—{10 .— — 7
—QV 1
1111
m -
wign ~-onn ° ' 219071
!11.6 47 71x8 ONZ 3093 4O *ISNIOHIVIY
H3isiodny «w.\.\ ~ aLnod
SHIOUVH xoW 112 | i
51-8¢ng V10 X’I_l —— %
et LI
. ...L @._v J h—.wﬂmw
h_lumn;_m 1

1-0g (g

uzTsa(3TUn TOJIIU0D ayy,

103

takes control, QI(PLR) from the Clock Circuit is halted so that the
Console can supply this signal. In this way the Console can load the
Pipeline Register without affecting the rest of the computer. This
is a particularly useful feature, especially during initialization.

The RLD and I3 - I0 controls on the 2910 are supplied directly
from the Pipeline Register. The pass or fail condition of the CC input
can be determined by testing either the TRUE or the FALSE state of a
selected machine status bit. A 16-to-1 multiplexer, controlled by a
4 bit TEST field in the Pipeline Register, is used to select this
status bit. A status of 1 is interpreted as a TRUE condition and 0
as FALSE. A test can be made on either polarity of a selected status
signal via the POL bit in the Pipeline Register. To test for a TRUE
condition, the POL bit is set to 0. Setting the POL bit to 1 will
test for a FALSE condition. Note, one of the status inputs is hard-
wired to a 1. Testing this input for a TRUE condition will always
PASS. TLikewise, testing this input for a FALSE condition will always
FAIL. This allows the microprogrammer to force a PASS or FAIL condition
for each of the sixteen 2910 operations. As a result, there is never
a need to disable the Conditional Control input, EE, so the CCEN input
is permanently tied low.

The Incrementer control input, CI, can be set to 0, 1, CC, or CC
by a two bit select field in the Pipeline Register. This control
provides the microprogrammer with a very powerful tool. A better
understanding of the exact use of this input is given later in some
example routines,

The following signals in the 2910 are unused; FULL, Ef, EKE, and

VECT. It is up to the microprogrammer to make sure the stack bounds

104

are not exceeded. This is not thought to be a big restriction.
Routines that require up to 5 levels of subroutining are probably
far more complex than most of those found in the micreprogramming
environment.

The PL, MAP, and VECT signals are replaced by a 2-bit field, S
and Sp, in the Pipeline Register. This field selects from 4 possible
sources for the 2910 D inputs. One of these sources is the Next Ad-
dress Field in the Pipeline Register. The other 3 come from the In-—
struction Register.

As previously mentioned, the Control Store is made of 6116's, the
same type of RAM found in Main Memory, but a slightly faster version
{120ns verses 150ns). Each of the 4K locations is 88 bits wide. As
of yet, 4 of these bits are undefined and can be used for future ex-
pansion. A total of 22 RAMs arerequired to fully populate the Control
Store. When the computer is operating in normal mode this memory
remains in the read state. The Console however, can both read and
write directly with this memory once the CPU is halted. A detailed
diagram of the Control Store will be presented along with the Console

later.

11.3 The Macroinstruction Logic Design

The Macroinstruction Logic circuit is shown in Figure 11-6. As
illustrated, the Instruction Register is loaded by @1 when the LDIR
signal (from the PLR) is activated. The first byte of the IR always
holds an Op Code. It is therefore referred to as the Op Code register.

Note, while the second byte of the IR is loaded from only the high

105

9-TT 2an3dTy

/
1062 vo syndw g of

naT | Ly |
5446 wﬂuu

~—4

riVd

_.1& .

.._s 0

hw

214 o0 10 O 1) ¥
Y309>3Qg)
L~-04-2 /
(o) me M —lm\
Y / - -]
¥OwW Lo
a mand %] g A W10
9 | ssavoay Lxan 1 0
yid 5
=

oNAIXY NOIS Ao vavy O ¢

)

L

N

YAONI| MNIVLIS NI D100
AO3V3IS B3AS13Y O] <

1
] S
_ "9l "al % .ITJT* 9qlq 15 b 57 _Lcaﬁtwﬂ.@
A1AQ| ane 3007 [30 @
) W 8 Aoy
¥3.15193Y” XOW 118 1
‘1gNioYov B4 _ ‘_Epuoﬁ_u - ¢
A
qﬂ“mﬂm - .m.vmuam

tsag— sng

ULdTS9(O91J07T UOT1ONI}SUTOIORY

106

byte of the Bus, the Op Code register can be loaded from either the
bigh or low byte. This is a direct result of allowing l-byte instruc-
tions (Op Codes) to reside in both even and odd byte locations (refer

to Section 6). It's quite possible for the Macroinstruction Fetch Routine
to detect a fetch from an odd byte location and provide the controls
needed to shift the high byte of the Bus into the Op Code register.

This however is costly in terms of both time and CS space. It is more
advantageous to have the fetch routine simply read a word from memory
and let the Macroinstruction Logic direct the proper byte tc the Op Code
register. This operation is implemented via use of a Route fiip-flop.
This flip-flop controls a multiplexer at the input to the Op Code

Register., It is loaded from the BUS,. line at the end of every micro-

15
instruction cycle, but serves a purpose only when a macroinstruction
is being read from memory. Recall, to read from memory requires two
microinstruction cycles, the first to send the address, and the second
to receive the data. During a macroinstruction fetch, the Route £lip-flop
is loaded with the least significant bit of the address at the end of
the first cyecle. Thus, in the second cycle, when the actual macro-
instruction is placed on the Bus, the output of Route is used to gate
the appropriate byte to the Op Code register.

The Instruction Register supplies three sources for input to the
2910, each serves a slightly different purpose. These sources will be
referred to as the Op Code Address, the Effective Address Routine's

Address (EAR's Address), and the Count value.

The Op Code Address has the following format,

107

where the X's come directly from the Op Code Register.

Thus, each

of the 256 possible Op Codes will address a distinct location in the

Control Store.

to perform the operation specified by the Op Code, beginus.

At this location a microinstruction routine, designed

Note, the

beginning of routines for successive Op Codes are separated by one

location.

to carry out the execution phase of each macroinstruction.

some will require more space, but many

formed in as few as one or two microinstructions.

That is, space for two microinstructions has been allotted

Obviously
macroinstructions can be per-

Routines that require

more space must jump to another part of the Control Store to complete

their task.

Memory Reference Instructions are
the first 5 bits of the second byte in
are used to specify up to 32 different
An EAR's Address source to

addresses.

bits into the following format,

handled in a special way. Recall,
a Memory Reference Instruction

schemes for calculating effective

the 2910 incorporates these 5

where the X's here come from IRg - IRy,.

Store locations can be selected by these 5 bits.

Up to 32 different Control

Microinstruction

108

routines that calculate Effective Addresses are expected to begin at
these locations. Again, the first microinstruction of each routine
is separated from the next sequential one by 1l microinstruction.

In the process of carrying out Memory Reference Instructions the
first thing that is always done, independent of the operation specified
by the Op Code, is the calculation of the Effective Address. TFor this
reason, the hardware has been designed to detect the Op Code of a
Memory Reference Instructian and gate the EAR's Address (rather than
the Op Code Address) to the 2910 to begin execution of the instruction.
This requires a prioriknowledge of the Op Code format for a Memory
Reference Instruction. The Op Code for all Memory Reference Instruc-
tions in this machine must have 1's in the first 4 bits. Thus, up to
16 Memory Reference Instructions can be defined by the last 4 bits.

In light of the above discussion, the proper operation for the
Macroinstruction Fetch Routine is the following. Once the Instruc-
tion Register has been loaded, the Next Address should be retrieved
from the Macroinstruction Logic by setting the S1 Sp field in the
Pipeline Register to ll. This will send the Op Code Address to the
Control Store, unless the first & bits of the Op Code Register are
1's, in which case the EAR's Address is sent. Once the Effective
Address has been computed, the operation performed by the routine at
the Op Code Address can be carried out. The address of this routine
is sent to the Control Store by setting the 357 Sy field to 10. This
will send the Op Code Address to the 2910 independent of the Op Code
value. In general, the above operation saves both time and Control
Store space.

The third source for the 2910 from the Macroinstruction Logic is

109

called the Count Value. The format for this source is,

where the X's come directly from the second byte of the Instruction
Register. The primary purpose of supplying this source to the 2910
is to load the register/counter. In this way, the second byte of the
Instruction Register can be used to specify the number of times an
operation is performed. TFor example, rather than fetch and execute

n identical shift instructions, a single shift instruction can be made
to shift n times, where n is a value specified by the second byte of
the instruction. 1If desired, the Count Value can also be used as a
Next Address source, although it is not intended for that purpose.
Placing a 0l in the S; Sy field will make the Count Value available
at the D inputs to the 2910.

The Next Address Field from the Pipeline Register is sent to the
2910 when Sl Sp is 00. The function cf this field is determined solely
by the microprogrammer. Most likely it will provide a Next Address
value, but can also be used to supply a count value to the register/
counter,

A Memory Map for the Control Store is shown in Figure 11-7. The
portion of the Control Store Accessed by the various Op Code Addresses
occupies 1/8 of the total storage (locations 20004 to 2777g). Herein
lie the first two microinstructions for each of the 256 0Op Codes.
EAR's Addresses access locations 3000g through 3077g where the first

two microinstructions of the 32 different addressing schemes reside.

Control Store "Memory Map" 110

Control Store

Location
Control Stoare 00008
10008
20008
Macroinstruction
Execution
wSfart
Area
30008
Effective Address = 3077
routines start 8
in this area ,
N~ .
40008
50008
60008
70008
7?7?8
figure 11-7

111

The remainder of the Control Store is left to be defined by the micro-
programmer. Much of it will contain microcode that simply completes
routines started in the two pre-defined areas. Parts of it will also
contain Macroinstruction Fetch routines and initialization routines.
The Power Up initialization routine will most likely begin at 00008.

A description of this operation is provided along with the Console

in subsequent material.

112

12 The Clock Circuit Design

The clock circuit generates the f;, @, and (3 signals along with
their complements. Of these signals, only 01, E&, and a& are used for
timing throughout the system. A summary of their use is given in Figure
12-1. Note, E} is used exclusively by the ALU, and E& by Main Memory.

@, provides timing for the rest of the computer.

Operation of the entire computer can be halted by "stopping the
clock", i.e. holding @1, El, and Eé at a constant level. The computer
can be halted only after the completion of a microinstruction cycle,
that is, at the beginning of a new one. Thus, when halted, E} is held
low while @1 and @5 are held high. Once halted, a Single Step can be
performed at the microinstruction level by allowing the clocks to proceed
for one cycle, at the end of which they are again halted.

The Execution Clock, 63, must be handled in a special way when a
trap occurs. Recall, the Stack Tender generates two traps, one when a
push is attempted with a full Fast Stack, and the other when the number
of entries in the Fast Stack is insufficient. These signals are generated
as a result of controls placed in the NUMBER NEEDED and COUNTER CONTROL
fields in the Pipeline Register. Not only are they an indication that
corrective action must be taken with the Fast Stack, but also that the
ALU operation specified by the current microinstruction must be aborted.
It's quite possible that this operation, if carried out, would overwrite
a 2901 register incorrectly and/or affect the NIS and TOS counters in an
undesirable manner. The easiest way to prevent this from happening is to
inhibit the Execution Clock for one cycle. This can be accomplished by

holding 53 high in the manner shown in Figure 12-2. Since Eé is used

Use of gl,gl, and 53 throughout the System 113

I/0 Ready and Inter

-~ - P -
CFPU 3us Interiacs

* Route flip-flop

#* Data Select flip-flops in I/0 interface

Synchronous I/0 Ready flip-flops in I/0 interface
OBR in Cutput Interface

Synchronous Interrupt flip-flop and Mask flip-flop

in Interrupt Level interface
Enables the following onto the Bus lines:
¥ outputs of the 2901s
Status bits
I3R from an Input Interface
Device Code from an Interrupt Level interface

* & kX

Ready flags from I/0 interface

2

Provides timing for the following functlons:
* Load the MAR
* the write cperation with memory
* memory data on/off the Bus

75

Serves as a clock input to:
* 2601s
CARRY,QVERFLOW,SIGN, and ZERO status dits in ALU

NIS and TCS counters

Frj
=

§
17}
=
n

1

=

2-21 2an31g

-

R
-
Tlum:ﬂvzop W1 XTJ,. JO mﬂohwai. 2T0A) UOT30NI}SUTOIDTI 1¢$, g ———
1RWICN

UOT)ONIFSUTOIDTY 1ST gurddeay,

<dVYUL
J0

TdVHE

uaty Mm. p1oy

e coﬂzcmﬁ.mml&’o@ A T ::a

T T IAVHL

dVHJI B uo mn FuT3TqTYUT

115

exclusively by the ALU this action will not affect the rest of the
computer, only the ALU. One is inclined to believe that a trapping
condition might require the prevention of additional operations out-
side the ALU from being carried out undesirably. This, however, is
not the case. Verification for this statement is provided in subse-
quent sections that develop microinstruction ;outines to deal with
traps.

Routines designed to correct a trapping condition will be referred
to as ""fix it" routines. The first microinstruction in these routines
should follow directly after the microinstruction in which the trap
occurs., This requires that the trapping microinstruction perform a
conditional jump based on the presence or absence of a trap conditiom.
This is true of all microinstructions that perform operations with Fast
Stack locations. The TRAP signal which inhibits ALU operation will not
be present in the microinstruction of the "fix it" routine because the
NUMBER NEEDED and COUNTER CONTROL fields will be different. Thus Eé
is inhibited only for the microinstruction cyecle in which the trap occurs.

The hardware design of the Clock Circuit is shown in Figure 12-3.
In normal mode the B;, @), and @3 flip=flops function as a 3-bit shift
register. A 1 is shifted through in a circular fashion to create the
@, 0, and @3 clock signals. Since these signals are made available to
the computer through inverted buffers, $; and @1 (prr) are taken from Q
While'al and 55 are supplied from the O outputs. The Reset signal
initializes $;, 85, and @5 to 1, O, 0 at power up. A shift occurs every
100ns as determined by the 10 MHz Master Clock. Shifting a 1 through all
3 flip-flops constitutes a complete microinstruction cycle (300ms).

A11 three of the flip-flops are clocked by the same signal so that

116

ugTsaQ 3TUOIT) HOOTD 8yL £-~2T 2an31d

YOLyMIDsSO
WIGAYD
ZHW Ol
13639 m;v @u LvH/NnY
Gm:_u mum-.d . bis,
2 5 lm@ : = Tl O .
o a
bIS, Gv_.m,o , G.Em G | © 9
0
1353y INWH /NOY ONASY

(P 4-EE
2dvyL

ﬁ>>o/ \/SGFCOC)

5

BT TheoSNOD

v
O31VH

i

ﬂjm:.a A :ﬁFCGCU

117

their outputs will change in synchronism. It is well known, however,
that the clock-to-output delay time can be slightly different for the
Q and‘a outputs, and may vary even more from one flip-flop to another.
This effect can be minimized by using Schottky parts which have a
maximum clock-to-output delay of 9ns for both Q and Q outputs Eﬂ.

The clock signals are made available to the system via a set of
buffer/drivers. The purpose of these buffers is two-fold. They function
- primarily as drivers to provide sufficient current sinking capabilities.

They also allcw the Console Device to control ﬁl and 9 through

1{PLR)

proper application of CONSOLE@1 and CONSOLE® Note, during

1{PLR)"

normal operation the Console must hold CONSODEEI high and CONSOLE@l(PLR)

low. The Console uses P to load the Pipeline Register andlal

1(PLR)
to carry out transactions with Main Memory. Again it is suggested
that Schottky buffers be used for the drivers to minimize the relative
time shifts between the different clock signals. Maximum propagation
delays as low as 9ns can be achieved through proper part selection [h].
An additional delay is incurred by the‘a3 signal not seen by the others
due to the NOR gate used to inhibit this signal on a trapping condition
as described earlier. If Schottky is used, the maximum delay of this
gate can be reduced to 7ns [4].

A timing diagram for @l,ai, and as is given in Figure 12-4. In
this figure, typical delay times were used for all circuit components.

Note, @, is slightly out of phase (5ns) compared to the other two due

3
to the extra NOR gate. The shift of these signals with respect to the
Master Clock is irrelevant. Their shift with respect to each other is

however very important. If a minimum delay of 2ns is assumed for each

circuit component, a worst case analysis will show 93 to be a maximum

118

£ DOTJaad

¢ (SU 00€) 210D UOT4ONIFSULOIITN T >

__fftq__-

-1 aandyy

Z potaed | 1 potaag —

SU G-y k-
1
!
!

|
I
!
I
I
“
- e
' SUu 21
|
{
|
1

- k= Su Zf

—— BU QT —J

weadetrq FUIWTL }00TD

ZHIN 0T
MOOTO
HALSVIN

119

of 21ns out of phase with either of the other two signals. This condi-
tion is highly unlikely, however, since it implies that 53 incurs a
maximum delay at each component while the other signal experiences only
a minimum delay through similar components. Conditions like this can
be avoided by using components from the same package as much as possible.

The Clock Circuit will be halted when the Q output of the ﬁEHYHalt
flip—~flcop is set to 1. Since this flip-flop is clocked by the Master
Clock in synchronism with the rest of the circuit the Console must maintain
a 1 at the Asynchronous Run/Halt input to halt the Clock. Once the Run/
Halt flip~flop is set, the clock will be halted by stopping the circular
shift operation when the 1 reaches the @; flip-flop. The 1 is essentially
trapped in this flip-flop by the HALTED signal, generated when both the
HALT and @] signals are high. In addition, the HALT signal will inhibit
the 1 from propagating onward through @2 and @#3. In this way the Clock
is guaranteed to stop at the beginning of a microinstruction cycle.

The run mode can be re—entered by returning the Asynchronous Run/
Halt input to the low state. This will clear the Run/Halt flip-flop
and allow the circular shift operation to proceed in a normal fashion.
A Single Step is performed by simply re-entering the run mode for a
single cycle. This can be accomplished by pulling the Asynchronous
Run/Halt input low until the first shift occurs. In other words, it is
pulled loﬁ until $; goes low, then it’'s returned high. 1In this way, the
clock is again halted as socon as the 1 has circulated back to the §;
flip-flop.

In summary, the Clock Clrcuit consists of a 3-bit shift register
clocked by a 10 MHz Master Clock. The microinstruction cycle time can

be changed by simply modifyving the Master Clock frequency. The Executicn

120

Clock,.Eg, is inhibited every time a trap occcurs. QI(PLR) and El can

be controlled by the Console through proper application of the CONSOLEal
and CONSOLEﬁl(PLR) signals. In this way the Console can supply the
timing needed to load the Pipeline Register and communicate with main
memory. The Console can also control halt and single step operations

via the Asynchronous Run/Halt input .

121

13 The Control Store Design

A detailed diagram of the Control Store is presented in Figure
13-1. The two rows of 6116's provide 4K locations, 2K per row. Eleven
RAMs are required in each row to achieve an 88 bit word length. The
2910 supplies a 12-bit address, the msb of which enables one of the two
rows. The remaining 11 bits select an 88 bit wide location within the
chosen row. The wvalue in this location is loaded into the Pipeline
Register on the rising edge of GI(PLR)'

The 11 RAMs in each row are grouped into pairs to form five 16-bit
banks and one 8-bit bank for purposes of communication with the Console.
Each bank is linked to the System Bus via a group of Bus Transceivers.
To access the Control Store, the Console must first halt the CPU. This
will place the 2910 output in the high impedance state. Then by acti-
vating the CONSOLEON signal, the 15-bit CSAR wvalue will be enabled. The
upper 12 bits of this register select an 88 bit Control Store location
in exactly the same manner as the Next Address output of the 2910. The
lower 3 bits work with the Bank Select Decoder to enable a transceiver

group for ! of the 6 banks. This decoder is activated only when both

CONSOLEON and CSRWEN are generated by the Console Dewvice. Directional
control on the transceivers is a function of the Write Decoder outputs.
These outputs also supply the Write Enable, WE, controls for each of the
6 banks. During a read operation, when the CSR/W signal is high, the
Write Decoder outputs are disabled, and the OE controls on the 6116s

are activated. Thus all banks of memory are placed in the read state
and a full 88-bit word is read. Only the portion of this word that lies

in the selected bank, however, will be transferred to the Console.

122

I

ugisag aa01S T0IqU0) ayg T-£1 oandtyg

M_J.: _oua Jz:un:n_

— N | N N, . . ol NEGIREL
SUNyE e INumM
_ VANYS N Ve DINVE oINS B-01-¢ P I
i _ A T I/ T o s
N3 N3 N3 AE! H3 Qg
- +A: - 1— _A: . ~A - JFA_ _ _ -_LA: |LA~ _ i o) A2
> > >F > > M-~ 01
wia |- sm YI0 [bm B0 | Yig|- 2Mm YIaEIM yiaf-om vM—toO | c
‘ .i\‘ Tt e Tt T T I 2=l L A R R R E-l‘h .- —O)\NJ
IR B 11:1_ e A g _EE g _ _rf- EHA==0010
I _ — | IM—qg 100
ERERE e o [sf T o T
30 o/t |29 o1 |ag o1 |30 ont |30 oft |30 o: 30 o: a0 oft i o Jao oft o o |l o
52 52 EP ER 92 S 92 32 23 % 2 /ﬁ,uoo. Y30 1D3VIS
J; O-o_< M:S 0‘9< u3 o-a_< u.@ o.a;\ m_s oé.(un - o.< w_bw - c_< uts. Q- o.< @3 Q- c.< wB c‘o_< muwl_.b o.c:c_ -1 Nf (_ZHQ@ .ﬂ:O.—..m
mr .IIMW@ — ,-l_ﬂ,} o |¢3 =]]hﬂs i ii-;u@ls ; LMMM" o
WS SRR eI SR S NP S BN DR SAvg— 104
U O O I v It O O M | ity —cfoot | ¢
S S IR S N N IS S N DU B ;| g
20 O/1 [30 Oft |30 Of1 {30 Of1 {30 0L 30 Ot [30 of1 |30 oft 30 /1 3o o/t |20 o WMNE 9 :_o
53 $2 52 59 &3 $2 52 53 5 S) mmmmm,uwmcm
M Y IM 001y IM oo, am a-ol,, M 0- o, IM o-on, 3M o o_< wtm...oo.e. M ool am oo, M o-oty, @lv:w.@sm dooo 23'3
‘r‘\-.|.f|ll|l| - o .- e g —— L e St e B e a b e — —— . L ‘.‘l\ 4
am A;!li!lhlmm Tl\i!!LrnB rxeiillw M iq:\JJ:gwtw *|II:GL oM 1 1]
. /7 Y D SN \ J
Y] ik 1o]
S ®~ _@ SSIAYaay 1LXIN 1— T e .._—
el o M. | b
= NIALT)
Ql6e T
NO3II0SHO)

MYSO

123

The write mode is entered when both the CONSOLEON and CSRWEN
signals are activated and the CSR/W signal i1s pulled low. This will
force the OE control on the 6116s to the high state. 1In this mode the
directional control on the selected transceiver group will be reversed.
In addition, the WE control for the selected bank of memory is enabled.
In this way, data can be transferred from the Console to the Control
Store. HNote, the non-selected banks in this mode remain unchanged. It
is important to note that during a write operation, the CSR/W signal
should be returned high before the CSRWEN signal is disabled. This will
guarantee that the WE control on the 6116's is returned high before their
data inputs change.

It is a simple matter for the Console Device to load the Pipeline
Register from a Control Store location. This requires only the placement
of the desired address in the CSAR, the setting of CSR/W to 1, and
application of a low-to-high transition on the ﬂ(pLR) line.

When returning to the normal mode of operation the Conscle Device
must first de-activate the CONSOLEON signal so that the CSAR output is
disabled. Then it's safe to re-enable the Next Address output of the

2910 by placing the Clock Circuit back in the run mode.

124

14 The Console

14.1 Console Operation

The Console Device can communicate directly with both Main Memory
and the Control Store. Transactions with Main Memory are carried out
via the Bus in exactly the same way that they are with the CPU, except
at a much slower rate. Information transfers with the Control Store
are also carried out over the Bus, 16 bits at a time. To read or write
a full 88-bit microinstruction requires 6 data transfers. Addresses to
16 bit locations in the Control Store are supplied via a 15-bit Comtrol
Store Address Register, CSAR. The upper 12-bits of the CSAR address an
88-bit word in exactly the same way it is dene with the 12-bits from the
2910. The lower 3 bits are used to select from 1 of 6 fields within
this word, 5 of which are 16-bits wide while the last one is only 8.
Before the Console can communicate with either the Control Store or Main
Memory it must first halt the CPU and take over wvarious control signals
normally supplied by the Pipeline Register.

A halt signal generated by the Console will initiate the following
sequence of events. First, the microinstruction currently being executed
is allowed to finish. Then the machine is effectively halted by holding
all the clocks at a fixed level. Once this has been accomplished the
Clock Curcult will generate an active high signal, HALTED, which in turn
will tri-state the Next Address output of the 2910. The only useful
operation that can be performed by the Console at this stage is a micro-
instruction Single Step which is carried out by returning the Clock

Circuit to the run mode for one complete cycle.

125

Before the Console can communicate with Main Memory or the Control
Store it must activate the CONSOLEON signal. This signal disables the
following controls from the Pipeline Register by placing them in the

high impedance state.

MEMSEL

LDMAR

R/W

BYTE

T/0 SEL

1/0 STAT/DATA

INT ACK

MSKEN
BRST

In addition, once CONSOLEON is activated, the Console can control 61
and QI(FLR)' The CONSOLEON signal also enables the CSAR and sets up
the Control Store to be accessed in the 16-bit mode. 1In effect the
Console Device is given complete authority over the Bus Controls. To
perform transactions with Main Memory, it needs only to supply the
appropriate control and timing (ﬁ&) signals. To communicate with the

Control Store it must supply two additional control signals.

1. CSR/W - Control Store Read/Write
This signal is set high to signify a read and low for

a write.

126

2. CSRWEN - Control Store Read/Write Enable
This is an active low signal which places the Control
Store data on the Bus during a read and takes it off

the Bus during a write.

Using these signals the Console can read from the Control Store by

carryving out the following sequence of operatioms.

1. Load the CSAR with the address of the desired data.

2. Set the CSR/W signal high to signify a read operatienm.

3. Activate the CSRWEN signal to place the 16-bit data value omn
the Bus.

4. Read the value from the Bus into the Console Input Register.

5. Deactivate the CSRWEN signal to free the Bus,

Note, the Control Store is left in the read mode when not being used.

A write operation requires execution of the following steps.

1. Load the CSAR with the desired address.

2. Set the CSR/W signal low to signify a write operatiom.

34, Place data from the Console Output Register on the Bus.

4. Activate the CSRWEN signal to transfer this value from the
Bus to the selected Control Store location.

5. Return the CSR/W signal high to terminate the write operation.

6. Deactivate the CSREWEN signal to free the Bus.

Both the read and write operations outlined above transfer omnly l6-bits

127

of information. Each must be performed 6 times, with a different address
each time, in order to transfer a full 88-bit microinstruction.

If need be, the Console Device can also place a value in the Pipe-
line Register. The microinstruction placed in this register will be the
first one performed upon return to the normal operating mode. Any
previous value in the Pipeline Register is overwritten, which means
that the microinstruction placed in this register when the CPU is halted
is destroyed. This, however, is a desirable feature during initialization
where the previous wvalue in the Pipeline Registér 1s meaningless. Since
the Console Device cannot supply a full 88-bit wvalue itself, it must
load the Pipeline Register from a Control Store location. All reads
from the Control Store access a full 88-bit word even though the Console
can only accept 16 bits of it at a time. Thus, the Pipeline Register

can be loaded in the following manner.

1. Place the address of the desired Control Store location in the
upper 12 bits of the CSAR. (The value of the lower 3 bits is
irrelevant in this case.)

2. Set the CSR/W signal high to signify a read operation.

3, Load the Pipeline Reigster by supplying a low-to-high transitien
on the gl(PLR) line.

Upon return to the normal operating mode, the Console Device must
first deactivate the CONSOLEON signal. This will re-enable the control
signals from the Pipeline Register and the Clock Circuit. Once this is
done, the normal operating mode can be re-entered by returning the Clock

Circuit to the run mode.

128

14.2 Console Design

Most of the functions performed by the Console Device are actually
quite complex. Since all of its operations are carried out while the
CPU is halted it must provide both control and timing signals along with
data. %or this reason a microprocessor has been chosen to carry out these
operations. In this way the complexity of the Console can be embedded
in the microprocessor software. The Console is connected to the rest of
the computer via a Console Interface circuit. The microprocessor com-—
municates with the computer through this interface. A Block Diagram of
the Console Device 1s shown in Figure 14-1.

The microprocessor is linked to the Console Interface via two 8~-bit
ports and two clock bits. Port A holds a control word which determines
the current interface operation. Port B is used to transfer data between
the microprocessor and the interface. All timing for the interface is
performed by Clock B. Clock A provides the timing for operations carried
out by this interface with the rest of the computer (i.e. Pj(pLR) and ﬁa).

The interface itself consists primarily of 4 registers, a 16-bit
Console Input Register (CIR), a 16-bit Console Output Register (COR), a
4-bit Consvle Control Register (CCR), and the 15 bit Control Store Address
Register (CSAR) discussed earlier. The Console sends and receives infor-
mation over the system Bus through the CIR and COR. The CCR supplies
contrel to the Clock and the CS. Bus control signals, required to carry
out transactions with Main Mamory, are supplied from Port B through a
set of 3-state buffers. Clock A is logically combined with wvarious
interface controls to generate both the CONSOLEJ; and CONSOLE@} (prR)

clock signals. Since Clock A is used for both signals, only one can be

129

weadetq y00Td 9TOSUO) T[-H1 2aIn8t1d

SACHLHOD Sivg

_’dﬁm,wux ENIRERLE! _
o)

I

ZOAS
TOULHOD e
1|||\N‘ Nhln{ ——f ——— T STMBVON

gt |7 &7us]
. R TUNIMGES
_.&‘ - DR
. :B s LD “opI]

P e wovw | h ...

VI NOY DNASY

CE—

SS
RS
JINIS

—— ey

N30
1 1nd1no

/

»a3n |

HIsSH

AUOWIW
NIVW
!.—lj —r
1 O L — GR——— -
? B S
i e -
5179500 NEIGIGEL NEISREN
. 104100 104N
ST0WINGD S08 noswod | Aoshod |
.&V 5170 B §iig 91
Yoo Bvio
T . Lg_ﬂ s SN, .. R
VSO B e A ‘\;i-;
o 907 | (" oo
lgaosnod § TGOS0 ‘ €\ 0YiNeD
- = RSl :)3 Y ILNI
Yyod oz_z_p J\-.H
NERY S8 N ima - tmi
] xd 9 1Hod an

WILISAS -80S
VOSSIIOUIOY DI

A

LOG MY

AR T
ERSSLLEN]

130

activated at a time.

The Console Interface also contains a Single Step (88) flip-flop
used in coordination with the Clock Circuit to carry out a microinstruc-
tion single step. The output of this flip-flop is logically combined
with the Halt Request bit from the CCR to supply the Asynchronous Run/
Halt input to the Clock Circuit. The 5SS flip-flop is activated through
proper application of the control word in Port A.

A detailed design of the Console Interface is shown in Fiugre 14-2.

A 6821 Peripheral Interface Adapter, PIA, is used to link the micro-
processor to the interface circuitry. This device is designed to function
with any of the 6800 family of microprocessors. It contains two bi-
directional 8-bit ports, A and B. Each port has two handshake lines.

The CAl and CBl lines are not used in this design. CA2 and CB2 are used,
however, to supply the Clock A and Clock B signals. Both CA2 and CB2 can
be toggled in software as an extra l-bit register, independent of the

port activity. When enabled, all registers and flip-flops in this inter-
face are loaded on the rising edge of CB2. CA2 is used to generate the
CONSOLE@; and CONSOLE@, p;py signals.

All operations in this interface are enabled by a 6-bit control word
in Port A. This word is divided into two 3-bit fields, each of which can
specify up to 8 operations via a 3-to-8 decoder. The decoder outputs are
used primarily as enables for the various interface operations. To actually
perform most operations requires the application of a clock signal (CB2),
or perhaps a transaction with Port B. A 000 value in either 3-bit field
of the control word will activate the '"'safe state' output of the corre-
sponding decoder., 1In this state, no operation is enabled. Two operations

can be performed concurrently by specifying a non-zero value for both 3-bit

UFTseq s90BJILIUI 9TOSUO) oY Z2-41 2and1g

TS

= W._ wfﬂ.__ s s e e . g . e J— e
o wdﬁma.ﬁ|.|;aa= R A S S -
— R E I s (e R -
i Yy . BN
—.EAOW:QU w dghnzou anJm W-uﬂwgm.a; ——————————— ——— e e EE I —
T— T o p——— g —— - s 3 T
J L-°¢ng SE— 4A Nwmmmmql
1 I D . A - _A"seppo J R B
q /— 4 lf Zu AT 0N M3 _nx‘_\.”.ﬂ..u._u.. L it mm 3140
i POY YO | , U9WH 0D [FTEEEL o "D wom yp | 7
% £ ;_, — L _ Yimm | Vi
3108 5\« Euz 15HB) .,_ on .z ——ee e b sy)
.mﬂm-l.;:;.mm‘a--lifin, e _ ee——
S 41 SRS J: TUIOSNGD |mv.l T iEnos Y Y2291 —qgot i
_ NE] Hoi oy —di ol
avols MOIYOY (001 -
OYI NO)D) 41% (11711 1|ldxi11.|| SEpee zu,m@‘wuﬁ ~110
B B f EVER QYLNI SNg (o1 o
21} 55 —(]100 -
ob—— B Sl 34VS ~qooo N
0162 51 hw;l:lmmum<muca $Y2AA0DI3A
o — - g-01-
—TTT il
§ - s) O S ——— P QO
?b_ﬁ d& @ 4& ﬁx sS09 430—C01 1 \\
ot ENRLE 3 shgNe—lol “
— — _ ﬁ _ t03 105109 81 H9MUVSIOY-([0O |
A . SP— S MOTUWSIA—}1 1V O [
L1INDYUD \f 1 NN bt 1 gt HOMu0Ha1—go1 0
DO vt /eoy . _ gy el 5 R S \ \ / MOIY0YIY-~(1100
TSRS g 0| Ty =7 Advg—ooo |
s NOIVGEH05 . / T
oﬂ Hv..ms. ‘,_.._..L-OA_ . 1 (O —— m._, Q-L ﬁ
T ey] ST 2o] 0 swoo| v 1woa]lev:
OA WV RE e SU A) i IR B —wu
.-n-u .I.*E . =
2 Vid

“wopgEios [

— WILND Snd

tpaosiod Alg

LERIM V) .

zwsab_.& A—

2V

HOFI05NOD
2\

e
[4)
o] _.JVJIw

189

i

WIAISAG-gNns
YVOSSTIOUIOU NN

R

132

fields. For some operations, however, this is undesirable. These
will be apparent once the interface design is more fully understood.
A summary of the operations that can be performed by this interface
is given in Figure 14-3.

Interface registera are loaded from the microprocessor with the

following steps.

1. Set up Port B as an output port.

2. Send a control word to Port A that will activate the load
enable on the desired register.

3. Send the data to Port B.

4., Toggle CB2,

Note, COR and CSAR must be loaded a byte at a time, Thus, steps 2
through 4 are repeated for these registers.
To transfer a value from the CIR to the microprocessor requires

a similar sequence of operations.

1. Set up Port B as an input port.

2. Send a control word to Port A that will enable the 3-state
output of the desired register,

3. Read the data into Port B.

4. Transfer the data from Port B to the microprocesser.

Again, steps 2 through 4 are repeated to get both bytes. Note, both
the CB2 and Port B outputs are supplied with a set of buffer/drivers,

since alone they can drive only 2 TTL loads.

Port A Control Word Definitions

133

Port A
Control Word
(octal) CB2 Operation

OO8 X No operation

Olg A LDCORLOW is activated;
The low byte of the CCR is loaded
from Port 3.

.02,

w
-

LDCORHIGH 1s activated;
The high byte of the COR is loaded
from Port B.

03g A LDCSARLOW is activatad;
The low byte of the CSAR is loaded
from Port 3.

048 % LDCSAREIGH 1s activated;
The high byte of the CSAR is loaded
from Port 3B.

058 X ONBUS 1is activated;
The contents of the CCR are enabled
onto the 3Bus Information lines.*

064 » OFF2US is activated;
The CIR 1is loaded from the Zus

Information lines.

078 o No operation

activating a microinstructicn single

208 X BUSCNTRL is actiwvated;
EL,LDMAR,R/W, and 3YTE controls
ith this

along wi 51 are applied bty

interfzce via Port 3 and CAZ

I‘j,J
H
09
o
H
[
—
f
1
W)

134

Port A |
Control Word
(octal) CB2 Opveration
(continued)
304 X gl(?LR]EN is activated;
CA2 plays the part of gl(PLR) :
i.e. it suppliss the clock toc =*hsa
Pipeline Register.*
aoa X RDCIRLOW is activated;
The low byte of the CIR is enzablad
to be read at Fort B.
508 X RDCIREIGH is activated:
The high byte of the CIR is enabled
t0 be read at Port 3.
604 i LDCCR is activated;
The CCR is loaded from the low 4 bits
of Port B.
708 X No operation

#*
This action is enabled only if the CCONSOLEON signal has

Teen activated.

Figures 14-3

(cont.

135

The Single Step flip-flop works in the following manner. In normal
operating mode it is set to 1 (Q = 0). This allows the HALTRQ bit of
the CCR to determine the Run/Halt mode of the computer. Once halted
(ﬁﬁffia = (), a single step is performed by clearing the SS flip-flop
(6 = 1), {(i.e. placing a 108 in the control word and applying the proper
transition on CB2). This forces a 0 on the Asynchronous ﬁEH/Halt line,
Once the Clock shifts into the second period, the SS flip-flop is
returned high (Q = 0) by @;. Thus, the Clock will again be halted at
the beginning of the next cycle. Clearing the 55 flip-flop has no effect
when the HALTRQ bit is high (i.e. normal operating mode).

When enabled, the CCR is loaded from the lower 4 bits of Port B.
Note, the CONSOLEON bit can be set only if the following two conditions

hold;

1. The Clock is already halted (HALTED = 1).
2. The Clock will continue to be halted by maintaining the low

level of HALTRQ.

This prevents this signal from being activated illegally. In addition,
CONSOLEON is automatically deactivated when an attempt is made to re-enter
the run mode by setting ﬁzifﬁa to 1. In this way the interface is forced
to enter and exit the Console Control mode in the proper manmner.

Since the halt request (HALTRQ) bit of the CCR has an inverted input,
it is activated by sending a 1 from Port B. The CONSOLEON and CSRWEN bits
are also activated with ls. Complemented forms of these two signals are
generated outside the CCR. The computer is placed in normal operating

mode by sending all zeros to the CCR. The RESET signal forces the computer

136

into the halt state at power up. Since RESET clears all &4 bits of the
CCR, the CONSOLEON and CSRWEN signals are deactivated.

To load the PLR and communicate with main memory this interface
must control the ﬂl(PLR) and @] clocks. This is done through the
CONSOLEPj (prr) and CONSOLEﬁl signals. In normal operating mode,
CONSOLEDI(PLR) is low and CONSOLEﬁl is high. When CONSOLEON is acti-
vated, however, these signals, if enabled, can be driven by CAZ2.

CONSOLEf is enabled by the @ (prr)EN control, and CONSOLE@; by

1 (PLR)
the BUS CNTRL control. Only one of these two can be enabled at a
time.

To perform transactions with main memory this interface provides

the

MEMSEL, -
R/W,
LDMAR, and

BYTE

Bus control signals. These are supplied from Port B and enabled onto
the Bus control lines by placing a 208 in the control word (as long as
CONSOLEON is activated).

Appendix B includes a detailed presentation of the steps required
by the microprocessor to perform typical Comnsole operations with the

Control Store and Main Memory.

137

15 Control Bit Summary

The following is a summary of the 88 control bits in the Pipeline
Register. Each bit has been classified into 1 of 7 major fields.
(4 of the bits are unused in this design.)

1. Microprogram Sequencer (26 bits)

2. ALU Function (9 bits)

3. Stack Tender/Register Select (16 bits)

4. Data Select/Sign Extend (13 bits)

5. Shift and Rotate (6 bits)

6. Status Control (2 bits)

7. Bus Interface (12 bits)

A brief functional description 1s supplied for each bit (or group of bits).

15.1 Microprogram Sequencer

TEST3,2,1’O - Test Field
This 4-bit field selects a machine status value to be tested. The

selected status determines the Condirional Control input to the

2910.

POL - Polarity
This bit allows the test to be performed on the TRUE or FALSE
state of the selected status value.
0 - test for the TRUE state of the status

1 - test for the FALSE state of the status

138

CIS - CI Select Bits
1,0

These bits select from 4 possible inputs to the CI control on

the 2910.
CIS1 CISO CI Inputs
0 0 1
0 1 0
1 0 cC
1 1 €6

RLD - Register/Counter Load Enable
A 1 enables the register/counter in the 2910 to be loaded on the

rising edge of §;.

13’2’1,0 - 2910 Instruction Inputs

These controls specify 16 operations for the 2910 (see Figure 11-4).

NEXT ADDRESS FIELD
This 12-bit field supplies a potential Next Address value to the

D inputs of the 2910.

S - Next Address Select
1,0

These bits select 1 of 4 sources for the D inputs to the 2910.

15.2 ALU Function

12 1.0 = Source Operand Controls
These bits determine 8 combinations of source operands for the ALFU

in the 2901 (see Figure 7-3).

139

I5,4’3 - ALFU Function Controls
These bits select 1 of 8 functions to be performed by the ALFU,

(see Figure 7-2).

I - ALFU Destination/Shift Control

8,7,6
These bits determine the destination/shift operation for the ALFU
result. They also select the source of the Y outputs for the 2901,

(see Figure 7-4).

15.3 Stack Tender/Register Select

NNy 1,0 - Number Needed Field
This field holds a 3-bit binary number between 000 and 100 (inclusive)
which indicates the aumber of Fast Stack entries need to perform the
current microinstruction. Tt should be set to 000 for microinstruc-

tions to which it does not apply.

U/D - Up/Down Counter Control
This bit determines the direction of count for the NIS and TCS
counters.
0 = count up

1 = count down

EN TOS

Enable TOS Counter
A 1l in this bit will enable the TOS counter to count in the direction

specified by.G/D.

140

EN NIS - Enable NIS Counter
A1 in this bit will enable the NIS counter to count in the direction

specified by U/D.

ASEL3 2 1 0 - Register A Select Field
This field is combined with the Stack Tender logic to supply a

4~bit A register select field to the 290l1s.

BSEL3 2,1,0 - Register B Select Field
This field is combined with the Stack Tender logic to supply a

4=bit B register select field to the 2901s.

Ml,O - Mode Bits
These bits determine 4 combinations of sources for the A and B

register select inputs to the 290ls (see Figure 7-21).
15.4 Data Select/Sign Extend

BUS - Bus Select
When 1, the D inputs to the 2901 will come from the Bus. Otherwise

these inputs are determined by the Data Select controls.

DSI g Data Select Controls
]
These bits select a source for the D inputs to the 290ls when the

BUS control bit is 0.

DS,

DS

Selected D inputs source

Immediate Field from PLR

NIS Counter
Second Byte of IR

Not Used

SE - Sign Extend

When a byte source has been selected for the D inputs to the 2901

it can be sign extended to 16 bits by setting this bit to 1.

TE - Test Enable

This control enables the test result to force the D inputs of the

2901 to zero.

otherwise they are determined in normal fashion.

to 1 to enable this operation.

15.5 ©Shift and Rotate

D - Double

Single width (16 bit) shift or rotate

Double width (32 bit) shift or rotate

IC - Include Carry

0

1

Don't include CARRY

Include CARRY

TE must be set

141

If the test is FALSE, the D inputs are set to zero,

142

R - Rotate
0 = Shift
1 = Rotate

ARTH - Arithmetic Mode

This bit affects only left and right shift operations.

L}

0 non-arithmetic shift

1

i

arithmetic shift

0/1 - Zero/One
This bit is used to supply 0 or 1 on various shift inputs. It

can also function as the "carry in" wvalue to the ALU.

Ciy - Carry In Control
0 = "Carry in" comes from 0/1

1

]

"Carry in" comes from CARRY bit

15.6 Status Control

S5 - Set Status
A 1 will cause the ALFU status bits to be set according to the
results of the current microinstruction, otherwise these bits are

unchanged.

RS - Return Status

A 1 enables all 6 status bits to be loaded from memory wvia the Bus.

143

15.7 Bus Interface

BRST - Bus Reset

A 1 will activate the BRST signal causing a Bus reset.

BSI 0~ Bus Select Controls
3

These bits enable the following CPU devices onto the Bus.

le BSO On Bus

0 0 Nothing

0 1 Y outputs of 2901
1 0 6-bit status word
1 1 Not Used

LDIR - Load Instruction Register

A 1 will enable the IR to be loaded from the Bus.

LDMAR - Load Memory Address Register

When set to 1, the MAR will be loaded from the Bus.

MEMSEL - Memory Select
A 1 will activate the MEMSEL Bus control line. This signifies a

data transfer with Main Memory.

R/W - Read/Write

This bit specifies the direction of data transfer with Main Memgry.

Q

I

write

1 read

144

BYTE
A 1 signifies that a byte is to be transferred to/from Main Memory,

otherwise transfers with memory are performed on a word basis.

I/0 SEL - I/0 Select

A 1 activates the I/0 SEL Bus contrel line. This indicates a

transaction with I/O.

I/0 STAT/DATA - 1/0 Status/Data
When the I/0 SEL bit is set, this bit specifies one of two operations.
0 = Two steps are required to transfer data with I/0. This bit must
be low for both of these steps.
1 = The Ready Flag of the selected I/0 device is placed on the I/0

READY line and transferred to the I/0 READY status bit.

INT ACK - Interrupt Acknowledge
A 1 activates the INT ACK Bus contrcl line which in turn causes
the Device Code of the highest priority interrupting device to

be placed on the Bus.

MSKEN - Interrupt Mask Enable
A 1 activates the MSKEN Bus control line which causes the interrupt
mask bits of all 16 levels to be set according to the mask word

placed on the Bus information lines.

145

16 On the Assembly of Microinstructions

The functions performed by each bit (or group of bits) in a micro-

instruction can be placed into 1 of 4 catagories.

Single Operation
Either - Or
Multiple Choice

Data Fields

Single Operation determine the on/cff condition of a specific control
signal. Examples include the RLD, ARTH, and MEM SEL bits. All Single
Operation bits in this machine are set to 1 to activate the corresponding
control signal.

Either - Or bits are those that specify either one condition or
another. The R/ﬁ'bit is a good example. These bits are usually meaning-
less unless a related operation has been actiavted by a Single Operation
bit or a Multiple Choice group of bits.

Groups of bits that specify a class of functions belong to the
Multiple Choice catagory. The imstruction bits, Ig - Iy, for the 2901
are a good example,

Fields such as the Next Address and Immediate fields are designated
as Data Fields. These fields supply binary numbers rather than control
signals.

With the exception of one 4-bit field, setting all 84 bits of a
microinstruction to zero will have the effect of a No Op. Thus, micro-

instructions can be assembled by setting bits and filling fields to

146

perform only those operations desired. The only field that must be
specified for every microinstruction is the 2910 instruction field,
3~ o

To repeatedly assemble these 84 bits to useful microinstructions
can be a very tedious task in the absence of some sort of structured
approach. Obviously there is a hierarchial relationship between various
bits and/or groups of bits. For example, it would be useless to assign
values for R, D, IC, and ARTH unless a shift operation has been declared
by the IB’ 15, Ig field for the 2901. Similarly, it would be pointless
to designate a value for R/W unless MEM SEL'has been set. 1In addition,
some bits, or groups of bits, are restrained because their operations
cannot be performed in parallel with others. For example, a read from
memory cannot be performed concurrently with an input from I/0 because
both require use of the Bus. In light of the above discussion it seems
necessary to develop an organized approach to assembling microinstructions
that accounts for their hierarchial structure and at the same time enforces
their various restrictions. The development of such an approach is left

for those who plan to microprogram this machine.

147

17 Microinstruction Routines

In hopes of tying the various parts of the computer together, a
number of microinstruction routines are developed here. Routines that

deal with the following operations will be presented.

Macroinstruction Fetch

Memory Reference Instructions
TRAP "fix it" Routines

I/0 Instructions

Conditional Jump Macroinstruction

Shift/Rotate Instruction
17.1 Approach to the TRAP Condition

Since a large number of routines deal with the Fast Stack, it is
important that the proceedure for handling a TRAP condition is fully
understood. Microinstructions that have the potential of generating
a TRAP will be called critical microinstructions. TRAPs are generated
as a result of an inadequate condition of the Fast Stack. Most routines
can be written so that no time is wasted checking for this condition.
The best approach for microcode development is to write the routines
assumming that the Fast Stack is sufficient, then return to the critical
microinstructions and modify them to test for the TRAP. When a TRAP
occurs, control is passed to a "fix it" routine via a microinstruction
jump. This routine simply modifies the condition of the Fast Stack and

returns to the microinstruction from which the trap was generated.

148

Because of the manner in which traps are generated, it is impos-
sible to implement "fix it" routines in the form of microprogram sub-
routines. This is due largely to the fact that control must be returned
to the microinstruction that generates the TRAP, not the succeeding
one. Another attempt must be made to execute this microinstruction
since its operation is inhibited by the trapping condition. Thus,

a method must be devised for returning from the "fix it' routines.

The register/counter in the 2910 plays an important role here. Both

"fix it'" routines use the address in the register/counter as the address
of the return microinstruction. This implies that all microinstructions

preceding a critical microinstruction must load the register/counter

with the address of this microinstruction. This address must therefore

be supplied via the D inputs of the 2910.

In summary, the return address for the "fix it" routine is loaded
into the register/counter by the microinstruction directly preceding
the critical one. The critical microinstruction then tests for the
TRAP via a conditional jump operation. If the test is positive, a
jump is made to the '"fix it" routine, otherwise the next sequential
microinstruction is performed. Once the Fast Stack condition is
appropriately altered, the "fix it" routine can return to the critical
microinstruction via the address in the register/counter. Examples of

"fix it" routines are given in the section on Memory Reference Instructions.

17.2 General Approach for the Presentation of Microinstruction Routines.

Each of the microinstruction routines that follow are presented

in three secticns.

149

1. Algorithm
2. Word Description

3. Assembly

The Algorithm gives a general idea of the data transfers and operations
to be performed. Many details are left out at this stage. The Word
Description describes, in words, the operations performed by each micro-
instruction in the routine designed to carry out the Algorithm. Finally,
the Assembly sectibn defines the ls and Os for each microinstruction
in the Word Description. Figures 17-1 and 17-2 are used to aid in the
development of these routines.

None of the routines that follow are unique. Each can be written
in a slightly different manner. The intent is primarily to provide
the reader with a reasonable understanding of microcode development in
this machine.

Entry points for various routines have been arbitrarily chosen

as shown below.

Routine CS Location
FETCH1 10008
FETCH2 10028

"Interrupt Service

Routine" 04008
TRAP1 "fix ic" 50008
TRAP2 "fix it" 5002

Summary of Control Bits with Computer Block Diagram

A v cid [l M
Nu}lécénngss T30 [RLOJCIS, (IPOL | TEST, o [\MMEDIATE |OS, , J8us|sE|TE MMj o O/G[Ert EN | ASEL |BSEL Mg [1g o |D1CIRI'R_|o/i[C,, |RS)S5[85, 4 D |MEM|R/W LD"“ R'T ;{__‘i sﬁrf INT|'S, [BRST
ug} (291 (8) ToS| MIS ~ Lzooul RISEL Rl & DATA | A B
9 i |
= o e L LRI
?a, 88 _-—ﬁ“[f“‘—’«\aﬁe——ﬁ\ ’
QOCK [HALTED CONTROL BUs STATUS
CIRCcuIT STORE,
' AL STATUS
TRAPS
CONSOLE 2
DEVICE STACK SHIFT £ RoTATE]
TENDER/ LOGIC
M1S T
F;lf‘fééTER ALU STATUS
.0
1 IO‘OQ
|MacRoweST, PIO% i 0"
7 weiC oof-")" 3 E
T OATA SELECT/ ks 8o cPU
MAIN
[r i LDIR SIGN EXTEND 2 2301s 8usS % MEMORY CHEESY. e
OP CODE | 2ZND BYTE ¥ SE INTERFACE
A -_— ..
- [MACROINSTRUCTION q"gl_J v] A ‘ﬁ._]
REGISTER
o
b B L BUSas BUSo.1s
BuS COMTROL LINES

Figure 17-1

150

2910 Instruction Set

Source QOperand and ALFU Function Matrix

FAIL __ PASS Octal I, , 4
;IEKI 4 . Reg/ | _CCEN=0 & CC=1 | TCER=1 or TC=0| Rer/ B
- M > > t Y | stack able ;
o nemonic ame Cntr ac Y Stack Cntr Enable Sotal TALFU) 1 2 3 m 3 7
0 Jz Jump Zero X] Clear 0 Clear Hold L I5 5 3 function |A.Q A.B 0,Q 0.,B 0,A D,A D,Q B0
1 cJs Cond JSB PL X PC | Hold D | Push Hold FL cFo A+ Q A+B Q B A D+A D+Q D
2 JMAP Jump MAP X D | Hold D | Hold Hold MAP 0 |R plus S
3 CJP Cond Jump PL X PC | Hold D | Hold Hold PL crl A+Q+l A+B+1 Q+1 B+1 A+l D#A+l DHQ+1 D+1
L PUSH PUSH/Cond LD Cntr X PC | PUSH PC | rUSH Notel| PL cz0 Q-a-1 B-A-1 Q-1 B-1 A-1 A-D-1 Q-d-1 ~N-1
5 JSRP Cond JSB R/PL X R | PUSH D | PUSH Hold PL 1 B minus R
6 cJv Cond Jump Vector X PC | Hold D Hold Hold YECT Cn:1 Q-A B-A Q B A A-D Q-D -D
v JRP Cond Jump R/PL X R | Hold D | Hold Hold PL c=o A-Q-1 A-B-1 -Q-1 -B-1 -A=1 D-A-1 D-Q-1 D-1
8 RFCT RPT Loop,Cntr O o F | Hold F_| Hold Dec PL 2 k‘t minus S
= PC | POP PC | FOP Hold PL E
9 RPCT | RDT PL,Cntr O 7o | b | Ho1a D | Hold Dec PL Gt i =8 2 et =h Lol D-q 2
=0, |.PC| Hold PC | Hold Hold PL 3 |ROR S AVQ AVYB Q B A DVA DYQ D
A CRTN Cond RTN X PC | Hold F POP Hold PL
4 IRAND S |AAqQ AAB (1] 0 0 DAA DAQ 1]
B CJPP Cond Jump PL & POP | X PC | Hold D | POP Hold PL = R =
5 |Raps |AAQ ANB Q B A DAA DAQ 0
c LDCT LD Cntr & Continue | X PC | Hgld PC | Hold Load PL
- 6 R EX-OR S| A¥Q AW B Q B A D¥A D¥Q D
D LOOP Test End Loop X F Hold PC | POP Hold FL S pom— e e == e ey =
7 R EX-HOR S| Av Q AvB Q B A Dva DwvQ D
E CONT Continue X PC | Hold PC | Hold Hold PL
F TWE Three Way Branch #0 F | Hold PC| PoP Dec FL % =EX-OR V=O0R A=AND +=Plus - =Minus
= =0 D | poP rc | Pop -
Notel: If CCEN=0 and CC=1, Hold, else Loa Hold =
ALU Registers
TEST Select ASEL or ALU "Carrv In"
2910 T Inouts CISCICJLI;MCI is: — 2901 Register Cix Carry In" to ALU
Test s ——— _ 1 0 Y 0 Fast Stack 0 0/1
Field Selected —_— 2910 0 0on o1l .
POL | T2st for: 5. 8§ D Inputs 0 1 ok CARRY
T, T, T; Ty| Status - 1.0 0o 1 0010 s
e e) o | TRUE (1} Field ©
0 0 | Mext adirese 2011 |Fast Stack
000 01 1 | FALSE (9) 1 0 cc - .
0o 1 IR 2nd Byte — 0109 |TEMF 1
0 0 0 1 | CARRY 1 1 tt i
: 1 0 IR Op Code 29101 |TEMP 2
g & 1 0 §OYEREON IR EA/Op Code ’
. 1 P 01102, Stack Limit Ptr.-
0 0 1 1 | SIGN :
0111/|PL, Code Limit Ptr A and B Register Select
0 1 0 o0 |Z2ERO ALFU Destination/Shift Control el : 6OE Hiia
g 1 8 1 INTERRUPT 1000]|PB, Code Base Ptr.
0011 0 1/0 READY . 1001|PC, Program Counter Reg. A Reg. 3
o 1. B TRAP 1 Control Inputs RAM Function |Q-reg Fumetlon| Y RAM Shifter -Q Shifter 101 0] INDEX1 Hy K] Select | S2l2et
1 0 0 0 TRAP 2 18 17 16 Shift |Load Shift | Load Output RAMO RAM} Qo0 . Q3 101 1| INDEX2 5 A ASZL B3EL
1 0 0 1 N/A] (1] 0 X none none F->Q F X X X X 110 0| DB, Data Base Ptr. 0 1 ASEL BS
1 01 0 . 0 (1] 1 X none X none F X x X X 1101]|4Q, Stack Marker 1 o AIR BSEL
0 ¥ 0 none |(F—+B b 4 none A X X X X 111 0| MSP, Memory Stack Ptr.
1, 0 2 X} 1 1| Ap Bra
i1 1 o B ’ 0 1 1 none |F—+B X none 3 X X X X 1111{DL, Data Limit Ptr.
1 3 9 L1 . 1] 0 down |F/2—+B |down |Q/2->Q F FO IN3 Q0 IN3
d & b 8 2 e [efe-en | X | none ¥ kg | Am3 | we | X 2901 Direct Data Inputs CEU ON the Bus
1 1 1 1| ®m/A 1 1 0 up |2F+B | up 2qQ-rQ JE INO F3 INO Q3 (BUS = 0) BS; BS, | ON the Bus
X
1 1 1 up |2P—+B X none F INO F3 "5 DS, DS, | D Inputs to 2901 0 0 | Nothing (Safe stats)
Mot 0 0 TMMEDIATE 0 1| Y's from 2991
x-dgn't care 0 1 NIS 1 0 | CPU STATUS bits
down=shift right 1 0 | IR 2nd Byte 1 1| 8/
up=shift left - = 3
Figure 17-2 Summary of Various Control Fields. 1 1 | §/a

151

152

17.3 Macroinstruction Fetch Routine

The Macroinstruction Fetch routine has numerous responsibilities.
It must first test for interrupts since they are honored between macro-
instructions only. If an interrupt is pending, the Fetch routine is
aborted and control passed to an interrupt service routine. The Fetch
routine is also responsible for proper adjustment of the PC. For this
reason it has two entry points, one that increments the PC by 1, and
one that increments it by 2.

The first entry point, FETCHl, increments the PC by 1, and the
second entry point, FETCH2, increments it by 2. FETCH1l begins at Control
Store location 1000

and FETCH2 at 1002,. The purpose of each of these

8 8°
routines is to fetch the next macroinstruction from main memory and
jump to the microcode routine determined by the Op Code of that
instruction. For Memory Reference Instructions it will jump instead

to the EA routine determined by the addressing scheme in the second
byte of the IR. Before the macroinstruction is fetched, however, a
test is made to see if an interrupt is pending. If so, control is
passed to an interrupt service routine which is chosen to begin at

CS loeation 04008. Note, the register/counter is always loaded by the
last microinstruction in the fetch routine, i.e. the one that jumps to
the execution code for the fetched instruction. Thus, the register/

counter will hold the address of the first microinstruction in the

next routine in the event that a TRAP is generated.

153

ALGORITHM for FETCH1 (or FETCH2)

YES

Interrupt ?
l NO Interruptggrvice Routine

PC % PG + 1 (or BC + 2)

,IR*‘LEPCJ

Jump 35 the microcode routine determined by the Op Code

(or EA scheme)

WORD DESCRIPT.ON

LOCATION DESCRIPTION

1000g * TEST for INTERRUPT

a) PASS - Jump to Interrupt Service routine at 0400g
via NA field

b) FAIL - Fetch the next sequential microinstructiocn

* Add 1 to the PC, but don't store the result

=

Send the result to the MAR

10014 * Read from Main Memory into the IR

* Add 1 to the PC and store the result into the PC

bl

Fetch the next microinstruction from 1004g via the NA

field

LOCATION

DESCRIPTION

10024

* TEST for an INTERRUPT
a) PASS - Jump to Interrupt Service routine at 04004
via NA field
b) FAIL - Fetch next sequential microinstruction
* Add 2 to the PC but don't store the result

* Send the result to MAR

10034

* Read from Memroy into the IR
* Add 2 to the PC and store the result back in the PC

* Fetch the next sequential microinstruction

10048

* Fetch the next microinstruction from the IR EA/OPCODE
source in the Macroinstruction Logic circuit

* Load the Register/Counter

TEST3-¢ + 0101
POL <0
S;,9 * 00

NA < 04004

Is.g <+ 000101
Cry * 0

0/1 <0

MMy + 00
ASEL < 1001
BUS <+ 0

DS; g * 00

Immediate < 00000001

Ig_g <+ 000

ASSEMBLY
LOCATION MICROINSTRUCTION COMMENTS
10004 2910
I;_o < 0011 cJP

TEST for INTERRUPT

D inputs are 0400g

(Interrupt Service Routine)

ADD, A plus D

"Carry in" =

Normal Mode

PC

1l to D inputs

Result to Y outpucs

Don't store result

Result on Bus

Load MAR

0

155

LOCATION MICROINSTRUCTION COMMENTS
1001g 2910
I3o <« 0010 JMAP
S1,0 + 00 Next Address is 1004g
NA < 10048
ALU

Is_g < 000101
Cry < O

0/1 <0

Mp o * 00
ASEL <« 1001
BUS <+ 0

Dsl,o < 00

Immediate < Q0000001

18":6 + 010

BSEL < 1001

BUS
MEMSEL < 1
R/W <1

LDIR =<+ 1

ADD, A plus D

"Carry in" = 0

Normal Mode

PC

1 to D inputs

Result to PC

Read from Memory into IR

156

LOCATION MICROINSTRUCTION COMMENTS
10028 2910
13_0 « 0011 CJP

TESTB-O « 0101
POL <« O
Sl,O ho 00

NA + 0400g

ALU

15’0 < 000101

Mi,o = 00
ASEL <« 1001
BUS < 0

DSI_,O +~ 00

Immediate -+ 00000010

18—6 +~ 000
BUS
BS]. 0 +« 01

L]

LDMAR =« 1

TEST for INTERRUPT

D inputs are 04008
(Interrupt Service routine)
ADD, A plus D

"Carry in" = 0

Normal Mode

PC

2 to D inputs

Result to Y outputs

Don't store result

Result on Bus

Load MAR

157

LOCATION MICROINSTRUCTION COMMENTS

1003g 2910
I, * 1110 CONTINUE
ALU
IS—O + 000101 ADD, D plus A
CIN *+ 0O "Carry in" = 0
0/1 <0
Mo © 00 Normal Mode
ASEL < 1001 PC
BUS <« 0
DSI,O + 00 2 to D inputs
Immediate + (00000010
Ig_g * 010 Result to PC
BSEL =< 1001
BUS
MEMSEL + 1
R/W <1 Read wvalue from Memory to IR
LDIR + 1

10048 2910
I5.9 ¥ 0010 JMAP
81,0 © 11 IR EA/OPCODE is source of

Next Address

RLD < 1 Load Register/Counter with

this value

158

159

17.4 Microcode for Memory Reference Instructions

As described earlier, this machine can perform up to 16 different
Memory Reference Instructions, each with as many as 32 addressing schemes.
Each of these instructions is carried out via two separate routines; one
to compute the Effective Address, and the other to perform the operation
specified by the Op Code. The EA routine is completely independent from
that of the Op Code. It is determined solely by the addressing scheme
specified in the second byte of the Instruction Register. Once the EA
routine is completed, the EA is passed to the Op Code routine via a
temporary ALU register. Here it is used as a possible source and/or
destination memory address.

The format used for Memory Reference Instructions in the following
material is the 3-byte version presented in Section 6. The first byte
holds the Op Code, the second byte determines the addressing scheme, and
the third byte supplies the relative address. The first 5 bits of the
second byte determine the actual addressing mode and are used to form

the FAR's Address as defined in Section 11.3.

160

o

17.4a Computation of the Effective Address

with respect to the Program Counter.

This routine calculates the Effective Address relative to the Program
Counter. This type of addressing (PC+n) is selected by placing ClO0OXXX
in the second byte of the instruction (the lower 3 bits are irrelevant).

Thus, the CS address of this routine is 30208.

Algorithm

PC +« PC+ 2

TEMPL <« PC + 2] I

Word Description

Location Description

30208 *Add 2 to the PC and store the result back
in the PC
*Send result to the MAR

*Fetch Next Sequential microinstruction

3021 *Read a byte from memory, sign extend this
value to 16 bits and add it to the PC.
Place the result in TEMPI.

*Fetch the next microinstruction from the

IR OP CODE address

Microinstruction Assembly

Location Microinstruction Comments
30208 2910
I «~ 1110 CONTINUE
3-0
ALU
. IS—O + 000101 D plus A
" IO -
CIN < 0 Carry in 0
0/1 + 0
Ml 0 «~ 00 Normal Mode
ASEL < 1001 PC
DS1 g * 00 2 to D inputs
Immediate < 00000010
18—6 +« 010 Result to PC
BSEL < 1001
BUS
BS1 0 +~ 01 Result to Bus
LDMAR + 1 Load MAR
30218 2910
13_0 +« 0010 JMAP
S1 g 10 Next Address =
? IR OP CODE
ALU
IS,O -« 000111 D plus O
" TR
CIE +~ 0 Carry in 0
0/1 < 0
BUS «~ 1 Sign Extended
SE +« 1 bvte from the Bus
BYTE < 1 to D inputs
18—6 <« 010 Result to TEMPL
BSEL +~ 0100
BUS
MEM SEL =+ 1 Read from memory

R/W « 1

161

162

17.4b Computation of the Effective Address with

respect to the Stack Pointer.

Computation of the EA for most addressing modes requires a straight
forward sequence of microinstructions. Computing the EA relative to the
Stack Pointer, however, is not so straight forward. Since no real
Stack Pointer exists, a value for the logical Stack Pointer, SP, must
first be determined. Recall,

SP = MSP + NIS * 2.
The EA is then computed using,

EA =5P - n

i.e.,

EA = MSP + NIS # 2 - n
where n is the relative address in the third byte of the instruction. It
is apparent from the above equation that the EA could turn out to be
larger than the MSP value. This implies that the operand lies in the
Fast Stack rather than Main Memory. This condition poses two problems.

1. Even though the operand is known to lie in the Fast Stack,
the exact Fast Stack location is not easily determined.
2. Also, the Op Code routine to follow expects to receive an

address to the operand in Main Memory.
Perhaps the simplest solution here is to transfer values from the Fast
Stack to the memory stack until the operand actually does lie in Main
Memory. Although this would seem to defeat the purpose of the Fast
Stack, it is probably the most efficient solution in terms of both exe-
cution time and Control Store space. It should be noted that this
condition is an exceptional one. Most operations involving operands at
the top of the stack should be performed with Stack Ops rather than

Memory Reference Instructions.

163

The microcode to implement the above routine is presented below.
The addressing mode (S-n) is specified by placing 10100XXX in the second

byte of the instruction. This results in a CS address of 30508 for

this routine.

Algorithm

TEMP2 <« MSP + NIS*2

PC <« PC+ 2

TEMPL <« TEMP2 - [P(]

TEMP2 <« TEMPL

TEMP2 <« MSP - TEMP2
———3 7 NON-NEGATIVE ?

MSP <. MSP + 2
[usP] <« BOS REGISTER

NIS <+ NIS -1
TEMP2 + TEMP2 - 2

RETURN TO ROUTINE SPECIFIED BY OP CODE
WITH EA IN TEMPI.

Word Description

Location

164

Description

30508

*#Add NIS*2 to the MSP and store result
in TEMP2.

#Fetch next sequential microinstruction

3051

*Add 2 to the PC and store result back in PC
*Send result to the MAR
*Fetch next microinstruction from 4000, via the

8
Next Address field.

4000

*Read a byte from memory, subtract it from TEMP2,
store result in TEMPL.

*Fetch next sequential microinstruction

4001

*Transfer TEMPl to TEMPZ

*Fetch next sequential microinstruction

4002
00 3

*Subtract TEMP2 from MSP, store result back in
TEMP2
*Set ALU status bits

#Fetch next sequential microinstruction

40038

*Test for non-negative result by testing the
TRUE scate of the CARRY
a)} PASS - fetch the next microinstruction
from the IR OP CODE address.
b) FAIL - fetch the next sequential
microinstruction.
#Load the register/counter with the IR OP CODE

address (In case of a TRAP in succeeding routine).

40048

*Add 2 to the MSP, store result back in the MSP
*Send result to MAR

*Fetch the next sequential microinstruction

165

Location Description
40058 *Write the BOS register to memory
*Decrement the NIS counter
*Fetch the next sequential microinstruction
40068 *Subtract 2 from TEMP2, store result back

in TEMPZ
*#Set the ALU status bits
*Fetch the next microinstruction from 4003, via

8
the Next Address field

166

NA = E;OOO8

ALU
IS*O * 0060101
<
CIN 0
0/1 < 0
1\, -
IL,O 00
ASEL ¥ 1001
RIS = 0
DSl,O < 00
Immediate <+ 00000010
I8—6 <« 010
BSEL + 1001
BUS
BSl,O < 01

LDMAR < 1

Assembly
Location Microinstruction Comments
30508 2910
I < 1110 CONTINUE
3-0
ALU
Py
IS—O 000101 D plus A
“~ " : o
CIN 0 Carry in 0
0/1 0
-+
Ml,O 00 Normal Mode
ASEL <« 1110 MSP
BUS * 0 NIS#*2 to D inputs
-
DSl,O 01
IB—6 + 010 Result to TEMP2
BSEL * 0101
30518 2910
13_0 < 0010 JMAP
Sl 0 + 00 Next Address is 4000

D plus A

"Carry in" = 0

Normal Mode

PC

2 to D inputs

Result to PC

Result to MAR

8

167

BSEL < 0101

Location Microinstruction Comments
-’-4()008 2910
I « 1110 CONTINUE
3,0
ALU
I < 001101 A minus D
5,0
CIN < 0 "Carry in" =1
0/l <= 1
M1 0 <« 00 Normal Mode
3
ASEL < 0101 TEMP2
BUS <« 1 Bus to D inputs
18—6 + Q01D Result to TEMPI
BSEL < 0100
BUS
MEM SEL=+ 1 Read a byte from
R/W =+« 1 memory
BYTE =<+ 1
40018 2910
I « 1110 CONTINUE
3-0
ALU
I + 000100 A plus 0O
5,0
CIN < 0 "Carry in" = 0
0/1 < 0
Ml 0 < 00 Normal Mode
ASEL -+ (0100 TEMP1
18-6 + 010 Result to TEMP2

168

Location Microinstruction Comments
40028 2910
I «~ 1110 CONTINUE
3-0
ALU
I + 010001 A minus B
5,0
1" : rn =
CIN - 0 Carry in 1
0/1 ~ 1
M1 0 +~ 00 Normal Mode
bl
ASEL =« 1110 MSP
BSEL <« 0101 TEMP2
18—6 +~ 010 Result to TEMP2
S8 =~ 1 Set Status
40038 2610
13_0 «~ 0011 CJP
TEST3_O <~ 0001 Test for CARRY =1
FOL ~ 0
S1 0 « 10 IR OP CODE to D inputs
RLD =« I Load Register/Counter
40048 2910
1'3 0 <~ 1110 CONTINUE
ALU
IS—O <~ 000101 A plus D
C < 0 "Carry in" = 0
IN
0/1 < 0
Ml 0 + 00 Normal Mode
ASEL <= 1110 MSP
BUS < 0 2 to D inputs
DSl,O < 00
Immediate =+ 00000010
18—6 < 0l0 Result to MSP
BSEL <+ 1110

169

NA * 40038

ALU
A 1
IS,O 001101
-
CIN 0
o/1 * 1
3 -
JI,O 00

ASEL * 0101

Location Microinstruction Comments
40048 BUS
: 1 Ik
(cont'd) BSl,O < 0 Result to MAR
LDMAR « 1
40058 2910
13_0 + 1110 CONTINUE
ALU
< 000011
IS—O 0 B plus 0
1" { SR, L (R
CIN « 0 Carry in" = 0
0/l =<« 0
Ml 0 « 01 B = BOS register
p/T +« 1 Decrement NIS
EN NIS = 1
18—6 < 000 Don't store result
Result to Y outputs
BUS
BSl 0 + 01 Write result to memory
b
MEM SEL - 1
R/W =+ 0
40068 2910
-+
13_0 0010 JMAP
- Ta 4
Sl,O 00 Next Address is 70038

A minus D

"Carry in" = 1

Normal Mode

TEMP2

170

Location Microinstruction Comments
40068 BUS <+ O 2 to D inputs
(cont'd) DSl,O ik

Immediate+ 00000010

18-6 +~ 010 Result to TEMP2
BSEL =<« 0101

S8 +~ 1 Set Status

Once the EA is computed, contrel is passed to the Op Code routine.
The EA is passed to this routine in TEMPl. 7Two separate Memory Reference
Instructions have been chosen for illustration here, a PUSH and a POP.
Each has the potential of generating a different TRAP. Thus, micro-~

instruction routines to handle both TRAPl and TRAP2 are alsc presented.

17.4¢c

The PUSH Macroinstruction

Assumptions:

1. The EA lies in the TEMPl register.

2. The Op Code for this instruction is 11110000. This implies

that the CS address of this routine is 2740_.

Algorithm

8

TOS + TOS + 1
NIS =+ NIS + 1

Gog « [

Word Description

Location Description
27408 *Send TEMPl to the MAR
*Increment TOS and NIS
*#Test for TRAPI]
a) PASS - jump to the TRAP1 "fix it"
routine at location SOOO8 via NA field
b) FAIL - Fetch next sequential micro-
instruction
2?418 #*Read from Memory into the TOS register
*Jump to the FETCHl routine at 10008 via
1 NA field

171

172

Assembly
Location Microinstruction Comments
27408 2910
13_0 < 0011 cJp
TEST3_D* 0l11 Test for TRAPI
POL +~ 0
5 <~ 00 i =
1,0 °© D inputs 50008
NA < 5000
8
ALU
IS—O < 000011 B pius O
CIN « 0 "Carry in" = Q
0/1 < 0
MIMO + 00 Normal Mode
BSEL < 0100 TEMP1
IS~6 +~ 000 Result to Y
Don't store result
BUS
BS1 0 + 01 Result to MAR
1
LDMAR < 1
27418 2910
13 0 +< 0010 JMAP
3
S1 0 < 00 Next Address is 10008
NA § lDOO8
ALU
IS«O < 000111 D plus O
CIN “0 "Carry in" =0
0/1 <0
BUS <1 D inputs from Bus
Ml 0 = 00 Normal Mode
18—6 < 010 Result to TOS
BSEL “ 0000
BUS
MEMSEL * 1 Read from memory

R/W

17.4d The

TRAP] Microinstruction Routine

Algorithm

MSP <« MSP + 2

G « Eog)

NIS =<« NIS -1

Word Description

Location Description

50008

*Add 2 to the MSP, store the result back in

the MSP

*Send the result to the MAR

*Fetch next sequential microinstructien

50018 #Write BOS register to memcry

*Decrement NIS

*Fetch next microinstruction from the address

in the register/counter

173

174

Assembly
Location Microinstruction Comments
50008 2910
I < 1110 CONTINUE
3-0
ALU
“~
15_0 000101 A plus D
— n L
CIN 0 Carry in 0
0/1 «~ 0
MlMO < 00 Normal Mode
ASEL < 1110 MSP
BUS < 0 2 to D inputs
DS b
1,0 00
Immediate =< (00000010
I < 010
8-6 Result to Y

BSEL < 1110

BUS

BSI,O

LDMAR

-

-~

01
1

Result toc MSP

Result to MAR

Assembly

175

R/W <« 0

Location Microinstruction Comments
50018 2901
13_0 <« O0l11 ~JRP
TEST3_0+'ODOO Test will FAIL, Next
Address determined by
POL « 1 R
register/counter

ALU

15’0 +~ 000011 B plus O

CIN < 0 "Carry in” = (

0/1 «~ 0

MlMO + 01 B is the BOS register
D/T <« |1 Decrement NIS

EN NIS <« 1

18 6 <+ 000 Result to Y

: Don't store result

BUS

BS1 0 + 0l Write result to

3
MEM SEL < 1 memory

176

17.4e The POP Macroinstruction

Assumptions:
l. The EA lies in the TEMPIl register

2. The Op Code for this instruction is 11110001. This implies

that the CS location of this routine is 27428.

Algorithm

Ea « o3
TOS < TOS - 1
NIS < NIS - 1

Word Description

Location Description
27428 *Send TEMPl to the MAR

*Set Number Needed field to 1
*Test for TRAP2
a) PASS - jump to TRAP2 "fix it"
routine at 50028 via the Next
Address field
b) FAIL - fetch the next sequential

microinstruction

2743 *Write TOS register to memory
*Decrement NIS and TOS

*#Fetch next microinstruction from FETCH1

routine at 10008 via NA field

177

Assembly
Location Microinstruction Comments
2?428 2910
IB—O <« 0011 CJP
TEST3_O+ 1000 Test for TRAP2
POL <+« 0
S +~ 00 D inputs are 5002
1,0 8
NA “ 50028 (TRAP2 "fdix it"
routine)
ALU
IS-O <+~ 000011 B plus O
" P |
CIN « 0 Carry in 0
0/1 <« 0
M1 0 + Q0 Normal Mode

BSEL <« 0100

NN + 001

Ig_, < 000
BUS
BS, o 01

LDMAR += 1

TEMP1

NUMBER NEEDED =

1

Result to Y outputs
Don't store result

Result to MAR

Assembly

178

RIW <« -0

Location Microinstruction Comments
27438 2910
0 p

13_0 < 010 JMAP

S1 0 +~ 00 Next Address is 10008
NA « 1000

8

ALU

15_0 <+ 000011 B plus 0O

" i -

CIN «~ 0 Carry in 0]

0/1 «~ 0

Ml 0 <~ 00 Normal Mode

BSEL <« (0000 TOS

/T =+« 1 Decrement TOS and NIS
EN TOS < 1

EN NIS <=1

I <~ 000 Result to Y

8-6 ¢

Don't store result

BUS

BSl 0 « 0l Write result to

’ '
MEM SEL < 1 HEReLy

179

17.4f TRAP2 "fix it" Routine

Algorithm

[s05] « [Ese]

MSP <« MSP - 2
NIS <+ NIS + 1

Word Description

Location Description
50028 *#Send MSP to MAR

*Subtract 2 from the MSP and store the result
back in the MSP

*#Fetch the next sequential microinstruction

50038 *Read a value from Memory into the BOS register
*Tncrement NIS
#Fetch the next microinstruction from the address

in the register/counter

180

Assembly

Location Microinstruction Comments

50028 2910
I3u0 <~ 1110 CONTINUE

ALU

IS—O < 001101 A minus D
CI,\I ~ 0 "Carry in" =1
0/1 < 1
Ml 0 < 00 Normal Mode

ASEL <+ 1110

BUS < 0

DSl,O < 00

Immediate + 00000010
Ty 0L

BSEL < 1110

BUS

BS) o * 01

LDMAR < 1

MSP

2 to D inputs

Result to MSP
MSP to Y outputs

MSP to MAR

181

Assembly
Location Microinstruction Comments
50038 2910
13_0 ~ 0111 JRP
TEST <« 0000 TEST will FAIL
POL =] Next Address from
register/counter
ALU
IS—O <« 000111 D plus O
CIN + 0 "Carry in" = 0
0/1 +~ 0
BUS «~ 1 D inputs are from BUS
18-6 +~ Q010 Result to BOS
Ml,O <~ 01
- -
D/U 4] Increment NIS
EN NIS <~ 1
BUS

MEM SEL =+ 1

R/W

-+

!

Read from memory

182

17.5 Microcode for I/0 instructions

17.5a The OUTPUT Macroinstruction

The following macroinstruction routine should be used to send
data to an Output Device.
1. Push the Device Code onto the Stack

—=2. Check to see if the Qutput Device is busy.

(Yes. 3. Busy ?
l-No

4. Push the data value onto the Stack

5. Send the data to the Qutput Device
The fifth macroinstruction above is called the OUTPUT instruction. 1In
this instruction, the data at the top of the Stack is sent to the device
whose Device Code is one deep in the Stack. The data is then deleted
from the Stack leaving the Device Code at the top of the Stack. The Op

Code for this instruction is chosen to be 00001000.

Algorithm
OUTPUT DEVICE <+ [fos - I ; Send Device Code
OUTPUT DEVICE < [T0J) ; Send Data

TOS *+ TOS -1
NIS < NIS -1

Word Description

Location Description
20208 *Place TOS - 1 register on the BUS as a Device
Code
*Number Needed in the Fast Stack is 2
*TEST for TRAP2
a) PASS - Jump to the TRAP2 "fix it" routine
via the NA field
b) FAIL - fetch the next sequential micro-
instruction
20218 *Place the TOS register on the BUS as data

*Decrement the TOS and NIS counters

*Fetch the next microinstruction from 1000

8
via the NA field (FETCHl routine)

183

184

Assembly
Location Microinstruction Comments
20208 2910
I3 0 + (011 CJP
TEST <« 1000 TEST for TRAP2
POL ~ 0
Sl,O <« 00 D inputs = 50008
NA + 50028 {(TRAP2 "fix it"
routine)
ALU
IS-O < 000011 B plus O
CIN <+« 0 "Carry in" = 0
0/1 ~ 0
Ml 0 <~ 00 Normal Mode
3
BSEL < - 0001 TOS - 1
NNZ—O +~ 001 Number Needed = 1
IB-6 <+ 000 Result to Y outputs
Don't store result
BUS
BS1 O'*' 01 Result to I/0
I/O,SEL % 1 das a Device Code

I/0 STAT/DATA <« 0

185

Assembly
Location Microinstruction Comments
20218 2910
* JMAP
13_0 0010 1A
Sl,O + 00 Next address is 10008

I < 000011
C < 0
o/l <+ 0

M .00
BSEL <+ - 0000
p/0 +« -1

EN TOS <« 1
EN NIS <+ 1

I, . < 000

BUS
o
BSI,O 01

I/0 SEL. < 1
I/0 STAT/DATA *+ - 0

(FETCHl routine)

B plus O

"Carry in" = 0

Normal Mode
TOS register
Decrement TOS

and NIS

Result to Y outputs,
Don't store result

Result to 1/0
as data

186

17.5b The INPUT Macroinstruction

The following sequence of macroinstructions are required to read
from an Input Device.
1. Push the Device Code onto the Stack.

r—> 2. Check to see if the Input Device is Busy.

Yes 3. Busy ?
No

4. Read the data and Push it onto the Stack.
The fourth macroinstruction above is called the INPUT instruction. This
instruction always assumes the Device Code to be at the top of the Stack.
The value it reads from the Input device is PUSHed onto the top of the
Stack leaving the Device Code one deep in the Stack. The Op Code for

this instruction has been arbitrarily assigned a value of 00001001.

Algorithm

TOS < TOS + 1

NIS + NIS + 1

INPUT DEVICE <+ [T0S - 1 ; Send Device Code
(ros] + INPUT DEVICE ; Receive Data

Word Description

187

Location Description
20228 *Place TOS register on the Bus as a Device Code
#Number Needed in Fast Stack =1
*Test for TRAP2
a) PASS - Jump to 50028 via Next Address field
b) FAIL - Fetch next sequential microinstruction
20238 *Read data from Input device into TEMPIL
*Fetch next microinstruction from 41008 via the
Next Address field
*Load the register/counter in case of TRAP on
next microinstruction
41008 #*Transfer TEMPl to the TOS + 1 register
*Increment TOS and NIS
#Test for NOT TRAPIL
a) PASS - jump to lOOO8 via Next Address field
(FETCHL routine)
b) FAIL - fetch next sequential microinstruction
41018 #Jump to 50008 via the Next Address field (TRAPL

"fix it" routine)

188

Assembly
Location Microinstruction Comments
20228 2910

13_0 « 00l1 CJP

TEST3_O+ 1000 Test for TRAPZ

POL %= 0

SI,O <« 00 50028 to D inputs
NA T 50028 (TRAPZ "fix it" routine)
ALU

15_0 © < 000100 A plus 0

CIN « 0 "Carry in" = 0

0/1 «0

Ml 0 +« 00 Normal Mode

ASEL <~ 0000 TOS

NNE-O <« 001 Number Needed = 1
18-6 <~ Q00 Result to Y

Don't store result

BUS

BSl 5 - 01 Result to I/0
I/O’SEL+ 1 device as a

1/0 STAT/DATA

-~

0

ngice Code

189

I/0 STAT/DATA + O

Location Microinstruction Comments
20238 2910
13_0 + 0010 JMAP
S * 00 Next Address is
149 4100
NA + 41008 8
RLD < 1 Load register/counter
ALU
<~
13‘0 000111 D plus O
P " TR | B
CIN 0 Carry in 0
I/0 b 0
BUS * 1 D inputs from Bus
18-6 - 010 Result to TEMPL
-
Ml,O 00
BSEL = 0100
BUS
I/0 SEL + 1 Data from Input

device onto Bus

190

Location Microinstruction Comments
&1008 2910
13_0 <+ 0011 CJP
TEST3_0 <+ 0111 Test for NOT TRAP1
POL < 1
Sl,O +~ 00 10008 to D inmputs
NA + lOOO8 (FETCHL routine)
ALU
IS__o “ 000100 A plus 0
] Ty |
CIN +~ 0 Carry in 0
0/1 < 0
M “ 00 Normal Mode
1,0
ASEL < 0100 TEMP1
18~6 “~ 010 Result to TOS + 1

BSEL « 00ll (i.e. TOS - 3)

T/D ~ 0 Increment NIS
EN NIS <« and TOS
EN TOS < 1

—

41018 2910
13_0 %= 0010 JMAP
S <~ 00 Next Address is
Pra 5000
NA < 50008 8

(TRAP1 "fix it" routine)

191

17.6 The Conditional Jump Macroinstruction

The following microinstruction is designed to perform a "Jump on

Zero Result" Macroinstruction. The format for this macreoinstruction is,

OP CODE

where n is a relative value in the second byte of the IR, n can be either
positive or negative. If it's negative, it must be represented in 2's

complement form. The Op Code for this instruction has been arbitrarily

chosen as 00000100.

Algorithm

Test the ZERQ status bit

PASS - PC <« PC + n
FAITL - PC <« PC+ O

Word Description

Location Description
20108 *Test the ZERO status bit

#Sign Extend the second byte of the IR and

add it to the PC; if the test fails add zero

to the PC instead

*Fetch the next microinstruction from 10028 via

the Next Address field (FETCH 2 routine)

192

Assembly
Location Microinstruction Comments
20108 2910
13_0 + 0010 JMAP
Sl 0 & 00 Next Address is 10028
NA “. 10028 (FETCH2 routine)
TESTB—O “« 0100 Test ZERO status bit
POL « 0
ALU
IS—O <« 000101 D plus A
" I, |
CIN <« 0 Carry in" =0
0/1 < 0
Ml 0 “ 00 Normal Mode

ASEL +~ 1001

BUS @ 0
DSl,O <~ 10
SE < 1
TE « 1
18—6 < 010

BSEL < 1001

PC

Second byte of IR to
D inputs, sign extended

Enable Test to force
zeros at D inputs

Result to PC

193

17.7 The Shift/Rotate Macroinstruction

The sequence of microinstructions developed below illustrate the
procedure required to perform a left shift operation on the TOS register

a total on n times. The format for this macroinstruction is as follows,

OF CODE ‘ n J

where n is a positive binary number in the second byte which specifies
the number of shifts to be performed. The Op Code for this macroinstruc-

tion has been arbitrarily chosen as 00000010.

Algorithm
Register/Counter © . n
Decrement Register/Counter

i Shift TOS value left

Register/Counter = 0 ?

Js

——-—Decrement Register/Counter

v

Fetch Next Macroinstruction

Word Descriptiocn

Location Description
20048 *Number Needed in Fast Stack = 1

*Test for NOT TRAP2Z
a) PASS - Jump to 60008 via the Next
Address field
b) FAIL - Fetch the next sequential micro-

instruction

2005 *Jump to 50028 via Next Address field
(TRAP2 "fix it" routine)

Location

194

Description

60008

*Load register/counter from the second
byte of the IR.

#Fetch the next sequential microinstruction

60018

*Decrement the register/counter

*Fetch the next sequential micreinstruction

6002

#Shift the TOS register to the left
*TEST for zero value of register/counter
a) PASS - Fetch next sequential microinstructien
b) FAIL - Repeat this microinstruction via Next
Address field

*Decrement the register/counter

65003

*#Fetch the next microinstruction from 10028 via

the Next Address field (FETCH2 routine)

195

Assembly
Location Microinstruction Comments
20048 2910
13_0 < 0011 CJPp
TEST3*0+ 1000 Test for NOT TRAP2
POL “ i
Sl,G “ 00 60008 to D inputs
NA + 6000
8
ALU
NN2_0 + 001 Number Needed = 1
20058 2910
I -0 “ 0010 JMAP
Sl 0 + 00 Next Address is 50028
]
NA - 50028 (TRAP2 "fix it" routine)
60008 2910
I3_0 + 1110 COTNINUE
Sl 0 S)] Load register/counter
2 from second byte
RLD el 1 of IR
60018 2910
Loy . + 1001 RPCT, (decrement
«. 00 register/counter)
1,0
NA < 60028 Next Address is always
60028

196

Location Microinstruction Comments
60028 2910
13_0 < 1001 RPCT
SI,O «- 00 60028 to D inputs
NA + 60028
ALU
IS-O + 000011 B plus O
CIN « 0 "Carry in" = 0
0/1 + 0
Ml 0 < 00 Normal Mode
BSEL < 0000 TOS register
8-6 « 110 Shift result left,
R M 0 store it in TOS
D «. 0 register
60038 2910
13—0 + 0010 JMAP ‘
SI 0 <~ 00 Next Address is 1002
> 8
NA <~ 1002 (FETCH2 routine)

197

REFERENCES

The HP3000 Systems Reference Manual.

Daniel P. Siewiorek, C. G. Bell, and Allen Newell, Computer
Structures: Principles and Examples, McGraw-Hill Book Company
Inec., 1982.

The Complete Motorola Microcomputer Data Library, 1978.

The TTL Data Book for Design Engineers, Second Edition, Texas
Instruments Inc., 1976.

Hatachi IC Memories, Semiconductor Data Book, 1980.

Ivon Catt, David Walton, and Malcolm Davidson, Digital Hardware
Design, The Macmillan Press Ltd., London and Basingstoke, 1979.

198

APPENDIX &

READ and WRITE Cycle Timing for Main Memory

Recall, both read and write operations are carried out by two micro-
instructions, one to load the MAR, and the other for data transfer. The
primary purpose of this appendix is to prove that these operations can
be performed in the allotted time. To this end, a worst case analysis is
developed for the following 3 operations.

1. Send an address to the MAR

2. Read data from memory

3. Write data to memory
Associated with each is a worst case microinstruction whose control and
data signals encounter the longest path of delay possible to carry out
the operation. This path has been carefully sought out for each operation
and is presented in the following material.

Timing specifications for the various circuit components are provided
in the references. Logic delays encountered by the 7400 series of chips
have been taken from Eﬁ] . Timing specifications for the 2901A can be
found in [3] , and timing diagrams for the 6116 in CB]. Delays associated
with component interconnections and the Bus have been excluded from this
analysis. These delays depend a great deal on the physical lay-out of the
system as well as the various impedance matching techniques employed. A
detailed presentation of this material is beyond the scope of this thesis.

However, an excellent discussion of the same can be found in Dﬂ_

199

A.l Send an address to the MAR

The longest path encountered when sending a value to the MAR occurs
when this value is the result of an arthmetic operation in the ALU
involving at least one of the sixteen 2901 registers. Initially, an
operand register must be selected by signals propagated through the Stack
Tender/Register Select logic. This is followed by the arithmetic
operation, whose speed is enhanced somewhat by the 745182 Carry Look-
ahead Generator. Once the address is available at the Y outputs it is
transferred to the MAR. Recall, the MAR works as a latch. Once loaded,
the MAR supplies the AlO - AO address inputs to the 6116s. Shortly after
this the Chip Select signal for the selected pair of 6l16s comes true.
Data access time for the 61ll6s actually begins once the Chip Select comes

true. The following analysis shows that in the worst case the Chip Select

will be valid 20l.5ns (plus the delays associated with the BUS) into the

microinstruction.
Maximum Figure
Path Delay (ns) Reference
1. FROM: Rising edge of f§,
TO: ASEL & BSEL outputs of the PLR
PLR - 748374 18 7-18
2. FROM: ASEL and/or BSEL outputs of the
PLR
TO: 83, 52, and M controls on 745181
ALU chip in the Stack Tender circuit
NOR - 74502 5.5

INVERTER - 74504 5 7-18

Maximum
Path Delay (ns)
3. TFROM: 83, S2, & M inputs on the
745181
TO: F outputs of 745181 22

(i.e. the Mode Multiplexer inputs)

4, TFROM: Mode Multiplexer inputs
TO: Mode Multiplexer outputs
(i.e. A and/or B register select inputs)
2:1 MUX - 748157 (7.5mns)
4:1 MUX - 748153 (9ns) 9

5. TFROM: A and/or B register select inputs
on 2901
TO: G, P outputs of 2901 59
(i.e. G, P inputs to 745182)

6. FROM: é; P inputs to 745182 7
TO: Cn+x’ Cn+y’ & cn+z outputs
of 745182, (di.e. the Cn inputs

to the 2901's)

7. TFROM: C, imputs to 2901's 27
TO: Y outputs of 2901l's, (i.e. MAR

inputs via the BUS)

8. FROM: MAR inputs
TO: MAR outputs, (i.e. decoder inputs)
MAR - 7458373 13

9. TFROM: Decoder inputs
TO: Decoder outputs, (i.e. CS5 on

appropriate 6116 pair) 36

Total delay to CS on selected pair of 61ll6s 201.5ns

(access time begins)

200

Figure

Reference

7-18

7-6

7-6

7-6

9-2

201

A.2 Read Data from Memory

To complete a read operatiomn, the second microinstruction transfers
data from memory to the ALU during periods 2 and 3. From the analysis
in the previous section it i1s apparent that the address and chip select
signals to the 6116s come true long befoye this microinstruction begins
(~= 100ns). The Output Enable, OE, control on these chips is a function
of the R/W line. Not knowing the state of the R/W line during the first
microinstruction we will assume it to have been low so that OE is not
activated until this microinstruction. Proper part selection (Schottky)
will ensure that OE goes low a maximum of 23ns into this microinstruction.
Thus, the memory data is available 123ns into the cycle (100ns later).

Due to the delays associated with the A, B, and C transceivers, the data
need not be available until approximately 33ns into the second period
(133ns into the cycle). Thus, the data from RAM is available slightly
ahead of time. Therefore, the transceivers play the most important role in
determination of the longest path for placing read data on the Bus.

The worst case microinstruction for a read operation occurs when the
read data serves as an ALU operand for an arithmetic function whose result
is first shifted and then stored into the selected B register. The follow-
ing analysis shows that in the worst case this operation takes 194.5ns from
the beginning of the second period. This leaves only 5.5ns for Bus delays,

etc.

Path

1. FROM:

gHOE

The rising edge of ﬁl

—~

memory

INVERTER - 74504

2
2

2. FROM:
Tz

INPUT NOR - 74802
INPUT NAND - 74500

G enable on transceivers

Transceiver output onto BUS

(i.e. the Multiplexer inputs in the

Data Select/Sign Extend circuit)

TRANSCEIVERS - 74LS245

3. TFROM:
TO:

4, FROM:
TO:

5. TFROM:
TO:

6. FROM:
TO:

High byte multiplexer input
High byte multiplexer output

:1 MUX - 748153

msb output of high byte Multiplexer

Input of low byte multiplexer for sign

extension

INPUT AND - 74511

Low Byte Multiplexer input
Low Byte Multiplexer output,
(i.e. D inputs to 2901)

:1 MUX - 748157

D inputs on 2901

—

G, T outputs on 2901

(i.e. G, P inputs to 745182)

G enable on transceiver in main

Maximum

Delay (ns)

5.5

40

LD

7.5

31

202

Figure

Reference

9-2

9-2

7-22

7=22

7-22

7-6

Path

I

10.

FROM: G, P inputs on 745182

TO: outputs on

Crx’ cn+y’ dea
745187, (di.e. Cn inputs on 2901s}

FROM: Cn inputs on 2901

TO: RAM0 or RAM3 shift outputs,

(i.e. inputs to the shift multiplexers)

FROM: Inputs to shift multiplexers
TO: Outputs of shift multiplexers, (i.e.

RAM or RAM

0 3 shift inputs)

8:1 MUX - 748251

FROM: RAMO or RAM3 inputs

TO: Result loaded in A or B register

(taken from RAMO 3 set up time)

TOTAL DELAY

Maximum

Delay (us)

45

12

20

194.5

203

Figure

Reference

7-6

-6

7-6

7-6

204

A.3 Write Data to Memory

The completion of the write operation by the second microinstruc-
tion involves the following control sequence for the 6116s.

1. The OE input is pulled high shortly after the
beginning of the first period to place the 6116

data lines in the high impedance state.

2. The WE line is pulled low at
the beginning of the second period to enable
the write operation. Data is also supplied to
the 6116 inputs at this time via the A, B, and

C transceiver groups.

3. The WE signal is returned high at the end of
the third period to complete the write operation.
The transceivers are also disabled at this time.
OE will probably remain high (unless the next
microinstruction sets R/W to 1, which is possible

but unlikely.

Timing specifications for the 6116 require the OE signal to remain
high for at least 10ns after WE returns high. From Figure 9-2, the WE
will return high a maximum of 5ns after ﬁl goes low (assuming Schottky
parts are used). The OE signal experiences delays through the Pipeline
Register, over the Bus, and through an additional level of logic which will
most likely add up to at least 13ns. If this is not the case, it does not
appear to be a big restriction to require that the following microinstruc-
tion maintain the R/W line low. It is unacceptable to have a read data
transfer follow directly after a microinstruction performing a write data
transfer.

The 6116 also requires the data to remain valid at least 1Qns after WE
is returned high. Due to propagation delays encountered by the control
signals in the CPU, the data will remain valid on the Bus for at least

this long. In addition, the A, B, and C transceivers remain enabled for

205

approximately two gate delays after WE is returned high. This, coupled
with the "turn off" time for these devices, will maintain valid data at
the 6116 inputs for the required length of time.

Now that verification of the 6116 operation has been established, it
remains to be shown that the data can be supplied to the 6116 inputs in
time to complete the write operation. The worst case write microinstruc-
tion occurs when the write data is a result of an arithmetic operation
performed on a selected A and/or B register. The following analysis
verifies that this operation is easily completed within the allotted
time. In fact, the write is actually complete approximately 67.5us before

the end of the cycle.

Maximum Figure
Path Delay (ns) Reference
l. FROM: Rising edge of gl
TO: ASEL and/cr BSEL outputs of PLR
PLR - 748374 18 7-18
2. TFROM: ASEL and/or BSEL outputs of PLR
TO: 83, 52, and M controls on 745181
ALU chip in the Stack Tender circuit
NOR - 74502 5.5 7-18
INVERTER - 74504 5
3. TFROM: 53, S2, and M inputs on the 745181
TO: F outputs of 745181, (i.e. Mode
Multiplexer inputs) 22 7-18

4. FROM: Mode Multiplexer inputs
TO: Mode Multiplexer outputs, {i.e. A and/or

B register select inputs to 2901's)

2:1 MUX - 748157 (7.5ns)
4:1 MUX - 748153 (9ns) 9 7-18

206

Maximum Figure
Path Delay (ns) Reference

5. FROM: A and/or B register select
inputs on 290ls
TO: G, P outputs of 290ls, (i.e. G, P 59 7-6
inputs to 745182)
6. FROM: G, P inputs to 74S182
T0: C , C s C outputs of 745182,

n+x nt+y n+z
{(i.e. Cn inputs to 290ls) 7 7-6

7. FORM: Cn inputs on 2901s

TO: Y outputs of 2901s,
(i.e. transceiver inputs in main 27 7-6

memory via the Bus)

8. FROM: Transceiver inputs
TO: Transceiver outputs, (i.e. inputs

to 6116s)

[§%]

TRANSCEIVERS - 74LS245 40 9-

9. FROM: Inputs to 6llés
TO: Stored data in 6llé6s

tDw on 6116 (minimum) 40 9-2

TOTAL DELAY 232.5ns

207

APPENDIX B

Console Operation with the CS and Main Memory

The Console Device communicates with the rest of the computer via
the Console Interface circuit presented in section 14.2. This interface
is controlled by microprocessor software through two 8-bit ports, Port A
(the control port), and Port B (the data port). The purpose of this
appendix is to provide word descriptions of the microprocessor routines
required to carry out desired Console operations. To this end, the
following routines are described.

1. Initialization (at power up)

2. Halt the CPU

3. Single Step

4, Activate the Comsole Device

5. Load the CSAR

6. Read a value from the CS

7. Write a value to the CS

8. Load the PLR

9. Load the MAR

10. Read a value from Main Memory

11. Write a value to Main Memory.
Note, the following descriptions are independent of the type of micro-

processor used.

B.l TInitialization (at power up)

Operation

l.

Set up Port A as an
Qutput Port and send

0 to it.

Set up CA2 and CB2 in
the programmed control

mode.

Initialize Port B

as desired.

Comments

Make sure no operation is

enabled by the decoders.

208

Ogeration

L.

Set up Port B as OQut-

put Port.

Send 0108

Send 0608

Toggle CB2

Send 0008

B.2 Halt the CPU

to Port B

to Port A

to Port A

Comments

Prepar® to set the HALTRQ
bit in CCR

Activate load enable on CCR
Activate the HALTRQ bit

Put interface in the idle

state

209

Assumgtion:

CCR = Q000

Operation

1.

2,

3.

Send 010

Toggle CB2

Send 000

8

8

B.3 Single Step

to Port A

to Port A

210

Comments

Prepare to activate SS

flip-flop

Activate SS flip-flop

Put interface in idle state

211

B.4 Activate CONSOLEON

Assumption: CCR = 0000
Operation
1. Set up Port B as an
Qutput Port
2. Send 0148 to Port B
3. Send 0608 to Port A
4. Toggle CB2

Comments

Prepare to set CONSOLEON bit

in CCR (also maintains the

HALTRQ bit at 0)

Activate load enable on CCR

Load CCR, set the CONSOLEON
bit (& maintain HALRQ at 0)

B.5 Load the CSAR

212

OEeration

1.

Set up Port B as an Output

Port.

Send the low byte of the

desired address to Port B

Send 0038 to Port A

Toggle CB2
Send the high byte of
the desired address to

Port B

Send 0048 to Port A

Toggle CB2

Send 0008 to Port A

Comments

Prepare to load the low byte
of the CSAR

Activate load enable on the

low byte CSAR

Load the low byte CSAR

Prepare to load the high byte

CSAR

Activate load enable on the

high byte CSAR

Load the high byte CSAR

Place the interface in the

idle state

213

B.6 Read a 16-bit value from the CS

Assumptions:

CSAR contains desired address

CCR = 0100

Operation

1. Set up Port B as an
Qutput Port

ro
.

Send 0158 to Port B

(000011012)
3. Send 0608 to Port A

4. Toggle CBZ

5. Send 0178 to Port B

(000011112)

6. Toggle (B2

7. Send 0068 to Port A

8. Toggle CB2
9. Send 0158 to Port B
(00001101)

10. Send 0608 to Port A

Comments

Prepare to set the CSR/W

bit to 1
Activate load enable on CCR

Load CCR, set the CSR/W bit

indicating a Read operation
Prepare to set the CSRWEN bit
Set the CSRWEN bit to enable
data from CS onto the Bus
Activate load enable on CIR

The CIR is loaded with the 1l6-

bit data wvalue from the CS

Prepare to clear the CSRWEN
bit in the CCR

Activate Load enable on CCR

OBeration

11.

12,

13.

14.

15.

16.

L7.

18.

19.

Toggle CB2

Make Port B an Input

Port

Send 0408 to Port A

Input the value from the
low byte of the CIR to
Port B

Transfer value at Port B
to microprocessor memory

for storage

Send 0508 to Port A
Input the value from the
low byte of the CIR to
Port B

Transfer the value at
Port B to microprocessor

memory for storage

Send OOO8 to Port A

214

Comments

Clear CSRWEN bit in CCR,
this takes the CS data off
the Bus

Enable the low byte output
of the CIR

Enable high byte output of CIR

Place interface in the idle

state

Assumptions:

215

B.7 Write a 16-bit value to the CS

CCR = 0100
CSAR has desired address

OEeration

1.

10.

Set up Port B as an

Qutput Port

Send low byte of data
to Port B

Send 0018 to Port A

Toggle CB2

Send high byte of data
to Port B
Send 0028 to Port A

Toggle CB2

Send 016, to Port B

(000011102)

Send 0658 to Port A

Toggle CB2

Comments

Prepare to load the low byte
of the COR

Activate load enable on low

byte COR

Load low byte COR with data

from Port B

Prepare to load the high byte
of the COR

Activate load enable on high

byte COR

Load high byte COR with data

from Port B

Prepare to set CSRWEN bit in
CCR for the transfer of data for

a write operation

Activate load enable on CCR, and

place contents of COR on the Bus

Load CCR, set CSRWEN bit for a

write data transfer

Operation

11. Send 0148 to Port B

(00001100)

12. Toggle CB2

13. Send 0008 to Port A

216

Comments

Prepare to clear CSRWEN to

complete the write operation

Clear the CSRWEN bit in the

CCR (write operation complete)

Place interface in idle state

217

B.8 Toad the PLR

Assumptions:

CCR = 0100
CSAR holds desired address
Operation Couments

1. Set up Port B as an
Qutput Port

2. Send 015, to.Port B Prepare to set the CSR/W bit
{(00001101) to 1 to indicate a read from

the CS

3. Send 0608 to Port A Activate load enable on the
CCR

4, Toggle CB2 Load the CCR, set CSR/W bit
to 1

5. Set CA2 low CA2 functions as gl(PLR) in

the following operation

6. Send 030y to Port A This allows ﬂl(PLR) to be applied
from CA2
7. Toggle CA2 Load the PLR with the wvalue

read from the CS

8. Send OOO8 to Port A Put interface in idle state

218

B.9 Send a value to the MAR

Assumptions:

CCR = 0100

Operation

1. Make Port B an Output

Port

2. Send the low byte of the

desired address to Port B

3. Send 00l to Port A

4. Toggle CB2

5. Send the high byte of the

desired address to Port B

6. Send 002 to Port A

7. Toggle CB2

8., Send XXXXXX1l1 to Port B

9. Make Sure CA2 is low

10. Send 0258 to Port A

Comments

Prepare to load the low byte
of the COR

Activate load enable on the

low byte COR
Load the low byte COR

Prepare to load the high byte
of the COR

Activate load enable on the

high byte: COR
Load the high byte COR

Prepare to apply the memory
Bus controls LDMAR &«— 1
(MEM SEL <— 1)

CA2 will act as }51 in this

operation

Place COR on the Bus, and
apply memory controls to the

Bus

Operation

11.

12.

Toggle CA2

Send 000 to Port A

218

Comments

This will load the MAR

Put interface in the idle

state

Assumptions:

220

B.10 Read from Main Memory

CCR = 0100

MAR holds desired address

Operation

L.

ro

Set up B as an Qutput

Port

Send XXXX0100 to Port B

Make sure CA2 is low

Send 0268 to Port A

Set CA2 to the high state

Toggle CB2

Return CAZ2 to the low

state

Send 000 to Port A

Make Port B an Input Port

Comments

Prepare to apply memory Bus

controls
MEM SEL <« O
R/W « 1
BYTE « O

(LDMAR <+ Q)

CA2 functions as ﬁl in this

operation
Apply Memory Controls, and
Activate the load enable on the

CIR

This will place the data from

Memory on the Bus
Load the CIR from the Bus

Takes data off the Bus

Safe State

Operation

10.

11.

12.

13.

14,

15.

l6.

Send 0408 to Port A

Read a value from the low

byte CIR to Port B

Transfer the data in Port
B to the microprocessor

memory

Send 0508 to Port A

Read a value from the

high byte CIR to Port B
Transfer the data from
Port B to the microprocessor

Memnory

Send 000 to Port A

221

Comments

Enable the low byte CIR
output to be transferred to

Port B

Enable the high byte CIR output

to be transferred to Port B

Put interface in the idle state

222

B.1l1 Write a value to Main Msmory

Operation Comments

1. Set up Port B as

an Output Port

2. Send the low byte of the Prepare to lecad the low byte
write data to Port B COR
3. Send 0018 to Port A Activate the load enable on

the low byte COR

4. Toggle CB2 Load the low byte COR with the

low byte write data

5. Send the high byte of Prepare to load the high byte
the write data to Port B COR
6. Send 0028 to Port A Activate load enable on the

high byte COR

7. Toggle CB2 Load the high byte COR with
the high byte write data

8. Send 0008 to Port B Prepare to apply memory Bus
Controls
MEM SEL <« O
R/W +« 0
BYTE <~ O

(LDMAR <« Q)
9. Make sure CAZ2 is low CAZ2 acts as ﬁl in this operation
10. Send 0258 to Port A Enable the COR outputs onto the

Bus, and apply the Memory Control

signals

Operation

11.

12-

Toggle CAl

Send 0002 to Port A

223

Comments

Write the data into Memory

Put interface in the idle

state

THE DESIGN PROPOSAL OF A 16-BIT
MICROPROGRAMMED STACK MACHINE

by

DON RHEA HUSH

B. S., Kansas State University, 1980

AN ABSTRACT OF A MASTER'S THESIS

dubmitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

ABSTRACT

This paper presents the complete design of a 16-bit computer system.
All parts of the computer are designed with general purpose hardware
which can be readily obtained. Since the design requires no special
hardware, the computer can be assembled and tested by most anyone with
a basic understanding of computer architecture and digital design. Once
built, it can provide an excellent educational tool in such areas as
microprogramming, machine instructions sets, and computer design.

The Control Unit for this machine is microprogrammed. It features
a writable Control Store with 4K locations, each 88 bits wide. The
heart of the Control Unit is the 2910, a microprogram sequencer from
the 2900 family of microcomputer logic. The microinstruction cycle
time for this computer is 300mns.

The ALU is- built around the 2900, a 4-bit slice with 16 general
purpose registers and a multifunction ALU. Four of these registers
function as a Fast Stack which is like a cache memory for the top 4
entries in the Stack. This operation can be disabled allowing the
computer to function as a register machine.

Main Memory contains 64K bytes (32K words) of storage. Memory is
accessed via a 16 bit Bus which carries both address and data. Data
can be accessed in both word (16 bit) and byte modes.

I/0 is implemented as Direct or Programmed I/0. All I/0 operations
are non-memory mapped and are carried out under CPU control. I/0 devices
are capable of interrupting the CPU from one of sixteen interrupt levels.
Interrupts are serviced on a priority basis determined by a hardware

Daisy Chain.

The Console Device has ultimate control of the computer. It can
halt and single step the CPU at the microinstruction level. It can also
communicate directly with the Control Store and Main Memory.

While this computer contains few, if any, special features, it
does have all the parts required for a complete system. This, coupled
with its simplicity in design, gives the system strong potential as

an educational tool.

