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Abstract 

 Soil C sequestration in agricultural ecosystems is an immediate and significant 

option to mitigate the increase in the atmospheric CO2 concentration. The objectives of 

this study were to determine 1) the influence of crop and soil management practices 

applicable to Kansas (i.e., tillage, N fertilization, and crop rotations) on soil C and N, C 

sequestration rates, soil aggregation and aggregate-associated C and N; and 2) the 

influence of long-term tillage practices on SOC and total N, soil aggregation and 

aggregate-associated C and N in three soil types: an Oxisol (Brazil), a Vertisol 

(Argentina), and a Mollisol (Kansas, USA). The Kansas experiments included: tillage 

(conventional tillage (CT), reduced tillage (RT) and no-tillage (NT)) and native prairie; 

nitrogen (N) fertilization rates; and crop rotations comprising various combinations of 

winter wheat (Triticum aestivum L.), grain sorghum (Sorghum bicolor L. Moench), and 

soybean (Glycine max L. Merrill). The presence of a fallow period negatively affected C 

sequestration rates even under NT systems. Nitrogen fertilization generally increased C 

sequestration rates. Rotations that contained wheat or sorghum had the greatest C 

sequestration rates while continuous soybean had the lowest rates. Cultivation 

decreased the amount of macroaggregates with a concomitment increased in the 

amount of microaggregates. Wheat and sorghum increased total C in the 

macroaggregate fraction (>250 μm) under NT while soybean had the lowest C 

concentration.  Cultivation reduced microbial biomass C and N and potentially 

mineralizable C and N. The combination of conservation tillage and rotations that 



produced a greater amount of residue had greater C sequestration rates. In the Oxisol, 

NT had greater amounts of large macroaggregates (>2000 μm) than CT, however no 

differences between tillage practices were detected in the Vertisol and Mollisol. 

Cultivation of native grassland reduced the amount of macroaggregates and the 

associated C and N concentration; however NT tended to be more similar to the native 

grassland. Overall, our results indicated that the use of conservation tillage could be an 

important strategy to sequester C in these agroecosystems. The adoption of 

management practices that enhance C sequestration would be important for reducing 

GHGs emissions and maintaining the sustainability of agricultural systems.



 

 
MICROBIAL ECOLOGY AND C AND N DYNAMICS IN AGROECOSYSTEMS 

 
 
 

by 
 
 
 

KARINA PAOLA FABRIZZI 
 
 
 

Ing. Agr., University of  Mar del Plata, Argentina, 1997 
M.S., University of Mar del Plata, 2000 

 
 
 
 

A DISSERTATION 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 

 DOCTOR OF PHILOSOPHY 
 
 

Department of  Agronomy 
College of Agriculture 

 
 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2006 
 

Approved by: 
 

Major Professor 
Charles W. Rice 



 
 

Abstract 

Soil C sequestration in agricultural ecosystems is an immediate and significant 

option to mitigate the increase in the atmospheric CO2 concentration. The objectives of 

this study were to determine 1) the influence of crop and soil management practices 

applicable to Kansas (i.e., tillage, N fertilization, and crop rotations) on soil C and N, C 

sequestration rates, soil aggregation and aggregate-associated C and N; and 2) the 

influence of long-term tillage practices on SOC and total N, soil aggregation and 

aggregate-associated C and N in three soil types: an Oxisol (Brazil), a Vertisol 

(Argentina), and a Mollisol (Kansas, USA). The Kansas experiments included: tillage 

(conventional tillage (CT), reduced tillage (RT) and no-tillage (NT)) and native prairie; 

nitrogen (N) fertilization rates; and crop rotations comprising various combinations of 

winter wheat (Triticum aestivum L.), grain sorghum  (Sorghum bicolor L. Moench), and 

soybean  (Glycine max L. Merrill). The presence of a fallow period negatively affected C 

sequestration rates even under NT systems. Nitrogen fertilization generally increased C 

sequestration rates. Rotations that contained wheat or sorghum had the greatest C 

sequestration rates while continuous soybean had the lowest rates. Cultivation 

decreased the amount of macroaggregates with a concomitment increased in the 

amount of microaggregates. Wheat and sorghum increased total C in the 

macroaggregate fraction (>250 μm) under NT while soybean had the lowest C 

concentration.  Cultivation reduced microbial biomass C and N and potentially 

mineralizable C and N. The combination of conservation tillage and rotations that 



produced a greater amount of residue had greater C sequestration rates. In the Oxisol, 

NT had greater amounts of large macroaggregates (>2000 μm) than CT, however no 

differences between tillage practices were detected in the Vertisol and Mollisol. 

Cultivation of native grassland reduced the amount of macroaggregates and the 

associated C and N concentration; however NT tended to be more similar to the native 

grassland. Overall, our results indicated that the use of conservation tillage could be an 

important strategy to sequester C in these agroecosystems. The adoption of 

management practices that enhance C sequestration would be important for reducing 

GHGs emissions and maintaining the sustainability of agricultural systems.
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CHAPTER 1 - GENERAL INTRODUCTION 

In the global C cycle, the main C pools include C buried in sedimentary rocks (8 x 

107 Pg C), active C pools (40 x 103 Pg C; atmospheric CO2, biota, soil organic matter, 

and oceans), and extractable fossil fuel (4 x 103 Pg C) (Schlesinger, 1997; Janzen, 

2004).  In the active C pools, oceans contain the largest C reserves (38,000 Pg C), 56 

times more than the atmospheric pool (750 Pg C) (Schlesinger, 1997). Soils are the 

largest active C pool in terrestrial ecosystems (Lal and Kimble, 1997; Janzen, 2004); it 

is estimated that soils contain 1500 Pg C (Schlesinger, 1997) in organic and inorganic 

forms. 

These active pools are connected through fluxes between atmospheric CO2 and 

the ocean, and atmospheric CO2 and land (Schlesinger, 1997).  These fluxes have 

been relatively stable until recent decades, and have now been altered by 

anthropogenic activities (Janzen, 2004). 

The greenhouse gases 
The greenhouse effect is a natural process that has made the earth an 

inhabitable planet. Short-wave radiation coming from the sun arrives at the top of the 

atmosphere. Some of the energy is reflected and the rest absorbed by the earth’s 

atmosphere and surface. The earth’s surface is warmed and reemits energy as longer 

wavelength radiant energy, which is absorbed by radiatively active trace gases or 

greenhouse gases (GHGs) which heat the atmosphere. This process warms the 

atmosphere more than that from light energy alone (CAST, 2004). This warming effect 
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maintains the earth temperature around 15ºC rather than –18ºC without the greenhouse 

effect (Schlesinger, 1995).  

The greenhouse gases include water vapor (H2O), carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O) and can be found in the atmosphere at 

relatively small concentrations. Their concentrations have changed naturally through 

time. Nevertheless, in the last decades there has been increasing concern related to an 

increase in the emissions of the GHGs from anthropogenic activities, thus enhancing 

climate change and global warming (Lal, 2004). Even though there is uncertainity on the 

extent of warming and the contribution of anthropogenic sources to GHGs, most 

scientists agree on the influence of GHGs on global warming in the recent past (IPCC, 

2001 cited by CAST, 2004). 

The concentration of CO2 in the atmosphere has increased from 280 μmol CO2 

mol-1 in 1850 to current levels greater than 370 μmol CO2 mol-1 (USEPA, 2006).  The 

CH4 concentration in 2004 was about 1.76 μmol CH4 mol-1, twice that of the pre-

industrial values (0.72 μmol CH4 mol-1) (USEPA, 2006).  Also, the N2O concentration 

has increased from 270 to present values of 319 nmol N2O mol-1 (USEPA, 2006). The 

anthropogenic sources of GHGs include fossil fuel combustion and transport, the 

chemical industry, and agricultural and land use changes including deforestation, rice 

production, livestock and fertilizer use (Lal et al., 1998). 

Agricultural and Land Use Changes 
The agriculture sector worldwide produces about 47 and 84% of the 

anthropogenic CH4 and N2O emissions, respectively, and about 5% of CO2 emissions 

(Cole et al., 1997; Rice, 2006). Deforestation, biomass burning, and other land use 
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changes account for an additional 14%. Sources of CH4 from the agricultural sector 

include enteric fermentation in ruminant animals, rice cultivation, and biomass burning.  

Sources of N2O from agriculture include soils, fertilizers, manures, and biomass burning 

(Lal et al., 1998; Rice, 2006; Lokupitiya and Paustian, 2006).  

The expansion of agriculture has transformed forests, grasslands and wetlands 

into agroecosystems. Native ecosystems have been cleared and the native perennial 

vegetation replaced with annual crops resulting in large losses of biomass and soil C 

stocks. In agroecosystems, CO2 emissions are related to energy used for production 

and application of fertilizers, lime, and pesticides, as well as the use of tillage practices 

that accelerates the oxidation of soil organic matter (SOM) (CAST, 2004). Agricultural 

management influences soil organic C (SOC) stocks by increasing the rate of 

decomposition and, often, by changing the quantity, quality, and location of plant inputs 

(Lal and Kimble, 1997). 

Mitigation strategies 
The atmospheric concentration of CO2 can be reduced by 1) decreasing 

emissions or 2) sequestering C within ecosystems. Carbon sequestration can be 

defined as the net removal of CO2 from the atmosphere and its storage in long-lived 

pools of C, such as terrestrial and geologic systems (Lal, 2004). Several management 

options to reduce C emissions have been proposed to reduce C sources to the 

atmosphere, and/or increase C sinks from the atmosphere (Caldeira et al., 2004). 

Some of the available near-term options include changes in agricultural 

management practices, and improved efficiency of appliances, lighting, motors, 

buildings, industrial processes, and vehicles (Caldeira et al., 2004). Long-term options 
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include C storage in geologic reservoirs or oceans, large-scale development of solar 

and wind resources, cessation of deforestation, development of energy-efficient 

transportation systems, development of highly efficient coal technologies, and 

generation of electricity from biomass (Caldeira et al., 2004). 

Throughout this dissertation, we will focus on the processes of C sequestration in 

terrestrial ecosystems, and specifically to land use and management in agricultural 

systems. 

Carbon sequestration 
Some options for C sequestration in agricultural ecosystems include 1) the 

improved management of permanent agricultural land; 2) conversion and/or restoration 

of marginal and degraded lands; and 3) use of biofuels for offsetting fossil fuel 

combustion. There is a diversity of options that can enhance C sequestration such as 

reduced tillage intensity, use of alternative crop rotations, and fertility and water 

management (Lal et al., 1998; Paustian et al., 1998). The second option includes 

reforestation and afforestation, conversion of cropland to pastures or to grassland set-

asides (Conservation Reserve Program), restoration of soils affected by salt content or 

chemical problems, and desertification control (Gupta and Rao 1994; Lal et al., 1999, 

cited by CAST, 2004). 

The adoption of best management practices (BMPs) can increase the sink 

capacity of croplands by reducing C losses through oxidization, methanogenesis and 

erosion. Best management practices need to account for differences in soil type, 

regions, and climate (Lal et al., 1998). Soil organic C in croplands can be increased 

through management practices that yield greater returns of organic material to the soil, 

 4



decrease fallow periods, increase use of perennial and winter cover crops, recycle 

organic wastes, reduce tillage intensity, control erosion, and implement agroforestry 

practices (Cole et al., 1997; Lal et al., 1998; Paustian et al., 2000; West and Post, 2002; 

Lal, 2004; Post et al., 2004). 

The United Nations Framework Convention on Climate Change (UNFCCC) is 

concerned with the increase of GHG concentrations in the atmosphere from 

anthropogenic sources and the resulting impact on the climate.  The Kyoto Protocol was 

created in 1997 to provide obligatory limits on GHG emissions. The Kyoto Protocol 

allows credits for sinks for a limited list of activities.  Those activities related to 

agricultural soils are treated in Article 3.4 as a possible future activity (Marland et al., 

2001). Although the U.S. government has chosen not to participate in the Kyoto 

Protocol, the current U.S. policy is based on voluntary measures of GHG mitigation 

which could contribute to any future mandatory emission reduction targets in the U.S. 

and could contributed to international agreements (CAST, 2004). 

Management Practices 

Management practices that tend to minimize soil disturbance, maximize the 

amount of crop residue return to the soil, and improve water and nutrient use efficiency 

could favor C sequestration in soils. The use of no-tillage or reduced tillage has been 

widespread around the world, although the reasons for adoption have varied in different 

countries. In the U.S. the main reasons for the adoption of NT were greater water 

retention that favors crop intensification in semiarid regions in the Great Plains, and the 

reduction in soil erosion in more humid regions (Six et al., 2002). However, in South 

America, especially Argentina and Brazil, the main reasons for adoption of NT were to 
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control erosion, reduce costs from fuel use and labor, and the option for early planting. 

The first experiences in no-tillage in Argentina and Brazil were in 1974 and 1971, 

respectively. Recent and projected expansion of cropland under no-tillage in Brazil 

provides a great opportunity for C sequestration (Cerri et al., 2004).  In Argentina, Diaz-

Zorita and Buschiazzo (2006) estimated that 22 Mhas of the Argentine Pampas are 

degraded, representing an opportunity to sequester C with the implementation of best 

management practices. In general, no-tillage through less disturbance promotes an 

increase in C stocks under different soil and climate conditions (Sá et al. 2001; Amado 

et al. 2006; Fabrizzi et al., 2003; Diaz-Zorita, 2002; Cambardella and Elliot, 1994; Six et 

al., 1999). 

Intensification of cropping systems is another way to increase C sequestration 

through the increase in biomass and a change in residue quality. Elimination of the 

fallow period, use of high-yielding crop varieties and the adequate use of nutrients can 

increase organic matter inputs (Post et al., 2004; Lal et al., 1998, Peterson et al., 1998). 

Several studies have shown an increase in soil C with an intensification of crop rotations 

and a reduction of bare fallow (Havlin et al., 1990; West and Post, 2002; Sherrod et al., 

2003; Peterson et al., 1998; Amado et al., 2006). 

Most studies to evaluate the effect of N fertilization on SOC have reported a 

positive effect of N application on the level of SOC (Rasmussen and Rohde, 1988; 

Nyborg et al., 1995; Bowman and Halvorson, 1998).  However, Halvorson et al. (2002) 

and Russell et al (2005) found that N application did not always increase SOC.  
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Carbon Stabilization and Aggregation 

Carbon stabilization can be achieved through different mechanisms 1) 

biochemical recalcitrance, 2) chemical stabilization, and 3) physical protection 

(Christensen, 1996 cited by Jastrow and Miller, 1997). Biochemical recalcitrance 

depends on substrate characteristics and is the resistance to degradation of compounds 

such lignin or melanins produced by fungi or other organisms, or compounds produced 

by decomposition processes. Chemical stabilization implies the chemical bonding 

between organic compounds and mineral components. Finally, soil structure plays a key 

role in the physical protection of the SOM by controlling microbial access to substrate, 

microbial turnover processes, and food web interactions (Elliot and Coleman, 1988 cited 

by Jastrow and Miller, 1997). 

The type of soil also influences the stabilization of C through relationships to the 

clay quantity and type. Six et al. (2002) reported lower C stabilization in tropical soils 

than temperate soils, which is partly attributed to differences in clay type. Oxisols are 

characterized by 1:1 clays with low specific surface and cation exchange capacity 

(CEC).  These soil characteristics combined with high temperature and precipitation of 

tropical areas induce rapid decomposition rates and lower C stabilization. Mollisols with 

a predominance of 2:1 clays with higher CEC, have greater potential for C stabilization 

(Six et al., 2002).  In Vertisols, the formation of clay-organic complexes has been 

suggested as the main mechanisms for C stabilization (Dalal and Bridge, 1996). 

Leinweber et al. (1999) found that most of the C was associated with the clay fraction.  

They concluded that faster decomposition and the shrink-swell pedoturbation influenced 

SOM composition and distribution in Vertisols. 
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Aggregation may afford physical protection of organic C.  It has been reported 

that soil organic matter is the primary binding agent for soil aggregates in Mollisols and 

Alfisols, dominated by 2:1 clays (Six et al., 1999). Even in tropical soils dominated by 

1:1 clays and Al and Fe oxides, SOM plays a partial role in aggregation (Six et al., 1999; 

Denef et al., 2002; Denef and Six, 2005). For Vertisols, studies have shown no 

correlation between SOC and aggregate stability (Bravo-Garza and Bryan, 2005; 

Whitbread et al., 1998; Blair and Crocker, 2000). The lack of correlation is explained by 

the greater importance of clay mineralogy and shrink-swell processes on the formation 

of soil structure (Bravo-Garza and Bryan, 2005). 

Summary of Chapters 2-5 
 

Chapter 2 – Soil Carbon Sequestration in Kansas: Long-Term Effect of Tillage, N 
Fertilization, and Crop Rotation 

 

Soil C sequestration in agricultural ecosystems is a near-term option to mitigate 

the increase in the atmospheric CO2 concentration. There are several management 

practices to reduce C loss from agricultural soils including reduced tillage intensity, a 

reduction in bare fallow period, and enhanced rotations. However, the SOC response 

will vary with soil type and climate. The objectives of this study were to: 

 

1) Determine the influence of different long-term management practices of tillage, 

N fertilization, and crop rotations on soil C storage, and 

 

2) Estimate the C sequestration rates under these management practices in 

different locations in Kansas. 
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Chapter 3 – Long-Term Effect of Crop and Soil Management on Aggregate-
Associated C and N 

 
 

Management practices can affect soil aggregation and thus SOC storage. Thus, 

the objective of this study was to: 

 

1) Determine the influence of different long-term management practices (tillage, N 

fertilization, and crop rotations) on soil aggregation and aggregate associated C and 

N. 

 

Chapter 4 – Soil Organic Carbon and Nitrogen Pools in Agricultural Management 

Systems 

 

Management practices can influence soil biological activities through their effects 

on the quantity, structure, and distribution of SOC. The objective of this study was to: 

 

1) Determine the effect of soil management including the interactions tillage, N 

fertilization and crop rotation on soil C and N pools.   

 

Chapter 5 – Soil Organic Matter and Microbial Ecology of Mollisols, Vertisols and 
Oxisols: Effect of Native and Agroecosystems  

 
Changes in management practices can influence the dynamics of C in soils 

affecting the quantity and quality of SOM, soil aggregation, and microbial populations; 

however, this influence will vary according to soil type and climate. Thus, the objective 

of this study was to: 
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1) Evaluate the effect of agricultural and native ecosystems on SOC, 

aggregation, and microbial community structure in the three soil types. 

 10



REFERENCES 

 

Amado, T.J.C., C. Bayer, P.C. Conceiçã, E. Spagnollo, B-H C. de Campos, and M. da 

Veiga. 2006. Potential of carbon accumulation in no-till soils with intensive use 

and cover crops in southern Brazil. J. Environ. Qual. 35:1599-1607. 

Blair, N., and G.J. Crocker. 2000. Crop rotation effects on soil carbon and physical 

fertility of two Australian soils. Aust. J. Soil Res. 38: 71-84. 

Bowman, R.A., and A.D. Halvorson. 1998. Soil chemical changes after nine years of 

differential N fertilization in a no-till dryland wheat-corn-fallow rotation. Soil Sci. 

163:241-247. 

Bravo-Garza, M. R., and R.B. Bryan. 2005. Soil properties along cultivation and fallow 

time sequences on Vertisols in Northeastern Mexico. Soil Sci. Soc. Am. J. 69: 

473-481. 

Caldeira, K., M.G. Morgan, D. Baldocchi, P.G. Brewer, C.T.A. Chen, G.J. Nabuurs, N. 

Nakicenovic, and G.P. Robertson. 2004. A portfolio of carbon management 

options. p.103-129. In: C. B. Field and M. R. Raupauch (ed.) The global carbon 

cycle. Island Press, Washington, D.C. USA. 

Cambardella, C.A., and E.T. Elliott. 1994. Carbon and nitrogen dynamics of soil organic 

mater fractions from cultivated grassland soils. Soil Sci. Soc. Am. J. 58:123-130. 

CAST, 2004. Climate change and greenhouse gas mitigation: Challenges and 

opportunities for agriculture. Task Force Report, No.141. Council for Agricultural 

Science and Technology, Ames, IW, USA. p.p. 120. 

 11



Cerri, C.C., M. Bernoux, C.E.P. Cerri, and C. Feller. 2004. Carbon cycling and 

sequestration opportunities in South America: The case of Brazil. Soil Use and 

Management 20: 248-254. 

Christensen, B.T. 1996. Carbon in primary and secondary organomineral complexes. p. 

97-165. In: M.R. Carter and B.A. Steward (eds.) Structure and organic matter 

storage in agricultural soils. CRC Press, In., Boca Raton, FL. 

Cole, C.V., J. Duxbury, J. Freney, O. Heinemeyer, K. Minami, A. Mosier. K. Paustian, N 

Rosenberg, N. Sampson, D. Sauerbeck, and Q. Zhao. 1997. Global estimates of 

potential mitigation of greenhouse gas emissions by agriculture.  Nutrient cycling 

in Agroecosystems 49:221-228. 

Dalal, R.C., and B.J. Bridge. 1996. Aggregation and organic matter storage in sub-

humid and semi-arid soils. p. 263-308. In M.R. Carter and B.A. Stewart (ed.) 

Structure and organic matter storage in agricultural soils. CRC, Boca Raton, FL. 

Denef, K., and J. Six. 2005. Clay mineralogy determines the importance of biological 

versus abiotic processes for macroaggregates formation and stabilization. 

European J. Soil Sci. 56:469-479. 

Denef, K., J. Six, R. Merckx, and K. Paustian. 2002. Short-term effects of biological and 

physical forces on aggregate formation in soils with different clay mineralogy. 

Plant Soil 246:185-200. 

Diaz-Zorita, M., and D.E. Buschiazzo. 2006. Potential for soil carbon sequestration in 

the Pampas. p. 435-452. In Lal, R. et al. (eds.) Carbon sequestration in soils of 

Latin America. The Haworth Press, Inc. NY, USA. 

 12



Diaz-Zorita, M., G.A. Duarte, and J.H. Grove. 2002. A review of no-till systems and soil 

management for sustainable crop production in the subhumid and semiarid 

Pampas of Argentina. Soil Till. Res. 65:1-18. 

Elliot, E.T. and D.C. Coleman. 1988. Let the soil work for us. Ecol. Bullt. 39:23-32. 

Fabrizzi, K.P., A. Moron, and F.O. Garcia. 2003. Soil carbon and nitrogen organic 

fractions in degraded vs. non-degraded Mollisols in Argentina. Soil Sci. Soc. Am. 

J. 67:1831-1841. 

Gupta, R.K., and D. L.N. Rao. 1994. Potential of wastelands for sequestering carbon by 

reforestation. Curr. Sci. 66:378-380. 

Halvorson, A.D., B.J. Wienhold, and A.L. Black. 2002. Tillage, nitrogen, and cropping 

system effects on soil carbon sequestration. Soil Sci. Soc. Am. J. 66:906-912. 

Halvorson, A.D., C.A. Reule, and R.F. Follet. 1999. Nitrogen fertilization effects on soil 

carbon and nitrogen in a dryland cropping system. Soil Sci. Soc. Am. J. 63:912-

917.  

Havlin, J.L., D.E. Kissel, L.E. Maddus, M.M. Claassen, and J.H. Long. 1990. Crop 

rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci. Soc. Am. 

J. 54:448-452. 

Janzen, H.H. 2004. Carbon cycling in the earth systems-a soil science perspective. 

Agric. Ecosystems and Environ. 104:399-417. 

Jastrow, J.D., and R.M. Miller. 1997. Soil aggregate stabilization and carbon 

sequestration:feedbacks through organomineral associations. p.207-223. In: Lal, 

R., J.M. Kimble, R.F. Follett, and B.A. Stewart (eds.) Soil processes and the 

carbon cycle. CRC Press, Boca Raton, FL. 

 13



Lal, R. 2004. Agricultural activities and the global carbon cycle. Nutrient Cycling in 

Agroecosystems. 70:103-116. 

Lal, R., and J.M. Kimble. 1997. Conservation tillage for carbon sequestration. Nutrient 

Cycling in Agroecosystems 49:243-253. 

Lal, R., J.M. Kimble, R.F. Follett, and C.V. Cole. 1998. The potential of U.S. cropland to 

sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press, 

Chelsea, MI. p.1-128. 

Lal, R., R.F. Follett, J. Kimble, and C.V. Cole. 1999. Managing U.S. cropland to 

sequester carbon in soil. J. Soil Water Conserv. 54:374-381. 

Leinweber, P., H. Schulten, and H. Jancke. 1999. New evidence for the molecular 

composition of soil organic matter in vertisols. Soil Sci. 164:857-870. 

Lokupitiya, E., and K. Paustian. 2006. Agricultural soil greenhouse gas emissions: A 

review of national inventory methods. J. Environ. Qual. 35:1413-1427. 

Marland, G., B.A. McCarl, and U. Schneider. 2001. Soil carbon: Policy and economics. 

Climatic Change 51: 101-117. 

Nyborg, M., E.D. Solberg, S.S. Malhi, and R.C. Izaurralde. 1995. Fertilizer N, crop 

residue, and tillage alter soil C and N content after a decade. p. 93-100. In R. 

Lal et al. (ed.) Advances in soil science: Soil management and greenhouse 

effect. Lewis Publishers, CRC Press, Boca Raton, Fl. 

Paustian, K., C.V. Cole, D. Sauerberck, and N. Sampson. 1998. CO2 mitigation by 

agriculture: An overview. Climate Change 40:135-162. 

Paustian, K., J. Six, E.T. Elliot, and H.W. Hunt. 2000. Management options for reducing 

CO2 emissions from agricultural soils. Biogeochem. 18:147-163. 

 14



Peterson, G.A., A.D. Halvorson, J.L. Havlin, O.R. Jones, D.J. Lyon, and D.L. Tanaka. 

1998. Reduced tillage and increasing cropping intensity in the Great Plains 

conserves soil C. Soil Tillage Res. 47:207-218. 

Post, W.M., R. C. Izaurralde, J. D. Jastrow, B.A. McCarl, J.E. Amonette, V.L. Bailey, 

P.M. Jardine, T.O. West, and J. Zhou. 2004. Enhancement of carbon 

sequestration in the US soils. BioScience 54:895-908. 

Rasmussen, P.E., and C.R. Rohde. 1988. Long-term tillage and nitrogen fertilization 

effects on organic nitrogen and carbon in a semiarid soil. Soil Sci. Soc. Am. J. 

52:1114-1117. 

Rice, C.W. 2006. Introduction to special section on greenhouse gases and carbon 

sequestration in agriculture and forestry. J. Environ. Qual. 35:1338-1340. 

Russell, A.E., D.A. Laird, T.B. Parkin, and A.P. Mallarino. 2005. Impact of nitrogen 

fertilization and cropping system on carbon sequestration in Midwestern 

Mollisols. Soil Sci. Soc. Am. J. 69:413-422. 

Sa, J.C. de M., C.C. Cerri, W. A. Dick, R. Lal, S. P. Venske Filho, M.C. Piccolo, and B. 

E. Feigl. 2001. Organic matter dynamics and carbon sequestration rates for a 

tillage chronosequence in a Brazilian Oxisol. Soil Sci. Soc. Am. J. 65:1486-1499. 

Schlesinger, W.H. 1995. An overview of the global carbon cycle. p.9-25 In: Lal, R., J. 

Kimble, E. Levine, and B.A. Steward (eds.) Soils and Global Change. CRC, 

Lewis Publishers, Boca Raton, Fl. 

Schlesinger, W.H. 1997. Biogeochemistry: An analysis of global change. Academic 

Press, NY, USA.pp.588. 

 15



Sherrod, L.A., G.A. Peterson, D.G. Westfall, and L.R. Ahuja. 2003. Cropping intensity 

enhances soil organic carbon and nitrogen in a no-till agroecosystem. Soil Sci. 

Soc. Am. J. 67:1533-1543. 

Six, J., E.T. Elliott, and K. Paustian. 1999. Aggregate and soil organic matter dynamics 

under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63:1350-1358. 

Six, J., C. Feller, K. Denef, S.M. Ogle, J. C.de Moraes Sa, and A. Albrecht. 2002. Soil 

organic matter, biota and aggregation in temperate and tropical soils-Effects of 

no-tillage. Agronomie 22:755-775. 

USEPA. 2006. Inventory of U.S greenhouse gas emissions and sink: 1990-2004. 

Available at www.epa.gov/globalwarming/publications/emissions (verified 19 

October 2006). USEPA, Washington, D.C. 

West, T.O., and W.M. Post. 2002. Soil organic carbon sequestration rates by tillage and 

crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 66:1930-1946. 

Whitbread, A.M., R.D.B. Lefroy, and G.J. Blair. 1998. A survey of the impact of cropping 

on soil physical and chemical properties in north-western New South Wales. 

Aust. J. Soil Res. 36:669-681. 

 16

http://www.epa.gov/globalwarming/publications/emissions


CHAPTER 2 - SOIL CARBON SEQUESTRATION IN KANSAS: 
LONG-TERM EFFECTS OF TILLAGE, N FERTILIZATION, AND 

CROP ROTATION. 

 

ABSTRACT 

Soil C sequestration in agricultural ecosystems is a near-term option to mitigate the 

increase in the atmospheric CO2 concentration. Some of the management practices to 

reduce C loss from agricultural soils include reduced tillage intensity, a reduction in bare 

fallow period, enhanced crop rotations, and the use of winter cover crops. The 

objectives of our study was to determine the influence of long-term management 

practices such as tillage, N fertilization, and crop rotations on soil C content, and to 

estimate the C sequestration rates of different cropping systems in Kansas. Four long-

term experiments covering a range of climate conditions and management systems 

were sampled for soil organic carbon (SOC). All the sites evaluated (Tribune, 

Manhattan, Parsons, Hays) included three tillage systems as a variable: conventional 

tillage (CT), reduced tillage (RT) and no-tillage (NT). Nitrogen (N) fertilization was 

evaluated in studies at Parsons (0 and 140 kg N ha-1) and at Hays (0, 22.45, and 67 kg 

N ha-1). Crop rotation effects were studied at Manhattan, including continuous winter 

wheat (Triticum aestivum L.) (W-W), continuous sorghum (Sorghum bicolor L. Moench) 

(S-S), continuous soybean (Glycine max L. Merrill) (B-B), wheat-soybean (W-B), and 

sorghum-soybean (S-B). Soil samples were taken at depths of 0-5, 5-15 and 15-30 cm. 

Total C contents were determined by dry combustion. Soil organic C contents were 
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significantly greater under NT, compared with CT, at 0-5 cm; differences were less 

pronounced at deeper depths. At 0-30 cm, SOC tended to be greater under NT than 

under CT. The presence of a fallow period in the rotations negatively affected C 

sequestration rates even under NT systems. Nitrogen fertilization increased C 

sequestration rates. Rotations that had wheat or sorghum had the greatest C 

sequestration rates, and continuous soybean had the lowest rates. The combination of 

conservation tillage and crop rotations that produce a greater amount of residue showed 

greater C sequestration rates. 

 

Keys words: carbon sequestration, tillage, fertilization, crop rotation 
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INTRODUCTION 

Over the past 150 years, an increase in atmospheric CO2 has been attributed to 

an increase in fossil fuel combustion, deforestation, and land use change (Lal, 2004). 

Several strategies have been presented to reduce CO2 emissions over both near- and 

long-term. Caldeira et al. (2004) summarized a range of management options to reduce 

C emissions: those that attempt to reduce C sources to the atmosphere, and those that 

tend to increase C sinks from the atmosphere. Some of the options available in the 

near-term include changes in agricultural management practices, and improved 

efficiency of appliances, lighting, motors, buildings, industrial processes, and vehicles 

(Calderia et al., 2004). Long-term options include C storage in geologic reservoirs or 

oceans, large-scale development of solar and wind resources, cessation of 

deforestation, development of energy-efficient transportation systems, development of 

highly efficient coal technologies, and generation of electricity from biomass (Caldeira et 

al., 2004). 

Soil C sequestration is a viable short-term option to mitigate increased 

atmospheric CO2 because it is relatively low cost and can be rapidly deployed across 

large areas (Post et al., 2004; Caldeira et al., 2004).  Soils can be managed to maintain, 

restore, and/or enhance SOC content (Johnson, 1995). Enhanced soil C also can 

improve soil quality, productivity, water infiltration, and fertility, and reduce soil erosion 

(Halvorson et al., 2000).  

Accumulation of soil organic C (SOC) is influenced by several factors, including 

climate, soil properties, vegetation, time, and management (Johnson, 1995). Soil C is a 

balance between inputs and outputs. Management practices that reduce C loss from 
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agricultural soils include reduced tillage intensity, a reduction in bare fallow period, and 

those that enhance inputs of crop residues, such as rotations, winter cover crops, and 

water management (Lal et al., 1998; Paustian et al., 2000; West and Post, 2002; Lal, 

2004; Post et al., 2004).  

In the U.S. Great Plains, several years of cultivation under crop-fallow rotation 

have led to a significant loss of soil C (Peterson et al., 1998). The intent of fallow was to 

accumulate water, but fallowing results in no crop residue additions, whereas microbial 

activity and organic matter decomposition continue (Halvorson et al., 2002; Campbell et 

al., 2005). The introduction of conservation tillage systems such as reduced and no-

tillage systems allow better retention of water, and can allow an intensification of the 

cropping system and reducing the fallow period. As a result, soil C content may 

increase, as noted by Peterson et al. (1998). Sherrod et al. (2003) also found greater 

SOC under continuous cropping than in a wheat-fallow system in the central Great 

Plains. In annual cropping systems in the northern Great Plains, Halvorson et al. (2002) 

found that soil C increased by 0.23 Mg C ha-1 yr-1 and 0.025 Mg C ha-1 yr-1 for no-till and 

minimum tillage, respectively, but decreased by 0.141 Mg C ha-1 yr-1 under CT. 

Conversely, Sainju et al. (2006) reported that tillage and crop rotation did not influence 

SOC in a 6-yr experiment conducted in the northern Great Plains, which may be due to 

the time needed to detect changes in SOC. 

Adequate N fertilization is needed to ensure optimum productivity and crop 

residue returns to the soil. Some studies have reported a positive effect of N application 

on SOC content (Rasmussen and Rohde, 1988; Campbell et al., 1997; Bowman and 
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Halvorson, 1998; Halvorson et al., 1999), but others have reported little or no effect of N 

fertilizer on SOC stocks (Halvorson et al., 2002; Russell et al., 2005).  

A reduction in tillage can reduce C losses and even increase soil C content. West 

and Post (2002) analyzed data from numerous long-term studies across the world and 

reported an average C gain of 0.57 Mg C ha-1 yr-1 when changing from CT to NT 

systems and 0.20 Mg C ha-1 yr-1 by increasing the crop rotation intensity. West and 

Marland (2002), analyzing 76 long-term experiments in the USA, reported a potential 

rate of C sequestration of 0.337 Mg C ha-1 yr-1 for the conversion of CT to NT in 

agricultural soils. 

Evaluation of the changes in SOC due to land use, agricultural practices, and 

climate will be necessary, and the use of models will play a key role in determining 

regional estimates of C sequestration under these practices. These estimates are 

important to policy makers who will use these management practices as strategies to 

reduce greenhouse gases (GHG) emissions (Falloon et al., 1998). Models have been 

used to determine the impact of management practices on soil C storage; however, 

SOC measurements from long-term experiments are needed for model validation. 

Campbell et al. (2005) compared the rates of change in SOC using the Century model 

and Campbell et al. (2000) model. Both models effectively simulated the effect of 

cropping frequency, but the values were lower that those reported from the experiment. 

The degree of soil C change will vary according to the crop, crop rotation, soil type, and 

climate (Donigian et al., 1997). Donigian et al. (1997) reported that SOC could increase 

10 to 15% for reduced tillage and up to 50% for NT compared with CT, but further 

model testing and validation was needed.  
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Long-term studies are needed to validate model estimations of the effects of 

management practices on C sequestration (Izaurralde et al., 2001).  It is necessary to 

collect information on the amount of C sequestered for a specific soil and duration (Post 

et al., 2004). Understanding the effect of management practices on biological and 

edaphic processes will help identify the best management options to offset increased 

atmospheric CO2.  

The objectives of our study was to determine the influence of different long-term 

management practices of tillage, N fertilization, and crop rotations on soil C storage, 

and to estimate the C sequestration rates under these management practices in 

different locations in Kansas. 

MATERIALS AND METHODS 

Site description 
Four long-term experiments were selected covering a range of climate 

conditions, soils and management systems in Kansas (Table 2.1). 

The Hays experiment is located in central Kansas (38º 51’N, 99º 20’W). This 

experiment was initiated in 1965 on a Harney silt loam soil (fine, smectitic, mesic Typic 

Argiustoll). The 30-yr average annual precipitation was 533 mm with an annual mean 

temperature of 11.9 ºC. The crop rotation was wheat-grain sorghum-fallow, with three 

tillage systems: conventional tillage (CT), reduced tillage (RT), and no-tillage (NT). 

Conventional tillage consisted of using tools such as disk, one-way plow, and mulch 

treader. Reduced tillage included V-blade, sweeps or rod weeder.  No-tillage consisted 

of planting directly into the residue. From the beginning of the experiment to 1975, N 

rates were 0 and 45 kg N ha-1. Since 1975 four N rates were evaluated, 0 (0-N), 22 (22-
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N), 45 (45-N), and 67 (67-N) kg N ha-1 yr-1. Nitrogen fertilizer was applied as ammonium 

nitrate in the previous fall for June sorghum planting and in August prior to September 

wheat planting. The experimental design was split-plot with four replications, with tillage 

as the main plot and N as sub-plot. 

The Tribune experiment, initiated in 1988, was located in western Kansas (38º 

30’N, 101º 41’W). The 30-yr average annual precipitation is 422 mm, with an annual 

mean temperature of 11.3 ºC.  The soil was classified as Richfield silt loam (fine-

smectitc, mesic Aridic Argiustolls). The crop rotation was wheat-grain sorghum-fallow, 

with three tillage systems: CT, RT, and NT. Conventional tillage consisted of three or 

four operations per year with a sweep plow between crop harvest and planting the next 

crop. The RT system used a combination of tillage (primarily sweep plow) and 

herbicides for weed control during fallow.  The number of tillage operations with RT was 

approximately 50% of CT. No-tillage consisted of planting directly into the residue. 

Nitrogen fertilizer as urea ammonium nitrate (UAN) was broadcast applied at 67 kg N 

ha-1 yr-1 to 112 kg N ha-1 yr-1, depending on the year or crop. Native sod was included 

as part of the experimental design, which represented the natural vegetation types of C3 

and C4 grass, with the dominant species being buffalograss (Buchloe dactyloides). The 

treatments were arranged in a randomized complete block design with four replications. 

The Parsons experiment is located in southeastern Kansas (37º 21.02’N, 95º 

17.13’W). The 30-yr average annual precipitation is 1016 mm, with an annual mean 

temperature of 13.7ºC. This experiment was initiated in 1983 on a Parsons silt loam soil 

(fine, mixed, active, thermic Mollic Albaqualfs). The crop rotation was grain sorghum-

soybean, with three tillage systems (conventional tillage, reduced tillage, and no-tillage), 
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and two N rates, 0 (0-N) and 140 kg N ha-1 yr-1 (140-N). Nitrogen fertilizer was urea-

ammonium nitrate (UAN) solution. Conventional tillage included chisel, disk, and field 

cultivator. Reduced tillage included disk and field cultivator.  No-tillage consisted of 

planting directly into the residue and using chemical weed control. The experimental 

design was split-plot with four replications, with tillage as the main plot and N as sub-

plot. 

The Manhattan experiment, initiated in 1974, was located on the Kansas State 

University Agronomy Farm, Manhattan (Riley County; 39º 07’N, 96º 37’W). Soils were 

Muir silt loam (fine-silty, mixed, mesic Cumulic Haplustoll) and Reading silt loam (fine, 

mixed, mesic Typic Argiudoll). The 30-yr average annual precipitation was 813 mm, 

which was mainly concentrated in the spring-summer period, with an annual mean 

temperature of 11.3 ºC. Crop rotation and tillage systems were evaluated in this 

experiment. The experimental design was split-plot with four replications, with rotation 

as the main plot and tillage as sub-plot. The three crops, soybean (B) (Glycine max (L.) 

Merrill), grain sorghum (S) (Sorghum bicolor (L.) Moench), and winter wheat (W) 

(Triticum aestivum L.), were combined in five rotations: continuous sorghum (S-S), 

sorghum-soybean (S-B), continuous soybean (B-B), wheat-soybean (W-B), and 

continuous soybean (B-B). The three tillage treatments were CT, RT, and NT systems. 

Conventional tillage included chisel, disk, and field cultivator. Reduced tillage included 

disk and field cultivator.  No-tillage consisted of planting directly into the residue and 

chemical weed control. A blend of urea and diammonium phosphate fertilizer providing 

112 kg N ha-1 and 11.3 kg P ha-1 was broadcast applied prior to the last tillage operation 

before planting of each crop and year.   
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Soil Sampling 

Soil samples were taken from each plot at 0- to 5, 5- to 15 and 15- to 30-cm 

depth increments. Sterile polypropylene bags (3.78 L) were filled with soil collected 

randomly from each plot using a 2-cm diam. Oakfield soil-probe (Forestry Suppliers, 

Inc., Jackson, MS). Samples were collected in March 2003 (before planting) on the 

sorghum rotation phase of the Hays experiment.  For Parsons, samples were taken in 

December 2003 after sorghum harvesting. Tribune samples were collected in April 2004 

in each phase of rotation (planted wheat, harvested sorghum, and fallow) and native 

sod. Soil samples from Manhattan were taken in May 2004, after soybean and sorghum 

planting and before wheat harvesting. Soil samples were passed through a 4-mm sieve, 

roots were removed, and samples were stored at 4ºC until use. 

Total C 
Soil samples were dried and ground to a fine powder with a mortar and pestle. 

Total C contents were determined by dry combustion using a C/N Elemental Analyzer 

(Flash EA1112, Carlo Erba Instruments, Milano, Italy). 

C sequestration rates: Calculations 
Carbon sequestration rates were calculated using two approaches: 

1) Baseline data:  Rates were determined as the difference between the C values 

in 2003-2004 and the original values at the beginning of each experiment (37, 

16, 20, and 29 yr for Hays, Tribune, Parsons, and Manhattan, respectively). 

C rate (Mg C ha-1 yr-1) = (SOCx – SOC0) / years 

 
where  

SOCX= soil organic C content at time x 
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SOC0= soil organic C content at initial point 

years= number of years under the experiment 

 

2) As a difference between NT or RT with respect to CT treatments in 2003-2004. 

C rate (Mg C ha-1 yr-1) = (SOCRT or NT  –  SOCCT)/ years 

where  

SOCRT= soil organic C content under reduced tillage 

SOCNT= soil organic C content under no-tillage. 

SOCCT= soil organic C content under conventional tillage. 

years= number of years under the experiment 

 

Carbon values at the beginning of the experiment (1965) in Hays were obtained 

from the sorghum phase. Bulk density values of 1.30 and 1.40 Mg m-3 for 0-5 and 5-15 

cm were assumed to express the baseline data in mass of C. These values were close 

to the average bulk density data obtained in 2004. 

For Tribune, it was assumed that the native prairie C values obtained in 2004 

were the initial values because the experiment was established under native prairie soil 

in 1988. Bulk density was measured in 2004 to calculate C mass. 

For Parsons, C concentrations were obtained in 1983 at the beginning of the 

experiment. Bulk density was assumed to be 1.35 Mg m-3 for 0-15 and 0-30 cm; these 

values were the average bulk density data obtained in 1983 at 0-5 cm. 

For Manhattan, the initial values of 1975 were estimated by considering the C 

values from 1981 (Peterson, 1983). Soil C was measured 6 yr after implementation of 

the treatments. We assumed that there was a linear increase in C from 1975 to 1981. 

The rate of change between 2004 and 1981 (23 yr) for continuous wheat under CT was 
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used to extrapolate estimated C values in 1975.  Carbon values used as a reference 

were from plots under CT in the continuous wheat rotation, which were representative of 

the traditional management of the area before the experiment was started. Bulk density 

values used were those reported by Havlin and Kissel (1997), 1.36 Mg m-3 for 0-15 cm, 

and by Budde (2004) 1.46 Mg m-3 for 15-30 cm. 

Statistical Analysis 
Analysis of variance was performed by using SAS PROC MIXED (SAS Institute, 

2002) to assess treatment differences on soil C and C sequestration rates. Results were 

considered statistically significant at P< 0.05, except where noted.  Means were 

compared using LSD values. 

RESULTS 

Soil Organic Carbon 

Tillage Effects 

Soil organic C for Hays was significantly affected by tillage at the 0-5 and 15-30 

cm depths (Table 2.2). No-tillage had greater amounts of SOC than RT and CT at the 

soil surface, but SOC was greater under CT than under RT or NT at 15-30 cm. No 

differences between tillage systems were observed when SOC was calculated for 0-15 

and 0-30 cm. 

At Tribune, SOC was similar between NT and RT, which were significantly 

greater than CT at 0-5 cm. There were no significant differences between tillage 

systems at the other depths, although NT had 2.1 Mg C ha-1 more C than CT for 0-30 

cm (Table 2.2). 
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 At Parsons, tillage significantly affected SOC values at 0-5 cm with no-tillage 

averaging 3 Mg C ha-1 more SOC than RT or CT (Table 2.2). No differences were 

observed at 5-15, 15-30 cm and 0-30 cm. Although, for 0-15 cm, NT had significantly 

greater amounts of SOC than RT and CT at P=0.08. 

At Manhattan, a significant effect of rotation and tillage on SOC was observed at 

all depths. There was no significant interaction between tillage and rotation. At 0-5 cm, 

NT resulted in the highest SOC values; however, RT resulted in greater SOC at 5-15 

and 15-30 cm, compared with NT and CT (Table 2.2). Soil organic carbon was similar 

between the NT and RT treatments, which were significantly greater than CT at 0-15 cm 

and 0-30 cm. 

Nitrogen effects 
Nitrogen application at Hays significantly affected SOC values for 0-5 cm and 0-

15 cm. The higher N rates, 45-N and 67-N, resulted in greater SOC (8 and 8.4 Mg C ha-

1, respectively) than the 0-N and 22-N rates (7.3 and 7.4 Mg C ha-1, respectively). For 0-

15 cm, N application significantly affected SOC (P=0.058) where the 67-N rate (22.9 Mg 

C ha-1) resulted in similar SOC to that for 47-N (22.2 Mg C ha-1), but was greater than 

the SOC at the lower N rates (21.4 Mg C ha-1). 

At Parsons, there was a significant effect of N application at 0-30 cm where the 

140-N rate (39.2 Mg C ha-1) had 1.9 Mg C ha-1 more C than the 0-N rate (37.3 Mg C ha-

1). Also, differences in SOC between N rates were observed at 0-5 cm (P=0.0953) and 

0-15 cm (P=0.0695), 0.5 Mg C ha-1 and 1.3 Mg C ha-1, respectively. 

Rotation effects 
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At Manhattan, continuous wheat resulted in the greatest amount of SOC at 0-5 

cm, and continuous soybean resulted in the least SOC (Table 2.3). Continuous 

sorghum and S-B had similar SOC content, but less than W-W. At 5-15, 0-15 and 0-30 

cm, SOC was greater under continuous wheat than under wheat in rotation (W-B). Also, 

SOC was greater where sorghum was in the rotation (S-S and S-B). Continuous 

soybean resulted in the lowest SOC (Table 2.3). At 15-30 cm, rotations with wheat had 

significantly greater SOC than those rotations that had sorghum or continuous soybean. 

Carbon sequestration rates 
Carbon sequestration rates for 0-15 cm at Hays were positive and significantly 

greater with NT systems, compared with CT and RT systems, which loss C (Table 2.4). 

Nitrogen application increased C sequestration rates (p<0.10). Across tillage, there was 

a reduction in the loss of C with the increase in the rate of N application, with no gain or 

loss in the 67-N treatment (Table 2.4). It should be noted that N application is 

considered sub-optimal over the course of the experiment as yield potential of the 

varieties changed. The N response would be expected to be greater under NT. 

At Tribune, soil C sequestration rates were negative for all tillage systems at 0-15 

and 0-30 cm, indicating a net loss of C from the system. This was not surprising given 

that this experiment was initiated in native prairie; however, NT lost the least amount of 

C (Table 2.5). 

At Parsons, C sequestration rates were not significantly different among 

treatments, except at 0-30 cm where the 140-N rate resulted in a greater C 

sequestration rate (0.32 Mg C ha-1 yr-1) than the 0-N rate (0.21 Mg C ha-1 yr-1) (Table 
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2.6). There was an increasing trend for greater C sequestration rate as tillage intensity 

decreased. 

At Manhattan, a significant rotation and tillage effect on C sequestration rates at 

the 0-15 and 0-30 cm depths. NT had similar rates of C sequestration as RT, but they 

were significantly greater than those under CT systems (Table 2.7). For 0-15 and 0-30 

cm, the rates of C sequestration had the following order: W-W > W-B > S-B ~ S-S > B-

B. Soybean monoculture had the lowest and negative C rate, which indicates a 

significant reduction in the SOC stocks after 29 yr of cultivation (Table 2.3).  

Relative differences with respect to CT (Avoided C loss) 
At Hays, the differences between NT or RT and CT were not significantly 

affected by tillage or N application. At 0-15 cm, the negative rates indicate a net C loss 

in both tillage systems, but this decrease tended to be greater under RT than under NT 

(Table 2.4). After 37 yr, NT lost 0.78 Mg C ha-1 and RT lost 2.04 Mg C ha-1 compared 

with CT. 

At Tribune, there were no significant differences among tillage systems, but NT 

tended to have a greater C sequestration rate compared with RT at both depths (Table 

2.5). After 16 yr, NT retained 1.59 Mg C ha-1 and RT 0.83 Mg C ha-1 compared with CT 

at 0-15 cm. At 0-30 cm, NT had 2.16 Mg C ha-1 and RT had 0.38 Mg C ha-1 compared 

with CT after 16 yr. 

Similar to Tribune, there were no significant differences with respect to CT at the 

Parsons site (Table 2.6). On average, after 20 yr, NT had a positive increase in TOC of 

1.76 Mg C ha-1, compared with CT, at 0-15 cm and an increase of 2.37 Mg C ha-1 at 0-

30 cm. The RT systems resulted in positive values only at 0-30 cm (Table 2.6). 
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At the Manhattan site, tillage was not significant, but C sequestration rates 

tended to be greater under NT systems than under RT at both depths (Table 2.7). At 0-

30 cm, relative C sequestration rates tended to be greater under S-S, S-B, and B-B 

rotation (Table 2.7). These results reflect that a change to conservation tillage had a 

greater impact on C sequestration rates in continuous soybean or sorghum rotations. 

DISCUSSION 

Our results present differences in response to management practices, according 

to site location and previous and current management. The impact of tillage was 

reflected at the soil surface (0-5 cm) where SOC was greater under NT than under CT 

at all sites evaluated (Table 2.2, Fig. 2.1a). The differences between NT and CT were 

less at deeper depths (5-15 and 15-30 cm) (Fig 2.1b, c). Several authors have found 

that the tillage impact is confined to the soil surface (Six et al.,1999; West and Post, 

2002; Deen and Kataki, 2003; Fabrizzi et al., 2003; Mikha and Rice, 2004; Wright and 

Hons, 2004, 2005a,b). Results from our research showed the positive impact that 

reduced tillage and no-tillage systems have on SOC accumulation. The limited soil 

disturbance and better aggregation (McVay et al., 2006) under these systems could 

explain the greater C storage with respect to CT systems.  

When all the soil layers were combined (0-15 or 0-30 cm), there were no 

significant differences in SOC contents between tillage systems, except at the 

Manhattan site, although in most cases NT tended to result in greater SOC content (Fig. 

2.2 and 2.3). At the Manhattan site, NT and RT had similar SOC contents, but values 

were significantly greater than those of CT at both depths. Previous researchers have 

reported similar positive gains with no-tillage management (Cambardella and Elliot, 
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1994; Six et al., 1999; Fabrizzi et al., 2003). However other studies found no increase in 

SOC contents under NT systems (Angers et al., 1997; Franzluebbers et al., 1999; 

Needelman et al., 1999; Puget and Lal, 2005; Sainju et al., 2006). Explanations for the 

lack of NT response for SOC are high initial content of SOC, high clay content, fine-

textured and poorly drained soils, less crop residue returns to the soil, and reduced 

decomposition in cold-wet soils. Time is another factor for SOC (Needelman et al., 

1999), however our studies were conducted at long-term sites that had been managed 

for 16 yr or more. 

Crop yields under NT were similar or lower than under CT or RT except at the 

Tribune and Manhattan site (Table 2.8). The lower yields might explain the lower 

response in SOC for NT at the Hays and Parsons sites. The increase in SOC seems to 

be related to less decomposition and greater physical protection of the C under NT 

systems (Mikha and Rice, 2004) since C inputs were generally the same or less with 

no-tillage systems. 

One concern comparing different tillage systems is redistribution of SOC to 

shallower depths in NT with greater SOC in CT systems at deeper depths. Our results 

indicated that there was no redistribution of C among tillage systems. At 0-30 cm NT 

had a greater, but not significant C mass than CT, which is mainly due to the increase of 

2 to 6% C under NT with respect to CT at 0-5 cm. There were no differences in SOC 

mass at 15-30 cm except at Hays. Our results are in accord with those reported by Frye 

and Blevins (1997), who found greater SOC under NT systems at 0-30 cm after 20 yr, 

with most of this C increase observed at 0-5 cm, however they observed greater SOC in 

NT at 5-15 and 15-30 cm. The authors mentioned that the increase in SOC at depth 
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under NT could be related to inputs from crop roots. Olson et al. (2005) reported greater 

SOC under NT than under CT at down to 75 cm; all depths evaluated showed an 

increase of SOC compared with CT. 

The negative C sequestration rates under CT and RT at Hays indicate a loss of C 

from the system, whereas the rate under NT was positive (0.020 Mg C ha-1 yr-1). 

Thompson and Whitney (2000) for the same experiment reported no significant change 

in SOM after 30 yr, suggesting that the buildup or depletion was very slow because of 

the rotation and low annual precipitation for this area. The lower rates of C 

sequestration observed under NT might be explained by the presence of bare fallow in 

the rotation and the sub-optimal N fertilization (67 kg N ha-1), which probably reduced 

the potential crop yield, and therefore the amount of residue returned to the soil.  

Land use history is important when evaluating the effect of management on soil 

C (Paustian et al., 1997). At the Tribune site, all tillage systems had a negative C 

sequestration rate, but the loss of C was less under NT (4%) than under RT (7%) or CT 

(9%). This experiment was initiated in native prairie sod, thus having a better initial soil 

C condition than the other experiments, which had been under cultivation before the 

establishment of the tillage systems. Similar results were reported for a long-term 

experiment in Kentucky initiated in a native sod, in which the loss of C in the early years 

was less under no-tillage management (9%) than under conventional tillage (15%) for a 

continuous corn (Zea mays)-winter cover crop rotation (Frye and Blevins, 1997). In the 

experiment at Kentucky, SOC content after 20 yr was similar for CT, and greater under 

NT compared with SOC of the native sod. Our results showed that, even with the 

introduction of NT, after 16 yr it was not possible to reach the same C values present in 
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the native prairie. Other authors also found similar results (Olson et al., 2005; Lyon et 

al., 1996). 

Inclusion of bare fallow in the rotation had a negative effect on the buildup of 

SOC. The intent of the fallow is to accumulate soil water for plant growth, but during this 

period, increased soil water supports, microbial activity and decomposition of soil 

organic matter while no plant material is added to the soil (Halvorson et al., 2002). This 

scenario results in a net loss of soil C. West and Post (2002) reported no significant 

increase in SOC for a change from CT to NT under wheat-fallow rotations. In the 

northern Great Plains, a change from crop-fallow to more intensive systems can have a 

positive impact on C sequestration and farm profitability (Peterson et al., 1998; 

Halvorson et al., 2002; Sherrod et al., 2003). Several studies have mentioned that an 

intensification of the rotation by including more crops are needed to increase and 

maintain SOC stocks (Russell et al., 2005; Varvel, 2006; Sherrod et al., 2003; 

Halvorson et al., 2002; Campbell et al., 2005; Machado et al., 2006). 

Nitrogen fertilization significantly affected C sequestration rates where the 

highest rate of N application had the greatest C sequestration rates, which can be 

attributed to greater amount of residues produced with increased N. These results are in 

accord with those reported by Nyborg et al. (1995) and Halvorson et al. (1999), however 

Halvorson et al. (2002) reported that N fertilization had little effect on C sequestration, 

even when the amount of residue returned increased with N fertilization. 

Crop rotations that included wheat or sorghum had the greatest C sequestration 

rates. Soybean monoculture had a net loss of C from the system. The rotation effect 

could be related to residue quality. Wheat residues have a higher C/N ratio and lower 
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turnover rates compared with sorghum and soybean residues (Wright and Hons, 

2005a). Continuous soybean generally results in less SOC (Studdert and Echeverría, 

2000; Wright and Hons, 2004). Carbon sequestration rates under W-B and W-W were 

similar or greater than those reported by Lal et al. (1998, 1999), which averaged 0.20 

Mg C ha-1 yr-1 for an improvement in crop rotation management, and by West and Post 

(2002), who also reported an average mean C rate of 0.20 Mg C ha-1 yr-1, excluding 

changes from continuous corn to a corn-soybean rotation.   

The Intergovernmental Panel of Climate Change (IPCC) has developed 

guidelines to determine the National Greenhouse Gas Inventory through the estimation 

of emissions and sinks of GHG. They have recommended coefficients to estimate soil C 

stocks by different agricultural land-use and management practices. The IPCC suggests 

a tillage factor of 1.10 for NT and 1.05 for RT compared to CT, at 0-30 cm, to estimate 

the potential to sequester C. Our factor was 1.14 for NT, and 1.08 for RT at 0-30 cm 

(Fig. 2.3).  Adopting reduced tillage, results in an increase in SOC about half of that 

obtained under NT systems. West and Post (2002) found values similar to our results 

(1.16 for CT to NT).  

To determine temporal changes in SOC stocks, Izaurralde et al. (2001) described 

two alternatives for selecting the control; one considers SOC at time-zero, followed by 

sampling of SOC at another time, and the second is to measure SOC at the same time 

between the new practices with respect to the conventional management. Our data 

reflect the variability in response to management on the calculation of the C 

sequestration rates (Izaurralde and Rice, 2006); thus, both the baseline and the change 
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in practices should be reported. McGill et al. (1996) concluded that both ways to 

calculate C were important to monitor soil C sequestration for determining soil C sinks. 
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Figure 2-1. Soil organic carbon (SOC) at 0-5, 5-15, and 15-30 cm as a result of changing from conventional tillage (CT) to 

reduced tillage (RT) or no-tillage. Dashed line indicates 1:1 relationship.
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Figure 2-2. Soil organic carbon (SOC) at 0-15 cm as a result of changing from conventional tillage (CT) to reduced tillage 

(RT) or no-tillage.(NT). Dashed line indicates 1:1 relationship. 
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Figure 2-3. Soil organic carbon (SOC) at 0-30 cm as a result of changing from conventional tillage (CT) to reduced tillage 

(RT) or no-tillage (NT). Dashed line indicates 1:1 relationship.
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Table 2-1. Description of the experimental sites. 

 

Site Kansas 
region Soil Type Yr. after 

initiation Precipitation Clay Silt Sand 

   years mm ..……....%……....... 

Tribune ‡ Southwest Aridic 
Argiustolls 16 421 24 60 

Parsons† Southeast Mollic 
Albaqualfs 20 1014 13 68 

Manhattan† Northeast Cumulic 
Haplustolls 29 813 20 71 

Hays† North 
Central 

Typic 
Argiustolls 37 578 27 63 

16 

19 

9 

10 

 
† Data for particle size distribution were obtained from McVay et al. (2006). 

‡ Data for particle size distribution were obtained from Espinoza (2000). 
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Table 2-2. Soil organic carbon (SOC) under conventional tillage (CT), reduced tillage 

(RT), and no-tillage (NT), and native prairie for each experiment. 

 49

 

Site Depth SOC 
 ……cm…. ………………..Mg C ha-1…………. 
  CT RT NT Native Prairie

Tribune 0-5 8.8 b† 9.9 a 10.5 a 11.5 

 5-15 17.6 17.4 17.5 17.1 

 15-30 20.3 19.8 20.8 22.5 

 0-15 26.5 27.2 28.0 28.6 

 0-30 46.7 47.1 48.8 51.1 
      
ys 0-5 7.6 b 7.2 b 8.6 a  

 5-15 15.4 13.7 13.5  

 15-30 19.4 a 16.9 b 16.3 b  

 0-15 22.9 20.9 22.2  

Ha

 0-30 42.3 37.8 38.5  
      
ons 0-5 8.2 b 8.4 b 11.3 a  

 5-15 14.0 13.6 12.7  

 15-30 15.3 15.5 15.9  

 0-15 22.2 22.0 23.9  

Pars

 0-30 37.5 37.5 39.9  
      

ttan 0-5 7.7 c 9.3 b 11 a  

 5-15 16.7 b 18.1 a 17.4 b  

 15-30 22.4 b 24.2 a 22.5 b  

 0-15 24.4 b 27.4 a 28.4 a  

Manha

 0-30 46.8 b 51.6 a 50.9 a  

      
† Diffe
depth (

rent letters represent significant differences between tillage systems at each 
P<0.05).  



Table 2-3. Effect of different crop rotations, continuous soybean (B-B), continuous sorghum (S-S), sorghum-soybean (S-

B), wheat-soybean (W-B), and continuous wheat (W-W), on soil organic carbon (SOC) in Manhattan experiment. 

 

Site Depth SOC 

 ……cm……. ………………..Mg C ha-1…………. 
  B-B S-S S-B W-B W-W 

Manhattan 0-5 6.7 d† 9.5 b 9.5 b 10.3 ab 10.6 a 

 5-15 14.4 d 16.4 c 16.6 c 18.7 b 20.9 a 

 15-30 20.5 b 22.1 b 22.1 b 25.2 a 25.3 a 

 0-15 21.1 d 25.9 c 26.1 c 29.0 b 31.5 a 

 0-30 41.6 d 48.0 c 48.2 c 54.2 b 56.8 a 

† Different letters represent significant differences between crop rotations at each depth (P<0.05).  
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Table 2-4. Carbon sequestration rate (C rate) and C sequestration rate as difference with CT, under conventional tillage 

(CT), reduced tillage (RT), and no-tillage (NT); with 0, 22, 45, or 67 kg N ha-1 at 0-15 cm soil depth in Hays experiment. 

 

 
 

Treatments C rate (NT or RT) - CT 

 .........Mg C ha-1 yr-1........ 

CT -0.055 b†  

RT -0.036 b -0.055 

NT 0.020 a -0.021 

   

0-N -0.039 b‡ -0.038 

22-N -0.039 b -0.045 

45-N -0.017 ab -0.051 

67-N 0.001 a -0.019 

Source ……...….P values…..…..….. 

Tillage (T) 0.0175 0.3496 

Nitrogen (N) 0.0596 0.7475 

T x N 0.9108 0.9362 

† Different letters represent significant differences between tillage systems (P<0.05). 
    ‡ Different letters represent significant differences among N rates (P<0.05). 
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Table 2-5. Carbon sequestration rate (C rate) and C rate as difference with CT, under conventional tillage (CT), reduced 

tillage (RT), and no-tillage (NT) at 0-15 and 0-30 cm soil depth in Tribune experiment.  

 

Treatments C rate (RT orNT) -CT C rate (RT or NT) -CT

 ..............Mg C ha-1 yr-1.......... ..............Mg C ha-1 yr-1............ 

 ......... 0-15 cm........ ......... 0-30 cm........ 

CT -0.135   -0.273   

RT -0.084  0.052  -0.250  0.024  

NT -0.036  0.100 -0.138  0.135  

Source ……………………….P values……..……………………. 

Tillage (T) 0.3478 0.4162 0.2569 0.1308 
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Table 2-6. Carbon sequestration rate (C rate) and C rate as difference with CT, under conventional tillage (CT), reduced 

tillage (RT), and no-tillage (NT), with 0, or 140 kg N ha-1 at 0-15 and 0-30 cm soil depth in Parsons experiment.  

 

 

Treatments C rate (RT or NT) -CT C rate (RT or NT) -CT

 .............Mg C ha-1 yr-1............ ............Mg C ha-1 yr-1......... 

 ......... 0-15 cm........ ......... 0-30 cm........ 

CT 0.098  0.184  

RT 0.166 -0.007 0.277 0.002 

NT 0.230 0.088 0.327 0.118 

     

0-N 0.130 0.052 0.210 b† 0.075 

140-N 0.199 0.029 0.315 a 0.046 

Source ……………………….P values……..……………………. 

Tillage (T) 0.1400 0.2443 0.1619 0.2422 

Nitrogen (N) 0.1029 0.7327 0.0138 0.7267 

T x N 0.4498 0.7544 0.1125 0.7356 

† Different letters represent significant differences between N rates (P<0.05).  
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Table 2-7.  Carbon sequestration rate (C rate) and C rate as differences with CT, under conventional tillage (CT), reduced 

tillage (RT), and no-tillage (NT) under continuous sorghum (S-S), sorghum-soybean (S-B), continuous soybean (B-B), 

wheat-soybean (W-B), and continuous wheat (W-W) rotation at 0-15 and 15-30 cm soil depth in Manhattan experiment. 
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Treatments C rate (RT or NT) -CT C rate (RT or NT) -CT 

 Mg C ha-1 yr-1 Mg C ha-1 yr-1 Mg C ha-1 yr-1 Mg C ha-1 yr-1 

 ......... 0-15 cm........ ......... 0-30 cm........ 

CT 0.008 b†  0.044 b†  

RT 0.109 a 0.101 0.188 a 0.145 

NT 0.143 a 0.136 0.183 a 0.139 

     

B-B -0.107 d‡ 0.154 -0.166 d‡ 0.162 

S-S 0.059 c 0.134 0.084 c 0.201 

S-B 0.064 c 0.121 0.089 c 0.181 

W-B 0.163 b 0.106 0.294 b 0.099 

W-W 0.254 a 0.078 0.389 a 0.068 

Source ……………………….P values……..……………………. 

Rotation (R) <.0001 0.3544 <.0001 0.4382 

Tillage (T) <.0001 0.1586 <.0001 0.8801 

 R x T 0.4847 0.4593 0.4800 0.4702 

† Different letters represent significant differences among tillage at each depth (P<0.05). 
‡ Different letters represent significant differences among crop rotations at each depth (P<0.05). 



 

Table 2-8. Average grain yield for conventional tillage (CT), reduced tillage (RT) and no-

tillage (NT) at Tribune, Hays, Parsons, and Manhattan. 

 

 

*Data provided for A. Schlegel. Average 1991-2001 
**Data provided for C. Thompson. Average 1975-2002  
***Data provided for D. Sweneey. Average 1983-2001 
****Data provided for D. Peterson. Average 1974-2003 

 

Site Yield 

 ………………..Mg  ha-1…………. 
 CT RT NT 

Tribune    

W-S-F: sorghum 2.61 4.22 4.73 

W-S-F: wheat 2.43 2.85 3.03 

    

Hays    

W-S-F: sorghum 4.03  4.02  3.89  

W-S-F: wheat 2.41  2.37  2.15  

    

Parsons    

S-B: sorghum 3.62 3.46 2.71 

S-B: soybean  1.49 1.51 1.48 

    

Manhattan    

S-S 5.40 5.40 5.21 

S-B- sorghum 5.85 5.98 6.15 

S-B- soybean 2.15 2.22 2.49 

B-B 1.75 1.75 1.95 

W-B- wheat 3.16 3.23 3.09 

W-B- soybean 2.42 2.49 2.62 

W-W 3.03 2.89 2.29 
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CHAPTER 3 - LONG-TERM EFFECTS OF CROP AND SOIL 
MANAGEMENT ON AGGREGATE-ASSOCIATED C AND N 

 

ABSTRACT 

Management practices can affect soil aggregation and consequently, soil organic 

matter storage. The objective of our study was to determine the influence of different 

long-term management practices (tillage, N fertilization, and crop rotations) on soil 

aggregation and aggregate-associated C and N in different locations in Kansas. Four 

cropping long-term experiments covering a range of climate conditions and 

management systems were sampled for SOC. All the sites evaluated (Tribune, 

Manhattan, Parsons, Hays) included three different tillage systems: conventional tillage 

(CT), reduced tillage (RT) and no-tillage (NT). Nitrogen fertilization was evaluated at 

Parsons (0 and 140 kg N ha-1) and at Hays (0, 22, 45, and 67 kg N ha-1). Crop rotation 

effects were evaluated for continuous wheat (W-W), continuous sorghum (S-S), 

continuous soybean (B-B), wheat-soybean (W-B), and sorghum-soybean (S-B) at 

Manhattan. Soil samples were taken at 0-5 cm depth. Water-stable aggregates (WSA) 

were separated using a wet sieving method. Total C and N contents were determined 

by dry combustion. Cultivation decreased the amount of macroaggregates and 

increased the microaggregate fraction. Rotations also affected aggregation and C and N 

associated with aggregates. Total C was greater in the macroaggregate fraction (>250 

μm) under NT continuous wheat and NT continuous sorghum compared to all other 

tillage and crop sequence combinations. Continuous soybean under CT had the lowest 
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total C in the macroaggregate fraction. The increase in the C associated with 

macroaggregates reflects the increase in soil C related to management at each site. 

 

Keys words: aggregates, tillage, fertilization, crop rotation 
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INTRODUCTION 

Management practices that reduce C emissions to the atmosphere have been 

suggested as one alternative to reduce atmospheric levels of CO2. Some of these 

practices include reduced tillage intensity, a reduction in bare fallow periods, intensive 

rotations, winter cover crops, and water management (Lal et al., 1998; Paustian et al., 

2000, West and Post, 2002; Lal, 2004; Post et al., 2004).  More knowledge is needed 

on the effect of these management practices on soil aggregation and its relationship 

with C sequestration across climate and soil types. 

Soil structure influences the soil environment through its influence on soil water 

retention and movement, and aeration, which affects nutrient cycling, root penetration 

and ultimately crop yield. Soil structure also affects water quality due to its influence on 

soil erosion, crusting, and runoff (Bronick and Lal, 2005). Soil structure is also involved 

in the protection of soil organic C (SOC) and microorganisms (Six et al., 2004).  

Aggregation is a key process defining soil structure.  Oades (1984) modified a 

theory on soil aggregate formation, where temporary binding agents, such as roots and 

hyphae hold macroaggregates together, with microaggregates forming inside 

macroaggregates through the interaction of microbial mucilages and clay particles. This 

theory has been corroborated by others (Beare et al., 1994; Jastrow, 1996; Angers et 

al., 1997; Six et al., 1998) suggesting a redistribution of C, which is first incorporated in 

macroaggregates and then into new microaggregates.  Bossuyt et al. (2002) found that 

short and long-term C stabilization was higher under NT systems with respect to CT, 

and that stabilization occurred at the microaggregate level. 
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Continuous cultivation and intensive tillage result in loss of aggregate stability 

and SOC (Tisdall and Oades, 1982; Elliott, 1986). Tillage exposes more SOC to 

microbial activity due to the disruption of soil aggregates (Beare et al., 1994b; Paustian 

et al., 1997) and leads to the loss of C-rich macroaggregates and an increase in C- 

depleted microaggregates (Six et al., 2000b). Tillage also results in soil mixing and 

fragmentation of the crop residue, thus, affecting soil structure and soil organic matter 

dynamics (Balesdent et al., 2000), resulting in a reduction of the stability and amount of 

macroaggregates (Tisdall and Oades, 1982; Elliott, 1986; Mikha and Rice, 2004, McVay 

et al., 2006). No-tillage results in greater amounts of macroaggregates, and also slower 

macroaggregate turnover, thus fostering greater stabilization of soil C (Six et al., 1998, 

1999, 2000b; Denef et al., 2004). No-tillage also promotes fungal biomass, which 

contributes to the formation of macroaggregates (Beare et al., 1993; Frey et al., 1999; 

Watson and Rice, 2004). 

Plant species can directly affect aggregation through differences in root structure 

and distribution (Angers and Caron, 1998).  Roots can affect the proportion of 

macroaggregates (Materechera et al., 1994; Denef et al., 2002), where roots increase 

the fragmentation of the soil and the formation of failure zones within macroaggregates. 

Roots also compress the surrounding soil when they penetrate reducing the porosity 

and resulting in pore enlargement and formation (Angers and Caron, 1998).  Root 

exudates act as binding agents through the production of various mucilages that 

enhance aggregation (Six et al., 2004). Associated with roots, vesicular-arbuscular 

mycorriza, present in many plants, enhance aggregate formation and stabilization 

(Miller and Jastrow, 1990; Jastrow et al., 1998). 
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Plant species can indirectly affect aggregation by the amount of plant residue 

returned to the soil, its biochemical composition, and C released from the growing roots, 

thus affecting microbial composition and activity (Bronick and Lal, 2005; Rillig et al., 

2002; Rice and Angle, 2004). Martens (2000) found differences in aggregation after 

soybean, compared to corn and native prairie. After soybean, aggregation decreased 

compared with corn and native prairie which the author attributed to a lower phenolic 

acid content of soybean and a lower amount of residue returned to the soil. 

Wright and Hons (2004, 2005a,b) reported the effect of different cropping 

systems on soil aggregation, where aggregation was greater under wheat than sorghum 

or soybean. The differences were attributed to differences in crop residue production 

and residue quality. For example, cropping sequences that included sorghum or 

soybean were more readily decomposed than wheat residue (Wright and Hons, 2004). 

While tillage and crop rotations have often been examined for their effects on 

aggregation, there has not been a systematic analysis of the interactive effects of 

tillage, crop rotation, and N on aggregation.  Thus, the objective of our study was to 

determine the influence of different long-term management practices of tillage, N 

fertilization, and crop rotations on soil aggregation and aggregate-associated C and N in 

different locations in Kansas. 
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MATERIALS AND METHODS 

Site description 

The Hays experiment is located in central Kansas (38º 51’N, 99º 20’W). This 

experiment was initiated in 1965 on a Harney silt loam soil (fine, smectitic, mesic Typic 

Argiustoll). The 30-yr average annual precipitation was 533 mm with an annual mean 

temperature of 11.9 ºC. The crop rotation was wheat (Triticum aestivum L.) -grain 

sorghum (Sorghum bicolor (L.) Moench)-fallow, with three tillage systems: conventional 

tillage (CT), reduced tillage (RT), and no-tillage (NT). Conventional tillage consisted of 

using tools such as disk, one-way plow, and mulch treader. Reduced tillage included V-

blade, sweeps or a rod weeder.  No-tillage consisted of planting directly into the residue. 

From the beginning of the experiment to 1975, N rates were 0 and 45 kg N ha-1 yr-1. 

Since 1975 four N rates were evaluated, 0 (0-N), 22 (22-N), 45 (45-N), and 67 (67-N) kg 

N ha-1 yr-1. Nitrogen fertilizer was applied as ammonium nitrate in the previous fall for 

June sorghum planting and in August prior to September wheat planting. The 

experimental design was split-plot with four replications, with tillage as the main plot and 

N as sub-plot 

The Tribune experiment, initiated in 1988, was located in western Kansas (38º 

30’N, 101º 41’W). The 30-yr average annual precipitation is 422 mm, with an annual 

mean temperature of 11.3 ºC.  The soil was classified as Richfield silt loam (fine-

smectitc, mesic Aridic Argiustolls). The crop rotation was wheat-grain sorghum-fallow, 

with three tillage systems: CT, RT, and NT. Conventional tillage consisted of three or 

four operations per year with a sweep plow between crop harvest and planting the next 

crop. The RT system used a combination of tillage (primarily sweep plow) and 
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herbicides for weed control during fallow.  The number of tillage operations with RT was 

approximately 50% of CT. No-tillage consisted of planting directly into the residue. 

Nitrogen fertilizer as urea ammonium nitrate (UAN) was broadcast applied at 67 kg N 

ha-1 yr-1 to 112 kg N ha-1 yr-1, depending on the year or crop. Native sod was included 

as part of the experimental design, which represented the natural vegetation types of C3 

and C4 grass, with the dominant species being buffalograss (Buchloe dactyloides). The 

treatments were arranged in a randomized complete block design with four replications. 

The Parsons experiment is located in southeastern Kansas (37º 21.02’N, 95º 

17.13’W). The 30-yr average annual precipitation is 1016 mm, with an annual mean 

temperature of 13.7ºC. This experiment was initiated in 1983 on a Parsons silt loam soil 

(fine, mixed, active, thermic Mollic Albaqualfs). The crop rotation was grain sorghum-

soybean (Glycine max (L.) Merrill), with three tillage systems (conventional tillage, 

reduced tillage, and no-tillage), and two N rates, 0 (0-N) and 140 kg N ha-1 yr-1 (140-N). 

Nitrogen fertilizer was urea-ammonium nitrate (UAN) solution. Conventional tillage 

included chisel, disk, and field cultivator. Reduced tillage included disk and field 

cultivator.  No-tillage consisted of planting directly into the residue and using chemical 

weed control. The experimental design was split-plot with four replications, with tillage 

as the main plot and N as sub-plot. 

The Manhattan experiment, initiated in 1974, was located on the Kansas State 

University Agronomy Farm, Manhattan (Riley County; 39º 07’N, 96º 37’W). Soils were 

Muir silt loam (fine-silty, mixed, mesic Cumulic Haplustoll) and Reading silt loam (fine, 

mixed, mesic Typic Argiudoll). The 30-yr average annual precipitation was 813 mm, 

which was mainly concentrated in the spring-summer period, with an annual mean 
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temperature of 11.3 ºC. Crop rotation and tillage systems were evaluated in this 

experiment. The experimental design was split-plot with four replications, with rotation 

as the main plot and tillage as sub-plot. The three crops, soybean (B), grain sorghum 

(S), and winter wheat (W) were combined in five rotations: continuous sorghum (S-S), 

sorghum-soybean (S-B), continuous soybean (B-B), wheat-soybean (W-B), and 

continuous soybean (B-B). The three tillage treatments were CT, RT, and NT systems. 

Conventional tillage included chisel, disk, and field cultivator. Reduced tillage included 

disk and field cultivator.  No-tillage consisted of planting directly into the residue and 

chemical weed control. A blend of urea and diammonium phosphate fertilizer providing 

112 kg N ha-1 and 11.3 kg P ha-1 was broadcast applied prior to the last tillage operation 

before planting of each crop and year.   

Soil Sampling  
Soil samples were taken from each plot at 0- to 5 cm depth. A sterile 

polypropylene bags (3.78 L) were filled with soil samples collected randomly from each 

plot using a 2-cm diam. Oakfield soil-probe (Forestry Suppliers, Inc., Jackson, MS). 

Samples were collected in March 2003 (before planting) on the sorghum rotation phase 

for the Hays experiment for all tillage in the 0-N and 67-N treatments.  For Parsons, 

samples were taken in December 2003 after sorghum harvest. Tribune samples were 

collected in April 2004 on the sorghum rotation phase and native sod. Soil samples from 

Manhattan were taken in May 2004, after soybean and sorghum planting and before 

wheat harvesting. Soil samples were passed through 4-mm sieve, roots removed, and 

stored at 4ºC until use. 
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Aggregate-Size Distribution 

Water-stable aggregates (WSA) were separated using a wet sieve method 

described by Yoder (1936) with modifications by Mikha and Rice (2004). Soil was air-

dried and 50 g placed on the top of the sieve of each nest. To slake the air-dried soil, 1 

L of distilled water was rapidly added until the soil was covered with water. Soils were 

submerged in water for 10 min following by 10 min of wet sieving. Four aggregate size 

classes were collected from each treatment >2000 or 1000, 250-2000 or 250-1000, 53-

250, and 53-20 μm diam. Large macroaggregates were defined as >2000 μm, small 

macroaggregates 250-2000, microaggregates 250-53 μm, and silt plus clay by 20-53 

μm size fraction. For Manhattan site we used a 1000 μm sieve instead of 2000 μm sieve 

Sand-free WSA was measured using a subsample of intact aggregates (2-5g) and 

combined with fivefold volume (10-25 mL) of 5 g L-1 sodium hexametaphosphate, left 

overnight and shaken on an orbital shaker at 350 RPM for 4h. The dispersed organic 

matter and sand was collected on a 53 μm mesh sieve, washed with deionized water, 

and dried at 105ºC for 24 h, and the aggregate weights were recorded for estimating the 

sand-free correction. 

Total C and N 
Soil samples were dried and ground to a fine powder using a mortar and pestle. 

Total C and N contents were determined by dry combustion using a Carlo Erba C/N 

Analyzer (Carlo Erba Instruments, Milano, Italy). Calculations for total C and N in 

different aggregate-size fraction were adjusted for sand-free water stable aggregates. 
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Statistical Analysis 

Analysis of variance was performed using SAS PROC MIXED (SAS Institute, 

2002) to assess differences between treatments. Results were considered statistically 

significant at P< 0.05 unless noted otherwise.  

RESULTS 

Sand-free water stable aggregates 

Sand-free WSA were significantly affected by aggregate size class and the 

interaction of tillage x aggregate size (P<0.01) at the Tribune site (Table A.1).  Native 

prairie had significantly greater amounts of macroaggregates compared with the 

cropped treatments. Of the cropped systems, NT and RT systems had greater 

macroaggregates than the CT system; indicating reduced tillage was able to maintain a 

higher amount of macroaggregates (Fig. 3.1). This increase in the largest size 

aggregates was followed by a corresponding decrease in the microaggregate fraction 

under the prairie, and NT and RT systems.  

At the Parsons site, a significant Tillage x Aggregate size interaction (P<0.03) 

was found in the distribution of the aggregates.  No-till had similar amounts of large 

macroaggregates than RT, but both NT and RT were greater than CT (Table A.2, Fig. 

3.2).  No-till had greater amounts of the small macroaggregates than RT and CT with no 

difference between RT and CT.  In the microaggregate fraction, CT and RT had higher 

amounts than in the NT system (Fig. 3.2). 

At the Hays site, a significant Tillage x N x Aggregate size (P<0.05) interaction 

was found in the distribution of the sand-free WSA (Table A.3). For the large 

macroaggregates and the silt plus clay size fraction no differences were found among 
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treatments (Fig. 3.3). For the small macroaggregates, NT and RT with N fertilization had 

a greater amount of WSA than all other treatments (Fig. 3.3). The NT 67-N treatment 

had the least amount of microaggregates.  

At the Manahattan site, aggregates were significantly affected by a Tillage x 

Rotation x Aggregate size interaction (P<0.01) (Table A.4).  For the macroaggregate 

fraction (>250 μm) NT continuous wheat had the greatest amounts of sand-free WSA 

(Table A.5, Fig. 3.4), with the corresponding lowest values in the macroaggregate 

fraction. 

Total C and N concentrations 
At Tribune, the C concentration in the macroaggregates was greater with the CT 

system; however, the native prairie had a higher C concentration in the microaggregate 

fraction (Table A.6, Fig. 3.5). No differences between treatments were observed in the 

silt plus clay fraction. No significant differences were found in the N concentration of the 

aggregates at any size fraction (Table A.7, Fig. 3.6). 

At Parsons, the C and N concentrations of the aggregates were significantly 

affected by the interactions of Tillage x Aggregate Size and N x Aggregate size (P<0.05) 

(Table A.8, A.9). For the large macroaggregates, the C concentration was greater under 

NT with respect to RT and CT, which did not differ from each other (Fig. 3.8). For the 

small macroaggregates, RT had greater concentrations of C than NT and CT. No 

differences among tillage were found in the microaggregate and silt plus clay fractions 

(Fig. 3.7). Nitrogen fertilizer significantly increased the C concentration of the 

macroaggregates, with no changes in the microaggregates (Table A.8. Fig. 3.8). No-

tillage significantly increased the N concentration of the large macroaggregates, but 
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there were no differences in the other size classes (Table A.9, Fig. 3.9). Similar to C, N 

fertilizer significantly increased the N concentration of the macroaggregates with no 

differences in microaggregates (Table A.9, Fig. 3.10). 

At Hays, the concentration of C and N of the aggregates was similar among 

treatments (Table A.10, A.11). 

At Manhattan, the C concentration was significantly affected by the interactions 

of Tillage x Aggregate size and Rotation x Aggregate size (P<0.05) (Table A.12). 

Wheat-soybean and continuous sorghum had higher C concentrations in the 

macroaggregates. No differences in C concentrations were found on the smallest size 

fraction (Fig. 3.11). Averaging across rotations, NT had higher C concentrations than 

CT in the large macroaggregate fraction (Fig. 3.12).  The N concentrations were not 

significantly affected by treatments (Table A.13). The large macroaggregate fraction had 

the highest N concentrations (Table A.13). 

Total C and N mass 
 For Tribune, total C mass was significantly greater under native prairie 

compared with NT and RT, which both were similar and greater than CT (Fig. 3.13). For 

the microaggregate fraction, the CT system had significantly more total C mass than 

RT, NT and native prairie (Table A.14, Fig. 3.13). A similar tendency was observed in 

total N mass in each size fraction (Table A.15). No differences were observed in the silt 

plus clay fraction for both C and N. Total C and N mass followed the same pattern of 

sand-free WSA distribution, which drives the response of the different tillage on total C 

and N mass. 
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At Parsons, total C and N mass were significantly affected by the interactions of 

Tillage x Aggregate size and Nitrogen x Aggregate size (P<0.05) (Table A.16, A.17). 

Total C and N mass in the large macroaggregates were significantly greater with NT 

compared with RT and CT (Fig. 3.14, 3.15).  For the small macroaggregates, NT had 

similar total C mass than RT but significantly greater than CT; however, NT had greater 

total N mass than RT which was significantly greater than CT.  Conventional tillage and 

RT had significantly greater total C mass in the macroaggregates than NT, with no 

differences at the silt plus clay fraction. Nitrogen fertilizer application only increased total 

C and N mass associated with the small macroaggregates (Fig. 3.16,3.17).  

At Hays, total C and N mass was significantly affected by the interaction of 

Tillage x N x Aggregate size (P<0.05), where there were no differences in the large 

macroaggregates and silt plus clay fraction (Table A.18, A.19 ; Fig 3.18, 3.19). 

However, in the macroaggregates, NT 67-N had the greatest total C mass than the 

other treatments (Fig. 2.18).  

At Manhattan, total C and N mass were significantly affected by the interaction of 

Tillage x R x Aggregate size (P<0.05) (Table A.20, A.21).  Continuous wheat and 

continuous sorghum under NT systems had the greatest total C and N mass while 

continuous soybean showed the lowest values in the macroaggregates, with 

corresponding decrease in the microaggregates (Fig. 3.20, 3.21).  

DISCUSSION  

In general, our results showed that NT systems increased the proportion of 

macroaggregates (>250 μm). Several authors have also reported an increase in the 
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proportion of macroaggregates under NT systems (Beare et al., 1994a; Mikha and Rice, 

2004; Wright and Hons, 2005a). 

Tillage can affect aggregation in different ways by: 1) exposing the aggregates to 

more frequent wet-dry cycles thereby increasing the susceptibility of aggregates to 

disruption; 2) increasing SOC decomposition; and 3) changing microbial communities, 

especially reducing fungal growth and proliferation that contribute to macroaggregate 

formation (Six et al., 1998). 

Cultivation of native prairie reduced the mass of macroaggregates. Even no-

tillage was unable to maintain the level of macroaggregates characteristic of that in 

native prairie. Similar to our results, Elliott (1986) reported greater amounts of 

macroaggregates in native prairie than in cultivated soils. Tillage can decrease the 

length of the roots, and reduce fungi resulting in a decrease in aggregation (Tisdall and 

Oades, 1980). Greater fungal to bacterial ratio has been reported under NT than under 

CT systems (Beare, 1997; Frey et al., 1999; Doyle et al., 2004). 

A greater concentration of C and N associated with the macroaggregate fraction 

than in the microaggregate fraction was observed at all sites. In general, NT had greater 

C concentrations in the macroaggregate fraction, with no differences in the 

microaggregate and silt plus clay fraction. With tillage, soil aggregates are disrupted 

exposing SOC to microbial decomposition resulting in a loss of C-rich macroaggregates 

and an increase in C-depleted microaggregates (Six et al., 2000b). However, at 

Tribune, CT had greater C concentrations in the macroaggregates than the other 

cropped treatments and native prairie.  
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Nitrogen applications appear to increase the mass of macroaggregates and their 

C and N concentration.  This response is likely due to the greater yields and biomass 

returned to the soil.  Tillage seemed to negate the effect of N application.  

Plant species may affect soil aggregation. At Manhattan, we were able to 

evaluate the effect of crop type on the distribution and C concentrations of aggregates 

in different size classes. Wheat and sorghum increased total C mass in the 

macroaggregate fraction under NT while soybean had the lowest.  Tillage negated the 

effects of the crop type. Wright and Hons (2005a) reported greater aggregation with 

wheat than with sorghum and soybean, which they attributed to differences in the 

amount and quality of the residues. Wheat residue has a higher C/N ratio, and therefore 

lower decomposition rate than sorghum, and soybean (Franzluebbers et al., 1995b; 

Wright and Hons, 2005a). Wheat with a high C:N ratio can promote more fungi than 

soybean with a low C:N ratio. Martens (2000) suggested that the lower phenolic acid 

content of soybean might limit formation of macroaggregates.  

Overall, the C and N associated with the macroaggregates (250-2000 and >2000 

µm) tended to be most responsive to long-term management while the 20-53 µm 

fraction was the least affected by management. No-tillage systems increased the 

aggregate-associated C and N in the macroaggregates. Nitrogen application 

significantly increased C and N associated with the macroaggregates but this effect was 

reduced by tillage.  Wheat and sorghum increased aggregate-associated C and N with 

differences more pronounced under no-tillage. The increase in C associated with 

macroaggregates reflects the increase in soil C related with different management 
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practices.  Thus, for these soils, buildup and maintenance of macroaggregates seems 

to be one of the primary mechanisms for C retention in these agroecosystems. 

 71



REFERENCES 

Angers, D.A., and J. Caron. 1998. Plant-induced changes in soil structure: Processes 

and feedbacks. Biogeochem. 42:55-72. 

Angers, D.A., S. Recous, and C. Aita. 1997. Fate of carbon and nitrogen in water-stable 

aggregates during decomposition of 13C 15N-labelled wheat straw in situ. Eur. J. 

Soil Sci. 48:295-300. 

Balesdent, J., C.Chenu, and M. Balabane. 2000. Relationship of soil organic matter 

dynamics to physical protection and tillage. Soil Tillage Res. 53:215-230. 

Beare, M.H., B.R. Pohland, D.H. Wright, and D.C. Coleman. 1993. Residue placement 

and fungicide effects on fungal communities in conventional and no-tillage soils. 

Soil Sci. Soc. Am. J. 57:392-399. 

Beare, M.H., M.L. Cabrera, P.F. Hendrix, and D.C. Coleman. 1994b. Aggregate-

protected and unprotected organic matter pools in conventional tillage and no-

tillage soils. Soil Sci. Soc. Am. J. 58:787-795. 

Beare, M.H., P.F. Hendrix, and D.C. Coleman. 1994a. Water-stable aggregates and 

organic matter fractions in conventional and no-tillage soils. Soil Sci. Soc. Am. J. 

58:777-786. 

Bossuyt, H., J. Six, and P.F. Hendrix. 2002. Aggregate-protected carbon in no-tillage 

and conventional tillage agroecosystems using carbon-14 labeled plant residue. 

Soil Sci. Soc. Am. J. 66:1965-1973. 

Bronick, C.J., and R. Lal. 2005. Soil structure and management: A review. Geoderma 

124:3-22. 

 72



Denef, K., J. Six, R. Merckx, and K. Paustian. 2004. Carbon sequestration in 

microaggregates of no-tillage soils with different clay mineralogy. Soil Sci. Soc. 

Am. J. 68:1935-1944. 

Denef, K., J. Six, R. Merckx, and K. Paustian. 2002. Short-term effects of biological and 

physical forces on aggregate formation in soils with different clay mineralogy. 

Plant Soil 246:185-200. 

Elliott, E.T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native 

and cultivated soils. Soil Sci. Soc. Am. J. 50:627-633. 

Frey, S.D., E.T. Elliott, and K. Paustian. 1999. Bacterial and fungal abundance and 

biomass in conventional and no-tillage agroecosystems along two climatic 

gradients. Soil Biol. Biochem. 31:573-585. 

Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-

associated organic matter. Soil Biol. Biochem. 28:665-676. 

Jastrow, J.D., R.M. Miller, and J. Lussenhop. 1998. Contributions of interacting 

biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. 

Biochem. 30: 905-916. 

Lal, R. 2004. Agricultural activities and the global carbon cycle. Nutrient Cycling in 

Agroecosystems. 70:103-116. 

Lal, R., J.M. Kimble, R.F. Follett, and C.V. Cole. 1998. The potential of U.S. cropland to 

sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press, 

Chelsea, MI. p.1-128. 

Martens, D.A.  2000.  Management and crop residue influence soil aggregate stability. 

J. Environ. Qual. 29:723-727. 

 73



Materechera, S.A., J.M. Kirby, A.M. Alston, and A.R. Dexter. 1994. Modification of soil 

aggregation by watering regime and roots growing through beds of large 

aggregates. Plant Soil 160:57-66. 

McVay, K.A., J.A. Budde, K. Fabrizzi, M.M. Mikha, C.W. Rice, A.J. Schlegel, D.E. 

Peterson, D.W. Sweeney, and C. Thompson. 2006. Management effects on soil 

physical properties in long-term tillage studies in Kansas. Soil Sci. Soc. Am. J. 

70:434-438. 

Mikha, M.M., and C.W. Rice. 2004. Tillage and manure effects on soil and aggregate-

associated carbon and nitrogen. Soil Sci. Soc. Am. J. 68:809-816. 

Miller, R.M., and J.D. Jastrow. 1990. Hierarchy of root and mycorrhizal fungal 

interactions with soil aggregation. Soil Biol Biochem. 22: 579-584. 

Oades, J.M. 1984. Soil organic matter and structural stability: Mechanisms and 

implications for management. Plant Soil 76:319-337. 

Paustian, K., H.P. Collins, and E.A. Paul.1997. Management controls on soil carbon. 

p.15-49. In E.A. Paul et al. (ed) Soil organic matter in temperate agroecosystems: 

Long-term experiments in North America. CRC Press, Boca Ratton, FL. 

Paustian, K., J. Six, E.T. Elliott, and H.W. Hunt. 2000. Management options for reducing 

CO2 emissions from agricultural soils. Biogeochem. 18:147-163. 

Post, W.M., R. C. Izaurralde, J. D. Jastrow, B.A. McCarl, J.E. Amonette, V.L. Bailey, 

P.M. Jardine, T.O. West, and J. Zhou. 2004. Enhancement of carbon 

sequestration in the US soils. BioScience 54 (10) 895-908. 

Rice, C.W., and J.S. Angle. 2004. A role for genetically modified organisms in soil 

carbon sequestration. In Rosenberg et al. (ed.) Applications of biotechnology to 

 74



mitigation of Greenhouse Warming: Proceedings of the St. Michaels II Workshop, 

April 2003, Battelle Press. 

Rilling, M.C., S.F. Wright, and V.T. Eviner. 2002. The role of arbuscular mycorrhizal 

fungi and glomalin in soil aggregation: comparing effects of five plant species. 

Plant Soil 238:325-333. 

Six, J., E.T. Elliott, and K. Paustian. 1999. Aggregate and soil organic matter dynamics 

under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63:1350-1358. 

Six, J., E.T. Elliot, K. Paustian, and J.W. Doran. 1998. Aggregation and soil organic 

matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 

62:1367-1377. 

Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link 

between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil 

Tillage Res. 79:7-31. 

Six, J., K. Paustian, E.T. Elliott, and C. Combrink. 2000b. Soil structure and organic 

matter: I Distribution of aggregate size classes and aggregate associated carbon. 

Soil Sci. Soc. Am. J. 64:681-689. 

Tisdall, J.M., and J.M. Oades.1982. Organic matter and water-stable aggregates in soil. 

J. Soil Sci. 33:141-163. 

Tisdall, J.M., and J.M. Oades. 1980. The management of ryegrass to stabilize 

aggregates of a red-brown earth. Aust. J. Soil Res. 18:415-422. 

Watson, G., and C.W. Rice. 2004. Tillage and nitrogen effects on soil microbial 

community structure. Agronomy abstracts. ASA, Madison, WI. 

 75



 76

West, T.O., and W.M. Post. 2002. Soil organic carbon sequestration rates by tillage and 

crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 66:1930-1946. 

Wright, A.L., and F.M. Hons. 2004. Soil aggregation and carbon and nitrogen storage 

under soybean cropping sequences. Soil Sci. Soc. Am. J. 68:507-513. 

Wright, A.L., and F.M. Hons. 2005a. Soil carbon and nitrogen storage in aggregates 

from different tillage and crop regimes. Soil Sci. Soc. Am. J. 69:141-147. 

Wright, A.L., and F.M. Hons. 2005b. Tillage impacts on soil aggregation and carbon and 

nitrogen sequestration under wheat cropping sequences. Soil Tillage Res.  

84:67-75. 



0

5

10

15

20

25

30

35

40

45

50

20-53 53-250 250-2000 >2000

Aggregate size fractions (µm) 

Sa
nd

-fr
ee

 w
at

er
 s

ta
bl

e 
ag

gr
eg

at
es

 (g
 a

gg
re

ga
te

s 
10

0 
g

-1
 s

oi
l)

CT RT NT SOD

 
Figure 3-1. Distribution of sand-free water stable aggregates under conventional tillage (CT), reduced tillage (RT), no-

tillage (NT), and native prairie sod (SOD) for Tribune experiment. Error bars represent the standard error of the mean 

(n=4). 
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Figure 3-2. Distribution of sand-free water stable aggregates under conventional tillage (CT), reduced tillage (RT), no-

tillage (NT), for Parsons experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 3-3. Distribution of sand-free water stable aggregates under conventional tillage (CT), reduced tillage (RT), no-

tillage (NT), with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 in Hays experiment. Error bars represent the standard error 

of the mean (n=4).
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Figure 3-4. Distribution of sand-free water stable aggregates under conventional tillage (CT), reduced tillage (RT), no-

tillage (NT), in five crop rotations: continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum (S-S), sorghum-

soybean (S-B), and continuous soybean (B-B) for Manhattan experiment. Error bars represent the standard error of the 

mean (n=4). 
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Figure 3-5. Total C normalized to sand-free basis in each water stable aggregates under conventional tillage (CT), 

reduced tillage (RT), no-tillage (NT), and native prairie sod (SOD) for Tribune experiment. Error bars represent the 

standard error of the mean (n=4). 
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Figure 3-6. Total N normalized to sand-free basis in each water stable aggregates under conventional tillage (CT), 

reduced tillage (RT), no-tillage (NT), and native prairie sod (SOD) for Tribune experiment. Error bars represent the 

standard error of the mean (n=4).
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Figure 3-7. Total C normalized to sand-free basis in each water stable aggregates under conventional tillage (CT), 

reduced tillage (RT), and no-tillage (NT) for Parsons experiment. Error bars represent the standard error of the mean 

(n=4). 
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Figure 3-8. Total C normalized to sand-free basis in each water stable aggregates affected by N application, 0 and 140 kg 

N ha-1, 0-N and 140-N, respectively, for Parsons experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 3-9. Total N normalized to sand-free basis in each water stable aggregates under conventional tillage (CT), 

reduced tillage (RT), and no-tillage (NT) for Parsons experiment. Error bars represent the standard error of the mean 

(n=4). 
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Figure 3-10. Total N normalized to sand-free basis in each water stable aggregates affected by N application, 0 and 140 

kg N ha-1, 0-N and 140-N, respectively, for Parsons experiment. Error bars represent the standard error of the mean 

(n=4). 

 86



 

0

5

10

15

20

25

30

35

20-53 53-250 250-2000 >1000
Aggregate size fractions (µm) 

To
ta

l C
 (g

 C
 k

g
-1

 s
an

d-
fre

e 
ag

gr
eg

at
es

)

B-B W-B S-B S-S W-W

 
Figure 3-11. Total C normalized to sand-free basis in each water stable aggregates affected by crop rotation in Manhattan 

experiment. Continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum (S-S), sorghum-soybean (S-B), 

continuous soybean (B-B) rotation. Error bars represent the standard error of the mean (n=4). 
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Figure 3-12. Total C normalized to sand-free basis in each water stable aggregates under conventional tillage (CT), and 

no-tillage (NT) for Manhattan experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 3-13. Total C mass in each water stable aggregates under conventional tillage (CT), reduced tillage (RT), no-tillage 

(NT), and native prairie sod (SOD) for Tribune experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 3-14. Total C mass in each water stable aggregates under conventional tillage (CT), reduced tillage (RT), and no-

tillage (NT) for Parsons experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 3-15. Total N mass in each water stable aggregates under conventional tillage (CT), reduced tillage (RT), and no-

tillage (NT) for Parsons experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 3-16. Total C mass in each water stable aggregates affected by N application, 0 and 140 kg N ha-1, 0-N and 140-N, 

respectively for Parsons experiment. Error bars represent the standard error of the mean (n=4).
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Figure 3-17. Total N mass in each water stable aggregates affected by N application, 0 and 140 kg N ha-1, 0-N and 140-N, 

respectively for Parsons experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 3-18. Total C mass in each water stable aggregates under conventional till (CT), reduced till (RT), and no-tillage 

(NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 in Hays experiment. Error bars represent the standard error of the 

mean (n=4).
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Figure 3-19. Total N mass in each water stable aggregates under conventional till (CT), reduced till (RT), and no-tillage 

(NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 in Hays experiment . Error bars represent the standard error of the 

mean (n=4). 
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Figure 3-20. Total C mass in each water stable aggregates under conventional till (CT), reduced till (RT), no-tillage (NT) in 

five crop rotations: continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum (S-S), sorghum-soybean (S-B), 

and continuous soybean (B-B) for Manhattan experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 3-21. Total C mass in each water stable aggregates under conventional till (CT), reduced till (RT), no-tillage (NT) in 

five crop rotations: continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum (S-S), sorghum-soybean (S-B), 

and continuous soybean (B-B) for Manhattan experiment. Error bars represent the standard error of the mean (n=4). 
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CHAPTER 4 - SOIL ORGANIC CARBON AND NITROGEN 
POOLS IN AGRICULTURAL MANAGEMENT SYSTEMS 

 

ABSTRACT 

Soil organic matter (SOM) is important for sustaining soil quality. Management 

practices such as crop rotation, tillage, and fertilization can influence soil biological 

activities through their effects on the quantity, structure, and distribution of soil organic 

carbon (SOC). The objective of our study was to determine the influence of different 

long-term management practices (tillage, N fertilization, and crop rotations) in different 

locations in Kansas on SOC and N pools. Three long-term experiments were sampled. 

All the sites evaluated (Tribune, Manhattan, and Hays) included three tillage systems: 

conventional tillage (CT), reduced tillage (RT) and no-tillage (NT). Nitrogen fertilization 

was evaluated at Hays (0, and 67 kg N ha-1). Crop rotations were continuous wheat (W-

W) and wheat-soybean (W-B) at Manhattan. Soil samples were taken at 0-5 and 5-15 

cm depth and analyzed for total, mineralizable, and microbial biomass C and N (MBC 

and MBN, respectively). The impact of management practices on MBC and MBN were 

reflected at the soil surface (0-5 cm). At Hays, MBC was greater in the 0-N than in the 

67-N treatments. No-tillage presented the lowest MBN concentration in the control 

treatment.  Cultivation reduced MBC, MBN, and mineralizable C and N compared with 

native prairie sod at Tribune site. At Manhattan, NT in the W-B rotation had the greatest 

MBC and N compared with CT and RT within the same rotation, and with all the tillage 

on the W-W rotation. At Hays, mineralizable C and N were greater in the NT systems 
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with N application at 0-5 cm. At Tribune, mineralizable C and N were similar between 

NT and RT but greater than CT. At Manhattan no differences were found in 

mineralizable N, but mineralizable C was greater under W-B RT and W-W CT than W-W 

NT and W-W RT. The C0:N0 ratio was lower under NT and RT than under CT. The 

mineralizable pools, C0 and N0 represented on average 25, 23, and 32% of the total C 

and 17,11, and 11% of the TN for Hays, Tribune, and Manhattan, respectively.  

 

Keys words: microbial biomass, potentially mineralizable C and N, tillage, fertilization, 

crop rotation. 
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INTRODUCTION 

The atmospheric greenhouse gases (GHG) which include CO2, N2O, and CH4 

have increased over the last 150 years creating concern of anthropogenic-driven global 

climate change. Climate change affects agriculture through impacts on water resources 

nutrient cycles, and pest cycles (CAST, 2004).  Agriculture can be a source of GHG 

through changes in land use, tillage, crop residue removal and burning, and livestock 

management.  However, agriculture can also be a sink for CO2 through improvement of 

soil and crop management practices such as reduced tillage intensity, a reduction in 

bare fallow period, intensive crop rotations, use of winter cover crops, and water 

management (Lal et al., 1998; Paustian et al., 2000; West and Post, 2002; Lal, 2004; 

Post et al., 2004).  

Soil organic carbon (SOC) is a central element of soil quality, plant productivity, 

biodiversity, and sustainability (Lal et al., 1997; Rice, 2002). Soil organic C also is 

central to soil structure (Tisdall and Oades, 1982; Karlen et al., 1994; Chenu et al., 

2000; McVay et al., 2006). 

 Because of the importance of soil organic C, research efforts have been directed 

to the understanding of the complexity and formation of stabilized soil C.  Several 

studies report that different fractions of SOC could better reflect changes due to 

management than total SOC (Cambardella and Elliot, 1992; Wander et al., 1994).  

Often SOC is partitioned into three or more compartments or pools. Paul and Clark 

(1996) partitioned SOC into active, slow, and recalcitrant pools.  These pools are often 

used for modeling, including CENTURY (Parton et al., 1987; Falloon and Smith, 2002) 

and RothC (Coleman and Jenkinson, 1996; Coleman et al., 1997; Falloon and Smith, 
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2002).  The active pool is comprised of microbial biomass and labile organic 

compounds that have a rapid turnover time (less than 1 yr), and represents less than 

5% of SOC.  The slow pool, representing up to 20-40% of the total organic C, consists 

of plant and microbial byproducts and some resistant C with a turnover time of decades. 

Finally, the recalcitrant pool makes up to 60-70% of the total organic C and is material 

that is difficult to degrade and contains humic and fulvic acids (Paul and Clark, 1996). 

Carbon in the recalcitrant pool has a turnover time of hundreds to thousands of years. 

Microbial biomass participates in different processes including nutrient 

transformations, which are essential for plant nutrient availability (Rice et al., 1996). 

Microbial biomass often is considered a sensitive indicator of changes induced by tillage 

systems, residue incorporation, N fertilizer management, and crop rotations (Powlson et 

al., 1987; Rice et al., 1996; McCarty and Meisinger, 1997).  Potentially mineralizable C 

and N may be a good indicator for assessing soil quality as they are sensitive to 

changes in management practices (Franzluebbers et al., 1994, 1995; Turco et al., 1994; 

Omay et al., 1997; Needelman et al., 1999). 

Changes in management can affect the partitioning of C and N into these 

different pools, which can then impact soil function. This research is important for 

evaluating the combined effect of management practices in agricultural systems. 

Therefore, the objective of this study was to determine the effect of soil management 

including the interactions of tillage, N fertilization and crop rotation on soil C and N 

pools.   
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MATERIALS AND METHODS 

Site description 

The Hays experiment is located in central Kansas (38º 51’N, 99º 20’W). This 

experiment was initiated in 1965 on a Harney silt loam soil (fine, smectitic, mesic Typic 

Argiustoll). The 30-yr average annual precipitation was 533 mm with an annual mean 

temperature of 11.9 ºC. The crop rotation was wheat-grain sorghum-fallow, with three 

tillage systems: conventional tillage (CT), reduced tillage (RT), and no-tillage (NT). 

Conventional tillage consisted of using tools such as disk, one-way plow, and mulch 

treader. Reduced tillage included V-blade, sweeps or rod weeder.  No-tillage consisted 

of planting directly into the residue. From the beginning of the experiment to 1975, N 

rates were 0 and 45 kg N ha-1. Since 1975 four N rates were evaluated, 0 (0-N), 22 (22-

N), 45 (45-N), and 67 (67-N) kg N ha-1 yr-1. Nitrogen fertilizer was applied as ammonium 

nitrate in the previous fall for June sorghum planting and in August prior to September 

wheat planting. The experimental design was split-plot with four replications, with tillage 

as the main plot and N as sub-plot 

The Tribune experiment, initiated in 1988, was located in western Kansas (38º 

30’N, 101º 41’W). The 30-yr average annual precipitation is 422 mm, with an annual 

mean temperature of 11.3 ºC.  The soil was classified as Richfield silt loam (fine-

smectitc, mesic Aridic Argiustolls). The crop rotation was wheat-grain sorghum-fallow, 

with three tillage systems: CT, RT, and NT. Conventional tillage consisted of three or 

four operations per year with a sweep plow between crop harvest and planting the next 

crop. The RT system used a combination of tillage (primarily sweep plow) and 

herbicides for weed control during fallow.  The number of tillage operations with RT was 
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approximately 50% of CT. No-tillage consisted of planting directly into the residue. 

Nitrogen fertilizer as urea ammonium nitrate (UAN) was broadcast applied at 67 kg N 

ha-1 yr-1 to 112 kg N ha-1 yr-1, depending on the year or crop. Native sod was included 

as part of the experimental design, which represented the natural vegetation types of C3 

and C4 grass, with the dominant species being buffalograss (Buchloe dactyloides). The 

treatments were arranged in a randomized complete block design with four replications. 

The Manhattan experiment, initiated in 1974, was located on the Kansas State 

University Agronomy Farm, Manhattan (Riley County; 39º 07’N, 96º 37’W). Soils were 

Muir silt loam (fine-silty, mixed, mesic Cumulic Haplustoll) and Reading silt loam (fine, 

mixed, mesic Typic Argiudoll). The 30-yr average annual precipitation was 813 mm, 

which was mainly concentrated in the spring-summer period, with an annual mean 

temperature of 11.3 ºC. Crop rotation and tillage systems were evaluated in this 

experiment. The experimental design was split-plot with four replications, with rotation 

as the main plot and tillage as sub-plot. The three crops, soybean (B) (Glycine max (L.) 

Merrill), grain sorghum (S) (Sorghum bicolor (L.) Moench), and winter wheat (W) 

(Triticum aestivum L.), were combined in five rotations: continuous sorghum (S-S), 

sorghum-soybean (S-B), continuous soybean (B-B), wheat-soybean (W-B), and 

continuous soybean (B-B). The three tillage treatments were CT, RT, and NT systems. 

Conventional tillage included chisel, disk, and field cultivator. Reduced tillage included 

disk and field cultivator.  No-tillage consisted of planting directly into the residue and 

chemical weed control. A blend of urea and diammonium phosphate fertilizer providing 

112 kg N ha-1 and 11.3 kg P ha-1 was broadcast applied prior to the last tillage operation 

before planting of each crop and year.   
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Soil Sampling  

Soil samples were taken from each plot at 0 to 5 and 5 to 15 cm depths. A sterile 

polypropylene bags (3.78 L) were filled with soil samples collected randomly from each 

plot using a 2-cm diam. Oakfield soil-probe (Forestry Suppliers, Inc., Jackson, MS).  For 

Hays, samples were collected March 2003 (before planting) on the sorghum rotation 

phase of the experiment. For Tribune, samples were collected April 2004 on the 

sorghum rotation phase and native prairie. For Manhattan, samples were taken May 

2004 before wheat harvesting. All soil samples were passed through a 4-mm sieve, 

roots removed, and the soil stored at 4ºC until further analyzed as described in the 

following sections. 

Soil Microbial Biomass 
Soil microbial biomass was determined using the chloroform fumigation-

incubation method (Jenkinson and Powlson, 1976). Soil (25 g) was added to duplicate 

125 mL Erlenmeyer flasks. The gravimetric soil water content was adjusted to 0.25 g 

H2O g soil-1 and pre-incubated for 5 d at 25ºC. After pre-incubation, one flask was 

fumigated with chloroform in a vacuum dessicator. After 18 to 24 h, the dessicator was 

evacuated to remove residual chloroform and then the flasks were placed in 950 mL 

mason jars and incubated for 10 days at 25 ºC. After 10 days, headspace CO2-C 

concentration was determined by gas chromatograph (Shimadzu Gas Chromatograph-

8A, Kyoto, Japan) equipped with a thermal conductivity detector (TCD) and a 2-m 

Porapak column. The column temperature was 70ºC and the carrier gas was He at a 

flow rate of 14 mL min-1. Soil inorganic N was determined by adding 100 mL 1 M KCl to 

the flask, shaken for 45 min at 300 RPM on an orbital shaker followed by filtration 

through Whatman No. 2 filter paper (Fisher Scientific, Fair Lawn, NJ). The soil extracts 
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were analyzed for NH4
+-N and NO3

--N on an Alpkem Autoanalyzer (Alpkem Corp., 

Bulletin A303-S021 and A303-S170). Microbial biomass C (MBC) and N (MBN) were 

calculated as suggested by Voroney and Paul (1984): 

 

Microbial biomass C =  (Cf  - Cunf) 
                                          0.41 

 
 

Microbial biomass N =  (Nf  - Nunf)
                                                 kN

 
 
where   Cf  = CO2-C evolved from the fumigated samples 

             Cunf = CO2-C evolved from the unfumigated samples 

             Nf = NH4
+ + NO3

- from fumigated samples 

             Nunf = NH4
+ + NO3

- from unfumigated samples 

             KN = (-0.041 Cf/Nf)  + 0.39 

 

 

Mineralizable C and N 

 Mineralizable C and N were determined by laboratory incubation following the 

method proposed by Cabrera and Kissel (1988) as modified by Garcia (1992). Soil 

samples collected from the 0 to 5 and 5 to 15 cm were sieved through a 4-mm sieve, 

packed into PVC cores (5 cm diam. by 10 cm height) to a bulk density of 1.0 Mg m-3. 

Cores were placed in a 960 mL mason jars equipped with a rubber septum on the lid 

and incubated at 35 ºC.  Water was added to the jar to maintain soil water content 

through the incubation. 
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For mineralizable N, soil samples were leached with 300 mL of 0.01 M CaCl2 

during the first 100 days, and 150 mL afterwards due to slow infiltration. Leaching was 

done every week for a month, biweekly for another month and monthly thereafter. The 

NH4
+-N and NO3

--N concentrations in the leachate were determined as described 

earlier. After leaching, an N-free nutrient solution as described by Garcia (1992) (50 mL) 

was added to each core and a vacuum of –0.033 MPa applied for 6 h to adjust to 

constant water content. Between leaching events, the cores were placed in 950-mL 

Mason jars and incubated at 35ºC.   

For mineralizable C, CO2-C evolved from the cores was determined with 0.5 mL 

gas samples taken from the headspace of the mason jars and injected to a gas 

chromatograph (Shimadzu Gas Chromatograph-8A, Kyoto, Japan) equipped with a 

thermal conductivity detector (TCD) and a 2-m Porapak column. The column 

temperature was 70ºC and the carrier gas was He at a flow rate of 14 mL min-1. 

Carbon and N mineralization were described by first order kinetics. The 

Marquardt option NLIN, a nonlinear curve fitting procedure model (SAS Institute Inc., 

2002) was used to fit a one-pool model (Stanford and Smith, 1972) to determine 

cumulative C and N mineralization with time. The model is: 

 

Cm or Nm = C0 or N0 [1 – exp (-kt)] 

 

where Cm = mineralized C in μg CO2-C g-1 soil  

          Nm = mineralized N in μg N g-1 soil  
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          C0 = potentially mineralizable C in μg CO2-C g-1 soil 

          N0 = potentially mineralizable N in μg N g-1 soil 

          k = rate constant of mineralization in day-1 

          t = time in days 

 

Statistical Analysis 

Analysis of variance was performed using SAS PROC MIXED (SAS Institute, 

2002) to assess differences between treatments. Results were considered statistically 

significant at P< 0.05 unless noted otherwise.  

RESULTS  

Soil Microbial Biomass 
At Hays, there was a significant Nitrogen x Depth interaction for MBC; with 

greater MBC with the 0-N treatment at 0-5 cm (Table 4.1, Fig. 4.1). Microbial biomass N 

was significantly affected by the interaction between Tillage x Nitrogen x Depth (Table 

4.2). At 0-5 cm, CT and NT without N (0-N treatment) had higher levels of MBN 

compared with the other treatments. At the deeper depths, no differences were found 

among treatments, except NT 0-N that had higher MBC at 15-30 cm (Table 4.2, Fig. 

4.2). 

At Tribune, MBC was significantly affected by tillage and depth (Table 4.3). The 

native prairie had significantly greater MBC than the cropped systems. Conventional 

tillage had greater MBC than RT but similar to NT, which did not differ from RT. There 

was higher MBC at 5-15 cm than at 0-5 and 15-30 cm (Table 4.3). Microbial biomass N 
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had a significant Tillage x Depth interaction (Table 4.4), where no differences in MBN 

was detected among tillage systems at 0-5 and 5-15 cm. At 15-30 cm NT and CT had 

higher or similar MBN than RT (Table 4.4). Microbial biomass N was higher in the native 

prairie at all depths. 

At Manhattan, there was a significant 3-way interaction (Rotation x Tillage x 

Depth) for MBC and MBN (Table 4.5 and 4.6). At 0-5 cm, MBC was significantly greater 

under the W-B NT treatment than all the other treatments (Table 4.5). No differences 

among tillage systems were found at deeper depths, but on average the W-B rotation 

had higher MBC than the W-W rotation. The highest values of MBN occurred in the W-B 

under NT and RT at 0-5 and 15-30 cm.  

Carbon and N Mineralization 
At Hays, C0 and N0 were significantly greater with NT and N fertilizer at 0-5 cm 

(Table 4.7) with no difference among treatments at 5-15 cm (Table 4.8).  Cumulative C 

and N mineralized curves are presented in the appendix (Fig. B.1 to B.8)  At 0-5 cm, Kc 

was similar among tillage systems with N fertilizer, but was higher under NT and CT 

than RT without N (Table 4.7). Fertilizer resulted in significantly higher Kn (Table 4.7), 

indicating a faster N mineralization rate 

 At Tribune, C0 and N0 were significantly greater, 40% and 44%, respectively, in 

the native prairie than the tillage systems at 0-5 cm (Table 4.9). Cumulative C and N 

mineralized curves are presented in the appendix (Fig. B.9 to B.16).  Among tillage, C0 

and N0 were similar in NT and RT but significantly greater than CT. At 5-15 cm, C0 was 

similar between prairie and NT but significantly greater than RT and CT (Table 4.10). 

This indicates that the loss of mineralizable C was confined to the surface 5 cm and 
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thus preserved mineralizable C deeper in the soil profile.  For N0, no differences were 

found among tillage but were significantly lower than native prairie. The prairie Kc was 

greater than the tillage systems. Conversely, Kn was significantly greater under CT than 

RT, NT and prairie (Table 4.9). No differences were found on the Kn values at 5-15 cm; 

however, Kc was significantly lower under NT than the other treatments. 

At Manhattan, C0 and N0 were significantly affected by the Rotation x Tillage 

interaction at 0-5 cm (Table 4.11). Cumulative C and N mineralized curves are 

presented in the appendix (Fig. B.17 to B.24). Mineralizable C was similar among tillage 

in the W-B rotation, but was lower under RT or NT in the W-W rotation. At 5-15 cm, CT 

and RT in the W-W and CT in the W-B rotation had greater C0 values (Table 4.12).  At 

0-5 cm Kc was greater under RT and NT in the W-W and W-B rotation, respectively 

(Table 4.11) with no differences at 5-15 cm.  No differences were found among 

treatments for N0 at 0-5 cm (Table 4.11). Potentially mineralized N and Kn were affected 

by tillage, in which CT and RT had significantly greater N0 (P<0.10) than NT, but CT had 

significantly greater kn (P<0.10) than NT and RT (Table 4.12). 

Relationships among C0, N0, microbial biomass, Total C and Total N 

At Hays, the MBC:C0  ratio was significantly higher in CT and RT than in NT.  

Across tillage, MBC:C0 was significantly higher under 0-N compared to 67-N treatment. 

The MBN:N0 ratio was similar among tillage at the 0-N rate, but lower under NT than CT 

and RT at the 67-N rate.  At 5-15 cm, the C0:N0 ratio was greater under CT than NT; 

and the MBN:N0 ratio under 0-N rate was greater than 67-N rate (Table 4.14).  The 

microbial pool represented 2-3% of the Total C and 1-6% of the Total N (Fig. 4.3, 4.4). 

The control treatments (0-N) had a greater percentage of microbial C and N than the 
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fertilized treatments (67-N) (Fig. 4.3, 4.4). The mineralizable pool represented 20% to 

12% of the Total C and 16% to 8% of the Total N, at 0-5 and 5-15 cm, respectively. The 

proportion of mineralizable C and N to the total was significantly greater in NT with N 

fertilizer at 0-5 cm (Table 4.13; Fig. 4.3, 4.4). Conversely, the recalcitrant pool was 

significant lower for the NT 67-N than the other treatments. The recalcitrant pool 

represented 66% and 84% of the Total C and 78% and 88% of the Total N at 0-5 and 5-

15 cm respectively. 

At Tribune, cultivation affected the relationships between pools (Table 4.15 and 

4.16). At 0-5 cm, the C0:N0 ratio was significantly higher under CT than NT systems. 

The MBC:C0 ratio was similar under CT and native prairie but significantly greater than 

RT and NT. The MBN:N0 ratio was greater under native prairie than the cropped 

systems. The microbial pool represented < 2 % of the total C, and <5% of total N 

(Figure 4.5, 4.6). The proportion of microbial C pool  of the total was similar under NT 

and RT, but lower than CT and native prairie at 0-5 cm. However, the proportion of 

microbial N pool of the total was significantly greater under native prairie than the tillage 

systems at both depths. The mineralizable pool accounted for up to 27% % of the total 

C; and 10% of the total N. A significant lower proportion of mineralizable C was found 

for CT at 5-15 cm. The native prairie had the greatest proportion of mineralizable N 

compared with cropped systems. The recalcitrant pool represented 80 % of the total C, 

and 86% of the total N. The proportion of recalcitrant C was similar among treatments at 

0-5 cm, but greater under CT at 5-15 cm. A significantly lower proportion of recalcitrant 

N was found in the native prairie than the tillage systems at 0-5 and 5-15 cm. 
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For Manhattan, the C0:N0 ratio was significantly greater under CT than RT and 

NT systems at 0-5 cm, and greater in the W-W than W-B rotation at 5-15 cm (Table 

4.17 and 4.18).  At 0-5 cm, the MBC:C0 ratio was greater under W-B than W-W in the 

CT, similar among rotations in the RT, and significantly lower under W-W than W-B in 

the NT systems. The MBN:N0 ratio was similar among tillage systems in the W-W 

rotation, but greater under NT in the W-B rotation. The microbial pool accounted for <3 

% of the total C and <2.5 % of the total N.  The proportion of microbial C and N was 

significantly greater in the W-S than in W-W rotation, except for microbial N at 5-15 in 

which no differences were detected (Fig. 4.7, 4.8). The mineralizable pool represented 

around 30% of the Total C and 10 % of the total N. At 0-5 cm, CT had a greater 

proportion of mineralizable C than RT and NT systems. The proportion of mineralizable 

N was greater under W-S than under W-W rotation at 0-5 cm. The recalcitrant pool 

accounted for 68% of the total C, and 88% of the total N. Conversely, NT systems had a 

greater proportion of recalcitrant C than RT and CT, and also the proportion of 

recalcitrant N was greater in the W-W rotation.  

DISCUSSION 

Differences in soil microbial biomass in response to management could be 

related to fluctuations in microbial activity due to crop type, sampling time, temperature, 

moisture and microclimatic conditions (Carter and Rennie, 1982; Doran 1987; 

Franzluebbers et al., 1994; McCarty et al., 1995; Deng et al. 2000).  There was a 

significant response to N application, in which MBC and MBN were reduced with the 

application of N fertilizer.  Microbial biomass in unfertilized systems has been reported 

to be higher than with added fertilizer. (Bierderbeck et al., 1984,1994; Omay et al., 
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1997) which may be due a greater proportion of dormant cells and retention of N by 

microbes to degrade higher C/N ratio residue in unfertilized systems (Bierderbeck et al., 

1984, 1994; Omay et al., 1997).   

  Comparing cropping systems, wheat-soybean rotation had greater MBC and N 

than wheat monoculture, with greater differences under NT.  Similar to our results, 

Franzluebbers et al. (1994, 1995) reported greater MBC with increasing cropping 

intensity, and the differences were greater under NT than CT systems. Greater soil 

microbial biomass under reduced tillage may be a result of the accumulation of crop 

residues near the soil surface and greater soil water content, aggregation and C content 

compared with CT (Doran, 1987; Balota et al., 2003). 

Fertilized NT systems increase SOC and total N and also increase the 

mineralizable C pool. A similar tendency occurred for soil organic N; however, the 

changes were not as pronounced as for C. It appears the gain in soil organic C in NT is 

reflected in the mineralizable pool.  This would be expected as plant C is decomposed, 

the C flows through the microbial biomass into the mineralizable pool (Paul and Clark, 

1996).  Eventually the C in the mineralizable pool would be expected to be transformed 

into the recalcitrant pool.  This would be desirable as these pools are more stable when 

considering soil C sequestration.  NT also increased in the mineralizable N pool, which 

is the source for plant available N during the growing season (Mikha et al., 2006; Omay 

et al., 1997). Several authors reported greater mineralizable N under NT systems 

(Carter and Rennie, 1982; Liang et al., 2004; Doran, 1980). Greater levels of 

mineralizable N with no-tillage reflect either greater immobilization, less mineralization, 
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or both, and also lower losses by erosion as compared with plowed soils (Doran, 1987; 

Franzluebbers et al., 1995; Doran et al., 1998; Needelman et al., 1999).  

The introduction of cropping systems in native prairie regardless of tillage 

systems decreased SOC and total N, as well as microbial biomass and mineralizable C 

and N. Tillage exposes SOC to microbial activity due to the disruption of soil aggregates 

(Beare et al., 1994b; Paustian et al., 1997). However, a reduction in tillage intensity, 

such as in NT or RT systems, reduced the loss of soil C and N through less disturbance 

and physical protection of the C and N. 

Crop rotations affected soil C, where continuous wheat had greater SOC than 

wheat-soybean rotation. The rotation effect could be related to the residue quality as 

wheat residues would have a higher C/N ratio and lower turnover rates compared with 

sorghum and soybean residues (Wright and Hons, 2005a).  The effect of crop residue 

quality also was reflected in the different fractions. Continuous wheat had lower pools of 

microbial biomass C and mineralizable C but greater recalcitrant C under NT, which 

could explain the increase in C storage observed under this rotation. The greater C in 

the recalcitrant fraction indicates that under 29 yr of NT C had been located in the most 

stables fractions which is important for the long-term storage. However, tillage 

eliminated the crop effect on C dynamics, as mineralizable C and N and SOC were 

similar across rotations with CT. The increase in SOC under NT in the continuous wheat 

could also be related to the effect that crop residue has on aggregation. Wright and 

Hons (2004, 2005a,b) reported greater soil aggregation with wheat than sorghum and 

soybean, which they attributed to differences in the amount and quality of the residues. 
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Residues from cropping sequences including sorghum or soybean are more readily 

decomposed than wheat residue (Wright and Hons, 2004). 

The mineralizable pools, C0 and N0, represented on average 23 to 32% of the 

total C and 11 to 17% of the TN across the three sites. These results are within the 

range of 5 to 18% reported for potentially mineralizable N (Bonde et al., 1988; Cabrera 

and Kissel, 1988; Omay et al., 1997) and 20- 29% for potentially mineralizable C (Omay 

et al., 1997, Rice and Garcia, 1994). The greater proportion of C0 of the SOC in 

Manhattan could indicate a faster C turnover compared with the other sites, and could 

be related with the greater amount of precipitation at this site. 

The quantification of these pools is important to understand nutrient dynamics 

that could lead to mineralization-immobilization of nutrient in short-term, and significant 

long-term storage of nutrients, and also to the identification of the management 

practices that would favor the sequestration of C and N, and then the long-term 

sustainability of the agroecosystems. Overall, our results indicate that no-till systems 

tend to increase the amount of mineralizable C and recalcitrant pools which would favor 

a greater C and N stabilization. 
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Figure 4-1. Microbial biomass C affected by N application at 0-5, 5-15, and 15-30 cm 

soil depths in Hays experiment. Error bars represent the standard error of the mean 

(n=4). 
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Figure 4-2. Microbial biomass N under conventional till (CT), reduced till (RT), and no-

tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 at 0-5, 5-15, and 15-30 soil 

depth in Hays experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 4-3. Distribution of the soil organic C pools under conventional till (CT), reduced 

till (RT), and no-tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 at 0-5 (a) 

and 5-15 cm (b) in Hays experiment Error bars represent the standard error of  the 

mean (n=4). 

 124



0

10

20

30

40

50

60

70

80

90

100

%
 o

f t
he

 T
ot

al
 N

 

CT 0-N RT 0-N NT 0-N

CT 60-N RT 60-N NT 60-N

a)

0

10

20

30

40

50

60

70

80

90

100

Microbial Mineralizable Recalcitrant

%
 o

f t
he

 T
ot

al
 N

b)

 
Figure 4-4. Distribution of the soil organic N pools under conventional till (CT), reduced 

till (RT), and no-tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 at 0-5 (a) 

and 5-15 cm (b) in Hays experiment. Error bars represent the standard error of  the 

mean (n=4). 
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Figure 4-5. Distribution of the soil organic C pools under conventional till (CT), reduced 

till (RT), no-tillage (NT) and native prairie sod (SOD) at 0-5 (a) and 5-15 cm (b) in 

Tribune experiment. Error bars represent the standard error of  the mean (n=4). 
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Figure 4-6. Distribution of the soil organic N pools under conventional till (CT), reduced 

till (RT), no-tillage (NT) and native prairie sod (SOD) at 0-5 (a) and 5-15 cm (b) in 

Tribune experiment. Error bars represent the standard error of the mean (n=4). 
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Figure 4-7. Distribution of the soil organic C pools under conventional till (CT), reduced 

till (RT), no-tillage (NT) in two crop rotations wheat-soybean (W-B)  and wheat-wheat 

(W-W) at 0-5 (a) and 5-15 cm (b) in Manhattan experiment. Error bars represent the 

standard error of  the mean (n=4). 
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Figure 4-8. Distribution of the soil organic N pools under conventional till (CT), reduced 

till (RT), no-tillage (NT) in two crop rotations wheat-soybean (W-B)  and wheat-wheat 

(W-W) at 0-5 (a) and 5-15 cm (b) in Manhattan experiment. Error bars represent the 

standard error of  the mean (n=4). 
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Table 4-1. Soil microbial biomass carbon (C) under conventional tillage (CT), reduced tillage (RT), and no-tillage (NT) with 
two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1 for Hays experiment.  

 

 Soil microbial biomass C 
 

0-5 cm 5-15 cm 15-30 cm 

 …………………….g C kg –1…………….. 
CT 0-N 0.354 0.300 0.277 
RT 0-N 0.385 0.324 0.307 
NT 0-N 0.377 0.265 0.277 

    
CT 67-N 0.290 0.323 0.299 
RT 67-N 0.272 0.301 0.260 
NT 67-N 0.265 0.287 0.247 

 ………………………….P values……………………… 
Tillage (T) 0.1643 
Nitrogen (N) 0.0020 
T x N 0.0704 
Depth (D) 0.0002 
T x D 0.6687 
N x D 0.0001 

    
0-N (mean) 0.372 a† 0.296 bc 0.287 bc 

67-N (mean) 0.276 bc 0.303 b 0.267 c 
  
T x N x D 0.7445 
† Different letters represent significant differences between N rates and depth.  
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Table 4-2. Soil microbial biomass nitrogen (N) under conventional tillage (CT), reduced tillage (RT), and no-tillage (NT) 
with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1 for Hays experiment.  

 

 Soil microbial biomass N 
 

0-5 cm 5-15 cm 15-30 cm 

 …………………….g N kg –1…………….. 
CT 0-N 0.064 a† 0.037 def 0.033 efgh 
RT 0-N 0.059 b 0.036 defg 0.031 efgh 
NT 0-N 0.063 a 0.038 cde 0.042 bcd 

    
CT 67-N 0.047 b 0.036 defg 0.030 gh 
RT 67-N 0.044 bc 0.031 efgh 0.027 h 
NT 67-N 0.018 i 0.030 fgh 0.032 efgh 

 ………………………….P values……………………… 
Tillage (T) 0.2341 
Nitrogen (N) 0.0001 
T x N 0.0019 
Depth (D) 0.0001 
T x D 0.0001 
N x D 0.0001 
T x N x D 0.0002 
   

† Different letters represent significant differences among N rates, tillage and depth. 
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Table 4-3. Soil microbial biomass carbon (C) under conventional tillage (CT), reduced tillage (RT), no-tillage (NT) and 
native prairie sod (SOD)  for Tribune  experiment.  

 

 Soil microbial biomass C 
 

0-5 cm 5-15 cm 15-30 cm 

 …………………….g C kg –1…………….. 
CT  0.218 0.278 0.186 
RT 0.099 0.192 0.165 
NT  0.116 0.252 0.193 

SOD 0.331 0.318 0.290 
 ………………………….P values……………………… 
Tillage (T) 0.0021 

CT (mean) 0.227 b† 
RT (mean) 0.152 c 
NT (mean) 0.187 bc 

SOD (mean) 0.313 a 
Depth (D) 0.0296 

    
 0.191 ab†† 0.260 a 0.208 b 

  
T x D 0.3320 
   
† Different letters represent significant differences among tillage. 
†† Different letters represent significant differences among depth  
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Table 4-4. Soil microbial biomass nitrogen (N) under conventional tillage (CT), reduced tillage (RT), no-tillage (NT) and 
native prairie sod (SOD) for Tribune experiment.  

 

 Soil microbial biomass N 
 

0-5 cm 5-15 cm 15-30 cm 

 …………………….g N kg –1…………….. 
CT  0.017 ef† 0.040 c 0.023 def 
RT 0.012 f 0.030 cde 0.017 f 
NT  0.013 f 0.035 cd 0.036 cd 

SOD 0.103 a 0.068 b 0.044 c 
 ………………………….P values……………………… 
Tillage (T) 0.0001 
Depth (D) 0.0007 
T x D 0.0001 
   
† Different letters represent significant differences among tillage and depth 
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Table 4-5. Soil microbial biomass carbon (C) under conventional tillage (CT), reduced tillage (RT), and no-tillage (NT) in 
continuous wheat (W-W) and wheat-soybean (W-B) rotation for Manhattan experiment.  
 

 

 Soil microbial biomass C 
 

0-5 cm 5-15 cm 15-30 cm 

 …………………….g C kg –1…………….. 
W- B CT  0.347 b† 0.337 b 0.284 bc 
W- B RT  0.358 b 0.304 b 0.312 b 
W- B NT  0.450 a 0.283 bcd 0.312 b 

    
W- W CT  0.178 e 0.168 e 0.174 e 
W- W RT  0.207 cde 0.193 ed 0.184 e 
W- W NT  0.129 e 0.151 e 0.143 e 

 ………………………….P values……………………… 
Rotation (R) 0.0039 
Tillage (T) 0.7697 
R x T 0.2018 
Depth (D) 0.0029 
R x D 0.0046 
T x D 0.3326 
R x T x D 0.0254 
   

†Different letters represent significant differences among rotation, tillage and depth 
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Table 4-6. Soil microbial biomass nitrogen (N) under conventional tillage (CT), reduced tillage (RT), and no-tillage (NT) in 

continuous wheat (W-W) and wheat-soybean (W-B) rotation for Manhattan experiment.  

 

 Soil microbial biomass N 
 

0-5 cm 5-15 cm 15-30 cm 

 …………………….g N kg –1…………….. 
W- B CT  0.030 bcd† 0.018 bcde 0.028 bcd 
W- B RT  0.033 bc 0.016 bcde 0.077 a 
W- B NT  0.061 a 0.019 bcde 0.039 b 

    
W- W CT  0.020 bcde 0.022 bcde 0.025 bcde 
W- W RT  0.015 cde 0.012 de 0.015 cde 
W- W NT  0.016 cde 0.005 e 0.023 bcde 

 ………………………….P values……………………… 
Rotation (R) 0.0101 
Tillage (T) 0.5069 
R x T 0.0150 
Depth (D) 0.0001 
R x D 0.0197 
T x D 0.0165 
R x T x D 0.0081 
   
†Different letters represent significant differences among rotation, tillage and depth 
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Table 4-7. Parameters of the one-pool model for C and N mineralization under conventional tillage (CT), reduced tillage 

(RT), and no-tillage (NT) with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1, for Hays experiment at 0-5 cm. 

 
 

SOC Total N C0 kc N0 kn 

 g C kg-1  g N kg-1 g C kg-1 day-1 g N kg-1 day-1 
CT 0-N 11.6 0.96 2.31 b† 0.0055 ab 0.148 b 0.0050  
RT 0-N 10.9 0.95 2.25 b 0.0050 b 0.164 b 0.0045  
NT 0-N 11.7 1.06 2.82 b 0.0070 a 0.177 b 0.0050  

       
CT 67-N 13.5 1.19 2.46 b 0.0060 ab 0.179 b 0.0063  
RT 67-N 13.05 1.23 2.91 b 0.0058 ab 0.178 b 0.0057  
NT 67-N 14.9 1.34 6.32 a 0.0043 b 0.336 a 0.0055  

 ………………………….P values……………………… 
Tillage (T) 0.2163 0.2213 0.0002 0.7068 0.0039 0.1683 
Nitrogen (N) 0.0001 0.0001 0.0004 0.2605 0.0003 0.0034 

       
0-N (mean) 11.4 b 0.99 b    0.0046 b 
67-N (mean) 13.8 a 1.25 a    0.0056 a 

       
T x N 0.3023 0.7115 0.0041 0.0082 0.0027 0.5569 
       

† Different letter in the same column means differences by tillage systems and N fertilization. 
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Table 4-8. Parameters of the one-pool model for C and N mineralization under conventional tillage (CT), reduced tillage 

(RT), and no-tillage (NT) with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1
, for Hays experiment at 5-15 cm. 

 
 

SOC Total N C0 kc N0 kn 

 g C kg-1  g N kg-1 g C kg-1 day-1 g N kg-1 day-1 
CT 0-N 10.6 0.95 1.41 0.0028 0.086 0.0027 
RT 0-N 9.6 0.97 1.23 0.0030 0.071 0.0028 
NT 0-N 9.30 0.92 1.04 0.0033 0.078 0.0026 

       
CT 67-N 10.83 0.99 1.52 0.0030 0.090 0.0025 
RT 67-N 10.1 0.98 1.19 0.0030 0.080 0.0027 
NT 67-N 9.6 0.93 1.19 0.0033 0.077 0.0029 

 ………………………….P values……………………… 
Tillage (T) 0.1509 0.6210 0.1090 0.4686 0.1356 0.8417 
Nitrogen (N) 0.3301 0.4726 0.5894 0.7292 0.4271 0.9327 
T x N 0.9702 0.8959 0.8372 0.8839 0.7637 0.7789 
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Table 4-9. Parameters of the one-pool model for C and N mineralization under conventional tillage (CT), reduced tillage 

(RT), no-tillage (NT), and native prairie sod (SOD) for Tribune experiment at 0-5 cm. 

 

 
 

SOC Total N C0 kc N0 kn 

 g C kg-1  g N kg-1 g C kg-1 day-1 g N kg-1 day-1 
CT 15.7 c† 1.71 c 2.99 c 0.0087  b 0.117 c 0.020 a 
RT 16.8 bc 1.83 b 3.95 b 0.0070 b 0.172 b 0.012 b 
NT 17.2 b 1.83 b 3.86 b 0.0085 b 0.202 b 0.012 b 

SOD 22.8 a 2.04 a 5.97 a 0.0112 a 0.291 a 0.009 b 
 ………………………….P values……………………… 

Tillage  0.0001 0.0142 0.0001 0.0616 0.0004 0.0206 
       

†Different letter in the same column means differences by tillage systems. 
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Table 4-10. Parameters of the one-pool model for C and N mineralization under conventional tillage (CT), reduced tillage 

(RT), no-tillage (NT), and native prairie sod (SOD) for Tribune experiment at 5-15 cm. 

 
 

SOC Total N C0 kc N0 kn 

 g C kg-1  g N kg-1 g C kg-1 day-1 g N kg-1 day-1 

CT 13.1 1.49 1.60 b† 0.0049 a 0.129 b 0.0038 

RT 12.8 1.47 1.77 b 0.0045 a 0.091 b 0.0048 

NT 12.9 1.49 2.18 a 0.0028 b 0.099 b 0.0037 

SOD 14.3 1.32 2.20 a 0.0049 a 0.191 a 0.0032 

 ………………………….P values……………………… 

Tillage  0.2766 0.5743 0.0530 0.0092 0.0809 0.5258 
       

†Different letter in the same column means differences by tillage systems 
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Table 4-11. Parameters of the one-pool model for C and N mineralization under conventional tillage (CT), reduced tillage 

(RT), no-tillage (NT) in continuous wheat (W-W) and wheat-soybean (W-B) rotation for Manhattan experiment at 0-5 cm. 

 
 

SOC Total N C0 kc N0 kn 

 g C kg-1  g N kg-1 g C kg-1 day-1 g N kg-1 day-1 
W- B CT  12.7† 1.29 4.73 ab 0.0038 bc 0.170 0.0073 
W- B RT  14.4 1.41 5.37 a 0.0037 bc 0.163 0.0100 
W- B NT  16.8 1.60 4.93 ab 0.0050 a 0.208 0.0088 

       
W- W CT  13.6 1.37 5.18 a 0.0033 c 0.128 0.0135 
W- W RT  12.3 1.19 4.08 b 0.0050 a 0.138 0.0218 
W- W NT  18.2 1.76 4.18 b 0.0045 ab 0.160 0.0075 

 ………………………….P values……………………… 
Rotation (R) 0.0799 0.1025 0.0885 0.7227 0.1054 0.2187 
Tillage (T) 0.0001 0.0001 0.3444 0.0117 0.1581 0.1257 

CT (mean) 13.1 c 1.33 c     
RT (mean) 14.5 b 1.46 b     
NT (mean) 17.5 a 1.68 a     

R x T 0.2431 0.4818 0.0191 0.0371 0.8244 0.2262 
       
       

†Different letter in the same column means differences by tillage systems and N fertilization. 
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Table 4-12. Parameters of the one-pool model for C and N mineralization under conventional tillage (CT), reduced tillage 

(RT), no-tillage (NT) in continuous wheat (W-W) and wheat-soybean (W-B) rotation for Manhattan experiment at 5-15 cm. 

 
 

SOC Total N C0 kc N0 kn 

 g C kg-1  g N kg-1 g C kg-1 day-1 g N kg-1 day-1 
W- B CT  11.9 1.20 2.98 ab† 0.0025 0.127 0.0100 
W- B RT  12.3 1.23 2.48 b 0.0020 0.110 0.0035 
W- B NT  12.3 1.23 2.70 b 0.0023 0.090 0.0043 

       
W- W CT  10.6 1.25 4.03 a 0.0027 0.098 0.0093 
W- W RT  12.8 1.29 3.98 a 0.0033 0.120 0.0085 
W- W NT  12.3 1.19 2.73 b 0.0023 0.085 0.0065 

 ………………………….P values……………………… 
Rotation (R) 0.2346 0.6892 0.1220 0.1891 0.4948 0.2106 
Tillage (T) 0.9168 0.3917 0.0378 0.7444 0.0960 0.0610 

CT (mean)     0.112 a 0.0096 a 
RT (mean)     0.115 a 0.0060 b 
NT (mean)     0.088 b 0.0054 b 

R x T 0.8586 0.2209 0.0363 0.3909 0.3483 0.2718 
       

†Different letter in the same column means differences by tillage systems and N fertilization.  
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Table 4-13. Relationships between C0, N0, total C, total N, microbial biomass C, and microbial biomass N under 

conventional tillage (CT), reduced tillage (RT), no-tillage (NT) with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1 for 

Hays experiment at 0-5 cm. 

 
 

C0/N0 
C0/Total C MBC/C0 N0/Total N MBN/N0 

CT 0-N 15.68 0.203 b† 0.157 0.156 b 0.436 a 
RT 0-N 14.26 0.206 b 0.177 0.167 b 0.365 a 
NT 0-N 15.79 0.244 b 0.139 0.174 b 0.358 ab 

      
CT 67-N 13.74 0.183 b 0.117 0.152 b 0.271 ab 
RT 67-N 17.47 0.125 b 0.334 0.073 b 0.535 b 
NT 67-N 19.14 0.430 a 0.043 0.254 a 0.054 c 

Tillage (T) 0.1640 0.0002 0.0007 0.0057 0.0024 
CT (mean)   0.102 a   
RT (mean)   0.105 a   
NT (mean)   0.054 b   

      
Nitrogen (N) 0.3570 0.0094 0.0003 0.1623 0.0001 

0-N (mean)   0.123 a   
67-N (mean)   0.051 b   

      
T x N 0.2156 0.0049 0.4521 0.0260 0.0176 
      

† Different letter in the same column means differences by tillage systems and N fertilization  
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Table 4-14. Relationships between C0, N0, total C, total N, microbial biomass C, and microbial biomass N under 

conventional tillage (CT), reduced tillage (RT), no-tillage (NT) with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1 for 

Hays experiment at 5-15 cm. 

 
C0/N0 

C0/Total C MBC/C0 N0/Total N MBN/N0 

CT 0-N 17.04 0.131 0.230 0.092 0.427 
RT 0-N 17.47 0.125 0.334 0.073 0.535 
NT 0-N 13.57 0.112 0.257 0.086 0.485 

      
CT 67-N 17.40 0.138 0.234 0.093 0.405 
RT 67-N 16.15 0.224 0.099 0.147 0.250 
NT 67-N 15.15 0.122 0.270 0.084 0.396 

 ………………………….P values……………………… 
Tillage (T) 0.0529 0.2388 0.2516 0.6424 0.3633 

CT (mean) 28.6 a     
RT (mean) 25.3 ab     
NT (mean) 22.1 b     

      
Nitrogen (N) 0.8825 0.7027 0.6165 0.6959 0.0073 

0-N (mean)     0.482 a 
67-N (mean)     0.398 b 

      
T x N 0.2701 0.7194 0.7681 0.7080 0.2359 
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Table 4-15. Relationships between C0, N0, total C, total N, microbial biomass C, and microbial biomass N under 

conventional tillage (CT), reduced tillage (RT), no-tillage (NT) and native prairie sod for Tribune experiment at 0-5 cm. 

 
 

C0/N0 
C0/Total C MBC/C0 N0/Total N MBN/N0 

CT 25.66 a† 0.193 0.072 a 0.069 b 0.139 b 
RT 23.6 ab 0.241 0.029 b 0.099 b 0.071 b 
NT 19.19 b 0.230 0.032 b 0.110 ab 0.066 b 

SOD 20.92  ab 0.271 0.056 ab 0.148 a 0.366 a 
 ………………………….P values……………………… 

Tillage (T) 0.0712 0.2284 0.0403 0.0160 0.0013 
      

†Different letter in the same column means differences by tillage systems  
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Table 4-16. Relationships between C0, N0, total C, total N, microbial biomass C, and microbial biomass N under 

conventional tillage (CT), reduced tillage (RT), no-tillage (NT)  and native prairie sod for Tribune experiment at 5-15 cm. 

 
 

C0/N0 
C0/Total C MBC/C0 N0/Total N MBN/N0 

CT 13.27 0.120 b† 0.174 0.084 b 0.328 
RT 20.69 0.146 ab 0.111 0.065 b 0.327 
NT 21.99 0.167 a 0.118 0.067 b 0.358 

SOD 13.31 0.151 ab 0.146 0.142 a 0.386 
 ………………………….P values……………………… 

Tillage (T) 0.1024 0.0603 0.1709 0.0014 0.8270 
      

†Different letter in the same column means differences by tillage systems 
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Table 4-17. Relationships between C0, N0, total C, total N, microbial biomass C, and microbial biomass N under 

conventional tillage (CT), reduced tillage (RT), no-tillage (NT) in continuous wheat (W-W) and wheat-soybean (W-B) 

rotation for Manhattan experiment at 0-5 cm. 

 

 
 

C0/N0 
C0/Total C MBC/C0 N0/Total N MBN/N0 

W- B CT  31.65 0.375 0.074 b† 0.128 0.023 b 
W- B RT  29.76 0.364 0.066 bc 0.114 0.023 b 
W- B NT  26.73 0.289 0.103 a 0.129 0.038 a 

      
W- W CT  42.54 0.379 0.035 de 0.092 0.014 bc 
W- W RT  30.38 0.284 0.051cd 0.892 0.010 c 
W- W NT  27.33 0.229 0.031 e 0.091 0.009 c 

 ………………………….P values……………………… 
Rotation (R) 0.2195 0.0554 0.0001 0.0049 0.0043 

W-B (mean)  0.352 a  0.119 a   
W-W (mean)  0.309 b  0.087 b  

Tillage (T) 0.0487 0.0002 0.1310 0.7250 0.2378 
CT (mean) 38.65 a 0.387 a    
RT (mean) 28.5 b 0.335 b    
NT (mean) 31.6 b 0.269 c    

R x T 0.3552 0.1359 0.0017 0.8377 0.0628 
      

†Different letter in the same column means differences by tillage systems and rotation  

 146



 
 

C0/N0 
C0/Total C MBC/C0 N0/Total N MBN/N0 

W- B CT  26.71 0.246 0.118 0.104 0.015 
W- B RT  23.56 0.202 0.125 0.089 0.013 
W- B NT  30.11 0.221 0.112 0.074 0.016 

      
W- W CT  41.13 0.318 0.041 0.080 0.018 
W- W RT  33.89 0.310 0.049 0.093 0.009 
W- W NT  33.84 0.231 0.074 0.070 0.004 

 ………………………….P values……………………… 
Rotation (R) 0.0545 0.0370 0.0020 0.4280 0.6823 

W-B (mean) 26.8 b 0.217 b 0.118 a   
W-W (mean) 36.3 a 0.299 a 0.054 b   

      
Tillage (T) 0.6356 0.2011 0.8086 0.1680 0.3120 
R x T 0.6433 0.2609 0.5618 0.4849 0.2755 
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Table 4-18. Relationships between C0, N0, total C, total N, microbial biomass C, and microbial biomass N under in 

continuous wheat (W-W) and wheat-soybean (W-B) rotation for Manhattan experiment at 5-15 cm. 



CHAPTER 5 - SOIL ORGANIC MATTER AND MICROBIAL 
ECOLOGY OF MOLLISOLS, VERTISOLS, AND OXISOLS: 

COMPARISONS OF NATIVE AND AGROECOSYSTEMS 

 

ABSTRACT 

C sequestration is a viable short-term option for mitigating increased atmospheric 

CO2. In agriculture soils, some of the strategies are the adoption of best management 

practices such as no-tillage, cover crops, and improved crop rotations. Cultivation 

decreases soil organic carbon (SOC) and aggregate stability. The objective of our study 

was to determine the influence of different long-term tillage practices on SOC and total 

N, soil aggregation and aggregate-associated C and N in three soils an Oxisol (Brazil), 

Vertisol (Argentina), and Mollisol (Kansas,USA). Tillage systems were conventional 

tillage (CT), reduced tillage (RT) and no-tillage (NT) and a native vegetation treatment. 

Soil samples were taken at 0-5 cm, 0-15 and 15-30 cm. Water-stable aggregates (WSA) 

were separated using a wet sieving method. Total C and N contents were determined 

by dry combustion. For all three soils, SOC was significantly greater in NT than CT for 

0-5 cm. In the Oxisol NT had greater amounts of large macroaggregates (>2000 µm) 

than CT; this was accompanied by a corresponding decrease in the aggregates <2000 

µm. In the Vertisol and Mollisol, no significant differences were detected among tillage, 

but NT tended to have greater amounts of large macroaggregates than CT. Carbon and 

N concentrations in the aggregates differed according to the soil types in response to 

management. In general, C and N in the native vegetation of the Oxisol were similar to, 
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or greater than, NT and greater than CT. However, in the Vertisol, NT had greater C 

and N concentrations in the macroaggregates than did soil from the native site. In the 

Mollisol, the native site had greater C and N concentrations in the aggregates compared 

to either tillage systems. Cultivation of native vegetation sites reduced the mass of 

macroaggregates and the associated C and N concentration; however NT tended to be 

more similar to the native grassland sites. Microbial communities were also affected by 

management being greater the levels under native grassland and NT systems. The 

tendency of had greater abundance of fungi PLFA and AM fungi biomarkers under NT 

than CT together with the better aggregation could contribute to explain the increase in 

SOC under no-tillage systems. 

 

 

Keys words: aggregates, tillage, grassland 
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INTRODUCTION 

Soil C sequestration is considered a viable near-term option for mitigating 

increased atmospheric CO2 (Post et al., 2004; Caldeira et al., 2004).  In agriculture, 

some of the strategies to increase soil C include the adoption of best management 

practices such as no-tillage, cover crops, and improved crop rotation (Lal et al., 1998; 

Paustian et al., 2000; West and Post, 2002; Lal, 2004; Post et al., 2004).  

Cultivation decreases soil organic carbon (SOC) and reduces soil aggregate 

stabiltiy (Tisdall and Oades, 1980). Tillage can affect SOC dynamics through changes in 

soil environment (temperature, moisture) thus affecting microbial activity; and also 

through the disruption of soil structure (Balesdent et al., 2000). The bare soil surface is 

exposed to continuous wet-dry and freeze-thaw cycles (Beare et al., 1994; Paustian et 

al., 1997) thus making the aggregates more susceptible to disruption. Also, changes in 

soil climate promote increases in the decomposition rates (Cambardella and Elliott, 

1993), and affect the microbial community composition (Beare et al., 1993).  

Carbon stabilization in temperate and tropical soils is mediated by soil biota, soil 

structure and their interactions, and also by agricultural management (Six et al., 2002). 

Some of the factors that greatly differ among tropical and temperate regions are climate, 

parent material, and vegetation. Tropical soils generally have low activity clays (1:1 

clays) which are characterized by low specific surface and cation exchange capacity 

(CEC). The climate is generally characterized by high temperatures and high 

precipitation relative to temperate systems. As a result of the soil and climate, microbial 

activity is high, and consequently Oxisols have a lower capacity to stabilize C. 

Conversely, temperate soils have a predominance of high activity clays (2:1 clays), with 
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high specific surface area and CEC; therefore, a greater capacity to stabilize C (Six et 

al. 2002). 

Soil organic matter and biological processes play a primary role in the 

aggregation of temperate soils dominated by 2:1 clay mineralogy. However, in 

weathered soils, it has been suggested that soil organic matter and biological processes 

play a secondary role in the binding of aggregates (Six et al., 1999; Denef et al., 2002; 

Denef and Six, 2004).  The primary factor in these soils is mineral-mineral bonding due 

to electrostatic interactions between oxides and 1:1 clay minerals. 

Management practices can alter the composition and function of microbial 

communities thus affecting soil C dynamics. Bacteria and fungi are the most abundant 

microorganisms in soils, and play a key role in organic matter decomposition (Six et al., 

2006). The proportion of microbial biomass composed of fungi can increase with less 

disturbance such as NT (Beare, 1997; Frey et al., 1999; Watson and Rice, 2004). The 

degree of disturbance, soil moisture, and residue placement are factors controlling the 

proportions of bacterial and fungal biomass in NT and CT systems (Six et al., 2006; 

White and Rice, 2007). Different techniques have been used to assess variations in 

microbial communities and composition. Guggenberger et al. (1999) reported that the 

ratio of the fungal-derived amino sugar glucosamine to the bacterial-derived muramic 

acid was significantly higher under NT than under CT, indicating greater accumulation 

of fungal cell wall residues in NT soils. Frey et al. (1999) used direct counts to report a 

greater proportion of fungal biomass in NT than CT. Phospholipid fatty acid (PLFA) 

analysis has been applied to detect responses of soil microbial communities to land use 

changes or ecosystems disturbance (Hedrick et al., 2000; Fang et al., 2001; Harris, 
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2003).  Specific PLFA markers can identify groups of organisms in soils (Zak et al., 

1994; Zelles, 1997; Zogg et al., 1997; Mckinley et al., 2005). 

The introduction of conservation tillage as a strategy to reduce soil erosion, 

improve soil structure, reduce soil C loss, and promotion of sustainable agriculture has 

been gaining importance in different parts of the world. However, changes in 

management practices can influence the dynamics of C in soils affecting the quantity 

and quality of SOM, soil aggregation, and microbial populations to different degrees 

according to soil type and climate. Thus, the objective of our study was to evaluate the 

effect of agroecosystems and native vegetation on SOC, aggregation, and microbial 

community structure using a PLFA technique in three different soil orders: Oxisols, 

Vertisols, and Mollisols. 

MATERIALS AND METHODS 

Site description 

 Characteristics of the experimental sites are summarized in Table 5.1.  The 

Oxisol was located at the Center of Experimentation and Research FUNDACEP in Cruz 

Alta (RS), Brazil (28º 36' S, 53º 40'W). This experiment was initiated in 1985 on a clay 

Rhodic Hapludox and referred to in the text as Oxisol. The average annual precipitation 

was 1727 mm without a dry season and an annual mean temperature of 19.2 ºC. The 

crop rotation was: black oat (Avena strigosa Schreber) - soybean (Glycine max (L) 

Merrill) - black oat + vetch (Vicia sativa (L.) Walp.)- maize (Zea mays L.) - radish oil 

(Raphanus sativus L.)- wheat (Triticum aestivum L.) - soybean, under conventional 

tillage (CT) and no-tillage (NT) systems. Conventional tillage consisted of using tandem 

disk and disk plow.  No-tillage consisted of planting directly into the residue.  The plots 
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were amended with lime and fertilized with N, P, and K following soil analysis. Details 

for the experiment were reported by Campos et al. (1995) and Campos (2006). The 

experimental design was a randomized block with three replications.  A native 

vegetation site (Native site) was included in the experiment, which represented the 

natural vegetation of the area with species such as Andropogon lateralis, Paspalum 

notatum, Conyza bonariensis, Eryngium horridum, Desmodium incanum, Cyperus spp., 

and Digitaria spp. 

The Vertisol was located at the Experimental Station INTA Parana, Entre Rios 

(31º 50’ 07” S, 60º 32’ 19” W). The averaged annual precipitation was 995 mm with an 

annual mean temperature was 18.5 ºC.  The soil was classified as an argic chromic 

Peludert (very fine, montmorillonitic slighly akaline, thermic Peludert) and referred to in 

the text as Vertisol. The crop rotation, initiated in 1997, was wheat/soybean-maize, with 

two tillage systems: reduced tillage (RT) and no-tillage. Reduced tillage consisted of two 

or three operations with disk or chisel plow. No-tillage consisted of planting directly into 

the residue. A native site (Native site) was included as a treatment. The natural 

vegetation of the area was a savanna with xenomorphic species (Prosopis spp. and 

Acacia spp.) and grasses such as Bromus spp., Setaria spp., and Stipa spp. The 

treatments were arranged in a randomized complete block design with four replications. 

The Mollisol was located at the North Agronomy Farm located at Kansas State 

University, Manhattan, Kansas (Riley County; 39º 13’ 12” N, 96º 36’ 0” W). The soil was 

a moderated well-drained Kennebec silt loam (fine-silty, mixed, superactive mesic 

Cumulic Hapludoll) and referred in the text as Mollisol. The 30-yr average annual 

precipitation was 800 mm, which was mainly concentrated in the spring-summer period, 
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with an annual mean temperature of 11.4 ºC. The experiment, initiated in 1990, was a 

split-plot with four replications, with tillage as the main plot and N as the sub-plot. For 

this study, samples were taken only in the CT and NT plots receiving 168 kg N ha-1 as 

ammonium nitrate. Conventional tillage consisted of fall chisel plow and spring offset 

disk. No tillage consisted of planting directly into the residue. Similar to the other 

experiments, a native site was included for comparison; the natural vegetation was a 

tallgrass prairie dominated by warm-season grasses: big bluesterm (Andropogon 

gerardii Vit.), indiangrass (Sorgastrum nutans (L.), and switchgrass (Panicum virgatum 

Michx.). 

Soil Sampling  
Soil samples were taken from each plot at 0-5, 0-15, and 15-30 cm depth. A 

sterile polypropylene bags (3.78 L) were filled with soil samples collected randomly from 

each plot using a 2-cm diam. Oakfield soil-probe (Forestry Suppliers, Inc., Jackson, MS) 

or shovel. Samples were collected August 2005 for the Oxisol, November 2005 for 

Mollisol, and March 2006 for the Vertisol. Soil samples were passed through 8-mm 

sieve, roots removed, and stored at 4ºC until use. 

Aggregate-Size Distribution 
Water-stable aggregates (WSA) were separated using a wet-sieve method 

described by Yoder (1936) with modifications by Mikha and Rice (2004). Soil was air-

dried and 50 g placed on the top of the sieve of each nest. To slake the air-dried soil, 1 

L of distilled water was rapidly added until soil was covered with water. Soils were 

submerged in water for 10 min followed by 10 min of wet sieving. Four aggregate size 

classes were collected from each treatment >2000, 250-2000, 53-250, and 53-20 μm 

 154



diam. Water stable aggregates were dried and a subsample was used to determine 

sand content of each fraction (Mikha and Rice, 2004). Large macroaggregates were 

defined as >2000 μm, small macroaggregates 250-2000 μm, microaggregates 250-53 

μm, and silt plus clay by 20-53 μm size fraction. 

Sand-free WSA was measured using a subsample of intact aggregates (2-5g) 

and combined with fivefold volume (10-25 mL) of 5 g L-1 sodium hexametaphosphate, 

left overnight and shaken on an orbital shaker at 350 RPM for 4h. The dispersed 

organic matter and sand was collected on a 53 μm mesh sieve, washed with deionized 

water, and dried at 105ºC for 24 h, and the aggregate weights were recorded for 

estimating the sand-free correction. 

 

Total C and N 
Soil samples were dried and ground to a fine powder using a mortar and pestle. 

Total C and N contents were determined by dry combustion using a C/N Elemental 

Analyzer (Flash EA 1112 Series ThermoFinnigan Italia S.p.A., MI, Italy). Calculations for 

total C and N in different aggregate-size fraction were adjusted for sand-free water 

stable aggregates. 

Microbial Community Structure: Phospholipid Fatty Acid Analysis. 
Phospholipids and neutral lipid fatty acids (PLFA and NLFA) analyses were 

determined following a modification of the Bligh and Dyer (1959) method (White and 

Ringelberg, 1998). Lipids were extracted with a single phase 

chloroform:methanol:phosphate buffer solution (Blight and Dyer, 1959) for 2 h from 5 g 

of freeze-dried soil. Total lipid extracts were separate into neutral lipids, polar lipids and 
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glycolipids using preconditioned silica gel disposable extraction columns (J.T. Baker, 

Phillipsburg, NJ, USA). Neutral and polar lipids were subject to alkaline methanolysis to 

cleave the fatty acids from the glycerol molecule and replace it with methyl groups, 

creating fatty acid methyl esters. Samples were analyzed by gas chromatography (HP 

6890, Agilent Incorporated, Palo Alto, CA, USA). A 25-m Ultra-2 (J &W Scientific, 

Agilent Technologies, Palo Alto, CA, USA) column was used and He was the carrier gas 

at 1 mL min-1. The initial temperature was 80ºC for 1 min followed by an increase of 

20ºC min-1 until 155ºC, and a second increase at 5ºC min-1 until 27.ºC. Peaks were 

identify using retention times of fatty acid standards  and by comparing spectra from a 

library (Wiley 138K mass spectral database). Samples peak were quantified based on 

comparison of the abundance with an internal standard nonadecanoic acid methyl ester 

(19:0) in terms of nmol g-1 dry soil or mol %. 

Fatty acids were designated a:b, where a is the total number of carbons and b 

are the number of double bonds. An ω refers to the position of the double bond from the 

aliphatic end of the fatty acid. The prefixes a and i refer to anteiso and iso branching, 

the suffixes c and t indicate cis and trans conformations. Methyl groups were indicated 

by aMe, where a indicates the position of the methyl group. 

Fatty acids were grouped into Gram positive bacteria (i15:0, a15:0, 10Me16:0, 

i17:0, and a17:0), Gram negative bacteria (18:1ω7c and cyclic 19:0), actinomycetes 

(10Me18:0 and 10Me17:0), and fungi (18:2ω6,9c and 18:1ω9c) (McKinley et al., 2005). 

Statistical Analysis 

Analysis of variance was performed using SAS PROC MIXED (SAS Institute, 

2002) to assess differences between treatments. Because the native site treatment was 
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not included in the experimental design two different analyses were performed: 1) 

comparison between tillage treatments, NT or RT versus CT, at each site, and 2) 

comparison between tillage treatments and the native site treatment at each site. 

Results were considered statistically significant at P< 0.05 unless noted otherwise.  

Means were compared using LSD values. 
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RESULTS 

Total C and N 

For all three soils, SOC was significantly (P<0.01) greater in NT than CT for 0-5 

cm (Table 5.2).  For the Oxisol, SOC also was significantly greater in NT than CT for 0-

15 cm (P<0.05); however SOC at 0-15 cm was not different between tillage systems for 

the Vertisol and the Mollisol.  There were no differences between tillage systems for 

SOC at 15-30 cm for all three soils (Table 5.2).  

The native grassland for all three soils had greater SOC concentrations at 0-5 cm 

(P<0.05), which were significant for the Oxisol and the Mollisol. At 0-15 and 15-30 cm 

the native grassland had also significantly greater SOC than both cropped treatments in 

the Mollisol and Vertisol.  

For the Mollisol and Vertisol, total N was significantly (P<0.01) greater in NT than 

CT for 0-5 cm (Table 5.2). There were no differences between tillage systems for total N 

at 0-15 and 15-30 cm (P>0.05), except in the Oxisol where CT had greater total N than 

NT (P<0.01). The native grassland had greater total N concentrations compared to 

tillage treatments at all depths in Mollisol (P<0.05).  

Sand-free water stable aggregates 

The level of aggregation was much greater for the Oxisol than the other two soils 

(Fig. 5.1). For the Oxisol at 0-5 cm, sand-free WSA was significantly affected by the 

interaction of tillage x aggregate size (P<0.05) (Fig. 5.1a).  No-tillage had significantly 

greater amounts of large macroaggregates than CT at the expense of smaller 

aggregates. No differences were observed for the aggregates associated with the silt 

plus clay size. The native site had similar amounts of large macroaggregates as NT but 
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was significantly greater than CT (Fig. 5.1a). The differences in aggregates between 

tillage systems at 0-5 cm were not apparent at 0-15 and 15-30 cm (Fig. 5.1b, c) 

indicating the response was confined to the surface 5 cm of the no-till soil. The native 

site had greater amounts of macroaggregates (>2000 μm) than the cropped systems 

except for 0-5 cm where NT had significantly greater amounts of macroaggregates than 

the native site. The native site had significantly lower amounts of small 

macroaggregates and microaggregates at 0-15 cm (Fig. 5.1b). At 15-30 cm, the Native 

site had similar amounts of large macroaggregates as the CT but less than NT (Fig. 

5.1c).   

For the Vertisol there were generally no differences (P>0.05) between tillage 

systems at all depths (Fig. 5.2). The native site had greater amount of macroaggregates 

at all depths (Fig. 5.2).  

For the Mollisol, no significant differences (P>0.05) in aggregates were detected 

between tillage systems at all depths (Fig. 5.3). The native site had significantly greater 

amounts of macroaggregates (P<0.05) than the cropped treatments (Fig. 5.3).  

Concentrations of C and N in each aggregate fraction 
The Oxisol had similar C concentrations between tillage systems in the 

macroaggregate fraction at 0-5 cm; however, NT had significantly greater (P<0.05) C 

concentrations than CT in the microaggregate fraction, which might indicate a loss of 

microaggregate-associated C as a result of intensive tillage (Fig. 5.4a). At 0-15 and 15-

30 cm, no significant differences were observed between tillage systems for C 

concentrations (Fig. 5.4 b, c). The C concentrations of the aggregates from the native 

site were greater or similar to NT but significantly greater than CT indicating that tillage 
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had accelerated the loss of C in all aggregates while no-till may preserve aggregate-

associated C.  At 0-5 cm, total N concentration was significantly greater under NT than 

CT in all aggregate size fractions (Fig. 5.5). The native site had significantly greater N 

concentrations in the microaggregates than CT and NT at all depths (Fig. 5.5).  At 0-15 

and 15-30 cm, no differences between tillage were observed; however at 0-15 cm the 

native site had significantly greater (P<0.05) concentrations of N than the cropped 

systems for all aggregate size fractions, except in the < 53 um fraction (Fig. 5.5b). Total 

C and N mass are presented in the appendix (Fig. C.1,C.2). 

For the Vertisol, at 0-5 cm, total C and N concentration was significantly greater 

(P<0.05) under NT than CT in the macroaggregate fraction, with no differences in the 

microaggregate fraction (Fig. 5.6a, Fig. 5.7a). The total C and N concentration in the 

native site was significantly lower than both tillage systems in the large 

macroaggregates. At 0-15 cm, NT had significantly greater (P<0.05) C and N 

concentration in large macroaggregates (Fig. 5.6b, Fig. 5.7b). Conversely, CT at 15-30 

cm had significantly greater (P<0.05) C and N concentration than NT (Fig. 5.6c, Fig. 

5.7c). Total C and N mass are presented in the appendix (Fig. C.3,C.4). 

Total C and N concentrations for the Mollisol were significantly greater (P<0.05) 

under NT than CT for the small macroaggregates at 0-5 cm, with no differences 

between cropped treatments in the microaggregates (Fig. 5.8a, Fig. 5.9a). At 0-15 cm 

no differences were observed in C and N concentrations between CT and NT (Fig. 5.8b, 

Fig. 5.9b). At 15-30 cm, CT had greater C and N concentrations in the large 

macroaggregates than NT, but no differences were observed in the other size classes 

(Fig. 5.8c, Fig. 5.9c).  The native site had greater C and N than the cropped treatments 
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in the small macroaggregate and microaggregate fraction at 0-5 cm and 0-15 cm (Fig. 

5.8a,b; Fig. 5.9a,b ). The concentrations of C and N in the native site was greater than 

both cropped treatments for all aggregate size classes at 15-30 cm, except in the < 53 

um fraction (Fig. 5.8c, Fig. 5.9c). Total C and N mass are presented in the appendix 

(Fig. C.5,C.6). 

Microbial Community Structure 

Oxisol 
Microbial biomass estimated as total PLFA was significantly greater (P<0.10) 

under NT than CT (Fig. 5.10a). No-tillage had 60% more microbial biomass than CT. 

The native site was similar to NT but had greater microbial biomass than CT (P<0.05). 

The abundance of the PLFA fungal markers responded significantly to the tillage 

treatments (P<0.05) (Fig. 5.11a). No-tillage systems had a greater abundance of fungi 

than CT. The native site had similar fungal abundance as NT but significantly greater 

(P<0.05) than CT. Actinomycete indicators estimated with PLFA were similar among 

treatments (P>0.05) (Fig. 5.11a). The abundance of Gram-positive and Gram-negative 

bacteria was significantly greater (P<0.10) under NT than CT (Fig. 5.11a). Similar 

values were observed between NT and the native site, but they were significantly 

greater (P<0.05) than CT (Fig. 5.11a). The relative abundance of each PLFA indicator is 

presented on Figure 5.11b. No differences were detected between tillage systems in the 

relative abundance, except for Gram-negative bacteria that showed greater abundance 

in NT than CT systems. In the native site, Gram-negative were more abundant than the 

cropped systems.  

 161



The native site had significantly greater (P<0.05) abundance of the NLFA fungal 

marker than the cropped systems. Besides, NT had significantly greater abundance of 

fungal NLFA biomarker than CT (P<0.10) (Fig. 5.12a). Similar abundance of the NLFA 

AMF marker was observed between the NT and native site but was significantly greater 

(P<0.05) than CT (Fig. 5.12a).  The relative abundance of the NLFA fungal indicator 

reflects significant differences between tillage systems and the native site (P<0.05) (Fig. 

5.12b).  

Vertisol 

Microbial biomass estimated by total PLFA was similar among treatments 

(P>0.05) (Fig. 5.10b). The abundance of PLFA indicators was similar between tillage 

treatments (P>0.05), and the native prairie and tillage systems (P>0.05), except for 

Gram-negative bacteria, which were significantly greater under NT than CT (Fig. 5.13a). 

The relative abundance of each PLFA indicator is presented on Figure 5.13b. No 

differences were detected between tillage systems in relative abundance, except for 

Gram-positive bacteria that showed greater abundance for the native site than CT 

systems (P<0.05).  

No-tillage had significantly greater (P<0.10) abundance of the NLFA fungal 

indicator than CT (Fig. 5.14a). The native site had significantly greater (P<0.05) 

abundance of the AM than the cropped systems which may be due the reliance of the 

vegetation for P uptake by AM symbiosis. Total fungi, including the AM fungi, was 

similar under NT and the native site, but significantly differed from CT (Fig. 5.14a). 

The relative abundance of NLFA AM fungal indicator was significantly greater 

under native site than CT and NT (P<0.10) (Fig. 5.14b). 

 162



Mollisol 

Microbial biomass estimated as total PLFA was significantly greater (P<0.10) 

under NT than CT (Fig. 5.10c). No-tillage had 44% more microbial biomass than CT 

treatments. When the native site was compared with tillage systems, the native site had 

significant greater biomass (P<0.05) than NT and CT. 

The abundance of fungi, actinomycetes, Gram-positive, Gram-negative 

responded significantly to the tillage treatments (P<0.10) (Fig. 5.15a). No-tillage 

systems had greater abundance than CT. The native site had significant greater 

abundance of actinomycetes, Gram-positive and Gram-negative than CT and NT 

(P<0.05). The relative abundance of each PLFA indicator is presented in Figure 5.15b. 

No differences were detected between tillage systems in the relative abundance. 

Differences with the native site were only observed in the actinomycetes and Gram-

negative indicator, in which the prairie had greater relative abundance than CT and NT 

systems.  

The native site had significantly greater (P<0.05) abundance of AMF than the 

cropped systems (Fig. 5.16a). The relative abundance of NLFA fungal indicator reflects 

significant differences between tillage and native site (P<0.05), but no differences 

(P>0.05) between CT and NT (Fig. 5.16b). The native site had greater relative 

abundance of AMF, but lower relative abundance of fungi than CT and NT treatments 

(P<0.05) (Fig. 5.16b). 

DISCUSSION  

Despite the differences in soil and climate among sites, our results reflect that the 

no-tillage effect was concentrated in the first 0-5 cm soil depth, where SOC and total N 
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were greater under NT than under CT. Similar results have been reported in the 

literature (Six et al.,1999; West and Post, 2002; Deen and Kataki, 2003; Fabrizzi et al., 

2003; Mikha and Rice, 2004; McVay et al., 2006; Wright and Hons, 2004, 2005a,b; 

Amado et al., 2006). In the Oxisol, however, NT increased SOC content to a depth of 15 

cm. The impact of NT on the depth of SOC increases may be a function of the soil, 

climate, cropping systems and time. Positive gains with no-tillage management have 

been reported to a depth of 30 cm (Cambardella and Elliot, 1994; Six et al., 1999; 

Fabrizzi et al., 2003); however, other studies have report no increase in SOC under NT 

systems (Angers et al., 1997; Franzluebbers et al., 1999; Needelman et al., 1999; Puget 

and Lal, 2005; Sainju et al., 2006).  

Cultivation decreased SOC and total N concentration. However NT in the Vertisol 

had similar C and total N concentrations as the native site, which may be a function of 

prior history.  The Vertisol was the youngest of the three experiments, which may have 

limited the time for differences to develop. There were significant differences in C 

concentration at 0-15 and 15-30 cm between tilled and native for the Oxisol and the 

Mollisol. The lack of differences in the Vertisol may be due to the self-mixing of the 

shrink-swell clays that minimize stratification that would develop under NT.  Leinweber 

et al. (1999) and Schulten and Leinweber (2000) mentioned that the drying and wetting, 

resulting in the swell and shrink dynamics and lead to pedoturbation and mixing of 

mineral-associated organic matter within the soil profile. 

Several authors have reported an increase in the proportion of macroaggregates 

under NT systems (Beare et al., 1994a; Mikha and Rice, 2004; Wright and Hons, 

2005a).  Differences in soil aggregation induced by tillage systems in our study were 
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more pronounced in the Oxisol at 0-5 cm. NT had greater proportion of large 

macroaggregates than CT. In the Vertisol and Mollisol, the amount of large 

macroaggregates under CT was small or even not detectable than the smaller 

macroaggregates and microaggregates, which may be a response to frequency of 

disruption and lack of stability under CT.  Some reasons for the greater response of the 

Oxisol than temperate soils to change in management could be related to the direct and 

indirect impact of tillage and soils dominated by 1:1 clay and lower CEC that have faster 

turnover and less stabilized C (Six et al., 2004). Tillage may expose aggregates to more 

frequent wet-dry cycles; increase SOC decomposition; and change microbial 

communities, especially reducing fungal growth and proliferation that contribute to 

macroaggregate formation (Six et al., 1998).  

Cultivation of native ecosystems reduced the mass of macroaggregates. Similar 

to our results, Elliott (1986) reported more stables macroaggregates in native sod than 

in cultivated soils; and this can be related to the importance of roots, fungi and bacteria 

on aggregation by enmeshing and binding of soil particles (Bronick and Lal, 2005).  

Tillage decreases the length of the roots and breaks up the hyphal networks resulting in 

decreased aggregation under long-term cultivation (Tisdall and Oades, 1980). The 

influence of microbial activity or products on aggregation is related to different scales of 

influence of fungi vs. bacteria, soil texture and mineralogy (Six et al., 2004). Denef and 

Six (2004) reported a significant correlation between aggregation and microbial biomass 

in the Mollisol, but no effect of the microbial biomass on the Oxisols. Our results were 

similar to those reported (Fig. 4.17b). According to the aggregate hierarchy theory and 

the pore exclusion principle, fungal mycelium is important to the formation of 
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macroaggregates, whereas the production of mucilages from bacteria and fungi 

promotes the formation of microaggregates (Six et al., 2004).   

The lack of differences in C and N content across aggregate–size classes in the 

Oxisol (Fig.4.4) indicate that these soils do not follow the aggregate hierarchy proposed 

by Tisdall and Oades (1982). In these tropical soils, 1:1 clays and Al and Fe oxides are 

the principal agents of aggregation, and SOM play a secondary role as binding agent 

(Six et al., 2000a,b, 2002; Denef et al., 2002; Zoratelli et al. 2005). Conversely, the 

Mollisol and Vertisol showed an increase of C and N concentration with increasing 

aggregate-size (Fig. 4.6 and 4.8) supporting the aggregate hierarchy (Six et al., 2000b). 

The Oxisol had a decrease in macroaggregates with an increase in microaggregates 

with cultivation, but there was no C depletion at any aggregate size fraction which 

indicated that for these soils there is not a direct link between loss of aggregates and C 

loss (Six et al., 2000b; Zoratelli et al., 2005). However, in Mollisols, cultivation results in 

the loss of C-rich macroaggregates and an increase of C depleted microaggregates (Six 

et al., 2000b) as reflected in our results. 

The greater amount of macroaggregates in the Oxisol than in the Mollisol and the 

Vertisol can be related to the formation of bridges between primary and secondary 

particles through the formation of a coat of oxides on the clay surface (Norrish, 1983; 

Muggler et al., 1999, cited by Six et al., 2004). The binding of oxides to minerals will 

reduce the CEC of kaolinite and increases positive charge, promoting aggregation 

through electrostatic binding (Dixon, 1989, cited by Six et al., 2004). The importance of 

these physical mechanisms on the aggregate formation in Oxisols is also shown by the 

poor relationship between SOC content and microbial biomass and amount of 
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macroaggregates in these soils (Fig. 4.17). However, in the Mollisol there was a strong 

correlation between SOC or microbial biomass and the amount of macroaggregates 

indicating the importance of biological agents on aggregate formation (Fig. 4.17). 

Total PLFA biomass was greater under NT than CT in the Oxisol and Mollisol, 

but was similar among treatments in the Vertisol. The lack of differences in the Vertisol 

could be related to the lower intensity of the tillage and time under treatments. The 

native site had greater or similar total PLFA biomass than NT but greater than CT in 

these evaluated experiments. 

In general, NT had greater abundance of fungal and AMF than CT and similar 

abundance compared to the native site. The differences between management on the 

fungal NLFA biomarker followed the same pattern and were more pronounced than 

PLFAs, except in the Vertisol. For the Gram positive and Gram-negative bacteria, the 

native site had similar or greater abundance than NT, but both were greater than CT 

systems. When the biomarkers were expressed as a proportion of the total biomass, 

changes in management practices did not affect the relative abundance. 

Several studies have reported a greater proportion of the microbial biomass 

composed by fungi in NT than CT (Beare, 1997; Frey et al., 1999; Watson and Rice, 

2004). The tendency to have greater fungal than bacterial biomass under NT than CT 

could be related with three major factors: 1) disturbance, less disturbance favors fungal 

growth and activity due to enhanced establishment and maintenance of extensive 

hyphal networks; 2) soil moisture, fungi can maintain activity in the dry surface litter 

environment in NT systems, and 3) residue placement, because fungi can bridge the 

soil-residue interface and utilize the spatially separated C resources by translocating N 
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into the C-rich surface residues (Frey et al., 1999; Six et al., 2006). Thus, the shifts in 

microbial communities due to management practices can have important implications 

on the soil C dynamics and soil aggregation. Thus, soil environment favoring fungi 

growth can be an alternative to sequester C in soils, such as no-tillage systems. 
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Figure 5-1. Distribution of sand-free water stable aggregates (WSA) under conventional 
tillage (CT), no-tillage (NT) and native vegetation at 0-5 cm (a), 0-15 (b), and 15-30 (c) 
for the Oxisol. Error bars represent the standard error of  the mean. 
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Figure 5-2. Distribution of sand-free water stable aggregates (WSA) under reduced 
tillage (RT), no-tillage (NT) and native vegetation at 0-5 cm (a), 0-15 (b), and 15-30 (c) 
for the Vertisol. Error bars represent the standard error of  the mean. 
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Figure 5-3. Distribution of sand-free water stable aggregates (WSA) under conventional 
tillage (CT), no-tillage (NT) and native vegetation at 0-5 cm (a), 0-15 (b), and 15-30 (c) 
for the Mollisol. Error bars represent the standard error of  the mean. 
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Figure 5-4. Total C in the sand-free water stable aggregates (WSA) under conventional 
tillage (CT), no-tillage (NT) and native vegetation at 0-5 cm (a), 0-15 (b), and 15-30 (c) 
for the Oxisol. Error bars represent the standard error of  the mean. 
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Figure 5-5. Total N in the sand-free water stable aggregates (WSA) under conventional 
tillage (CT), no-tillage (NT) and native vegetation at 0-5 cm (a), 0-15 (b), and 15-30 (c) 
for the Oxisol. Error bars represent the standard error of  the mean. 
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Figure 5-6. Total C in the sand-free water stable aggregates (WSA) under reduced 
tillage (RT), no-tillage (NT) and native vegetation at 0-5 cm (a), 0-15 (b), and 15-30 (c) 
for the Vertisol. Error bars represent the standard error of  the mean. 
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Figure 5-7.  Total N in the sand-free water stable aggregates (WSA) under reduced 
tillage (RT), no-tillage (NT) and native vegetation at 0-5 cm (a), 0-15 (b), and 15-30 (c) 
for the Vertisol. Error bars represent the standard error of  the mean. 
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Figure 5-8. Total C in the sand-free water stable aggregates (WSA) under conventional 
tillage (CT), no-tillage (NT) and native vegetation at 0-5 cm (a), 0-15 (b), and 15-30 (c) 
for the Mollisol. Error bars represent the standard error of the mean. 
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Figure 5-9. Total N in the sand-free water stable aggregates (WSA) under conventional 
tillage (CT), no-tillage (NT) and native vegetation at 0-5 cm (a), 0-15 (b), and 15-30 (c) 
for the Mollisol. Error bars represent the standard error of  the mean. 
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Figure 5-10. Total phospholipid fatty acid (PLFA) biomass under conventional tillage 
(CT), reduced tillage (RT), no-tillage (NT) and native vegetation at 0-5 cm, for the Oxisol 
(a), Vertisol (b) and Mollisol (c). Error bars represent the standard error of  the mean. 
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Figure 5-11. Abundance of specific phospholipid fatty acid (PLFA) (a) and relative 
abundance (b) under conventional tillage (CT), no-tillage (NT) and native vegetation at 
0-5 cm, for the Oxisol. Error bars represent the standard error of  the mean. 

 187



0

10

20

30

40

50

60

70

80

Fungi AMF Total fungi

A
bu

nd
an

ce
 s

pe
ci

fic
 N

LF
A

 (n
m

ol
 g

 s
oi

l 
-1

 )

CT NT Native site
a)

0

10

20

30

40

50

60

Fungi AMF Total fungi

Indicators

R
el

at
iv

e 
ab

un
da

nc
e

 (%
 m

ol
 s

pe
ci

fic
 N

LF
A

)

b)

 
Figure 5-12. Abundance of specific neutralipid fatty acid (NLFA) (a) and relative 
abundance (b) under conventional tillage (CT), no-tillage (NT) and native vegetation at 
0-5 cm, for the Oxisol. Error bars represent the standard error of  the mean. 
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Figure 5-13. Abundance of specific phospholipid fatty acid (PLFA) (a) and relative 
abundance (b) under reduced tillage (RT), no-tillage (NT) and native vegetation at 0-5 
cm, for the Vertisol. Error bars represent the standard error of  the mean. 
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Figure 5-14. Abundance of specific neutralipid fatty acid (NLFA) (a) and relative 
abundance (b) under reduced tillage (RT), no-tillage (NT) and native vegetation at 0-5 
cm, for the Vertisol. Error bars represent the standard error of  the mean. 
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Figure 5-15. Abundance of specific phospholipid fatty acid (PLFA) (a) and relative 
abundance (b) under conventional tillage (CT), no-tillage (NT) and native vegetation at 
0-5 cm, for the Mollisol. Error bars represent the standard error of  the mean. 
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Figure 5-16. Abundance of specific neutralipid fatty acid (NLFA) (a) and relative 
abundance (b) under conventional tillage (CT), no-tillage (NT) and native vegetation at 
0-5 cm, for the Mollisol. Error bars represent the standard error of  the mean 
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Figure 5-17.  Relationship between the soil organic content (SOC) and the amount of 
macroaggregates (a) and microbial biomass estimated through the PLFA technique and 
the amount of macroaggregates (b) (> 250 μm) for the Oxisol, Vertisol, and Mollisol. 
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Table 5-1. Soil characteristics of the three sites evaluated in Brazil, Argentina, and Kansas (USA) at 0-5 cm. 

 

   pH Bray-P Ca2+ K+ Mg2+ Na+ CEC Sand Silt Clay 

Site Soil 
type   …………………………mg kg-1………………. cmol (+) kg-1 ……………%………….

Brazil Oxisol NT 5.1 26.8 1004 261 261 4.3 17.1 25 24 51 
  CT 5.1 18.4 681 146 189 3.2 16.2 25 23 52 
  Native site 5.3 3.7 826 185 336 4.8 20.3 28 28 44 
             

Argentina Vertisol NT 7.4 35.8 6290 994 389 11.6 43.3 8 49 43 
  CT 7.5 29.3 7011 804 374 24.3 41.2 8 49 44 
  Native site 6.3 36.4 4340 527 544 49.7 39.2 6 52 41 
             

Kansas Mollisol NT 5.8 55.0 2137 318 265 10.2 18.4 12 68 20 
  CT 6.2 54.9 2260 371 297 14.5 17.1 10 70 20 
  Native site 5.7 65.0 2472 659 412 19.6 24.7 9 59 32 
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Table 5-2. Soil organic carbon (C) and total nitrogen (Total N) for cropped (conventional tillage (CT), no-tillage (NT)) and 
native vegetation for the Oxisol, Vertisol, and Mollisol.  

 Soil organic C Total N 
 0-5 cm 0-15 cm 15-30 cm 0-5 cm 0-15 cm 15-30 cm 

 …………………….g C kg –1…………….. …………………….g N kg –1…………….. 
OXISOLS       

CT  20.8 Bb 20.2 Bb 15.6 Ba 2.10 2.43 Ba 1.41 
NT 28.3 Ba 22.0 Ba 15.9 Ba 2.84 1.72 Bb 1.58 

Native site 34.2 A 27.9 A 19.9 A 2.87 3.00 A 1.62 
       

P values1 0.0086 0.0111 0.5940 0.1823 0.0076 0.6838 
P values2 0.0023 0.0004 0.0092 0.2949 0.0006 0.8262 

VERTISOLS       
CT  20.4 Bb 18.4 12.8 1.43 Bb 1.31 0.93 
NT 25.5 Aa 17.2 14.7 1.84 Aa 1.17 0.96 

Native site 27.3 A 18.7 12.2 1.88 A 1.30 0.79 
  

P values1 0.0068 0.2118 0.6421 0.0057 0.1396 0.5777 
P values2 0.0620 0.1848 0.9124 0.0697 0.1739 0.3248 

MOLLISOLS       
CT  16.5 Bb 14.8 Ba 12.8 Ba 1.50 Bb 1.24 Ba 1.00Ba 
NT 20.6 Ba 15.4 Ba 12.4 Ba 1.98 Ba 1.30 Ba 0.98 Ba 

Native site 42.3 A 31.7A 19.5 A  3.74 A 2.85 A 1.71 A 
  

P values1 0.0472 0.2643 0.4084 0.0108 0.2757 0.5931 
P values2 0.0006 0.0001 0.0002 0.0002 0.0001 0.0001 

 
1 Indicates comparisons between CT and NT.  2 Indicates comparisons between CT and NT with Native site. Lowercase letters indicate differences between 
tillage. Uppercase letters indicates differences between tillage and the native site.



GENERAL SUMMARY 

Agricultural activities can be a source and a sink for greenhouse gases (GHGs). 

Concern about climate change due to the increasing concentrations of GHGs in the 

atmosphere has created attention on mitigation strategies to reduce GHGs.  Soil C 

sequestration appears to be a viable short-term option to mitigate the increase of CO2 in 

the atmosphere, because it is relatively low cost and can be rapidly deployed across 

large areas. 

Our results indicate that combining management practices was positive for 

increased soil C sequestration. Practices that reduced disturbance, such as no-tillage 

(NT), combined with rotations that contribute to increase amounts of residue, showed 

the greatest rates of C sequestration. Fallow in the rotation reduced C sequestration 

even with no-tillage management, for which a small rate or no change was observed.  

Evaluation of the changes in SOC due to land use, agricultural practices, and 

climate is necessary for regional estimates of C sequestration, and for policy makers 

who develop policies to reduce greenhouse gases (GHG) emissions. The 

Intergovernmental Panel on Climate Change (IPCC) has developed guidelines to 

determine the National Greenhouse Gas Inventory through the estimation of emissions 

and sinks of GHG. They have developed coefficients to estimate soil C stocks by 

different agricultural land-use and management practices. The IPCC has established a 

default value of 1.1 for SOC in NT relative to conventional tillage (CT).  Our results 

indicated a factor of 1.14 for a change from CT to NT, and 1.08 from CT to RT for 0-30 

cm.  The value for reduced tillage is important to establish for those farmers that either 
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cannot or are unwilling to adopt no-tillage.  These results can be used to validate 

models that will extrapolate C sequestration rates for the state of Kansas for various 

management practices and systems. 

One of the proposed mechanisms for increasing soil C is the development of 

macroaggregates in soil. Development of macroaggregates also has additional benefits 

of improving soil structure thereby improving the quality and physical environment of the 

soil. Nitrogen application and crop rotations that included wheat or sorghum improved 

aggregation however the impact was enhanced when combined with no-till.  In addition 

to the increased level of aggregation, the C and N associated with the macroaggregates 

increased, supporting the idea of physical protection of C and N within the soil. Thus, for 

these soils, buildup and maintenance of macroaggregates seems to be one of the 

primary mechanisms for C retention in these temperate agroecosystems. 

Soil organic C and N often are divided into different pools of different turnover 

times and stability. The most common division is into three pools, including microbial 

biomass, mineralizable, and recalcitrant C. Soil microbial biomass made up a small 

fraction of the total C (0.7-3%) and N (0.7-6%) pools and was more variable in response 

to different management practices. It appears the gain in soil organic C in NT is 

reflected in the mineralizable pool, which can be expected as C flows through the 

microbial biomass into the mineralizable pool and would be expected to be transformed 

into the recalcitrant pool.  

No-tillage as a strategy to reduce soil erosion, improve soil structure, reduce soil 

C loss and to promote sustainable agriculture has gained importance around the world. 

No-tillage affects soil aggregation and the composition and function of microbial 
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communities thus affecting soil C dynamics. The responses in the soil to no-tillage may 

vary according to the genetics of the soil and  the climate. We examined the impact of 

tillage systems and native grass on SOC and total N, and the microbial ecology of three 

genetic soils; an Oxisol in Brazil, a Vertisol in Argentina, and a Mollisol in USA. 

Introduction of cropping systems generally decreased aggregation and SOC and total 

N. However, the reduction in C and N and aggregation compared with soil under native 

grass was less with NT systems than with CT systems. Our results showed the 

importance of the physical mechanisms on the aggregate formation in the Oxisol, while 

in the Mollisol the strong correlation between SOC or microbial biomass and the amount 

of macroaggregates suggested that SOM plays a key role in the aggregate formation. 

Cultivation decreased the amount of macroaggregates with an increase in 

microaggregates, but there was no C depletion at any aggregate size fraction in the 

Oxisol indicating that there was not a direct link between loss of aggregates and C loss; 

however, in the Mollisol, cultivation resulted in the loss of C-rich macroaggregates and 

an increase in C-depleted microaggregates. 

Greater microbial biomass was observed under native grassland and NT 

systems. Fungi and AM fungi were more abundant in NT than CT, with NT tending to be 

more similar to the native grass.  This change in microbial communities to increased 

abundance of fungi in less disturbed systems could explain the greater levels of 

aggregation and the resulting levels of soil C storage, particularly in the Mollisol. In any 

case less soil disturbance (NT or native) increased aggregation and SOC and total N 

across all three soils.  Shifts in microbial communities due to management practices can 

have important implications on the soil C dynamics and soil aggregation. Thus, soil 
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environments favoring fungal growth can contribute to C sequestration in soils, such as 

in no-tillage systems.  

Overall, the adoption of management practices that increase productivity while 

enhancing C sequestration in soil and preserving the environment would be important to 

maintain the sustainability of agricultural systems. 

Future research is needed to evaluate the effects of the shift in microbial 

communities structure due to soil disturbance and its implications in the incorporation, 

turnover and stabilization of C in agricultural soils under different climatic and soil 

conditions.  Integration of data that characterize soil aggregation and microbial 

community composition into ecosystems models will improve knowledge of the global 

impact of management practices on soil C sequestration. 

 



Appendix A - Chapter 3 
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Table A-1. Distribution of sand-free water stable aggregates under conventional tillage (CT), reduced tillage (RT), no-

tillage (NT), and native prairie sod (SOD) for Tribune experiment.  

 

 Sand-free water stable aggregates 

 20-53 μm† 53-250 μm 250-2000 μm >2000 μm 

 …………………….g 100 g-1 soil……………………. 

CT 13.6 g 42.6 a 13.9 g 3.3 j 

RT 13.3 g 33.9 b 19.7 de 10.8 gi 

NT 16.4 ge 28.9 c 22.9 d 12.4 g 

SOD 7.3 i 19.6 e 31.9 bc 17.9 e 

 ………………………….P values……………………… 

Tillage (T)  0.5448  

Size (S)  <.0001  

T x S  <.0001  
† Different letter means differences by tillage systems and aggregate size fraction.   
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Table A-2. Distribution of sand-free water stable aggregates under conventional tillage (CT), reduced tillage (RT), no-

tillage (NT) with two nitrogen rates 0 (0-N) and 140 (140-N) kg N ha-1 for Parsons experiment.  

 

 Sand-free water stable aggregates 
 20-53 μm 53-250 μm 250-2000 μm >2000 μm 

 ……………………. g 100 g-1 soil ……………………. 
CT 0-N 20.3 29.1 15.8 5.25 
RT 0-N 14.7 27.7 17.8 9.2 
NT 0-N 13.2 25.0 22.9 11.3 

     
CT 140-N 16.1 28.2 19.6 7.2 
RT 140-N 15.5 26.0 19.9 8.48 
NT 140-N 13.2 24.0 23.4 11.2 

 ………………………….P values……………………… 
Tillage (T)  0.7498  
Nitrogen (N)  0.9467  
T x N  0.9829  
Size (S)  <.0001  
T x S  <.0001  

CT (mean) 18.2 cg† 28.6  a 17.7 cg  6.2 h 
RT (mean) 15.1 dg  26.8  af 18.9 c 8.8 eh 
NT (mean) 13.2 d  24.5 bf 23.2 b 11.2  de 

N x S  0.2477  
T x N x S  0.6065  

        † Different letter means differences by tillage systems and aggregate size fraction.   

 202



Table A-3. Distribution of sand-free water stable aggregates under conventional tillage (CT), reduced tillage (RT), no-

tillage (NT) with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1 for Hays experiment. 

 

 Sand-free water stable aggregates 
 20-53 μm† 53-250 μm 250-2000 μm >2000 μm 

 ……………………. g 100 g-1 soil ……………………. 
CT 0-N 15.01 f 49.48 ab 17.15 ef 1.35 g 
RT 0-N 16.06 f 50.31 a 16.19 f 1.29 g 
NT 0-N 16.82 f 50.51 a 15.59 f 0.91 g 

     
CT 67-N 14.59 f 49.81 ab 17.34 ef 1.53 g 
RT 67-N 14.87 f 44.23 b 22.98 ed 1.85 g 
NT 67-N 13.93 f 36.95 c 28.82 d 4.03 g 

 ………………………….P values……………………… 
Tillage (T)  0.9802  
Nitrogen (N)  0.9802  
T x N  0.9989  
Size (S)  0.0001  
T x S  0.0387  
N x S  0.0001  
T x N x S  0.0036  
   

† Different letter means differences by tillage systems, nitrogen application and aggregate size fraction.  
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Table A-4. Distribution of sand-free water stable aggregates under conventional tillage (CT), and no-tillage (NT) in 
different rotations, continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum (S-S), sorghum-soybean (S-
B) and continuous soybean (B-B) for Manhattan experiment.  

 

ROTATION TILLAGE Sand-free water stable aggregates 

  20-53 μm† 53-250 μm 250-1000 μm >1000 μm 
  ……………………. g 100 g-1 soil ……………………. 

W-W CT 15.17 hijklm 38.18 a 18.41 ghijk 2.37 q 
S-S CT 29.76 abcde 32.38 abcd 11.88 jklmnop 4.83 opq 
S-B CT 28.91 bcdef 34.06 abc 13.88 ijklmn 3.71 pq 
W-B CT 16.53 ghijkl 32.71 abcd 17.78 ghijkl 1.34 pq 
B-B CT 34.30 ab 32.79 abcd 10.02 klmnopq 2.01 q 

      
W-W NT 12.22 jklmnop 20.39 fghij 36.24 ab 16.81 ghijkl 
S-S NT 20.44 fghij 31.06 abdce 21.60 efghi 9.07 lmnopq 
S-B NT 23.89 defgh 36.02 ab 15.17 hijklm 6.00 mnopq 
W-B NT 17.19 ghijkl 34.64 ab 13.62  ijklmno 1.68 q 
B-B NT 25.36 cdefg 32.08 abcd 16.11 ghijkl 5.99 nopq 

  ………………………….P values……………………… 
Rotation (R)   0.2756  
Tillage (T)   0.4870  
T x R   0.8654  
Size (S)   0.0001  
R x S   0.0001  
T x S   0.0001  
R x T x S   0.0020  
     † Different letter means differences by tillage systems, crop rotation and aggregate size fraction. 
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Table A-5. Distribution of sand-free water stable aggregates (WSA), total C mass, and total N for macroaggregates (>250 
μm) and microaggregates (<250 μm) fractions under conventional tillage (CT), and no-tillage (NT) in different rotations, 
continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum (S-S), sorghum-soybean (S-B) and continuous 
soybean (B-B) for Manhattan experiment. 

 

 

ROTATION TILLAGE WSA Total C mass Total N mass 
  >250 μm† <250 μm >250 μm <250 μm >250 μm <250 μm 

  g 100 g-1 soil g  C kg-1 sand-free 
aggregates 

g  N kg-1 sand-free 
aggregates 

W-W CT 20.8 ef 53.34 bc 0.32 ef 0.56 cd 0.040 efg 0.058 ed 
S-S CT 16.7 f 62.1 ab 0.31 ef 0.56 cd 0.032 fgh 0.063 cd 
S-B CT 17.6 f 63.0 ab 0.29 ef 0.27 cd 0.027 gh 0.056 ed 
W-B CT 18.8 f 49.2 c 0.30 ef 0.45 ed 0.030 fhg 0.053 def 
B-B CT 12.0 f 67.1 a 0.16 f 0.49 cde 0.014 h 0.052 def 

        
W-W NT 53.1 bc 32.6 d 1.00 a 0.41 ed 0.113 a 0.052 ef 
S-S NT 30.7 ed 51.5 bc 0.83 ab 0.67 bc 0.081 bc  0.065 cd 
S-B NT 21.2 def 59.9 abc 0.59 cd 0.86 ab 0.056 ed 0.091 ab 
W-B NT 15.3 f 51.8 bc 0.33 ef 0.59 cd 0.031 fhg 0.075 bcd 
B-B NT 22.10 def 57.4 abc 0.40 ed 0.56 cd 0.040 efg 0.619 cde 

         † Different letter in the same column means differences by tillage systems and crop rotation   
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Table A-6. Total carbon normalized to sand-free basis in each water stable aggregates under conventional tillage (CT), 
reduced tillage (RT), no-tillage (NT), and native prairie sod (SOD) for Tribune experiment.  
 

 Total C 

 20-53 μm† 53-250 μm 250-2000 μm >2000 μm 

 …………………….g  C kg-1 sand-free aggregates……………………. 

CT 8.8 h 18.7 dg 30.0 a 25.3 b 

RT 8.1 h  16.8 d 24.3 bf 19.3 eg  

NT 8.6 h 17.2  dg 22.9 bce 21.0 e 

SOD 10.4 h 21.7 ce 24.9 b 22.5 cf 

 ………………………….P values……………………… 

Tillage (T)  0.0015  

Size (S)  <.0001  

T X S  0.0020  

† Different letter in the same column means differences by tillage systems in each aggregate size 
fraction.  
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Table A-7.Total nitrogen normalized to sand-free basis in each water stable aggregates under conventional tillage 
(CT), reduced tillage (RT), no-tillage (NT), and native prairie sod (SOD) for Tribune experiment. 

 

 Total N 

20-53 μm 53-250 μm 250-2000 μm >2000 μm 

 …………………….g  N kg-1 sand-free aggregates……………………. 

CT 0.8  2.0  2.5  2.6  

RT 0.7  1.4  2.6  1.8  

NT 0.8  1.7  2.6  1.9  

SOD 1.0  2.2  2.6  2.2  

 ………………………….P values……………………… 

Tillage (T)  0.1905  

Size (S)  <.0001  

Size (mean) 0.84 1.83 2.57 2.14 

T X S  0.7060  
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Table A-8.Total carbon normalized to sand-free basis in each water stable aggregates under conventional tillage (CT), 
reduced tillage (RT), no-tillage (NT) with two nitrogen rates 0 (0-N) and 140 (140-N) kg N ha-1 for Parsons experiment.  

 
 Total C 

 20-53 μm 53-250 μm 250-2000 μm >2000 μm 
 ……………………. g  C kg-1 sand-free aggregates …………………….

CT 0-N 7.1 15.5 21.2 16.1 
RT 0-N 6.6 15.8 20.5 16.7 
NT 0-N 6.3 13.9 19.9 19.2 

     
CT 140-N 6.7 14.8 21.1 17.9 
RT 140-N 7.0 17.4 26.4 20.0 
NT 140-N 6.3 14.9 21.8 22.2 

 ………………………….P values……………………… 
Tillage (T)  0.4314  
Nitrogen (N)  0.0054  
T x N  0.0769  
Size (S)  <.0001  
T x S  <.0001  

CT (mean) 6.9 e† 15.1 d 21.1 b 17.0 cf 
RT (mean) 6.8 e 16.6 df 23.5 a 18.4 c 
NT (mean) 6.3 e 14.4 d 20.9 b 20.7 b 

N x S  0.0046  
0-N (mean) 6.7 e‡ 15.1 d 20.5 b 17.4 c 

140-N (mean) 6.7 e 15.7 d 23.1 a 20. 0 b 
T x N x S  0.2631  

† Different letter means differences by tillage systems and aggregate size fraction 
‡ Different letter means differences by N application and aggregate size fraction  
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Table A-9. Total nitrogen normalized to sand-free basis in each water stable aggregates under conventional tillage 
(CT), reduced tillage (RT), no-tillage (NT) with two nitrogen rates 0 (0-N) and 140 (140-N) kg N ha-1 for Parsons 
experiment 

 
 Total N 

 20-53 μm 53-250 μm 250-2000 μm >2000 μm 
 ……………………. g  N kg-1 sand-free aggregates ……………………. 

CT 0-N 0.8 1.5 1.9 1.5 
RT 0-N 0.8 1.6 1.9 1.6 
NT 0-N 0.7 1.4 1.9 1.9 

     
CT 140-N 0.8 1.5 1.9 1.7 
RT 140-N 0.8 1.7 2.3 1.8 
NT 140-N 0.7 1.6 2.1 2.1 

 ………………………….P values……………………… 
Tillage (T)  0.3412  
Nitrogen (N)  0.0247  
T x N  0.2841  
Size (S)  <.0001  
T x S  <.0001  

CT (mean) 0.8 d† 1.5 c 1.93 a 1.6 bc 
RT (mean) 0.8 d 1.6 bc 2.1 a 1.7 b 
NT (mean) 0.7 d 1.5 c 2.0 a 2.0 a 

N x S  0.0292  
0-N (mean) 0.8 e‡ 1.5 d 1.9 b 1.7 c 

140-N (mean) 0.8 e 1.6 dc 2.1 a 1.9 b 
T x N x S  0.6228  
† Different letter means differences by tillage systems and aggregate size fraction 
‡ Different letter means differences by N application and aggregate size fraction 
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Table A-10. Total carbon normalized to sand-free basis in each water stable aggregates under conventional tillage 
(CT), reduced tillage (RT), no-tillage (NT) with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1 for Hays experiment. 

 

 Total C 
 20-53 μm 53-250 μm 250-2000 μm >2000 μm 

 ……………………. g  C kg-1 sand-free aggregates ……………………. 
CT 0-N 6.79 11.61 15.94 19.78 
RT 0-N 6.66 10.07 15.57 18.56 
NT 0-N 6.19 10.95 15.59 29.30 

     
CT 67-N 7.69 13.16 19.98 22.27 
RT 67-N 6.52 10.60 15.66 19.60 
NT 67-N 7.45 12.45 20.25 22.44 

 ………………………….P values……………………… 
Tillage (T)  0.0639  
Nitrogen (N)  0.2330  
T x N  0.4515  
Size (S)  0.0001  

Size (mean) 6.88 d 11.47 c 17.10 b 21.94 a 
T x S  0.1416  
N x S  0.2919  
T x N x S  0.2474  
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Table A-11. Total nitrogen normalized to sand-free basis in each water stable aggregates under conventional tillage 
(CT), reduced tillage (RT), no-tillage (NT) with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1 for Hays experiment 

 

 Total N 
 20-53 μm 53-250 μm 250-2000 μm >2000 μm 

 ……………………. g  N kg-1 sand-free aggregates ……………………. 
CT 0-N 0.519 0.821 1.150 1.350 
RT 0-N 0.454 0.781 1.114 1.407 
NT 0-N 0.467 0.019 1.163 1.972 

     
CT 67-N 0.654 0.181 0.395 0.118 
RT 67-N 0.467 0.750 1.178 1.467 
NT 67-N 0.507 0.875 1.451 1.651 

 ………………………….P values……………………… 
Tillage (T)  0.0906  
Nitrogen (N)  0.1028  
T x N  0.2035  
Size (S)  0.0001  

Size (mean) 0.511 d 0.847 c 1.256 b 1.574 a 
T x S  0.1400  
N x S  0.3868  
T x N x S  0.5716  
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Table A-12.Total carbon normalized to sand-free basis in each water stable aggregates under conventional tillage 
(CT), and no-tillage (NT) in different rotations, continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum 
(S-S), sorghum-soybean (S-B) and continuous soybean (B-B) for Manhattan experiment. 

 
  Total C 

  ………………………….P values……………………… 
Rotation (R)   0.0009  
Tillage (T)   0.0001  
T x R   0.0440  
Size (S)   0.0001  
R x S   0.0001  
T x S   0.0001  
R x T x S   0.3372  

  20-53 μm 53-250 μm 250-1000 μm >1000 μm 
 Rotation ……………………. g  C kg-1 sand-free aggregates ……………………. 

R x S W-W 8.64 h† 15.03 gf 17.72 def 24.55 c 
 W-B 7.66 h 14.67 gf 20.52 d 30.86 a 
 S-S 7.18 h 16.15 efg 24.13 c 27.81 ab 
 S-B 7.55 h 16.61 ef 25.28 bc 26.59 bc 
 B-B 5.96 h 13.10 g 18.44 ed 15.31 gf 
      
 Tillage    

T x S CT 6.37 f‡ 12.85 e 17.40 d 21.26 c 
 NT 8.42 f 17.37 d 25.05 b 28.79 a 

†Different letter means differences by crop rotation and aggregate size fraction 
‡ Different letter means differences by tillage systems and aggregate size fraction  
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Table A-13.Total nitrogen normalized to sand-free basis in each water stable aggregates under conventional tillage 
(CT), and no-tillage (NT) in different rotations, continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum 
(S-S), sorghum-soybean (S-B) and continuous soybean (B-B) for Manhattan experiment. 

 
ROTATION TILLAGE Total N mass 

  20-53 μm1 53-250 μm 250-1000 μm >1000 μm 
  ……………………. g  N kg-1 sand-free aggregates ……………………. 

W-W CT 0.81 1.43 2.04 2.24 
S-S CT 0.61 1.63 1.92 2.23 
S-B CT 0.66 1.20 1.75 1.61 
W-B CT 0.69 1.66 2.41 4.58 
B-B CT 0.52 1.30 1.50 1.16 

      
W-W NT 1.16 2.11 2.16 2.88 
S-S NT 0.79 1.81 3.04 2.82 
S-B NT 1.05 2.09 3.16 2.84 
W-B NT 1.81 2.08 3.10 0.81 
B-B NT 0.63 1.78 2.16 1.67 

  ………………………….P values……………………… 
Rotation (R)   0.1671  
Tillage (T)   0.0021  
T x R   0.5607  
Size (S)   0.0004  

Size (mean)  1.15 c 1.67 bc 2.14 ab 2.29 a 
R x S   0.3161  
T x S   0.8715  
R x T x S   0.4249  
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Table A-14.Total carbon mass in each water stable aggregates under conventional tillage (CT), reduced tillage (RT), 
no-tillage (NT), and native prairie sod (SOD) for Tribune experiment.  

 

 Total C mass 

20-53 μm† 53-250 μm 250-2000 μm >2000 μm 

 …………………….g  C aggregate fraction-1 ……………………. 

CT 0.12 f 0.59 a 0.33 d 0.08 f 

RT 0.11 f 0.46 b 0.40 bd 0.18 e 

NT 0.14 f 0.40 bd 0.45 b 0.23 e 

SOD 0.08 f 0.32 d 0.64 a 0.34 d 

 ………………………….P values……………………… 

Tillage (T)  0.0541  

Size (S)  <.0001  

T X S  <.0001  

†Different letter means differences by tillage systems in each aggregate size fraction.  
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Table A-15.Total nitrogen mass in each water stable aggregates under conventional tillage (CT), reduced tillage (RT), 
no-tillage (NT), and native prairie sod (SOD) for Tribune experiment.  

 

 Total N mass 

20-53 μm† 53-250 μm 250-2000 μm >2000 μm 

 ……………………. g  N aggregate fraction-1 ……………………. 

CT 0.0113 d 0.0633 a 0.0283 cf 0.007 d 

RT 0.0095 d 0.0388 bc 0.0433 bc 0.0058 df 

NT 0.0130 d 0.0400 bc 0.0505 ab 0.0210 cde 

SOD 0.0075 d 0.0318 bcf 0.0670 a 0.0333 bce 

 ………………………….P values……………………… 

Tillage (T)  0.2178  

Size (S)  <.0001  

T X S  <.0001  

†Different letter means differences by tillage systems and aggregate size fraction.  
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Table A-16.Total carbon mass in each water stable aggregates under conventional tillage (CT), reduced tillage (RT), no-
tillage (NT) with two nitrogen rates 0 (0-N) and 140 (140-N) kg N ha-1 for Parsons experiment 

 Total C mass 
 20-53 μm 53-250 μm 250-2000 μm >2000 μm 

 ……………………. g  C aggregate fraction-1  ……………………. 
CT 0-N 0.14 0.32 0.25 0.07 
RT 0-N 0.10 0.31 0.28 0.12 
NT 0-N 0.08 0.25 0.36 0.17 

     
CT 140-N 0.11 0.29 0.32 0.11 
RT 140-N 0.11 0.31 0.39 0.13 
NT 140-N 0.08 0.25 0.40 0.20 

 ………………………….P values……………………… 
Tillage (T)  0.2409  
Nitrogen (N)  0.0477  
T x N  0.6214  
Size (S)  <.0001  
T x S  <.0001  

CT (mean) 0.13 f† 0.30 bc 0.29 b 0.09 f 
RT (mean) 0.10 f 0.31 bc 0.34 ac 0.13 f 
NT (mean) 0.08 f 0.25 d 0.38 a 0.19 e 

N x S  0.0091  
0-N (mean) 0.11 c‡ 0.29 b 0.29 b 0.12 d 

140-N (mean) 0.10 c 0.29 b 0.37 a 0.14 d 
T x N x S  0.7812  
†Different letter means differences by tillage systems and aggregate size fraction 
‡ Different letter means differences by N application and aggregate size fraction 
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Table A-17.Total nitrogen mass in each water stable aggregates under conventional tillage (CT), reduced tillage (RT), 
no-tillage (NT) with two nitrogen rates 0 (0-N) and 140 (140-N) kg N ha-1 for Parsons experiment. 

 Total N mass 
 20-53 μm1 53-250 μm 250-2000 μm >2000 μm 

 ……………………. g  N aggregate fraction-1  ……………………. 
CT 0-N 0.0164 0.0313 0.0228 0.006 
RT 0-N 0.0113 0.0309 0.0267 0.0117 
NT 0-N 0.0095 0.0260 0.0339 0.0172 

     
CT 140-N 0.0124 0.0287 0.0296 0.0102 
RT 140-N 0.0123 0.0307 0.0351 0.0123 
NT 140-N 0.0098 0.0266 0.0385 0.0186 

 ………………………….P values……………………… 
Tillage (T)  0.1573  

Nitrogen (N)  0.0966  
T x N  0.8075  

Size (S)  <.0001  
T x S  <.0001  

CT (mean) 0.014 e† 0.030 b 0.026 b 0.01 e 
RT (mean) 0.012 de 0.031 bf 0.031 f 0.012 e 
NT (mean) 0.01 de 0.026 bf 0.036 a 0.018 c 

N x S  0.0192  
0-N (mean) 0.012 d‡ 0.029 b 0.027 b 0.012 d 

140-N (mean) 0.012 d 0.029 b 0.034 a 0.014 d 
T x N x S  0.8327  

†Different letter means differences by tillage systems and aggregate size fraction 
‡ Different letter means differences by N application and aggregate size fraction  
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Table A-18.Total carbon mass in each water stable aggregates under conventional tillage (CT), reduced tillage (RT), 
no-tillage (NT) with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1 for Hays experiment 

 Total C mass 
 20-53† μm 53-250 μm 250-2000 μm >2000 μm 

 ……………………. g  C aggregate fraction-1  ……………………. 
CT 0-N 0.102 gh 0.498 ab 0.240 ef 0.022 h 
RT 0-N 0.104 gh 0.445 bc 0.227 ef  0.020 h 
NT 0-N 0.105 gh 0.489 a 0.213 f 0.017 h 

     
CT 67-N 0.113 g 0.571 a 0.304 e 0.029 gh 
RT 67-N 0.097 gh 0.418 bc 0.311 ed 0.028 gh 
NT 67-N 0.104 gh 0.402 cd 0.475 abc 0.074 gh 

 ………………………….P values……………………… 
Tillage (T)  0.2184  
Nitrogen (N)  0.0222  
T x N  0.4493  
Size (S)  0.0001  
T x S  0.0398  
N x S  0.0010  
T x N x S  0.0292  
    

†Different letter means differences by tillage systems, N application and aggregate size fraction  
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Table A-19.Total nitrogen mass in each water stable aggregates under conventional tillage (CT), reduced tillage (RT), 
no-tillage (NT) with two nitrogen rates 0 (0-N) and 67 (67-N) kg N ha-1 for Hays experiment. 

 

 Total N mass 
 20-53 μm† 53-250 μm 250-2000 μm >2000 μm 

 ……………………. g  N aggregate fraction-1  ……………………. 
CT 0-N 0.0075 gh 0.0353 bc 0.0170 e  0.0013 h 
RT 0-N 0.0067 gh 0.0343 bc 0.0168 ef 0.0015 h 
NT 0-N 0.0080 gh 0.0363 b 0.0160 ef 0.0013 h 

     
CT 67-N 0.0095 fg 0.0448 a 0.0225 ed 0.0018 h 
RT 67-N 0.0067 gh 0.0298 bcd 0.0233 ed 0.0020 h 
NT 67-N 0.0070 gh 0.0288 cd 0.0365 b 0.0055 gh 

 ………………………….P values……………………… 
Tillage (T)  0.2395  

Nitrogen (N)  0.0184  
T x N  0.3180  

Size (S)  0.0001  
T x S  0.0173  
N x S  0.0009  

T x N x S  0.0047  
     
†Different letter means differences by tillage systems, N application and aggregate size fraction  
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Table A-20. Total carbon mass In each water stable aggregates under conventional tillage (CT), and no-tillage (NT) in 
different rotations, continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum (S-S), sorghum-soybean (S-
B) and continuous soybean (B-B) for Manhattan experiment. 

 
ROTATION TILLAGE Total C mass 

  20-53 μm† 53-250 μm 250-1000 μm >1000 μm 
  ……………………. g  C aggregate fraction-1  ……………………. 

W-W CT 0.111 nopqr 0.447 cde 0.272 hijklm 0.046 qr 
S-S CT 0.187 jklmnop 0.371 efgh 0.204 jklmno 0.102 opqr 
S-B CT 0.177 klmnop 0.389 dfgh 0.232 ijklmn 0.064 pqr 
W-B CT 0.107 nopqr 0.341 efghi 0.272 hijklm 0.041 qr 
B-B CT 0.185 jklmnop 0.304 fghij 0.147 mnopqr 0.019 r 

      
W-W NT 0.123 nopqr 0.287 ghijk 0.624 ab 0.381 defgh 
S-S NT 0.165 klmnopq 0.504 cbd 0.568 abc 0.265 hijklm 
S-B NT 0.214 jklmno 0.642 a 0.413 def 0.178 klmnop 
W-B NT 0.152 lmnopqr 0.580 abc 0.284 hijkl 0.049 qr 
B-B NT 0.162  klmnopq 0.401 defg 0.290 fghijk 0.114 nopqr 

  ………………………….P values……………………… 
Rotation (R)   0.0042  
Tillage (T)   0.0001  
T x R   0.2641  
Size (S)   0.0001  
R x S   0.0001  
T x S   0.0001  
R x T x S   0.0001  

†Different letter means differences by tillage systems, crop rotation and aggregate size fraction 
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Table A-21. Total nitrogen mass in each water stable aggregates under conventional tillage (CT), and no-tillage (NT) in 
different rotations, continuous wheat (W-W), wheat-soybean (W-B), continuous sorghum (S-S), sorghum-soybean (S-B) 
and continuous soybean (B-B) for Manhattan experiment. 

ROTATION TILLAGE Total N mass 
  20-53 μm† 53-250 μm 250-1000 μm >1000 μm 

  ……………………. g  N aggregate fraction-1  ……………………. 
W-W CT 0.013 jklmn 0.045 bc 0.035 cdefg 0.005 nm 
S-S CT 0.018 ijklmn 0.045 bc 0.022 ghijkl 0.001 lmn 
S-B CT 0.019 hijklm 0.036 cdefg 0.022 fghijkl 0.005 nm 
W-B CT 0.012 klmn 0.042 cd 0.028 defghij 0.003 nm 
B-B CT 0.018 ijklmn 0.034 cdefgh 0.013 ijklmn 0.002 n 

      
W-W NT 0.014 ijklmn 0.037 cdef 0.071 a 0.043 cd 
S-S NT 0.016 ijklmn 0.049 bc 0.058 ab 0.023 fghijkl 
S-B NT 0.025 fghijkl 0.066 a 0.041 cde 0.015 ijklmn 
W-B NT 0.013 ijklmn 0.063 ab 0.026 efghijk 0.005 nm 
B-B NT 0.0156 ijklmn 0.046 bc 0.029 defghi 0.011 klmn 

  ………………………….P values……………………… 
Rotation (R)   0.0119  
Tillage (T)   0.0001  
T x R   0.2400  
Size (S)   0.0001  
R x S   0.0001  
T x S   0.0011  
R x T x S   0.0007  

†Different letter means differences by tillage systems, crop rotation and aggregate size fraction 
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Figure B-1.  Cumulative C mineralized during 370 days of incubation under conventional till (CT), reduced till (RT), and 

no-tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 at 0-5 cm in Hays experiment. 
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Figure B-2. Cumulative C mineralized during 370 days of incubation under conventional till (CT), reduced till (RT), and no-

tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 at 5-15 cm in Hays experiment. 
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Figure B-3. Carbon mineralization rate during 370 days of incubation under conventional till (CT), reduced till (RT), and 

no-tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 at 0-5 cm in Hays experiment. 
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Figure B-4. Carbon mineralization rate during 370 days of incubation under conventional till (CT), reduced till (RT), and 

no-tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1, at 5-15 cm in Hays experiment. 
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Figure B-5. Cumulative N mineralized during 370 days of incubation under conventional till (CT), reduced till (RT), and no-

tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 at 0-5 cm in Hays experiment. 
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Figure B-6. Cumulative N mineralized during 370 days of incubation under conventional till (CT), reduced till (RT), and no-
tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 at 5-15 cm in Hays experiment. 
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Figure B-7. Nitrogen mineralization rate during 370 days of incubation under conventional till (CT), reduced till (RT), and 

no-tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1 at 0-5 cm in Hays experiment. 
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Figure B-8. Nitrogen mineralization rate during 370 days of incubation under conventional till (CT), reduced till (RT), and 

no-tillage (NT) with two N rates 0 (0-N) and 67 (67-N) kg N ha-1, at 5-15 cm in Hays experiment. 

 230



0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160 180 200 220 240

Time (days)

C
um

ul
at

iv
e 

C
 m

in
er

al
iz

ed
 (

μ
g 

g-1
 s

oi
l)

CT NT  RT   SOD

 
 

Figure B-9. Cumulative C mineralized during 215 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT), and native prairie sod (SOD) at 0-5 cm in Tribune experiment. 
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Figure B-10.  Cumulative C mineralized during 215 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT), and native prairie sod (SOD) at 5-15 cm in Tribune experiment. 
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Figure B-11. Carbon mineralization rate during 215 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT), and native prairie sod (SOD) at 0-5 cm in Tribune experiment. 
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Figure B-12. Carbon mineralization rate during 215 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT), and native prairie sod (SOD) at 5-15 cm in Tribune experiment. 
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Figure B-13. Cumulative N mineralized during 215 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT), and native prairie sod (SOD) at 0-5 cm in Tribune experiment. 
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Figure B-14. Cumulative N mineralized during 215 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT), and native prairie sod (SOD) at 5-15 cm in Tribune experiment. 
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Figure B-15. Nitrogen mineralization rate during 215 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT), and native prairie sod (SOD) at 0-5 cm in Tribune experiment. 
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Figure B-16. Nitrogen mineralization rate during 215 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT), and native prairie sod (SOD) at 5-15 cm in Tribune experiment. 
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Figure B-17.  Cumulative C mineralized during 245 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT) for wheat-soybean (W-B) and wheat-wheat (W-W) rotation at 0-5 cm in Manhattan experiment. 
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Figure B-18. Cumulative C mineralized during 245 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT) for wheat-soybean (W-B) and wheat-wheat (W-W) rotation at 5-15 cm in Manhattan experiment. 

 240



0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Time (days)

 C
 m

in
er

al
iz

ed
 (

μ
g 

C
 g

-1
  d

-1
)

W-S CT W-S NT W-S RT

W-W CT W-W NT W-W RT

 
 

 
Figure B-19. Carbon mineralization rate during 245 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT) for wheat-soybean (W-B) and wheat-wheat (W-W) rotation at 0-5 cm in Manhattan experiment. 
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Figure B-20. Carbon mineralization rate during 245 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT) for wheat-soybean (W-B) and wheat-wheat (W-W) rotation at 5-15 cm in Manhattan experiment. 
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Figure B-21. Cumulative N mineralized during 245 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT) for wheat-soybean (W-B) and wheat-wheat (W-W) rotation at 0-5 cm in Manhattan experiment. 
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Figure B-22. Cumulative N mineralized during 245 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT) for wheat-soybean (W-B) and wheat-wheat (W-W) rotation at 5-15 cm in Manhattan experiment. 
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Figure B-23. Nitrogen mineralization rate during 245 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT) for wheat-soybean (W-B) and wheat-wheat (W-W) rotation at 0-5 cm in Manhattan experiment. 
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Figure B-24. Nitrogen mineralization rate during 245 days of incubation under conventional till (CT), reduced till (RT), no-

tillage (NT) for wheat-soybean (W-B) and wheat-wheat (W-W) rotation at 5-15 cm in Manhattan experiment.
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Figure C-1. Total C mass under conventional tillage (CT), no-tillage (NT) and native site 
at 0-5 cm (a), 0-15 (b), and 15-30 cm (c) for the Oxisol site. 
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Figure C-2. Total N mass under conventional tillage (CT), no-tillage (NT) and native site 
at 0-5 cm (a), 0-15 (b), and 15-30 cm (c) for the Oxisol site. 
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Figure C-3. Total C mass under reduced tillage (RT), no-tillage (NT) and native site at 0-
5 cm (a), 0-15 (b), and 15-30 cm (c) for the Vertisol site. 
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Figure C-4. Total N mass under reduced tillage (RT), no-tillage (NT) and native site at 0-
5 cm (a), 0-15 (b), and 15-30 cm (c) for the Vertisol site. 
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Figure C-5. Total C mass under conventional tillage (CT), no-tillage (NT) and native site 
at 0-5 cm (a), 0-15 (b), and 15-30 cm (c) for the Mollisol site. 
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Figure C-6. Total N mass under conventional tillage (CT), no-tillage (NT) and native site 
at 0-5 cm (a), 0-15 (b), and 15-30 cm (c) for the Mollisol site. 
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