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Abstract 

Members of the genus Fusarium are widely distributed in many geographic regions of the 

world. This genus includes plant pathogens of many important cereal crops, e.g., wheat, maize, 

rice and sorghum, and of other native and economically important plants. From culture 

collections at Kansas State University and Universiti Sains Malaysia, strains from Southeast 

Asia, primarily from Malaysia and Thailand, associated with mango malformation disease, 

bakanae disease of rice, and stalk rot of sorghum were analyzed in sexual crosses and molecular 

diagnostics, e.g., Amplified Fragment Length Polymorphisms (AFLPs). Fusarium proliferatum 

was recovered from all three crops, with each crop also yielding some species unique to the crop, 

e.g. F. fujikuroi from rice, F. thapsinum from sorghum, and F. mangiferae from mango. These 

results are consistent with hypotheses that F. proliferatum has a wide host range while other 

species have much more limited host preferences. The absence from our samples of species 

associated with these diseases in other parts of the world suggests policies should be developed 

to reduce the chances of introduction of novel pathogens into Southeast Asia. Fusarium fujikuroi 

and F. proliferatum are closely related. They usually can be separated by sexual cross-fertility 

and DNA sequence analysis. However, some strains can cross irregularly and with poor fertility 

to produce viable interspecific hybrids. From a laboratory cross between F. fujikuroi FGSC8932 

and F. proliferatum FGSC7615, 533 progeny were collected. These progeny were characterized 

for their AFLP genotype, mating type, gibberellic acid production, and pathogenicity on rice, 

onions, and apples. A recombination-based map from this interspecific cross was constructed. 

QTLs associated with gibberellic acid production, rice pathogenicity, and onion pathogenicity 

were identified. Gene segregation amongst the progeny of the F. fujikuroi × F. proliferatum 

cross was distorted towards F. proliferatum. Both novel and transgressive pathogenicity 



  

phenotypes were detected. Overall, this research demonstrates the potential threats that can result 

from an interspecific cross. These threats include pathogens with novel toxin profiles, new 

pathogenicity phenotypes, and more virulent strains. The variation observed among the progeny 

may enable isolation and characterization of genetic factors that have a role in pathogenicity, 

toxin production, and host specificity. 
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onions, and apples. A recombination-based map from this interspecific cross was constructed. 
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phenotypes were detected. Overall, this research demonstrates the potential threats that can result 

from an interspecific cross. These threats include pathogens with novel toxin profiles, new 

pathogenicity phenotypes, and more virulent strains. The variation observed among the progeny 

may enable isolation and characterization of genetic factors that have a role in pathogenicity, 

toxin production, and host specificity. 
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Chapter 1 - Literature Review 

 Fusarium in Southeast Asia  

Countries in Southeast Asia (SEA) lie near the equator and have predominantly tropical 

climates. These climates provide the region with hot, humid weather year round. The 

predominant food crop in this region is paddy rice. Other food crops grown in SEA are maize, 

sugarcane, cacao, coffee, coconuts, sorghum, spices, and numerous tropical fruits 

(www.fao.org). Oil palm and rubber also are important introduced agricultural commodities that 

are economically important in this region. Both of these crops are cash crops, widely grown in 

Malaysia, Indonesia, and Thailand. Given the diverse agriculturally important crops and the 

conducive climate, the study of plant diseases and pathogens in this region is very important to 

protect the growers and their plant products.  

Fusarium spp. are ubiquitous and cosmopolitan across different crops in SEA (Leslie and 

Summerell 2006; Summerell et al. 1993, 2003). Some of the Fusarium species in this region are 

not found in temperate and sub-temperate regions (Table 1.2) (Burgess and Summerell 1992; 

Gordon 1960; Summerell et al. 2003). Multiple Fusarium species can cause the same disease, 

e.g. mango malformation, and stalk rot of maize and sorghum (Leslie 2002; Marasas et al. 2006; 

Otero-Colina et al. 2010). Intensive research on Fusarium spp. in SEA has been in progress since 

the 1970s. Major changes in nomenclature and identification of new Fusarium spp. over the past 

20 years resulted in misidentification in culture collections, governmental regulations, and 

academic literature (Table 1.1) (Leslie and Summerell 2006; Salleh 1994; Summerell et al. 

2003). Thus, correct identification using modern diagnostic tools and current nomenclature is 

very important for research on animal and plant diseases, and making risk estimates of potential 

secondary metabolite contamination. 

http://www.fao.org/
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 Fusarium spp. associated with mango  

Mango (Mangifera indica) is an important commercial fruit that originated in Southeast 

Asia (Srivastava 1998). It has been cultivated for more than 4000 years in India. The distribution 

of mango to other parts of the world began in the 1650s by the Portuguese, who spread it to 

Mexico, Hawaii, South and Central America, the Middle East and Africa (Srivastava 1998). 

Mango malformation is an important disease of mango caused by Fusarium spp. This disease has 

been known for more than one hundred years and is still a significant economic problem in 

mango orchards. The disease was first reported in India in 1891 (Kumar et al. 1993), and in the 

ensuing 120 years has been reported from almost all mango growing countries: Australia 

(Summerell et al. 2011), Brazil (Lima et al. 2009a, 2012), China (Zhan et al. 2010), Egypt 

(Youssef et al. 2007), Israel (Britz et al. 2002), Mexico (Otero-Colina et al. 2010), Oman (Kvas 

et al. 2008), Pakistan (Iqbal et al. 2011), and South Africa (Britz et al. 2002). Several Fusarium 

spp. have been suggested as the causal agent of this disease. F. mangiferae is the species most 

commonly associated with this disease, but other Fusarium spp., e.g. F. sterilihyphosum, F. 

mexicanum, F. proliferatum and F. tupiense, are associated with geographically limited 

outbreaks (Lima et al. 2012; Marasas et al. 2006; Otero-Colina et al. 2010). 

Mango malformation disease can cause losses of up to 86% in individual groves (Kumar 

et al. 1993). The disease may result in vegetative or floral malformation. Vegetative 

malformation usually occurs on seedlings. Infected seedlings exhibit symptoms such as swollen 

buds in the leaf axil, scaly leaves with a bunch-like appearance, or branch dieback to give a 

witches’ broom-like appearance. Eventually, severely infected seedlings become stunted and die. 

Floral malformation occurs during the inflorescence stage. Infected flowers are enlarged, panicle 

growth increases, and no fruit is produced (Kumar et al. 1993; Marasas et al. 2006). 
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 Fusarium spp. associated with rice  

Fusarium fujikuroi is commonly known as the causal agent of Bakanae disease of rice. 

Bakanae disease was first recognized in Japan in 1828. “Bakanae” is a Japanese word that means 

“foolish seedling”, which describes the elongated seedlings that are a typical symptom of this 

disease. This disease is widely distributed in Asia, but was first observed in California in 1999 

(Carter et al. 2008).  

Bakanae-infected rice has multiple symptoms. The most common symptoms are 

chlorotic, elongated, thin seedlings (Hwang et al. 2013; Wulff et al. 2010; Zainuddin et al. 

2008a). Infected rice seedlings are several inches taller than healthy seedlings and are easily 

observed in the field. Other symptoms of bakanae include stunted, chlorotic seedlings and crown 

rot in older plants. Usually, the infected seedlings die. However, if older plants are infected, then 

abnormal elongation of the plants, or normal growth with an empty or no panicle may occur (Ou 

1985; Wulff et al. 2010), with yield losses of up to 40% (Desjardins et al. 2000a). Bakanae 

maybe seedborne, if the ovules are infected during flowering, or soilborne, if the fungus 

penetrates the germinating seed (Ou 1985).  

Other Fusarium spp. reported from rice include F. andiyazi, F. verticilliodes, F. 

proliferatum, F. sacchari, F. subglutinans, and F. graminearum (Amoah et al. 1995; Desjardins 

et al. 2000a; Hsuan et al. 2011; Kim et al. 2012; Wulff et al. 2010; Zainuddin et al. 2008a). All of 

these species, except F. graminearum, are members of the Fusarium fujikuroi species complex. 

Although F. fujikuroi is the primary causal agent for bakanae disease, the presence of other 

Fusarium spp. on bakanae-infected rice raises concerns regarding secondary metabolite 

production. Excess gibberellic acid (GA3), a known plant growth hormone, is responsible for 

elongated seedling growth in rice plants with bakanae disease (Desjardins 2006). Rice also may 
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be contaminated with mycotoxins such as fumonisins, moniliformin, fusaric acid, and 

beauvericin produced by Fusarium spp. that occur incidentally on rice (Cruz et al. 2013; Wulff et 

al. 2010). 

 Fusarium spp. associated with sorghum  

Numerous Fusarium spp. have been associated with sorghum including: F. andiyazi, F. 

thapsinum, F. proliferatum, F. napiforme, F. nygamai, F. pseudonygamai, F. sacchari, and F. 

verticillioides (Klittich et al. 1997; Leslie et al. 2005a; Marasas et al. 1987, 2001; Palmero et al. 

2012). The species most commonly associated with sorghum diseases is F. thapsinum (Jardine 

and Leslie 1992; Leslie et al. 2005a). F. thapsinum is the most important causal agent for stalk 

rot which is one of the most important diseases of sorghum. High incidence of stalk rot in 

sorghum can result in yield losses of up to 90% (Leslie 2002). Typical symptoms of stalk rot 

caused by Fusarium include shredding and discoloration of the internal stem tissue. The 

shredded tissue may be red or salmon (Jardine 2006). The diseased stalk usually dies 

prematurely and often lodges in the field. 

 Fusarium fujikuroi and Fusarium proliferatum 

Fusarium fujikuroi and Fusarium proliferatum are both members of the Fusarium 

fujikuroi species complex. Based on morphological characteristics, these species are very closely 

related and often cannot be distinguished from one another (Leslie and Summerell 2006). 

Phylogenetically, F. fujikuroi and F. proliferatum are closely related sister taxa (Kvas et al. 

2009; O'Donnell et al. 1998b). Differences between these species occur in three categories – 

sexual cross-fertility, host range, and secondary metabolite production (Table 1.3). F. 
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proliferatum can synthesize numerous secondary metabolites, of which the best known are the 

fumonisins. 

Fumonisins are mycotoxins that can inhibit sphingolipid biosynthesis, induce 

hepatotoxicity, and elevate serum cholesterol concentrations in animals (Desjardins 2006; 

Haschek et al. 2001). These mycotoxins can cause pulmonary edema in pigs, and 

leukoencephalomalacia in horses fed contaminated feed (Desjardins 2006). 

Gibberellic acid (GA) is the best known secondary metabolite produced by F. fujikuroi. 

GAs are plant growth hormones, with 136 different GAs described (GA1 – GA136) (MacMillan 

2001). Only a few of these compounds, however, have significant biological activity, including 

GA1, GA3, GA4, and GA7, (Tudzynski 1999). GA3 is the form of gibberellic acid produced by F. 

fujikuroi, and is responsible for the elongated seedlings observed in bakanae rice plants (Aytoun 

et al. 1959; Sunder and Satyavir 1998). GA3 also helps F. fujikuroi invade the symplasts of 

parenchyma cells of rice epidermis and cortex (Wiemann et al. 2013). Thus, GA3 has an 

important role in the pathogenicity phenotype that results from fungal infection. 

Relative to F. fujikuroi, F. proliferatum has a broad host range and has been recovered 

from many different crops grown in different environments worldwide. Plants that can be 

successfully attacked by F. proliferatum include important crops such as: apples, asparagus, date 

palm, mango, onions, orchids, rice, and maize (Abdalla et al. 2000; Hsuan et al. 2011; 

Konstantinou et al. 2011; Logrieco et al. 1995; Martinez et al. 2002; Stankovic et al. 2007; 

Tsavkelova et al. 2008; Zhan et al. 2010). 

 Interspecific hybrids in Fusarium  

In general, crosses between strains of F. fujikuroi and F. proliferatum are not cross-

fertile, thus, they are grouped in different biological species or mating populations (MP) (Table 
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1.3). Members of the same biological species are populations that are actually or potentially 

interbreeding (Mayr 1940). Although a few strains of F. fujikuroi and F. proliferatum are poorly 

cross-fertile and can produce viable sexual progeny, their fertility is low enough (Perkins 1994) 

that they are still considered separate species. Leslie et al. (2004a) recovered 47 viable progeny 

from a F. fujikuroi × F. proliferatum cross in which the F. proliferatum strain served as the 

female parent, and found that the segregation ratios of many markers were not the expected 1:1 

amongst the progeny. This cross was repeated in 2012 and an additional 486 viable progeny were 

collected. 

The viable progeny from these crosses may have unique phenotypic combinations that 

can be transgressive in terms of pathogenicity and produce unusual profiles of secondary 

metabolites (Studt et al. 2012). Evaluation of these progeny enables analysis of genes for 

pathogenicity on various hosts by generating unusual genotypes that would be rare under field 

conditions, and are not normally associated with either parental species. Microscopic 

observations of perithecial contents suggest that the fertility of the F. fujikuroi × F. 

propliferatum crosses is approximately 0.01% that of a “normal” F. fujikuroi × F. proliferatum 

cross. . 

 Research Objectives  

The objectives of this study were: (i) to determine the species composition and 

population genetic characters of Fusarium from mango, sorghum, and rice in Malaysia and 

Thailand; (ii) to characterize the genotypes and phenotypes of the progeny from an interspecific 

cross between F. proliferatum and F. fujikuroi; (iii) to analyze the segregation of pathogenicity 

towards apples, onions, and rice amongst the progeny of the interspecific cross; and (iv) to 

identify regions of the fungal genomes that could be critical for pathogenicity or host specificity.  
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Table 1.1 Fusarium species available in the Fusarium Collection, School of Biological Sciences, 

Universiti Sains Malaysia in December 1994 (Salleh 1994) 

Fusarium species Source 

beomiforme Soil 

bugnicourtii Mangrove, tobacco, watermelon 

camptoceras Asparagus, mango, mullberry, rice, soil 

chlamydosporum Asparagus, banana, broad bean, mango, rice, soil, sorghum, and tobacco 

concolor Mangrove, rice, tobacco 

decemcellulare Durian, eggplant, mango, soil, vanilla 

dimerum Soil 

equiseti Asparagus, banana, broad bean, broccoli, chili, Chinese cabbage, coconut, 

long bean, mulberry, paprika, peanut, rice, soil, sorghum, soybean, 

sugarcane, tobacco, tomato, vanilla, watermelon 

graminum Soil, vanilla 

lateritium Eggplant, long bean, corn, mangrove, rice, tobacco 

longipes Asparagus, banana, bitter gourd, cassava, cucumber, long bean, melon, oil 

palm, rice, soil, soybean, tobacco, watermelon 

moniliforme* Asparagus, banana, corn, mango, pineapple, rice, soil 

nygamai Asparagus, banana, chili, fire worm, grapes, mango, orchid, rattan, rice, 

soil, sorghum, sugarcane, watermelon, wheat 

oxysporum Asparagus, banana, cassava, coconut, coffee, cotton, durian, garlic, long 

bean, oil palm, orchid, passion fruit, potato, pumpkin, red bean, radish, 

rice, star fruit, sugarcane, tobacco, vanilla, tomato, watermelon, weeds, 

yam  

semitectum Asparagus, banana, cassava, cempaka, chili, Chinese cabbage, coconut, 

coffee, eggplant, long bean, corn, mango, mangrove, melon, mulberry, 

nutmeg, oil palm, onion, papaya, paprika, passion fruit, peanut, purut 

lime, radish, rice, soil, sorghum, soybean, spinach, star fruit, sugarcane, 

tea, tomato, watermelon  

polyphialidicum Soil  

proliferatum Asparagus, banana, chili, coconut, corn, mango, orchid, rice, soil, 
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sorghum, sugarcane, tobacco, vanilla, watermelon, wheat 

scirpi Asparagus, mango, rice, soil, tobacco 

tumidum Cocoa, rubber, soil 

*Name no longer in current use (Seifert et al. 2003)  
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Table 1.2 Distribution of Fusarium species in relation to climate after Burgess et al. (1994) 

Species which occur in most 

climatic regions 

Species which occur mainly in 

temperate regions 

Species which occur mainly in 

subtropical and tropical 

regions 

F. chlamydosporum 

F. equiseti 

F. proliferatum 

F. oxysporum 

F. poae 

F. semitectum 

F. solani 

F. tricinctum 

 

F. acuminatum 

F. avenaceum 

F. crookwellense 

F. culmorum 

F. graminearum 

F. sambucinum 

F. sporotrichioides 

F. subglutinans 

F. beomiforme 

F. compactum 

F. decemcellulare 

F. longipes 
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Table 1.3 Major differences between F. fujikuroi and F. proliferatum 

 F. fujikuroi F. proliferatum 

Host range Narrow, specific to rice Wide host range 

Secondary metabolitesa  Beauvericin, fusaric acid, 

gibberellic acid, 

moniliformin 

Beauvericin, eniatin, fumonisin, 

fusaproliferin, fusaric acid, 

fusarins,  moniliformin 

aBold indicates the most important secondary metabolite produced by the species (Desjardins 

2006). 
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Chapter 2 - Fusarium Species Associated with Mango Malformation 

in Peninsular Malaysia  

 

 Abstract 

Mango malformation has become the most important global disease on mango.  

Fusarium species previously associated with this disease include F. mangiferae, F. mexicanum, 

F. sterilihyphosum, F. proliferatum, F. subglutinans, and F. tupiense. The strains recovered from 

Malaysian mango populations were evaluated with morphology, mating tester strain cross-

fertility, amplified fragment length polymorphisms (AFLPs), and partial DNA sequences of the 

genes encoding translation elongation factor 1-α (tef-1α) and β-tubulin (tub-2). Amongst the 43 

strains evaluated three species were identified – F. proliferatum, F. mangiferae, and F. 

subglutinans – with F. proliferatum being the most frequent (29). None of the Fusarium species 

that appear to originate in the Americas were recovered in Malaysia, which suggests special 

measures may be warranted to keep these species from entering the country.  

 Introduction   

Mango malformation (MM) is the most important disease affecting mango trees 

(Mangifera indica) and was first described in India in 1891 (Kumar et al. 1993; Marasas et al. 

2006). The disease has been reported in all areas where mango is cultivated (Kumar et al. 2011; 

Kvas et al. 2008; Marasas et al. 2006; Youssef et al. 2007; Zhan et al. 2010). There are two 

stages of MM – vegetative malformation, and inflorescence malformation. Vegetative 

malformation usually occurs in young seedlings particularly in nurseries.  The symptoms in the 

seedlings include loss of apical dominance, swollen axillary buds, and vegetative buds that 
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sprout at the internodes. Inflorescence malformation occurs on mature trees at flowering. This 

form of malformation results in enlargement of the inflorescence, increased panicle growth, and 

the abortion of fruit production (Kumar et al. 1993; Marasas et al. 2006). Yield loss from this 

form of the disease can reach 83% (Kumar et al. 1993). This disease is distinct from the galls 

formed on trunks and branches by Fusarium decemcellulare (Ploetz et al. 1996), which is not 

known to occur in Malaysia. 

Several Fusarium species have been suggested as the causal agent of mango 

malformation. Most of the earlier literature identifies Fusarium subglutinans or Fusarium 

moniliforme as the causal agent (Kumar et al. 1993; Marasas et al. 2006; Ploetz 1994). These 

identifications, however, were based solely on morphological characters, which are insufficient 

to resolve the currently known species. In the Americas, particularly in Brazil and Mexico, F. 

mangiferae, F. mexicanum, F. sterilihyphosum, F. subglutinans, and Fusarium tupiense are all 

associated with this disease (Lima et al. 2009a, 2012; Steenkamp et al. 2000b, Otero-Colina et al. 

2010). F. mangiferae has been reported to be a causal agent of mango malformation in at least 

Egypt, Israel, Oman, Spain and the United States (Britz et al. 2002; Crespo et al. 2012; Kvas et 

al. 2008; Youssef et al. 2007) and F. proliferatum as a causal agent of mango malformation in 

South China (Zhan et al. 2010). In Malaysia, a few strains associated with mango malformation 

were identified as F. proliferatum and Fusarium sp. although Koch’s postulates were not 

completed with any of these strains (Britz et al. 2002; Zheng and Ploetz 2002). All of the species 

associated with mango malformation belong to the Gibberella fujikuroi species complex and 

have similar morphological characters (Kvas et al. 2009; Leslie and Summerell 2006; Lima et al. 

2012). These species can be differentiated by using Amplified Fragment Length Polymorphisms 

(AFLPs), sexual cross-fertility, and DNA sequences of diagnostic genes (Geiser et al. 2004; 
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Leslie and Summerell 2006; Lima et al. 2012). The correct identification of species associated 

with mango malformation in Malaysia is very important because the presence and distribution of 

the various species within the country will affect the country’s quarantine regulations. 

In this study, we evaluate a broader sample of mango strains collected from Peninsular 

Malaysia.  Thus, the objectives of the study were: (i) to identify the Fusarium species associated 

with mango malformation in Peninsular Malaysia; (ii) to determine the genetic relationship 

amongst the strains; and (iii) to analyze the genetic diversity within the identified species.  We 

hypothesized that several Fusarium species within the G. fujikuroi species complex would be 

present and that F. mangiferae would be the dominant species. Our results will guide local 

horticulturists in their evaluation of mango varieties and the development of regulatory policies 

for mangoes and related tropical fruits.  

 Materials and Methods   

 Strains and morphological studies 

Fusarium spp. were isolated from mango inflorescence tissue collected across Peninsular 

Malaysia. Forty-three strains were recovered and purified by subculturing microconidia 

separated by micromanipulation.  The resulting cultures were preserved as spore suspensions in 

15% glycerol at -70ºC.  

Morphological characteristics were observed on cultures grown on carnation leaf agar 

(CLA) (Fisher et al. 1982) for 7 to 10 days at 25ºC with a 12-hour photoperiod under a 

combination of fluorescent white light and black light. Pigmentation was observed in cultures 

grown on potato dextrose agar (PDA) (Leslie and Summerell 2006). 
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 DNA isolation 

Strains were cultured on complete medium (Correll et al. 1987) slants for seven days.  

One ml of a spore suspension in a 0.25% Tween 60 solution (~106 spores/ml) was used to 

inoculate 30 ml of complete medium broth in a 125-ml Erlenmeyer flask that was incubated for 

two days at room temperature (22–26°C) on an orbital shaker (150 rpm). Mycelia were harvested 

by filtration through a Milk Filter disk (KenAG, Ashland, Ohio), dried by blotting with paper 

towels, and ground to a powder in a mortar with a pestle under liquid nitrogen.  DNA was 

extracted by using a CTAB procedure (Leslie and Summerell 2006). DNA extracts were stored 

in a 1.5-ml microcentrifuge tubes at 4ºC until used.  The quality of the DNA was evaluated 

following resolution in a 1% agarose gel, while the DNA concentration was measured with a 

Nanodrop spectrophotometer (NanoDrop Technologies Inc., Wilmington, Delaware).  

 Mating type PCR 

DNA solutions were diluted to ~20 ng/µl with sterile double-distilled water. The 

procedure used to identify the mating type alleles was that of Leslie and Summerell (2006), 

which follows that of Steenkamp et al. (2000a). The products of the PCR amplification were 

separated on a 1% agarose gel. The size of the amplified DNA products were used to identify the 

mating type of the strain. 

 Biological species and female fertility 

Strains of F. proliferatum from the samples were crossed with standard tester strains 

FGSC 7614 and FGSC 7615, and strains of F. subglutinans were crossed with standard tester 

strains FGSC 7616 and FGSC 7617. The sexual stage of F. mangiferae is not known and no 

crosses were made with the strains assigned to this species. Standard tester strains are available 
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from the Fungal Genetics Stock Center (Dept. of Plant Pathology, Kansas State University). 

Field strains were tested as both male and female parents in crosses with the standard testers after 

the mating-type alleles were determined through PCR analyses.  Sexual crosses were made on 

carrot agar as described by Klittich and Leslie (1988). Fertility was determined by the presence 

of numerous perithecia with a cirrus of ascospores oozing from the perithecia 2 – 4 weeks after 

fertilization. 

 AFLP reaction and analysis 

DNA fingerprinting was conducted by using AFLPs (Vos et al. 1995) following the 

protocol described in Leslie and Summerell (2006).  Three primer pairs were used in the 

selective amplification: EcoRI + GG/MseI + CT, EcoRI + AA/MseI + TT, and EcoRI + TT/MseI 

+ AC. Bands 200–500 bp in size were scored manually based on the presence or absence of a 

band.  Fragments of the same size were assumed to be homologous. Similarities between all 

strains were analyzed by the neighbor joining (NJ) clustering option of PAUP (version 4.10b; D. 

L. Swofford, Sinauer Associates, Sunderland, Mass.) with 1000 bootstrapping replications.  The 

genetic distance and similarities between the species were calculated with the Dice coefficient by 

using SAS (SAS Institute, Cary, N.C.).  Reference strains in the AFLP analysis included: F. 

proliferatum (FGSC 7614 and FGSC 7615), F. fujikuroi (KSU 1993 and KSU 1994), F. 

mangiferae (KSU 11781), F. pseudocircinatum (KSU 10761), F. sterilihyphosum (KSU 16215), 

F. subglutinans (FGSC 7616 and FGSC 7617), and F. tupiense (KSU 16197 and KSU 16231). 

 DNA sequencing 

Partial gene sequences of translation elongation factor 1α (tef-1α) and β-tubulin (tub-2) 

were analyzed for strains other than F. proliferatum.  DNA samples were diluted to ~20 ng/µl.  
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The primer sequences used for tef-1α were EF-1 (forward: 5′-

ATGGGTAAGGAGGACAAGAC-3′) and EF-2 (reverse: 5′-

GGAAGTACCAGTGATCATGTT-3′) (O'Donnell et al. 1998a). The conditions for the tef-1 

amplification were: 94ºC for 1 min., followed by 34 cycles of 94ºC for 30 sec., 62ºC for 45 sec., 

and 72ºC for 1 min., and then 4ºC until analyzed. The primer sequences for tub-2 were T1 

(forward: 5′-AACATGCGTGAGATTGTAAGT-3′) and T2 (reverse: 5′-

TAGTGACCCTTGGCCCAGTTG-3′) (O'Donnell and Cigelnik 1997). The amplification 

program for tub-2 was: 94ºC for 1 min., followed by 34 cycles of 94ºC for 30 sec., 61ºC for 45 

sec., and 72ºC for 1 min., and then 4ºC until analyzed.  The amplification products for tef-1 and 

tub-2 were cleaned with ExoSAP-IT (Affymetrix, Cleveland, OH). We used an Applied 

Biosystems 3730 DNA Analyzer for sequencing at the Kansas State University sequencing 

facility.  These sequences were analyzed by using BioEdit version 7.0.5.3 (Hall 1999) and 

BLASTed against GenBank (http://blast.ncbi.nlm.nih.gov/) and Fusarium Database 

(http://isolate.fusariumdb.org/). 

 Results 

 Species Identification 

Three species were identified based on morphology, molecular characters, and mating 

population.  F. proliferatum was the most common species found from the mango population in 

peninsular Malaysia composing 69% of the population followed by F. mangiferae (26%) and F. 

subglutinans (5%).  Morphologically, F. proliferatum produces chains of microconidia while F. 

mangiferae and F. subglutinans produce microconidia only in false heads (Leslie and Summerell 

2006).  Neither F. mangiferae nor F. subglutinans produce coiled hyphae.  F. mangiferae and F. 
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subglutinans were distinguished based on AFLP fingerprints (Figure 2.1), and the differences 

confirmed by sequencing diagnostic genes.  One hundred and twenty-four AFLP bands were 

evaluated by scoring all of the fragments between 200 and 500 bp in length produced following 

amplification with any of the three primer pairs.  Strains in the same species shared ≥ 70% of the 

AFLP bands.  Sexual crosses with F. proliferatum and F. subglutinans testers also were used to 

confirm species identifications. 

Based on AFLP patterns, there were two clonal pairs of F. proliferatum strains – 21170 

& 21181, and 21171 & 21175 (Figure 2.1).  Strains 21170 and 21181 are both MAT-1 but are 

from different locations, Penang and Johor, respectively, and differ in their fertility, as 21170 is 

female-fertile and 21181 is not (Table 2.1).  Strains 21171 and 21175 are both MAT-2 and are 

from the same location in Penang.  These strains differ in fertility as 21171 is fertile as neither a 

male nor a female parent while 21175 is fertile as a male parent (Table 2.1).  The apparent clonal 

identity of 21171 and 21175 is another reason to classify 21171 as F. proliferatum, even though 

it did not cross with the tester strains. 

 Mating type and cross fertility 

Both mating types were detected amongst the strains of F. proliferatum, of which 17 

were MAT-1 and 12 were MAT-2 (Table 2.1).  Twenty of the F. proliferatum strains were male-

fertile and female-sterile, six were fertile as both the male and the female parent in a cross, and 

three were not fertile as either the male or the female parent and produced barren perithecia 

without ascospores.  Two of the non-fertile strains (21143 and 21145) are both MAT-1 and from 

Johor, while the third non-fertile strain (21171) was MAT-2 and from Penang.  These strains are 

not closely related to one another based on their AFLP profiles, which are all consistent with 

them being members of F. proliferatum and not members of another species (Figure 2.1). 
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Both mating types also were present amongst the F. mangiferae strains, of which two 

were MAT-1 and nine were MAT-2.  No fertility tests were conducted with the F. mangiferae 

strains as no sexual stage is known for this fungus and no mating type tester strains are available.  

Both of the strains of F. subglutinans were MAT-2 and fertile as the male parent, but infertile as 

the female parent, in crosses with FGSC 7616 (Table 2.1).   

 Discussion 

This report extends the evaluation of Fusarium spp. isolated from mangoes in Malaysia 

that was begun by Britz et al. (2002).  These authors also identified two Fusarium strains 

isolated from malformed mango inflorescences in Malaysia as F. mangiferae. In the current 

study, F. proliferatum was the dominant species followed by F. mangiferae and then F. 

subglutinans. Morphologically, it is difficult to distinguish F. mangiferae and F. subglutinans; 

however, these species were clearly distinguished with AFLP fingerprints by their clustering 

patterns on a tree (Figure 2.1).  We included other Fusarium spp. associated with mango 

malformation, e.g., F. tupiense and F. sterilihyphosum, and other closely related species, e.g., F. 

fujikuroi and F. pseudocircinatum, as controls in this tree.  We also confirmed the identification 

of F. subglutinans and F. mangiferae strains with partial sequences of the tef-1α gene. F. 

sterilihyphosum is known so far only from Brazil and South Africa (Britz et al. 2002; Lima et al. 

2009a, 2012; Zheng and Ploetz 2002), while F. mangiferae has been isolated from mango 

malformation in many locations worldwide.  Koch’s postulates confirming pathogenicity have 

been completed with both F. mangiferae and F. sterilihyphosum (Lima et al. 2009a).  A new 

species, F. mexicanum, has been described and shown to cause vegetative malformation on 

mango in Mexico (Otero-Colina et al. 2010).  F. proliferatum has been reported to cause mango 

malformation in South China (Zhan et al. 2010); however, these authors used only morphology 
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and rDNA-ITS sequences to make their identifications.  Some species in the Fusarium fujikuroi 

species complex have non-orthologous copies of the rDNA-ITS region that can lead to 

identification errors if this region is used for species identification purposes (O’Donnell and 

Cigelnik 1997).  Based on our results, F. proliferatum may be the most important causal agent 

for mango malformation in Malaysia and in neighboring countries.  

The role of F. subglutinans in mango malformation remains unsettled.  With the 

description of four Fusarium species that are morphologically similar to F. subglutinans – F. 

mangiferae, F. mexicanum, F. sterilihyphosum and F. tupiense – most researchers decided that 

the F. subglutinans name had been misapplied to strains from one or more of these species.  At 

present, the name F. subglutinans is used for members of mating population E of the G. fujikuroi 

species complex, also known as Gibberella subglutinans (Leslie 1991; Samuels et al. 2001).  The 

current usage of the name F. moniliforme var. subglutinans for the strains that cause mango 

malformation, e.g., Kumar et al. (2011) should be discontinued, as recommended for the name F. 

moniliforme (Seifert et al. 2003), and the strains so named identified as one of the four described 

sibling species known from mango or as a new species.  We identified two strains of F. 

subglutinans in this study, which again raises the question of the ability of members of this 

species to induce or contribute to mango malformation.  We confirmed the identity of these 

strains with both sexual crosses and partial sequences of the tef-1α gene.  As these strains were 

collected from different locations, the association between F. subglutinans and mango 

malformation may be biologically significant.  Koch’s postulates now need to be completed for 

these strains to determine if strains that have been accurately described as F. subglutinans can 

cause mango malformation. 
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Genetic variation has not been well-studied in populations of Fusarium species that cause 

mango malformation. Lima et al. (2009b) and Zheng & Ploetz (2002) both evaluated VCG 

diversity in populations of F. mangiferae, F. sterilihyphosum, and F. tupiense.  Zheng & Ploetz 

(2002) identified six VCGs within F. mangiferae and one in F. sterilihyphosum.  Members of a 

single VCG of F. mangiferae were found in as many as four countries, and there was 

heterogeneity for RAPD bands within some of the F. mangiferae VCGs.  Lima et al. (2009b) 

identified a second VCG in F. sterilihyphosum and six VCGs in F. tupiense, all from Brazil.  

Strains in the same VCG with the same AFLP banding pattern could be recovered from 

geographically distant locations.  We did not use VCGs as a measure of diversity in the present 

study. Our AFLP analyses identified considerably more genotypic variation than did the earlier 

studies, particularly within F. mangiferae, for which we identified no two strains that were 

clones based on AFLPs. This result is quite different from the previously reported results where 

putatively identical strains were recovered from different continents.  In general, our results are 

consistent with the hypothesis that the clones that do exist are unlikely to dominate a population 

and that most strains will differ genetically from one another.  The recovery of putative clones of 

F. proliferatum from sites in Penang and Johor separated by 800 km is consistent with the 

hypothesis that human movement of either infected plants or contaminated fruit play an 

important role in the dispersal of the pathogens associated with mango malformation. 

Most of the strains of F. proliferatum that we recovered were not hermaphrodites (79%), 

but were fertile only as males, which is a somewhat higher percentage than that observed for a 

larger, more cosmopolitan sample of strains of F. proliferatum (70%; Leslie 1995).  The lower 

number of hermaphrodites (21%) in the present study results in a Ne (effective population 

number), as calculated with the equations of Leslie and Klein (1996), of 57% of the count, and 
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suggests ~1%, or less, of the population is participating in sexual reproduction at any one time.   

Thus, sexual reproduction by F. proliferatum strains on mango probably is not a significant part 

of the life cycle on this host.  The genotypic variation we observed, which normally would occur 

as a result of sexual reproduction, could easily arise if strains of F. proliferatum from other 

native or cultivated hosts are moving to mango and can cause mango malformation. The relative 

lack of sexual reproduction by F. proliferatum from mango is consistent with the life cycles of 

several other Fusarium species that are pathogenic to mango.  None of F. mangiferae, F. 

mexicanum or F. sterilihyphosum has a reported sexual stage, and female-fertile strains of F. 

tupiense are rare. 

F. mangiferae is firmly established as a cause of mango malformation through the 

completion of Koch’s postulates and through detailed cytological examinations of infected 

tissues (Freeman et al. 1999; Iqbal et al. 2010).  Spores are dispersed by wind and travel up to 35 

m, with the number of spores released sensitive to the time of year and relative humidity, but not 

to the time of day (Gamliel-Atinsky et al. 2009).  Spores can survive in soil for six months and 

on the soil surface for shorter periods of time (Youssef et al. 2007), especially under hot, dry 

conditions.  Mango fruits from a tree with mango malformation usually are contaminated on the 

surface with Fusarium conidia, and mango seedlings growing under trees with mango 

malformation usually also are infected by the fungus.  Vegetative contamination is most common 

at the apical growing point and lessens as the distance to the apical bud increases.  Root infection 

has no clear role in mango malformation as the fungus apparently does not systemically colonize 

the plant and is not known to be seedborne.  Thus, human movement of contaminated fruit and 

infected seedlings is likely a very important mechanism for the long distance dispersal of these 

pathogens. 
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Malaysia produced ~23,000 metric tonnes of mangoes in 2010, ranking 45th in world 

mango production, and imported a similar amount (25,700 tonnes in 2007) from Thailand and 

India (http://agriexchange.apeda.gov.in/Market).  There are no estimates available for the losses 

due to mango malformation in Malaysia, or in other countries in Southeast Asia.  Losses of 50-

80% due to mango malformation, such as those reported by Kumar et al. (2011), however, are 

very rarely reported.  Free cross border agricultural trade between countries in South and 

Southeast Asia could help disperse the pathogens already in the region and those that might enter 

from elsewhere. With Malaysia’s neighbors, Thailand and Indonesia, ranked 3rd and 4th, 

respectively in world production (www.faostat.fao.org/) the opportunity of movement between 

countries in the Southeast Asian region is good.  F. mexicanum, F. sterilihyphosum, and F. 

tupiense are not currently known in Southeast Asia, and their introduction from the Americas, 

mostly likely through asymptomatic plant cuttings or seedlings, should be avoided through strict 

quarantine and enforcement. 

Australia also is increasing its share of the mango export market.  Mango malformation 

has been reported sporadically in Queensland and the Northern Territories 

(http://www.dpi.qld.gov.au/4790_15965.htm).  The causal agent was identified as F. mangiferae 

and the affected trees were destroyed, presumably solving the problem and removing the 

pathogen from the country.  Australia faces the same concerns as Malaysia with respect to risks 

posed by imports from the Americas for the three Fusarium species reported only from there.  F. 

proliferatum is endemic to Australia (Summerell et al. 2011) and could cause mango 

malformation there, which would not present any new or unusual risk for Malaysia.  Fusarium 

sp. (NRRL 25807) is closely related phylogenetically to F. sterilihyphosum and originates from 

Australian forest soil (Marasas et al., 2006).  Thus, there is a risk that this closely related species 

http://agriexchange.apeda.gov.in/Market


23 

could move from its native host to mangoes in a manner paralleling that which occurred when 

strains in unique VCGs of F. oxysporum f. sp. vasinfectum moved from native Australian 

Gossypium spp. to Australian cultivated cotton in the early 2000s (Wang et al. 2004, 2010).  

Consequently, Australian outbreaks of mango malformation are of particular significance for 

Malaysia as they could result from a Fusarium species not already known in the country.   

In conclusion, mango malformation in Malaysia can occur as a result of at least three 

different Fusarium species.  Transport within the country is probably through the movement of 

infected plantings or contaminated fruit.  The lack of recovery of any of the three species so far 

reported from only the Americas, suggests that particular care should be exercised in the 

movement of plant materials from the Americas to Malaysia (and neighboring countries) to 

reduce the opportunity for the introduction of novel plant pathogens into the region.  Movement 

of plant materials and fruits from Australia also should be monitored to determine if the cause of 

an outbreak of mango malformation there is the result of an already described species.  Finally, 

the ability of F. proliferatum to cause disease on plants as diverse as maize, onions and mangoes 

is worthy of further study to discern how this fungus causes so much damage to such a broad 

array of plants. 
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Table 2.1 Characters of Fusarium strains collected from malformed mango inflorescences in 

peninsular Malaysia. 

KSU Number MAT Allele Fertility Mango Variety Geographic Origin 

F. proliferatum    

21143 1 Barrena Chokkanan Kg. Gambut, Penawar, Johor 

21145 1 Barren Chokkanan Kg. Gambut, Penawar, Johor 

21146 1 ♂, ♀ Chokkanan Kg. Gambut, Penawar, Johor 

21147 1 ♂, ♀ Chokkanan Kg. Gambut, Penawar, Johor 

21149 2 ♂ Epal Relau, Penang 

21150 2 ♂ Epal Relau, Penang 

21151 2 ♂ Chokkanan Kg. Gambut, Penawar, Johor 

21153 1 ♂, ♀ Epal Sg. Nibong, Penang 

21156 1 ♂ Magolba Air Hitam, Penang 

21157 1 ♂, ♀ Chokkanan Kg. Gambut, Penawar, Johor 

21159 1 ♂ Epal Relau, Penang 

21160 2 ♂ Epal Air Itam, Penang 

21161 2 ♂ Epal Century Garden, Penang 

21164 1 ♂, ♀ Epal Century Garden, Penang 

21165 1 ♂ Epal Century Garden, Penang 

21166 1 ♂ Epal Relau, Penang 

21170 1 ♂, ♀ Telur Brown Garden, Penang 

21171 2 Barren Telur Brown Garden, Penang 

21172 2 ♂ Telur Brown Garden, Penang 
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KSU Number MAT Allele Fertility Mango Variety Geographic Origin 

21173 1 ♂ Telur Brown Garden, Penang 

21174 1 ♂ Telur Brown Garden, Penang 

21175 2 ♂ Chokkanan Kg. Gambut, Penawar, Johor 

21177 2 ♂ Siam Century Garden, Penang 

21178 1 ♂ Siam Century Garden, Penang 

21179 2 ♂ Epal Paya Terubung, Penang 

21180 1 ♂ Epal Paya Terubung, Penang 

21181 1 ♂ Chokkanan Kg. Gambut, Penawar, Johor 

21183 2 ♂ Chokkanan Kg. Gambut, Penawar, Johor 

21185 2 ♂ Chokkanan Kg. Gambut, Penawar, Johor 

F. mangiferae    

21144 2 -b Chokkanan Kg. Gambut, Penawar, Johor 

21148 2 - Chokkanan Kg. Gambut, Penawar, Johor 

21154 1 - Epal Sg. Nibong, Penang 

21155 2 - Chokkanan Kg. Gambut, Penawar, Johor 

21158 2 - Siam Century Garden, Penang 

21162 2 - Epal Century Garden, Penang 

21163 2 - Epal Century Garden, Penang 

21168 1 - Telur Permatang Tinggi, Penang 

21169 2 - Telur Tanjung Bunga, Penang 

21176 1 - Chokkanan Kg. Gambut, Penawar, Johor 

21182 2 - Chokkanan Kg. Gambut, Penawar, Johor 
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KSU Number MAT Allele Fertility Mango Variety Geographic Origin 

21184 2 - Chokkanan Kg. Gambut, Penawar, Johor 

F. subglutinans    

21142 2 ♂ Chokkanan Kg. Gambut, Penawar, Johor 

21167 2 ♂ Epal Sg. Ara, Penang 

aBarren – numerous perithecia, but no ascospore cirrhi.  bNo data. 
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Figure 2.1  Tree generated by the neighbor-joining distance method based on similarities of 

AFLP marker profiles of strains collected from malformed mango inflorescences. 

Bootstrap values ≥ 70% based on 1000 replications are noted.  In addition to the species labeled 

in the diagram the following additional species are represented: F. fujikuroi (KSU 1993 and 

KSU 1994), F. pseudocircinatum (KSU 10761), F. sterilihyphosum (KSU 16215) and F. 

tupiense (KSU 16197 and KSU 16231).  
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Figure 2.2  Relationship of the strains collected from malformed mango inflorescences to 

reference strains. 

Reference strains: F. fujikuroi (KSU 1993 and KSU 1994), F. mangiferae (KSU 11781), F. 

proliferatum (FGSC 7614 and FGSC 7615), F. pseudocircinatum (KSU 10761), F. 

sterilihyphosum (KSU 16215), F subglutinans (FGSC 7616 and FGSC 7617), and F. tupiense 

(KSU 16197 and KSU 16231). This unrooted tree was generated by the neighbor-joining 

distance method based on the AFLP markers. 
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Chapter 3 - Fusarium species from Sorghum in Thailand 

 Abstract 

Some of the most important diseases of sorghum are stalk rot and grain mold, both of 

which have a Fusarium causal agent. Numerous Fusarium species also have been isolated from 

sorghum, including F. andiyazi, F. napiforme, F. nygamai, F. proliferatum, F. pseudonygamai, 

F. thapsinum, and F. verticillioides, and several as yet undescribed species. The general lack of 

information on sorghum pathogens in Southeast Asia and the revisions to the nomenclature of 

the relevant Fusarium species over the past 20 years are both strong reasons to re-evaluate 

Fusarium isolates from Southeast Asia and to determine if the species distribution in Southeast 

Asia is comparable to that observed in other better-studied locations where sorghum is grown. 

The objective of this study was to identify the Fusarium species present on sorghum growing in 

Thailand. Sixty-eight isolates were identified and assigned to one of five species: F. 

proliferatum, F. verticillioides, F. thapsinum, F. beomiforme and F. sacchari. This report is the 

first of F. thapsinum from Southeast Asia. Three species were common – F. proliferatum (35%), 

F. verticillioides (31%), and F. thapsinum (29%), all of which are known on sorghum elsewhere. 

These species are known as toxin producers, thus, increasing the risk of toxin-contaminated 

seeds. The absence of some species commonly associated with sorghum e.g. F. andiyazi, 

suggests that the movement of sorghum into Thailand and other neighboring countries should be 

monitored to avoid the introduction of new pathogens into the region.  
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 Introduction 

Sorghum (Sorghum bicolor) is an important crop for human consumption, animal feed, 

and bioenergy.  It is the fifth most important cereal in the world after wheat, rice, maize, and 

barley.  In Thailand, sorghum is the 3rd most important cereal crop and is grown in all regions of 

the country, but most commonly in the central and northeastern regions.  Much of the sorghum 

grown in Thailand is exported, the country ranks 18th in the world for sorghum exports 

(http://www.indexmundi.com/agriculture/). Some also is used as animal feed and for ethanol 

production (Ariyajaroenwong et al. 2012; Boon Long 1992; Nuanpeng et al. 2011). The average 

production of sorghum from 2006 to 2012 was 54,500 tons per year, a decrease of more than 

50% since 2000 (http://faostat.fao.org).  Fusarium spp. from sorghum have been poorly 

differentiated and described at the field level, although there has been great progress in 

identifying and differentiating species on this host over the last 20-30 years.  In many parts of the 

world, the only Fusarium species reported to occur on sorghum is Fusarium moniliforme.  This 

name was retired in 2003 (Seifert et al. 2003), as is now known to refer to some 15-50 different 

species.  From Thailand, only F. moniliforme has been reported (Boon Long 1992; Salleh et al. 

1995). 

Some of the most important diseases of sorghum are stalk rot and grain mold, both of 

which have a Fusarium causal agent (Bandyopadhyay et al. 2000; Little et al. 2012; Marasas et 

al. 2001).  Stalk rot can cause yield losses up to 90%, although year-to-year losses are usually 

much less (Leslie 2002).  Numerous Fusarium species also have been isolated from sorghum, 

including F. andiyazi, F. napiforme, F. nygamai, F. proliferatum, F. pseudonygamai, F. 

thapsinum, and F. verticillioides (Leslie et al. 1990; Leslie et al. 2005a; Marasas et al. 1987, 

2001; Nelson et al. 1987) and several other species that have not yet been described. Some of 

http://www.indexmundi.com/agriculture/


31 

these species produce fumonisins and other secondary metabolites, which are toxic to humans 

and domesticated animals (Desjardins 2006). Sorghum growing in Southeast Asia is grown 

under very different climatic conditions than found in Africa, the Americas or Australia, where 

most work on sorghum pathology has occurred. The indigenous fungal populations in Southeast 

Asia also differ from those recovered elsewhere, as do the rice-focused cropping systems. The 

general lack of information on sorghum pathogens in this region and the revisions to the 

nomenclature of the relevant Fusarium species over the past 20 years are both strong reasons to 

re-evaluate Fusarium isolates from Southeast Asia and to determine if the species distribution in 

Southeast Asia is comparable to that observed in other better-studied geographic locations where 

sorghum is grown. 

The objective of this study was to identify the Fusarium species present on sorghum 

growing in farmers’ fields in Thailand. We hypothesize that Fusarium species within the 

Fusarium fujikuroi species complex associated with sorghum in other parts of the world will be 

present, although many of these species and their relative frequencies have not previously been 

reported from Southeast Asia. Our data can be used to develop or adapt disease management 

strategies and to estimate risks of mycotoxin contamination to sorghum grain produced in this 

region. 

 Materials and Methods 

 Isolates and culture condition 

Fusarium spp. were isolated from heads and stalks of healthy sorghum plants at five 

locations in Thailand (Table 3.1). Sixty-eight isolates were recovered and purified by 
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subculturing microconidia separated by micromanipulation. The resulting cultures were 

preserved as spore suspensions in 15% glycerol at -70ºC.  

Reference strains used in this study were F. verticillioides (FGSC7415 and FGSC7416), F. 

sacchari (FGSC7419 and FGSC7420), F. fujikuroi (KSU1993 and KSU1994), F. proliferatum 

(FGSC7422 and FGSC7421), F. subglutinans (FGSC7616 and FGSC7617), F. thapsinum 

(FGSC7056 and FGSC7057) and F. nygamai (KSU5112), and F. circinatum (FGSC9022 and 

FGSC9023) [FGSC – Fungal Genetics Stock Center, Kansas State University; KSU – 

Department of Plant Pathology, Kansas State University].  

 DNA isolation 

Isolates were cultured on complete medium (Leslie and Summerell 2006) slants for seven 

days.  One ml of a spore suspension in 0.25% Tween® 60 solution (~106 spores/ml) was used to 

inoculate 30 ml of complete medium broth in a 125 ml flask, and then cultured for two days at 

room temperature (24-26°C) on an orbital shaker (150 rpm).  Mycelia were harvested by 

filtration through a Milk Filter disk (KenAG, Ashland, Ohio), dried by blotting with paper towels 

and ground to a powder in a mortar with a pestle under liquid nitrogen.  DNA was extracted by 

using a CTAB protocol (Leslie and Summerell 2006).  DNA extracts were stored in 1.5-ml 

microcentrifuge tubes at 4ºC until used.  The quality of DNA was evaluated following separation 

on a 1% agarose gel.  DNA concentrations were measured with a Nanodrop spectrophotometer 

(NanoDrop Technologies Inc., Delaware).  

 Mating type PCR 

DNA solutions were diluted to ~20 ng/µl with sterile double-distilled water.  The MAT 

alleles were amplified by PCR as previously described (Leslie and Summerell 2006), with the 
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primers developed by Steenkamp et al. (2000a) and Kerényi et al. (2004).  PCR amplification 

products were resolved on a 1% agarose gel, and the bands present were used to identify the 

mating type. 

 Biological species and female fertility 

Isolates of F. proliferatum, F. sacchari, F. thapsinum, and F. verticillioides were crossed 

with standard, female-fertile, tester isolates.  Sexual crosses were made on carrot agar as 

previously described (Leslie and Summerell 2006). Fertility was determined by the presence of 

perithecia exuding a cirrhus of ascospores 2-4 weeks after fertilization.  Positive crosses were 

repeated twice and negative crosses were repeated three times.   

Field isolates were tested as both male and female parents in crosses with the standard 

testers after the MAT allele in the field isolate was determined.  Male fertility was scored in 

crosses in which the field isolate was the male and the standard tester strain was the female 

parent.  Female fertility was tested in crosses in which the field isolate was the female parent and 

the standard tester strain was the male. 

 AFLP reactions and analysis 

DNA fingerprints were generated by using AFLPs (Vos et al. 1995) following the 

protocol of Leslie and Summerell (2006). Three primer pairs were used in the selective 

amplification: EcoRI + GG/MseI + CT, EcoRI + AA/MseI + TT, and EcoRI + TT/MseI + AC.  

Bands 200-500 bp in size were scored manually based on the presence or absence of the band.  

Individual bands were presumed to represent alleles at single loci. Similarities between all strains 

were analyzed by the neighbor joining clustering option of PAUP (version 4.10b; D. L. 

Swofford, Sinauer Associates, Sunderland, Massachusetts) with 1000 bootstrapping replications. 
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The estimates of variance for the AFLP genotypes within and among populations were 

calculated by using analysis of molecular variance (AMOVA) as installed in GenAlEx 6.5 

(Peakall and Smouse 2012). 

 DNA sequencing 

Partial gene sequences of translation elongation factor 1α (tef-1α) were analyzed for 

several selected isolates in each major cluster identified following AFLP analysis.  DNA samples 

for sequencing were diluted to ~20 ng/µl.  The primer sequence used for tef-1α was EF-1 

(forward: 5′-ATGGGTAAGGAGGACAAGAC-3′) and EF-2 (reverse: 5′-

GGAAGTACCAGTGATCATGTT-3′) (O’Donnell et al. 1998a).  The conditions for the tef-1α 

fragment amplification were: 94ºC for 1 min., followed by 34 cycles of 94ºC for 30 sec., 62ºC 

for 45 sec., and 72ºC for 1 min., and then 4ºC indefinitely.  The amplification products obtained 

were cleaned with the ExoSAP-IT (Affymetrix, Cleveland, Ohio) following the manufacturer’s 

protocol.  DNA sequences were obtained by using an Applied Biosystems 3730 DNA Analyzer 

at the K-State Sequencing facility.  The DNA sequences were analyzed with BioEdit and 

BLASTed against NCBI GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the Fusarium 

Database (http://isolate.fusariumdb.org/index.php). 

 Results 

 Identification and species distribution 

All 68 isolates could be assigned to one of five species: F. proliferatum, F. verticillioides, 

F. thapsinum, F. beomiforme and F. sacchari.  Species identity was based on at least two of: 

AFLP analysis, partial gene sequence of tef-1, and cross fertility with standard tester strains.  

Three species were common – F. proliferatum (35%), F. verticillioides (31%), and F. thapsinum 
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(29%) (Table 3.4).  Fusarium proliferatum and F. thapsinum were the only species recovered 

from sorghum heads (seeds) (Table 3.4), although all five species were recovered from stalks.  

Fusarium proliferatum dominated in samples from sorghum heads, but was found at only three 

of the five locations.  Fusarium thapsinum and F. verticillioides were more widely distributed, 

being recovered from four locations (Table 3.4), but only F. thapsinum was recovered from the 

head.  Fusarium beomiforme and F. subglutinans were both recovered from only a single site – 

Phai Sali (Table 3.4).  Four species were recovered at this site, while only two or three species 

were recovered from each of the other sites. 

 AFLP analyses 

Seventy-eight polymorphic bands were scored manually as the presence or absence of a 

band.  All of the isolates from the same species clustered in unique clades in an unrooted tree 

(Figure 3.1). Reference strains were included in the analysis. Identify of isolates that did not 

cluster with the reference strains, e.g. strains of F. beomiforme, were confirmed by using the 

partial sequence of the tef-1 genes.  

Analysis of molecular variance (AMOVA) based on the AFLP bands was calculated for 

F. verticillioides, F. proliferatum, and F. thapsinum (Table 3.3). The genetic variation for F. 

proliferatum and F. thapsinum was higher within locations than it was among them at 68% and 

83%, respectively. In contrast, the variation observed for F. verticillioides was almost equally 

distributed with 53% within and 47% among locations.  

 Mating type and female fertility 

Mating type and female fertility was scored for all species except F. beomiforme, which 

lacks a known sexual stage (Table 3.2).  Both isolates of F. beomiforme carry the MAT-2 allele. 
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The MAT alleles in F. proliferatum and F. verticillioides were both present in roughly equal 

frequencies.  In F. thapsinum, there were significantly (χ² = 5.0; p ≤ 0.05) more strains with the 

MAT-1 genotype than with the MAT-2 genotype.  The only isolate of F. subglutinans was MAT-

1. Female fertility in F. verticillioides was relatively high, with 62% of the strains being female 

fertile, while 38% were female sterile.  Amongst strains of F. proliferatum and F. thapsinum, 

female fertility was low, at 17% and 15%, respectively. 

 Discussion 

All five species recovered in this study are known to be associated with sorghum, but not 

necessarily pathogens. The three dominant species, F. proliferatum, F. verticillioides, and F. 

thapsinum, recovered from this research are commonly associated with sorghum (Leslie et al. 

1990; Leslie 2002; Lincy et al. 2011; Sharma et al. 2011). Fusarium thapsinum is a major 

pathogen that can cause stalk rot and grain mold of sorghum (Jardine and Leslie 1992; Klittich et 

al. 1997; Leslie et al. 2005a; Onyike and Nelson 1992). Sorghum also is a preferred host for F. 

thapsinum.  

The higher frequencies of F. proliferatum and F. verticillioides observed in this study 

differ from previous studies of sorghum grown in the United States and Tanzania (Leslie 2002), 

where these frequencies were much lower. In Thailand, sorghum usually is planted as a second 

crop following maize (Salleh et al. 1995). Thus, the increased frequency of F. proliferatum and 

F. verticilloides could result from inoculum build up in the previous crop. In maize, both F. 

proliferatum and F. verticillioides can cause stalk and cob rots (Logrieco et al. 1995, 2002). In 

sorghum, F. verticillioides can cause stalk and root rot in the greenhouse (Jardine and Leslie 

1992; Palmero et al. 2012), and F. proliferatum can cause grain mold (Martinez et al. 2002). F. 

proliferatum has a wide host range and could adapt and survive on many hosts commonly 



37 

planted in rotation. The sorghum/maize crop rotation practiced in Thailand could increase the 

incidence of stalk and cob rot in maize, and a systematic evaluation of diseases in this system is 

needed to define disease frequency and risks. The frequent recovery of these two species may 

indicate that these species are of pathogenic importance to sorghum grown in Southeast Asia. 

Small numbers of F. sacchari and F. beomiforme were isolated in this study.  F. sacchari 

is not well-known for its pathogenicity to sorghum, however, the species has commonly been 

isolated from diseased sorghum (Leslie et al. 2005b; Sharma et al. 2011), and could be a 

potential pathogen (Petrovic et al. 2013).  Thus, the F. sacchari strains recovered in this study 

also could potentially be sorghum pathogens. F. beomiforme is the only species recovered in this 

study not belonging to the Fusarium fujikuroi species complex. This species is excluded from the 

species complex based on the phylogenetic analysis. This species is common in soil and soil 

debris in Australia, South Africa, and Papua New Guinea (Nelson et al. 1987; O’Donnell et al. 

1998b). In Papua New Guinea, F. beomiforme was found in soil in which sorghum had been 

cultivated (Nelson et al. 1987). To date, this species has not been reported to be pathogenic to 

sorghum. This report is the first of the recovery of F. beomiforme from sorghum tissue. 

Isolates from the same species cluster together in the phylogenetic tree and share more 

than 70% of the AFLP bands. Based on the AFLPs, two strains of F. verticillioides and F. 

thapsinum, and 4 strains of F. proliferatum, all appear to be clonal. Members of clonal groups 

are all from the same location which is consistent with a hypothesis that there is little or no 

movement of strains amongst these locations. Based on population analysis, sexual reproduction 

is important for F. verticillioides, as the Ne for female fertility is 94% of the count. Frequent 

sexual reproduction could increase the genotypic diversity of the population and could lead to 

more virulent strains towards maize, sorghum or other hosts. In comparison to the composite 
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global population of Leslie and Klein (1996), the effective population number based on female-

fertility for F. thapsinum is relatively higher in this study (Ne(f) = 45%), but lower for F. 

proliferatum at 49%. Based on the AMOVA analysis, most of the genetic variation in the AFLP-

based loci is found within populations for F. proliferatum and F. thapsinum (Table 3.3). This 

suggests that gene flow occurs through sexual recombination or frequent movement of strains of 

these species between populations. The variation observed within and among populations of F. 

verticillioides suggests that these strains are more isolated and that there is less migration 

between the populations  

All three of the dominant species, i.e. F. proliferatum, F. verticillioides, and F. 

thapsinum, can produce fumonisins, although the amounts produced by F. thapsinum usually are 

very limited (Desjardins 2006; Leslie et al. 2005a).  Sorghum contaminated with fumonisins 

could be hazardous to humans and the domesticated animals that consume it. F. proliferatum and 

F. thapsinum also produce a second mycotoxin, moniliformin, and F. thapsinum is a prolific 

moniliformin producer (Leslie et al. 2005a).  Moniliformin is toxic to chickens, and has been 

associated with Keshan disease in China (Desjardins 2006). Thus, sorghum produced in Thailand 

has the potential to be contaminated with either the fumonisin or the moniliformin mycotoxins.  

An important sorghum pathogen, F. andiyazi, was not recovered in this study (Leslie et 

al. 2005a). This species has been isolated from South Africa, Ethiopia, Nigeria, and the United 

States (Marasas et al. 2001). The absence of this species from Thailand implies that sorghum 

imported from these countries should be subject to stricter screening and quarantine measures to 

prevent the introduction of this pathogen into Southeast Asia. 

In conclusion, we recovered five Fusarium spp. from sorghum fields in Thailand: F. 

beomiforme, F. thapsinum, F. proliferatum, F. sacchari, and F. verticillioides. Three of these 



39 

species (F. thapsinum, F. proliferatum, and F. verticilliodes) contain potentially toxigenic 

strains, and should be managed to reduce the risk of toxin contamination in the field. An 

assessment of the disease frequency and causal agent of cob and stalk rot in maize is needed to 

determine F. proliferatum is associated with this disease in Thailand and whether it benefits from 

a sorghum/maize rotation. Finally, stricter quarantine procedures for sorghum material coming 

from the Americas and the Africa should be implemented to prevent the introduction of F. 

andiyazi into Thailand and neighboring countries. 
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Table 3.1  Source and species of Fusarium isolates collected from sorghum fields in Thailand. 

Location Plant Part Total isolates Fp Ft Fv Fb Fs 

Hat Yai Seed 21 20 1 0 0 0 

Phai Sali Stalk 7 0 2 2 2 1 

Ban Chai Badan Stalk 7 0 2 5 0 0 

Ban Wang Phong Stalk 23 3 15 5 0 0 

Tak Fa Stalk 10 1 0 9 0 0 

Total - 68 24 20 21 2 1 

Fp: F. proliferatum; Ft: F. thapsinum; Fv: F. verticillioides; Fb: F. beomiforme; Fs: F. sacchari 
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Figure 3.1  Unrooted phylogenetic tree generated with UPGMA based on AFLP markers. 

Black circles encompass strains from species identified in the field populations.  Gray circles 

encompass reference strains for related species. 
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Table 3.2  Mating type and fertility of isolates of Fusarium collected from sorghum grown in 

Thailand. 

Fusarium species Mating type aNfs : Nh 

MAT-1 MAT-2 

F. verticillioides 9 12 8:13 

F. proliferatum 10 14 20:4 

F. thapsinum 15 5 17:3 

aNfs is the number of female sterile strains; Nh is the number of hermaphrodites 
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Table 3.3  Analysis of molecular variance (AMOVA) of AFLPs for F. verticillioides, F. 

proliferatum, and F. thapsinum from sorghum. 

Source of variation Degrees of freedom Variance % of total variance 

(a) F. verticillioides 

Among populations 

Within populations 

Total 

 

3 

17 

20 

 

4.138 

4.718 

8.857 

 

47 

53 

100 

(b) F. proliferatuma 

Among populations 

Within populations 

Total 

 

1 

21 

22 

 

2.816 

6.060 

8.875 

 

32 

68 

100 

(c) F. thapsinuma 

Among populations 

Within populations 

Total 

 

2 

16 

18 

 

0.932 

4.488 

5.419 

 

17 

83 

100 

aOne location is not included in the calculation since only one isolate was present at that location. 
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Table 3.4  Fusarium isolates from sorghum in Thailand. 

KSU Strain 

number 

MAT 

allele 

Fertility Sorghum 

tissue 

Geographic origin (Thailand) 

F. proliferatum    

3042, 3048, 

3049, 3053, 

3058, 3059 

1 ♂ Head (seed) Experimental Farm, Prince Songkhla 

University, Hat Yai  

3046, 3047 1 ♂/♀ Head (seed)  

3061 1 ♂ Head (seed)  

3043, 3060 2 ♂/♀ Head (seed)  

3044, 3045, 

3054, 3055, 

3056, 3057 

2 ♂ Head (seed)  

3050, 3052, 

3062 

2 ♂ Head (seed)  

3477 1 ♂ Stalk Highway 11, Takfa 

3151, 3166, 

3171 

2 ♂ Stalk Highway 205, Ban Wang Phong 

F. verticillioides    

3143, 3144, 

3146 

2 ♂/♀ Stalk Highway 205, Ban Chai Badan 

3152 2 ♂ Stalk Highway 205, Ban Wang Phong 

3137, 3139 1 ♂/♀ Stalk Highway II, Phai Sali 
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KSU Strain 

number 

MAT 

allele 

Fertility Sorghum 

tissue 

Geographic origin (Thailand) 

3145 1 ♂ Stalk Highway 205, Ban Chai Badan 

3153 1 ♂/♀ Stalk Highway 205, 206, Ban Wang Phong 

3155 1 ♂ Stalk  

3473 1 ♂ Stalk Highway 11, Takfa 

3476, 3478, 

3479 

1 ♂/♀ Stalk  

3470 2 ♂/♀ Stalk  

3471, 3472, 

3474, 3475 

2 ♂/♀ Stalk  

3147 2 ♂ Stalk Highway 205, Ban Chai Badan 

3167, 3170 2 ♂ Stalk Highway 205, Ban Wang Phong 

F. thapsinum     

3051 2 ♂ Head (seed) Experimental Farm, Prince Songkhla 

University, Hat Yai  

3133, 3140 1 ♂ Stalk Highway II, Phai Sali 

3148, 3149 1 ♂ Stalk Highway 205, Ban Chai Badan 

3154, 3158, 

3161, 3162, 

3169 

1 ♂ Stalk Highway 205, Ban Wang Phong 

3159, 3160, 

3164 

1 ♂ Stalk  
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KSU Strain 

number 

MAT 

allele 

Fertility Sorghum 

tissue 

Geographic origin (Thailand) 

3163, 3165, 

3172 

1 ♂/♀ Stalk  

3150, 3156, 

3157, 3168 

2 ♂ Stalk  

F. sacchari 

3136 1 ♀ Stalk Highway II, Phai Sali 

F. beomiforme    

3134, 3138 2 - a  Stalk Highway II, Phai Sali 

a-, No data due to lack of mating testers for this species. 
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Chapter 4 - Population Structure of Fusarium fujikuroi Species 

Complex Associated with Bakanae Disease of Rice in Malaysia and 

Thailand 

 Abstract 

Several species in the Fusarium fujikuroi species complex are commonly associated with 

bakanae disease of rice. Rice is an important agricultural export for both Malaysia and Thailand. 

The movement of rice may be accompanied by the movement of fungal strains in the F. fujikuroi 

species complex. We analyzed 182 Fusarium isolates from bakanae-infected rice in Malaysia 

and Thailand – 76 from Malaysia and 106 from Thailand. Among the isolates, F. fujikuroi (87%) 

was the most common followed by F. proliferatum (9%), F. sacchari (3%), F. verticillioides 

(1%) and F. concentricum (<1%). An unrooted tree was constructed based on amplified fragment 

length polymorphisms (AFLPs). There were two subclusters within F. fujikuroi, one containing 

strains from Malaysia and another containing strains from Thailand, indicating that there is some 

genetic structure to populations of F. fujikuroi. There is considerable genotype variation within 

and between these populations, but none of the strains were female fertile under laboratory 

conditions. We conclude that the populations of Fusarium fujikuroi in Malaysia and Thailand are 

genetically isolated. Additional samples from other populations in the region are critical to 

determine the level of genetic isolation within this species.  

 Introduction 

The Fusarium fujikuroi species complex has a widespread host and geographic 

distribution (Kim et al. 2012; Leslie et al. 1990; Lima et al. 2009a; Mansuetus et al. 1997). 

Morphologically, most of these species are very similar, making identification of the species 
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based on morphological characters alone difficult (Leslie and Summerell 2006). Most of these 

species can be separated based on sexual fertility by using the biological species concept. To 

date, there are 12 biological species (mating populations A – L) within this species complex 

(Kvas et al. 2009; Leslie and Summerell 2006). These biological species also can be 

distinguished based on amplified fragment length polymorphisms (AFLPs) and partial DNA 

sequences of genes such as β-tubulin, histone H3, and translation elongation factor 1α (Leslie 

and Summerell 2006; O'Donnell and Cigelnik 1997; Steenkamp et al. 1999; Wulff et al. 2010). 

Rice is a very important crop in Thailand and Malaysia, as it is the staple food for most of 

the people in this region. Although Malaysia produces 1.75 million metric tons of rice, it also 

imports 1.2 million tons of rice from neighboring countries, with 33% of these imports coming 

from Thailand (http://www.indexmundi.com; http://www.riceimportexport.com). The movement 

of rice also could move and mix the Fusarium spp. associated with rice. A well-known disease 

caused by Fusarium spp. is bakanae, or “foolish seedling” disease. Bakanae disease can cause 

yield losses of up to 40% (Desjardins et al. 2000a). This disease has been known since 1828 in 

Japan. This disease was very serious in Malaysia and Thailand from 1960 to the 1980s 

(Kanjanasoon 1965; Saad 1986). In Malaysia, disease incidence up to 12.5% was reported during 

the main growing season in 2005 (Zainuddin et al. 2008b). Typical symptoms of bakanae include 

elongated seedlings, chlorosis, and visible fungal mycelium on dried-up seedlings above the 

water level (Amoah et al. 1995; Zainuddin et al. 2008b). Elongated seedlings result from the 

excess gibberellic acid produced by the pathogen (Desjardins et al. 2000a). 

Two Fusarium species are associated with bakanae disease on rice: F. fujikuroi and F. 

proliferatum (Amoah et al. 1995; Desjardins et al. 2000a; Zainuddin et al. 2008b). F. andiyazi, F. 

http://www.indexmundi.com/%20agriculture/?country=my
http://www.riceimportexport.com/
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sacchari, F. subglutinans and F. verticillioides also have been isolated from bakanae-infected 

rice (Wulff et al. 2010; Zainuddin et al. 2008b).  

In this study, we evaluated fungal isolates from bakanae-infected rice growing in 

Thailand and Malaysia. Our objectives were: (i) to identify Fusarium species associated with 

bakanae disease of rice; (ii) to determine the genetic relationship amongst the strains; and (iii) to 

evaluate the population structure of the collected strains. We hypothesize that F. fujikuroi is the 

dominant species in these populations. Due to the long history of bakanae disease in this region, 

we further hypothesize that the genetic variation of F. fujikuroi in this region is higher than in 

California. Furthermore, the movement of rice between Malaysia and Thailand may lead to 

homogenization of the genetic composition of the strains in both countries. This study will guide 

plant pathologists and local breeders to improve their current strategy to manage bakanae. 

 Materials and Methods 

 Isolates and culture 

One-hundred-and-eighty-two isolates were obtained from bakanae-infected rice in 

Thailand and Malaysia – 106 from northern Thailand and 76 from peninsular Malaysia. All 

isolates were single-spored by using a micromanipulator and cultured in complete medium at 

25°C (Correll et al. 1987). The isolates were preserved as aqueous spore suspensions made with 

15% glycerol and kept at -70°C (Leslie and Summerell 2006). Reference strains were obtained 

from the Kansas State University culture collection. Reference strains used in this research were 

F. circinatum (FGSC9022 and FGSC9023), F. fujikuroi (FGSC8931 and FGSC8932), F. 

nygamai (KSU5112), F. proliferatum (FGSC7615 and FGSC7614), F. sacchari (FGSC7610 and 
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FGSC7611), F. subglutinans (FGSC7616 and FGSC7617), and F. verticillioides (FGSC7600 

and FGSC7603) (FGSC – Fungal Genetics Stock Center, Kansas State University). 

Morphological characters were observed on cultures grown on carnation leaf agar (CLA) 

(Fisher et al. 1982) for 7 to 10 days at 25ºC with a 12-hour photoperiod under a combination of 

cool white fluorescent light and black light. Pigmentation was observed in cultures grown on 

potato dextrose agar (PDA) (Leslie and Summerell 2006). 

 Extraction of DNA 

Strains were cultured on complete medium (Correll et al. 1987) slants for seven days.  

One ml of spore suspension in a 0.25% Tween 60 solution (~106 spores/ml) was used to 

inoculate 30 ml of complete medium broth in a 125-ml Erlenmeyer flask that was incubated for 

two days at room temperature (22 – 26°C) on an orbital shaker (150 rpm). Mycelia were 

harvested by filtration through a Milk Filter disk (KenAG, Ashland, Ohio), dried by blotting with 

paper towels, and ground to a powder in a mortar with a pestle under liquid nitrogen. DNA was 

extracted by using a CTAB procedure (Leslie and Summerell 2006).  DNA extracts were stored 

in 1.5-ml microcentrifuge tubes at 4ºC until used.  The quality of the DNA was evaluated 

following separation in a 1% agarose gel. The DNA concentration was measured with a 

Nanodrop spectrophotometer (NanoDrop Technologies Inc., Wilmington, Delaware). 

 Nucleic Acid Analyses – Mating-Type, AFLPs, and sequenced loci 

DNA obtained from the extractions was diluted, to approximately 20 ng/µl, with sterile 

double-distilled water. The procedures used to identify the mating type idiomorphs were 

described by Leslie and Summerell (2006) and used the reactions and primers described by 

Steenkamp et al. (2000a). The amplification program for the MAT alleles was 94°C for 60 sec., 
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followed by 29 cycles of 94°C for 30 sec., 65°C foor 45 sec., and 72°C for 30 sec., followed by 

72°C for 5 min, and then 4°C indefinitely. The PCR amplification products were resolved on 1% 

agarose gels, with the presence of bands indicating the mating type.  

DNA fingerprinting was conducted by using AFLPs (Vos et al. 1995) with the reaction 

conditions described by Leslie and Summerell (2006).  Three primer pairs were used: EcoRI + 

GG/MseI + CT, EcoRI + AA/MseI + TT, and EcoRI + TT/MseI + AC. Bands between 200 bp 

and 500 bp in size were scored manually. A tree based on AFLP bands was generated by using 

the neighbor-joining clustering option of PAUP (version 4.10b; D. L. Swofford, Sinauer 

Associates, Sunderland, Mass.) with 1000 bootstrap replications. The Dice coefficient with 

CLUSTER procedure of SAS (v 6.12, SAS Institure, Cary, North Carolina) was used to estimate 

genetic similarity between strains. 

Partial DNA sequences of the translation elongation factor 1α (tef-1) gene for a few 

strains were used for confirmation of species identity. The DNA solutions were diluted to ~20 

ng/µl. The primers used for tef-1 amplification were EF-1 (forward: 5′-

ATGGGTAAGGAGGACAAGAC-3′) and EF-2 (reverse: 5′-

GGAAGTACCAGTGATCATGTT-3′) (O’Donnell et al. 1998a). The conditions for the tef-1 

sequence amplification were: 94ºC for 1 min., followed by 34 cycles of 94ºC for 30 sec., 62ºC 

for 45 sec., and 72ºC for 1 min., and then 4ºC until analyzed.  The amplification products for tef-

1 were cleaned with ExoSAP-IT (Affymetrix, Cleveland, Ohio). We used an Applied Biosystems 

3730 DNA Analyzer to produce DNA sequences. These sequences were analyzed by using 

BioEdit and BLASTed against NCBI GenBank (http://blast.ncbi.nlm.nih.gov/) and Fusarium-ID 

(http://isolate.fusariumdb.org/). 

 

http://blast.ncbi.nlm.nih.gov/
http://isolate.fusariumdb.org/
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 Sexual crosses and female fertility 

Isolates of F. fujikuroi, F. proliferatum, F. sacchari, and F. verticillioides were crossed 

with tester isolates (F. fujikuroi: FGSC8931 & FGSC8932; F. proliferatum: FGSC7422 & 

FGSC7421; F. sacchari: FGSC7419 & FGSC7420; F. verticillioides: FGSC7415 & FGSC7416) 

to test for sexual fertility. Crosses were made on carrot agar as previously described in Klittich 

and Leslie (1988). Field isolates were tested as both male and the female parents in crosses with 

standard tester strains of the opposite mating type. Fertility was determined by the presence of 

numerous perithecia with a cirrhus of ascospores oozing from the perithecia 2 – 4 weeks after 

fertilization. 

 Population structure analysis 

The analysis of molecular variance (AMOVA) was calculated by using GenAlEx 6.5 

(Peakall and Smouse 2012) based on the frequency of the AFLP alleles. The STRUCTURE 

program (version 2.3.4; available online), a Bayesian model-based clustering method, was used 

to infer population structure (Pritchard et al. 2000). Individuals were assigned to K populations 

that are characterized by specific allele frequencies at examined loci. Exploratory runs for K-

values were allowed from 1 to 4 with a 10,000 iteration burn-in period and 100,000 iterations of 

Markov Chain Monte Carlo (MCMC). The number of clusters (K) was determined by using the 

modal value of ∆K based on the rate of change in the log probability of data between successive 

K-values (Evanno et al. 2005). 
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 Results 

 Species identification and distribution 

Isolates of five Fusarium species were identified in this study: F. fujikuroi (87%), 

followed by F. proliferatum (9%), F. sacchari (3%) and F. verticillioides (1%), F. concentricum 

(< 1%) (Table 4.1). Both F. fujikuroi and F. proliferatum were found in Thailand and Malaysia, 

while F. sacchari and F. concentricum were isolated only from Malaysian samples and F. 

vertillioides was isolated only from Thai isolates. Sixty-three polymorphic AFLP bands were 

identified based on PCR amplifications with the three primer pairs. The resulting unrooted tree 

(Figure 4.1) contains four major clusters, each representing a different species and containing 

known reference strains. Within the F. fujikuroi cluster, there were two sub-clusters, one 

containing strains isolated from Thailand and a second containing strains isolated from Malaysia 

(Figure 4.1). Species identifications were confirmed for some strains based on partial tef-1 gene 

sequences and/or sexual crosses.  

Based on AFLP patterns, there were 48 F. fujikuroi haplotypes in the Thai population and 

40 haplotypes in the Malaysian population. The number of clonal groups in the Thai population 

(20) was higher than that in the Malaysian population (5). None of the clonal groups contained 

strains from both Malaysia and Thailand. The average similarity of the F. fujikuroi strains was 

80%.  

 Mating types and fertility 

Strains of both mating types were found in the F. fujikuroi, F. proliferatum, and F. 

sacchari populations. Only MAT-2 strains were recovered for F. verticillioides and F. 

concentricum. The distribution of MAT idiomorphs within the F. fujikuroi population was 32 
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MAT-1:117 MAT-2. Within country populations, the MAT idiomorph ratio was 9 MAT-1:92 

MAT-2 in Thailand, and 23 MAT-1:24 MAT-2 in Malaysia. None of the F. fujikuroi strains were 

female fertile. Only one strain of F. proliferatum was female fertile, and the remaining were 

female sterile. As for F. sacchari, three strains were male fertile, but not female fertile. Both 

strains of F. verticillioides were both male and female fertile. No fertility tests were conducted 

with the F. concentricum strain as no sexual stage is known. 

 Molecular variance and STRUCTURE analysis of F. fujikuroi 

The AMOVA indicates that variation within F. fujikuroi was almost equally distributed 

between the within population (49%) and the among population (51%) components (Table 4.3). 

In STRUCTURE analysis, initial simulations were performed assuming cluster numbers from K 

= 1 to 4. The maximum value of ∆K occurs at K = 2, and divides the sample into Thai and 

Malaysian population (Figure 4.2). Seven of the strains from Thailand (3350, 3356, 3388, 3427, 

3438, 3451, and 3454) contained some allels characteristic of the Malaysian population (Figure 

4.2). 

 Discussion 

All of the Fusarium species recovered were members of the F. fujikuroi species complex. 

Although F. verticillioides and F. sacchari are not common in rice fields, both have previously 

been recovered from rice (Amatulli et al. 2010; Hsuan et al. 2011; Kim et al. 2012; Zainuddin et 

al. 2008a). The pathogenicity of these two species towards rice is not thought to be significant. F. 

verticillioides and F. proliferatum can both synthesize relatively high levels of fumonisins, 

which are harmful to humans and domesticated animals (Desjardins 2006). F. sacchari is not 

known to make high levels of mycotoxins and the few strains of F. sacchari isolated from rice in 
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Malaysia that have been tested for secondary metabolite production do not produce fumonisins, 

moniliformin, or fusaric acid (Zainuddin et al. 2008b). One strain of F. concentricum was 

recovered in this study. This species also has been isolated from rice in South Korea (Kim et al. 

2012). The South Korean strain produces symptoms in rice that are similar to bakanae disease 

(Jeon et al. 2013), but its ability to produce gibberellic acid is not known. This report of F. 

concentricum from rice is a first report for Malaysia. 

As hypothesized, F. fujikuroi is the most frequent Fusarium species recovered from rice. 

This finding is consistent with numerous previous reports (Amatulli et al. 2010; Carter et al. 

2008; Cruz et al. 2013; Kim et al. 2012). Based on AFLP banding patterns, isolates are 

considered to be members of the same species if they share > 70% of the bands (Leslie and 

Summerell 2006). The average genetic similarity of F. fujikuroi strains in this population was 

80%, which is lower than the 94% similarity found in California populations (Carter et al. 2008). 

Although both mating types are found in this population, none of the F. fujikuroi strains were 

female fertile under laboratory conditions. The effective population number based on mating 

type was 68% of the count which is the lowest Ne(mt) reported for any Fusarium species (Leslie 

and Klein 1996). The lack of strains with observable fertility and the skewing of the MAT allele 

frequencies are both consistent with the hypothesis that the populations of F. fujikuroi primarily 

reproduce asexually.  

The Thai and Malaysian populations of F. fujikuroi are clearly distinct from each other 

(Figures 4.1, 4.2). This conclusion is supported by the relatively low proportion of variation 

within the populations (Table 4.3) and the relatively high levels of between population 

variations. In Thailand, the MAT-2 allele dominates, while in Malaysia, the MAT alleles are 

approximately equally frequent. The effective population number based on mating type was 
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32.5% in the Thai subpopulation and effectively 100% in the Malaysian population. The higher 

effective population number in Malaysia suggests that sexual recombination could be occurring 

in the field populations. This conclusion also is supported by the lower number of clonal strains 

in the Malaysian population. To date, there has been no report of perithecia occurringunder field 

conditions in either Malaysia or Thailand. Field occurrence of perithecia has been reported in 

Taiwan and Japan (Sung and Snyder 1977; Watanabe and Umehara 1977).  

Bakanae disease has a much longer history in Southeast Asia than in California. Thus, 

finding more haplotypes in the Malaysian and Thai populations than in the California population 

(Carter et al. 2008) supports the hypothesis that F. fujikuroi is a relatively recent clonal 

introduction to California. Clonal strains can be very informative when analyzing the movement 

of pathogen strains within a population. In our study, none of the clonal groups contained strains 

from both Malaysia and Thailand, which suggests little migration of F. fujikuroi between these 

two populations. Geographic barriers could play a role in the isolation of these subpopulations as 

more than 1000 km separate the collection sites in peninsular Malaysia and northern Thailand. 

The Thai and Malaysian populations also appear to have accumulated quite a few mutations as 

there are clear lineages within each population. Loci that are polymorphic in both locations 

probably were polymorphic in the population from which both the Thai and Malaysian 

populations were derived. Samples from additional populations are needed to determine whether 

geographic distance is related to genetic distance and whether local populations of F. fujikuroi 

primarily reproduce asexually.  

F. proliferatum is the second most commonly isolated species from rice with Bakanae. F. 

proliferatum can produce mycotoxins such as fumonisins, beauvericin, and moniliformin, and 

also can stunt the growth of rice seedlings (Desjardins 2006; Jeon et al. 2013). F. proliferatum is 
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very closely related to F. fujikuroi. Some strains of F. proliferatum and are cross-fertile with F. 

fujikuroi. Interspecific hybrids between F. proliferatum and F. fujikuroi can be generated in the 

laboratory (Chapter 5), but have been reported only once from field conditions (Leslie et al. 

2004b). Such interspecific hybrids can produce sets of secondary metabolites not observed in 

either of the parental species (Studt et al. 2012). A naturally occurring hybrid between these two 

species that was viable could pose a threat to rice and other plant hosts in terms of pathogenicity 

and secondary metabolite production. 

In conclusion, we identified five Fusarium species from rice in Malaysia and Thailand. 

The genetically diverse F. fujikuroi strains evaluated in this study should be tested for fungicide 

resistance to determine the effectiveness of current bakanae disease management program. We 

observed two distinct populations in F. fujikuroi, i.e. Malaysian and Thail, that warrant further 

study in comparing their pathogenicity on rice and the amount of GA3 produced. An 

understanding of pathogen population structure will help determine the deployment of resistant 

varieties in the field. Finally, additional samples from other countries in Southeast Asia will be 

crucial to determine if the isolation of F. fujikuroi is due to geographic distance. 
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Table 4.1  Location and species of Fusarium isolates from rice. 

Location F. fujikuroi F. proliferatum F. sacchari F. verticillioides F. concentricum 

Thailand 102 2 0 2 0 

Malaysia 57 14 4 0 1 

Total 149 16 4 2 1 
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Table 4.2  Fusarium isolates from rice in Malaysia and Thailand 

Strains MAT  Fertility Geographic origin 

F. fujikuroi 

 

 

 3356, 3361, 3362, 3364 1 NFa Chiang Mai, Thailand 

3345-3350, 3352-3355, 

3357-3360, 3363, 3365-

3367  2 NF Chiang Mai, Thailand 

3368  1 NF Sri Lanna National Park, Thailand 

3369, 3371-3385, 3387-

3391 2 NF Sri Lanna National Park, Thailand 

3454, 3456, 3458, 3460 1 NF Highway 106, KM Post 46, Li, Thailand 

3410-3440, 3442-3452, 

3455, 3457, 3459, 3461-

3468 

 

2 

 

NF 

 

Highway 106, Li, Thailand 

21067 2 NF Seberang Perak (FELCRA), Perak, Malaysia  

21069  2 NF Kg. Apal, Jabi, Terengganu, Malaysia 

21093, 21102-21106, 

21108-21112 1 NF Sekinchan, Selangor 

21082, 21084, 21087, 

21088, 21091, 21094, 

21099-21101, 21107 2 NF Sekinchan, Selangor 

21115, 21116  1 NF Sungai Leman, Selangor 

21117-21122, 21125- 2 NF Sungai Leman, Selangor 
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21128 

21129 2 NF Cuping, Perlis 

21130 2 NF Kg. Paya, Kedah 

21131 1 NF Jitra, Kedah 

21132 1 NF Bagan Serai, Perak 

21134 1 NF Sungai Baru 3, Perak 

21135 1 NF Kg. Banggol, Petaling, Kelantan 

21136 1 NF Kg. Lapa, Peringat, Kelantan 

21137 1 NF Kemubu 1, Kelantan 

21138-21141 1 NF Kg. Paya, Kedah 

F. proliferatum 

 

   

3351 2 ♂ Chiang Mai, Thailand 

3386 2 ♀, ♂ Sri Lanna National Park, Thailand 

21064 1 ♂ Seberang Perak (FELCRA), Perak  

21065, 21066 2 ♂ Seberang Perak (FELCRA), Perak  

21070 2 ♂ Padang Pak Amat, Pasir Puteh, Kelantan 

21071, 21072 2 ♂ Palekbang, Tumpat, Kelantan 

21073 2 ♂ Ladang Ana Fasa 2, Tumpat, Kelantan  

21075, 21080 2 ♂ Padang Sungai Laka, LKPP, Rompin, Pahang 

21081 1 ♂ Padang Sungai Laka, LKPP, Rompin, Pahang 

21085 2 ♂ Sekinchan, Selangor 

21113, 21114 2 ♂ Sungai Nibong, Selangor 

F. sacchari 
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21076-21078 2 ♂ Padang Sungai Laka, LKPP, Rompin, Pahang 

21079 1 ♂ Padang Sungai Laka, LKPP, Rompin, Pahang 

F. verticillioides    

3441, 3453 2 ♀, ♂ Highway 106, Li, Thailand 

F. concentricum    

21074 2 NAb Padang Sungai Laka, LKPP, Rompin, Pahang 

aNF – Non-fertile; bNA – Fertility data is not available due to lack of tester strain. 
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Table 4.3 Analysis of molecular variance (AMOVA) of AFLPs for F. fujikuroi from rice. 

Source of variation Degrees of freedom Variance % of total variance 

Among populations 

Within populations 

Total 

1 

147 

148 

4.012 

3.903 

7.916 

51 

49 

100 
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Figure 4.1 Unrooted phylogenetic tree generated based on AFLP markers. 

Circles with solid lines delineate species clusters. Circles with dotted lines delineate clusters 

based on countries, i.e. Malaysia and Thailand. The strain numbers on the branches of F. 

fujikuroi, F. proliferatum, F. sacchari, and F. verticillioides are the reference strains.   
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Figure 4.2  Genetic structure of individual strains of F. fujikuroi in both populations. 

Strains 1 – 102 are from Thailand. Strains 103 – 149 are from Malaysia. 
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Chapter 5 - Genetic map of the interspecific hybrids between  

F. proliferatum and F. fujikuroi, segregation of Gibberellic acid 

production and its pathogenicity towards rice  

 Abstract 

F. fujikuroi and F. proliferatum are closely related species. Some strains are cross-fertile 

with members of the other species and those crosses produce viable progeny in limited numbers. 

As a result of interspecific crosses, novel pathogenicity and secondary metabolite combinations 

may occur. An interspecific cross between F. fujikuroi and F. proliferatum was made and 533 

ascospore progeny collected. Amplified Fragments Length Polymorphisms (AFLPs) were used 

to genotype the progeny and the parental strains. Eighty-six AFLPs markers were scored and 

used to construct a recombination-based map. Seventy-three of the markers were distorted 

towards the F. proliferatum parent. The recombination-based map was aligned with the physical 

map. The genomic location of GA3 production was on chromosome 5, which is consistent with 

earlier reports. QTL analysis of GA3 production with a nonparametric method identified several 

genomic regions associated with GA3 production. Pathogenicity tests of the progeny on rice 

seeds resulted in two phenotypes: seedling elongation, and seed germination. Both pathogenicity 

phenotypes varied continuously amongst the progeny. Several of the clonal progeny resulting 

from this cross represent potentially novel biological events. The novel combinations of 

secondary metabolite production phenotypes and pathogenicity profiles evident in some of the 

progeny could threaten rice varieties and other crops if such progeny occur under field 

conditions. 
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 Introduction 

The genus Fusarium is one of the most important fungal genera containing plant 

pathogens due to its cosmopolitan distribution and the wide array of hosts attacked. One of the 

best studied species complexes within the genus is the Fusarium fujikuroi species complex 

(Geiser et al. 2013). This species complex has been subdivided into three clades with multiple 

biological and phylogenetic species. F. fujikuroi, and F. proliferatum are sister species in this 

species complex. Morphologically, these two species are almost indistinguishable, but a 

polyphasic approach that uses both biological and phylogenetic species concepts can resolve 

them clearly (Kvas et al. 2009; Leslie and Summerell 2006).  

Biological species concepts have been used in Fusarium to identify sibling species 

(Leslie and Summerell 2006). Under this concept, strains in the same species are sexually cross-

fertile and produce viable, fertile progeny at a “normal” rate. In some cases, strains in different 

species may be poorly cross-fertile with one another (Desjardins et al. 2000b; De Vos et al. 2013, 

Leslie et al. 2004a). This cross-fertility includes some strains of F. fujikuroi and F. proliferatum. 

Although F. fujikuroi and F. proliferatum are very closely related, the two species differ in many 

characters. Strains of F. fujikuroi are most commonly recovered from rice, while F. proliferatum 

strains can be recovered from many quite different plant hosts (Kvas et al. 2009; Leslie and 

Summerell 2006). The two species also differ in their secondary metabolite production profiles. 

F. fujikuroi strains commonly produce gibberellic acid, while F. proliferatum strains can produce 

fumonisins, fusaproliferin and moniliformin (Desjardins 2006; Kvas et al. 2009).  

Sexual crosses between F. fujikuroi and F. proliferatum were first reported in 1997 

(Desjardins et al. 1997), and progeny were collected from several crosses in 2004 (Leslie et al. 

2004a). These interspecific crosses are consistent with the conclusions that the genomes of F. 
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fujikuroi and F. proliferatum are closely related (Ellis 1988; O'Donnell et al. 1998b). The 

interspecific laboratory cross produced progeny with novel secondary metabolite profiles (Studt 

et al. 2012). In 2012, we repeated one cross between the two species and increased the number of 

progeny to enable the construction of a robust genetic linkage map and to study the segregation 

of traits such as pathogenicity and secondary metabolite productions. 

The objectives of this study are: (i) to evaluate segregation of AFLP loci in an 

interspecific cross between F. fujikuroi and F. proliferatum; (ii) to generate a genetic linkage 

map from the interspecific cross; (iii) to study the segregation of gibberellin production and 

pathogenicity towards rice; and (iv) to locate a region(s) within the genome involved in 

gibberellin production and pathogenicity towards rice. The recombination-based map from this 

study provides a basis for further assembly of the genome of both parental strains. This study 

will facilitate other genetic research on these interspecific hybrids, such as identification of 

genetic factors involved in pathogenicity, host specificity, and speciation.  

 Materials and Methods 

 Interspecific cross and collection of progeny 

A cross between FGSC8932 (F. fujikuroi, MAT-2) and FGSC7615 (F. proliferatum, 

MAT-1) was made on multiple occasions. The parental strains are available from the Fungal 

Genetics Stock Center (Department of Plant Pathology, Kansas State University). Crosses were 

made on carrot agar as described by Klittich and Leslie (1988). FGSC7615 was used as the 

female parent and FGSC8932 was the male parent. Ascospores were recovered from perithecia 

4-6 weeks after fertilization. Ascospores were separated by micromanipulation on 3% water agar 

slides and incubated right side up at 25˚C overnight. Germinated spores were examined, 
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identified with a dissecting microscope. Individual germinated spores were cut from the agar slab 

and transferred to a complete medium (Correll et al. 1987) slant. All progeny were preserved by 

freezing spore suspensions in 15% glycerol at -70˚C.  An example of the numbering code for the 

progeny used for these progeny isCD010203, which indicates – CD: progeny from cross between 

F. fujikuroi (MP-C) and F. proliferatum (MP-D); 01: ascospore isolated from petridish no. 1; 02: 

ascospore isolated from perithecia no. 2; 03: number of the individual ascospore. Progeny with 

code numbers beginning with the letter “Z” were obtained from crosses of the same strains made 

in 2004. 

 DNA isolation 

Strains were cultured on complete medium (Correll et al. 1987) slants for seven days.  

One ml of a spore suspension in a 0.25% Tween 60 solution (~106 spores/ml) was used to 

inoculate 30 ml of complete medium broth in a 125-ml Erlenmeyer flask that was incubated for 

two days at room temperature (22–26°C) on an orbital shaker (150 rpm). Mycelia were harvested 

by filtration through a Milk Filter disk (KenAG, Ashland, Ohio), dried by blotting with paper 

towels, and ground to a powder in a mortar with a pestle under liquid nitrogen.  DNA was 

extracted by using a CTAB procedure (Leslie & Summerell, 2006).  DNA extracts were stored in 

1.5-ml microcentrifuge tubes at 4ºC until used.  The quality of the DNA was evaluated following 

resolution of a sample in a 1% agarose gel, while the DNA concentration was measured with a 

Nanodrop spectrophotometer (NanoDrop Technologies Inc., Wilmington, Delaware ). 

 Mating type PCR 

DNA solutions were diluted to ~20 ng/µl with sterile double-distilled water.  The 

procedure used to identify the mating type alleles was that of Leslie & Summerell (2006), which 



69 

follows that of Steenkamp et al. (2000).  The products of the PCR amplification were separated 

on a 1% agarose gel. The size of the amplified DNA products were used to identify the mating 

type of the strain. 

 AFLP reactions  

DNA fingerprinting was conducted by using AFLPs (Vos et al. 1995) following the 

protocol described in Leslie & Summerell (2006).  Four primer pairs were used in the selective 

amplification: EcoRI + CC/MseI + CG, EcoRI + AA/MseI + AA, and EcoRI + GG/MseI + TG, 

EcoRI + TT/MseI + AC. Bands 200 – 500 bp in size were scored manually based on the presence 

or absence of a band. Only polymorphic bands based on the parental strains were scored. 

Fragments of the same size were assumed to be homologous. Both parental strains were included 

in each AFLP gel: F. proliferatum (FGSC 7615), F. fujikuroi (FGSC8932) for reference on band 

scoring. The size of the AFLP fragments was estimated by comparisons with the low mass ladder 

200 to 500 bp.  

 Gibberellic acid extraction  

Strains were cultured in optimized production media (OPM) (Tsavkelova et al. 2008) on 

a rotary shaker (130 rpm) for 7 days. The culture was filtered through filter paper (Whatman #1) 

and the filtrate collected in a flask. The pH of the filtrate was adjusted to pH 2.8 with 1N HCl. 

Eight hundred microliters of the filtrate was extracted with ethyl acetate at a 1:2 (filtrate:ethyl 

acetate) ratio. The mixture was vortexed for 2 minutes. Two layers formed after vortexing. The 

ethyl acetate layer (top layer) was transferred to a 1.5 ml microcentrifuge tube and evaporated by 

using a speed vacuum (DyNA-Vap, Labnet International Co., Woodbridge, New Jersey). The 
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residue was dissolved in 30 µl of absolute ethanol. The extractions were stored at 4˚C until 

analyzed. Each sample was filtered through a PVDF 0.45 µm filter prior to analysis.  

 Gibberellic acid analysis  

Gibberellic acid production was analyzed with an incomplete block design. Each set of 

runs was treated as a block. Within each run, both parental strains and blanks were included. 

Spiked samples were used to assess the recovery rate. Extracts from the parental strains were 

mixed with 100 µl/µg GA3 as spiked samples. Gibberellic acid extracts were analyzed by using 

an HPLC (Shimadzu HPLC system consisting of a CBM-20A controller, SIL-20A HT auto-

sampler, LC-20AT pump, SPD-20AV UV/VIS detector and CTO-20AC column ovens, Canby, 

Oregon). The HPLC column was protected with a universal guard column (SecurityGuard Guard 

Cartridge System Column Protection with C18 guard cartridge, 4 × 2.0 mm ID, Phenomenex 

Inc., Torrance, California). The column used was a Supelco Discovery C18, 150 × 4.6 mm, 

particle size = 5 µm, at a temperature of 25˚C. The mobile phase was 20% methanol containing 

10 mM H3PO4 adjusted with KOH to pH = 2.3 (Barendse et al. 1980). The injection volume was 

10 µl. The flow rate was set at 1.0 ml/min, with column oven temperature at 25˚C. Each sample 

was run for 50 minutes with the UV detector at 203 nm. All of the solutions used in the 

experiment were HPLC grade. For each set of runs, a range (100, 250, 500, 1000, 5000, 10000) 

of standard GA3 solutions was included to develop a standard curve. All samples were diluted 

1:100 with methanol.  

 Rice seedling pathogenicity assay  

The rice seedling germination procedure was based on that of Ellis et al. (2011), which 

uses a rolled towel assay. Rice seed (Oryza sativa L. ssp. japonica) was obtained from Kitazawa 
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Seed Company (Oakland, California). Seeds were surface-sterilized with 10% bleach and rinsed 

three times with tap water. Seeds were heat treated in a water bath at 55˚C for 15 minutes and 

then dried overnight. Prior to inoculation, strains were cultured in 5 ml of liquid complete 

medium in glass tubes (Pyrex, No. 9820) on a rotary shaker (120 rpm) for 48 hrs. The spore 

concentration was adjusted to 1x105 spores/ml and kept at 4˚C overnight. Twenty-five seeds per 

strain were soaked in one ml of the spore suspension for 4 hours at room temperature. Seeds 

were placed on a moistened towel and the towels were rolled. Rolled towels were placed in a 

closed plastic container containing 100 ml of sterile double-distilled water and incubated at 25˚C 

for 7 days. 

The seed germination rate and the length of the germinated shoots were measured. The 

experiment was designed as a randomized complete block with replications treated as blocks. 

There were four experimental replications conducted at different times. The blocks were treated 

as a random effect while strains were treated as fixed effects. Statistical analyses were performed 

with SAS software, version 9.3 (SAS Institute Inc., Cary, North Carolina). The analysis used the 

“Proc mixed” procedure. Ranking of the strains based on seedling shoot length was used to 

compare the treatments. 

 Genetic linkage map construction and alignment to the physical map 

The physical map and the genetic map were constructed concurrently. Based on the 

estimated size of the AFLP fragments, the sequence of the fragment was predicted with 

AFLPinSilico (Rombauts et al. 2003) based on partially assembled genome sequences of the two 

parental genomes (Toomajian, unpublished). The location of the predicted fragments in the 

genome was obtained by BLASTing the sequences against available F. fujikuroi genomic 

sequences (Wiemann et al. 2013; Toomajian, unpublished).  
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The genetic linkage map was constructed and QTL analysis was performed by using the 

QTL package in R, version 3.1 (www.rqtl.org) (Broman et al. 2003; Broman and Sen 2009). The 

AFLP and phenotypic data were imported as a backcross from Microsoft Excel. All of the AFLP 

markers and progeny were included in the analysis to form linkage groups. Using R/qtl, we 

checked for missing data, duplications, and distortions. Fifty-one strains with > 95% genotype 

similarity to other strains were removed from further analysis. Segregation of most markers was 

distorted, so the function “markerlrt( )” was used to form the linkage groups. This function uses 

the LOD score of a general likelihood ratio test of each pair of markers to assess their 

association. The functions “orderMarkers( )” and “ripple( )” were used to find the best marker 

order for each linkage group based on the number of crossovers and the likelihoods of the given 

order. The initial linkage groups were compared and aligned to the in silico physical map. The 

linkage groups and unlinked markers could be consolidated to 12 chromosomes based on known 

physical sequences. The procedure to establish marker order was then repeated. The marker 

order resulting from the function “orderMarker( )” also was compared to the marker order based 

on the physical map, when they differed, by using the function “compareorder( )”. Three-point 

test crosses were analyzed manually for all markers that were not well-aligned with the physical 

map. The genetic length of the map was estimated by using the Haldane mapping function, 

which is the default for this program and assumes that there is no crossover interference.  

 Analysis of QTLs 

QTLs for gibberellic acid production and rice pathogenicity were detected by using the 

R/qtl program (Broman and Sen 2009). With the single-QTL model, all of the markers were 

subjected to an interval mapping analysis. Initially, the function “calc.genoprob( )” was used to 

calculate conditional genotype probabilities. Three methods were used to search for QTLs: 

http://www.rqtl.org/


73 

parametric, nonparametric, and binary. The phenotype data were log-transformed when using the 

parametric method to generate a normal distribution. A genome scan for QTLs based on single 

marker analysis was performed by using the Haley-Knott regression (Haley and Knott 1992). For 

nonparametric interval mapping, no data transformation was needed. The nonparametric protocol 

uses rank-based methods in an extension of the Kruskal-Wallis test for interval mapping to 

search for QTLs. In the binary method, the phenotype data were transformed into binary data, 

e.g. band or no band, pathogenic or nonpathogenic. Binary methods used maximum likelihood 

estimates (MLEs) similar to standard interval mapping to produce a LOD curve on a grid 

covering the genome. 

A permutation test with 1000 replicates was performed to obtain a genome-wide 

significance threshold. In the permutation test, phenotypes were randomized relative to 

genotypes and the test repeated 1000 times. Based on the permutation test, the significance 

threshold level for logarithm of odds (LOD) was set at α = 0.05 for the detection of QTLs. 

 Results 

 AFLP and Linkage map analysis 

Eighty-six polymorphic AFLP bands were scored manually from the four AFLP primer 

pairs. The segregation of most markers was distorted toward one of the parental types (Table 

5.1). Seventy-three markers were distorted towards F. proliferatum, and eight markers towards 

F. fujikuroi, and five segregated at the Mendelian ratio of 1:1. Among the progeny, 355 progeny 

had more than 50% of their markers from the F. proliferatum parent, 31 progeny carried more 

than 50% F. fujikuroi alleles, and 147 progeny had an equal number of alleles from both parents 

in their genome.  
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Ten clonal groups containing 29 progeny also were observed (Table 5.5). Seven 

perithecia produced clonal progeny in one of these clonal haplotypes. Six of the 10 haplotypes 

were recovered from multiple perithecia and must have originated independently during meiosis. 

All of these clonal groups were highly distorted towards the F. proliferatum alleles in their 

genomic composition.  

Eighty-three AFLP markers and the mating type locus were used to establish a genetic 

linkage map. Three problematic AFLP markers were dropped from the linkage analysis due to 

the ambiguity of their location in the physical genome. The in silico analysis indicated that these 

bands could each represent 2 segregating loci. After the initial analysis, there were 14 linkage 

groups and 15 unlinked markers at minimum LOD = 13. This recombination-based map was 

aligned to the physical map to identify the chromosomes associated with each linkage group and 

to confirm marker order. Linkage groups were re-constituted by combining two or more linkage 

groups and the unlinked markers associated with the same chromosome. Five AFLP markers 

were unlinked to any other marker and were not identifiable in the F. fujikuroi reference genome. 

Twelve linkage groups corresponding to the twelve chromosomes present in the reference 

genome of F. fujikuroi were used for further analysis (Figure 5.5). In the linkage groups, five 

AFLP loci segregated in a Mendelian manner, and four loci were significantly distorted towards 

F. fujikuroi (Figure 5.5). The location of markers on the linkage map was confirmed by making 

three-point cross calculations. 

 Gibberellic acid production 

An HPLC was used to detect gibberellic acid (GA3) at 33 minutes after injection (Figure 

5.4). As expected, the F. fujikuroi parental strain produced GA3 and the F. proliferatum parent 

did not. Two-hundred-fifty-one progeny (58%) produced no GA3 and the remaining progeny 
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produced GA3 at various levels (Figure 5.3). The segregation of the GA3 production was not 

Mendelian amongst the progeny (χ2 = 11.34, P < 0.01). Only 4/13 strains that cause severe 

stunting in rice seedlings produced GA3 (Table 5.2). The progeny (CD220111) that caused the 

most severe stunting did not produce GA3 (Table 5.2). The concentration of GA3 produced by 

each strain was determined based on a calibration curve developed for each run. 

 Rice pathogenicity assessed as seed germination and seedling elongation 

Based on the rolled towel assay, both the F. fujikuroi and F. proliferatum parents stunted 

shoot elongation of rice seedlings. In this experiment, only 79 progeny were tested. Experimental 

replications of this study were consistent with acceptable correlation coefficients (Table 5.3). 

The F. fujikuroi parent was in the severe stunting phenotypic range, while the F. proliferatum 

parent was in the intermediate stunting phenotypic range (Figure 5.1). Seedling growth, as 

assessed by the mean length of shoots, was a continuous phenotype (Figure 5.1). Transgressive 

phenotypes, relative to parental level of inhibition, were observed among the progeny. Fungal 

progeny that permitted more growth than either parent and progeny that limited growth more 

severely than either parent were both observed. The reduction of rice seedling growth was 

positively correlated (R = 0.3445, P = 0.0019) with GA3 production (Table 5.4). 

Decrease in seed germination rates also were evaluated as a pathogenic effect of the 

fungus on rice seeds. Germination rates for seeds treated with fungal progeny ranged from 54 to 

96% (Figure 5.2). Germination of seeds treated with the parental strains was 78% (F. fujikuroi) 

for one parent and 89% (F. proliferatum) for the other parent. Transgressive phenotypes relative 

to parental level of seed germination also were observed. Seedling elongation and seed 

germination were positively correlated (R = 0.7478, P < 0.0001). However, seed germination 

rates were not significantly correlated (R = 0.1687, P = 0.1374) with GA3 production (Table 5.4). 
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 Detection of QTLs for GA3 and rice pathogenicity 

Single marker analysis was performed by using parametric, non-parametric, and binary 

methods for GA3 production, and by using parametric and nonparametric methods for 

germination and seedling elongation. QTLs were identified for GA3 production and rice seedling 

elongations (Figure 5.6; 5.7, 5.8). QTLs for these characters occurred on Chromosome 5 near 

one end of the chromosome. These QTLs could explain some of the variation observed for GA3 

production and seedling growth. Three AFLP markers were associated with these traits - 

ETTMAC-4, EAAMAA-13, and EAAMAA-10 (Figure 5.6). Additional QTLs associated with 

GA3 production were detected by using the nonparametric and binary methods (Figure 5.7). With 

the nonparametric analysis, significant (α = 0.05) QTLs were found on chromosomes 2, 3, 4, 5, 

8, 11, and 12. Similarly using binary analysis, QTLs were detected on chromosomes 2, 3, 4, 5, 8 

and 12. There were no differences between the parametric and nonparametric methods in the 

QTLs detection for rice seedling elongation. No significant QTLs were detected for seed 

germinations (Figure 5.8).  

 

 Discussion 

We constructed a recombination-based map for this interspecific cross with 83 AFLP 

markers and the mating type locus. Based on available genomic sequences for the parental 

strains and the published F. fujikuroi genome, we correlated physical and recombination-based 

maps (Figure 5.5). The mating type locus is in the same relative position in most Fusarium 

genomic sequences and maps. Adding this marker to the map assists us in validating the linkage 

group/physical chromosome correlation. Segregation for most of markers was distorted towards 

F. proliferatum. Through sexual recombination, the genomes of the two species were mixed, but 
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the number of spores surviving meiosis was between 0.1 and 0.01% of the normal number. Thus, 

the viable progeny could be selected for multi-locus genotypes required for viability and not 

necessarily be completely random in nature. The distortion towards F. proliferatum that we 

observed could mean that there are portions of the F. proliferatum genome that need to be more 

or less intact or to co-segregate with one another for the progeny to survive. Three AFLP loci 

that were distorted towards F. fujikuroi suggest that this genomic region may be important for 

their viability. Segregation distortion also was observed in the interspecific hybrids resulting 

from a cross between F. circinatum and F. subglutinans (De Vos et al. 2013). We think that 

progeny fitness was improved by the presence of the alleles from F. proliferatum that caused this 

distortion. 

Currently, two research groups have published whole genome sequences for different 

strains of F. fujikuroi (Jeong et al. 2013; Wiemann et al. 2013). Both strains can cause bakanae 

disease of rice and produce gibberellic acid. The gibberellic acid gene cluster is located on one 

end of chromosome 5 in both sequences. Our results are consistent with their findings, as there is 

a QTL for GA3 production on the end of chromosome 5. We expected the segregation of this 

gene cluster amongst the progeny to be 1:1 (GA3 producer:GA3 non-producer), but GA3 non-

producers were more common. Important regulators of GA3 located elsewhere in the genome 

could be polymorphic and segregating in a manner that reduces GA3 biosynthesis. The QTL 

analysis based on nonparametric and binary analyses identifies genetic factors associated with 

GA3 production on several other chromosomes. These QTLs could be regulators involved in GA3 

production. Thus, the non-Mendelian segregation of GA3 production amongst the progeny is due 

to the skewed segregation of the GA3 gene cluster and the segregation of other genes unlinked to 

the cluster that are associated with GA3 production. 
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F. fujikuroi is a well-known cause of the bakanae disease of rice. Infected seeds also can 

exhibit two other disease symptoms, i.e. reduced germination and stunting of seedling growth 

(Amoah et al. 1995; Wulff et al. 2010). Shoot elongation symptoms expressed as bakanae 

disease are due to excessive production of gibberellic acid by F. fujikuroi. Stunted seedlings also 

may result from the production of fusaric acid (Desjardins 2006). F. fujikuroi stunted the growth 

of rice seedlings in the rolled towel assay. F. proliferatum also stunted seedling growth, but not 

as severely as did F. fujikuroi. Seed germination rates were lower when treated with the F. 

fujikuroi parent than with the F. proliferartum parent. The results from the rolled towel assay 

suggest that the pathogenicity of F. fujikuroi on rice seedlings results from growth inhibition. 

This character is not a result of GA3 being present. Most of the progeny that cause severe 

stunting of rice seedlings do not produce GA3 (Table 5.2). Thus, excessive GA3 is not the cause 

of this phenotype and other factors, e.g. fusaric acid, could be responsible for the growth stunting 

and reduced germination that we observed in this study. Both F. fujikuroi and F. proliferatum 

can produce fusaric acid, which is a known phytotoxin (Desjardins 2006).  

A QTL for stunted rice seedling growth was detected in the same region as the GA3 gene 

cluster on chromosome 5, so there is a pathogenicity factor for stunting located near the GA3 

gene cluster. The rolled towel assay may not be the best method to observe the seedling 

elongation associated with bakanae, but it did show a range of effects on rice seedling 

germination and growth. Reduced seedling germination and seedling stunting were highly 

correlated, suggesting that the same genes could be involved in both traits. No significant QTL 

for seed germination was detected. However, there is a relatively strong although not statistically 

significant, QTL on chromosome 5 associated with marker ECCMCG-18, which is further away 

from the GA3 cluster than marker EAAMAA-10 (Figure 5.8). This region could potentially be 
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one containing pathogenicity determinants towards rice in this fungus. The ability to detect QTLs 

would be greater if more samples had been evaluated in the rolled towel assay, if the genetic map 

were denser, and if the segregation of the markers was less skewed towards the F. proliferatum 

parent. 

The presence of the clonal progeny was unexpected because the probability of getting 

clones when assessed with large a number (80+) of markers on 12 independent chromosomes 

following meiosis is very small. We observed 10 clonal groups where some of the groups consist 

of more than two clonal strains (Table 5.5). During the formation of ascospores, the spores go 

through mitosis after the second division of meiosis resulting in two clones. Based on the biology 

of ascospore formation, it should be possible to obtain two clones from the same ascus, 

especially since the number of surviving ascospores/perithecium often was small. However, we 

also found clonal strains that originated from different perithecia. Many of the clones were 

isolated from different perithecia on the same plate. The perithecia on this plate also yielded 

more progeny than did those on other plates. We do not understand the reason for the 

discrepancies on this plate, but think that the number of clones observed here is unusually high. 

Members of some clonal groups also were recovered from perithecia on other Petri dishes. 

In conclusion, we identified multiple genomic regions associated with GA3 production 

that warrant further analysis to determine their function(s). Potential pathogenicity factors 

responsible for stunting rice seedling growth were located on chromosome 5. Comparing this 

sequence with other species that are not rice pathogens, e.g. F. verticillioides, could lead to the 

identification of unique genes on this chromosome that have a role in pathogenicity towards rice. 

The interspecific cross, and the unusual characters segregating amongst the progeny, provide a 

novel approach to understanding the regulation of GA3 biosynthesis and the genes required for 
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rice pathogenicity. Alleles from the F. proliferatum parent could be of interest in showing how 

pathogenicity loci could be rendered new and functionals.  
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Table 5.1 AFLP markers used for map construction. 

Marker Segregation (F.f. : F.p.)a Band size (bp)d 

ECCMCG-1 206:327b 514* 

ECCMCG-2 114:419b 505 

ECCMCG-3 170:363b 495 

ECCMCG-4 205:328b 490 

ECCMCG-5 237:296b 431 

ECCMCG-6 267:266 414 

ECCMCG-7 157:376b 395 

ECCMCG-8 157:376b 393* 

ECCMCG-9 83:450b 386* 

ECCMCG-10 195:338b 352* 

ECCMCG-11 82:451b 349* 

ECCMCG-12 105:428b 343 

ECCMCG-13 147:386b 341* 

ECCMCG-14 129:404b 300* 

ECCMCG-15 142:391b 292 

ECCMCG-16 139:394b 264* 

ECCMCG-17 527:6c 249* 

ECCMCG-18 97:436b 247 

EAAMAA-1 160:373b 536 

EAAMAA-2 169:364b 496* 

EAAMAA-3 206:327b 477 

EAAMAA-4 317:216c 445* 

EAAMAA-5 146:387b 435 

EAAMAA-6 148:385b 403 

EAAMAA-7 349:184c 396 

EAAMAA-8 307:226c 375* 

EAAMAA-9 250:283 370 

EAAMAA-10 151:382b 363* 

EAAMAA-11 84:449b 348* 

EAAMAA-12 233:300b 346 

EAAMAA-13 136:397b 332 

EAAMAA-14 138:395b 316* 

EAAMAA-15 521:12c 309* 

EAAMAA-16 319:214c 287 

EAAMAA-17 181:352b 273 

EAAMAA-18 162:371b 271 

EAAMAA-19 152:381b 261* 

EAAMAA-20 162:371b 255 

EAAMAA-21 278:255 222 

EAAMAA-22 157:376b 210* 
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EAAMAA-23 140:393b 206 

EGGMTG-1 201:332b 536 

EGGMTG-2 110:423b 518 

EGGMTG-3 189:344b 488 

EGGMTG-4 150:383b 477 

EGGMTG-5 172:361b 474* 

EGGMTG-6 47:486b 463 

EGGMTG-7 217:316b 442 

EGGMTG-8 170:363b 435* 

EGGMTG-9 336:197c 400 

EGGMTG-10 154:379b 397 

EGGMTG-11 241:292b 390* 

EGGMTG-12 209:324b 373* 

EGGMTG-13 208:325b 368* 

EGGMTG-14 147:386b 362 

EGGMTG-15 251:282 357* 

EGGMTG-16 246:287 354 

EGGMTG-17 111:422b 348 

EGGMTG-18 124:409b 324 

EGGMTG-19 157:376b 315 

EGGMTG-20 154:379b 309* 

EGGMTG-21 120:413b 307 

EGGMTG-22 122:411b 297 

EGGMTG-23 172:361b 246* 

EGGMTG-24 140:393b 207* 

ETTMAC-1 270:263 518* 

ETTMAC-2 205:328b 500 

ETTMAC-3 137:396b 468 

ETTMAC-4 138:395b 443 

ETTMAC-5 180:353b 428* 

ETTMAC-6 139:394b 422 

ETTMAC-7 181:352b 394* 

ETTMAC-8 291:242c 384 

ETTMAC-9 163:370b 358* 

ETTMAC-10 151:382b 355* 

ETTMAC-11 114:419b 342 

ETTMAC-12 145:388b 336 

ETTMAC-13 148:385b 331* 

ETTMAC-14 163:370b 316 

ETTMAC-15 154:379b 298* 

ETTMAC-16 212:321b 287 

ETTMAC-17 183:350b 268 

ETTMAC-18 150:383b 262 
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ETTMAC-19 121:412b 255* 

ETTMAC-20 70:463b 226* 

ETTMAC-21 206:327b 210* 
aSegregation ratio alleles of F. fujikuroi : F. proliferatum 

bSegregation of the marker is significantly different from 1:1 and distorted towards F. 

proliferatum. 

cSegregation of the marker is significantly different from 1:1 and distorted towards F. fujikuroi. 

dBand size with “*” indicates source of the band is from F. proliferatum. 
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Figure 5.1  Rice seedling growth as altered by fungal strains. 

Vertical dashed line divides strains into three categories; st = stunting, im = intermediate, gr = 

growth enhancing. Letters above bars identify controls used in the experiment: C = F. fujikuroi, 

D = F. proliferatum, H = ddH2O. Bars in group st are significantly different than group gr (P < 

0.05). The y-axis represents the shoot length (cm), and the x-axis represents the individual 

strains. 
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Figure 5.2  Germination rate of rice seeds as altered by fungal strains. 

Dark bars with a letter above them indicate controls: C = F. fujikuroi, D = F. proliferatum, H = 

ddH2O. The y-axis represents percent seed germination (%), whereas the x-axis represents the 

individual strains. 
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Table 5.2 Strains that cause stunting of rice seedlings. 

The length of rice seedlings are compared to negative control (H20) at P=0.05. 

Strain % F.f. % F.p. GA3 
aCD170909 14 86 - 
aCD170315 15 85 + 
aCD220111* 17 83 - 
aCD170817 22 78 - 
aCD190106 26 74 - 
aCD220318 26 74 - 
aCD130913 28 72 - 
aZ131 28 72 + 
aCD170112 29 71 - 
aCD220315 30 70 - 
bCD010202 47 53 - 
bCD160107 57 43 + 
bCD130504 60 40 + 

C1995 100 0 + 

D4854 0 100 - 
aSegregation ratio of AFLP alleles is distort towards F. proliferatum 

bProportion of alleles from each parent is not significantly different from 1:1 based on a Chi-

square test at P=0.05 

*Strains that cause the most stunted growth on rice seedlings 
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Figure 5.3  Production of gibberellic acid by progeny.  
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Table 5.3 Correlation (R) between the experimental replications of the rice pathogenicity assay 

 Rep. 1 Rep. 2 Rep. 3  Rep. 4 

Rep. 1 1 0.45574  

(P < 0.0001) 

0.40073 

(P = 0.0002) 

0.49931 

(P < 0.0001) 

Rep. 2   0.33366 

(P = 0.0022) 

0.48653 

(P < 0.0001) 

Rep. 3    0.38525 

(P = 0.0004) 

 

  



89 

Table 5.4 Correlation (R) between GA3 production, rice seedling growth, and seed germination 

rates. 

 GA3 production Rice seedling growth Seed germination rate 

GA3 production 1 0.34452 

(P = 0.0019) 

0.16865 

(P = 0.1374) 

Rice seedling growth  1 0.74783 

(P < 0.0001) 

Rice germination rates   1 
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Figure 5.4  Chromatogram showing separation of GA3 from other compounds in the gibberellin 

extraction. 

GA3 molecule is detected at 33 minutes. (A) GA3 analysis of the extract of the F. fujikuroi 

parental strain. (B) GA3 analysis of the extract of the F. proliferatum parental strain. (C) GA3 

analysis of the spiked F. proliferatum sample. Arrows indicate GA3 peak. 
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Table 5.5 Clonal groups of progeny from the interspecific cross. 

Haplotype based on AFLP markers. 

Strains Number of 

strains 

Perithecia Genome ratio 

*(F. fujikuroi:F. 

proliferatum) 

CD160210, CD160608 2 C16P2, C16P6 12:74 

CD160616, CD160620 2 C16P6 7:79 

CD160601, CD160604, CD160607, 

CD160613 

4 C16P6 9:77 

CD160610, CD160611 2 C16P6 10:76 

CD171110, CD171112 2 C17P11 3:83 

CD160310, CD160602 2 C16P3, C16P6 10:76 

CD160301, CD160302, CD160615 3 C16P3, C16P6 10:76 

CD160306, CD160311, CD160502, 

CD160605 

4 C16P3, C16P5, C16P6 11:75 

CD160401, CD160606 2 C16P4, C16P6 11:75 

CD160209, CD160305, CD160307, 

CD160308, CD160309, CD160501 

6 C16P2, C16P3, C16P5 12:74 

Unique individuals 504 - - 

*F.f = Alleles from F. fujikuroi parent; F.p. = Alleles from F. proliferatum parent 
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Figure 5.5  Alignment between the physical map of F. fujikuroi and the genetic map from the interspecific cross.  

LG indicates linkage group. The horizontal bar represent the percentage and the direction of marker distortion. Positive direction 

represent distortion towards F. proliferatum. A gray bar indicates that the distortion does not deviate from a 1:1 segregations based on 

χ2-test(P=0.05).
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Figure 5.6  QTLs on chromosome 5. 

The dotted line indicates the LOD significance level at α=0.05. (A) Location of QTL for GA3 

production on chromosome 5. (B) Location of QTL for rice pathogenicity on shoot elongation on 

chromosome 5. 
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Figure 5.7  Comparison of QTL detection methods. 

(A.) QTLs for Gibberellic acid production across the genetic map. The solid red line represents 

the parametric method, the solid blue line represents the nonparametric method, and the solid 

green line represents the binary method. The dotted line indicates the significance threshold level 

at α=0.05. (B) QTLs for rice seedling elongation pathogenicity across the genetic map. The solid 

blue line represents the parametric method, and the solid red line represents the nonparametric 

method.  
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Figure 5.8  Detection of QTLs for rice seedling elongation and seed germination. 

Blue - Rice elongation, Green - Seed germination. (A.) QTL detection for both traits across the 

genetic map; (B.) QTL detection on Chromosome 5. The solid blue line represents the QTL for 

rice seedling growth, and the solid green line represents QTLs for rice seed germination.. The 

dotted line represents the LOD significance level at α=0.05. 
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Chapter 6 - Pathogenicity of the interspecific hybrids between F. 

proliferatum and F. fujikuroi towards onions 

 Abstract 

Fusarium prolifeatum can cause disease on a wide range of economically important 

plants. Onion rot has been reported to be caused by this species. The disease symptoms include 

pink discoloration, necrosis on roots and leaves, reduced bulb size, water-soaking, and tan 

lesions on the bulbs. A successful interspecific cross between F. fujikuroi and F. proliferatum 

yielded 533 viable progeny for a study of the segregation of pathogenicity traits. A genetic 

linkage map with 86 AFLP markers based on 432 progeny was used to detect Quantitative Trait 

Loci (QTLs) associated with pathogenicity on white pearl onions. The onion bulbs were 

wounded, inoculated with a fungal strain and then incubated in a humid chamber at 25°C for 14 

days. Three pathogenic phenotypes were observed - external, internal, and blister. The external 

and internal phenotypes varied in lesion size and detectable pathogen growth. Both external and 

internal phenotypes were associated with the same QTLs located on chromosomes 6 and 7 (P < 

0.05). Blister is a novel phenotype expressed by neither parental strain and segregated 3:1 (non-

blister:blister) amongst the progeny. There were no QTLs associated with the blister phenotype 

and blister was negatively correlated with the external and internal pathogenicity phenotypes. 

These results enable the identification of loci associated with onion pathogenicity in F. 

proliferatum and alleles associated with lack of pathogenicity in F. fujikuroi. The occurrence of 

the blister phenotype demonstrates that fungal strains with novel pathogenicity characters can 

arise from interpecific crosses under field conditions and that such crosses could be important in 

the development and evolution new pathogen traits and capabilities.  
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 Introduction 

Fusarium proliferatum rots onions and garlic bulbs in Argentina, Israel, Japan, Spain, 

Serbia, Turkey, and the United States (Bayraktar and Dolar 2011; Dissanayake et al. 2009; du 

Toit et al. 2003; Lebiush-Mordechai et al. 2014; Palmero et al. 2010; Salvalaggio and Ridao 

2013; Stankovic et al. 2007) This pink rot of onion (Carrieri et al. 2013) results in pink 

discoloration of the outer scale of the bulbs, necrosis on roots and leaves, and reduced bulb size. 

In storage, the infected bulbs have water-soaked, tan lesions, and white or light pink fungal 

mycelium covering the cloves (du Toit et al. 2003; Jepson 2008; Palmero et al. 2010). Reports of 

this disease have been increasing and F. proliferatum has emerged as an important pathogen of 

onions due to its wide distribution and the resulting economic losses.  

F. fujikuroi, a species closely related to F. proliferatum, is a well-known rice pathogen 

that causes bakanae disease (Amatulli et al. 2010; Cruz et al. 2013; Kim et al. 2012; O'Donnell et 

al. 1998b). Plants with bakanae disease have abnormal growth elongation, dry, yellowing leaves, 

and partially filled or empty grains (Cruz et al. 2013; Ou 1985; Zainuddin et al. 2008a). F. 

fujikuroi also can stunt the growth of rice seedlings and reduce seed germination rates (Chapter 

5). Morphologically, F. fujikuroi and F. proliferatum are effectively indistinguishable (Leslie 

and Summerell 2006), and phylogenetically they are very closely related (Ellis 1988; O'Donnell 

et al. 1998b). Sexual crosses usually clearly distinguish these species, but some strains from 

these species may occasionally cross with one another to produce a few perithecia containing 0.1 

– 0.01% of the normal number of ascospores (Leslie and Summerell 2006). The two species also 

differ in their host range and in the profile of secondary metabolites produced (Desjardins 2006; 

Kvas et al. 2009). 
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The first interspecific crosses between F. proliferatum and F. fujikuroi to be analyzed 

were made in 2004 (Leslie et al. 2004a) and analyzed for traits such as GA production (Studt et 

al. 2012). Additional progeny from one cross were collected (533 total), characterized with 

AFLPs (Chapter 5), used to construct a genetic map, and align the genetic map with the physical 

map. Chromosome 5 carries a QTL for rice pathogenicity (Chapter 5).  

The availability of the progeny from this interspecific cross enabled us to study the 

segregation of the genes associated with onion pathogenicity. The objectives of this study were:  

(i) to determine the segregation of pathogenicity factors within the interspecific progeny; and (ii) 

to identify QTLs for onion pathogenicity. We hypothesize that multiple onion pathogenicity 

factors will segregate independently to yield progeny with a range of aggressiveness in 

pathogenicity that may include transgressive progeny. This study will enable molecular 

identification of genes responsible for onion pathogenicity.  

 Materials and Methods 

 Sexual cross and collection of interspecific progeny 

Two mating type tester strains, F. fujikuroi (FGSC8932, MAT-2) and F. proliferatum 

(FGSC7615, MAT-1), were crossed, and progeny collected as described Chapter 5. 

  

 Onion pathogenicity assay and analysis  

White pearl onions were obtained from the local grocery store (Dillons). The dried skin 

and the outer layer of the onions were removed. The surface was sterilized by dipping the onion 

in 70% ethanol, then 10% bleach, and finally washed twice with sterile water for one minute 

each. The onions were dried overnight in a laminar flow hood. Onions were wounded at the 
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equator with a hole punch (one wound 5 mm in diameter and 5 mm in depth per onion). Strains 

used for the pathogenicity assay were cultured on a potato dextrose agar plug for 3-days prior to 

inoculation. Each strain plug was inserted into the wound of an onion. All of the inoculated 

onions were placed on wet filter paper in small Petri dishes. The inoculated onions were kept in a 

humid chamber and incubated at 25˚C for 14 days. 

Pathogenicity was assessed based on the lesion produced and the aggressiveness of the 

fungal strain (Table 6.1; Table 6.2; Figure 6.1; Figure 6.2). The average of the three replicates 

was used for the QTL analysis in both parametric and non-parametric analyses. Binary scores of 

nonpathogenic (progeny with grades of 0 and 1) or pathogenic (progeny with grades of 2 and 3) 

were used for QTL analyses that employed a binary method. 

The experiment was conducted in an incomplete block design with three replicates. Each 

replicate was treated as a block. Within each replicate, samples were divided into two runs (216 

strains) due to the large number of progeny to assay. Each run was conducted at a different time 

under the same conditions. In the analysis, the replications and runs were treated as random 

effects. Strains were treated as a fixed effect. Statistical analyses were performed with the “Proc 

mixed” procedure implemented in SAS, version 9.3 (SAS Institute Inc., Cary, North Carolina). 

Strains were ranked based on pathogenicity scores, and the ranking used to compare the 

treatments. 

 QTL Analysis for Onion Pathogenicity 

Detection of QTLs for onion pathogenicity was performed by using R/qtl version 3.1 

(Broman and Sen 2009). With the single-QTL model, all markers were subjected to an interval 

mapping analysis. Initially, the function “calc.genoprob( )” were used to calculate conditional 

genotype probabilities. Then, a genome scan for QTLs based on single marker analysis was 
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performed with different calculation methods, i.e. parametric, non-parametric, and binary. The 

parametric and non-parametric analyses were made with quantitative data, i.e. the average scores 

from the three replications. For the binary method, the data were converted to a pathogenic or 

non-pathogenic form. Permutation tests were performed to establish a genome-wide significance 

threshold based on one thousand replicates. The significance threshold level for logarithm of 

odds (LOD) was set at α = 0.05 for the detection of QTLs. 

 Results 

 Onion pathogenic assay 

Three phenotypes were observed on onions 14 days after inoculation: external, internal, 

and blister. The external phenotype was based on the fungal growth on the outer tissue of the 

onion bulbs. The pathogenic symptoms included water-soaking, soft tissue, yellowing and brown 

tissue in the outer layer of the bulb. Based on the grading scale, there were 150 progeny with 

grade 0, 88 grade 1, 183 grade 2, and 11 grade 3. For the internal phenotype, the onion bulb was 

cut in half and the symptoms were observed in the internal layers of the onion. The distribution 

of the progeny for the internal phenotype was 167 grade 0, 68 grade 1, 189 grade 2, and 8 grade 

3. A third onion pathogenicity phenotype was blister, which is seen as swollen onion tissue 

produced on the outer scale around the inoculation site. 101/432 progeny produced the blister 

phenotype on the onion bulb.  

Based on chi square analysis, these three phenotypes are not independent (P < 0.01). If 

grades 0 and 1 are combined (non-pathogen) and grades 2 and 3 are combined (pathogen), then 

segregation for the external phenotype departs slightly from a 1:1 segregation ratio (marginally 

significant, 0.05 > P > 0.01), while the internal phenotype did not segregate significantly 
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different from 1:1 (0.1 > P > 0.05). The segregation of the blister phenotype was significantly 

different from 1:1 (P < 0.05) but not significantly different from a 3:1 ratio (non-blister:blister) 

(0.2 > P > 0.05). Some of the inoculated onion bulbs had a pink discoloration that resembles the 

pink rot disease, but the phenotype was not consistent across replications and was not analyzed 

further. 

Of the 32 possible phenotypes, only 14 were observed (Table 6.4). Forty percent of the 

progeny had the F. proliferatum, parental phenotype, 19% had the F. fujikuroi parental type, and 

41% were recombinant (Table 6.4). When the scoring grading system was used, 7/8 of the 

possible phenotypes were observed. If the binary scores were used, then42% of the progeny had 

the F. proliferatum parental type, 33% had the F. fujikuroi parental type and 23% were 

recombinant (Table 6.5). 

The external and internal phenotypes were strongly correlated (R = 0.9726, P < 0.0001). 

These two phenotypes both were negatively correlated with the blister phenotype (Table 6.3).  

 AFLP and QTL analysis 

The genetic map with 12 chromosomes developed in chapter 5 was used for the QTL 

analysis. The associations between the markers and the phenotypic characters were analyzed for 

the identification of QTLs. The same QTLs were identified for both the external and the internal 

pathogenicity traits. When a non-parametric method was used for the analysis, two QTLs were 

detected, one each on chromosomes 6 and 7. If the binary scoring system is used, then there is 

one significant QTL, located on chromosome 6. The markers associated with the external and 

internal pathogenicity trait were ETTMAC-18 on chromosome 6 and ETTMAC-6 on 

chromosome 7 (Figure 6.3; Figure 6.4). No significant QTLs were associated with the blister 

phenotype (Figure 6.5).  
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 Discussion 

Our results confirm that F. proliferatum is pathogenic to onions, and that F. fujikuroi is 

not. This result is consistent with other reports that F. proliferatum can cause onion rot in the 

field (Carrieri et al. 2013; Lebiush-Mordechai et al. 2014). A common symptom associated with 

onion infection by F. proliferatum is pink discoloration of the outer scale (du Toit et al. 2003). 

We observed this discoloration in our study but did not analyze it further due to its inconsistency 

during replication.  

F. proliferatum can produce many secondary metabolites, particularly mycotoxins 

(Desjardins 2006). Infected onion bulbs that are kept in storage may be contaminated with one, 

or more, mycotoxins that threaten consumer health. The results from this study suggest that 

mycotoxin levels on onion bulbs infected by F. proliferatum should be evaluated. Both 

transgressive pathogenicity traits and novel secondary metabolite profiles were observed 

amongst the progeny of the interspecific cross.  It is possible that F. fujikuroi would become an 

onion pathogen through vertical gene transferred from this type of cross. 

With respect to onion pathogenicity traits, there were three pathogenic phenotypes and a 

non-pathogenic phenotype. The strong correlation between the internal and external onion 

pathogenicity phenotypes suggests that similar sets of genes underlie these traits. The number of 

genes segregating for these pathogenicity traits in this cross probably is small, probably only one 

or two. The chromosomal regions identified, however, are relatively large since the number of 

markers on the map is relatively small. More detailed maps are needed to localize and identify 

the loci responsible for these traits. The difference between the binary phenotypes and the more 

continuous phenotypes suggests that there may be genes that enhance, but are not essential for 
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pathogenicity. Using chi square analysis, the segregation of the internal (0.05<P<0.1) and 

external (0.01<P<0.05) pathogenicity traits are weakly, but significantly different from 1:1 (non-

pathogenic:pathogenic). In a haploid fungus, 1:1 segregation means that only a single gene is 

segregating for the trait. Apparent Mendelian segregation also could occur if the genes 

segregating for the traits are tightly linked to one another. The chi-square analysis suggests that 

multiple genes underlie the internal and the external pathogenicity traits. The interspecific nature 

of this cross and the limited number of viable progeny both suggest caution against over-

interpretation of the segregation data, especially since only a single QTL is associated with this 

trait when the binary data are analyzed. 

The QTL analysis identifies a region in the genome associated with the onion 

pathogenicity traits. As expected from the high correlation that we observed between external 

and internal phenotype, similar QTLs are detected in the analysis of both the internal and 

external pathogenicity traits. Two significant QTLs associated with external and internal 

pathogenicity were detected when using the non-parametric method. The detection of two QTLs 

means that multiple unlinked loci control these phenotypes. 

Most of the AFLP marker segregation ratios were distorted towards the F. proliferatum 

alleles. The segregation pattern for pathogenicity may have been affected by these distortions, 

and more of the progeny have the F. proliferatum parental phenotype than F. fujikuroi type. This 

pattern is consistent with the distortion that we observed in the AFLP marker segregation. The 

distortion suggests that there are genomic regions within each species that must remain intact to 

prevent incompatible (lethal) genetic combinations within the progeny. 

Blister is a novel onion pathogenicity phenotype that we observed in about a quarter of 

the progeny from this cross. Infection of onions by the smut fungi in the genus Urocystis can 
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result in black blisters on the infected leaves or the outer scale of the onion bulbs (Horst 2013). 

These black blisters appear as an elongated, swollen, raised portion of the outer scale of the 

onion bulb. The segregation ratio for the blister phenotype in this study was about 3 non-blister-

producing strains to 1 blister-producing strain. This ratio is consistent with two genesinteracting 

to produce the blister phenotype. This phenotype might result from a defense reaction by the 

onions to inhibit fungal invasion and perhaps limit the spread of (toxic) secondary metabolites 

produced by the fungus. The negative correlation between blister and the external and internal 

pathogenicity phenotypes is consistent with the hypothesis that blister is the expression of a 

successful defense response by the onions. Neither parent of the cross can cause blister 

formation. Recombination that occurs during meiosis may result in novel gene combinations in 

the progeny that produce the blister phenotype. 

In conclusion, our study illustrates risks that could occur from the interspecific cross 

between F. proliferatum (pathogenic) and F. fujikuroi (nonpathogenic) in terms of producing 

pathogens that are more aggressive or that have pathogenicity characters that differ from both 

parental strains. Thus, progeny from this interspecific cross could result in higher economic 

losses by onion growers. The transgressive progeny observed in this study suggests that F. 

fujikuroi may contain genes that can enhance pathogenic aggressiveness towards onions. The 

QTLs identified in this study are an important first step towards identifying the fungal genes 

involve in this disease.  
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Table 6.1 Grading scale for pathogenicity of Fusarium strains toward onions. 

Grade External behavior Internal behavior Classification of strains 

0 Absence of lesion; No 

mycelial growth on tissue.  

Absence of lesion; Tissue 

discoloration only at the 

edge of the wound 

Non-pathogenic 

1 Brown/yellow lesion 

spread up to 3 mm from 

point of inoculation; 

Mycelial growth on the 

edge of the wounded tissue 

Yellowing tissue spread up 

to 3 mm from point of 

inoculation; Only the first 

internal layer is affected 

Less aggressive 

2 Mycelial growth on the 

outer tissue 4 – 10 mm 

from the point of 

inoculation; Yellowing, 

browning, and soft tissue 

where the mycelia grow 

Yellowing, browning, and 

water-soaking tissue 

spread 4 – 10 mm from the 

point of inoculation; 1 – 3 

layers of onion infected 

Aggressive 

3 Thick mycelial growth on 

outer tissue over 10 mm 

from the point of 

inoculation; Outer tissue is 

soft and at least half of the 

bulb is water-soaked 

Soft and water-soaked 

inner tissue over 10 mm 

from the point of 

incoculation that spreads to 

at least half of the bulb; 1 – 

3 layers affected 

Very aggressive 

 

  



108 

Table 6.2 Grading scale for blister phenotype on onions. 

Grade Blister behavior Classification 

0 No swollen tissue around the 

inoculation point; brown, dry 

edge of wounded tissue 

No blister 

1 Swollen tissue present around 

point of inoculation; 

yellowish- brown color to the 

swollen tissue 

Blister 
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Figure 6.1  Onion pathogenicity phenotypes. 

Relative aggressiveness of the progeny of the interspecific cross between F. fujikuroi and F. 

proliferatum on onion. 
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Figure 6.2  Blister phenotype of white pearl onions. 

(A) No blisters on onions inculated with non-pathogenic strains. (B) No blister on onions 

inculated with pathogenic strains; (C) Blisters on onions inoculated with non-pathogenic strains 

non-pathogenic strain; (D) Blister on onions inoculated with a less aggressive strain. 

 

 

A. B.

C. D.
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Table 6.3  Correlation (R) among the external, internal and blister onion phenotypes. 

 External Internal Blister 

External 1 0.97262 

(P<0.0001) 

- 0.46367 

(P<0.0001) 

Internal  1 - 0.46145 

(P<0.0001) 

Blister   1 
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Table 6.4  Onion phenotype combinations based on the full grading scale and their frequency in 

progeny. 

Typea External Internal Blister Frequency 

Parental 1 2 2 0 174 

Parental 2 0 0 0 82 

Rec 1 0 0 2 66 

Rec 2 1 1 0 50 

Rec 3 1 1 2 17 

Rec 4 1 0 0 12 

Rec 5 2 2 2 8 

Rec 6 3 3 0 8 

Rec 7 1 0 2 7 

Rec 8 3 2 0 3 

Rec 9 0 2 2 2 

Rec 10 2 1 0 1 

Rec 11 1 2 2 1 

Rec 12 1 2 0 1 

aParental 1 = F. proliferatum parent phenotype; Parental 2 = F. fujikuroi parent phenotype; Rec = 

Recombinant 
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Table 6.5 Phenotype combinations based on the binary grading scale and their frequency. 

Typea Externalb Internalb Blisterb Frequency 

Parental 1 P P NP 185 

Parental 2 NP NP NP 144 

Rec 1 P P P 8 

Rec 2 P NP NP 1 

Rec 3 NP P P 3 

Rec 4 NP NP P 90 

Rec 5 NP P NP 1 

Rec 6 P NP P 0 

aParental 1 = F. proliferatum parent phenotype; Parental 2 = F. fujikuroi parent phenotype; Rec = 

Recombinant. 

bP = Pathogenic; NP = Non Pathogenic 
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Figure 6.3  QTLs for the external phenotype of onion pathogenicity. 

QTLs detected significantly over the threshold level at α = 0.05 located on chromosomes 6 and 

7; Red = Parametric method, Blue = Non-parametric method, Green = Binary method.  
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Figure 6.4  QTL for the internal onion pathogenicity phenotype. 

QTLs detected significantly over the threshold level at α = 0.05 located at chromosome 6 and 7; 

Red = Parametric method, Blue = Non-parametric method, Green = Binary method. The 

significance threshold for each phenotype is indicated by its color. 
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Figure 6.5  QTLs of all phenotypes on onions. 

(A) QTL for blister scanned on all markers in the genome. None of the peaks are significant. (B) 

Comparison of QTL detection among three phenotypes. Red = external phenotype; Blue = 

internal phenotype; Green = blister phenotype. The significant threshold line for each phenotype 

matches its color. 
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Chapter 7 - Pathogenicity of interspecific hybrids towards Apples  

 Abstract  

432 progeny of a cross between F. fujikuroi and F. proliferatum were tested for 

pathogenicity on Golden Delicious apples. The experiment was designed as an incomplete block 

with replication treated as a block. However, the experiment stopped after two replications due to 

inconsistency between replications (R2 = 0.05). The apples were the largest source of variation. 

Although the experiment failed in its goal to identify pathogenicity genes in the fungus, 

information gained from this experiment is valuable as a reference for similar types of 

experiments with apples and other fruits. 

 Introduction  

Apples (Malus domestica) are prone to post-harvest diseases and particularly to fungal 

infections. One of the most important post-harvest diseases of apples is wet core rot. This disease 

can be caused by several fungal pathogens, including Trichothecium spp., Fusarium spp. and 

Penicillium spp. (Gao et al. 2013; van der Walt et al. 2010). The symptoms associated with this 

disease are necrotic flesh and white mycelia or pink conidia in the core region of the apple. 

Fungal infection associated with post-harvest disease on apple may be latent or through wounds. 

Although Fusarium spp. are not the most important pathogens causing wet apple core rot, they 

have been isolated from infected tissue either alone or in combination with other pathogens (Gao 

et al. 2013). F. avenaceum is the most common Fusarium species associated with this disease, 

especially in Europe (Sanzani et al. 2013; Schroers et al. 2008). Other Fusarium spp. recovered 
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from wet core rot disease include: F. proliferatum, F. equiseti, and F. solani (Gao et al. 2013; 

Konstantinou et al. 2011).  

Reports of the isolation of F. proliferatum from diseased apples lead to this study of the 

pathogenicity of interspecific hybrids between F. proliferatum and F. fujikuroi towards apple. 

The objectives of our study were (i) to analyze the segregation pattern of pathogenicity towards 

apples amongst the interspecific hybrids; and (ii) to identify QTLs for apple pathogenicity on the 

existing genetic map of an interspecific cross between F. fujikuroi and F. proliferatum. We 

hypothesize that multiple genes are involved in apple pathogenicity and segregate independently 

resulting in a continuous pathogenicity phenotype that include, the possibility of transgressive 

phenotypes. From this study, we could identify and locate QTLs involved in pathogenicity 

towards apple. This study also provides us the pathogenicity data on a third host, in addition to 

rice and onion, for this set of progeny. Thus, we may observe progeny with novel combinations 

of pathogenicity traits that could concern researchers and growers if this interspecific cross 

occured in the field.  

 Materials and Methods  

 Sexual cross and interspecific progeny collection 

Refer to Chapter 5 for the procedure and collection of the interspecific hybrid progeny 

used in this study. 

 Apple Pathogenicity Assay 

Initial tests were conducted with only 28 fungal progeny. The number of progeny tested 

was later expanded to include 432 of the progeny. Golden Delicious apples were obtained from a 

local grocery store (Dillon’s). The apples were wounded by creating a hole with a blunt-end nail 
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at the equator (five wounds 5 mm in diameter and 5 mm deep per apple). Each wound was 

inoculated with 20 µl of 1 x 105 spores/ µl spore suspension. Both parental strains (FGSC8932 

and FGSC7615) were inoculated on every apple. Water was used as a negative control on every 

apple. Two progeny were inoculated on each apple. Inoculated apples were placed in moist 

chambers (35.6 × 20.3 × 11.7 cm plastic shoe box) and incubated at 25˚C for 8 days. The 

moisture level was maintained by placing a wet towel on the bottom of the chamber and covering 

the box with plastic wrap. Water was added every three days to keep the humidity up. The 

diameter and depth of the resulting lesions were measured. The diameter of the lesion was used 

to evaluate pathogenicity, the depth was used to measure the volume of the lesion using the 

formula for a right circular cone (V = πr2(h/3); h = depth, r = radius). The correlation between 

diameter and volume was determined. 

Initially, the parental strains were tested on different varieties of commercially available 

apples. Nine apple varieties including: Sage Rome, Jazz, Fuji, Red delicious, Braeburn, 

American Cameo, Gala, Golden Delicious, and Granny Smith, were inoculated with the parental 

strains. The experiment was repeated three times. The apple variety that displayed the clearest 

differences and the greatest consistency across the replicates was selected for pathogenicity tests 

with the rest of the progeny.  

 Analysis of pathogenicity 

The experiment followed an incomplete block design with two replications. The 

experimental design is block by replications. Within each replicate, three sets of runs consisted 

of 144 progeny per run tested at different times. Four apples were placed in a humid chamber for 

every run. Replications, runs, boxes, and individual apples were treated as random effects. 

Strains were treated as fixed effects. Statistical analyses were performed with SAS software, 
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version 9.3, (SAS Institute Inc., Cary, North Carolina). The analyses were made with the “Proc 

mixed” procedure. The ranking of the strains based on lesion diameter was used to compare the 

treatments. 

 Results  

 Apple pathogenicity 

Twenty-eight progeny were selected for an initial test of pathogenicity towards apple. 

After three replications, the results had an acceptable correlation between the replicates (Table 

7.2). The diameter, depth, and volume of the lesions were measured 8 days after inoculation. The 

lesions appeared brown and necrotic on the flesh of the apple. Lesion diameter, depth, and 

volume measurements were highly correlated (Table 7.1). So, the lesion diameter was used to 

assess pathogenicity. Based on the initial test, the mean of the lesion diameter ranged from 0.6 

cm for the least pathogenic to 1.8 cm for the most pathogenic (Figure 7.1). Transgressive 

progeny that were more pathogenic than the parents and less pathogenic than the parents were 

observed. The parental strains had lesions of consistent size on different apple varieties, with the 

F. proliferatum parent consistently more aggressive than F. fujikuroi in terms of pathogenicity 

(Figure 7.2). Pathogenicity was easiest to measure on Golden Delicious apples. Pathogenicity 

tests were then expanded to 432 progeny. After two replications, the results for most (95%) of 

the progeny were not consistent (Figure 7.3). Individual apples were the highest source of 

variation for the pathogenicity measurements (Table 7.3). 

 Discussion 

We obtained promising results in our initial experiments with 28 progeny. Both the 

parental strains and the progeny performed consistently across replications. Furthermore, there 
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was a continuous range in the degree of pathogenicity amongst the progeny and clear differences 

between the parental strains. The initial results showed that the experimental design used was 

appropriate for this type of study. However, we could not duplicate this consistency when 

working with a larger number of strains.  

High variation was observed between replicates with R2=0.05. The sources of the 

variation were the block (replication), the runs (subset of replication), the boxes (4 apples per 

box), and the apples, with the apples contributing the most to the variation. Although we 

purchased all of the apples from the same grocery store, the source of their apples could vary. 

Washington State is the largest producer of apples in the United States. However, Golden 

Delicious apples are grown in many locations in the US from coast to coast. We ordered three 

cases of apples for each run, and each run took 5 weeks to complete. The supplier of the apples 

could vary from run to run. One way to possibly reduce the variation would be to use apples 

sourced from the same location and preferably from the same orchard. 

The symptoms that we observed are consistent with the wet apple core rot disease. 

Brown, necrotic lesions of the apple flesh were observed from the point of inoculation 

(Konstantinou et al. 2011; Sorensen et al. 2009). The lesion expands in diameter as well as in 

depth, moving towards the core of the apple. All of the apple varieties that we tested could be 

used for this study. We chose Golden Delicious apples because the lesions were easy to observe 

and measure. Golden Delicious apples also are reported to be one of the most susceptible 

varieties to fungal infections (Konstantinou et al. 2011)  

This research could potentially be used to identify fungal loci involved in pathogenicity 

towards apple, but testing variation and consistency problems must be resolved first. Smaller 
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samples would reduce the margin of error and variations, but might lack the power provided by a 

larger sample to identify critical genetic properties. 
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Table 7.1 Correlation between diameter, depth, and volume of apple lesions.   

 Diameter Depth Volume 

Diameter 1.0000   

Depth 0.8560 

(P<0.0001) 

1.0000  

Volume 0.9209 

(P<0.0001) 

0.8509 

(P<0.0001) 

1.0000 
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Table 7.2 Correlation between replications 1, 2, and 3 of the apple pathogenicity tests.  

 Rep. 1 Rep. 2 Rep. 3 

Rep. 1 1.0000   

Rep. 2 0.6567 

(P<0.0001) 

1.0000  

Rep. 3 0.7909 

(P<0.0001) 

0.6362 

(P<0.0001) 

1.0000 
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Figure 7.1 Means of lesion diameter (three replicates) on Golden Delicious apples. 

Apples were inoculated with hybrid progeny of F. fujikuroi × F. proliferatum, both parental 

strains, and double distilled water (ddH2O).  
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 F. fujikuroi F. proliferatum 

Sage Rome 

    

Jazz  

    

Fuji  

    

Red Delicious 

    

Braeburn 

    

American Cameo 

    

Gala 

    

Golden Delicious 

    

Granny Smith 

    

Figure 7.2 Apple pathogenicity phenotypes. 

Each parental strain had two replicates. The photo was taken 20 days after inoculation. F.f = F. 

fujikuroi parent, F.p. = F. proliferatum parent.  
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Table 7.3  Estimated sources of variation in the apple pathogenicity assays. 

Covariance parameter Estimate Standard Error Z Value Pr > Z 

REPa 0 - - - 

RUN(REP)b 4045.91 2835.03 1.43 0.0768 

BOX(REP*RUN)c 6282.75 1153.04 5.45 <0.0001 

Residuald 31032 1094.17 28.36 <0.0001 

aReplication of experiments treated as a block 
bRuns of experiment within each block treated as incomplete block 
cBoxes of apples within each Runs treated as random effects 
dIndividual apples with inoculation treated as random effects 
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Figure 7.3 Correlation between Rep1 and Rep2 based on the volumes of the lesion in apple 

pathogenicity.  

R2 = 0.05 
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Chapter 8 - Conclusions 

 Summary of results and general discussion 

The Fusarium fujikuroi species complex remains an important and interesting group 

within the genus Fusarium that contains many important plant pathogens. All three of the 

population studies focused on species within this complex. The possibility of successful sexual 

crosses between closely related species within the F. fujikuroi species complex makes this group 

of fungi even more interesting.  

 Populations of Fusarium spp. from mangoes, sorghum and rice 

In population studies, identification of Fusarium spp. is a key step in correctly 

associating species with the diseases that they cause. In past research in Southeast Asia, 

Fusarium spp. usually were identified based on morphology. Some species within the F. 

fujikuroi species complex are difficult to distinguish based solely on morphology. We used 

multiple characters – cross fertility, AFLP phylogeny, and diagnostic gene sequences (tef-1α and 

β-tubulin) to ensure correct identification of the isolates. 

Amplified Fragment Length Polymorphisms (AFLPs) are useful tools for species 

identification, phylogenetic analysis, and population genetic study. AFLPs clearly group strains 

into clusters corresponding to species. We successfully grouped the strains from mango, 

sorghum, and rice into different species following phylogenetic analysis based on AFLPs. Within 

a species, the strains can be grouped into different populations. In the rice population, there are 

distinct subpopulations of F. fujikuroi in Malaysia and Thailand. AFLPs also can be used to 

evaluate variation within and among populations and to infer the degree of migration or isolation 

of subpopulations within the species. In the sorghum population, F. thapsinum which is a known 



130 

sorghum pathogen, appears to be panmictic in Thailand as 83% of variation within the 

population is found within the subpopulation. Thus, there appears to be extension migration by 

members of this species within the region.  

Mating type and fertility also are important characters in studies of population genetics of 

Fusarium. Most Fusarium species are heterothallic. For the sexual cycle to occur, two strains of 

the same species that carry opposite mating type alleles cross to produce viable meiotic progeny. 

The Fusarium life cycle allows researchers to use the relative frequency of female-sterile and 

female-fertile strains to calculate the effective population number. The effective population 

number can be used to compare populations and to determine the similarity of the population to a 

randomly mating population. Amongst the species evaluated, F. verticillioides has the highest 

effective population number suggesting that this species is the most active participant in sexual 

recombination evaluated in this study. 

The studies of Fusarium populations in mango, sorghum, and rice from Thailand and 

Malaysia reinforce the importance of members of the Fusarium fujikuroi species complex as 

plant pathogens. Species from this species complex are found in all of the populations surveyed, 

and F. proliferatum was recovered from all of the hosts sampled. Other species were limited to 

just a single host, e.g. F. fujikuroi on rice, F. mangiferae on mango, and F. thapsinum on 

sorghum. Malaysia and Thailand were taken as representatives of Southeast Asia due to their 

location. In both the mango and sorghum populations, there were species associated with these 

hosts that had not previously been reported from this region. The number of new reports suggests 

that more careful inspections or quarantine procedures related to the movement of plant materials 

from other continents such as Africa and the Americas to Malaysia and its neighboring countries 

may be needed to reduce the opportunity for the introduction of novel pathogens into the region. 
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All of the species in the F. fujikuroi species complex recovered in this study are potential 

mycotoxin producers. The presence of F. proliferatum in mangoes, sorghum and rice could lead 

to contamination of these products with fumonisins. In the rice population, F. fujikuroi was the 

most common species. Interestingly, the F. fujikuroi strains separate clearly into Malaysian and 

Thai populations. Significant levels of variation between these populations from rice suggests 

that these populations between species are genetically relatively isolated from one another in 

genetic terms. 

 An Interspecific cross between F. fujikuroi and F. proliferatum 

Progeny from an interspecific cross between F. fujikuroi and F. proliferatum can offer 

insights into speciation, pathogenicity, and mycotoxin biosynthesis. These hybrids also may have 

unique phenotypes not present in either parent strain or parental species. We analyzed a 

relatively large number of progeny to help ensure that significant rare events could be clearly 

identified. We constructed a genetic map based on 83 AFLP markers and aligned this map with 

the physical sequence. Regions containing genes involved in secondary metabolite biosynthesis 

and plant pathogenicity segregate and can be mapped to chromosomes. 

Segregation of the AFLP markers usually was not 1:1, with alleles from F. proliferatum 

usually more common than alleles from F. fujikuroi. There were 29 putatively clonal progeny, 

some of which came from different perithecia and thus arose independently following meiosis. 

These clonal lines do not suffice to explain the observed segregation bias and were removed 

prior to construction of the genetic map. The segregation distortion was not sufficient to prevent 

assembly of the genetic map. For 32/83 fragments there were more double recombinants than 

expected, gene conversion probably explains some of this excess, but microinversions and 

fragments with poorly paired homologs or that contain genes that must remain together also 
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could explain some of this excess. The relatively poor fertility of the cross (0.1 – 0.01%) of a 

normal cross also is consistent with this conclusion.  

QTLs for rice and gibberellic acid production occur on the same chromosome, although 

there is no correlation between rice pathogenicity and GA3 production. The results suggest that 

the pathogenicity genes causing the symptoms that we observed are not involved in GA 

biosynthesis, but are still located on chromosome 5. A denser genetic map of chromosome 5 and 

testing a larger number of progeny for rice pathogenicity should decrease the size of the genomic 

region to which the QTLs map. 

Segregation distortion also occurred for the onion pathogenicity traits. There were more 

progeny with the F. proliferatum parental phenotype than with the F. fujikuroi parental 

phenotype, with about a third of the progeny having a recombinant phenotype. The segregation 

of pathogenicity phenotypes within the progeny suggests that the genes segregating for 

pathogenicity are independent, including QTLs for the pathogenicity traits that result in external 

and internal lesions of onions. We also observed a novel, i.e. not seen in either parent, onion 

pathogenicity phenotype termed blister in some of the progeny. Thus, the interspecific hybrids 

may have pathogenicity profiles unlike either of the parental species.  

The apple pathogenicity assay is potentially useful as a fast, easy, and reliable 

pathogenicity test when used with a relatively small number of fungal isolates. The apple 

pathogenicity assay requires only 7 days for results and yields a quantitative measure that can be 

used to detect QTLs. The disadvantage to this method is the variation amongst the apples used as 

substrates for the test. To reduce this variation all of the apples should be obtained from the same 

orchard. Due to the excessive variation, our pathogenicity assay results were not reliable and 

could not be interpreted in a meaningful manner. 



133 

In summary, my work on population genetics of Fusarium and the interspecific cross 

between F. fujikuroi and F. proliferatum broadened the boundaries of knowledge of the genus 

Fusarium. This research has opened new research venues for understanding the threat of 

Fusarium spp. to several Southeast Asian crops, and the pathogenic threat of interspecific 

hybrids between F. fujikuroi and F. proliferatum wherever they might occur. 

 Future research and perspectives 

The results obtained from my research could serve as the basis of future work by others. 

Some of these topic, include: 

1. Mango malformation: The frequent recovery of F. proliferatum from mangoes and its 

association with diseased mango inflorescences warrant further study. Pathogenicity 

assays for F. proliferatum and F. mangiferae on mango seedlings are needed to 

determine if the association observed in Southeast Asia is pathogenic or opportunistic.  

2. Fusarium spp. on sorghum: The strains isolated from this population not normally 

associated with sorghum should be tested for the completion of Koch’s postulates on 

sorghum. The mycotoxins produced by the strains should be determined as should the 

extent of mycotoxin production occurring on sorghum under field conditions. The 

number of isolates and the number of sites at which they are recovered should both be 

expanded within Thailand and in neighboring countries. Such expansion will not be easy 

as sorghum is not widely grown in Southeast Asia. 

3. Fusarium spp. on rice research: All of the strains isolated from rice should be tested for 

their ability to cause bakanae. The common symptoms, e.g. yellowing and shoot 

elongation, should be observed for this disease. These strains also should be tested for 

pathogenicity in rolled towel assays to measure shoot growth and germination rates. 
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Analysis of these pathogenicity traits in our F. fujikuroi field strains will extend our 

understanding of the impact of Fusarium spp. on rice from seedling to maturity.  

4. Segregation of pathogenicity factors on different hosts: Following the pathogenicity 

studies on onions and rice, increasing the number of hosts evaluated could answer 

questions regarding pathogenicity factors, e.g. how general or specific are the 

pathogenicity factors? For example, F. proliferatum is a confirmed pathogen of 

dragonfruit (Hylocereus sp.) in Malaysia. A pathogenicity assay that can be used for such 

tests is available and can be used to test this hypothesis. Rice pathogenicity testing also 

should be expanded to include a method other than seedling germination, and to test 

explicitly for bakanae. 

5. Segregation of fertility within the progeny of interspecific hybrids between F. fujikuroi 

and F. proliferatum: The genetic compatibility of two strains is an important in fertility 

parameter. The progeny obtained from this cross should be backcrossed to the parents, 

and intercrossed to some extent with one another, to identify fertility factors segregating 

in the cross. The progeny should be used as both female and male parents in crosses with 

the parents. The relative number of perithecia produced and the relative numbers of 

ascospores produced are both important fertility indicators, as is the ability to act as both 

a male and a female parent in the crosses. It should be possible to identify QTLs involved 

in fertility from such studies. 

6. Increase genetic map resolution: The genetic map constructed in this study is based on 

only 83 AFLP markers. Adding more markers would increase the utility of the map. 

Genotyping-by-sequencing (GBS) provides a large number of SNPs that will increase the 
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saturation of the map. A more detailed map would facilitate identification of genes (or 

regions) associated with pathogenicity, speciation, and secondary metabolite production. 

7. Localize pathogenicity genes: Following an increase in map saturation, the distance 

between neighboring markers on the chromosomes should decrease. Thus, QTLs for 

pathogenicity identified in this study can be localized with higher confidence. The 

sequence of the region associated with pathogenicity phenotype could be compared with 

other known genome sequences, e.g. F. verticillioides and F. oxysporum to identify genes 

with potential roles in the pathogenicity processes. 

8. Segregation of other secondary metabolites amongst progeny: Besides GA3 production, 

studies on the segregation of other important secondary metabolites specific to one 

parent, e.g. fusarin C and bikaverin for F. fujikuroi, fumonisin and fusarubins for F. 

proliferatum, are needed. Novel metabolite profiles among the progeny will result from 

this segregation. QTLs associated with these metabolites would be detected. This study 

would build on the earlier report of Studt et al. (2012). 

9.  Double crossover analysis: Based on existing markers and the existing genetic map, the 

number of expected and observed crossovers can be calculated. This analysis could 

identify potential recombination hot spots in the genome which result in negative 

interference. To the extent these regions are specific to the interspecific cross and not 

found in crosses within either F. fujikuroi or F. proliferatum, they could provide insights 

into genome organization as well.  

10. Analysis of the clonal strains: Further analysis of the characterization and genetic make-

up of the clonal strains identified in this study may facilitate an understanding of the 
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method that leads to the independent production of these apparently clonal progeny at 

levels for more frequent than would be expected by chance alone. 
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