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Abstract 

Estimating unpaid liabilities for insurance companies is an extremely important aspect of 

insurance operations.  Consistent underestimation can result in companies requiring more 

reserves which can lead to lower profits, downgraded credit ratings, and in the worst case 

scenarios, insurance company insolvency.  Consistent overestimation can lead to inefficient 

capital allocation and a higher overall cost of capital.  Due to the importance of these estimates 

and the variability of these unpaid liabilities, a multitude of methods have been developed to 

estimate these amounts.   

 

This paper compares several actuarial and statistical methods to determine which are 

relatively better at producing accurate estimates of unpaid liabilities.  To begin, the Chain Ladder 

Method is introduced for those unfamiliar with it.  Then a presentation of several Generalized 

Linear Model (GLM) methods, various Generalized Additive Model (GAM) methods, the 

Bornhuetter-Ferguson Method, and a Bayesian method that link the Chain Ladder and 

Bornhuetter-Ferguson methods together are introduced, with all of these methods being in some 

way connected to the Chain Ladder Method.  Historical data from multiple lines of business 

compiled by the National Association of Insurance Commissioners is used to compare the 

methods across different loss functions to gain insight as to which methods produce estimates 

with the minimum loss and to gain a better understanding of the relative strengths and 

weaknesses of the methods. 

 

Key terms:  Stochastic Claims Reserving, Chain Ladder, Bornhuetter-Ferguson, 

Generalized Linear Model, Generalized Additive Model, Bayesian, Insurance 
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Chapter 1 - Introduction 

The business of insurance is unique because unlike many other industries the cost of the 

product is unknown to the company at the time of sale.  This is true for both the losses that occur 

on policies and the expenses incurred during the process of adjusting and paying for that loss.  

Due to the importance of these amounts insurance professionals have developed a wide variety 

of methods to estimate insurance losses.  Historically, most of these loss estimation methods 

consisted of deterministic calculations used to find the point estimate of losses.  However, more 

recent methods have utilized statistical models with a random component meant to provide a 

reasonable range of loss estimates.   This paper will focus on describing and implementing 

stochastic methods for estimating ultimate losses using real insurance loss data for the purpose of 

comparing these methods to each other and determining their relative effectiveness. 

 

Estimating ultimate losses is one of the most important aspects of an insurance company.  

Losses make up the largest portion of the liabilities on the balance sheet, and accurate loss 

estimation allows investors to fairly determine the value of a company before investing in it.  It 

also provides regulators the information they need to determine whether they should step in to 

stabilize a company and protect policyholder interests.  Additionally, reliable loss estimation 

enables management to make sound business decisions.  It can let them know the value of a book 

of business that they are considering purchasing, whether a line of business is profitable, what 

rates are adequate, whether underwriting guidelines are effective, and how to allocate capital in 

the most strategic and efficient ways (Friedlund 2010).  Accurate loss estimation is critical for 

almost all aspects of an insurance company. 

 

Accurately estimating ultimate losses can also be quite difficult.  Property and casualty 

insurers provide coverage for a variety of risks with distinctive loss patterns.  Lines of business 

like property coverage typically have a lot of claims with small loss amounts that are quickly 

paid.  However, other risks like asbestos liability can go without claims for decades before large, 

infrequent losses are experienced.  These are frequently referred to as short tailed lines and long 

tailed lines respectively.  A variety of other lines exhibit characteristics that are in the middle of 
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these two extremes.  Furthermore, many products have unique provisions in deductibles, limits, 

and exclusions that can also add complexity to the loss estimation process.  As a result, 

accurately estimating insurance losses is not a trivial task.  This paper will focus on combinations 

of longer and shorter tailed lines with varying amounts of data.  

 Definitions 

When an insured has a covered incident they report it to their insurer.  The insurer will 

record details of the claim and classify it as either a reported claim, or also known as an incurred 

claim.  At that time an insurance company representative known as a claims adjuster will, based 

on their professional judgment, estimate how much that claim will cost the insurance company.  

This estimate consists of two parts.  One part is the case reserve which is the adjuster’s estimate 

of the cost to restore the claimant to their prior event status.  The other part that is estimated is 

the allocated loss adjustment expense reserve (ALAE).  This is the estimated expense necessary 

to investigate, defend, and affect the settlement of a claim.  Examples of this expense include the 

adjuster’s time in handling the claim, legal fees to defend the claim, and any other expenses that 

can be directly linked to the claim (CAS 1988).  In most instances, case reserves and ALAE are 

grouped together and estimated as a whole.  However, there are also methods to estimate ALAE 

individually.  Another type of expense is the unallocated loss adjustment expense (ULAE).  This 

includes expenses not directly related to a claim like rent, utilities, salaries of employees not 

involved with claims (CAS 1988).  Estimation of ULAE will not be covered in this paper. 

 

As time progresses and claims evolve case reserves change because a claim is often not 

paid all at once but over time.  Additionally, case reserves may be increased or decreased as 

more information about the claim becomes available.  As a claim is paid the case reserve is 

converted into another amount called paid loss.  Cumulative paid loss is the sum of the paid loss 

amounts for all of the periods that the claim is open and usually includes ALAE.  Another 

important loss term is incurred loss.  Incurred loss is the cumulative paid loss plus the change in 

the case reserve.  This represents the known value of what the claim costs the company at a 

specific point in time.  Paid and incurred losses can also be expressed in incremental amounts 

that are the difference in the cumulative amounts between two points in time.  The process of a 

claim going from an initial estimate to a final total paid loss is known as loss development.  
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Table 1.1 provides an example of loss development and displays how case reserves, paid losses, 

and incurred loss relate to each other. 

 

Table 1.1 An example of the life of a claim payment.  Over time the loss transitions from a 

case reserve to a paid loss. 

 

Time 

Case 

Reserve 

Cumulative 

Paid Loss 

Cumulative 

Incurred Loss 

 

Event 

1 100 0 100 A claim is reported. 

2 70 30 100 $30 of the claim is paid. 

3 150 30 180 Case reserve is increased by $80. 

4 110 70 180 $40 of the claim is paid. 

5 0 180 180 The last $110 of the claim is paid. 

 

 

The final loss concept is the total unpaid claim estimate at a point in time.  This can be 

mathematically represented as the difference in the cumulative paid loss at the ultimate payment 

time and the cumulative incurred loss at a particular point in time.  This estimate consists of five 

parts including outstanding case reserve, a provision for future development on known claims, an 

estimate for reopened claims, a provision for claims incurred but not reported (IBNR), and a 

provision for claims in transit which are incurred and reported, but not recorded (Friedlund 

2010).  The total unpaid claim is the unknown random variable that this paper is attempting to 

estimate.  This contrasts with the cumulative incurred loss which is a fixed and known value.  

The estimate of the total unpaid claim estimate combined with the cumulative incurred losses 

equals the ultimate loss that is vital to an insurance company’s balance sheet and managerial 

decisions. 

 Data Considerations 

As can be seen in the prior example the time at which a claim is viewed can affect the 

amount of the cumulative incurred loss and the estimate of the total unpaid claim.  Thus, the time 

of evaluation will be a crucial component of the analysis.  Most data will be evaluated at the end 

of a period of time like a 3-month quarter or a 12-month year.  Also note that for the purposes of 
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this paper it will be assumed that the time an event occurs will also be the same time it is 

reported and recorded.   

 

Besides the underlying loss process other events like salvage, subrogation, and 

reinsurance can affect reported cumulative incurred losses and ultimate losses.  When a car is 

destroyed the insurance company takes ownership of the vehicle after paying the claim.  It is 

common for them to sell the scraps of the vehicle as salvage.  Subrogation occurs when an 

insurance company pursues legal restitution against a third party for injuries the third party is 

liable for against the insured.  Finally, reinsurance is insurance for insurance companies.  It is 

common for smaller companies to purchase reinsurance to protect against loss volatility and to 

meet statutory accounting requirements.  These three types of events can reduce the reported 

cumulative incurred losses so that they are less than what they would be under a theoretical loss 

generating process.  For the purpose of this paper the effects of salvage, subrogation, and 

reinsurance will not be modeled separately but their effects will be implicitly included in the 

cumulative incurred losses.   

 

The most common way to show loss data is with a loss triangle.  The rows represent the 

set of losses that occurred during a particular accident year where accident year is defined as the 

year in which an event occurs and for the purpose of this paper, when the event is reported.  The 

columns represent how much time has passed since the claim occurred.  Loss triangles can 

consist of cumulative or incremental paid or incurred losses, cumulative or incremental paid or 

incurred claims, or average paid or incurred losses.  Tables 1.2 and 1.3 are examples of basic 

cumulative and incremental loss triangles.  Note that in this example as time passes a new 

diagonal is added to the triangle.  Once losses are no longer changing it is assumed that they 

have arrived at their final ultimate value, and it is the ultimate value that must be estimated for 

each accident year at different development periods.  The difference in the ultimate loss and the 

recent diagonal of cumulative losses is the unpaid claim amount that this paper is attempting to 

estimate. 
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Table 1.2 An example of a cumulative loss triangle.  Each cell represents the cumulative 

losses for a particular accident year after developing for a period of time.  

Accident 

Year 

Age of Development in Months 

12 24 36 48 60 Ultimate 

2003 100 120 140 150 155 155 

2004 105 122 150 153 153 153 

2005 120 140 135 151 160 160 

2006 148 160 177 188 188  

2007 160 186 210 215   

2008 185 199 230    

2009 195 220     

2010 205      

 

 

Table 1.3 An example of an incremental loss triangle.  Each cell represents the incremental 

losses for a particular accident year after developing for a period of time. 

Accident 

Year 

Age of Development in Months 

12 24 36 48 60 72 

2003 100 20 20 10 5 0 

2004 105 17 28 3 0 0 

2005 120 20 15 16 9 0 

2006 148 12 17 11 0  

2007 160 26 24 5   

2008 185 14 41    

2009 195 25     

2010 205      
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Chapter 2 - Model Review 

 Chain Ladder Technique 

The first model to discuss that is used to estimate losses is known as the Chain Ladder 

method.  Since it is heavily used in the actuarial exams, the Chain Ladder method is one of the 

most widely known methods in the actuarial community.  While the point of this paper is not to 

focus on this method, this method forms a foundation from which other methods are developed.  

Thus, a brief review of the Chain Ladder technique is being included so that the reader is familiar 

with it. 

 

Let ijC be the incremental paid or incurred losses for the ith accident year and jth 

development period.  Then the cumulative losses for the ith accident year and jth development 

period are defined as: 

1

j

ij ik

k

D C


  

Then the Chain Ladder development factor estimate for the jth development period is defined as: 

1

1
1

, 1

1

ˆ

n j

ij

i
j n j

i j

i

D

D



 


 









 

where is the total number of development periods.  Then to determine the estimate for the 

cumulative claims for the next period or the next several periods compute: 

, , 1
ˆˆ ˆ

i k i k kD D   for 3, 4,k n i n i n       

 

Table 2.1 shows estimated unpaid losses for Accident Year 2009 using the Chain Ladder 

method where values are rounded to the nearest whole number (England et al. 2002).  Bolded 

cells are estimates that have been calculated out at the bottom of the table to demonstrate how to 

arrive at them.   
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Table 2.1 A demonstration of the Chain Ladder technique of loss estimation with bolded 

cells calculated below. 

Accident 

Year 

Age of Development in Months 

12 24 36 48 60 Ultimate 

2003 100 120 140 150 155 155 

2004 105 122 150 153 153 153 

2005 120 140 135 151 160 160 

2006 148 160 177 188 188  

2007 160 186 210 215   

2008 185 199 230    

2009 195 220 247 261 267 267 

2010 205      

 
 

 
140 150 135 177 210 230

247 220
120 122 140 160 186 199

    


    
 

 
 

 
150 153 151 188 215

261 247
140 150 135 177 210

   


   
 

 

 
 

 
155 153 160 188

267 261
150 153 151 188

  


  
 

 
 

 
155 153 160

267 267
155 153 160

 


 
 

 

Note that there are multiple unwritten variations to the Chain Ladder method.  These 

include taking a straight average of the ratio of the columns for each ith row and using that to 

calculate the column estimate for the next development period instead of the weighted average as 

calculated above.  Or taking a five year straight average of factors and excluding high and low 

values.  Or taking straight averages and applying some unique weighting scheme to the values 

based on the practitioner’s judgment.  Finally, it should also be noted that this method can be 

heavily influenced by unusually large or small development amounts in the historical period or in 

the , 1i n iD    period from which projections are being made from (Friedlund 2010).  
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 Generalized Linear Model Methods 

The first set of stochastic methods to discuss involve Generalized Linear Models that 

utilize an over-dispersed Poisson distribution, gamma distribution, over-dispersed negative 

binomial, normal approximation to the negative binomial, log-normal distribution, and Tweedie 

distribution.  These particular GLM methods generate estimates practically identical to the 

volume weighted Chain Ladder method introduced in the prior section (England et al. 2002).  

However, their specification of an underlying probability distribution enables calculation of 

different standard errors, different confidence intervals, and other diagnostics.   

 

The first method assumes that incremental claim amounts are distributed via an over-

dispersed Poisson distribution.  The model is parameterized as follows: 

 ij ijE C m  

 ij ijVar C m  

 log ij i jm c      

Thus, this model says that the log of incremental losses is a function of an accident year (row) 

effect and a development period (column) effect.  Note that  is an over-dispersion parameter 

that is estimated from the data. 

 

According to Renshaw & Verrall (1998) it should be noted that this model has 

constraints.  The first constraint is that 1 1 0    which is a result of the model being over 

parameterized.  The second constraint is that losses must be integers.  This is not usually difficult 

to achieve as losses are usually rounded to the dollar on the financial statements anyway.  The 

third restraint is that each 0ijC  .  The third constraint says that losses in each period should be 

positive.  But due to salvage and subrogation described earlier it is possible for losses in a period 

to be negative.  However, quasi-likelihood maximization can be used to estimate negative losses 

and losses that are not integers, and thus overcome the second and third constraints.  If there are 

negative incremental losses, quasi-likelihood estimation should be used and the Pearson 

2 statistic should be used instead of deviances for modeling goodness of fit (Renshaw et al. 
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1998).  Finally, the fourth constraint states that 0ij

i

C  , or sum of the incremental losses in a 

column cannot be negative.  This fourth constraint must not be violated for the model to work.  

 

The over-dispersed Poisson model can also be adjusted and turned into a model that 

utilizes a gamma distribution (Mack 1991).  The linear predictor is the same for this model but 

has different expectations.  This model usually produces estimates similar to the Chain Ladder 

approach but that is not always true. 

 ij ijE C m  

  2

ij ijVar C m  

 log ij i jm c    
 

 

The next model is the over-dispersed negative binomial model.  This is a recursive model 

and it parameterizes incremental losses in the following way: 

    , 11ij j i jE C D    

    , 11ij j j i jVar C D   
 

j and , 1i jD  are defined in the same way as they were for the Chain Ladder Model and  is an 

over-dispersion parameter that is again estimated from the data.  This model is essentially 

derived from the Poisson model and has the same expected values and predictive distributions 

(Verrall et al. 2000).   

 

The main difference between the Poisson model and the negative binomial model are 

their likelihood functions.  The Poisson model utilizes an unconditional likelihood function while 

the negative binomial utilizes a conditional likelihood function that is conditioned on the latest 

cumulative claims.  The conditional model estimates 1n  column parameters while the 

unconditional model estimates 2 1n   parameters.  The implication under the negative binomial 

model is that the observed cumulative losses and row totals are fixed and the Poisson model 

treats them as realized values of random variables where their expected values were estimated 

based upon the observed values (Verrall et al. 2000).  The result of these different assumptions is 
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that the negative binomial has a smaller estimation variance while the Poisson model has a larger 

estimation variance. 

 

As stated earlier in the over-dispersed Poisson model 0ij

i

C  .  If this is violated 

England & Verrall (2002) suggest a normal approximation to the negative binomial distribution 

can be used.  Since the normal distribution has a support that contains negative values this model 

has the flexibility to handle the violation of that summation assumption.  But be aware that the 

normal approximation requires estimation of more parameters, and thus is less desirable if the 

assumption of positive incremental losses is not violated.  The authors also indicate that more 

research should be completed to adjust this symmetric distribution to handle insurance losses, 

which are typically skewed.  The normal approximation of incremental claims model is 

parameterized in the following way: 

    , 11ij j i jE C D    

  , 1ij j i jVar C D   

Cumulative claims can also be modeled and is parameterized with the following: 

1

, 1

ij

j j

i j

D
E c y

D
 



 
    

 

 

with 1 0, 2y j 
  

 

, 1 , 1

ij j

i j i j

D
Var

D D



 

 
  

   

 

The next model is a lognormal model and has been widely used over time due to its ease 

of implementation.  This model assumes that: 

   2log ,
iid

ij ij ijC N m   

ij i jc    
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This model produces estimates similar to the Chain Ladder method but the estimates are not 

always close.  Take note that since this model is looking at the log of the incremental claims, the 

incremental claims must also be greater than zero. 

 

The next Generalized Linear Model approach was developed by Wright (1990) and 

utilizes two distributions to create a model frequently found in insurance pricing.  This model 

assumes that the number of claims  ijN  is distributed via a Poisson distribution with 

expectation and variance: 

   expiA

ij i ij i j i iE N e p e a k j b j  
 

   ij ijVar N E N
 

where 

 expiA

ij j i ip a k j b j   

 

In this specification ie is an exposure base.  The definition of exposure for the purpose of 

this model is different than the typical definition found in most insurance papers.  In this model 

exposure is defined as the expected total claim payments for a particular accident year.  Also, 

note that ja  is a known technical adjustment ranging between 1
8

and 1 , and it depends upon 

whether data is viewed annually, bi-annually, or quarterly.  k , b , and A  are unknown 

parameters to estimate, and j is the development period time.  ijp takes this form as the delay 

from accident to payment is likely to have approximately a gamma distribution (Wright 1990).  

Wright’s reasoning behind this assumption is that payment occurs when several successive 

processes have been completed where each process is likely to have approximately a negative 

exponential delay (Wright 1990).  As a result, the expected number of claims for a particular 

period is the total number of claim payments for an accident year multiplied by the probability 

that a payment is made in the jth development period, or 

 ij i ijE N e p . 

The amount of an individual claim  ijX  is distributed via a gamma distribution with expectation 

and variance: 
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   expijE X t kj  

    
2

ij ijVar X v E X  

 

In this parameterization k , and   are unknown parameters to estimate, v is a 

proportionality constant relating the mean and variance of the gamma distribution severity 

amounts.  t is an optional term representing claims inflation with t i j   , that is, t represents 

the evaluation date of the data.  is a constant force of claims inflation. 

 

When combined into an aggregate distribution incremental losses have the following 

expectation and variance: 

  i iA b j t

ij ij i i iE C m e a k j e e kj 
   

     1 t

ij ijVar C v kj e E C    

 

 Renshaw derived a simple version of this model with mean and variance (England et al. 2002): 

    exp logij ij i i iE C c j j t         
 (1)

 

and 

   ij ij ijVar C E C  

with 

       1 1 expij ijv E X v t kj    
. 

 

From this it can be shown that the link and linear predictor are the following: 

    log logij ij ij i i iE C c j j t             

 

In this model, and ij is a known offset term, typically exposures with  lnij i je a  .  

Other variables are then transformed with  lnc k ,  lni ia k  with 1 1k  , i iA   , and 

i ib   .  ij is usually held constant for all i  and j , and it is estimated by the deviance divided 
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by the degrees of freedom or with joint modeling (England et al. 2001).  Since the expectation is 

so different from the other GLM methods estimates will not likely be equivalent to the Chain 

Ladder method of estimating incremental losses. 

 

The final type of GLM model is the Hoerl curve.  This model utilizes a different linear 

predictor for either the lognormal, over-dispersed Poisson, or the gamma models previously 

mentioned.  The linear predictor takes the form: 

 logij i i ic j j      
 
 0j 

 

 exp i i j

ij iA j e
  

 

where 

 expi iA c   . 

 

Note that when including t  and ij this model turns into the same linear predictor 

developed for the Poisson/gamma distribution discussed earlier.  And similarly to the Tweedie 

linear predictor found in equation (1) the accident year effect is considered categorical and the 

development period effect is considered continuous.  The advantage of using a linear predictor of 

this form is that it corresponds to a shape more similar to loss run-off patterns.  Furthermore, it 

also allows for the modeling of accident year and development year interaction effects.  Another 

advantage of this model is by treating development time period as a continuous covariate future 

development can be extrapolated beyond what is currently in the data.  However, it is also 

unlikely that this model will fit well over the development time period being modeled (England 

et al. 2002).  A special case of this model is one in which i  and i  .  This restriction then 

implies that losses run off in a manner independent of accident year.   

 Bayesian Models 

The next section discusses the use of Bayesian methods as a means of creating estimates 

of unpaid losses.  These methods can provide the practitioner a means of estimating losses while 

still incorporating outside information like industry data or expert opinions.  The first part 

discusses the popular Bornhuetter-Ferguson method.  Then a more general framework is 
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presented and it is discussed how the Bornhuetter-Ferguson method is simply a special case of 

the general Bayesian framework. 

 Bornhuetter-Ferguson 

The earliest Bayesian method is the Bornhuetter-Ferguson technique (Bornhuetter et al. 

1972).  In a typical Chain Ladder method unpaid losses can be expressed as: 

       
, 1 2 3

2 3 2 3

1 1
1 1

CL CL CL

i i n i i n i n i n i

n i n i n n i n i n

U D U U  
     

     

       

 
     

 
 

 

In this depiction 
 CL

iU is the Chain Ladder estimate of the final ultimate losses.  And: 

   , 1 2 3

CL

i i n i n i n i nU D          

 

Under the Bornhuetter-Ferguson technique the unpaid losses are expressed as: 

 

2 3

1
1

BF

i

n i n i n

U
     

 
 

 
 

 

In this characterization 
 BF

iU is some other external or prior estimate of the expected 

ultimate losses.  Typically this could be other estimates created by the pricing actuaries or 

management’s expectations of what losses will finally become.  However, a more general 

Bayesian method with greater flexibility can be applied as well. 

 General Bayesian Framework 

Going back to the over-dispersed Poisson model described in the GLM section of this 

paper, no prior beliefs were incorporated when estimating the row effects.  Recall the following 

linear predictor was utilized: 

ij i jc    
   (6)

 

 

However, it can be assumed that the accident years (rows) do have a prior distribution.  

One of the most reasonable prior distributions to use is the gamma distribution.  Since 

 exp ic  in the GLM models can be interpreted as the ultimate aggregate loss for the ith 
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accident year and  exp j can be interpreted as the proportion of those losses that have been 

realized, then using a gamma distribution as a prior is reasonable model to use since it is also 

often used for modeling aggregate losses.  Thus, it can be reasonably assumed that each accident 

year (row) effect i  has the following prior distribution:  

 | , ,
ind

i i i i iGamma      

where: 

   BF i
i i

i

E U





  . 

 

Recall from the discussion of the over-dispersed Poisson and over-dispersed negative 

binomial GLMs.  These two distributional assumptions were a result of assumptions regarding 

unconditional and conditional likelihood functions.  As a result, in the Bayesian context there are 

two ways to estimate j .   

 

The first way involves assuming either a non-informative prior that assigns equal weight 

to any particular estimate as the distribution of j  or using plug in estimates of j from the 

Chain Ladder method (Verrall 2001).  Under the non-informative prior, since no weight is being 

given to any particular estimate, this results in estimates of j  implied by what is calculated via 

the Chain Ladder method, and it is similar to the conditional likelihood method described 

previously.  If using the Chain Ladder factors, it is also important to estimate the development 

year (column) effect first before estimating accident year (row) effects.  To estimate  , 

maximum likelihood estimates of , similar to what is used for the frequentist GLM, can be used 

as plug in estimates for  .  Or to create a full Bayesian model a prior distribution of  can be 

specified and integrated it out as well (Verrall 2001).  If plug in values are used to estimate and 

Chain Ladder factors are used to estimate j then the posterior distribution of ijC is an over-

dispersed negative binomial distribution (Verrall 2001).  It has mean  

   , 1

1

1
1 1i

ij i j ij j

i j j n

Z D Z



   





  
     

  

 



16 

 

where: 

1

1

1

1
j j n

ij

i

j j n

Z
  

 
  









. 

 

It is interesting to note that when all weight is put towards the prior, that is the prior has 

no variance, then the model reduces to the Bornhuetter-Ferguson method.  When no weight is 

given to the prior, or equivalently when the prior is flat and has infinite variance, the model 

resembles the frequentist Chain Ladder method of estimation.  It is also important to realize that 

the weight given to either estimate is heavily influenced by the prior parameter i  that is chosen.  

Finally, as the model looks at data that is more developed it can be seen from the weighting 

formula that more weight is given to the Chain Ladder estimate (Verrall 2001). 

 

The second method of estimating j  is to use some type of improper prior, usually 

another gamma distribution, to specify j and jointly model the accident year (row) and 

development year (column) effects simultaneously.  This method of jointly modeling 

corresponds to the unconditional likelihood method, and it generates estimates that are different 

from those obtained when the development years (columns) are first estimated separately 

(Verrall 2001).  This results in an over-dispersed Poisson distribution similar to the frequentist 

GLM approach.  However, this method is more in line with traditional Bayesian ways of 

estimation since it assumes distributions for all of the parameters of interest.   

 

The use of Bayesian GLMs contains advantages and disadvantages worth discussing.  

The main advantages of this method is that it allows the user to use outside information, like the 

prior estimate of ultimate losses, to affect their estimate and compute a weighted value that both 

reflects the Chain Ladder estimate and the Bornhuetter-Ferguson estimate.  The main 

disadvantage of this model is that it has difficulty dealing with negative incremental losses.  The 

model completely fails when the column totals are negative (Verrall 2001).   
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 Non-Parametric Models 

When the practitioner does not feel that a parametric model adequately describes a set of 

data non-parametric methods can be applied to create estimates of incremental claim payments.  

This section will focus on Generalized Additive Models as a method of estimating loss 

development over time.   

 

These non-parametric models can be very closely related to the GLMs formulated in the 

previous section of this paper.  When incremental claims are defined with: 

 ij ijE C m  

 ij ijVar C m  

 is a scaling parameter and  is an integer that implies what error distribution is specified.  For 

example, 0,1,2,  and 3  give a normal, Poisson, gamma, and inverse Gaussian respectively for 

the error distribution.  A GAM utilizes a linear predictor that is different from a standard GLM.  

Recall the following GLM predictors: 

ij i jc      

or 

 logij i i ic j j        

 

The GAM linear predictors can be written as 

 
iij jc s i     

or 

      log
i j jij s i s j s j     

 (2)
 

where  
i

s i is a continuous variable on the accident year (row) effect,  
j

s j is a continuous 

variable on the development year (column) effect, and  is a smoothing factor determined by the 

practitioner. 
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The GAM linear predictor can be created with locally weighted regression smoothers 

(loess), cubic smoothing splines, and kernel smoothers.  The cubic smoothing spline can be 

found by minimizing the penalized residual sum of squares 

     
2 2

i i

i

y s x s t dt   
. 

 

In this model  acts as a smoothing parameter.  Larger values of  result in smoother 

models with smaller variance.  However, this creates a trade-off as the bias of the model will 

increase (Verrall 1996).  Additionally, when  is close to zero the function exactly fits each 

point and becomes more like the Chain Ladder estimate. As  approaches infinity the function 

tends to a linear function and becomes more like a GLM (England et al. 2001). 

 

According to Verrall (1996) the loess estimates of S can be found with the following 

algorithm: 

1. Define  0N x to be the set of k nearest neighbors of 0x .   

2. Calculate  
 

0 0max
i i

i
x N x

x x x


   . 

3. Calculate weights, iw , for each point in  0N x , where  

 
0

0

i
i

x x
w T

x

 
   

, 

where T is the tri-cube weight function:   

 
 

3
31 for 0 1

0 otherwise

u u
T u

    
  
  

 

4. Regress Y on X in  0N x using the weights  1 2, , , mw w w  with the regression 

being linear, quadratic, or cubic. 

 

The local linear regression has been found to work well enough for the loss development 

problem. 
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When errors are believed to be non-normal and from the exponential class a weighted 

version of the above formula can be applied.  Also note that GAMs require the sum of the 

columns of losses be greater than or equal to zero as is similar to several of the other methods 

that have been reviewed.  If this requirement is violated a constant can be applied to losses to 

adjust them appropriately (Verrall 1996). 

 

Finally, a combination of parametric and non-parametric functions can be created to form 

the linear predictor 

 
1 1

p r p

u uv v v u

v v p r

x s x 


   

    

where number of predictorsp  and number of parametric predictorsr  . 

 

The primary advantages of these non-parametric models are that they allow the 

practitioner the ability to easily and consistently smooth estimates, and using the linear predictor 

found in equation (2), extrapolate with the same model.  It is also robust against small numbers 

of negative incremental losses but will always produce positive estimates (England et al. 2001).  

Finally, GAMs can allow for a model that is not over-parameterized as in the case of GLMs 

(Verrall 1996). 
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Chapter 3 - Analysis of Models 

 Research Data 

Data used in the comparison of methods consists of publicly available research data 

compiled and cleaned by the Casualty Actuarial Society (Meyers et al.2011).  The CAS received 

the raw data from Schedule P – Analysis of Losses and Loss Expenses in the National 

Association of Insurance Commissioners (NAIC) database.  Schedule P is part of the statutory 

accounting statements required for all property and casualty insurance companies in the United 

States.  The data covers years 1988 to 2006 and has a full ten year development of losses for 

accident years 1988 to 1997.  Thus, it consists of a full ten by ten grid of cumulative and 

incremental losses.  This allows researchers to utilize the upper left triangle of this data to build a 

model to predict the lower right triangle.  Data of interest includes cumulative incurred losses 

and ALAE and cumulative paid losses and ALAE.  The data was divided into several types of 

insurance including personal private passenger auto insurance, commercial private auto 

insurance, other liability, workers compensation, products liability, and medical malpractice. 

 

There are several advantages and disadvantages of the data set.  The primary advantage is 

that since this is annual statement data it is publicly available, it has been audited by company 

accountants and actuaries, and it is relatively homogenous within each line of business.  

However, a disadvantage of the data is that it is net of reinsurance contracts.  This means that the 

historical losses are not what the company actually paid, but what they paid after reinsurance 

contracts had been implemented.  This can create distortions as two companies could have 

identical losses but different reinsurance contracts and thus, different loss development patterns.  

It can also create distortions in the loss data if the provisions in the reinsurance contracts changed 

over the time period being studied.  Another disadvantage with the data set is that it combines 

multiple coverages within a line of business.  For example, private passenger auto aggregates 

losses for coverages with slow development patterns like bodily injury and fast development 

patterns like collision.  This could create distortions if the distribution of coverages offered 

changes over time.  Finally, note that in the data larger insurers that have multiple companies 

have their multiple companies grouped into one company.   
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 Analysis of Data 

An analysis of the Schedule P loss data was conducted to determine the relative 

effectiveness of the various methods.  The objective of the analysis was to compare estimated 

total unpaid loss estimates with their accompanying actual unpaid loss estimates.  Estimates of 

incremental paid losses for each accident year and development period combination were 

generated by applying the methods discussed in the prior sections.  Then the sums of those 

estimates were calculated to determine the total unpaid claim estimate as of accident year 1997 

for each model and each company.  Additionally, actual incremental paid losses were also totaled 

to provide a base of which to determine the relative effectiveness of each model.  Since the data 

also included the posted reserve for 1997, that is, the amount actually estimated by the 

companies’ actuaries and management, those estimates were also used for comparison purposes. 

 

A variety of models were applied to evaluate the data.  Methods used included 

parametric, non-parametric methods, and deterministic calculations. For the parametric methods 

Generalized Linear Models with an over-dispersed Poisson distribution, negative binomial 

distribution, gamma distribution, lognormal distribution, and Tweedie distribution were 

constructed.  Additionally, within this category, the Bayesian model resulting in a negative 

binomial with a mean equal to a weighting of the Chain Ladder and Bornhuetter-Ferguson 

methods was utilized.  For non-parametric methods, Generalized Additive Models were 

implemented including Locally Weighted Regression Smoothers and a Cubic Spline.  Linear 

predictors for the models included 

 

ij i jc    
 

and  

 logij i i ic j j      
 

for the GLMs and 

 
iij jc s i     

and  

      log
i j jij s i s j s j       
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for the GAMs.  As before, these linear predictors are for the ith accident year and jth 

development period.  The analysis was performed using the R programming software (R 

Development Core Team 2010) and several library packages were also included in addition to 

the base packages.  The libraries employed include ‘gam’ (Hastie 2010), ‘tweedie’ (Dunn 2010), 

‘MASS’ (Venebles et al 2002) and ‘statmod’ (Smyth et al 2010).  The code be requested from 

the author. 

 

As is often the case when working with real world data, not all of the data exhibited ideal 

characteristics for a loss development analysis.  This is not so say that the data was incorrect, as 

it has been heavily audited as part of the financial statements of the companies.  Problems were 

related to sparseness of the data and unusual activities of companies.  Examples include 

situations where losses did not go back a full ten years, but only some of the years, or when 

losses occurred in years in the middle of the triangle, implying that the company may have only 

written business for a few years and then stopped.  Another issue was too many negative 

incremental paid losses or situations when the entire total unpaid losses ended up actually being 

negative.  As noted in the descriptions of the various models, many methods do not perform 

optimally when incremental losses are negative and completely fail when total development 

period incremental losses are negative.  As a result, some data sets were adjusted or discarded in 

an attempt to produce viable estimates and compute relevant statistics to compare the models.  

Adjustments to data included setting incremental losses less than or equal to zero to values of 

one.  Other adjustments included discarding data sets where actual total unpaid losses equaled a 

value less than or equal to zero.  Finally, a few other company data sets were also removed as a 

result of several models failing to produce estimates or producing unrealistic estimates.  Table 

3.1 lists the line of business, the number of companies originally in the data set for that line of 

business, and the number of companies utilized after poor data sets were culled.   

 

In addition to alterations to the data, some models required alterations or assumptions in 

order to provide estimates for the data sets.  For the Chain Ladder model the estimated 

development factors, or ˆ
j , were checked for error statements, negative values, or blanks and 

were given values of one when an error did occur.  For the over-dispersed Poisson model quasi-
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likelihood maximization was applied and the over-dispersion parameter, , was estimated from 

the data.  Similarly for the negative binomial model quasi-likelihood maximization was used and 

the parameter, , was also estimated from the data.  For the Tweedie model it should be noted 

that two parameters were required to be input for the model to run.  One parameter was to 

specify the link and was set equal to zero indicating a log link.  This was selected since in many 

insurance applications, particularly pricing, a log link is the usual link used when modeling 

insurance losses.  The other parameter that required specification was the power of the variance.  

A value of 1.667 was selected indicating a compound-Poisson distribution with non-zero mass at 

value of zero.  This was also selected since typical insurance applications contain variance 

powers greater than 1.5 (Dunn et al. 2007).  For the cubic smoothing spline the smoothing 

parameter, , was left as .5 which is the value automatically specified in the GAM R program 

(Hastie 2010). 

 

Table 3.1  The number of companies in the NAIC data set and the number of companies 

analyzed using the methods organized by line of business. 

 

 

Line of Business 

 

Initial Number 

of Companies 

Number of 

Companies 

Analyzed 

Other Liability 295 234 

Commercial Auto 

Private 

202 181 

Personal Passenger 

Auto 

187 173 

Workers Compensation 166 134 

 

Products Liability 94 66 

Medical Malpractice 41 36 
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The Bayesian negative binomial model required the most number of assumptions since it 

relies heavily on information outside of the insurance data being analyzed. The prior ultimate 

loss, i i  , was not estimated from the data since there were two parameters to estimate but 

there was only one full accident year that could be used to estimate it with, and there were no 

previous years of data that could be used.  Instead the prior ultimate loss was derived by 

determining the 1988 industry wide loss ratio and multiplying it by the net premium for the ith 

accident year to create a prior loss estimate specific to that company for each accident year.  The 

industry loss ratio was generated by taking the total cumulative paid losses divided by the total 

premium, net of reinsurance contracts.  Net premiums were chosen since losses were net of 

reinsurance contracts.  This process assumes that each company sets their rates with the goal of 

targeting a loss ratio similar to the industry average and that these loss ratios do not change with 

time.  Note that this method for determining the prior ultimate loss is consistent with what was 

done in the original Bornhuetter-Ferguson method (Bornhuetter et al. 1972) and is a generally 

accepted actuarial practice.  When net premiums were absent from the data, the mean formula 

was automatically adjusted to provide no weight to the prior estimate and all weight to the Chain 

Ladder estimate.  As a result, companies’ with premium data issues have Bayesian estimates 

very similar to Chain Ladder estimates.   

 

Another assumption for the Bayesian negative binomial model involved the credibility.  

Recall that the credibility formula, z , is a function of the Chain Ladder development factors and 

i  where  is the over-dispersion parameter found in the over-dispersed Poisson model.  

Since i was not estimated i  was arbitrarily selected to be set equal to .5.  This assumes a 

constant relationship between i  and  that may or may not be valid.  However, credibility 

estimates produced by this assumption appeared to be reasonable and ranged from values of .2 to 

.8 depending on what development period was being estimated.    

 

Many of the GLM and GAM methods rely on convergence of a maximization algorithm 

to generate estimates.  Even with perfect data, these iterative procedures can fail to converge due 

to the particular shape of the likelihood function or other various factors.  When this occurred 

‘NA’ values were assigned to those total unpaid loss estimates to denote failure of the model. 
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While many of the assumptions and adjustments made to the data and models may not be 

ideal, it is important to realize that this comparison process needed to be set up so that each 

company analysis was automated.  This contrasts with a professional analysis that would check 

more assumptions and determine individual solutions for each company that was being analyzed.  

However, because that kind of time commitment is unrealistic for this volume of data, these 

compromises needed to be made.  It should also be noted that as a result of these simplifications, 

some methods may not perform as well in this context as they would had they been given more 

specialized treatment.  

 

Table 3.2 summarizes the various models, their linear predictors, and parameters of 

interest. 

 

Table 3.2 A summary of the models used to analyze the data. 

Model Type Model Linear Predictor 1 Linear Predictor 2 Parameters 

GLM Over-

Dispersed 

Poisson 

 

ij i jc      

 

 logij i i ic j j        

  estimated from 

data 

GLM Negative 

Binomial 

ij i jc       logij i i ic j j          estimated from 

data 

GLM Gamma 
ij i jc       logij i i ic j j        None 

GLM Lognormal 
ij i jc       logij i i ic j j        None 

GLM Tweedie  

None 

 logij i i ic j j        Compound Poisson 

Variance  

Bayesian GLM Bayesian 

Negative 

Binomial 

 

ij i jc      

 

None 

  i i LR Net EP  

.5i    

GAM  

LOESS 

 
iij jc s i           log

i j jij s i s j s j       .5   

GAM Spline  
iij jc s i           log

i j jij s i s j s j     

 

.5   

Deterministic Chain Ladder 
ij i jc      None None 
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 Analysis of Methods 

Once total unpaid loss estimates were calculated for each method and company by line of 

business these values were then compared to the actual unpaid losses during that time period to 

form three statistics with which to evaluate the relative performance of the different methods.  

The first statistic utilized was the Structural Similarity Index (SSIM) statistic.  This is a 

statistic often associated with imaging, and it measures the similarities between two images.  In 

this case, the images are the vectors of estimated and observed losses.  The statistic is calculated 

by pairing together the total unpaid losses estimated from a particular method with the actual 

total unpaid losses.  The pairs are then ordered by the estimated values and partitioned into 

subsets with fifteen observations in each subset.  Fifteen observations were used so ensure that 

each iSSIM was large enough to estimate well but not so large that there weren’t many iSSIM ’s 

to average across.  For each ith subset the following value is calculated: 

 

2 2 2 2

ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ
X Y XY

i

X Y X Y

c c
SSIM

c c

  

   

   
   

         

2 2 2 2

ˆ ˆ ˆ ˆ ˆ2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ2

X Y X Y XY

X Y X Y X Y

c c

c c

    

     

    
    

          

2 2 2 2

ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ ˆ ˆ
X Y X Y XY

X Y X Y X Y

c c

c c

    

     

    
    

         (3)

 

 

In this calculation X is the vector of estimated total unpaid losses and Y is the vector of 

actual total unpaid losses, and c = .001 is a stabilization factor included to prevent the 

denominators from equaling zero.  The final SSIM statistic is then just average of all of the SSIM 

statistics in the data set.  It will consist of values between zero and one with values closer to one 

indicating a stronger trend and values closer to zero indicating a weaker trend. 

 

From formula (3) it can be seen that the SSIM statistic is composed of three parts.  The 

first part compares the means between X and Y.  The second part compares the variation 
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between X and Y, while the third part determines the correlation between X and Y.  Since these 

three components are being multiplied together and they are all values between zero and one, a 

strong SSIM implies that the two models produce similar means, variances, and are positively 

correlated. 

 

The other two statistics employed to evaluate the methods were the Mean Squared Error 

(MSE) and Mean Absolute Error (MAE).   

 

 
2

1

n
i i

i

E A

n


  

1

n
i i

i

E A

n


  

Where iE and iA are the estimated and actual total unpaid losses for the ith company.  It is 

important to note that the MSE penalizes models that have a few larger errors versus models with 

many smaller errors.  It should also be understood that each of these two statistics penalizes 

models that produce errors when estimating larger companies that have more losses as those 

companies will have larger values of iE and iA than smaller companies.  This also has practical 

meaning as a large insurance company should have a greater volume of data making parameters 

easier to estimate.  Furthermore, miss-estimating reserves for a large company would adversely 

impact more policyholders and shareholders than a smaller company, and thus the social and 

economic cost of this miss-estimation would be worse relative to a smaller company. 

 Results 

After the three sets of statistics were calculated for each method and line of business 

combination the methods were ranked across each statistic. The relative best method was 

judgmentally selected based on the combined rankings of the models, the magnitude of the fit 

statistics, and whether a model was able to generate all three fit statistics.   Ranks were not the 

only criteria used as some models may rank well but have very poor statistics for a particular 

method of judging goodness.  Since some models should theoretically produce the same 

estimates then their fit statistics should also be identical.  However, due to the failure of some 

models to produce estimates for particular companies, these statistics actually end up being 
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different.  Thus, models were also implicitly evaluated on whether they were able to consistently 

generate reliable estimates.  Since the SSIM statistic measures the similarity between two images 

and MSE/MAE measures distance, methods that did well in both categories were viewed 

favorably.  It should also be noted that the posted reserve, that is, the reserve determined by the 

companies’ actuaries and management, was also included in the ranking process.   

 

Spearman correlations were calculated between the SSIM and MSE ranks, SSIM and 

MAE ranks, and MSE and MAE ranks and were utilized in helping to determine the most 

effective model.  As was expected, the MSE and MAE ranks were highly correlated for each 

model.  However, the level of correlation between the SSIM and MSE, and SSIM and MAE 

varied much more.  The Spearman correlations can be found in Appendix A. 

  

For the Personal Private Auto line of business the Chain Ladder and Poisson model with 

the second linear predictor appeared to be the best models.  The negative binomial with the 

second predictor also appeared to be a strong model but its result may be distorted due to the 

absence of the SSIM statistic for that method.  The lognormal model and Bayesian negative 

binomial models performed the worst. SSIM statistics for these methods mostly ranged from 

values of .10 to .46.  Since these values are low it is important to remember that claims regarding 

which method is good are relative to the other methods and not a statement in an absolute sense.  

The relevant Spearman correlations were .318 and .188 for the SSIM/MSE and SSIM/MAE 

respectively.  Since these showed some positive correlation, then the goodness of fit statistics 

were giving similar results.  This further supports that the Chain Ladder and Poisson models are 

relatively superior. 

 

For the Commercial Private Auto line of business the Chain Ladder method appeared to 

be the overall best method.  However, some of the other methods also had good but conflicting 

results.  The gamma for the first linear predictor failed to estimate the SSIM but did well for the 

MSE and MAE.  The lognormal models with both linear predictors performed well with the 

MSE but not as well under MAE and poorly for SSIM.  The LOESS with the second linear 

predictor and spline with the first linear predictor performed well based on the SSIM statistic but 

poorly with regards to MSE and MAE.  Since SSIM values mainly ranged between .13 and .28 
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the MSE and MAE criteria may be a better measure to rely upon, and thus, the gamma or 

lognormal models may be superior for this line of business.  This argument is validated since the 

Spearman correlations were strongly negative.  The Poisson models with both linear predictors 

performed the worst.   

 

For the Other Liability line of business the Tweedie model appeared to be the top overall 

model.  The SSIM values ranged from .07 to .14, indicating a very poor fit.  Other models that 

performed well were the Poisson with the first linear predictor and the negative binomial with 

the second linear predictor.  The spline and gamma models performed the worst.  The Spearman 

correlations where positively correlated for the SSIM and MSE, and SSIM and MAE, indicating 

that the goodness of fit measures were giving somewhat similar results. 

 

For the Medical Malpractice line of business the LOESS models with both linear 

predictors were the decisive leaders.  The SSIM statistics were also generally higher with these 

sets of models with values ranging from .10 to .66.  This indicates that not only is the LOESS 

model a good model relative to the other models, it may also be a good model in an absolute 

way.  The Poisson model with the first linear predictor appeared to also be a plausible model.  

And the lognormal and Bayesian negative binomial models performed the worst.  The Spearman 

correlations were the highest of the business lines. This further confirmed the strength of the 

LOESS models at making predictions. 

 

For the Product Liability line of business the gamma model with the first linear predictor 

and the Tweedie model performed the best by a wide margin.  SSIM values mostly ranged from 

.17 to .35.  The lognormal with the second linear predictor performed poorly with respect to 

SSIM but very well with respect to MSE and MAE.  Thus, it is a model that should be given 

some thought as a possibly good model.  What is interesting about the results for this line of 

business is that the LOESS method with the second linear predictor and posted reserves were the 

worst methods.  While the Spearman correlations were low, the gamma and Tweedie models 

produced ranks that were all some of the highest.  This strengthens the argument for these 

models as relatively good models since the low correlations imply that the goodness of fit 

statistics are measuring different things. 
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Finally, for the Workers Compensation line of business the negative binomial with the 

first linear predictor and gamma model with the second linear predictor appeared to perform the 

best relative to the other models.  SSIM values mainly ranged from .17 to .39.  It should also be 

noted that the Tweedie, and both lognormal models performed poorly under the SSIM but very 

well under the MSE and MAE criteria.  Thus, the Tweedie and lognormal models are also ones 

that could be under consideration as decent models. The negative binomial and spline models 

performed the worst.  Again, the Spearman correlations were relatively high for the SSIM and 

MSE, and SSIM and MAE.  This adds support to the selection of the models. 

 

One comment should be made when considering the posted reserve compared with the 

other models.  When providing reserve estimates it is common for actuaries to try to consistently 

produce estimates that are biased towards being too large.  This is done because if reserve 

estimates are too low a company may be more likely to become insolvent or face a credit rating 

downgrade.  This can damage an actuary’s professional reputation and even lead to claims of 

malpractice and lawsuits.  Thus, while posted reserves never seemed to perform remarkably well 

relative to other models, they usually didn’t perform poorly either.   Some of the low 

performance is likely a result of the incentive to bias estimates.   

 

Overall, no single model had the best ranks in all situations.  For the auto lines it 

appeared that the Chain Ladder produced the best ranks.  For the liability only lines like other 

liability and product liability the Tweedie appears the best.  For medical malpractice, the loess 

models seemed superior.  And finally, for workers compensation the gamma or negative 

binomial appeared to do best.  It should also be noted that at this time there is no similar analysis 

to compare these results to as this analysis was performed shortly after the data was published.  

Table 3.3 displays a summary of the results.  A more in-depth look at the statistics and rankings 

can be found in Appendix A. 
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Table 3.3 A summary of the model results by line of business. 

Line of Business Best Models Models to Consider Worst Models 

Personal Auto Chain Ladder 

Poisson - LP2** 

Neg. Binomial - LP2 Lognormal – LP1, LP2 

Bayesian N.B. 

Commercial Auto Chain Ladder Gamma – LP1*, LP2 

Lognormal – LP1, LP2 

LOESS – LP2 

Poisson – LP1, LP2 

Other Liability Tweedie Poisson – LP1 

Neg Binomial – LP2 

Spline – LP1, LP2 

Gamma – LP1, LP2 

Medical 

Malpractice 

LOESS – LP1, LP2 Poisson – LP1 Lognormal – LP1, LP2 

Bayesian N.B. 

Product Liability Gamma – LP1 

Tweedie 

Poisson – LP1 

Lognormal – LP2 

LOESS – LP2 

Posted Reserve 

Workers 

Compensation 

Neg. Binomial – LP1 

Gamma – LP2 

Lognormal – LP1, LP2 Neg Binomial – LP2 

Spline – LP1, LP2 

* LP1 refers to the first linear predictor 

** LP2 refers to the second linear predictor 

 

 Estimate Anomalies 

After total unpaid paid loss estimates were calculated for each data set in the different 

lines of business several anomalies were noted.  As stated in prior sections the over-dispersed 

Poisson, negative binomial, gamma, and lognormal GLMs with the first linear predictor should 

produce estimates equal to the Chain Ladder method.  However, as the companies became 

smaller in the volume of their data the estimates would often begin to diverge from each other.  

This was likely caused by adjustments made to the Chain Ladder development factor 

calculations or irregularities in the likelihood functions GLMs.  Either way, low data volume 

appeared to be the root of the problem as larger data sets produced equivalent estimates.   

 

The other irregularity was the different level of performance that several methods 

displayed between the personal private auto data set and the commercial private auto data set.  

This is unusual because personal auto and commercial auto would be expected to be very similar 
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since the coverage, exposures, and types of risks are nearly identical.  After viewing the absolute 

errors produced by the methods between the two data sets it was noted that several methods 

within the commercial auto data set produced at least one error that was 1,000 to 1,000,000 times 

larger than any of the other errors for that particular company.  Thus, these few excessively poor 

estimates are likely causing the methods to appear different in performance between these two 

lines of business.   

 

The final anomaly was that the SSIM statistic failed to calculate for several methods 

across several lines of business.  This appeared to be a result of many reserve estimates that 

failed to converge due to data issues.  When too many estimates failed the corresponding SSIM 

for that method also failed.  The result of this was those methods were not ranked and their rank 

is only an average of the MSE and MAE.  This scenario occurred most frequently with the 

negative binomial and gamma models with the second linear predictor and on occasion with the 

gamma model with the first linear predictor.  As a result of these anomalies, some methods 

didn’t produce reliable ranks. 

 Future Work 

While this paper has explored various methods of predicting aggregate unpaid loss 

estimates there is still more work that can be done to explore this topic.  One of the first areas 

would be to explore the relative effectiveness of individual accident year by development period 

cell estimates.  Under the current analysis one method can estimate total unpaid liabilities well 

simply by consistently over-estimating some cells and underestimating other cells.  An analysis 

by cell would provide a deeper understanding of the effectiveness of the models and provide 

more data points that can be used to estimate relative effectiveness.  It would also be useful in a 

practical sense as it would allow a better understanding of how these models predict each 

calendar year which is expressed as a diagonal in the loss triangle.  Calendar year estimates are 

important because they are often used by management for planning purposes.  One of the 

primary reasons that the author decided to look at total unpaid losses was that the NAIC data set 

contained posted reserves on an aggregate level and not by cell.  Since the author was interested 

in including posted reserves in the analysis this forced the use of total unpaid losses. 
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Another area of future work would be to evaluate the behavior and performance of the 

MSE, MAE, and SSIM statistics and ranking procedures.  This could accomplished by 

simulating insurance losses using various loss distributions, using the modeling methods to 

predict unpaid losses, and using the three statistics to compare the estimated with the actual.  The 

three statistics could be evaluated to determine the ideal ways in which they behave and related 

to each other.  The ranking procedure could also be reviewed and the Spearman correlation 

coefficient could be utilized to determine how the ranks are ideally related to each other.  

Looking at this component would facilitate a better selection of the best relative model. 

 

Additionally, other future work would be to explore other Bayesian models that were 

described earlier in the paper.  The Bayesian negative binomial was only explored.  However, the 

Bayesian over-dispersed Poisson, which utilizes an improper prior as the distribution of jy  

instead of the non-informative prior employed in the Bayesian negative binomial, could also be 

reviewed.  Additionally, priors could also be selected for the over-dispersion parameter,  .  

Looking at this additional method would provide another model to evaluate. 

 

Finally, another avenue of opportunity for this analysis would be to loosen some of the 

constraints placed on the incremental paid losses.  As was discussed negative values or values of 

zero were converted into values of one.  This was done to assist in accommodating the likelihood 

functions for several of the models, most notably the lognormal model.  However, since the 

lognormal never performed remarkably well, and the data represents the entire industry over a 20 

year period, it could be excluded from future analysis and thus, assumptions could be relaxed.  

Likely, this would allow for values to remain negative or at least only be converted to zeros.  

Loosening constraints would make the modeled data more similar to real data and make the 

results more closely related to what they would be in a real analysis.   
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Chapter 4 - Conclusion 

Estimating unpaid liabilities for insurance companies is of extreme importance due to the 

financial and legal ramifications associated with these numbers.  This paper has reviewed, 

utilized, and compared several stochastic and deterministic methods for estimating total unpaid 

liabilities.  It was discovered that the relative effectiveness of a method is largely dependent upon 

the line of business under review and the characteristics of that unique line of business.  

However, this analysis provides insight and knowledge to a practitioner to better allow them to 

estimate this highly important financial information. 
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Appendix A - Model Summary Statistics 

Personal Private Passenger Auto 

  
Statistics Ranks 

Model LP SSIM MSE MAE SSIM MSE MAE Mean 

Poisson LP 2 0.407 4.208E+10 39,945 3 1 2 2.00 

Chain Ladder 
 

0.465 4.450E+10 40,882 1 3 3 2.33 

Neg Binomial LP 2 NA 4.540E+10 38,413 NA 4 1 2.50 

Tweedie 
 

0.334 4.357E+10 42,681 7 2 4 4.33 

Loess LP 2 0.368 4.541E+10 43,643 4 5 5 4.67 

Loess LP 1 0.358 4.589E+10 44,139 5 6 7 6.00 

Neg Binomial LP 1 0.328 4.801E+10 46,518 8 9 9 8.67 

Gamma LP 2 0.280 4.625E+10 43,664 13 7 6 8.67 

Poisson LP 1 0.335 4.822E+10 47,483 6 10 11 9.00 

Posted Reserve 
 

0.411 1.034E+11 62,402 2 13 13 9.33 

Lognormal LP 2 0.277 4.690E+10 44,560 14 8 8 10.00 

Gamma LP 1 0.292 4.898E+10 46,717 11 11 10 10.67 

Lognormal LP 1 0.283 5.250E+10 51,630 12 12 12 12.00 

Spline LP 2 0.326 1.039E+12 177,612 10 15 15 13.33 

Spline LP 1 0.328 2.641E+19 391,355,818 9 16 16 13.67 

BFCL 
 

0.102 4.571E+11 132,529 15 14 14 14.33 

 

Commercial Private Passenger Auto 

  
Statistics Ranks 

Model LP SSIM MSE MAE SSIM MSE MAE Mean 

Gamma LP 2 NA 7.757E+08 7,045 NA 3 1 2.00 

Chain Ladder 
 

0.282 8.743E+08 7,272 1 6 5 4.00 

Tweedie 
 

0.225 7.907E+08 7,195 6 4 4 4.67 

Gamma LP 1 0.196 8.391E+08 7,072 9 5 2 5.33 

Lognormal LP 1 0.156 6.873E+08 7,177 12 2 3 5.67 

Lognormal LP 2 0.132 5.872E+08 7,375 13 1 6 6.67 

Posted Reserve 
 

0.188 1.098E+09 8,798 11 7 7 8.33 

Neg Binomial LP 1 0.192 1.615E+09 9,314 10 8 8 8.67 

Spline LP 1 0.237 4.281E+13 579,994 3 11 12 8.67 

Neg Binomial LP 2 NA 2.136E+09 9,659 NA 9 9 9.00 

Spline LP 2 0.234 4.666E+13 556,388 4 12 11 9.00 

Loess LP 2 0.237 6.364E+13 820,168 2 13 13 9.33 

BFCL 
 

0.131 1.006E+10 23,084 14 10 10 11.33 

Loess LP 1 0.232 6.559E+14 2,680,069 5 15 15 11.67 

Poisson LP 1 0.212 1.224E+14 833,585 8 14 14 12.00 

Poisson LP 2 0.224 7.185E+18 206,388,905 7 16 16 13.00 

 



38 

 

 

Other Liability 

  
Statistics Ranks 

Model LP SSIM MSE MAE SSIM MSE MAE Mean 

Tweedie 
 

0.136 6.766E+09 14,578 2 3 1 2.00 

Neg Binomial LP 2 NA 6.527E+09 15,302 NA 2 3 2.50 

Poisson LP 1 0.122 6.436E+09 14,701 5 1 2 2.67 

Loess LP 2 0.139 3.160E+10 25,053 1 8 6 5.00 

Loess LP 1 0.134 2.918E+10 25,451 3 7 7 5.67 

Chain Ladder 
 

0.112 1.842E+10 24,786 11 5 5 7.00 

BFCL 
 

0.070 9.736E+09 23,672 13 4 4 7.00 

Lognormal LP 1 0.123 6.781E+10 42,127 4 10 10 8.00 

Lognormal LP 2 0.121 4.151E+10 31,176 7 9 8 8.00 

Posted Reserve 
 

0.113 2.471E+10 31,239 10 6 9 8.33 

Poisson LP 2 0.117 1.071E+13 306,073 8 11 12 10.33 

Neg Binomial LP 1 0.116 1.221E+13 240,869 9 12 11 10.67 

Spline LP 2 0.122 8.949E+18 195,574,773 6 13 13 10.67 

Spline LP 1 0.103 2.617E+19 334,471,696 12 14 14 13.33 

Gamma LP 1 NA 2.270E+39 2.965E+18 NA 15 15 15.00 

Gamma LP 2 NA 5.040E+119 4.333E+58 NA 16 16 16.00 

 

Medical Malpractice 

  
Statistics Ranks 

Model LP SSIM MSE MAE SSIM MSE MAE Mean 

Loess LP 1 0.600 2.512E+09 17,871 2 1 1 1.33 

Loess LP 2 0.588 2.526E+09 17,989 3 2 2 2.33 

Poisson LP 1 0.565 3.530E+09 19,605 5 4 4 4.33 

Spline LP 2 0.535 2.753E+09 19,081 10 3 3 5.33 

Chain Ladder 
 

0.557 3.570E+09 20,327 7 5 5 5.67 

Posted Reserve 
 

0.666 4.335E+09 30,070 1 7 13 7.00 

Spline LP 1 0.542 3.728E+09 23,759 8 6 8 7.33 

Gamma LP 1 0.566 9.235E+09 23,539 4 13 7 8.00 

Tweedie 
 

0.538 5.837E+09 23,019 9 10 6 8.33 

Poisson LP 2 0.490 5.219E+09 27,604 12 8 11 10.33 

Neg Binomial LP 1 0.492 9.555E+09 25,558 11 14 9 11.33 

Lognormal LP 1 0.432 9.070E+09 29,237 14 11 12 12.33 

Neg Binomial LP 2 0.477 1.040E+10 26,934 13 15 10 12.67 

Gamma LP 2 0.565 5.007E+23 1.129E+11 6 16 16 12.67 

BFCL 
 

0.108 5.792E+09 34,061 16 9 15 13.33 

Lognormal LP 2 0.380 9.128E+09 31,614 15 12 14 13.67 
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Product Liability 

  
Statistics Ranks 

Model LP SSIM MSE MAE SSIM MSE MAE Mean 

Gamma LP 1 0.346 1.003E+09 7,742 2 2 1 1.67 

Tweedie 
 

0.345 1.089E+09 9,549 3 3 3 3.00 

Neg Binomial LP 2 0.313 1.237E+09 10,488 9 4 4 5.67 

Poisson LP 1 0.351 3.023E+09 13,295 1 10 7 6.00 

Lognormal LP 2 0.139 9.795E+08 8,344 16 1 2 6.33 

Gamma LP 2 0.317 1.693E+09 10,887 8 6 5 6.33 

Poisson LP 2 0.330 2.718E+09 14,970 4 9 11 8.00 

Lognormal LP 1 0.219 1.585E+09 11,482 13 5 6 8.00 

Neg Binomial LP 1 0.295 2.111E+09 14,181 11 8 9 9.33 

Spline LP 2 0.327 6.916E+09 17,183 5 12 12 9.67 

Chain Ladder 
 

0.267 3.108E+09 13,934 12 11 8 10.33 

BFCL 
 

0.188 1.910E+09 14,322 14 7 10 10.33 

Loess LP 1 0.324 9.230E+09 18,891 6 14 13 11.00 

Spline LP 1 0.319 7.128E+09 18,987 7 13 14 11.33 

Loess LP 2 0.308 9.945E+09 19,607 10 15 15 13.33 

Posted Reserve 
 

0.177 2.430E+10 41,783 15 16 16 15.67 

 

Workers Compensation 

  
Statistics Ranks 

Model LP SSIM MSE MAE SSIM MSE MAE Mean 

Gamma LP 2 0.320 1.693E+09 13,251 3 1 1 1.67 

Lognormal LP 1 0.275 2.052E+09 15,816 7 2 4 4.33 

Neg Binomial LP 1 0.335 4.731E+09 17,383 2 5 8 5.00 

Gamma LP 1 0.393 4.934E+09 17,935 1 6 9 5.33 

Chain Ladder 
 

0.292 7.090E+09 16,004 4 8 5 5.67 

Tweedie 
 

0.246 3.605E+09 14,970 12 4 2 6.00 

Lognormal LP 2 0.193 2.808E+09 15,659 14 3 3 6.67 

Loess LP 2 0.257 7.599E+09 16,675 8 9 6 7.67 

Loess LP 1 0.250 6.846E+09 16,692 10 7 7 8.00 

Poisson LP 1 0.280 7.638E+09 20,095 6 10 10 8.67 

Poisson LP 2 0.282 1.011E+11 42,552 5 13 12 10.00 

BFCL 
 

0.177 2.742E+10 40,252 15 11 11 12.33 

Posted Reserve 
 

0.241 3.942E+10 47,056 13 12 13 12.67 

Spline LP 1 0.247 1.051E+17 30,699,921 11 14 14 13.00 

Spline LP 2 0.257 2.437E+17 42,736,376 9 15 15 13.00 

Neg Binomial LP 2 NA 1.696E+82 1.038E+40 NA 16 16 16.00 
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Spearman Correlations 

    

 
SSIM/MSE SSIM/MAE MSE/MAE 

Personal Auto 0.318 0.188 0.974 

Commercial Auto -0.447 -0.394 0.938 

Other Liability 0.309 0.412 0.968 

Medical Malpractice 0.450 0.503 0.718 

Product Liability 0.032 0.156 0.944 

Workers Compensation 0.388 0.303 0.932 

 


