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ABSTRACT 

Wheat streak mosaic virus (WSMV) is an important pathogen in wheat that causes 

significant yield losses each year.  WSMV is typically controlled using cultural practices 

such as the removal of volunteer wheat.  Genetic resistance is limited.  Until recently, no 

varieties have been available with major resistance genes to WSMV.  Two resistance 

genes have been derived from Thinopyrum intermedium through chromosome 

engineering, while a third gene was transferred from bread wheat through classical 

breeding.  New sources of resistance are needed and synthetic wheat lines provide a 

means of accessing genetic variability in wheat progenitors.  A collection of wheat 

synthetic lines was screened for WSMV resistance.  Four lines, 07-SYN-27, -106, -164, 

and -383 had significant levels of resistance.  Resistance was effective at 18 oC and virus 

accumulation was similar to the resistant control, WGGRC50 containing Wsm1.  At 25 

oC, resistance was no longer effective and virus accumulation was similar to the 

susceptible control, Tomahawk.  
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INTRODUCTION. 

 Each year, wheat production around the world is faced with many abiotic and 

biotic stresses, including viruses.  Wheat streak mosaic virus (WSMV) is found 

throughout the Great Plains of North America (Burrows et al. 2009) and throughout the 

world, wherever wheat (Triticum ssp.) is grown (Slykuis and Bell 1963; Ellis et al. 2003). 

WSMV, belonging to the Potyviridae family (Stenger et al. 1998), is transmitted by the 

wheat curl mite, Aceria tosichella Keifer (Slykhuis 1955) as well as, infrequently, by 

seed (Dwyer et al. 2007).  Symptoms include stunting, mosaic patterns in the leaves, root 

mass reductions and yield reductions (Rahman et al. 1974; Price et al. 2010).  Crop losses 

due to WSMV ranged from a trace to 13% in Kansas from 1976 to 2000 (Bockus et al. 

2001); however, complete field losses have been reported.  The predominant means of 

reducing the incidence of the virus are through the utilization of limited genetic resources 

and the cultural practice of controlling volunteer wheat. 

 The most economical way to combat viruses is through genetics.  Maize (Zea 

mays L) is a host of WSMV and has three single dominant resistance genes available for 

resistance (McMullen et al. 1994; Jones et al. 2011).  Unfortunately, only a single 

dominant resistance gene, Wsm2 (Haley et al. 2002; Siefers et al. 2006; Martin 2007; Liu 

et al. 2011), and minor resistance or tolerance (Rahman et al. 1974; Martin et al. 1976; 

Seifers and Martin 1988) has been found in hexaploid bread wheat (Triticum aestivum 

L.).  There are also genes for resistance to wheat curl mite which is an alternate method 

to reduce the incidence of WSMV through control of the vector (Martin et al. 1984).  

Without good sources of resistance in bread wheat, geneticists have turned to grass 

relatives of wheat.  Significant resistance to WSMV has been found in Thinopyrum 
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ponticum (Podp.) Buckworth and Dewey and Th. intermedium (Host) Buckworth and 

Dewey (Lay et al. 1971, Stoddard et al. 1987; Friebe et al., 1996, 2009).  Wsm1 and 

Wsm3, which were were derived from different compensating Robertsonian 

translocations from Th. intermedium, are located on chromosomes T4DL-4JSS and T7BS-

7S#3L, respectively, and are currently being used to develop resistance wheat varieties 

(Gill et al. 1995; 2008; Friebe 1996; 2009; Liu et al. 2011).  

 Due to the difficulty in assessing viral resistance and the environmental variables 

affecting symptoms, germplasm has not been extensively screened.  When resistance is 

found, however, it is often in wheat relatives which are difficult to cross to and do not 

recombine well with the hexaploid wheat genome.  Wheat relatives contain an immense 

repository of genetic diversity which can be captured through the use of synthetic 

hexaploids (Zohary et al. 1969; Cox 1998).  The International Center for Maize and 

Wheat Improvement (CIMMYT) in Mexico has developed a collection of synthetic 

wheat lines as a means of accessing traits in wheat wild relatives (Mujeeb-Kazi et al. 

2001a; 2001b).  Each were derived from a cross between a tetraploid, either T. durum or 

T. diccoides, and a diploid, such as Aegilops tauschii (2n=2x=14 DD), and have been 

shown to have 39% more genetic diversity than common hexaploid wheat (Lage et al. 

2003).  Resistance to stripe rust (Ma et al. 1995), greenbug (Lage et al. 2002), and 

Russian wheat aphid (Lage et al. 2004) has been gained through the use of synthetics.  

Synthetics are currently playing a significant role in CIMMYT-derived varieties around 

the world (Warburton et al. 2006).  To our knowledge, the CIMMYT synthetic collection 

has not been evaluated for the presence of WSMV resistance.  Therefore, the objective 
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for this work was established to evaluate the collection and begin transferring resistance 

to adapted varieties.    

 

MATERIALS AND METHODS 

Virus and Plant material.  WSMV-Sidney 81 was obtained from Dr. William Bockus 

(Kansas State University, Department of Plant Pathology) and maintained in the 

susceptible hard winter wheat cultivar Tomahawk (PI 478006).  The virus was inoculated 

using a finger rub/swipe technique by applying ~ 40 µl of infected plant sap (100 mg of 

desiccated leaf tissue in 100 µl of 0.02 M sodium phosphate buffer, pH 7.4) to the second 

or third leaf of 2 week old seedlings.  Carborundum was dusted lightly onto the second 

leaf and approximately 40 µl of inoculum was placed above the carborundum.  The leaf 

was then pinched between the thumb and forefinger and the plant sap was pulled down 

the length of the leaf several times. The virus was maintained by reinoculating new 

seedlings every 4 weeks.  Virus purity was evaluated by enzyme linked immunosorbant 

assay (ELISA) and inoculation onto the wheat cultivar ‘RonL’ which is resistant to 

WSMV (Martin et al. 2007).  WSMV infected leaf tissue was stored by placing 3-6 cm 

sections of leaves onto a bed of Drierite desiccant (Hammond Drierite, Xenia, OH) 

covered by Whatman 1, 90 mm filter paper (Cat no 1001-090), in a Nunc 15x100 mm 

petri dish (Nalge, Rochester, NY), and stored at 4 oC (Dr. William Bockus, personal 

communication).  

Initial screening of synthetic lines.  Seed from 412 synthetic lines (Mujeeb-Kazi et al., 

2001a; 2001b) was provided by Dr. Art Klatt, (Oklahoma State University) and the 

Wheat Genetics and Genomics Resource Center (Kansas State University).  Lineages can 
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be found at http://www.k-state.edu/wgrc/Germplasm/synthetics.html (Verified January 9, 

2014).  All synthetic lines were initially screened by planting five seeds of each line in 10 

cm pots containing Metro Mix 360 soil medium (SunGro, Vancover, BC).  Plants were 

planted the first week of November in the greenhouse at a temperature of 20 oC, 16 h day 

length under high-pressure sodium lamps.  At the three-leaf stage, plants were inoculated 

as before.  Three plants were inoculated with the virus and two were mock-inoculated 

with carborundum and phosphate buffer only.  Fourteen days later, the same plants were 

inoculated a second time using the same procedure.  Twenty-one days post second 

inoculation  plants were scored using a numerical scale 0-5, with 0 being no symptoms 

and 5 being severe symptoms.  

 Tissue samples were taken at this time from the youngest leaf of each of the 

infected plants.  One inch of tissue was collected from mid leaf and placed into a 2 ml 

screw cap tube (LabSource, Romeoville, IL).  Wheat tissue was evaluated for the 

presence of WSMV using double antibody sandwich (DAS) ELISA assay.  The tissue 

was macerated by placing a ¼” ceramic bead (MP Biomedical, Solon, OH) in the tube 

with 300 µl of general extraction buffer (Agdia, Elkhart, IN). The tubes were placed in an 

MP Fastprep 24® machine (MP Biomedical) at 6 m/s for 20 seconds and spun in a 

microfuge at 15,000 x g.  An additional 700 uL was added to the tube.  The tube was then 

vortexed for 15 seconds and microfuged for 30 seconds at 15,000 x g. Supernatant was 

applied to WSMV Pathoscreen ELISA plates (Cat no. PSA47001) and the protocol was 

followed.  Plates were read using a spectrophotometer (Bio-Tek, Winooski, VT) at  

Abs405.  

Greenhouse screens of selected lines. 
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 Thirty-one lines from the initial screen were selected based on visual indications 

of reduced symptoms and tested in the greenhouse.  Lines were planted 5 seeds to a 15 

cm square pot containing Metro Mix 360 soil medium. Plants were maintained, 

inoculated and scored as before.  The experiment was repeated four times, over two 

years, twice in the fall greenhouses where temperatures ranged from 22-25 oC and twice 

in the spring greenhouses where temperatures were maintained from 16-19 oC. 

Temperature averages were taken from greenhouse recorders to determine temperature 

for different seasons and data analysis.  Pots that contained plants that had phenotypic 

visual scores of 2 or below and viral titer below an Abs405 value of 3 (3 was the 

maximum measurable value of the spectrophotometer) were then separated and analyzed 

via ELISA individually.  Statistically significant resistance was determined by comparing 

ELISA values of the synthetic lines versus both susceptible and resistant controls. 

Statistical analysis was performed using SAS version 9.2 (SAS Institute, Cary, NC)..  The 

results were analyzed using a generalized linear model. The best suited pre-planned 

statistical analysis for this type of experiment was considered to be Dunnett’s adjustment 

(Dunnett 1955) and was performed to compare each synthetic line with each of the 

control lines at a significance level of 0.05 and 0.10. Resistant cultivars RonL, 

KS93WGRC27 (PI583794; Gill et al. 1995), KS08WGGRC50 (Gill et al. 2008), and 

susceptible cultivars Bobwhite and Tomahawk were used as control comparisons in the 

adjustments. 

 

RESULTS AND DISCUSSION 
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WSMV is a significant disease in wheat that causes economic losses each year 

(Christian and Willis 1993).  Unfortunately, the level of resistance is low and the number 

of resistance genes in bread wheat (2N=6X=42 AABBDD) germplasm is very limited in 

land races or common varieties.  The current sources are mostly distant relatives of wheat 

(McKinney and Sando 1951).  By developing synthetic varieties, breeders are able to 

access new sources of genetic variation in many of the diploid and tetraploid progenitors 

(Cox 1998).  In this study, 412 synthetic lines were evaluated (Mujeeb et al. 2001a and b) 

for resistance to WSMV.   

 Lines were initially screened in the greenhouse during the Fall of 2010. 

Inoculated plants were re-inoculated 14 days post first inoculation to insure infection.  As 

a measure of resistance, the intensity of the WSMV symptoms leaves were visually 

scored 21 days post second inoculation and compared to the resistant KS08WGGRC50 

and susceptible Tomahawk controls. KS08WGGRC50 did not display any symptoms 

indicative of WSMV infection, while Tomahawk displayed a weak yellowing, mosaics, 

and streaking in the second and third leaf above the inoculated leaf (Figure 1).  

Symptoms were very prominent in the majority of the tested lines and were extreme in a 

few of the lines.  ELISA was used as a measure of the viral titer. Thirty-one lines were 

identified with reduced symptomology and titer (data not shown).  

 The 31 were retested in replicated trials to confirm the initial screening.  Lines 

were planted in the greenhouse in the Falls of 2011 and 2012 and in the Winters of 2012 

and 2013.  During the fall, greenhouse temperatures ranged from 22-25ºC and all of the 

lines displayed some level of symptoms, while in the winter tests, greenhouse 

temperatures ranged from 16-19ºC and several of the lines displayed reduced symptoms 
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at 21 days post second inoculation.  Using Dunnett's test across the four replications, 

significant phenotypic resistance was found at the 0.05 level in lines SYN-164, -283, -

358, -376, and -383 (Table 1).  Several lines were also significant at the 0.10 level.  

Because of a trend for higher ratings at higher temperatures, it was hypothesized that the 

resistance may be temperature dependent.  Previous studies have shown that Wsm1, 

Wsm2, and an unnamed gene in KS03HW12 (Siefers et al. 2007) are ineffective at 

temperatures above 22 oC (Seifers et al. 1995; 2007; Lu et al. 2011).  

 To test this hypothesis, three environments were tested.  The first was in a growth 

chamber at 18 oC, the second was a growth chamber at 25 oC and the third was a 

greenhouse at temps between 22-25 oC.  Five plants from each line were grown in each 

environment inoculated as before.  Tissue was pooled from all five plants and tested by 

ELISA.  All of the lines in the 25 oC growth chamber and in the greenhouse were 

susceptible to WSMV (Table 1).  However, four lines, 07 SYN-27, -106, -297, and -383 

had little or no WSMV (Figure 1, Table 1).  Levels of viral antigen in these lines were 

similar to KS08WGGRC50 (Table 1).  Three lines, 07-SYN-109, -209, and 234, had 

reduced viral antigen levels when compared to Tomahawk, but were not significant in 

visual ratings at either the 0.1 or 0.05 level.  Also, lines such as 07-SYN-141 and -163, 

were significant at the 0.1 level, but did not have a reduction in viral antigen.  It is 

believed that lines having significant resistance based on visual scores but with no 

reduction in virus accumulation, such as SYN 283,  are likely due to the nature of the 

phenotype of the synthetic line.  Several synthetic lines have thicker leaves and darker 

color and symptoms are more difficult to accurately rate.  
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 It is not known at this time which of the three hexaploid genomes are providing 

the resistance.  Each of the resistant lines has parentage collected from different regions 

of the world.  Two of the original 31 lines, - 109 and – 358, share DOY1 as common 

tetraploid wheat parent (Table 2), but only -109 was resistant.  It could be postulated that 

the resistance is from the Ae. tauschii genome, as this has been the resistance source to 

many of other pathogens. The Wheat soil bourne mosaic virus resistance QTL, QSbv.ksu-

5D, was transferred to common wheat and was on the D genome of the synthetic line 07-

SYN-16 (CIGM87.2775-1B-0PR-0B; Altar/Ae. tauchii WX193; Narasimhamoorthy et al. 

2006).  Greenbug (Lage et al. 2002) and stem rust resistance (Ma et al. 1995) were also 

on the D genome.  However, the naturally occurring gene, Wsm2, was mapped to the B 

genome (Lu et al. 2011) and the other genes Wsm1 and Wsm3 are intergenic transfers 

from wheatgrass.   

 All of the currently known WSMV resistance genes are sensitive to temperature 

and have certain limitations to their usefulness in wheat.  However, seedling, fall planted 

winter wheat is most susceptible as the vector moves from volunteer wheat growing over 

the summer.  Having a level of resistance in the cooler weather provides a level of 

protection that is still useful to breeders.  The new sources that we have identified are 

also temperature sensitive (Figure 2) and until the genes are cloned, the gene-protein 

characteristics will not be known.  Suffice to say, temperature is sure to affect protein-

protein interaction, protein binding, membrane conformation, and virus movement. In 

summary, 412 synthetic wheat lines from CIMMYT have been screened and four lines 

were identified with temperature sensitive WSMV resistance. The genome source is 
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unknown, however, crosses are now being made for mapping and germplasm 

development.   
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List of Tables and Figures 
 

Table 1.  CYMMIT synthetic lines selected from an initial screen for resistance to Wheat 

streak mosaic virus.  Lines were tested in fall and winter greenhouses for two years.  At 

21 days post second inoculation, lines were visually scored for resistance based on a scale 

of 0-5, where 0 is no symptoms and 5 is severe.   LSMeans are based Dunnett-Hsu test.  

Lines were then tested in two growth chambers at 18 oC and 25 oC and also in greenhouse 

(GH) at temperatures ranging from 22-25 oC to determine temperature sensitivity on virus 

accumulation as measured by ELISA.  . 

 

Table 2.  Line designations, other source numbers,  aliases, and parentage of CYMMIT 

synthetic lines with levels of resistance to Wheat streak mosaic virus. 

 

Figure 1.  Wheat streak mosaic virus symptoms on six lines of wheat.  Leaves are the 

third leaf above the inoculated, 21 days post second inoculation. Lines were then tested in 

two growth chambers at 18 oC and 25 oC and also in greenhouse (GH) at temperatures 

ranging from 22-25 oC  Four lines are synthetic lines, meanwhile Tomahawk and 

WGGRC50 are susceptible and resistant controls, respectively. 

 

Figure 2. Viral antigen accumulation at different temperatures of CYMMIT synthetic 

lines 07-SYN-27, SYN-106, SYN-164, and SYN-383 with levels of resistance to Wheat 

streak mosaic virus. WGGRC50 is a resistant comparison with the temperature sensitive 

resistance gene, Wsm1. 
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Table 1.  
 
 

   ELISA Abs405 
Line LSMeans Pr>|t| 18 oC 25 oC GH 

07 Syn-2 4.60 1.0000 3.0+* 3.0+ 3.0+ 
07 Syn-23 4.20 0.9455 3.0+ 3.0+ 3.0+ 
07 Syn-27 3.40 0.0908 0.289 2.469 3.0+ 
07 Syn-90 4.20 0.9455 3.0+ 3.0+ 3.0+ 
07 Syn-95 4.20 0.9455 3.0+ 3.0+ 3.0+ 

07 Syn-106 3.40 0.0908 0.388 3.0+ 3.0+ 
07 Syn-109 3.80 0.4329 2.021 3.0+ 3.0+ 
07 Syn-113 3.40 0.0908 3.0+ 3.0+ 3.0+ 
07 Syn-129 3.80 0.4329 3.0+ 3.0+ 3.0+ 
07 Syn-141 3.40 0.0908 3.0+ 3.0+ 3.0+ 
07 Syn-163 3.40 0.0908 3.0+ 3.0+ 3.0+ 
07 Syn-164 3.00 0.0107 0.315 3.0+ 3.0+ 
07 Syn-180 4.40 0.9988 3.0+ 3.0+ 3.0+ 
07 Syn-181 3.80 0.4329 3.0+ 3.0+ 3.0+ 
07 Syn-200 3.40 0.0908 3.0+ 3.0+ 3.0+ 
07 Syn-209 3.47 0.2947 2.277 3.0+ 3.0+ 
07 Syn-212 4.81 1.0000 3.0+ 3.0+ 3.0+ 
07 Syn-234 3.47 0.2947 1.547 3.0+ 3.0+ 
07 Syn-255 4.81 1.0000 3.0+ 3.0+ 3.0+ 
07 Syn-256 3.80 0.4329 3.0+ 3.0+ 3.0+ 
07 Syn-258 4.20 0.9455 3.0+ 3.0+ 3.0+ 
07 Syn-283 2.60 0.0008 3.0+ 3.0+ 3.0+ 
07 Syn-284 4.14 0.9757 3.0+ 3.0+ 3.0+ 
07 Syn-289 3.80 0.4329 3.0+ 3.0+ 3.0+ 
07 Syn-290 4.60 1.0000 3.0+ 3.0+ 3.0+ 
07 Syn-319 4.14 0.9757 3.0+ 3.0+ 3.0+ 
07 Syn-348 3.40 0.0908 3.0+ 3.0+ 3.0+ 
07 Syn-358 2.81 0.0203 3.0+ 3.0+ 3.0+ 
07 Syn-376 2.81 0.0203 3.0+ 3.0+ 3.0+ 
07 Syn-382 4.14 0.9757 3.0+ 3.0+ 3.0+ 
07 Syn-383 2.20 <.0001 0.184 3.0+ 3.0+ 
Tomahawk 5.00 1.0000 3.0+ 3.0+ 3.0+ 
WGRC50 1.40 <.0001 0.176 3.0+ 3.0+ 
WGRC27 1.80 <.0001    

RonL 1.60 <.0001    
Bobwhite 5.00 1.0000    

* Absorbance exceeded maximum measurable value of 3.00 
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Table 2.  
 
.   

 

Line No. Source 
Identification Aliases Pedigree 

07 Syn-27 CIGM88.1195-0B SYN-28; CID159526; 
BW27741 SORA/Ae. tauschii [WX208] 

07 Syn-106 CIGM88.1335-0B SYN-111; CID159578; 
BW27824 SCOOP_1/Ae. tauschii [WX434] 

07 Syn-109 CIGM88.1343-0B SYN-114; CID159581; 
BW27827 DOY1/Ae. tauschii [WX446] 

07 Syn-164 CIGM89.569-0Y SYN-170; CID160221; 
BW27883 

68.111/RGB-U//WARD/3/FGO/4/ 
RABI/5/Ae. tauschii [WX900] 

07 Syn-209 CIGM89.567-1B SYN-216; CID161079; 
BW27929 CETA/Ae. tauschii [TA2468; WX895] 

07 Syn-234 
PI 648688 CIGM90.841 SYN-244; CID161587; 

BW27957; NSGC 9783 
YAV79//DACK/RABI/3/SNIPE/4/ Ae. 

tauschii [WX490] 
07 Syn-358 
PI 648812 CIGM93.211 SYN-383; CID161711; 

BW28096; NSGC 9922 DOY1/Ae. tauschii [WX264] 

07 Syn-376 
PI 648829 CIGM93.233 SYN-402; CID161730; 

BW28115; NSGC 9941 
CPI/GEDIZ /3/ GOO // JO69 / CRA 

/4/ Ae. tauschii [WX390] 
07 Syn-383 
PI 648836 CIGM93.240 SYN-410; CID161738; 

BW28123; NSGC 9949 
STY-US/CELTA//PALS/3/SRN_5/4/ 

Ae. tauschii [WX418] 
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Figure 1.  
 
 
 
 
 
  

07 SYN-27 07 SYN-164 07 SYN-106 

07 SYN-383 Tomahawk WGGRC50 

18 oC    25 oC     GH 18 oC    25 oC     GH 18 oC    25 oC     GH 
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Figure 2.  
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