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Abstract

Disruption Tolerant Networks or opportunistic networks represent a class of networks where

there is no contemporaneous path from source to destination. In other words, these are net-

works with intermittent connections. These networks are generally sparse or highly mobile

wireless networks. Each node has a limited radio range and the connections between nodes

may be disrupted due to node movement, hostile environments or power sleep schedules,

etc. A common example of such networks is a sensor network monitoring nature or military

field or a herd of animals under study.

Epidemic routing is a widely proposed routing mechanism for data propagation in these

type of networks. According to this mechanism, the source copies its packets to all the

nodes it meets in its radio range. These nodes in turn copy the received packets to the other

nodes they meet and so on. The data to be transmitted travels in a way analogous to the

spread of an infection in a biological network. The destination finally receives the packet

and measures are taken to eradicate the packet from the network.

The task of routing in epidemic networks faces certain difficulties involving minimizing the

delivery delay with a reduced consumption of resources. Every node has severe power con-

straints and the network is also susceptible to temporary but random failure of nodes. In

the previous work, the parameter of mobility has been considered a constant for a certain

setting. In our setting, we consider a varying parameter of mobility. In this framework, we

determine the optimal mobility pattern and a forwarding policy that a network should follow

in order to meet the trade-off between delivery delay and power consumption. In addition,

the mobility pattern should be such that it can be practically incorporated. In our work,



we formulate an optimization problem which is solved by using the principles of dynamic

programming. We have tested the optimal algorithm through extensive simulations and

they show that this optimization problem has a global solution.
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Chapter 1

Epidemic Routing

The discipline of epidemiology does not only investigate the outbreak of communicable dis-

eases in a biological network, but makes a significant contribution towards efficient routing

of data packets in a wireless ad hoc network. This work is based on a class of wireless

ad-hoc routing protocols called epidemic routing protocols. The main focus of this thesis is

to emphasize the effect of mobility and an optimal forwarding strategy on the performance

of mobile ad hoc networks.

What is an Ad-Hoc Network?

The definition of ad hoc as given by the Webster dictionary1 is

Ad-hoc (adjective)

1.a : concerned with a particular end or purpose <an ad hoc investigation committee>

1.b : formed or used for specific or immediate problems or needs <ad hoc solutions>

2 : fashioned from whatever is immediately available : improvised <large ad hoc parades

and demonstrations>

An ad-hoc network is a local area network (LAN) that is built spontaneously as devices con-

nect. Instead of relying on a base station to coordinate the flow of messages to each node in

the network, the individual network nodes forward packets to and from each other. In other
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words, an ad-hoc network can establish itself despite the lack of a fixed infrastructure.

The strong increase in the popularity of ad hoc networks in recent years is due to their en-

visioned ease of deployment, financial benefits, recent technological advancements, terrorist

attacks, and widespread use of electronic devices. Because of their wide applicability and

cheap installation, other uses of ad hoc network are continuously being found and therefore

this field of technology and research will continue to grow for quite some time2.

1.1 Mobile Ad Hoc Networks

A MANET is an autonomous collection of mobile users that communicate over relatively

bandwidth constrained wireless links. Since the nodes are mobile, the network topology

changes rapidly and unpredictably over time. The network is decentralized, where all net-

work activity including discovering the topology and delivering messages must be executed

by the nodes themselves, i.e., routing functionality is incorporated into mobile nodes.

The nodes in mobile ad hoc networks (MANET) are mobile and form the main focus of this

thesis. In these networks, mobility can easily be exploited to ensure the transfer of data

from one node to another, especially if the nodes in the network are not well connected to

each other. In an ad-hoc network, the connectivity of two nodes is generally determined

by the physical distance between them. A particular downside of mobility is that connec-

tions between nodes are continuously set up and broken down. Also known as disruption

tolerant networks or opportunistic networks, MANETs represent a class of networks where

there is no contemporaneous path from source to destination. In other words, these are net-

works with intermittent connections. These networks are generally sparse or highly mobile

wireless networks. Each node has a limited radio range and the connections between nodes

may be disrupted due to node movement, hostile environments or power sleep schedules, etc.

2



Figure 1.1: Examples of MANETS: Military sensor networks, collaborative networks, res-
cue team networks, etc

At any time, the network can be represented by an overlay graph showing the nodes which

are connected to each other at that moment in time. Closely related to this are small-world

graphs and peer-to-peer networks. In these networks, connections between nodes come and

go and there is data that is passed from one node to another node, possibly by making

use of intermediary nodes. There are however a number of distinctions which make peer-

to-peer networks different from ad hoc networks and are therefore worth pointing out. In

small-world and peer-to-peer networks there is large emphasis on the number of hops, the
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number of nodes reached per hop, search methods, and the scalability of the network. In

mobile ad hoc networks however, the physical distances between the nodes play a role and

therefore the performance of the network is instead characterized through the connectivity,

throughput, and message delay (in terms of time instead of the number of hops).

In the coming generation of wireless communication systems, there will be a need for the

rapid deployment of independent mobile users. Significant examples include establishing

survivable, efficient, dynamic communication for emergency/rescue operations, disaster re-

lief efforts, and military networks. Such network scenarios cannot rely on centralized and

organized connectivity, and can be conceived as applications of mobile ad hoc networks.

The set of applications for MANETs is diverse, ranging from small, static networks that are

constrained by power sources, to large-scale, mobile, highly dynamic networks.

A good example of a mobile ad hoc network would be a mobile wireless sensor network. A

wireless ad hoc sensor network consists of a number of sensors spread across a geographical

area. Each sensor has wireless communication capability and some level of intelligence for

signal processing and networking of the data. Some examples of wireless ad hoc sensor

networks are the following:

1. Military sensor networks to detect and gain as much information as possible about

enemy movements, explosions, and other phenomena of interest3,4.

2. Sensor networks to detect and characterize Chemical, Biological, Radiological, Nu-

clear, and Explosive (CBRNE) attacks and material.

3. Sensor networks to detect and monitor environmental changes in plains, forests, oceans,

etc.

4. Wireless traffic sensor networks to monitor vehicle traffic on highways or in congested

parts of a city.
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5. Wireless surveillance sensor networks for providing security in shopping malls, parking

garages, and other facilities5,6.

6. Wireless parking lot sensor networks to determine which spots are occupied and which

are free.

The above list suggests that wireless ad hoc sensor networks offer certain capabilities and

enhancements in operational efficiency in civilian applications as well as assist in the na-

tional effort to increase alertness to potential terrorist threats.

The basic goals of a wireless ad hoc sensor network generally depend upon the application,

but the following tasks are common to many networks:

1. Determine the value of some parameter at a given location: In an environmental

network, one might one to know the temperature, atmospheric pressure, amount of

sunlight, and the relative humidity at a number of locations. This example shows

that a given sensor node may be connected to different types of sensors, each with a

different sampling rate and range of allowed values.

2. Detect the occurrence of events of interest and estimate parameters of the detected

event or events: In the traffic sensor network, one would like to detect a vehicle moving

through an intersection and estimate the speed and direction of the vehicle.

3. Classify a detected object: Is a vehicle in a traffic sensor network a car, a mini-van, a

light truck, a bus, etc.

4. Track an object: In a military sensor network, track an enemy tank as it moves through

the geographic area covered by the network.

In these four tasks, an important requirement of the sensor network is that the required data

be disseminated to the proper end users. In some cases, there are fairly strict time require-
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ments on this communication. For example, the detection of an intruder in a surveillance

network should be immediately communicated to the police so that action can be taken.

1.1.1 Routing in MANETs

The design of network protocols for these networks is a complex issue. Regardless of the ap-

plication, MANETs need efficient distributed algorithms to determine network organization,

link scheduling, and routing. However, determining viable routing paths and delivering mes-

sages in a decentralized environment where network topology fluctuates is not a well-defined

problem. While the shortest path (based on a given cost function) from a source to a des-

tination in a static network is usually the optimal route, this idea is not easily extended to

MANETs. Factors such as variable wireless link quality, propagation path loss, fading, mul-

tiuser interference, power expended, and topological changes, become relevant issues. The

network should be able to adaptively alter the routing paths to alleviate any of these effects.

Moreover, in a military environment, preservation of security, latency, reliability, intentional

jamming, and recovery from failure are significant concerns. Military networks are designed

to maintain a low probability of intercept and/or a low probability of detection. Hence,

nodes prefer to radiate as little power as necessary and transmit as infrequently as possible,

thus decreasing the probability of detection or interception. A lapse in any of these require-

ments may degrade the performance and dependability of the network.

Hence, the requirements of a mobile ad hoc network for efficient routing can be summa-

rized as:

1. Large number of (mostly stationary) sensors: Aside from the deployment of sensors

on the ocean surface or the use of mobile, unmanned, robotic sensors in military

operations, most nodes in a smart sensor network are stationary. Networks of 10,000

or even 100,000 nodes are envisioned, so scalability is a major issue.
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2. Low energy use: Since in many applications the sensor nodes will be placed in a

remote area, service of a node may not be possible. In this case, the lifetime of a node

may be determined by the battery life, thereby requiring the minimization of energy

expenditure.

3. Network self-organization: Given the large number of nodes and their potential place-

ment in hostile locations, it is essential that the network be able to self-organize;

manual configuration is not feasible. Moreover, nodes may fail (either from lack of

energy or from physical destruction), and new nodes may join the network. Therefore,

the network must be able to periodically reconfigure itself so that it can continue to

function. Individual nodes may become disconnected from the rest of the network,

but a high degree of connectivity must be maintained.

4. Collaborative signal processing: Yet another factor that distinguishes these networks

from MANETs is that the end goal is detection/estimation of some events of interest,

and not just communications. To improve the detection/estimation performance, it

is often quite useful to fuse data from multiple sensors. This data fusion requires

the transmission of data and control messages, and so it may put constraints on the

network architecture.

5. Querying ability: A user may want to query an individual node or a group of nodes

for information collected in the region. Depending on the amount of data fusion

performed, it may not be feasible to transmit a large amount of the data across the

network. Instead, various local sink nodes will collect the data from a given area and

create summary messages. A query may be directed to the sink node nearest to the

desired location.

With the coming availability of low cost, short range radios along with advances in wireless

networking, it is expected that wireless ad hoc sensor networks will become commonly

deployed. In these networks, each node may be equipped with a variety of sensors, such as
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acoustic, seismic, infrared, still/motion video camera, etc. These nodes may be organized in

clusters such that a locally occurring event can be detected by most of, if not all, the nodes

in a cluster. Each node may have sufficient processing power to make a decision, and it will

be able to broadcast this decision to the other nodes in the cluster. One node may act as

the cluster master, and it may also contain a longer range radio using a protocol such as

IEEE 802.11 or Bluetooth.

1.1.2 Existing Protocols

This section describes provides a classification of the existing protocols used in mobile ad-hoc

network routing7. Existing protocols can be classified according to many criteria described

as follows:

1. Proactive, reactive and hybrid routing

One of the most popular method to distinguish mobile ad hoc network routing proto-

cols is based on how routing information is acquired and maintained by mobile nodes.

Using this method, mobile ad hoc network routing protocols can be divided into proac-

tive routing, reactive routing and hybrid routing.

A proactive routing protocol is also called ”table driven” routing protocol. Using a

proactive routing protocol, nodes in a mobile ad hoc network continuously evaluate

routes to all reachable nodes and attempt to maintain consistent, up-to-date routing

information. Therefore, a source node can get a routing path immediately if it needs

one. In these routing protocols, all nodes need to maintain a consistent view of the

network topology. When a network topology change occurs, respective updates must

be propagated throughout the network to notify the change. Some examples are Wire-

less Routing Protocol (WRP), the Destination Sequence Distance Vector (DSDV) and

the Fisheye State Routing (FSR).
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Reactive routing protocols for mobile ad hoc networks are also called ”on-demand”

routing protocols. In a reactive routing protocol, routing paths are searched only

when needed. A route discovery operation invokes a route-determination procedure.

The discovery procedure terminates either when a route has been found or no route

available after examination for all route permutations. The Dynamic Source Routing

(DSR) and Ad hoc On- demand Distance Vector routing (AODV) are examples for

reactive routing protocols for mobile ad hoc networks.

Hybrid routing protocols are proposed to combine the merits of both proactive and

reactive routing protocols and overcome their shortcomings. Normally, hybrid rout-

ing protocols for mobile ad hoc networks exploit hierarchical network architectures.

Proper proactive routing approach and reactive routing approach are exploited in dif-

ferent hierarchical levels, respectively. Some examples of hybrid routing protocols for

mobile ad hoc networks are Zone Routing Protocol (ZRP), Zone-based Hierarchical

Link State routing (ZHLS) and Hybrid Ad hoc Routing Protocol (HARP).

2. Structuring and delegating the routing task

Another classification method is based on the roles which nodes may have in a routing

scheme. In a uniform routing protocol, all mobile nodes have same role, importance

and functionality. Examples of uniform routing protocols include Wireless Routing

Protocol (WRP), Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vec-

tor routing (AODV) and Destination Sequence Distance Vector (DSDV) routing pro-

tocol. Uniform routing protocols normally assume a flat network structure.

In a non-uniform routing protocol for mobile ad hoc networks, some nodes carry

out distinct management and/or routing functions. Normally, distributed algorithms

are exploited to select those special nodes. In some cases, non-uniform routing ap-

proaches are related to hierarchical network structures to facilitate node organization
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and management. Non-uniform routing protocols further can be divided according

to the organization of mobile nodes and how management and routing functions are

performed. Following these criteria, non-uniform routing protocols for mobile ad hoc

networks are divided into zone based hierarchical routing e.g. Zone Routing Protocol

(ZRP) and Zone-based Hierarchical Link State routing (ZHLS), cluster-based hierar-

chical routing e.g. Clusterhead Gateway Switch Routing (CGSR), Hierarchical State

Routing (HSR) and core-node based routing e.g. Core-Extraction Distributed Ad Hoc

Routing (CEDAR).

3. Exploiting network metrics for routing

Metrics used for routing path construction can be used as criteria for mobile ad hoc

network routing protocol classification. Most routing protocols for mobile ad hoc

networks use hop number as a metric. If there are multiple routing paths available,

the path with the minimum hop number will be selected. If all wireless links in the

network have the same failure probability, short routing paths are more stable than

the long ones and can obviously decrease traffic overhead and reduce packet collisions.

However, the assumption of the same failure properties may not be true in mobile

ad hoc networks. Therefore, the stability of a link has to be considered in the route

construction phase. For example, routing approaches such as Associativity Based

Routing (ABR) and Signal Stability based Routing (SSR) are proposed that use link

stability or signal strength as metric for routing.

4. Evaluating topology, destination and location for routing

The existing protocols can also be divided according to the information used in de-

riving the best path to destination. In a topology based routing protocol for mobile

ad hoc networks, nodes collect network topology information for making routing deci-

sions. Other than topology based routing protocols, there are some destination-based

routing protocols proposed in mobile ad hoc networks. In a destinationbased routing

protocol a node only needs to know the next hop along the routing path when for-
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warding a packet to the destination. For example, DSR is a topology based routing

protocol. AODV and DSDV are destination based routing protocols. In location-

based routing protocols, the position relationship between a packet forwarding node

and the destination, together with the node mobility can be used in both route dis-

covery and packet forwarding. Location Aided Routing (LAR) and Distance Routing

Effect Algorithm for Mobility (DREAM) are typical location-based routing protocols

proposed for mobile ad hoc networks.

5. Multicast routing protocols

Most classification methods used for unicast routing protocols for mobile ad hoc net-

works are also applicable for existing multicast routing protocols. For example, mul-

ticast routing algorithms for mobile ad hoc networks can be classified into reactive

routing and proactive routing. The Ad-hoc Multicast Routing (AMRoute) and Ad

hoc Multicast Routing protocol utilizing Increasing id-numberS (AMRIS) belong to

category of proactive multicast routing and the On-Demand Multicast Routing Pro-

tocol (ODMRP) and Multicast Ad hoc On-demand Distance Vector (MAODV) are

reactive multicast routing protocols.

There is a classification method particularly used for multicast routing protocols for

mobile ad hoc networks. This method is based on how distribution paths among

group members are constructed. According to this method, existing multicast routing

approaches for mobile ad hoc networks can be divided into tree based multicast rout-

ing, mesh based multicast routing, core based multicast routing and group forwarding

based multicast.
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Figure 1.2: SIR Model: Sample run for β = 0.005,γ = 0.013, population size = 10

1.2 The SIR Model

An SIR model is an epidemiological model that computes the theoretical number of peo-

ple infected with a contagious illness in a closed population over time. It was proposed

by Kermack and McKendrick8 to explain the rapid rise and fall in the number of infected

patients observed in epidemics such as the plague (London 1665-1666, Bombay 1906) and

cholera (London 1865). It assumes that the population size is fixed (i.e., no births, deaths

due to disease, or deaths by natural causes), incubation period of the infectious agent is

instantaneous, and duration of infection is same as length of the disease. It also assumes a

completely homogeneous population with no age, spatial, or social structure.
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The model consists of a system of three coupled nonlinear ordinary differential equations,

dS

dt
= −βSI (1.1)

dI

dt
= βSI − γI (1.2)

dR

dt
= γI (1.3)

where t is time, S is the number of susceptible people, I is the number of people infected,

R is the number of people who have recovered and developed immunity to the infection, β

is the infection rate, and γ is the recovery rate. A sample run for β = 0.005 and γ = 0.013

is shown in Fig.1.2.

1.3 Epidemic Routing

S

C

C2

C1

C DC3 C4 D

Figure 1.3: Epidemic Routing: A random network topology at time t = t0
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C1S

Packet

Figure 1.4: Epidemic Routing: Packet forwarding from source to intermediate node at
t = t1

Epidemic routing9 is a widely proposed routing mechanism for data propagation in mobile

ad hoc networks. The goal of this mechanism to develop techniques for delivering application

data with high probability even when there is never a fully connected path between source

and destination. Application messages are distributed to hosts, called carriers, within con-

nected portions of ad hoc networks. In this way, messages are quickly distributed through

connected portions of the network.

In other words, the source copies its packets to all the nodes it meets in its radio range.

These nodes in turn copy the received packets to the other nodes they meet and so on.

The data to be transmitted travels in a way analogous to the spread of an infection in a

biological network. The destination finally receives the packet and measures are taken to

eradicate the packet from the network.
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C1 C2

Packet

Figure 1.5: Epidemic Routing: Packet forwarding among intermediate nodes at time t = tn

The general working of this protocol is shown in Fig1.3 to Fig.1.7. It shows a mobile ad

hoc network where all nodes are moving in random directions with random speeds. The

source node S wishes to send an application data packet to the destination node D. All

other nodes in the network can be termed as carrier nodes C1, C2, C3, etc. at this time,

only the source has the data packet. This situation can be seen upon as the source node S

being infected and all the other nodes in the network as susceptible to the infection.

At time t = t1, S comes in contact with a carrier node say C1. Two nodes are said to come

in contact with each other when they are in each other’s transmission range. At this time,

the two nodes exchange information about what data packets they have, which are to be

forwarded. Node S queries node C1 and finds out that this node is susceptible. Hence, it

forwards the data packet to C1. Now C1 is also infected. In this manner the infected nodes
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Figure 1.6: Epidemic Routing: Random network topology at the start

meet the susceptible nodes in the network and transfer the data packet as if spreading an

infection.

Eventually, the destination receives the packet from one of the infected nodes. Let us call

this time as t = td. This is the time of delivery the destination and is an important per-

formance metric of the epidemic routing protocol. After this time, it is important that the

packet be eliminated from all the infected nodes in the network. Also, further spread of this

packet to the remaining susceptible nodes should be stopped. This task can be accomplished

by several mechanisms known as recovery mechanisms.

Recovery mechanisms consist of spreading information about a delivered packet in the net-

work, so that the nodes in the network adjust themselves accordingly and are able to organize

and prepare themselves for further infections. In particular, as soon as an infected node re-
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time t = td

ceives information about a delivered packet, it deletes that packet from its own buffer. This

enables it to handle a future infection and prevents further transfer of the delivered packet to

other susceptible nodes. Likewise, a susceptible node can be configured to receive a packet

delivery information as a way to prevent itself from getting this packet.

1.3.1 The power-delay trade-off issue

The task of routing in epidemic networks faces certain difficulties involving minimizing the

delivery delay with a reduced consumption of resources. Every node has severe power con-

straints and the network is also susceptible to temporary but random failure of nodes. Every

time a packet is copied from one node to another, power is consumed. Hence, the more the

number of packet copies in the network, more is the power consumed. Similarly, the faster

the nodes move, more is the power consumed. However, faster node movement and higher
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number of packet copies leads to a lesser delivery delay and vice versa.

Some metrics that help to evaluate the trade-off between power consumption and deliv-

ery delay are as follows:

1. The average lifetime L, of a packet is the time from when the packet is generated at

the source node to the time when all copies of the packets are removed (i.e, no more

infected nodes for this packet in the network).

2. The delivery delay of a packet, Td, is the duration of the time from when the packet

is generated at the source to the time the packet is first delivered to the destination.

3. For the case where nodes have a limited amount of buffer, a packet might be dropped

from the network before it is delivered. The loss probability is the probability of a

packet being dropped from the network before delivery.

4. There can be more than one metric related to the power consumption. The number

of times a packet is copied in its entire lifetime, G; the number of times a packet is

copied at the time of delivery, C being some of them. In our work, we consider that

a network can control its own mobility, or the nodes can control their transmission

ranges. The faster the nodes move, the more energy they use. Likewise, the more the

transmission range of nodes, the higher the energy expenditure. Hence, we introduce

the cost of mobility, Cm as another cost related to mobility.

1.4 Related Work

It is evident that epidemic routing aims to achieve minimum delivery delay at the cost of

increased power requirements, buffer space and bandwidth. Various modifications have been

suggested to bring out a balance between transmission delay and required resources. One
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class of suggestions involves variations in forwarding strategies. Some of them are listed as

follows:

1. Limited Time Forwarding: In this setting, a certain time limit is set so that packets

can be forwarded for upto that time in the network10. After this limited time, there is

a constant number of infected nodes in the network. Packet delivery to the destination

is through one of these infected nodes.

2. Probabilistic forwarding: In this setting, every time an infected node meets a suscep-

tible node, it forwards the packet to the susceptible node with a certain probability.

This parameter of probability is constant for a certain setting. In this way the total

number of packet copies in kept limited11,12.

3. K-hop forwarding: In this setting, each infected node can copy the packet only a

certain number of times. Thus a packet can only travel a certain number of hops

before it meets the destination13,14. Spray and wait routing15 involves copying a

certain number of packets in the network and waiting for delivery to destination.

Another class of strategies, involves different ways of recovery from infection. Once a node

delivers a packet to the destination, all infected nodes should delete the copy from their

buffers to conserve storage space and to prevent further infection. They should also store

some information about this packet so that they do not get re-infected. This information

is called anti-packet. Various schemes have been proposed for faster recovery from infec-

tion16,17.

1. According to the IMMUNE scheme, a node stores a copy in the buffer until it meets the

destination. Thus the infection may remain in the network long after the destination

has received it.

2. The IMMUNETX scheme proposes a rather aggressive approach. In this scheme,

anti-packets are propagated to all the infected nodes.
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3. VACCINE, a stronger approach suggests sending the anti-packets to the susceptible

nodes also so that newer susceptible nodes do not get infected if the packet delivery

has occurred.

Mundur, Seligman and Lee18 analyze and evaluate the network performance using an im-

munity scheme in the context of epidemic routing and its variants. The algorithm includes

immunity-based information disseminated in the reverse once messages get delivered to their

destination. The reverse dissemination of such information requires minimal resources and

the trade-off in timely purging of delivered messages can be significant. Tower, Little and

Thomas19 introduce a scheme called SERAC, that increases the rate at which cure mes-

sages are propagated in a fragmented network for the purpose of reducing the overhead of

outstanding yet incompletely disseminated messages.

The power and memory/storage constraints of miniaturized network nodes reduce the

throughput capacity and increase the network latency. Sometimes, the required perfor-

mance of such networks does not need to adhere to the level of services that would be

required for performance-critical applications. For example, for some applications of sensor

networks, minimal latency is not a critical factor and it could be traded off for a more limited

resource, such as energy or throughput. Such networks are termed delay-tolerant networks.

To reduce the energy expenditure, transmission range of such sensor nodes would be quite

short, leading to network topologies in which the average number of neighbors of the net-

work nodes is very small. Here the classical networking approach of store-and-forward would

not work well, as there is nearly never an intact path between a source and a destination.

Several routing protocols have been proposed for this type of networking environment, one

example is the Shared Wireless Infostation Model (SWIM)20, where a packet propagates

through the network by being copied (rather than forwarded) from a node to a node, as
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links are sporadically created. The goal is that one of the copies of the packet reaches the

destination. SWIM is an example of the way that non-critical performance could be traded

off for insufficient resources, such as the trade-offs between energy, delay, storage, capacity,

and processing complexity.

Routing in opportunistic networks is usually based on some form of controlled flooding,

which often this results in very high resource consumption and network congestion. Boldrini,

Chiara, Passarella and Andrea advocate a context-based routing for opportunistic networks.

This protocol is called (HiBOp)21 and uses context information for forwarding decisions. An-

other approach called Context-Aware Routing (CAR) algorithm22 provides of asynchronous

communication in partially-connected mobile ad hoc networks, based on the intelligent place-

ment of messages. This work also demonstrates that it is possible for nodes to exploit context

information in making local decisions that lead to good delivery ratios and latencies with

small overheads.

Many approaches rely on the use of either long range communication which leads to rapid

draining of nodes’ limited batteries, or existing node mobility which results in low data

delivery rates and large delays. MF23 is a mobility-assisted approach which utilizes a set of

special mobile nodes called message ferries to provide communication service for nodes in the

deployment area. The main idea behind the MF approach is to introduce non-randomness

in the movement of nodes and exploit such non-randomness to help deliver data. The MF

design exploits mobility to improve data delivery performance and reduce energy consump-

tion in nodes.

Mobile wireless ad hoc and sensor networks can be permanently partitioned in many inter-

esting scenarios. This implies that instantaneous end-to-end routes may not exist. Neverthe-

less, when nodes are mobile, it is possible to forward messages to their destinations through
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mobility. In many practical settings, spatial node distributions are very heterogeneous and

possess concentration points of high node density. The locations of these concentration

points and the flow of nodes between them tend to be stable over time. This motivates a

novel mobility model, where nodes move randomly between stable islands of connectivity,

where they are likely to encounter other nodes, while connectivity is very limited outside

these islands.

This property has been exploited by developing algorithms that allow nodes to collaborate

to discover such islands and to use them for efficient mobility forwarding. This is achieved

by relying only on the evolution of the set of neighbors of each node. Sarafijanovic-Djukic,

Pidrkowski and Grossglauser24 propose an algorithm for this collaborative graph discovery

problem and show that the inferred topology can greatly improve the efficiency of mobility

forwarding.

PRoPHET25 is proposed as an enhancement to the basic functionality of epidemic routing

in which connectivity/position history of each node can be leveraged to make forwarding

decisions, thus reducing traffic and increasing throughput with reduced latency. The Island

Hopping scheme suggests that nodes often move in and out of areas with concentration

points. The authors propose to move data from among concentration points via node mo-

bility. This scheme requires that nodes form groups of close proximity and that destination

geographical locations are known a priori.

Similarly, routing benefits considerably if one can take advantage of knowledge concerning

node mobility. A high-dimensional euclidean space is constructed upon nodes’ mobility

patterns26. This space called MobySpace is based on the frequency of visits of nodes to

each possible location. This work also determines that the degree of homogeneity of node

mobility patterns has a high impact on routing. Grossglauser, Matthias and Tse27 show
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that mobility has a great effect on increasing the capacity of the network.

PRioritized EPidemic (PREP)28 for routing in opportunistic networks. PREP prioritizes

bundles based on costs to destination, source, and expiry time. Costs are derived from per-

link average availability information that is disseminated in an epidemic manner. PREP

maintains a gradient of replication density that decreases with increasing distance from the

destination.

Most forwarding algorithms aim at decreasing costs (relative to flooding the network) by

forwarding only to nodes which are likely to be good relays. While it is non-trivial to decide

if an encountered node is a good relay or not at the moment of encounter, it is harder still

to prioritize which messages to transmit under the presence of short contact durations and

which messages to drop when buffers become full. Different message prioritizing schemes

have been studied by Erramilli, Vijay and Crovella29.

Many concepts of anti-entropy, rumor mongering, and death certificates, were discussed in

prior works30 and used later (often under different names) in many of the later epidemic

routing papers. Also under the assumption of no contention, epidemic routing has the min-

imum end-to-end delay amongst all the routing schemes proposed for such networks. The

assumption of no contention was justified by arguing that since the network is sparse, there

will be very few simultaneous transmissions.

Some recent papers have shown that this argument is not correct and that contention cannot

be ignored while analyzing the performance of routing schemes, even in sparse networks31.

There can be many manifestations of contention, such as the finite bandwidth of the link

which limits the number of packets two nodes can exchange, the scheduling of transmissions

between nearby nodes which is needed to avoid excessive interference, and the interference

23



from transmissions outside the scheduling area.

Jain, Patra and Fall32 formulate the delay-tolerant networking routing problem, where mes-

sages are to be moved end-to-end across a connectivity graph that is time-varying but whose

dynamics may be known in advance. The problem has the added constraints of finite buffers

at each node and the general property that no contemporaneous end-to-end path may ever

exist. This work shows that with limited additional knowledge, far less than complete global

knowledge, efficient algorithms can be constructed for routing in such environments.

Jain, Demmer, Patra and Fall33 account for message losses due to link failures, buffer over-

runs, path selection errors, unscheduled delays, or other problems. This paper shows how

to split, replicate, and erasure code message fragments over multiple delivery paths to opti-

mize the probability of successful message delivery. Ideas from the modern portfolio theory

literature are borrowed to solve the underlying optimization problem.

Some studies34 suggest the use of network coding instead of replicating the packets in an

epidemic network. When two nodes meet, they transmit coded packets to each other. A

coded packet x is a linear combination of the K source packets.

1.5 Our Contribution

We notice that all the above schemes strive to deliver the packets (data and anti-packets)

as soon as possible. In this paper, we derive an optimal mobility pattern among the nodes

along with an optimal forwarding policy so that these packets are delivered with a minimum

delay. Whenever two nodes meet and transmission is said to occur between them, some en-

ergy is spent. At the same time the expected delivery delay decreases. Giudici, Pagani and

Rossi discuss the impact of mobility on epidemic networks35. It is pretty straightforward

that the faster the nodes move, the quicker the packets will be delivered. However, more
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number of copies will be generated and power consumed. Thus this optimal mobility pattern

should attain a minimum delivery delay along with minimum generation of packet copies

and power consumption.
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Chapter 2

The Mobility Model

To study a mobile ad hoc network protocol, it is important to simulate it and analyze it’s

performance. Simulations provide researchers with a number significant benefits, including

repeatable scenarios, isolation of parameters and exploration of a variety of metrics. Some

factors that play a key role in protocol simulation are movement pattern of nodes, commu-

nicating traffic patterns, topology, etc.

A mobility model represents the of movement of nodes, and how their location, velocity and

acceleration change over time. Once the nodes have been initially distributed, the mobil-

ity model controls the movement of nodes within the network. In mobile ad hoc network

research, it is very important to construct the simulation models as close to real circum-

stances, as possible. Wireless channels experience high variability in channel quality due

to a variety of phenomenon, including multi-path, fading, atmospheric effects, and obstacles.

Previous research36 has shown that the mobility model that we use can significantly impact

the performance of ad-hoc routing protocols. A particular choice of a mobility model af-

fects the packet delivery ratio, the control overhead, the data packet delay, etc. Hence it is

important to use mobility models that accurately represent the intended scenarios in which

the protocol is likely to be utilized. Unrealistic simulations may be misleading instead of

being explanatory.
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The mobility model that we use has been described in this chapter. A general classification

of mobility models is provided in Section 2.1. Our model is then introduced in Section 2.2.

Section 2.2 also describes some important properties of our model and justifies it’s use for

epidemic routing.

2.1 Classification of mobility models

There exists a wide variety of mobility models that have been postulated from both analytic

and simulation-based studies on mobile systems. A concise categorization can be found in37,

while a simulation based comparison of a variety of mobility models can be found in36. This

section describes a few of these models that have been designed specifically for ad hoc

networks. These mobility patterns can be classified according to the following criteria:

2.1.1 Generation of mobility

Traces38,39 are the predetermined mobility patterns that are observed in real life systems40,41.

They provide accurate information, especially when they involve a large number of partic-

ipants and an appropriately long observation period. However, new network environments

(e.g. ad hoc networks) are not easily modeled if traces have not yet been created. For ad

hoc networks, tracing the actual behavior of mobile nodes is a hard process. In this type

of situation it is necessary to use synthetic models. Synthetic models attempt to realisti-

cally represent the behaviors of mobile nodes without the use of traces. Traces hardly let

researchers to change simulation parameters, which can be a disadvantage for performance

analysis of ad hoc networks.
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2.1.2 Social behavior of nodes

Another way of classification of mobility models is the social behavior of nodes. The social

behavior of mobile nodes can be identified by the dependence of mobile nodes among each

other. In the entity mobility models, a mobile node is considered an entity that moves

independently of other nodes. Examples of such models are Random Walk Mobility Model

(including its many derivatives), which is simple mobility model based on random directions

and speeds, Random Direction Mobility Model, a model that forces mobile nodes to travel

to the edge of the simulation area before changing direction and speed, Random Waypoint

Mobility Model, a model that includes pause times between changes in destination and

speed, etc.

However, in some scenarios including battlefield communication and museum touring, the

movement pattern of a mobile node may be influenced by certain specific ’leader’ node in

its neighborhood. Hence, the mobility of various nodes is correlated. The size and the

movements of these groups (and within the group) vary from scenario to scenario, but sev-

eral characteristics are common to all these scenarios: the nodes are split in several smaller

groups, and each group acts seemingly independently of the other groups. Also, within each

group, each user has its own liberty to move with respect to the center of the group or with

respect to the other members of the group. In this respect, the group mobility models have

two sub-models the group model describing the movements of the groups and the individual

model describing the movement of a node within the group. Since the velocities of different

nodes are correlated in space, this characteristic is called spatial dependency of velocity.

Some group mobility models are as follows:
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Reference Point Group Mobility Model

In line with the observation that the mobile nodes in mobile ad-hoc network tend to coor-

dinate their movement, the Reference Point Group Mobility Model is proposed in42. One

example of such mobility is that a number of soldiers may move together in a group. An-

other example is during disaster relief where various rescue crews (e.g., firemen, policemen

and medical assistants) form different groups and work cooperatively.

In the Reference Point Group Mobility Model model, each group has a center, which is

either a logical center or a group leader node. For the sake of simplicity, we assume that

the center is the group leader. Thus, each group is composed of one leader and a number of

members. The movement of the group leader determines the mobility behavior of the entire

group. Both the movement of the logical center for each group, and the random motion of

each individual mobile node within the group, are implemented via any of the stochastic

mobility models.

The movement of group leader at any time not only does it define the motion of group leader

itself, but also it provides the general motion trend of the whole group. Each member of

this group deviates from this general motion vector by some degree. This motion vector

can be randomly chosen or carefully designed based on certain predefined paths. For each

node, mobility is assigned with a reference point that follows the group movement. Upon this

predefined reference point, each mobile node could be randomly placed in the neighborhood.

The RPGM model was designed to depict scenarios such as an avalanche rescue. During

an avalanche rescue, the responding team consisting of human and canine members work

cooperatively. The human guides tend to set a general path for the dogs to follow, since

they usually know the approximate location of victims. The dogs each create their own

‘random’ paths around the general area chosen by their human counterparts.
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There can be many variations to the RPGM model. If appropriate group paths are chosen,

along with proper initial locations for various groups, many different mobility applications

may be represented with the RPGM model. The In-place Mobility Model partitions a given

geographical area such that each subset of the original area is assigned to a specific group;

the specified group then operates only within that geographic subset. The Overlap Mobility

Model simulates several different groups, each of which has a different purpose, working in

the same geographic region; each group within this model may have different characteristics

than other groups within the same geographical boundary. For example, in disaster recovery

of a geographical area, one might encounter a rescue personnel team, a medical team, and

a psychologist team, each of which have unique traveling patterns, speeds, and behaviors.

Lastly, the Convention Mobility Model divides a given area into smaller subsets and allows

the groups to move in a similar pattern throughout each subset. Similar to the Overlap

Mobility Model, some groups in the Convention Mobility Model may travel faster than

others.

Other Spatially Correlated Models

Sanchez and Manzoni43 propose a set of mobility models in which the mobile nodes travel

in a co-operative manner. This set of mobility models, including Column Mobility Model,

Pursue Mobility Model and Nomadic Mobility Model, are expected to exhibit strong spatial

dependency between nearby nodes.

The Column Mobility Model represents a set of mobile nodes (e.g., robots) that move in a

certain fixed direction. This mobility model can be used in searching and scanning activity,

such as destroying mines by military robots. At a time slot t, the mobile node i is to update

its reference point by adding an advance vector to its previous reference point, where the

advance vector is the predefined offset used to move the reference grid of node i at time

t. After the reference point is updated, the new position of mobile node i is to randomly
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deviate from the updated reference point by a random vector. When the mobile node is

about to travel beyond the boundary of a simulation field, the movement direction is then

flipped 180 degree. Thus, the mobile node is able to move towards the center of simulation

field in the new direction.

The Pursue Mobility Model emulates scenarios where several nodes attempt to capture

single mobile node ahead. This mobility model could be used in target tracking and law

enforcement. The node being pursued (i.e., target node) moves freely according to the Ran-

dom Waypoint model. By directing the velocity towards the position of the targeted node,

the pursuer nodes (i.e., seeker nodes) try to intercept the target node.

The Nomadic Mobility Model is to represent the mobility scenarios where a group of nodes

move together. This model could be applied in mobile communication in a conference or

military application. The whole group of mobile nodes moves randomly from one location

to another. Then, the reference point of each node is determined based on the general

movement of this group. Inside of this group, each node can offset some random vector to

its predefined reference point.

Compared to the Column Mobility Model which also relies on the reference grid, it is ob-

served that the Nomadic Community Mobility Model shares the same reference grid while in

Column Mobility Model each column has its own reference point. Moreover, the movement

in the Nomadic Community Model is sporadic while the movement is more or less constant

in Column Mobility Model. This set of mobility models has been utilized to analyze the

protocol performance. Both Hu and Johnson44 and Camp, Boleng and Davies36 report that

this set of mobility models behaves different than Random Waypoint model.
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2.1.3 Temporal Dependencies

Mobility of a node may be constrained and limited by velocity and rate of change of direction.

Hence, the current velocity of a mobile node may depend on its previous velocity. Thus

the velocities of single node at different time slots are correlated’. We call this mobility

characteristic the Temporal Dependency of velocity. In this section, some mobility models

considering temporal dependency are discussed.

Gauss-Markov Mobility Model

The Gauss-Markov Mobility Model was first introduced by Liang and Haas45 and widely

utilized36,45,46. In this model, the velocity of mobile node is assumed to be correlated over

time and modeled as a Gauss-Markov stochastic process. When the node is going to travel

beyond the boundaries of the simulation field, the direction of movement is forced to flip

180 degree. This way, the nodes remain away from the boundary of simulation field.

In the Gauss-Markov model, the degree of dependency is determined by the memory level

parameter α. α is a parameter to reflect the randomness of Gauss-Markov process. By

tuning this parameter, it is capable of duplicating different kinds of mobility behaviors. At

α = 0, the model is memoryless. For α = 1, the model has a very strong memory.

Smooth Random Mobility Model

Another mobility model considering the temporal dependency of velocity over various time

slots is the Smooth Random Mobility Model. Instead of the sharp turn and sudden accel-

eration or deceleration, Bettstetter also proposes to change the speed and direction of node

movement incrementally and smoothly. It is observed that mobile nodes in real life tend to

move at certain preferred speeds, rather than at speeds purely uniformly distributed in the

range [0, V ]. Therefore, in Smooth Random Mobility model, the probability distribution of

node velocity is as follows: the speed within the set of preferred speed values has a high

probability, while a uniform distribution is assumed on the remaining part of entire interval
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[0, V ].

In Smooth Random Mobility Model, the frequency of speed change is assumed to be a Pois-

son process. Upon an event of speed change, a new target speed is chosen according to the

probability distribution function. Then, the speed of mobile node is changed incrementally

from the current speed v to the targeted new speed by acceleration speed or deceleration

speed a(t). Thus, the speed may be controlled to increase or decrease continuously and

incrementally. If a(t) is a small value, then the speed is changed slowly and the degree of

temporal correlation is expected to be strong. Otherwise, the speed can be changed quickly

and the temporal correlation is small.

Unlike speed, the movement direction is assumed to be purely uniformly distributed. Once a

movement direction is chosen, the node moves in a straight line until the direction changes.

The frequency of direction change is assumed to have an exponential distribution. The

change of movement direction is also be smooth and incremental. Therefore, the change is

achieved in more than one time slots.

2.1.4 Geographic Restriction

In many mobility models, the nodes are allowed to move freely and randomly anywhere in the

simulation field. However, in most real life applications, we observe that a nodes movement

is subject to the environment. The motions of vehicles are bounded to the freeways or

local streets in the urban area, and on campus the pedestrians may be blocked by the

buildings and other obstacles. Therefore, the nodes may move in a pseudo-random way on

predefined pathways in the simulation field. Some recent works address this characteristic

and integrate the paths and obstacles into mobility models. This kind of mobility model is

called a mobility model with geographic restriction.
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Pathway Mobility Model

One simple way to integrate geographic constraints into the mobility model is to restrict

the node movement to the pathways in the map. The map is predefined in the simulation

field. Tian, Hahner and Becker47 utilize a random graph to model the map of city. This

graph can be either randomly generated or carefully defined based on certain map of a real

city. The vertices of the graph represent the buildings of the city, and the edges model the

streets and freeways between those buildings.

Initially, the nodes are placed randomly on the edges of the graph. Then for each node a

destination is randomly chosen and the node moves towards this destination through the

shortest path along the edges. Upon arrival, the node pauses for T time and again chooses

a new destination for the next movement. This procedure is repeated until the end of

simulation. Hence, in this graph based mobility model, the nodes are traveling in a pseudo-

random fashion on the pathways. Similarly, in the Freeway mobility model and Manhattan

mobility model48, the movement of mobile node is also restricted to the pathway in the

simulation field.

Obstacle Mobility Model

Another geographic constraint playing an important role in mobility modeling includes the

obstacles in the simulation field49. To avoid the obstacles on the way, the mobile node is

required to change its trajectory. Therefore, obstacles do affect the movement behavior of

mobile nodes. Moreover, the obstacles also impact the way the transmission waves propa-

gate. For example, for the indoor environment, typically, the node could not propagate the

signal through obstacles without severe attenuation. When the radio propagates through

an obstacle, the signal is assumed to be fully absorbed by the obstacle. More specifically,

if an obstacle is in-between two nodes, the link between these nodes is considered broken

until one moves out of the shadowed area of the other.
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2.1.5 Random Based Mobility Models

In random-based mobility models, the mobile nodes move randomly and freely without re-

strictions. The destination, speed and direction are all chosen randomly and independently

of other nodes. This kind of a model has been used in many simulation studies. The Ran-

dom Walk model, Random Waypoint model and Random Direction model are examples of

such models.

The Random Walk Model is also referred to as the Brownian Motion. This model mimics

the behavior of nodes that move in an unexpected way. The nodes change their speed and

direction at each time interval. The Random Walk model is a memoryless mobility process

where the information about the previous status is not used for the future decision. That is

to say, the current velocity is independent with its previous velocity and the future velocity

is also independent with its current velocity.

The Random Waypoint Model is the model that has been using in our setting. It is explained

in detail in the next section. The Random Direction model based on similar intuition is

proposed by Royer, Melliar-Smith and Moser50. This model is able to overcome the non-

uniform spatial distribution and density wave problems. Instead of selecting a random

destination within the simulation field, in the Random Direction model the node randomly

and uniformly chooses a direction by which to move along until it reaches the boundary.

After the node reaches the boundary of the simulation field and stops with a pause time T,

it then randomly and uniformly chooses another direction to travel. This way, the nodes are

uniformly distributed within the simulation field. The Modified Random Direction model

that allows a node to stop and choose another new direction before it reaches the boundary

of the simulation field.
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2.2 The Random Waypoint Model

In this section we describe the mobility model that was used in our work. The Random

Waypoint Model was first proposed by Johnson and Maltz51. Soon, it became a benchmark

mobility model to evaluate the MANET routing protocols, because of its simplicity and

wide availability.

At the beginning, each mobile node randomly selects one location in the simulation field

as the destination. It then travels towards this destination with constant velocity chosen

uniformly and randomly from [0, V ], where the parameter V is the maximum allowable ve-

locity for every mobile node. The velocity and direction of a node are chosen independently

of other nodes. Upon reaching the destination, the node stops for a duration defined by the

‘pause time’ parameter, T . If T = 0, it signifies continuous mobility. After this duration,

the mobile node again chooses another random destination in the simulation field and moves

towards it. The whole process is repeated again and again until the simulation ends.

In the Random Waypoint model, V and T are the two key parameters that determine the

mobility behavior of nodes. If the V is small and the pause time T is long, the topology

of the network becomes relatively stable. On the other hand, if the node moves fast and

the pause time T is small, the topology is expected to be highly dynamic. Varying these

two parameters, especially V , the Random Waypoint model can generate various mobility

scenarios with different levels of nodal speed.

Bettstetter, Hartenstein and Perez-Costa52 describe Random Waypoint model as a discrete

time stochastic process. The transition length or the epoch length is defined as the distance

that any arbitrary node moves from one waypoint to another during the ith epoch. The

average transition length in a single epoch i over all the nodes (i.e., ensemble average) is

equal to the average of the transition length of a single node
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The Random Waypoint model has several variations. Examples are Random Walk model,

Random Direction model, etc. The Random Walk model was originally proposed to emulate

the unpredictable movement of particles in physics. It is also referred to as the Brownian

Motion. The Random Walk model has similarities with the Random Waypoint model be-

cause the node movement has strong randomness in both models. We can think the Random

Walk model as the specific Random Waypoint model with zero pause time.

In the Random Walk model, the nodes change their speed and direction at each time inter-

val. For every new interval, each node randomly and uniformly chooses its new direction

θ from (0, 2π]. In similar way, the new speed follows a uniform distribution or a Gaussian

distribution from [0, V ]. If the node moves according to the above rules and reaches the

boundary of simulation field, the leaving node is bounced back to the simulation field with

the angle of π − θ. This effect is called border effect.

Bettstetter52,53 observes that the spatial node distribution of Random Waypoint model

is transformed from uniform distribution to non-uniform distribution after the simulation

starts. As the simulation time elapses, the unbalanced spatial node distribution becomes

even worse. Finally, it reaches a steady state. In this state, the node density is maximum

at the center region, whereas the node density is almost zero around the boundary of sim-

ulation area. This phenomenon is called non-uniform spatial distribution.

Another property of Random Waypoint model called density wave phenomenon (i.e., the

average number of neighbors for a particular node periodically fluctuates along with time)

is observed by Royer, Melliar-Smith and Moser50. This phenomenon results from the cer-

tain mobility behavior of Random Waypoint model. In Random Waypoint model, since the

nodes are likely to either move towards the center of simulation field or choose a destination

that requires movement through the middle, the nodes tend to cluster near the center region
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of simulation field and move away from the boundaries. Therefore, a non-uniform distribu-

tion is formed. At the same time, the nodes appear to converge, disperse and converge at

center region periodically, resulting in the fluctuation of the node density of neighbors (i.e.,

density wave).

Lassila, Hyytia and Koskinen54 focus on estimating two quantities: The probability that the

network is connected and the mean duration of the connectivity periods. They also show

that in sparse networks, mobility has a positive effect on connectivity, whereas in dense

networks, the situation becomes the opposite. A network is said to be connected if there

exists a path between all node pairs, and k connected if for each node pair, at least k node

disjoint paths exist. The movement is restricted to a unit disk, but the domain of movement

can be any convex region. Let Qn,k(d) denote the probability that an arbitrary node in the

network has at least k neighbors.

Qn,k(d) = 2 ∗ pi ∗
∫ 1

0

rf(r)

(
1−

k−1∑
i=0

(
n− 1

i

)
p(r, d)i(1− p(r, d))n−1−i

)
dr,

where Bd(r) is the coverage area of any node, with a transmission range d. p(r, d) is the

probability that a given node is located within Bd(r) and can be expressed as

p(r, d) =

∫
x∈Bd(r)

f(|x|)dA,

where f(|x|) is the stationary node distribution of the random waypoint mobility model.

Hence, connectivity is defined as Cn,k(d) where a sub-network of n nodes is k connected and

is defined by:

Cn,k(d) = P {nnodesarek − connected} ≈ (Qn,k(d))n

Let T̄d be the mean dis-connectivity time

T̄c =
Cn,1(d)

1− Cn,1(d)
T̄d.

Similarly, a lot of work has been done to evaluate the steady state or the stationary distri-

bution of nodes in a Random Waypoint Model55. The stationary node distribution can also
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be evaluated as a function of distance of the node from the boundaries of the simulation

area56. Hyyti and Virtamo57 evaluate the cell change rate and the spatial distribution of

Random Waypoint mobility model in cellular networks. Bettstetter53 evaluates the spatial

distribution of nodes as composed of three distinct components: the static, pause, and mo-

bility component.

The static component accounts for the fact that a node can remain static for the entire

network operational time. The pause component accounts for the time that a mobile node

rests before starting a new movement period. Finally, the mobility component accounts for

the time that a mobile node is actually moving.

Rojas, Branch, and Armitage58 validates the use of Random Wapoint Mobility Model to

represent mobility patterns in large geographical areas. They use real traces of human

movement, i.e destinations, pause times, direction, velocity and length of movement. The

spatial distribution is fairly similar to the random waypoint model since the travels to the

city center are generally more frequent and populated.

Studies show that, under the random waypoint mobility regime, average node speed tends to

zero in steady state59. They also show that average node speed varies considerably from the

expected average value for the time scales under consideration in most simulation analysis.

They provides an accurate estimate of the warm-up period required by simulations using

the random waypoint mobility model. Simulation data uptill the warm-up period can then

be discarded to obtain accurate protocol performance results. Given that random waypoint

mobility is still, by far, the most widely used mobility model in the evaluation of MANETs,

the contribution of this work is potentially significant as it allows network protocol designers

to continue to use the original random waypoint mobility model and yet obtain accurate

results characterizing MANET protocol performance.
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Chapter 3

The DP problem

This chapter deals with the mathematical formulation of the optimization problem. The

problem is formulated as a Markov Decision problem and it can be solved using the prin-

ciples of dynamic programming. Section3.1 introduces the basic principles of dynamic pro-

gramming. Since the problem is stochastic in nature, the extension from a deterministic

problem to a stochastic problem has been described in Section??. Finally, in Section 3.3

the mathematical problem is described and a solution is derived.

3.1 Dynamic programming

A dynamic programming problem deals with situations where decisions are made in stages.

The outcome of each decision may not be fully predictable but it can be anticipated to

some extent before the next decision is made. The objective is to minimize a certain cost a

mathematical expression of what is considered an undesirable outcome.

A key aspect of such situations is that decisions cannot be viewed in isolation since one

must balance the desire for low present cost with the undesirability of high future costs.

The dynamic programming technique captures this trade-off. At each stage, it ranks deci-

sions based on the sum of the present cost and the expected future cost, assuming optimal

decision making for subsequent stages.
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There is a very broad variety of practical problems that can be treated by dynamic pro-

gramming. In this section, a broadly applicable model of optimal control of a dynamic

system over a finite number of stages (a finite horizon) is discussed. A basic model has two

principal features:

1. An underlying discrete time dynamic system, and

2. A cost function that is additive over time.

The dynamic system expresses the evolution of the system’s state ,under the influence of

decisions made at discrete instances of time. The system has the form

k = 0, 1, ..., N − 1,

where

k is the index of discrete time,

xk is the state of the system and summarizes past information that is relevant for future

optimization,

uk is the control or decision variable to be selected at time k,

wk is a random parameter (also called disturbance or noise depending on the context),

N is the horizon or number of times control is applied,

and fk is a function that describes the system and in particular the mechanism by which

the state is updated.

The cost function is additive in the sense that the cost incurred at time k, denoted by

gk(xk, uk, wk),

accumulates over time. The total cost is

gN(XN) +
N−1∑
k=0

gk(Xk, Uk,Wk),
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where gN(XN) is a terminal cost incurred at the end of the process. However, because of

the presence of Wk, the cost is generally a random variable and cannot be meaningfully

optimized. We therefore formulate the problem as an optimization of the expected cost

where the expectation is with respect to the joint distribution of the random variables

involved. Therefore the problem is formulated as an optimization problem of the expected

cost given by

E

{
gN(XN) +

N−1∑
k=0

gk(Xk, Uk,Wk)

}
The optimization is over the controls u0, u1, ..., uN−1, but some qualification is needed here;

each control Uk is selected with some knowledge of the current state Xk (either its exact

value or some other related information).

3.2 The Markov Decision Problem

We consider a discrete-time dynamic system where the state Xk is an element of a space Sk,

the control uk is an element of a space Ok, and the random disturbance wk is an element of

a space Dk.

The control uk is constrained to take values in a given nonempty subset Uk(xk) ⊂ Ok, which

depends on the current state xk, i.e., uk ∈ Uk(xk) for all xk ∈ Sk and k. The random

disturbance wk is characterized by a probability distribution Pk(· | xk, uk) that may depend

explicitly on xk and uk but not on values of prior disturbances wk−l, .., w0.

We consider the class of policies (also called control laws) that consist of a sequence of

functions

π = {µ0, ...., µN−1},

where µk maps states xk into controls uk = µk(xk) and is such that µk(xk) ∈ Uk(Xk) for all

xk ∈ Sk. Such policies will be called admissible.

42



Given an initial state x0 and an admissible policy {µ0, µ1, ..., µN−1}, the states xk and

disturbances wk are random variables with distributions defined through the system equation

xk = fk(xk, µk(xk), wk), k = 0, 1, ..., N − 1.

Thus, for given functions gk, k = 0, 1, ..., N , the expected cost of π starting at X0 is

Jπ(x0) = E

{
gN(xN) +

N−1∑
k=0

gk(xk, µk(xk), wk)

}

where the expectation is taken over the random variables wk and Xk. An optimal policy π∗

is one that minimizes this cost. i.e.,

Jπ∗(x0) = min
πεΠ

Jπ(x0)

where Π is the set of all admissible policies.

3.3 Model

We present our work as an insightful extension to the model described in60. The authors

derive a forwarding limit which optimizes the delivery delay and the cost related to the

packet copies. In our model, we consider node movement as an additional factor. The faster

the nodes move, the lesser the delivery delay but higher node movement involves higher

power consumption. We consider the movement to be modeled by random waypoint mobil-

ity. Such a model is characterized by the mobility parameter, β. Higher values of β denote

more frequent meetings between nodes. This may be achieved by increasing their speeds

or transmission ranges. Hence, there is a certain cost associated with maintaining a certain

value of β for a certain time. We denote this cost by α. Figure 1 shows a three dimensional

plot of the cost which is the sum of delivery delay, number of infected nodes and weighted

cost of mobility, the number of infected nodes and the mobility parameter. This figure shows

the cost incurred by keeping a certain value of β and infected copies till delivery occurs. We

see that mobility also plays a role in achieving a trade-off between delivery delay and power
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consumption. Assuming that we can vary this factor of mobility, it is possible to further

optimize the related cost.

Figure 3.1: Plot of cost vs. infected nodes vs. mobility

In Section 3.3, we provide a description of the model and obtain analytical solutions. In the

next chapter 4, we provide numerical results to compare the solution with existing strategies.

Section 4.6 contains conclusions and future directions.

We assume a model of N + 1 nodes which move according to the random waypoint mobility

model in a well defined, enclosed area A. The inter-nodal meeting times are assumed to

be exponentially distributed with rate β, which will be discussed in further detail. Two

nodes are said to meet when they come in the transmission range of each other and can

exchange packets. These nodes have a small transmission range d compared to A at all

times. The node density is assumed to be low and hence the interference among the nodes

can be easily ignored. We also assume that transmission of packets occurs instantaneously

when the nodes meet. The node velocities are high. We also assume that the bandwidth of

the network and the buffer sizes is large enough. There can be multiple source-destination

pairs, but we consider only one pair to study the packet spreading through the network.

Our assumption regarding large bandwidth and buffer sizes allows us to assure that different

infections (i.e. packet-spreadings) will be independent.
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The model for transmission of the data packets closely resembles the SIR model for the

spread of infections in biological networks61,62. The source can be seen as the first infected

node. Prior to receiving the data, the nodes can be termed as susceptible. When any sus-

ceptible nodes come in the range of infected nodes, the infected node decide to pass the

copy of the packet or not. If the packet is copied, the infection spreads and the count of the

total number of infected nodes increases by one. Eventually, the destination comes in con-

tact with one of the infected nodes and the packet is delivered. As soon as the destination

receives the data, the recovery process starts. This is the process of clearing the packets

from the infected nodes. There are various schemes for recovery. We do not consider the

process of recovery in our model as the recovery process is entirely dependent upon the total

number of nodes that are infected. In our solution, we seek to optimize the total number of

infected packets.

The inter-nodal meeting times are assumed to be exponentially distributed with rate β. In

earlier models, β was considered to be constant for a specific model. However, in our model,

we assume β to be a time varying entity. In this manner, we can study the impact of the

mobility parameter on the cost. The authors in63 confirmed that the inter-meeting time of

nodes is exponential when all the nodes have a transmission range d. The rate β is given

by:

β =
2wdE{V ∗}

A
(3.1)

where w is a constant, E[V ∗] is the average relative speed between two nodes, d is the

transmission range and A is the area of the topology grid.

Changes in β can be made by many factors. For example, adjustments in node power affect

the transmission range and hence cause a variation in β. Another factor might be changes

in node velocities or acceleration which would vary the average relative speed between a pair

of nodes. Based on this, our model assumes that these factors would have to be changed
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instantaneously for all nodes. There is also a possibility of considering heterogeneous nodes

(i.e nodes having different radii of transmission, different average velocities, etc). Some

research has been done to identify the inter-meeting patterns for such scenarios64. Defining

equivalent mobility parameters for these cases is a matter of further research. Our present

model can work upon any pattern thus obtained.

In this paper, we wish to derive the optimal policy of controlling two factors, namely packet

forwarding and the mobility parameter, β so that the delivery delay, total number of packets

generated and the power requirements are optimized. In particular, the infected nodes decide

whether or not to forward packets when they meet other susceptible nodes and what change

should be made to β in order to reach an optimal cost. Hence our cost is:

J = E{Td + γMc + Cβ}, (3.2)

where Td is the time gap between origination of packet from source and the delivery to the

destination, γ is the cost related to copying a packet, Mc is the total number of packet copies

generated in the process and Cβ is the cost associated with maintaining β. Since higher

values of β suggest high power consumption, Cβ has to be proportional to the magnitude

of β. However, higher values of β would also contribute to lesser delivery delay. Hence, we

take this cost to be proportional to β2. Another reason why Cβ is chosen to be proportional

to β2 is the following. We consider varying β by varying the transmission radius d, and a

linear change in d implies a quadratic change in the power. Hence, Cβ = αβ2. The values

of α and γ are a matter of design choice. The higher the values, the more importance we

give to the respective costs.

We now describe the process. At each time t, the state of the process is the pair xt =

(nI(t), β(t)), where nI(t) denotes the current number of infected nodes and β(t) denotes the

current value of the mobility parameter. Since we do not consider the recovery process, the

number of infected nodes is set to 0 when the destination receives the packet, i.e. nI(Td) = 0.
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At the beginning of the process t0 = 0, nI(0) = 1. The state of the process can assume val-

ues 0, 1, · · · , N , where N is the number of nodes in the system (except the destination).

The state changes whenever an infected node meets a susceptible node or the destination.

Hence, if tk is the kth inter-meeting time between an infected node and a non-infected node,

then nI(tk) = nI(tk−1) + 1 (meets susceptible node) or nI(tk) = 0 (meets destination node).

We also define our decision at any time tk, which is denoted by utk = {p, q}. In this tuple,

p = {c, c̄} denotes the forwarding strategy. p = c implies that the packet should be copied,

whereas p = c̄ implies that the packet should not be copied to the susceptible node. Also,

q = {λ+, λ−, λ0} denotes strategy of changing β. q = λ+, implies that β should be increased

by the magnitude λ, y = λ−, implies that β should be decreased by the magnitude λ,

q = λ0, implies that β should not be changed. Here, λ is a predefined step-size parameter

of design choice. In our model, β can be varied as long as it has a positive value between

0 and 1. Thus, if at a particular instant the decision is such that it would take β out of

these bounds, then the system would be compelled to choose between other decision choices.

We also assume perfect state information at each node. This means that all nodes know the

exact number of infected nodes in system at all times. They also maintain the same value

of d, the transmission radius at all times. Due to this assumption, the distributed nature of

our system is lost. Even though, the actuator of a certain decision is a single infected node

which meets a susceptible node, the system assumes a central controller which causes all

the nodes to be aware of the decision and execute it. In addition, we observe that there is

no decision to be made when an infected node comes in contact with the destination. The

packet is simply copied to the destination. Since, this is the absorbing state of the model,

there is no need to decide about any further change to be made to β.

Hence we are able to define an optimal policy as the infinite set of functions π = {µ1, µ2, · · · },

where µk maps the state xtk into control uk = µk(xtk). This problem can be studied as a
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stochastic shortest path with finite state and exponential transition time. The initial state

of the problem is x0 = (1, β(0)). The cost function of an admissible policy starting at time

t1 from state xt1 = (nI(t1), β(t1)) is the limit of the cost from t1 to tk as k →∞.

Jπ(nI(t1), β(t1))

= lim
k→∞

k−1∑
u=1

E {ĝ(xtk , µk(xtk))|xt1}+

E

{∫ tk+1

tk

g(xtk , µk(xtk))dt|xt1
}
, (3.3)

where ĝ(xtk , µk(xtk)) is the finite cost of the decision taken at time tk, while g(xtk , µk(xtk))

is the cost per unit time. Comparing (3.3) to (3.2), we see that

g(xtk , µk(xtk)) = 1 + αβ(tk)
2,

and

ĝ(xtk , µk(xtk) =

{
0 if u = (c̄, ·)
γ if u = (c, ·).

The total cost also includes the time from t0 to t1, which is the first inter-meeting time, and

the cost associated with copying the packet to the destination, are unavoidable and do not

depend on the policy. Hence, these are kept out of the optimization framework. (3.3) can

be written as

Jπ(nIt1, β(t1))

= ĝ(xt1 , µ1(xt1)) + (1 + αβ(t1)2)G(xt1 , µ1(xt1)) +
N∑
j=0

mnI(t1),j(µ1(xt1)Jπ2(j, β(t2)) (3.4)

where Jπ2 is the cost-to-go of the policy π2 = {µ2, µ3, · · · } that is used from the second

meeting time, mi,j(u) is the probability of transition from a state with i infected nodes to

a state with j infected nodes under the decision u (it is independent of the β value), and

G(i, u) is the average transition time from state i to another state when the decision is u.
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The expressions for G(i, u) and mi,j for i, j 6= 0 are as follows:

G(i, β, u) =



1
(β+λ)i(N−i+1)

if u = (c̄, λ+),
1

βi(N−i+1)
if u = (c̄, λ0),

1
(β−λ)i(N−i+1)

if u = (c̄, λ−),
1

(β+λ)(i+1)(N−i) if u = (c, λ+)
1

β(i+1)(N−i) if u = (c, λ0)
1

(β−λ)(i+1)(N−i) if u = (c, λ−)

mi,j =


N−i
N−i+1

if j = i and u = (c̄, ·),
N−i−1
N−i if j = i+ 1 and u = (c, ·),

0 otherwise.

The explanation for these equations is as follows. If u = (c̄, ·), then the number of infected

nodes does not change, and the transition rate is βi(N−i+1). The number of infected nodes

at the next meeting time is still i with the probability N−i
N−i+1

, which is the probability that an

infected node meets another susceptible node before the destination. Otherwise, if u = (c, ·),

the number of infected nodes increases to i+1 and the transition rate is β(i+1)(N−i). The

number of infected nodes at the next meeting time is still i+ 1 with probability N−i−1
N−i . We

consider i, j 6= 0 because we assume zero cost in the final absorbing state. Hence, the transi-

tions to this state do not appear in (3.4), and we do not evaluate transition probabilities mi,0.

We evaluate the Bellman equation

J∗(i, β)

= min
u

{
h(i, β, u) +

N∑
j=1

mi,j(u)J∗(j, β̃)

}
. (3.5)

where β̃ is the value of β at the next meeting instant and

h(i, β, u) = ĝ(i, β, u) + (1 + αβ2)G(i, β, u)

In other words, J∗(i, β) is the minimum of the following six equations.

Jc,λ+(i, β) = γ +
(1 + α(β + λ)2)

(β + λ)(i+ 1)(N − i)
+

(N − i− 1)

(N − i)
J∗(i+ 1, β + λ). (3.6)
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Jc,λ0(i, β) = γ +
(1 + αβ2)

β(i+ 1)(N − i)
+

(N − i− 1)

(N − i)
J∗(i+ 1, β). (3.7)

Jc,λ−(i, β) = γ +
(1 + α(β − λ)2)

(β − λ)(i+ 1)(N − i)
+

(N − i− 1)

(N − i)
J∗(i+ 1, β − λ). (3.8)

Jc̄,λ+(i, β) = γ +
(1 + α(β + λ)2)

(β + λ)i(N − i+ 1)
+

(N − i)
(N − i+ 1)

J∗(i, β + λ). (3.9)

Jc̄,λ0(i, β) = γ +
(1 + αβ2)

βi(N − i+ 1)
+

(N − i)
(N − i+ 1)

J∗(i, β). (3.10)

Jc̄,λ−(i, β) = γ +
(1 + α(β − λ)2)

(β − λ)i(N − i+ 1)
+

(N − i)
(N − i+ 1)

J∗(i, β − λ). (3.11)

From these equations, we observe that under the optimal scheme if the best decision with l

infected nodes is not to copy, then there will be atmost l copies in the system. The proof

of this result is provided in Appendix 5. Consider β = βl1 at that time. The expected cost

from this state is equal to the expected time to meet the destination from this state, i.e.,
1+αβ2

l1

lβl1
. After this point of time any decision can only be made regarding β. We consider

the term
1+αβ2

l1

lβl1
, and note that it has a global minimum at 1√

α
. Thus, the decision about
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β is made such that it moves closer to 1√
α

. Comparing among (3.6), (3.7), (3.8) and (3.9),

(3.10), (3.11), we see the same pattern as above. From an analysis similiar to that done

in60, we see that the maximum number of copies in the network will be equal to h, where

h(h− 1) <
2√
αγ
≤ h(h+ 1). (3.12)

The optimal algorithm thus derived is as follows. Evidently, the algorithm depends on the

step size λ. We prove the dependence rigorously in Appendix 6.

1. Calculate h from the (4.1).

2. If the number of infected nodes in the system is less than h, then the packet can be

copied further. If it is equal to h, then the packet should not be copied any further.

3. The decision about β depends upon the step size λ.

4. If β − λ ≥ 1√
α

, then λ− is the best choice.

5. If β + λ ≤ 1√
α

, then λ+ is the best choice.

6. If β = 1√
α

, then λ0 is the best choice.

7. If β > 1√
α

and β − λ < 1√
α

, then

(a) If β − λ ≤ 1
αβ

, then λ0 is the best choice.

(b) If β − λ > 1
αβ

, then λ− is the best choice.

8. If β < 1√
α

and β + λ > 1√
α

, then

(a) If β + λ ≤ 1
αβ

, then λ0 is the best choice.

(b) If β + λ > 1
αβ

, then λ+ is the best choice.
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Chapter 4

Results

This chapter deals with the results derived in the previous chapter. The analytical solution

has been incorporated in simulations executed on Matlab. Section 4.1 describes our setting

for simulations. Sections 4.2, 4.3 and 4.4 deal with the analysis of individual costs. Section

4.5 describes the cumulative cost comparison. In the end, we present a brief analysis of the

solution and conclusion of our work.

4.1 Simulation Setting

We carried the simulations in Matlab version 6.0.0.88 R12. For the sake of comparison, we

considered two other forwarding protocols: Spray and Wait forwarding and Probabilistic

forwarding.

In Spray and Wait forwarding scheme65, the power-delay trade-off issue is handled by con-

trolling the total number of packet copied in the network. The parameter of the protocol is

K, which is the maximum allowable number of copies. For every message originating at the

source node, K message copies are initially spread, either by the source itself or by other

infected nodes. This is called the Spray phase. Then comes the Wait phase in which, the

network has to wait for one of these K infected nodes to contact the destination.

In Probabilistic forwarding scheme, the power-delay trade-off issue is handled by controlling
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γ α β(0)
0.5 100 0.01
0.5 100 0.1
0.5 100 0.2
0.5 500 0.01
0.5 500 0.1
0.5 500 0.2
4 100 0.01
4 100 0.1
4 100 0.2
4 500 0.01
4 500 0.1
4 500 0.2

Table 4.1: Test parameter combinations for Probabilistic and Spray and Wait forwarding
strategies.

a probability parameter p. Each time a node receives a packet either from the source or

from some other infected node, it is entitled to forward the packet further by a probability

p. Eventually one of these infected nodes meets the destination and the packet is forwarded

to the destination. Hence, it this protocol there is no Wait phase.

In our setting, we consider N + 1 = 101 nodes with a single source-destination pair. Here

N includes the source node and the intermediate nodes. The additional 1 denotes the

destination. For the two schemes mentioned above, we consider three values of β, β01 = 0.01,

β02 = 0.1, β03 = 0.2. These schemes consider a constant mobility pattern throughout a run.

For the cost of packet copies, we compare the effect of two values of γ, γ1 = 0.5, γ2 = 4.

For the mobility cost, we consider α1 = 100, α2 = 500. According to the analytical results,

the optimal values of β should be 0.1 and 0.0447 respectively. For the optimal policy, we

consider two step sizes to vary β, λ1 = 0.001 and λ2 = 0.009.

The various parameters for evaluation have been summarized in Table 4.1 and Table 4.2.
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γ α β(0) λ
0.5 100 0.01 0.001
0.5 100 0.01 0.009
0.5 100 0.1 0.001
0.5 100 0.2 0.001
0.5 100 0.2 0.009
0.5 500 0.01 0.001
0.5 500 0.01 0.009
0.5 500 0.1 0.001
0.5 500 0.2 0.001
0.5 500 0.2 0.009
4 100 0.01 0.001
4 100 0.01 0.009
4 100 0.1 0.001
4 100 0.2 0.001
4 100 0.2 0.009
4 500 0.01 0.001
4 500 0.01 0.009
4 500 0.1 0.001
4 500 0.2 0.001
4 500 0.2 0.009

Table 4.2: Test parameter combinations for Optimal forwarding strategy.

54



4.2 The cost of Delay

The comparison of the delay cost derived under the optimal scheme has been compared

with that of probabilistic forwarding in Fig.4.1, Fig.4.2, Fig.4.3 and Fig.4.4. Similarly, the

comparison of the delay cost derived under the optimal scheme has been compared with that

of Spray and Wait forwarding in Fig.4.1, Fig.4.2, Fig.4.3 and Fig.4.4. In both, probabilistic

forwarding and Spray and Wait forwarding, the delivery delay decreases as β0 increases.

Also, for lower values of probability and spray value, there are a fewer number of copies in

the network. Hence there is a significant delay at these values.

For the optimal scheme, Fig.4.1, Fig.4.2, Fig.4.5, Fig.4.6 refer to cases where α = 100. For

these settings, the value to β converges to 0.1. Thus, for cases with β0 = 0.01, the mobility

parameter is lesser than optimal and increases gradually. Similarly, for cases with β0 = 0.2,

the mobility parameter is greater and decreases gradually. Hence the delivery delay for cases

starting with higher mobility is greater.

Comparing the optimal scheme with other two schemes, we find that delivery delay for lower

values of probability and spray is greater than that of the optimal scheme. As probability

and spray values increase, the delivery delay of these two schemes becomes lesser than that

of the optimal scheme. The reason for this is there is a hard limit to the number of packet

copies in the optimal scheme. Larger values of probability and spray denote more number

of copies than the limit of the optimal scheme. As a result the delay in optimal scheme is

greater.

This section compares the delivery delay from the source to the destination in the three

forwarding schemes.
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Figure 4.1: Delay cost: Comparison with probabilistic forwarding, α1 = 100, γ1 = 0.5

Figure 4.2: Delay cost: Comparison with probabilistic forwarding, α1 = 100, γ2 = 4
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Figure 4.3: Delay cost: Comparison with probabilistic forwarding, α2 = 500, γ1 = 0.5

Figure 4.4: Delay cost: Comparison with probabilistic forwarding, α2 = 500, γ2 = 4
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Figure 4.5: Delay cost: Comparison with Spray and Wait forwarding, α1 = 100, γ1 = 0.5

Figure 4.6: Delay cost: Comparison with Spray and Wait forwarding, α1 = 100, γ2 = 4
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Figure 4.7: Delay cost: Comparison with Spray and Wait forwarding, α2 = 500, γ1 = 0.5

Figure 4.8: Delay cost: Comparison with Spray and Wait forwarding, α2 = 500, γ2 = 4
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4.3 Cost of Packet copies

The comparison of the cost of packet copies derived under the optimal scheme has been

compared with that of probabilistic forwarding in Fig.4.9, Fig.4.10, Fig.4.11 and Fig.4.12.

Similarly, the comparison of the cost of packet copies derived under the optimal scheme has

been compared with that of Spray and Wait forwarding in Fig.4.13, Fig.4.14, Fig.4.15 and

Fig.4.16. We see that as the values of probability and spray value, increase, there are more

number of copies in the network. Hence the cost of packet copies increases.

For the optimal scheme, the cost of packet copies is larger for larger values of γ. The limit

of packet copies in the system is governed by the equation

h(h− 1) <
2√
αγ
≤ h(h+ 1). (4.1)

As β converges to the optimal value the limit of the packet copies decreases according

to the equation4.1. The limit of packet copies at the optimal value of beta minimum.
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Figure 4.9: Cost of packet copies: Comparison with probabilistic forwarding, α1 = 100, γ1 =
0.5

Figure 4.10: Cost of packet copies: Comparison with probabilistic forwarding, α1 =
100, γ2 = 4
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Figure 4.11: Cost of packet copies: Comparison with probabilistic forwarding, α2 =
500, γ1 = 0.5

Figure 4.12: Cost of packet copies: Comparison with probabilistic forwarding, α2 =
500, γ2 = 4

62



Figure 4.13: Cost of packet copies: Comparison with Spray and Wait forwarding, α1 =
100, γ1 = 0.5

Figure 4.14: Cost of packet copies: Comparison with Spray and Wait forwarding, α1 =
100, γ2 = 4
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Figure 4.15: Cost of packet copies: Comparison with Spray and Wait forwarding, α2 =
500, γ1 = 0.5

Figure 4.16: Cost of packet copies: Comparison with Spray and Wait forwarding, α2 =
500, γ2 = 4
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4.4 Cost of mobility

The comparison of the cost of mobility derived under the optimal scheme has been compared

with that of probabilistic forwarding in Fig.4.17, Fig.4.18, Fig.4.19 and Fig.4.20. Similarly,

the comparison of the cost of mobility derived under the optimal scheme has been compared

with that of Spray and Wait forwarding in Fig.4.21, Fig.4.22, Fig.4.23 and Fig.4.24.

For both probabilistic forwarding and Spray and Wait forwarding, we see that starting with

higher mobility renders more mobility cost. For the optimal scheme the cost of mobility is

also governed by the value to which β converges. For cases with α = 100, that value is 0.1,

whereas for α = 500, it is 0.0447. Thus, for cases where the step size λ is more suitable to

reach these values, render lower cost of mobility.

Figure 4.17: Cost of mobility: Comparison with probabilistic forwarding, α1 = 100, γ1 = 0.5
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Figure 4.18: Cost of mobility: Comparison with probabilistic forwarding, α1 = 100, γ2 = 4

Figure 4.19: Cost of mobility: Comparison with probabilistic forwarding, α2 = 500, γ1 = 0.5
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Figure 4.20: Cost of mobility: Comparison with probabilistic forwarding, α2 = 500, γ2 = 4

Figure 4.21: Cost of mobility: Comparison with Spray and Wait forwarding, α1 = 100, γ1 =
0.5
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Figure 4.22: Cost of mobility: Comparison with Spray and Wait forwarding, α1 = 100, γ2 =
4

Figure 4.23: Cost of mobility: Comparison with Spray and Wait forwarding, α2 = 500, γ1 =
0.5
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Figure 4.24: Cost of mobility: Comparison with Spray and Wait forwarding, α2 = 500, γ2 =
4
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4.5 Total Cost

The comparison of the total cost derived under the optimal scheme has been compared with

that of probabilistic forwarding in Fig.4.25, Fig.4.26, Fig.4.27 and Fig.4.28. Similarly, the

comparison of the total cost derived under the optimal scheme has been compared with that

of Spray and Wait forwarding in Fig.4.29, Fig.4.30, Fig.4.31 and Fig.4.32.

It is evident from these figures that that for smaller values of probability and spray, the

high cost is due to the delivery delay. Similarly, assuming a significant cost for packet copies

(γ2 = 4), the higher cost for larger values of probability and number of copies is due to the

number of infected nodes. The curves for β01 and β02 are associated with a higher cost than

that of β02, which is the optimal value for α = 100.

In all cases however, the optimal algorithm incurs the least cost. It considers β01, β02, β03

as starting values of the mobility parameter. The plots for optimal algorithm starting with

β01 and β03 show higher values than the ones starting with β02.

70



Figure 4.25: Total cost: Comparison with probabilistic forwarding, α1 = 100, γ1 = 0.5

Figure 4.26: Total cost: Comparison with probabilistic forwarding, α1 = 100, γ2 = 4
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Figure 4.27: Total cost: Comparison with probabilistic forwarding, α2 = 500, γ1 = 0.5

Figure 4.28: Total cost: Comparison with probabilistic forwarding, α2 = 500, γ2 = 4
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Figure 4.29: Total cost: Comparison with Spray and Wait forwarding, α1 = 100, γ1 = 0.5

Figure 4.30: Total cost: Comparison with Spray and Wait forwarding, α1 = 100, γ2 = 4
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Figure 4.31: Total cost: Comparison with Spray and Wait forwarding, α2 = 500, γ1 = 0.5

Figure 4.32: Total cost: Comparison with Spray and Wait forwarding, α2 = 500, γ2 = 4
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4.6 Conclusions

This work aims to emphasize on the effect of mobility on the power cost in delay tolerant

networks. Higher mobility among nodes contributes to lower delivery delay, but at the same

time adds to the power consumption. Thus, this work highlights the important role that

mobility plays in the issue of trade-off between delivery delay and resource consumption

in epidemic networks. For the sake of simplicity, we considered an ideal scenario wherein

all nodes have perfect state information at all times. Under this assumption, we have

been able to derive an optimal mobility pattern along with an optimal forwarding policy.

This confirmed that the mobility parameter is optimal at a certain value which depends on

the cost of mobility. Starting from any other value, the trajectory of β tries to reach this

optimal value. Two heuristics have been compared with the optimal algorithm: Probabilistic

forwarding and Spray and Wait.The preliminary results suggest that the packet forwarding

limit can be studied as a configuration criterion for Spray and Wait forwarding. However,

mobility is an important factor for any forwarding scheme for further optimization. Current

mobility models consider that all nodes have the same properties (transmission radius, etc.).

The next steps in this area are to consider mobility models for heterogeneous nodes, and

work with imperfect state assumptions.
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Chapter 5

Appendix 1

Let us define f(β) := (1+αβ2)
β

for β > 0. Differentiating wrt β and equating to 0, we get

f ′(β) = − 1

β2
+ α = 0 ⇔ β =

1√
α
. (5.1)

Also,

f ′′
(

1√
α

)
= 2β

3
2 > 0. (5.2)

Hence β = 1
2√α is the global minimum for the function f with β > 0.

Theorem 1. Under an optimal scheme, if the best decision in state x = l, β is ‘not-copy’,

then there will be at most l copies in the system, and the system will never reach a state

where the number of copies is l + 1.

Proof We consider three cases.

Case 1 : β < 1√
α

.

We get from (3.6) to (3.11) and the definition of the function f that,

Jc,λ+(l, β) = min{Jc,λ+(l, β), Jc,0(l, β), Jc,λ−(l, β)},

and

Jc̄,λ+(l, β) = min{Jc̄,λ+(l, β), Jc̄,0(l, β), Jc̄,λ−(l, β)}.

If the best decision in state x = l, β is ‘not-copy’, then Jc̄,λ+(l, β) < Jc,λ+(i, β). Note that,

Jc̄,λ+(l, β) < Jc,λ+(i, β) (5.3)
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⇔ f(β + λ)

l(N − l + 1)
+

(N − l)(f(β + λ))

l(N − l + 1)
< γ +

f(β + λ)

(l + 1)(N − l)
+

(N − l − 1)f(β + λ)

(N − l)(l + 1)
(5.4)

⇔ f(β+λ){ 1

l(N − l + 1)
+

(N − l)
l(N − l + 1)

}− f(β+λ){ 1

(l + 1)(N − l)
+

(N − l − 1)

(l + 1)(N − l)
} < γ

(5.5)

⇔ f(β + λ)

l
− f(β + λ)

(l + 1)
< γ (5.6)

⇔ f(β + λ) < γl(l + 1). (5.7)

It follows that the best decision in state x = l, β is ‘not-copy’ if and only if (5.7) holds,

in which case the next state is (l, β + λ). However, f(β) is a decreasing function of β for

β < 1√
α

. This means that,

f(β + 2λ) < f(β + λ) < γl(l + 1),

and hence the system will always have l copies and will converge towards β = 1√
α

in succesive

steps.

Case 2 : β > 1√
α

.

We get from (3.6) to (3.11) and the definition of the function f that,

Jc,λ−(l, β) = min{Jc,λ+(l, β), Jc,0(l, β), Jc,λ−(l, β)},

and

Jc̄,λ−(l, β) = min{Jc̄,λ+(l, β), Jc̄,0(l, β), Jc̄,λ−(l, β)}.

If the best decision in state x = l, β is ‘not-copy’, then Jc̄,λ−(l, β) < Jc,λ−(i, β). Note that,

Jc̄,λ−(l, β) < Jc,λ−(i, β) (5.8)
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⇔ f(β − λ)

l(N − l + 1)
+

(N − l)(f(β + λ))

l(N − l + 1)
< γ +

f(β − λ)

(l + 1)(N − l)
+

(N − l − 1)f(β − λ)

(N − l)(l + 1)
(5.9)

⇔ f(β−λ){ 1

l(N − l + 1)
+

(N − l)
l(N − l + 1)

}− f(β−λ){ 1

(l + 1)(N − l)
+

(N − l − 1)

(l + 1)(N − l)
} < γ

(5.10)

⇔ f(β − λ)

l
− f(β − λ)

(l + 1)
< γ (5.11)

⇔ f(β − λ) < γl(l + 1). (5.12)

It follows that the best decision in state x = l, β is ‘not-copy’ if and only if (5.7) holds,

in which case the next state is (l, β − λ). However, f(β) is an increasing function of β for

β > 1√
α

. This means that,

f(β − 2λ) < f(β − λ) < γl(l + 1),

and hence the system will always have l copies and will converge towards β = 1√
α

in succesive

steps.

Case 3 : β = 1√
α

.

We get from (3.6) to (3.11) and the definition of the function f that,

Jc,0(l, β) = min{Jc,λ+(l, β), Jc,0(l, β), Jc,λ−(l, β)},

and

Jc̄,0(l, β) = min{Jc̄,λ+(l, β), Jc̄,0(l, β), Jc̄,λ−(l, β)}.

If the best decision in state x = l, β is ‘not-copy’, then Jc̄,0(l, β) < Jc,0(i, β). This means

that the system will stay in the state (l, β) till the destination node is infected. 2

Theorem 2. Suppose 0 ≤ i ≤ N − 1 and β > 0 are such that
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1. Jc,·(i+ 1, β) > Jc̄,·(i+ 1, β),

2. Jc̄,·(i, β) > Jc,·(i, β).

Then Jc̄,·(j, β) > Jc,·(j, β) ∀ j < i.

Proof It follows from the proof of Theorem 1 that Jc,·(i+ 1, β) > Jc̄,·(i+ 1, β) if and only if

f(β + ·) < γ(i+ 1)(i+ 2). Since Jc̄,·(i, β) > Jc,·(i, β), we get

⇔ γi(i+ 1) ≤ f(β + ·) < γ(i+ 1)(i+ 2). (5.13)

This means that i+ 1 is the forwarding limit corresponding to β + ·. Note that γi(i+ 1) ≤

f(β+ ·) implies that j(j+1) ≤ f(β+ ·) for every j < i. Hence, Jc̄,·(j, β) > Jc,·(j, β) ∀ j < i.
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Chapter 6

Appendix 2

We investigate the effect of the magnitude of the step-size λ on the steps of the algorithm.

Case 1 : β − λ ≥ 1√
α

Since f(β) is a decreasing function for β > 1√
α

, for this case

f(β + λ) > f(β) > f(β − λ).

Hence, u = {·, λ−} will be the best decision.

Case 2 : β + λ ≤ 1√
α

Since f(β) is an increasing function for β < 1√
α

, for this case

f(β − λ) > f(β) > f(β + λ).

Hence, u = {·, λ+} will be the best decision.

Case 3: β = 1√
α

Since f(β) is minimum at 1
2√α , for this case

f(β − λ) > f(β), and f(β + λ) > f(β).

Hence, u = {·, 0} will be the best decision.

Case 4 : β > 1√
α

and β − λ < 1√
α
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Since f(β) is minimum at 1√
α
, u = {·, 0} will be the best decision if f(β) < f(β − λ), u =

{·, λ−} will be the best decision if f(β) > f(β − λ), and both decisions are equivalent if

f(β) = f(β − λ). Note that

f(β) < f(β − λ)

⇔ 1 + αβ2

β
<

1 + α(β − λ)2

(β − λ)

⇔ λ(1 + αβ(λ− β))

(β − λ)β
> 0

⇔ β − λ < 1

αβ
.

Hence, u = {·, 0} will be the best decision if β − λ < 1
αβ

. Similarly, u = {·, λ−} will be the

best decision if β − λ > 1
αβ

. Note that u = {·, λ−} and u = {·, 0} will become equivalent

decisions if β − λ = 1
αβ

.

Case 5 : β < 1√
α

and β + λ > 1√
α

Since f(β) is minimum at 1√
α
, u = {·, 0} will be the best decision if f(β) < f(β + λ), u =

{·, λ+} will be the best decision if f(β) > f(β + λ), and both decisions are equivalent if

f(β) = f(β + λ). Note that

f(β) < f(β + λ)

⇔ 1 + αβ2

β
<

1 + α(β + λ)2

(β + λ)

⇔ −λ(1 + αβ(−λ− β))

(β + λ)β
> 0

⇔ β + λ >
1

αβ
.

Hence, u = {·, 0} will be the best decision if β + λ > 1
αβ

. Similarly, u = {., λ+} will be the

best decision if β + λ < 1
αβ

. Note that u = {·, λ+} and u = {·, 0} will become equivalent

decisions if β + λ = 1
αβ

.
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