SOCIAL NETWORKING USING WEB SERVICES

by

VUAY CHAKRAVARAM

B.Tech, Jawaharlal Nehru Technological University, India, 2013

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Computer Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016

Approved by:

Major Professor
Dr. Daniel Andresen

Abstract

Web services have expanded to become popular in application development. Web
services technology represents an important way of communication between different
applications across different platforms. Unlike traditional client/server models, such as a
Web application or Web page system, Web services do not provide the user with a GUI. Instead,
Web services share business logic, functionality and data through a programmatic interface
across a network. Web services are services or functionalities that are exposed to the internet and
serves as online or web APIs. These services which are online APIs can be called from your code

and use the results in your applications to offer specific functionality to users.

This project consists of two applications the client and the server application. The server
application is an online REST API (Web Services developed using REpresentational State
Transfer (REST) protocol) which provides all the functionalities as a service across the network

that are required to develop a social networking web application.

The client application is similar to any other social networking web application where
you can create a profile, delete profile, send messages to your friends, post things, like and
comment a post. This applications sends request to the server application using HTTP requests
and get the responses. These responses are then consumed in the application to provide the

required functionalities to the end user.

Table of Contents

ST OF FIQUIES ...ttt ettt e s e s et e te e st e et e e beeneenaeebeeneenbeanee s v
S 0 I o] [PPSR vii
Chapter 1 - INFOAUCTION........cciiiiecie ettt e e s te e e e s raeteesbesneeseeenee e 1
IO (0T =Tot L=l o] o OSSR 1
|V T (Y [0 o SRR 2
Chapter 2 - BACKGIOUNTc..oiiiiiiitiiieie ettt nb e 3
2.1 WEBD SBIVICES ...ttt bbb bbbttt bbb bt 3
2.2 SOAP WED SEBIVICES ..ottt bbbttt bbb reenes 3
2.3 RESTTUI WED SEIVICES ..ottt sttt 4
2.3.1 Advantages of RESTTUl WED SEIVICESccueieiiiiieieie s 4

p O o 1] o= gL USSR 5
2.4.1 Advantages of using HIDEINAte.ccocoiiiiiieic e 5

2.0 P et R Rt E et R e R Rt Re bt n e te e et ne et s 7
2.5.1 AQVANTAGES OF JSP: ...ttt 7
Chapter 3 - Setup and Software REQUITEMENTSccoiiiiiirieieiese s 8
Chapter 4 - Client Application Design and Implementationccccceveiieiicic e 9
4.1 MV C ArCIITECIUIE ..ottt sttt r et e et st ebenbeereene e 9
4.2 Client APPlICAtIoN DESIGNoouiiiiiiiiiieieieie ettt bbb 9
4.2.1 DataACCESS ClasS (DAD)......oiiiiiieiiiieiie sttt 10
4.2.2 ENLILY CIASSESecueiitieiie ettt ettt ettt e e s e s beesbesreesteenreeneesraeneeas 12

4.3 Class Diagram of Client AppliCatioN...........cccvoiiiiiiicie e 13
4.3.1 DAtaACCESS ClASS ... vveeeerieiiieiieeiesiee e et ste et e e e s e staeseesreesteeneesneesneeseesneesneeneeas 14

4.4 Client Application Use Case DIagram..........cooereiiiirerieeienie sttt 17
4.4.1 USES CASES TOF USEI ...ttt 18
4.4.2 Use Cases TOr AQMIN USEIcuoiiiiiiieiienieie ettt 18
Chapter 5 - Design and Implementation of Server Applicationcccccevviieviieiesiene e 19
5.1 WEeD APT AFCNITECIUIEeeiieeie ettt reeneeneeeneees 19
I A O T B = To [= SRR 21
5.2.1 ENtItY/MOUEI CIaSSESveevieiiiiciie ittt eana e 22

LT B =Y N o 07 1 24

5.3 Hibernate Implementationcccveiiioiieie e 27
5.3.1 Hibernate Configuration file ... 27
5.3.2 Configuration PrOPEITIESc.eiueiiiitiriiiii st 28
5.3.3 Hibernate ANNOTAIONScueiiiiiiiiieieie s 28

DL JAX RS ittt E e et R R bR ettt te bt e et e 30
5.3.1 Jersey- RESTTUl WED SEIVICEScoiiiiiiiiiieice e 30
5.3.2 JAX RS ANNOTALIONSviitieiieiieiiiesieeie ettt sttt be s sbe et sneesreeneeenee e 31
5.3.3 WED AP DESCIIPLIONcvvevieieeiecieeite ettt te et re e e e e steanaesnaenneenee e 33

Chapter 6 - SECUNING WED APooie ettt et anas 35

6.1 SSL Security IMpPIemMentationcccooeiiiiiiieii e 35
6.1.1 SSL certificate and OPENSSLooiiiiiiiiiiieee e 35
6.1.2 Configuring server.xml for handling SSL SECUFItYcccvevveiiiiiieie e 36
6.1.3 Configuring WED.XMIc..ooviiie e 36

ChapLer 7 - SCIEEN SNOTS.......c.vitiiiitiii et bbbttt nbesbe e eneas 38
CRAPLET 8 - TESTING ...ttt e bbbt bttt b bbb e bt eneeneas 49

B.LTESLING WED AP ...ttt re e te e nneeras 49
ST S U T A =TS] T PSSP PR 50
8.1.2 Testing UsSinNg POSt REST CHENT.......ccoiiiiiiiiiieeee e 51
813 LIMITALIONS ...ttt te et e e te e s e sre e teeneesneeteeneenneenneenee e 52
8.1.4 Performance testing using JMeter-TEeStLcoevieiieiiiieee e 52
8.1.5 Performance testing using JMEter-TESt2ccevieiieiie i 53

8.2 Testing Clent APPHCATIONcoiiiiiie i 55
8.2 L UNIT TESTING 1.ttt ettt bbbttt eb e 55
8.3 Performance Testing Using Mozilla Developers TOlcccoovveviiieiicce e, 56

Chapter 9 - Learning and EXPEIIENCEccuiiiieiieiieecie ettt et e e sraeene e 62
9.1 LLBAITHNG .ttt ettt bbb bbb bbb Rt bRt b b bbbt ne s 62
9.2 Project DevelopmeNnt EXPEIIENCE.cciiiiiii it 64

Chapter 10 - FULUIE WOTKooiiiie ettt e e snaeere e 65

Chapter 11 - CONCIUSIONocuviiiii ittt et e st e e e e e sae e s beesraeeraeas 66

Chapter 12 - RETEIENCES........oiiieie ettt bbbttt sb et st sneeneas 67

List of Figures

Figure 1: Server Client Interaction in RESTful Web Services [2]ccooviiiiniiieiinnenenee 5
Figure 2: Hibernate ArchiteCture [3].......coiioieeee e 6
Figure 3: Class Diagram of the Client AppliCatioNc.ccceiviieiieiicc e 13
Figure 4: Use case Diagram for Client AppliCation............ccevviieiiieii e 17
Figure 5: Server Application ArChItECTUIE.........cviiiiii e 20
Figure 6: Server Application Class DIagramccoeieiiriiiiieierese et 21
FIQUIE 72 ENTILY ClaSS....uiiiiiiciiece sttt ba e be e e sne e beeneeneenneeneean 22
Figure 8: Generated Table for the Entity CIassc.cccvevieiieiiiie e 23
Figure 9: Generated XML for the Entity ClIaSs..........ccccoiiiiiiiiiiiieccre e 23
Figure 10: Hibernate Configuration File ... 27
Figure 11: Hibernate Annotated ENtity Class ... 29
Figure 12: Generated Table for AnNnotated CIasscoeieeiiiiieiiciiec e 30
Figure 13: ANNOtated WED SEIVICE........ccvviiiiecie ettt sae e 31
Figure 14: ReSponse Of WED SEIVICE..........cuiiiiiiiiiiiie e 32
Figure 15: Server.xml configuration file ..o 36
Figure 16: Web.xml of server APPHICALIONcccviiiiiiiic e 36
FIQUIPE 17: LOGIN PAGE......ciiieieiie ettt ettt ettt e et e e be e e e s raesteeaeeneesneenreas 38
FIQUIE 18: SION UP PAGE ...ttt bbb bbbttt nn ettt be e 38
FIgure 19: Login Failoooiee e 39
Figure 20: AAMIN HOME PAJEc.viiuieieieiece sttt sttt steenesneeste e 39
Figure 21: USEr HOME PAEccviiieieiecie ettt te e sra e steenenneesae e e 40
FIQUIE 22: AQTING 8 POST ...ttt bbbttt e bbb 40
FIQUIE 231 POSE SUCCESS ...ttt sttt sttt b bbbttt et bbb be e 41
FIQUIE 24: VIEW @Il POSES ..ottt e et e e nae e 41
FIGUIE 25; SEE LIKES ...ttt ettt e e e e e be et e e te e nne e 42
FIQUIE 26: VIBW PTOTIIE ..ot 42
FIQUIE 27 VIBW COMMEBNTSeiuieieite ittt sttt st b ettt nne bbb 43
Figure 28: SENd COMMEBNTooiiiiie et sb e s e et e e e teennee e 43
Figure 29: Send COMMENT SUCCESS.uuiiiriiiieiieeitie st sieeste e sae s e sbe e e s ae e sbe e s be e s reeeneesneeanes 44

Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:

VIBW IMIEBSSAQES ... vveveerteeriesteesteestesteesteeste s e e steeste s s e teestesseesteenseeseesseaseeaneesreennesneenseaneeas 44
SENU MESSAQE ...ttt ettt et et e st e st e et e e se e s beesteeseesbeesbeaneesreenteenee e 45
TYPE YOUE IMBSSAQE. ... iteieiteie ettt ettt ettt e ettt e e sab e e e snb e e s enn e e s ne e e 45
MESSAGE SENT SUCCESSuveeieietieiiee ettt ettt ettt st et e st e et e st e e sbeeenbeesbeeenneens 46
Creat PrOFIIE.ot 46
Profile Creation SUCCESS.......cciiiiiiieieiesie sttt sttt e et bbb nreas 47
Delete Profile... ..o e 47
Deleting Profile SUCCESS.ciiiiiieieerrr e 48
[0 T [0 11| PRSPPI 48
Postman Rest CHENt RESUIES..........coiiiiee e 51
Throughput Graph L ..o s 52
JMeter Test CONFIQUIALION...........ooiiiiiiiiii e 53
Graph Showing ReSPONSE TIMEcviiviiiiiie e 53
Graph showing the throughpUL ..o 54
Time taken t0 10ad 10gIN PAGEc.oooiiiiiiiiieiiee s 57
Time taken to 1080 NOME PAGEc.veiiiiiiiii s 57
Time taken to display all POSES.ccveiiiiiiec e 58
Time taken to display all MeSSAGESccvevveiiiiieie e 58
Time taken t0 8dd @ POST........coeiiiieie s 59
Time taken t0 SENG MESSAGEveuveieieieite sttt 59
Time taken to delete a Profile.........covciiiiiiiie e 60
Time taken to create a Profile........cccvoiiiiii i 60
Time taken t0 TOQOUL........coiiiiii s 61

Vi

Table 1: Table Showing Test Case .
Table 2: Test Cases Set 1 for Client
Table 3: Test Cases Set 2 for Client

List of Tables

vii

Chapter 1 - Introduction

1.1 Project Description

This project consists of two applications the client and the server application. The server
application is a REST API which provides all the functionalities that are required to develop a
social networking web application. This APl uses Hibernate framework to communicate and
perform CURD operations on the underlying database. This API handles all types of HTTP
method calls and accepts data in the form of XML and give responses in XML format. SSL
security with basic authentication are implemented to secure the Web API so that only an
authentic users can use this API.

The client application is similar to any other social networking web application where
you can create a profile and send messages to your friends, post things, like and comment a post.
The functionality of deleting profiles can only be done by the admin user.

The client application sends requests to the services provided by this REST API using
GET, PUT, DELETE, POST methods of HTTP protocol and gets the responses back in the form
of XML. The XML response is parsed and then consumed in the application to produce required

functionalities to the end user.

1.2 Motivation

Offices, workplaces and organizations uses different applications to provide ways of
communication between their employees, groups and teams. My idea is to provide them with a
customized internal social networking application similar to Facebook where the employees can
not only send messages between them but also post things on to the wall, like them and comment
on them. The organizations can just build their own customized GUI and get all the required
functionalities from the Web API. They need not worry about the functionality or maintain any
kind of database which reduces the overhead on organizations. This application can be easily

embedded in to their company’s website.

Chapter 2 - Background

2.1 Web Services

A web service is any piece of software that makes itself available over the internet. Web
services are XML-based information exchange systems that use the Internet for direct
application-to-application interaction. These systems can include programs, objects, messages, or
documents. Web services provide a standard means of interoperability between software
applications running on a variety of platforms and frameworks. Web services are characterized
by their great interoperability and extensibility as they use XML for exchange of data. These
services which serves as online APIs can be called from your code and use the results in your
applications. So, technically you send a request to a web service and consume the response in
your application.

There are two different types of Web Services depending upon the design and their

architecture. They are SOAP based web services and RESTful web services.

2.2 SOAP Web Services

SOAP stands for Simple Object Access Protocol. These are the web services which use
XML messages for exchange of data between applications across the network. These XML
messages should follow the Simple Object Access Protocol (SOAP) standard, an XML language
defining a message architecture and message formats. SOAP is a W3C recommendation. In Java
EE 6, JAX-WS provides the functionality for implementing web services using SOAP stands

for Simple Object Access Protocol.

2.3 RESTful Web Services

REST stands for REpresentational State Transfer Protocol ™. Web Services which are
developed following REST protocol are called as RESTful web services. REST web services
which works on http protocol. In RESTful web services the client communicates with the API
using GET, POST, PUT, DELETE methods of http protocol and gets the response in the form of
XML/JASON etc. RESTful web services are light weight, highly scalable and maintainable and
are very commonly used to create APIs for web based applications. JAX-RS which stands for
Java API for XML Restful Web Services is an API for implementing RESTful Web Services.
REST allows applications to transfer data between then in different formats like XML, JASON,
TEXT etc. REST is language and platform independent.

There are different implementations available for JAX-RS such as Jersey, RESTEasy,
Restlet, Apache CXF etc. | have used Jersey implementation of JAX-RS in my project to

develop the client application.

2.3.1 Advantages of RESTful Web Services
e RESTful web services are lightweight and have better performance.
e RESTful web services are built to work best on Web.
e Responses from RESTful web services can be easily parsed and consumed in application.
e In REST architecture style data, functionality are considered resources and are accessed

using Uniform Resource Identification (URL).

Rest Web Service

Server
HTTP HTTP
Request Response
Client

Figure 1: Server Client Interaction in RESTful Web services

2.4 Hibernate
Hibernate is a high-performance Object/Relational Mapping tool. ORM is a
programming technique for converting data between relational databases and object oriented
programming languages such as Java. Hibernate is an Object-Relational Mapping(ORM)
solution for JAVA and it raised as an open source persistent framework created by Gavin King
in 2001. It is a powerful, high performance Object-Relational Persistence and Query service for

any Java Application.

Hibernate maps Java classes to database tables and from Java data types to SQL data
types and relieve the developer from 95% of common data persistence related programming

tasks.

2.4.1 Advantages of using Hibernate.
e Hibernate takes care of mapping Java classes to database tables using XML files and

without writing any line of code.

Provides simple APIs for storing and retrieving Java objects directly to and from the
database.

Abstract away the unfamiliar SQL types and provide us to work around familiar Java
Objects.

Manipulates Complex associations of objects of your database.

Hibernate does not require an application server to operate.

Minimize database access with smart fetching strategies.

Provides simple querying of data.

iatieiateetetntetsintetnntatetntatetntatetndatmind
I I
: Transaction :
! Factory !
i | Session Factory . : INDI
I
: Connection :
1
: Provider :
1 I
I I
I |
: : DBC
' J
g ; : Database
Application Pe.mstent Session c
object I
I
I I
1 I
I |
| I Y,
' I/
; Transaction : JTA
i |
I I
I e R
Core objects of Hibernate Framework Internal API
Used by
Hibernate

Figure 2: Hibernate Architecture !

2.5JSP

Java Server Pages (JSP) is a technology for developing web pages that support dynamic
content which helps developers insert java code in HTML pages by making use of special JSP

tags, most of which start with <% and end with %>.

A Java Server Pages component is a type of Java servlet that is designed to fulfill the role
of a user interface for a Java web application. Web developers write JSPs as text files that

combine HTML or XHTML code, XML elements, and embedded JSP actions and commands.

Using JSP, you can collect input from users through web page forms, present records

from a database or another source, and create web pages dynamically.

2.5.1 Advantages of JSP:
e JSP pages easily combine static templates, including HTML or XML fragments, with
code that generates dynamic content.
e JSP pages are compiled dynamically into servlets when requested, so page authors can
easily make updates to presentation code.
e Java Server Pages are built on top of the Java Servlets API, so like Servlets, JSP also has

access to all the powerful Enterprise Java APlIs, including JDBC, JNDI, EJB, JAXP etc.

Chapter 3 - Setup and Software Requirements

The following are the tools/software | have used for my project development

Integrated Development Environment (IDE): | have used Eclipse Luna with J2EE
prospective

Database: Oracle Database Expression Edition 11g

Hibernate Package: hibernate-relese-5.0.2.Final

Jersey Package: jersey-achive-1.19 (for developing RESTful web services and REST
Client)

JAX-B: jaxb-ri-2.2.7: JAX-B Stands for Java Architecture for XML Binding which is
used to convert java Objects to XML documents and vice versa which is used at client
side.

Operating System: Windows 8.1

Java Development Kit: JDK 1.8.0 40

Server: apache-tomcat-8.0.27

REST Client: Postman chrome plugin.

Chapter 4 - Client Application Design and Implementation

4.1 MVC architecture

Model View Controller or MVC ¥ as it is popularly called, is a software design pattern
for developing web applications. It logically separates the presentation/view part, controller and
the data access layers.

MVC is popular as it isolates the application logic from the user interface layer and
supports separation of concerns. Here the Controller receives all requests for the application and
then works with the Model to prepare any data needed by the View. The View then uses the data
prepared by the Controller to generate a final presentable response. The MVC abstraction can be
graphically represented as follows.

o Model - The lowest level of the pattern which is responsible for maintaining data.
e View - This is responsible for displaying all or a portion of the data to the user.

o Controller - Software Code that controls the interactions between the Model and View.

4.2 Client Application Design

In my Client application, the entire logic for view part is programmed using JSP. The
same JSP handles the events from the user and sends requests to DataAccess class to get the
required functionality. After receiving the response from the DAO, the same JSP is also
responsible for passing the control to another JSP. So, in my client application the JSPs play the
role of the View and the Controller.

Inside the JSP the view part is handled by embedded html code. JSP capable of building
the html code dynamically. It also uses CSS code for styling and JavaScript for client side form

data validations.

4.2.1 DataAccess Class (DAO)

The DAO class handles all the requests coming from the JSPs to get data from database
or manipulate data in the database. But, the client application does not have a database of its
own. So, it dynamically constructs an URL and sends the requests to the RESTful web services
to get the required functionality. It also performs the functionality of marshalling and Un-
marshalling.

The DataAcces class makes use of the POJO (Plain Old Java Object) classes or the model
classes for the purpose of marshalling and un-marshalling.

Marshalling and Un-marshalling

JAX-B (Java Architecture for XML Binding) allows Java developers to map Java classes
to XML representations. JAXB provides two main features: the ability to marshal Java objects
into XML and the inverse, i.e. to un-marshal XML back into Java objects. JAXB mostly is used
while implementing web services or any other such client interface for an application where data

needs to be transferred in XML format.

10

The following diagram shows the control flow and architecture of the client application

Pojo/Model
Classes
Validate js
Style. css
Model
Dynamically
View and Controller GET, DELETE ¥ Constructs URL —»
Http requests
Marshal the data
object in to XML >
and constructs URL
POST, PUT
| ViewAllMessages.jsp | Response in
\ Receives XML XML
Logout.jsp || response, Un- g
marshal XML to
RESPONSE object
OBJECT

Figure 3: Client Architecture

11

4.2.2 Entity Classes

These classes does not have any functionality in them. They just only have member
variables and getters and setters for those variables. The following is the code snippet of an

entity class.

[J] Datalccess.java [J] Comments.java 4J] Profiles.java |X| hibemna

package ksu.chakravaram.client.modelclasses;
import javax.xml.bind.annotation.XmlElement;[]

[iXmlRooctElement(name = "comments™)
public class SendComment {

public SendComment() {
£ Auto-generated constructor stub
¥

@xml1Element]

private int profile_id;

fXmlElement

private int post_id;

[f¥XmlElement

private String cmt;

public void setProfile_id(imt profile_id) {
this.profile id = profile_id;

ft3
F

W kP @00~ W W R

&
a
=
9
-
@
-
2
3

public void setPost_id(int post_id) {
this.post_id = post_id;

P

public void setCmt(String cmt) {
this.cmt = cmt;
¥

Wl R R Ra R RS R RO RS R RD
= ® W00 s ;o

Figure 4: Entity Class

The above entity class with XML annotations can be converted in to XML by

marshalling. DataAccess class converts the above class in to XML which looks like below.

Lcomments:

ccmtrhello</cmt s
<post_id»3@1</post_id»
<profile_id»1e1</profile_id:>

< /comments:

Figure 5: Entity Class XML
So, XML and Entity classes are interconvertible.

12

4.3 Class Diagram of Client Application
The class diagram shows all the different classes present in the application and the
relationships between them. In my client application | have 12 Entity classes and one Data

Access class. The DataAccess class uses the entity classes for marshalling and un-marshalling.

<<Java Classs»
(9 ListProfiles

ksu.chakravaram client modelcssses

& ListProfies()
@ getProfiles():List«Profiles:

-profiles [0,
~mas B

<<Java Class+»

(3 Profiles

kzu.chakravaram.client modelzlzszes

o profile_id: int

o firstname: Siring

o [astname: tring

o phno: String

o dob: Date

o username; String
o password: String
4 image: byte]

& Profies()

@ getimage()byle]

@ getProfile_id()int

@ getFirstname():String
@ getLasiname():String
@ getPhne():String

@ getDob()Date

@ getUsername():String
@ getPassword():Siring

<<Java Class=>
(39 ValiedUser

ksu.chakravaram client modelchsses

~¥]

<Java Class=>

(9 ListMessagess

ksu.chakravaram. client. modelclasses

Oc ListMessagess()

o getilessages()List:Messagess

~m 0.1

i A1

o flag: int
o profile_id: int

«<)ava Class=>
(BIntegerValue

ksl chakravarsm. client modelclasses

& ValedUser()
@ getFlag()int

o i int

@ getProfile_id():int

{;)D IntegerValue()
@ getl()int

=<Java Class»»
@M «<)ava Class=»
keu chakiavara ejlsages‘ Inlssses OPost
e ksu.chakravaram. client modelclasses
o tmsgs: int N o post_id int
e o frum_pruﬂle_fd. int o profie_id: int
0 message: string o post: String
; -
0. o to_profile_id: int ¢ fime: Date
o time: Date
= & Pust])
Messages) o getPost_id()int
O oI HUM | | g geate i
@ getr.1essage[j..5tr||.1g @ getPost():String
@ gefTo_profile_id():int 0 o oeTime() Date
@ getTmags()int
@ geiTime():Date -posts | 0.
~madd;’ 0..1

«<<Java Class>>»

(GoA0

ksu.chakrayaram.client modelclszes

kzu.chakravaram.client modelclaszes

<<Java Clags=>
(9 ListPosts

&0A00
@ viewProfie(int):Profiles
@ viewPosts()ListPosts

@ viewAlProfiles():ListProfies

@ deleteProfile(int).int

@ isLiked(int,int)-int

@ Like(int int)int

@ getAllLikes(int)ListLikes

@ getAlComments(int); ListComments

& ListPosts()
@ getPosts()List<Post>

~lk]0.1

=<Java Class=»

(®Like

ksu.chakravaram client modelzlszes

\
0.1
\01

<<Java Class=>
(9 Comments

ksu.chakravaram.client modelclszes

o profile_id: int
o post_id: int
o cmt: String

{)D Comments()

@ getProfile_id():int
@ getPost_id(yint
@ getCmt{):String

-cmts 0.

d 0.1

<<Java Clasg=>

<<Java Class=>
(9 ListComments

ksu.chakravaram. cient. modelclazses

@ getProfile_id(kint

o post_id: int ikeh (9 ListLikes

o profile_id: int éu_a_ ksu.chakravaram. client modelclasses
& Like() o ListLikes()

@ getPost_id():int @ getlikes() List<Like=

oc ListComments()
@ getCmts():List<Comments>

Figure 6: Class Diagram of the Client Application

13

4.3.1 DataAccess Class

This class accepts request from the JSPs and then construct a dynamic URL and call
RESTful web service. Upon receiving the response in XML format, convert them to objects and
gives them back to JSPs. The following are the various functions present in the DAO class.

» public Profiles viewProfile(int id)
This function accepts profile_id as input then calls RESTful web service by constructing

the URL. Once the GET request is made on the URL it receives XML response and convert it to
Profiles object which is returned to the JSPs.
URL: "http://localhost:8081/WebServices_Finall/backend/profiles/"+id

» public ListPosts viewPosts()
This function calls RESTful web service by constructing the following URL which gives

list of all the posts in form of XML. This XML response is convert it to ListPosts object
containing list of Post objects which is returned back to the JSPs.
URL.: "http://localhost:8081/WebServices_Finall/backend/profiles/allposts”

» public ListProfiles viewAllProfiles()
This function calls RESTful web service by constructing the following URL which gives

list of all the Profiles in form of XML. This XML response is convert it to ListProfiles object
containing list of Profiles objects which is returned back to the JSPs.

URL: http://localhost:8081/WebServices Finall/backend/profiles/allprofiles

14

http://localhost:8081/WebServices_Final1/backend/profiles/allprofiles

> public int deleteProfile (int id)
This function accepts profile_id as input then calls RESTful web service by constructing

the URL. Once the DELETE request is made on the URL it receives XML response containing
the object of IntegerValue. The IntegerValue object is convert it to integer which is returned to
the JSPs.

Value 1 implies successful deletion of profile and 0 implies failure in deletion.

URL: "http://localhost:8081/WebServices_Finall/backend/profiles/delete/"+id

> public int isLiked (int pfid, int pid)

This function accepts profile_id, post_id as inputs then calls RESTful web service by
constructing the URL. Once the GET request is made on the URL it receives XML response
containing the object of IntegerValue. The IntegerValue object is convert it to integer which is
returned to the JSPs. Value 0 implies not liked and 1 implies liked.

URL.: http://localhost:8081/WebServices_Finall/backend/profiles/isliked/"+pfid+"/"+pid

» public int Like (int pfid, int pid)

This function accepts profile_id, post_id as inputs then calls RESTful web service by
constructing the URL. Once the GET request is made on the URL it receives XML response
containing the object of IntegerValue. The IntegerValue object is convert it to integer which is
returned to the JSPs. Value 1 implies success and 0 implies failure in liking the post.

URL.: "http://localhost:8081/WebServices_Finall/backend/profiles/like/"+pfid+"/"+pid

15

> public ListLikes getAllLikes (int post_id)
This function accepts post_id as inputs and then calls RESTful web service by

constructing the following URL which gives list of all the likes for a post in form of XML. This
XML response is convert it to ListLike object containing list of Like objects which is returned
back to the JSPs.

URL: "http://localhost:8081/WebServices_Finall/backend/profiles/getlikes/"+post_id

» public ListComments getAllComments (int post_id)
This function accepts post_id as inputs and then calls RESTful web service by

constructing the following URL which gives list of all the comments for a post in form of XML.
This XML response is convert it to ListComments object containing list of Comments objects
which is returned back to the JSPs.

URL:

http://localhost:8081/WebServices_Finall/backend/profiles/getcomments/"+post_id

16

4.4 Client Application Use case Diagram

A use case diagram is a graphic depiction of the interactions among the elements of a

system. In my client application | have two different type of users the Admin user and the normal

user. The following diagram gives the details of how they interact with the system.

user

!

//

System

-
q_h‘\-______
,__;;

/

CommentOnPost /
[T==
SeeAllCommentsForPost p

ViewAllMessages

Send Message /

\\\\\////

Figure 7: Use case Diagram for Client Application

17

admin

4.4.1 Uses Cases for User

» Sign Up: The user can create a new account of his own by giving the details.

Y

Login: With the login credentials given at the time of sign up, the user can login in to the
system.

Add Post: The user can add a post will be visible to all the other users.

View All Posts: The user can see all the posts posted from different profiles.

See All Comments For Post: The user can see all the comments for a particular post.
Comment on Post: The user can comment on any post.

See All Likes For Post: The user can see who all liked a particular post.

Like Post: The user can like a post.

v V VYV VvV ¥V V VY

View All Messages: The user can see all the messages he received from different users.
Send Message: the user can send messages to a particular profile.

» Logout: The user can logout from the system.

4.4.2 Use Cases for Admin User
The admin user can perform all the activities that are done by the normal user. Apart
from those the admin user can create a new profile for a user and can also delete a profile from

the system.

18

Chapter 5 - Design and Implementation of Server Application

5.1 Web API Architecture

The server application is a Web API which contain three different type of classes. The
Resource Class, DataAccess Class and the Entity/Model Classes.

Resources Class is the starting point of the application in which the web services are
implemented. Every HTTP request coming from the browser with the matching URL comes to
this class. Depending up on the URL pattern, type of request (GET, DELETE, and PUT) this
program sends request to the DataAccess Class. This program also passes the parameters and
XML data that come along with the URL and sends request to DataAccess Class.

The Resources class receives the response in the form of object/ integer value and then
converts it in to xml format using the model/POJO classes. This XML response is sent back to
the browser.

The web.xml is configured to send all the incoming HTTP requests to this program which
matches the defined pattern.

The DataAccess Class speaks to the data base using Hibernate. This program is capable
of performing CURD (create, update, retrieve and delete) operations on the data base using

hibernate frame work.

19

The following diagram shows the control flow and architecture of the server application

POJO Classes

Profiles.class

Messages.class
HTTP request

Likes.class
» Web.xml Comments.class
Post.class
If URL pattern
matches XML Mapping
Hibernate Mapping
Resources.java DataAccess.java a
@Path(*/profiles™) getName(int userid) I
{ {
I
< JOML Response @Path(“/{userld}™) B
| @GET HQL Query «—» Bl
= name= { 4+ | select name from R
Return profiles p where N
e DAO.getName(userld) p.user_id=? *
</name>= } A
T
Return Name;
1 E

Figure 8: Server Application Architecture

20

5.2 Class Diagram

The class diagram shows all the different classes present in the application and the
relationships between them. In my server application | have 5 entity/POJO classes, 1 DataAccess
class and one Resources class. The incoming requests are handled by the Resources class and
calls appropriate methods of DataAccess class. DataAccess class perform curd operations using

Hibernate and the model classes and then returns objects to the Resources class. The resources

class converts these objects in to XML and sends response back to the browser.

Comments Likes
flag:int A
profile_id: int profile id: int profile_id: int
postid:int ValiedUser() : ValiedUser -1 post.zint
et String ValiedUser (flag : int, profile_id : int) : ValiedUser /! 1 Likes () Likes
Lo Comments () : Comments 4
Profiles — a Fruses
profile_id: int <. < T~ q_,“f_sei P,'f e
firstname: String —— T=—— /
lastname: String T — _ Euses DataAccess Ee
phno: String . T -~ getProfileld {username : String, password : String) : int 258
usermame: String «..» T getProfile (pid : int) : Profiles post_id:int «.»
password: String 1 gethlessages (pid : int]: Messages[1.*] //’? profile_id: int
image: byte[1."] «...» datatccess deleteProfile (pid: int) : int e post: String
getAllPosts () : Posts[1.7] L, Posts () : Posts
getAllProfiles() : Profiles[1..%] usen
isLiked (proid : int, pid:int }: int y
1 like (proid : int, pid:int): int “q
3 hasLikes (pid: int) : int time
getLikes (pid: int) : Likes[1..*]
getld (username : String , password : String)@ ValiedUser «..» getComments (pid: int }: Comments[1.7]
getld (profile_id : String) : Profiles «..»] createProfile(p: Profiles) : int
getMsg (profile_id : String) : Messages [1.."] «..» createPost (p : Posts)1 int
delMsg (profile_id : String) : IntegerResponse «.» frssageResour sendMsg (p: Messages] : int
getPost (header: String) : Posts[1.."] «.» newCmt (p: Comments }: int ‘
getAllProfiles() : Profiles[1..%] «..» N D|
getComments (post_id : String }: Comments[1.*]«..» . |
isLiked { post_id : String, profile_id : String) : IntegerResponse «...» // e N [
like (post_id : String , profile_id : String)@ IntegerResponse «..» L; . wuses ‘
allike (post_id : String) : IntegerResponse =.» o —
getlikes (post_id : String }: Likes [1.*]«..» ~ Messages
gethlsqga (profile_id : String) : Messages[1..7] «...»
delMsgs (profile_id : String) : IntegerResponse «.» izint R from_profile_id: int
createProfile { pof : Profiles }: IntegerResponse «..» IntegerResponse () : IntegerResponse message: String
createPost (pof : Posts) : IntegerResponse «.» IntegerResponse(i:int J: IntegerResponse to_profile_id: int
newhdsg (msg : Messages] : IntegerResponse «.» Messages (] : Messages
newCmt(cmt: Comments)@ IntegerResponse «..»

Figure 9: Server Application Class Diagram

21

5.2.1 Entity/Model Classes
These classes do not have any functionality in them. They just only have member
variables and getters and setters for those variables. The following is the code snippet of an

entity class.

[J] Datafccess.java [J] Comments.java)] Profiles java H

1 package ksu.chakravaram.mappingclasses;

2
3# import javax.persistence.Entity;[]
7
8
9 [@xXmlRootElement
@ @Entity
1
2 public class Likes {
3
A= public Likes() {
=15 /¢ TODOD Auto-generated constructor stub
6)
e @Id
8 [@Generatedyvalue
9 private int tlikes;
a8
1 private int profile id;
2 private int post id;
3d public int getProfile id() {
4 return profile_id;
5 ¥
6& public woid setProfile id({imt profile id) {
7 this.profile id = profile id;
8)
ac public int getPost id() {
a return post_id;
1
2& public woid setPost_id(int post_id) {
3 this.post_id = post_id;
4 ¥
5
B
3?|}

Figure 10: Entity Class

22

All the entity classes are used by DataAccess class to map them to tables and by
Resources class to convert objects in to XML files. The following are the code snippets for the
generated XML and the generated table for the entity class.

I2QL> conn
Enter user—name: system
Enter password:

POST_ID NOT MULL
PROFILE_ID HOT HULL

ERC1@>
ER<1a@>

TLIKES HOT HULL ﬁER(iE)

Figure 11: Generated Table for the Entity Class

likes
<post_id»3@1</post_id>
<profile_id>1e1</profile_id:
likes>

Figure 12: Generated XML for the Entity Class

23

5.2.2 DataAccess

The DataAccess Class speaks to the data base using Hibernate. This program is capable

of performing CURD (create, update, retrieve and delete) operations on the data base using

hibernate frame work. The following are the various methods present in it.

>

public int getProfileld (String username, String password)

Accepts username, password and returns profile Id if it’s a valid username and password.
HQL Query: “select e.profile id from Profiles e where e.username=? and e.password=?"
public Profiles getProfile (int pid)

Accepts profile_id and returns all the profile details of the given profile_id

HQL Query: select e from Profiles e where e.profile_id=?"

public List<Messages> getMessages (int pid)

Accepts profile_id and returns all the messages available for that profile_id.

HQL Query: "select e from Messages e where e.to_profile_id=?"

public int deleteProfile (int pid)

Accepts profile_id and deletes that particular profile from the database.

HQL Query: delete from Profiles e where e.profile_id=?"

public int createProfile (Profiles p)

Accepts object of Profile and saves it in the form of a record in Profiles table in the

database. The profile_id is automatically incremented by getting the max value of the profile_id

from the profiles table using the following query.

HQL Query: "select max (e.profile_id) from Profiles e"

24

» public int createPost (Posts p)

Accepts object of Post and saves it in the form of a record in Posts table in the
database. The post_id is automatically incremented by getting the max value of the post_id from
the posts table using the following query.

HQL Query: "select max (e.post_id) from Posts e"
> public List<Posts> getAllPosts ()
Gets all the posts in the form on list of Post objects by executing the following query.
HQL Query: “select e from Posts ¢”
» public List<Profiles> getAllProfiles()
Gets all the profiles in the form on list of Profiles objects by executing the following
query.
HQL Query: "select e from Profiles e"
> public int sendMsg (Messages p)
Accepts object of Messages and saves it in the form of a record in Messages table in
the database.
» public int isLiked (int proid, int pid)
Accepts profile_id, post_id as parameters and returns 1 if there exist a record in the Posts
table else returns 0 by executing the following query.
HQL Query: “select e from Likes e where e.profile id=? and e.post_id=?"
> public int like (int proid, int pid)
Accepts profile_id, post_id as parameters and constructs an object of Class Like and

saves it as a record in the database.

25

» public int hasLikes (int pid)
Accepts post_id as parameter and returns 1 if a record exists in Likes table, else returns 0
by executing the following query.
HQL Query: "select distinct e from Likes e where e.post_id=?"
> public List<Likes> getLikes (int pid)
Accepts Post_id and returns list of all the likes for that post by executing the
following query.
HQL Query: “select distinct e from Likes e where e.post _id=?"
» public int newCmt (Comments p)
o Accepts object of comments and saves it as a record in Comments table in the
database.
» public List<Comments> getComments (int pid)
Accepts post_id as parameter and gets list of all the comments for that post by executing
the following query.

HQL Query: "select e from Comments e where e.post_id=?"

26

5.3 Hibernate Implementation

5.3.1 Hibernate Configuration file

For every database schema we need to define “hibernate.cfg.xml” which is hibernate
configuration file. In this XML file we define the details of the underlying database which will
be used by hibernate to speak to the database. We, also provide the locations of the POJO classes
which will be used by hibernate to convert them in to corresponding tables in the database. The

“hibernate.cfg.xml” looks like below

1) Datalccessjava [¥] Comments.java 41 *Profiles.java |x] hibernate.cfg.ml 3

1 <?wml wersion="1.8" encoding="utf-8"'7>

s

3 «<!DOCTYPE hibernate-configuration PUBLIC

4 "-//Hibernate/Hibernate Configuration DTD 3.@//EN"

5 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

68 <hibernate-configuration:

8= <session-factorys

9

1@ <property name="connection.driver_class” roracle.jdbc.OracleDriver</propertys
11 <property name="connection.url” :jdbcioracle:thin:@localhost:1521:xe</property:
12 <property name="connection.username™> system</property>

3 <property name="connection.password”> vijay</propertys|

4 <property name="connection.poolsize™> 18</property:

15 <property name="dialect”> org.hibernate.dialect.OracleDialect</propertys
16 <property name="hbm2ddl.aute":update</property>

17 <property name="show_sgl “»true</property:

12 <mapping class="ksu.chakravaram.mappingclasses.Profiles” />

19

2@ <mapping class="ksu.chakravaram.mappingclasses.Messages"/>

21 <mapping class="ksu.chakravaram.mappingclasses. Posts"/>

22 <mapping class="ksu.chakravaram.mappingclasses. Likes" />

23 <mapping class="ksu.chakravaram.mappingclasses. Comments"/ >

24

25

26 ¢/session-factory>

27 ¢</hibernate-configuration>

Figure 13: Hibernate Configuration file

27

5.3.2 Configuration Properties

Using the Property tag inside session-factory tag we give the following details.

>

YV V VYV V¥V

Y

Driver Class: “oracle.jdbc.OracleDriver” as I am using oracle database (which changes
from database to database).

Connection URL: “oracle.jdbc.OracleDriverjdbc:oracle:thin:@localhost:1521:xe” as I am
using thin driver running in hocalhost at port number 1521.

Username: The username of the database

Password: The password of the database for the corresponding user.

Dialect: “org.hibernate.dialect.OracleDialect” as using Oracle database.

Hdm2ddl.auto: Set to “update” which automatically creates tables if they are not present
in the database.

Show_sql: Set to “true” which displays the queries which gets executed in the console.
Mapping class: Set these to all the different POJO classes which have to be mapped to

the tables.

5.3.3 Hibernate Annotations

The following are the hibernate annotations | have used in my application. Hibernate

Annotations are used to map a particular class to a database table, they make POJO class a

persistent entity. Consider the following example.

>

>
>
>

@Entity: This tag declares the class as an entity (i.e. a persistent POJO class).
@1Id : This tag declares the identifier property (primary key) of this entity
@Column (Unique=true): This id imposes unique constraint on the column.

@GeneratedValue: This tag automatically generates a unique value to the column.

28

package ksu.chakravaram.mappingclasses;

dimport java.util.Date;
@¥XmlRootElement

@ENtity

public class Profiles {

public woid Profiles(})
1

}
@1d

private int profile id;
private String firstname;
private String lastname;
private String phnoj
private Date dob;
[@Column{unique=true)
private String username;
private String password;
private byte[] image;

Figure 14: Hibernate Annotated Entity Class

Here in the above piece of code, the class Profiles is mapped to the Profiles table with
columns profile_id, firstname, lastname, phno, dob, username, password and image. The primary
key of the table will be profile_id and username will have unique constraint.

When executed the a table named Profiles is created in the database and hibernate will take care
of the data types depending on the datatypes of the variables present in the POJO class. The table

looks like below.

29

| Run SQL Command Line

EQL> conn
Enter user—name: system
Enter password:

PROFILE_ID HOT HWULL HUMBER<18X
DORE DATE

FIRSTNAME unR (255>
LASTNAME unR (255>
<

PASSWORD UARC (255>
PHHO NOT HMULL HUMB a>
USERNAME UARCHAR2 (255>
IMAGE BLOB

Figure 15: Generated Table for Annotated Class

5.3 JAX-RS

Java API for RESTful Web Services (JAX-RS) ¥ is a Java programming language API
that provides support in creating web services according to the Representational State Transfer
(REST) architectural pattern.

5.3.1 Jersey- RESTful Web Services

In order to simplify development of RESTful Web services and their clients in Java, a
standard and portable JAX-RS API has been designed. Jersey RESTful Web Services framework
is open source, production quality, and framework for developing RESTful Web Services in Java
that provides support for JAX-RS APIs and serves as a JAX-RS (JSR 311 & JSR 339) Reference
Implementation.

Jersey framework is more than the JAX-RS Reference Implementation. Jersey provides
its own API that extend the JAX-RS toolkit with additional features and utilities to further
simplify RESTful service and client development. Jersey also exposes numerous extension SPIs

so that developers may extend Jersey to best suit their needs.

30

5.3.2 JAX-RS Annotations

These annotations ® helps us to declare our functionalities as web services. The following

are the annotations | have used in my application.

>

>

@Path : This tag specifies the relative URL path

@PathParam: This tag helps to access the parameters inside the program sent by the user
in the request URL.

@Consumes: This tag imposes the accepted request format.

@Produces: This tag species the type of response format.

@GET, @POST, @DELETE (HTTP methods): These areresource method
designator annotations defined by JAX-RS and which correspond to the similarly named

HTTP methods.

Consider the following snippet of the code.

41| Datalccessjava Comments.java 1J] *Profiles.java ¥| hibemate.cfg.xml MessageResourcejava 7

d Ra

A

b ba = @ W00~

s

L Ld bl d Ra Ra RD R R RS
;

un

package ksu.chakravaram.websevrices.resources;

® import java.util.List;[]

@Path("/profiles™)
public class MessageResource {

MessageService a=new MessageService();
DataAccess dao=new DatahAccess();

@GET

@Path("/{username}/{password}")

@Ccnsuwes({MediaType.APPLICATIDMLXNL}”

[@Produces ({MediaType.APPLICATION_XML})

public ValiedUser getId(@PathParam(”username”) String username,@PathParam(”password”) String password)

i

ValiedUser v= a.checkUser(username, password);
return v;

Figure 16: Annotated Web Service

31

In the above program the function getld () accepts username, password and returns
ValiedUser object. In order to access this functionality, the URL must be as follows.

http://localhost:8081/\WebServices Finall/backend/profiles/vijay/vijay and this should be a GET

request. And from this URL we are sending the parameters username and password as “vijay”.

The response will be as follows.

e Mail - Vijay Chakra E Online bill paymen |Z| EMTER YOUR TITLE 5 jax rs annotat
<« C' [localhost:8081/WebServices_Final1/backend/profiles/vijay/vijay
i Apps WP kansas login 0 Signin-GitHub [Indexof/ #& 527 [J 706 @ Kansas State Univers

This XML file does not appear to have any style mformation associated with 1t. The documer

¥ <valiedUsers
<flag»1</flag>
<profile_idx1el</profile_id:>
<fvaliedUser:

Figure 17: Response of Web Service

Returns object of ValiedUser as response. Flag value="1" denotes valid user and with

profile_id as 101.

32

http://localhost:8081/WebServices_Final1/backend/profiles/vijay/vijay

5.3.3 Web API Description

The following are the different web services present in the API.

Method | URL

Return Object

Description

@GET | /{username}/{password}

ValiedUserObject

Returns profile_id if
the username and
password are valid

@GET | {profile_id}

Profile Object

Gives All the details
of the given
profile_id

@GET | /messages/{profile_id}

List<Messages>

Gives all the
messages for the
given profile_id

@GET | /allposts

List<Posts>

Gives all the posts

@GET | /allprofiles

List<Profiles>

Gives details of all
the profiles

@GET | /getcomments/{post_id}

List<Comments>

Gets all the
comments for a given
post_id

@GET | /isliked/{profile_id}/{post_id}

IntegerResponse

Tells whether the
given post is liked by
the given profile

@GET | /like/{profile_id}/{post_id}

IntegerResponse

Stores the record in
likes table

@GET | /haslikes/{post_id}

IntegerResponse

Tells whether the
given post_id has any
likes or not.

@GET | /getlikes/{post_id}

List<Likes>

Gives all the like for
a post_id

@Delete | /delete/{profile_id}

IntegerResponse

Deletes the given
profile

Accepting Object

@POST | /create

Profile

Creates a new profile

@POST | /newpost Post Adds a new post

@POST | /sendmsg Message Sends message to a
profile

@POST | /sendcmt Comment Adds a comment to a

post

33

The following two services are secured under SSL and basic user authentication

Method Secured URL Security Constraints Description

@GET /message/{profile_id} Need to Accept SSL Gets all the messages
certificate, and need for a given profile_id
username and password

@DELETE | /del/{profile_id} Need to Accept SSL Deletes the given

certificate, and need
username and password

profile

34

Chapter 6 - Securing Web API

The URL using which the user access the web API are to be secured as we don’t want the
API to be used only by the authenticated users. In my project | have used SSL security with basic

authentication for securing my web services.

6.1 SSL Security Implementation

6.1.1 SSL certificate and OpenSSL

SSL (Secure Sockets Layer) Implementation is the standard security technology for
establishing an encrypted link between a web server and a browser. This link ensures that all data
passed between the web server and browsers remain private and integral. In order to implement
SSL security we need an SSL certificate and get it signed by a third party. So, in my application |
have used | have used Open SSL [to create a self-signed SSL certificate.

OpenSSL is an open source project that provides a robust, commercial-grade, and full-
featured toolkit for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL)
protocols. It is also a general-purpose cryptography library. The details of generating a certificate
can be known from the website.

Once the certificate is generated we get a public and a private key which have to be

configured in servers.xml of the underlying server.

35

6.1.2 Configuring server.xml for handling SSL security
By un-commenting the shown piece of code blow and configuring ® its values must

make the server ready to handle SSL security.

-

<!-- Define a S5L/TLS HTTP/1.1l Connector on port 8443
This connector uses the NIO implementaticn that requires the JSSE
style configuration. When using the APR/native implementation, the
OpenssL style configuration is required as described in the APR/native
documentation --»

<Connector port="8443" protocol="HTTP/1.1"
maxThreads="158" S5LEnabled="true" scheme="https" secure="true"
Ss5LCertificateFile="C: /0penssL-Wined/bin/server.crt”
S5LCertificatekeyFile="C:/Openssl-Wined/ bin/server. key”
clientAuth="false" sslProtocol="TLS" />

Figure 18: Server.xml configuration file

6.1.3 Configuring web.xml

The web.xml of the server application has to be configured to define the secured URL
patterns and levels of security. This can be done by using the security constraint tag in web.xml.

The web.xml of my application looks like below.

<security-constraint:
<web-resource-collection>
<web-resource-name>hello</web-resource-name>
<url-pattern>/backend/profiles/del/*</url-pattern>
<http-method>DELETE</http-method:>

</web-resource-collection>

<web-resource-collection>
<web-resource-name>hello</web-resource-name>
<url-pattern:/backend/profiles/message/*</url-pattern>
<http-method>GET</http-method:

</weh-resource-collections

<auth-constraint:
<role-name>admink/role-name:|
</auth-constraint>
¢<user-data-constraint»<transport-guarantee>CONFIDENTIAL</transport-guarantee:</user-data-constraints

</security-constraint:

¢login-config>

<auth-method>BASIC</auth-method:

</login-config:

Figure 19: Web.xml of server Application

36

» <web-resource-collection>: This tag define the URL patterns and the methods which are
to be secured.

» <auth-constraint>: This tag defines the role of the user who can access the secured
URLs.

» <login-config>: This tag defines the type of authentication. In my application | have used

basic authentication which asks for a username and password when the URL is accessed.

So, In order to access the secured URL one must accept the certificate, his role has to be

“admin” and must have a username and password as mentioned in the web.xml of the server.

37

Chapter 7 - Screen Shots

1. Login Page: The user can login to the system from this page. Username and

password fields are validated.

« € | [localhost He =
H Apps O kansaslogn () Signin-Github [Indexof/ W8 527 [3 706 @ Kansas State Univers €0 Mahubhureta Story 0 (1706) w-online » [Otherbookmark
Login
Usemame
Password
Login
\\\\\ Up!

Figure 20: Login Page

2. If a user doesn’t have an account, one can sign up here by providing the details.

All the fields are validated.

« c localhost:808 r aa
Appt B kansaslogin €) Signin-Gthiub [Indexof/ W 527 [} 706 @ Kens [vs-oniine » [Other boot

ignUp Here!

Figure 21: Sign up page

38

3. If the user enters invalid credentials, he will be directed to login fail page with an

error message.

« C = localhost808 0@ :
3 Apps W kansasiogin () Signin- Gitkub [Indexof/ W 527 [} 706 @ Kansas State Univers* 8 Mahabharata Story 03706 [vs-online S0

Welcome!

Login Again!

Figure 22: Login Fail

4. Upon successful login the admin users get the following admin login page, with

their name on the top.

b nderof! B S27 [} 706 @ Kansa o e 8 MaabnaaStony 0 £ 706 [o

Welcome vijay chakra

CreateNewProfile)
DeleteProfile @ p

Figure 23: Admin Home Page

39

5. If the user is not an admin the following will be the home page.

€ 2 C [localhost [ERI =N T
I ipps @ hansskogn ©)Sinin. Gt [} Icerot] @57 [3 706 @ Komas S Unker @ Mabasbaars iy 0 (2708 [o (] Wy nomascnic: Q) S TR MG 5

elcome samatha dfg

LOGOUT

t oy
!
Vi % AySon
L P
STpsde

ges
g
SendMessage <8

==
=
-5

Figure 24: User Home Page

6. The user can type a post here. The text field cannot be empty.

E g W e)it/ ST [3 700 @ ko

Add Your Post Here!

Figure 25: Adding a Post

40

7. The following appears if the post is successful.

& 3 € [localhost: nalPrejectTient/Add| v bl @ E
3 Apps @ Grsasiegin () Senin-Gob [} Indesct) @57 [706 @& e O Wamabhaca Siony 0 3706] vsanioe B My homuasonrs-or (@ Sping RESTR Ve » [Other bookark:

Welcome vijay chakravaram

Successtully Posted!

DeleteProfile

Figure 26: Post Success

8. The user can view all the posts here.

Welcome vijay chakravaram

VLAY CHAKRAVARAM Sar Ape 09 19:57-07 CDT 2016

AddPost
8

VIIAY CHARRAVARAM Su Age 1003 33,04 CDT 2016

m =

VIIAY CHAKRAVARAN

I |

Figure 27: View all posts

41

9. The user can see all the likes by clicking See Likes button.

O@ s

Geus [eerets 57 [) 706 @ s sunsUnier @ abatha Sty ¢ C1 706 [onie]y momaten-c. 0 S ST s

Welcome vijay chakravaram

Figure 28; See Likes

10. At any place the user can see the profile of the person.

e
01 76 el [y lnsmssen e 69 Spina ESTA Wes] Ot kst

Welcome vijay chakravaram

Profile Details of VIJAY

ViewAllPosts

VIAY

VIAY
CHARRAVARAN
345707305

18

St Apr 09 19.57.07 CDT 2016

Figure 29: View Profile

42

11. The user can see all the comments by clicking see comments button.

€ > C Dlocalhest Final tClient; " =i
e W banoe oo ©) S Citn) et MBS 0706 @ o + @ sty Sy 0 (706 @ onine [My msees 6 Sprng TR Wb o (0 berbeskst

Welcome vijay chakravaram

Figure 30: View comments

12. The user can add a comment to a particular post.

€ 3 € Jlocahost
e Wb () Sgvn Gt [} et ST (VT Qs

Welcon

LOGOUT

A
Type Your Comment !

Deleteprofile

Figure 31: Send Comment

43

13. Following appears up successfully adding a comment.

+ & € |[localhost (=]
£ dgor W bancariogin) St in-Gitas [} inenck/ 8 527 [706 @ Kane L 708 [o (] by Infomatonsc @ Sping RESTR e

Welcome vijay chakravara

.
Commented !

ViewAllPosts.

ViewhllMessages

Figure 32: Send Comment Success

14. The user can see all the message by clicking See All Messages button.

€« 5 @ localhest oes
dops W harssslogn €) S Gt [} bcexof/ @527 [) 706 @ Ko St s €0 Mobabborat Sony 0 (706 [T r-omine] My normabiorssc- @) Sping RESTRA Web o

Welcome vijay chakravaram

LOGOUT

Figure 33: View Messages

44

15. User can select a profile to send messages.

(-“._ :m w7 @ s Ui @ [}
Welcome vijay chakravaram
Send Your Message !

Addpost
Vi

DeleteProfile

Figure 34: Send Message

16. User can type the message here.

P

Goub [) woeol @R 75 @

Welconjuu

T'ype Your Message Here!

Figure 35: Type Your Message

45

17. The following appears on sending the message successfully.

g W baniss g € Sgnn Gans [} nseset) @3 ()8 @ Ssnasmedries B Mabstawn ey e () we B oeine ez s Soeng BESTA s =0

Welcome vijay chakravaram

AddPost - -]
Successlully Sent!
Viewallposts

Figure 36: Message Sent Success

18. The admin user can create a profile by clicking Create New Profile button.

€ 2 € Dilocathast : Profi [l
g T b kg () S Sk [} Inboot @5 (3705 @ O Mbabbcaia Sy 0 (706 [svcrien (] Vy Formaionnc) SpigREST Uik 7 S

Welcome vijay chakravaram

Figure 37: Create Profile

46

19. The following appears on successful creation of a profile.

Welcome vijay chakravaram

Profile Created Successfully!
%

Figure 38: Profile Creation Success

20. The admin user can select the profile to delete it from the system.

Frofilejsp ne:
73 756 @ s Sate UG8 WottortaStery 0 (1700 (] vcrine (] o om0 e FESTT et e

come vijay chakravaram

Wel

" @
——

Figure 39: Delete Profile

47

21. The profile gets deleted from the system.

* 9 € [localhost il Oe =
E fges W barsaciogn () Sgnin- G [) tseeet/ WS [3 708 (@) Kowans St Ui 0 ahasharaa S 706 [wanine [T by ermaton-c €@ Spring RESTRA et

Welcome vijay chakravaram

Figure 40: Deleting Profile Success

22. Finally everybody can logout form the system by clicking logout button.

€ + € [localhost) t oe:
kops W vaoiogin. € Sionin:Gitun (3 vl W0 527 () 706 @ Kas S o @ Spong RESTRII

Thank You!

Login Again!

[RS—

Figure 41: Logout

48

Chapter 8 - Testing

| have tested the functionality of my application at every stage of development. I first
started with writing hibernate code and mapping entity classes to the tables and conformed
whether the tables are created as expected or not.

Then | have created web services on top of hibernate code and developed DataAccess
code. Once the Web API is ready, | started using postman application to send requests to web
API and conformed the correctness of the results.

Then I have developed the client application which access the Web API.
8.1 Testing Web API

In order to handle all the requests coming to the API, the API should be able to handle
the exceptions that might generate at the runtime. | have developed my API which handles all the
runtime exceptions. The API also respond to requests containing invalid data or if requesting
empty data by sending IntegerResponse containing integer value (0 for false/fail and 1 for

success/true) and empty objects.

49

8.1.1 Unit Testing

The following table shows the different responses given by the API for different test cases.

URL Patterns-Input Test Cases Input Response
/backend/profiles[/dfklgjdosldfx] Provide any Wrong Displays
URL customized error
message

/backend/profiles/501

Profile id that’s not
present

Returns XML of
empty profiles
class which can be
easily handled by
the developers

/backend/profiles/delete/501

Delete profile id which
IS not present.

Returns XML of
Integer Response
which contains
value 0.

Iprofiles/[wrong username]/[wrongpassword]

Providing wrong
username and

Returns XML of
Invalid user object

password with flag value=0
which implies
invalid.
/allposts Request to display all Returns XML
posts representing empty
List object if there
are no posts.
/allprofiles Request to display all Returns XML of

profiles

empty List object
if there are no
profiles.

/getcomments/{wrong post_id}

Request to display
comments for non-
existing post

Returns XML of
empty List object.

fisliked/{profile_id}{post_id}

Asking if non existing
profile liked non
existing post_id

Returns XML of
Integer Response
which contains
value 0.

[getlikes/{post_id}

Requesting likes for
invalid post

Returns XML of
empty List object.

Table 1: Table Showing Test Case

50

8.1.2 Testing Using Post REST Client
Using the postman Rest client tool we can send http requests to our APl and get the
results. The results can be evaluated for correctness. We can also get the response time for each
response from the API which can be used for the evaluating the performance of the Web API.
The following is the image shows response times for different requests. When the
collection containing 14 requests is executed, the system took 2212ms to fetch all the requests.

So, we can say that the average response time for each response is 170 Milliseconds.

RESULTS
http:f’.-"localhi:s::SD&‘l.-"WebServices_FinaI1.f'backend.f'profiless’create 20(:]2(::)‘[{
http:/flocalhost:8081/ WebServices_Finall/backend/profiles/106 2007(()}(
Mo tests .
htrp:/flocalhosuB081/ WebServices_Finall/backend/profiles/Bond/bond 20(:]:?[‘?
http:/flocalhost:8081/ WebServices_Finall/backend/profiles/messages/106 200 OK
Mo tests o
http:/flocalhosu:B8081 WebServices_Finall/backend/profiles/allposts 200 OK
Mo tests o
http_:;".-"localhc\sl::ﬁl]&’lJ’WebServices_FinaHa"backenda"prnfilesa’getcommehtia‘lD1 Zoozg)-f

http:/flocalhosu:B8081/ WebServices_Finall/backend/profiles/isliked/101/301 200 OK

Figure 42: Postman Rest Client Results

51

8.1.3 Limitations

Since | am using Hibernate to perform CRUD operations on the data base, hibernate
allows only limited number of connections. Hibernate uses built-in algorithm to manage
connection pool which is not meant for production or testing purpose. We need to use third party
software to manage connection pool for the data base.
8.1.4 Performance testing using jmeter-Test1l

When | make a request to the Web API, the API creates connection to the database fetch
the results and give them as a response. | have tried this for 250 samples, which means | am
sending 250 HTTP GET requests to the API at a time which has to create 250 connections to the

database and get the results.

Graphs to Display [| Data [| Average [|Median [] Deviation Throughput

10701 ms

0ms (] 1] IC
No of Samples 250 Latest Sample 778 Average 4344
Deviation 3479 Throughput 0.404/minute Median 4222

Figure 43: Throughput Graph 1

Observations
As Hibernate only supports limited connections per unit time we can see from the graph

that around 50 requests are served initially and it dropped later.

52

Testing with Ramp-up Period and loop count
8.1.5 Performance testing using JMeter-Test2
By setting ramp-up period in JMeter we can give a pause between sending requests to the

APIL. | have set test properties as below where | gave ramp-up period as 20seconds which can be

used by hibernate to manage the connection pool.

Thread Group

Name: ‘anead Group

\Comments:
Action to be taken after a Sampler error

@ Continue) Start Next Thread L

Thread Properties
Number of Threads (users): |50

Ramp-Up Period {in [20

Loop Count: [| Forever “WEI

[_] Delay Thread creation until needed

[] Scheduler

Figure 44: JMeter Test Configuration

By configuring the test as above we get the following results
» Response time: The response time went down and stabilized.

Response Time Graph

Name: [Responss Tims Graph

Comments:

Write results to file | Read from file

Fllename| | | Browse Log/Display Only: [] Errors Successes Cc

Settings Graph

Response Time Graph
@,000

5,400

4,800

4,200

3,600

3,000

Milliseconds

2,400

1,800

1.200

12:37:10
4 f@ar20
18:37:30

m HTTP Reque

Figure 45: Graph Showing Response Time

53

Observations: The response time dropped and then stabilized. Initially it take time for hibernate
to get prepared by loading the required components so it took more time to give a response

initially. Latter, the response time decreased and stabilized as expected.

» Throughput: The throughput kept growing.

Graph Results

Name: |Graph Results

Comments:
Write results to file | Read from file

Filename| | | Browse... | Log/Display Only: [_] Errors Succ

Graphs to Display || Data [| Average [| Median [|Deviation [v] Throughput

4310 ms
J."
/
0 ms 4] [l
Ho of Samples 500 Latest Sample 41 Average 2608
Deviation 1367 Throughput 788.167/minute Median 2250

Figure 46: Graph showing the throughput

Observations: The throughput kept increasing and stabilized because of the key factor that
hibernate connection pool is able to accept and serve the requests as there is some time gap

between the requests.

54

8.2 Testing Client Application

8.2.1 Unit Testing
| have tested the client application at every stage of development for the correctness of
the functionality. Every field is where the user enters data is properly validated using JavaScript.

The performance of the client entirely depends up on the performance of the Web API.

Test Case Expected Results Comparing with
actual results

Trying to login without providing Error message Matches

username/password

Trying to login with valid username | Error message Matches

but wrong password

Tring to login with wrong username | Error message Matches
but correct password

Trying to login with wrong Error message Matches
credentials
Provide correct username and Takes to admin home page Matches

password of admin

Provides correct username and Takes to user home page Matches

password of user

Trying to send message with empty | Error message Matches
text.

Trying to upload profile picture not | Error message Matches
in jpg format

Trying to post empty content Error message Matches

Table 2: Test Cases Set 1 for Client

55

Event

Expected Results

Comparing with

actual results

Trying to view posts when Display message saying that there are | Matches
there are no posts in the no posts

database

Trying to view messages Display message saying that there are | Matches
when there are no messages | no messages

for that profile

Delete profile by admin user | Profile must be deleted along with all | Matches

the associated messages, posts, likes

and comments.

Table 3: Test Cases Set 2 for Client

8.3 Performance Testing Using Mozilla Developers Tool

The performance and response times for each operation done by the user are recorded and

analyzed for the time taken by different requests and their loading time. | used the Mozilla

developer’s tool to get the following results.

Each test shows a pie chart for the time taken by different requests to load that particular
page from the previous page. The empty cache version shows the results when the request is sent
by first time user and the primed version shows the results by using any cache memory if already

present in the system. In my case as the graphs would be the same as | am not storing any cache

memory on to the browser.

56

1. To load login Page.

@ Network - http://localhost:8081/FinalProjectClient/Loginjsp

R | £ Inspector $_ Console @ Debugger = { } StyleEditor € Performance = Network

Primed cache

Cached responses: 0

Total requests: 3 Total requests: 3

Figure 47: Time taken to load login Page
Observations: The above pie chart shows the total time taken to load the login page. It also

shows the various elements of the pages, data and the time taken to load those elements. It
almost take no time to load the login page.

2. To load home page.

@ Metwork - http://localhost:8081/FinalProjectClient/AdminHome jsp

() Debugger { } Style Editor =€) Performance = Network

Empty cache

ges s I 1 images
1 css | R
1 htel 1 htel

Primed cache

Size: 43.47 KB
Time: 0.53 seconds

Cached responses: 0
Total requests: 3

Cached responses: 0
Total requests: 3

Figure 48: Time taken to load home page
Observations: The above pie chart shows the total time taken to load the admin home page. It

also shows the various elements of the pages, data and the time taken to load those elements. It

almost take 0.53ms to load the page. Out of the data loaded image takes most of it.

57

3. Todisplay all posts.

@ Network - http://localhost:8081/FinalProjectClient/ViewAllPosts.jsp - U R

m L} Inspector 2 Console @ Debugger [} StyleEditor € Performance = Network

Primed cache Empty cache

I 1 images 1 images

I 1 1ess
T 3

1 html

Tim seconds
Cached responses: 0 Cached responses: 0
Total requests: 3 Total requests: 3

Figure 49: Time taken to display all posts.
Observations: The above pie chart shows the total time taken to display all the posts. It also

shows the various elements of the pages, and data, time taken to load those elements. It almost

take 0.84ms to load the page. Out of the data loaded image takes most of it.

4. To display all messages.

@ Network - http://localhost:8081/Final ProjectClient/ViewAllMessages.jsp - B

R | L} Inspector 2 Console @ Debugger ~ { } StyleEditor | € Performance = Network

Primed cache Empty cache

3 3 § 1 images
1 css I 1 css
1 html 1 html

Size: 65.60 KB
Tim seconds

Cached responses: 0
Total requests: 3

Figure 50: Time taken to display all messages
Observations: The above pie chart shows the total time taken to display all the messages. It also

shows the various elements of the pages, data and the time taken to load those elements. It

almost take 0.90ms to load the page. Out of the data loaded image takes most of it.

58

5. Toadd a post.

a Network - http://localhost:8081/FinalProjectClient/AddPost2.jsp

® £} Inspector 2_ Console (D Debugger = {} StyleEditor € Performance = Network

Primed cache Empty cache

I 1 css Os I 1 css

1 htel 1 html

Total requests: 2

Figure 51: Time taken to add a post
Observations: The above pie chart shows the total time taken to add a post in to database and to

load the corresponding page. It also shows the various elements of the pages, data and the time

taken to load those elements. It almost take 0.26ms to load the page.

6. To Send Message.

[] Network - http://localhost:8081/FinalProjectClient/SendMessage3.jsp?id=101 - B

R L} Inspector > Console @ Debugge } Style Editor | €2} Performance = Network

Primed cache Empty cache

I 1 css Os I 1 css

1 html 1 html

Size: 3.40 KB
Time: 0.37 seconds

Total requests: 2 Total requests: 2

Figure 52: Time taken to Send Message
Observations: The above pie chart shows the total time taken to send a message and to load the

corresponding page. It also shows the various elements of the pages, data and the time taken to

load those elements. It almost take 0.37ms to load the page.

59

7. To delete a profile

a Network - http://localhost:8081/FinalProjectClient/DeleteProfile.jsp - O R

® £} Inspector 2_ Console @ Debugger { } Style Editor € Performance = Metwork

Primed cache Empty cache

| = 0s | =S

1 html 0.44 s 1 html

Size: 3.21 KB

Total requests: 2

Figure 53: Time taken to delete a profile
Observations: The above pie chart shows the total time taken to delete a profile and to load the

corresponding page. It also shows the various elements of the pages, data and the time taken to

load those elements. It almost take 0.44ms to perform this operation.

8. To create a profile

[] Metwaork - http://localhost:8081/FinalProjectClient/ProfileCreated.jsp = = £

R L} Inspector > Console D ager | { } StyleEditor = € Perform = Network

Primed cache Empty cache

I 1 css .08 KB 0.02 5 I 1 css

1 html] 0s 1 html

Figure 54: Time taken to create a profile

Observations: The above pie chart shows the total time taken to create a profile and to load the
corresponding page. It also shows the various elements of the pages, data and the time taken to

load those elements. It almost take no time to perform this operation.

60

9. Time taken to logout.

a Network - http://localhost:8081/FinalProjectClient/logout,jsp - 0O

(® Debugger [} Style Editor € Performance EH- ™ t - SRS |

Primed cache Empty cache

I 1 css 3 it I 1 css

1 html K| 1 html

Cached responses: 0 Cached responses: 0
Total requests: 3 Total requests: 3

Figure 55: Time taken to logout.
Observations: The above pie chart shows the total time taken to logout from the application to

load the corresponding page. It also shows the various elements of the pages, data and the time

taken to load those elements. It almost take no time to perform this operation.

61

Chapter 9 - Learning and Experience

9.1 Learning

Hibernate and Web Services are the new technologies | have learnt and implemented for this
project this project.
> Hibernate
o Automatically creating tables from classes, imposing integrity constraints and
defining relations between them.
o Automatically generating sequences and customized sequences for columns
values.
o Performing CRUD operations as required.
o Working with hibernate with and without using hibernate annotations.
o Hibernate Query Language (HQL) to perform crud operations on the underlying
database.
» JAX-RS RESTful Web Services
o Implementing JERSEY library to develop Web APIs.
o Jersey annotations to develop web services.
o Learnt about Entity/ Model classes and their uses.
o Exception handling in web services.
o Securing Web API.

o Maintaining MV C architecture while implementing.

62

» Client Application
o Marshalling and Un-marshalling objects in to XML classes and vice versa.
o Creating a client which can call GET, POST, PUT and DELETE methods of
HTTP and make a request to web services.
o Sending and receiving images as byte streams embedded in XML.
o Maintaining MVC architecture of the application.
» Tools and Configuration
o JMeter for testing the response time and throughput of the application.
o Mozilla developer tool to analyze the response times of various requests.
o Postman rest client to send requests and check the correctness of web services.
o OpenSLL to generate self-signed SSL certificate.
» Configurations
o Configuring hibernate.xml file according to the requirements.
o Configure class.nbm.xml to define constraints on generating tables
o Server.xml to handle SSL security.
o Web.xml of server to configure user roles and their passwords.

o Web.xml of server application for security and authentication.

63

9.2 Project Development Experience

It took around time for me to learn the concepts of hibernate and web services from the
basics. | have wrote many test programs in the process of learning each concept and
implementing them. Once, | learnt all the concepts required to implement my idea | started the
design and implemented it. | first started with developing the hibernate code which manipulate
the database. Then I have developed Web services on top of it which completes the development
of fully functioning Web API.

Then, | have started developing the Client application which sends requests to the Web
API and also handles responses from it. I initially developed the client application with minimal
Ul which is enough to serve the purpose. Once the full functionality is achieved | wrote code to

improve the look and feel.

64

Chapter 10 - Future Work

The following can be done project to still improve the performance and the usability of
the system.

» Use third party services to maintain the connection pool which makes large number of
people to use the application simultaneously.

> Implement cache memory at the client side to store some basic data which increases the
response time and decreases the number of requests to the API.

» Improve the look and feel of the application by using Ajax, jQuery and related
technologies.

» Completely replace JSPs with other frame works to improve the performance.

» Extend the functionality to support various media in posts.

> Implement share option and can think of implementing any other feature provided by

Facebook.

65

Chapter 11 - Conclusion

This project works fine which can be easily used by any organization as an internal social
networking application. They can customize the look and feel of the application according to
their need and requirements. The organization need not worry about maintaining the database
and background functionality. The data is always secured with the use of SSL connections and
authentications. The client application developed is very to use even for the fist-time user. They

can customize the GUI as they need which is really a cool option.

66

Chapter 12 - References

The following are the references | have used.
[1] Oracle Corporation, you can find the documentation and tutorials of web services.

https://docs.oracle.com/javaee/6/tutorial/doc/bnayk.html

[2] Chemaxon, for architecture of web services.

https://www.chemaxon.com/products/jchem-web-services/

[3] Java tutorial point, for hibernate architecture

http://www.javatpoint.com/images/hibernate/architecture.jpg

[4] Java tutorial point, for MVC architecture

http://www.tutorialspoint.com/struts 2/basic mvc architecture.htm

[5] Jersey website for information about RESTful Web Services

https://jersey.java.net/

[6] Jersey website for documentation, more information about annotations.

https://jersey.java.net/documentation/latest/jaxrs-resources.html

[7] Open SSL, details on generating self-signed SSL certificate.

https://www.openssl.org/

[8] Tomcat, website to more about configuring server xml files.

https://tomcat.apache.org/tomcat-7.0-doc/config/

67

https://docs.oracle.com/javaee/6/tutorial/doc/bnayk.html
https://www.chemaxon.com/products/jchem-web-services/
http://www.javatpoint.com/images/hibernate/architecture.jpg
http://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm
https://jersey.java.net/
https://jersey.java.net/documentation/latest/jaxrs-resources.html
https://www.openssl.org/
https://tomcat.apache.org/tomcat-7.0-doc/config/

