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CHAPTER 1
INTRODUCT ION

Since the development of the fast fourier transform (FFT) by Cooley and
Tukey [5], considerable attention has been devoted to its modification to
secure increased speed for computational purposes., Basically there are four
modifications to increase the computational efficiency. These are: (1)
innerloop nesting, (2) change in radix, (3) data shuffling and unscrambling
when the input data is real, and (4) eliminating operations on zeros when the
number of nonzero input data points is considerably smaller than the desired
number of output points; or the desired number of transform points is con-
siderably smaller than the number of input points.

The first modification is used in decimation in frequency and decimation
in time algorithms, some aspects of which are discussed in Chapter II. The
second and third modifications are discussed in {3}, [8] and [16] respectively.

This report is primarily concerned with the fourth modification which is
referred to as FFT pruning. FFT pruning eliminates operations that do not
contribute to the final output. It can be applied to both discrete time and
frequency domains, and saves considerable time. Applications of FFT pruning
include speech processing, estimation of autocorrelation functions, and
computing narrow band Fourier spectra with increased frequency resolution.

FFT pruning concepts are introduced in Chapter III, while experimental
results pertaining to some applications are considered in Chapter 1IV. Conglu-

sions and recommendations for future work are presented in Chapter V.



CHAPTER 11
DECIMATION IN TIME AND FREQUENCY

2.1 Discrete Fourier Transform
- The Fourier transform pair for continuous signals can be written in the

form

Fy(f) = I x(t) e~i27fty,

x(t) = [ Fy(£) el2nftys

for —w<f<o, —wit<w, and 1 = v=1. Fx(f) represents the frequency domain
function corresponding to the time domain function x(t). Analogous to the
Fourier transform, the discrete Fourier transform (DFT) is a transform that
is used for the Fourier analysis of data sequences. Thus, if {X(m)} denotes
a sequence X(m), m=0, 1, ...,(N-1) of N finite valued real or complex numbers,
then its DFT is defined as

-1

N
Ce) =% I X(@) W, k=0, 1, coeuus,®-1)  (2.1)
m=0

12w
where W = e % , 1= V=1,

Again, the corresponding inverse discrete Fourier transform (IDFT) is defined

as
N-1 -
X(m) = I Cx (k) W

k=0

K =0, 1, veeees (N-1)  (2.2)

Equations (2,1) and (2.2) constitute the DFT pair.



2.2 Fast Fourier Transform

The fast Fourier Transform (FFT) is an algorithm which is used to compute
the DFT. Direct evaluation of Eq. (2.l) requires N2 multiplications and
additions. In contrast, the FFT requires only N 1032N complex number additions
and multiplications., The FFT can be interpreted in terms of combining the
DFT's of the individual data samples such that the occurence times of these
samples are taken into account sequentially, and applied to the DFT's of
progressively larger, mutually exclusive subgroups of data samples, which
are combined to ultimately produce the DFT of the complete series of data
samples [4].

There are two classes of FFT algorithms., These are: (1) decimation in
time, and (ii) decimation in frequency. Within each class there are several
modifications, each of which is most efficient when the number of data points
is an integer power of two. However, some fast algorithms have been developed
for cases where the number of points in the data sequence is an integer power

of a radix other than two [5, 8, 16].

2,3 Decimation in Time

This form of algorithm was used by Cooley and Tukey [5]. Before discussing
the algorithm it is instructive to illustrate a factorization property which
is common to both decimation in time as well as decimation in frequency algo-
rithm,

Consider the case when the number of data points N, is of the form N =

A x B. Then Eq. (2.1) can be written as

B-1 A-1
Cx (c +dA) = L I X (btab) w(bHab)(eHdA)
b=0 a=0 (2.3)



where m = b+aB is the time index, k = c+dA is the frequency index, and a, c = Q,
w(b+aB)(c+dA)

1,--..-(A"1); b| d = 0,1......(3-1). In qu (2'3), the quantity
can be simplified as follows
w(btaB) y(c+dA) . ybe ybdA yacB yadAB
= wbe ybdA yacB gince wadAB = yadN o

ooo-o(zoa)

Substituting Eq. (2.4) in Eq. (2.3) and rearranging terms, we obtain

B-1 A-1
Cy(ctda) = I wPdA 1 x(b+aB) waCB ybe (2.5)
b=0 a=o

c = 0' l’il.l.., (A-l); d = 0, l".'l' (B-'l)o

This can be recognized as a sequence of two Fourier transforms applied
to data sequences of length A and B respectively. It is observed that factor-
ing of the exponential wbdA from the inner sum in Eq. (2.5) reduces the total
number of multiplications required to compute the Cy(c+dA) coefficients. This
technique is used in both types of algorithms (i.e. decimation in time and
decimation in frequency).

Suppose the given data sequence has N samples. It is convenient teo divide
it into two subsequences {Y;(m)} and {Yﬁjﬂ}, each of which has N/2 points,
{Y;(m)} is composed of even numbered points, while {Y¥o(m)} is composed of odd
numbered points, as illustrated in Fig. 2.1. It follows that the elements
of {Y;(m)} and {Yp{(m)} can be expressed as

Y1 (m) = X(2m)

for m=0, 1, 2,....(N/2-1)
Yo(m) = X(2w+l) (2.6)



X(m)
4
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Fig. 2.1. (a) sequence {X(m)}, (b) sequence {Y;(m)}, and (c) sequence {Y,(m) ).



Since the data sequence {X(m)} 1s considered to be periodic with period N,
the subsequences {Yl(m)} and {Y{m)} can be regarded to be periodic with period
N/2. Thus the DFT's of these sequences are given by

N/2-1

Cyy(k) = I ¥;(m)(w2)mk
m=0
k = 0, l, -....(le—l)
N/2-1

Cyp(k) = I Yp(m)(w2)K (2.7)
n=0

Now, the desired DFT of {X(m)} can be expressed in terms of {Yl(m)} and
{Yo(m)} to obtain

N/2-1 -

C(k) = I (Y@ 4+ v, @u(ZDk] k20, 1 (v/2-1)
m=0 :
N/2-1 N/2-1

) = I [y @]+ Wk 1 v, @ (2.8)
n=0 m=0

which yields
Cy (k) = Cy; (K) + W* Cy, (k) ' (2.9)

In Eq. (2.9), the index k takes the values 0, 1,....,(N-1). However, since
Cyl(k) and Cyz(k) are periods with period N/2, they need be computed only for
k=0,1,..., (N/2-1). Thus, C, (k) for N/2 < k £ (N-1) can be computed using

the relation
C, (k) = Cy; (k-N/2) + WX Cyp(k-N/2) | (2.10)

The computational implication of Eqs. (2.9) and (2.10) is 1llustrated in Fig.

{2.2). In Fig. (2.2) it is seen that an 8-point DFT is reduced to two 4-point



X(0)=¥, (0) s——f ) 18, ¢, 0

X(ﬁ)-Y1(2)°———~#% N=4 C,(2)
X(6)=Y3(3) = v Cx(3)

X(1)=Y,(0) o—+ Cx (4)
X(3)=Y5(1) e— DFT = Cx(5)
X(5)=Yy(2) N=4 Cx (6)

Cyaz(3

X(Z)=Y,(3) Cy ()

Fig. 2.2, 8-point DFT reduced to two 4-point DFT's by decimation in time.

X(0) o——» DET €, (0)
X(4) o—» N=2 % G (1
x@ o— o Cx(2)
x(6) o——s| N2 Cx(3)
X(1) =™ DFT Cx(l‘)
X5y &> N=2 Cx(5)
X(3) & - » Cx(6)
x()o——> N2 ¢ (7)

Fig. 2.3. 8-point DFT reduced to four 2-point DFT's.



DFT's, Similarly the computation of Cyl(k) and Cy,(k) can be reduced to the
computation of four 2-point sequences. These reductions can be carried out

as long as each function has a number of samples that is divisible by two,

as illustrated in Fig. 2.3. The two 4-point DFTS in Fig. 2.3 have each been
reduced to two 2-point DFTS. Finally in Fig. 2.4, the 2-point DFTS have been
reduced to l-point DFTS. Thus in general, if N = 2™ ye can make n such reduc-
tions by applying Eqs. (2.3), (2.9) and (2.10), first forN, tﬁen for N/2 and
s0 on, followed by a l-point DFT.

In Fig. 2.4 it is observed for N = 8, there are 8 x 3 nodes, 2 x 8 x 3
arrows corresponding to N logy N additions and 2 N log, N multiplications.

Half of the multiplications can be eliminated since the transmissions indicated
by the arrows are unity. Half of the remaining multiplications are also
eliminated utilizing the fact that W/2 = -1. In all, N log, N additions and
at most 4 N logy, N multiplications are required for computing the DFT of an
N-point sequence, where N is a power of two. Further, if the input data has
been stored in the order X(0), X{(4), X(2), X(6), X(1), X(5), X(3), X(7) as

in Fig. 2.4 then the computation may be done '"in place"  storing all inter-
mediate and final ocutput data in the same storage locations as the original
data sequence. Thus the number of storage locations required is approximately
N.

The signal flow graph shown in Fig, 2.4 can be manipulated to yield
different versions of the decimation in time algorithm. One such rearrangement
is shown in Fig. 2.5, where the input data is in natural order while shuffling
is necessary at the output. A relatively complicated rearrangement of Fig. 2.4
yields the signal flow graph in Fig. 2.6. In this case, both the input and
- the output are in natural order. However, this needs additional storage and

the computation is not done 'in place' as was the case in Fig. 2.4.



X(0) ——p1/8 ,C (0)

wo

X(4) L, 1/8 (1)

X(2) 1/8 ,c (2)

:Cx(:’)

»Lx (5)

= 1/8  Cx(6)

>\ _1/8 ,C (7)

Fig. 2.4, B8-point DFT using decimation in time.
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X(0) »C, (0)
X(1) »Cx (4)
X(2) _C.(2)
X(3) »Cx (6)
X(4) :v(-:x(']')
X(5) ‘;Cx(S)
X(6) ;/ ,Cx(3)
X(7) / ¢Cx(7)

Fig. 2.5. 8-point DFT with input in natural order, using decimation

in time,
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X(0) > 1/8 4 C,(0)

NN N 0
‘v“\?

1/8_ €, (3)

X
Q Q‘ o

x )
/

wh wb w

Fig, 2.6. 8-point DFT with input and output in natural order.
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Thus the basic procedure for carrying out decimation in time is to
form subsequences from the sequence to be transformed. Each subsequence is

h point of the original sequence. It is as though

composed of only every nt
these subsequences are formed by sampling the time function at a lower rate.

A common example of the decimation in time technique is the Cooley-
Tukey algorithm, a brief discussion of which follows.

Cooley-Tukey Algorithm [5] From Eq. (2.1), we have

N-1
C (k) =ﬁ1- I X(m) WB, k=0, 1, .....(-1) (2.11)
- m=0
~i2w

where W=e ¥ , 1 = JCE-

suppose N = 8, It is convenient to represent both m and k in binary form;
that is
m= ‘imz + 2m1 + mo (2.12)

k = 4ky + 2k + K (2.13)

where mp, m;, my and ky, k), kg are binary digits. Let
Cx(k) = Cx(kzr kl’ kO) (2-14)

x(m) = x(mp, mp, mo) (2.15)

Substituting in Eq. (2.11), we obtain

1 1 1 1
Cx(ky, ky, k) = ¢ Y ¥} x(mg, my, mp) W
mU-O ml-O m2=0

..... (2.16)

Noting that W= = W%, we have
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ceene (2.17)

Consider each of the factors on the right hand side of the Eq. (2.17) in

turn as follows:

wlbkat2ky+kg) 4my = [y8(2kztky)my] yhkom2 (2.18)

(2.19)
w(4k2+2k1+k0) ng = w(4k2+2kl+k0) m() (2.20)
Using the property
it
w8 = [e8 8 a=e21iag (2.21)

the bracketed portions of Eqs. (2.18) and (2.19) can be replaced by

unity. Then Eq. (2.16) can be written in the form

Cx(kp, ky, kg
1 1 1
- %A 2 E [ E X (my,my ,mg) W4k0m2] W(2k1+k0) 2m1 w(4k2+2k1+k0)m0
m0=0 m;=0 my=0

ceees (2.22)

The innermost summation is performed over m, for the two values 0 and 1.
Thus the bracketed quantity in Eq. (2.22) is a function of mj, my, k;, and

may be written as
Xy (kg,my,mg) = X (my,m,mg) WKOT2 (2.23)

Supstituting Eq. (2.23) in Eq. (2.22) we get
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1 1

1 (2kq+kq) 2 bky+2k k)

Colky,kysk) =5 1 [ 1 X (kgmp,mg) Wi%KL 0) 2myy (bkoH2ky+kg) mg
mo"o ml-D

(2.24)

The innermost summation is performed over m; for the two values 0 and 1.
Again, the bracketed quantity in Eq. (2.24) is a function of kl' ko and mg.

Thus it follows that
X2 (kg,kp,mg) = X; (kg,mp,mp) W(Zkytkg) 2my (2.25)

Substituting Eq. (2.25) in Eq. (2.24) we get

1
OB

The summation is performed over my for the two values O and 1 to obtain

a function of kg, ki, kg. The bracketed quantity may then be written as

1
X3 (kp,kg,kp) = 1 Xy (kg,kq,mp) W4ka*2ky+kg) mg (2.27)
mg=0 :

substituting Eq. (2.27) in (2.26) we obtain
1
Cx(kpiky ko) = = X3 (kg.ky ko) (2.28)

Eq. (2.28) gives the desired DFT. The signal flowgraph corresponding to
the above development is shown in Fig. 2.7. This is the flowgraph for the

Cooley-Tukey algorithm for N = 8.



. — ¢, (0)
—1/8  » C,(4)
S8, Cx(2)
_1/8 Cy (6)

1/8  , CxQ1)

1/8

-G

1/8 _  Cy(3)

1/8 C, (7)
Fig. 2.7. Cooley-Tukey Algorithm for N=8.
X(0) ~7 X1(0) = X(0) + x(4)wO
X (4) X (4) = X(0) + X(4w"

Fig. 2.8. A butterfly.
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In Fig. 2.7 each iteration consists of a number of butterflies, A
butterfly is represented in Fig. 2.8. Each butterfly consists of a complex
addition or substraction and a multiplication. For each iteration there are

four butterflies. In general, there are N/2 butterflies per iteration.

2.4 Decimation in Frequency

This form of algorithm was found independently by Sande, Cooley and
Stockham.

Let {X(m)} denote a data sequence X(m), m = 0, 1, ..., (N-1) which is
obtained by sampling a band limited signal x(t). As before, let C (k), k = 0,
1, ..., (N-1) denote the DFT coefficients of {X(m)}. We divide {X(m)} into

two sequences of {Y,(m)} and {¥2(m)} points each, as follows:

Yl(m) =X (m)

Yo(m) = X(@N/2), m =0, 1, ..., (N/2-1) (2.29)

The DFT of {X(m)}can be expressed in terms of {Y;(m)} and {Y,(m)} to obtain

N/2-1
(k) = ¥ (¥ @) W+ Yym)
m=0

Wk (@H/2)

N/2-1
= b @+ w2y, ®)) (2.30)

m=0
Decimation in frequency is realized via Eq. (2.30) by replacing k by 2k for
even Cx(k) and by (2k+l) for odd Cx(k). This results in
N/2-1 mk
c (2k) = ] {¥@+r,@WT, k=0, 1, ..., (/2-1)

m=0
iiiee A231)
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: N/2-1
Cx (2H) = §  {yy@-v,@) w2} ye)®
m=0

- The signal flow graph corresponding to Egqs. (2.31) and (2.32) for N = 8
is developed as shown in Figs. 2.9, 2.10 and 2.11 In Fig. 2.9, an
8-point DFT has been reduced to two 4-point DFT's. In Figs. 2,10 and 2.11
successive reductions on smaller DFT's are carried out as long as the number
of points in the subsequences is divisible by two. Fig 2.10 shows the final
flow graph which involves compex additions and multiplications. In general
the number of complex number computations is proportional to N log, N.

Comparing Fig. 2.5 and Fig. 2.11, we make the following observations:

(1) In decimation in time algorithms, the data sequence is shuffled while the
DFT's are computed in natural order. (2) In decimation in frequency algorithms,
the data sequence is not sguffled while the DFT's are in shuffled order,

By rearranging the signal flow graph of Fig. 2.11, we can obtain a flow-
graph for shuffled input and natural ordered output as shown in Fig. 2.12. As
it was shown for decimation in time (see Fig. 2.6), a flowgraph where the input
and output are both in natural order can also be developed for decimation in
frequency. This type of flow graph is shown in Fig. 2.13. An example of the
decimation in time technique is the Sande-Tukey algorithm, which is discussed
next.

Sande-Tukey Algorithm [8]:

Let N =8 and n = log2 N = 3. Then from Eq. (2.16) we get
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178 _c,(0)

DFT —ye1/8 4 Cx(2)

N=4

|, 1/8 , C (&)

1/8

N=4

e 1/8_4.CL(5)
o 178 .C(7)

Fig. 2.9. 8-point DFT reduced to two 4-point DFT's by decimation in frequency,

X(0) ” SN e 1/8y-C_ (0)
\ ,. v’ brr
X(1) oS Y2 L . s,c (4
X(2) IAA | e 1/8,.C(2)
‘ -
X3 _\/\ v B S Y/ NN )
X(4) " o Cx (1)
’é' v | DFT - Cx
w1l =
X(6) A B /N0 | fe e 208, 0, {3)

) DFT
W Nm2
X(7) » s _? e —1/8.C (7)
w3 -ul




X(0) \ /\/X rcx(c)
0
1/8 »Cy (4)

X

X(2) /\X " Cx(2)

XD * e (6)
M"" 18

X(4) e - ~Cx (1)

X(5) Cx(5)

X(6) ?A%X LB @)
X(7) *Cy(7)

Fig., 2,11. 8-point DFT using decimation in frequency.
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X(0)

X(4)

X(2)

X(6) _

X(l)

%qr
®
1

Y

\""
x(?)

P

x(s)
x(3) \"o
Wl
v
W

Fig. 2.12. 8-point DFT with shuffled output.
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Cy (4)
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. €y 06)
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o - 1/8
X(0) e - g Cx(O)

X(1) W

X(2) .

(/

o MRS,

- s"é};““’AA i n e
YRS

Cx (1)

1/8

> Cx(2)

et e ()

X(1)

Fig. 2,13. 8-point DFT with input and output in natural order.
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1 1 1

; 1
Cx(kz lkl)ko) - ﬁ x(‘nZimlimO)

my=0 m;=0 m2-0
vuvss (Be33)
We can obtain the Sande-Tukey algorithm by separating the components

of k instead of m; that 1is
{8kt 2k) +kg) (4mp+2my +mp)

= wlémat2n 4mg) ko o (4mpt+2mytmy) 2kg wlémat2my+mg) 4k,
ceees (2.34)

Consider each of the factors on the right hand side of the Eq. (2.34) in turn

as follows:
w(éma+2my+mg) 2k _ [w8(m2k1)] w(2mp4mg) 2k; (2.36)
wlbmgtom +my) 4ky = (W8 (2m2¥k1) ) phmgk, (2.37

Since the bracketed portions of Eqs. (2.37) and (2.38) can be replaced by

unity, Eq. (2.33) can be written in the form

G (lyy ki)

1 1 1
) (dmptZupime)  (2my+my) 2k1 dmky

= —é— X(mz 'm]_’mO) W

m0=0 m1=0 mo=0
s wew €2:38)

The counterparts of Eqs. (2.23), (2.25) and (2.27) for the Sande-Tukey

algorithm are as follows:
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1
+
%) (kgumpamg) = ) X(my,my,mg) u(4nz+2n1imo) (2.39)
m2=0
1
X, (kg,ki.mg) = § X (kg,my,mp) w(Zmpimo) 2k (2.40)
1 i
m
X3 (ko,kl,kz) = mz XZ(kO’klsz) WI‘ 0%2 (2.41)
-

Substituting Eqs. (2.39, (2.40) and (2.4l1) in Eq. (2.33), it follows

C, (kp,ky,kg) = %X3(k0,k1,k2) (2.42)

Eq. (2.42) gives the desired DFT. The signal flow graph that results from
Eqs. (2.39), (2.40) and (2.41) is shown in Fig, 2.14. This flow graph

represents the Sande-Tukey algorithm for N = 8,



Fig. 2.14.
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CHAPTER 111
FFT PRUNING

3.1 Time Domain FFT Pruning

If we have 2" nonzero data points out of M data points, where M > L,
then the corresponding FFT can be computed with considerable time savings
by means of the pruned FFTI. The zeroc values generally append a given data
sequence. The reason for doing so is to realize an increase in frequency
resoluﬁion. Operations involving zeros are either eliminated or reduced.
According to Markel [10]), the time saved is approximately equal to
M[L+2 (1 - 2(M'L)]_1 for radix 2. Pruning can be done for radices other
than 2. In this study we restrict our attention to radix 2.

The flow graph given in Fig. 2.14 for Sande's algorithm is modified as
shown in Fig. 3.1. The term w() is sometimes referred to as a 'twiddle
factor'.

FFT pruning corresponds to eliminating operations that do not contribuge
to the output. A flow graph for time domain FFT pruning is shown in Fig. 3.2
for L =1, M = 3. There are two non-zero data points and three stages.
Pruning is applied to first two stages. But third stage cannot be pruned.
When pruning is applicable, we compute only partial butterflies instead of
entire butterflies, as illustrated in Figs. 3.3 and 3.4. In general, if
there are ZL non-zero data points in a set of 2M data points, then the number
of stages where pruning can be applied equals (M-L); conversely the number of
stage(s) where pruning cannot be employed equals L. For non-zero data points
located at some arbitrary location in the time domain, the discrete Fourier
shifting theorm can be applied before using the pruned FFT, A FORTRAN program

implementation in the time domain FFT pruning is listed in Appendix I.
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FFT pruning can also be extended to process two-dimensional data. The DFT
of a two-dimensional array [x(ml,mz)] consisting of Nj rows and Nj; columns is
given by

Ni=1 Np-1 kym]
1 2 kom 1
Cx (kisky) = "3 {7 X (mp,mp) Wy 272} W, ;
m1=0 m2=0
ky =0, 1,..., (N4-1), i = 1.2,
--.-o(3-1)

where -1i2n -i2n

Ny Ny

W =e . Wz = e

The innermost sum in Eq. (3.1) can be written as

Y (m,kp) = } X (mp,my) W (3.2)
m2=0

Combining Egqs. (3.1) and (3.2) one obtains

Cx (k1.kp) = "} Y, (m1,kp) W
From Eq. (3.2) it follows that the (N; x Nz) array [Yk(ml,kz)] is computing
the FFT of each column of [x(ml,mz)]. Again Eq. (3.3) implies that the
Cx(kl,kz) are then obtained by computing the FFT of each row of (Yy (my,mp)].
Hence a two-dimensional FFT can be computed by NiNo applications of a one-

dimensional FFT. Consequently the advantages of FFT pruning carry over to

the case of two-dimensional processing also.
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3.2 Frequency Domain FFT Pruning

This is a converse of time domain pruning. In certain applications M
input data points are given, and 2L output points are desired where L < M,
Pruning can be efficiently employed to the decimation in time algorithm by
applying Sande's innerloop nesting procedure to obtain pruning in the frequency
doméiu.

Consider the flow graph shown Fig. 2.4, which can be modified using the

relations
w2 o 0

and

Wk = —w(k'm), for N > k > N/2
where W = exp (-i2n/N).

The modified signal flow graph that results is shown in Fig. 3.5. To prune
in the frequency domain, we eliminate the operations which do not contribute
to the required output. The flow graph for the frequency domain FFT pruning
which is shown in Fig. 3.6 is self explanatory. Partial butterflies are com-
puted rather than complete butterflies. As in the case of time pruning, there
are (M - L) stages that can be pruned. The flow graph in Fig. 3.6 corréspondg
the case M = 3, and L. = 1. 1In general, if 2L frequency samples are calculated
at some arbitrary location in the frequency domain, tﬁe discrete Fourier shift
theorem is applied to the input data prior to using the pruned FFT.

FFT pruning in the frequency domain can be used effectively in narrow
band spectral analysis where a small number of DFT coefficients are required

relative to a data sequence consisting of N data points (i.e., L<<M). A
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FORTRAN program listing for the frequency domain FFT pruning is given in
Appendix II.

As in the case of time domain FFT pruning, pruning in the frequency
domain can also be extended to two-dimensional applications.

An important application of the prumed FFT is narrowband spectral analysis.
Such analyses can also be achieved via the chirp Z-transform, a brief dis-
cussion of which follows. The performances of the chirp Z-trnasform and the

pruned FFT will the be compared with respect to narrow band analysis.

3.3 Chirp Z-Transform
The Chirp Z-transform (CZT) algorithm was developed by Rabiner, Shafer,
and Rader [12]. The CZT algorithm can be used to compute the DFT. Let

{X(m)} = {Xy,X;,.. } denote a data sequence, which is obtained by

'XN-l
sampling a band limited signal x(t), at the rate of 1/T samples/second. Then

the CZT of {X(m)} is defined as

N-1
X =X = ¥ X, 7z, k=0, 1, ...(4-1) (3.4)
n=0

where
z, = (&, e12700) (g e1270g )X, (3.5
Equation (3.5) describes a set of M points equally spaced on logarithmic
spiral. Since the transformation from the Z-plane to the S-plane is given'by
S = (1/T) 1n Z,

it follows that

Sk = (1/T){(1ln AO + 121'[30) - (K/T)(1n WO + 12ﬂ¢0) (3.6)



i1

The geometrical interpretation of Eq. (3.6) is illustrated in Fig. 3.7 for
a contour of 8 points. In Fig. 3.7 we observe that the Z-plane contour maps
inte a straight line of arbitrary length and orientation in the S-plane,
As we are interested only in real values of frequency (i.e., operating
on the imaginary axis), Eq. (3.6) can be simplified by substituting Ag = Wgp = 1.

That is

i i2n¢
S, = = 26, - 0 (3.7)
k7T 0 -

Equation (3.7) implies that the points on the imaginary axis in the S-plane

are mapped on to a unit circle in the Z-plane. Equations (3.4) and (3.5) yield

N-1
Xe= ) X ATWR k=0,1,..., D (3.8)
n=0

Where A = 12780

W = el27¢g

Equation (3.8) is referred to as the '"modified" CZT (MCZT).

Consider the case when 83 = 0, M = N and ¢p = -1/H. Then Eq. (3.8)

ylelds
N-1
Xe = ) X, WP, k=0, 1, ....08-1) (3.9)
n=0
-i2n/N A
where W =e . From this we conclude that the DFT is a special case
of MCZT.

DFT cowmputation using the MCZT:- The algorithm is summerized as follows [14]:

(1) Choose L, the smallest integer which is a power of 2 and is greater than

or equal to (M + N - 1).
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(2) Form an L point sequence ¥y from by weighting X, according to

2/2
- n
AW X, ,n=0,1, ..., (8-1)

Yo ©
0 R n=N, (N1), ..., (L-1) (3.10)
(3) Compute the DFT of Yp using an efficient FFT algorithm, and denote it

by Y, r =0, 1, ..., (L-1).

(4) Form an L point sequence v_ according to

n
w“nzl 2 ., 0<n< (M-1)

v, 0 , (M-1) < n < (L-n+l), if L > QN-1)
w2 o) < n< @b (3.11)

From Eq. (3.11) it is clear that if L = M-N+1l, there are no terms in Vn which

equal zero,.
(5) Compute the DFT of v, and denmote it by V., r = 0, 1, ... (L-1).
(6) Compute the product sequence

6. =Y Vp,T=0,1, ..., (L-1) (3.12)

(7) Compute the IDFT of G, and denote it by g, k=0, 1, ..., (L-1).
-k2/2
(8) Compute X, = A 8 k=0,1, ..., (M-1). Then X, k=0, 1, ...,

(M-1) are the desired MCZT coefficients.

Further Computational Considerations: Consider the situation when the data

sequence Xp, n = 0, 1, ..., (N-1) extremely long and we desire M, DFT
coefficients where M<<N. Then using the MCZT algorithm, 3 FFT's of length L

have to be computed, where L is the smallest integer power of 2 that is greater
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than or equal to (M#N-1). However, it is plausible that L may be so large

that storage requirements prohibit computation of the MCZT. In such cases,
the sum in Eq. (3.8) can be broken in to R sums over the N peints. That is,
the original data sequence is divided into R partitions and hence Eq. (3.8)

can be written as follows:

~

R-1 ~ ~ N-1 - k
- ~rN ykrN . ATh 0
Xy E A W [ 2 xn+rN

r=0 n=0

l],k=20,1, ..., M-1)
eenes (3.13)

Each of the R sums in square parenthesis of Eq. (3.13) can then be evaluated
using the MCZT algorithm. Equation (3.13) is sometimes referred to as the
partitioned MCZT and abbreviated as PAM-CZT [6]. This procedure would re-

quire storage of the order of 3(N+M-1) locationms.

REMARKS :

The MCZT algorithm has greater flexibility in that neither N or M need
be integer power of 2. Again, more storage locations (3L) are requiréd, and the
FFT and IFFT are used twice and once respectively. The MCZT can be used for
high resolution narrow band spectral analysis. An example with a FORTRAN
program implementation is given in Appendix III. Alternately FFT with pruning
can be used effectively for narrow band analysis. Execution times for the
MCZT and the FFT with pruning are compared in Fig., 3.8 for data sequence
lengths up to 64 to achieve a 4:1 increase in resolution in the 2 Hz to 3 Hz
range. From Fig. 3.8 it follows that the FFT pruning is substantially faster
than the MCZT. There are also some limitations in using the FFT with pruning.
First, the increase in resolution is restricted to the form 2K:1. The lower
frequency of the desired bandwidth must be of the form (& + ) k), where k and

% are integers.
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Fig. 3.8. Narrow band analysis comparison for the pruned FFT and MCZT.



36

CHAPTER IV

APPLICATION CONSIDERATIONS
4+l Formant Analysis of Speech

Formants of the voiced speech can be analysed using the FFT with pruning.
The log-magnitude of the Fourier transform of a segment of voiced speech is
shown in Fig. 4.1. The log-magnitude spectrum of a voiced speech is composed
of two components: (1) a rapidly varying periodic component associated with
the vocal cord excitation, and (2) a slowly varying component associated with
the formant frequencies. The slowly varying component has to be separated
to estimate the parameter values of the formant frequencies. The standard
approach to this problem is linear filtering. One technique for achieving
this filtering is through the 'cepstrum'". The cepstrum is defined as the
inverse Fourier transform of the log-magnitude spectrum.

The cepstrum corresponding to the log-magnitude spectrum in Fig., 4.1, is
shown in Fig. 4.2.% 1In Fig. 4.2 we observe that the ;apidly varying component
corresponds to the cepstral peak which occurs at about 7.560 ms, while the
slowly varying component correspond to the low-time portion of the cepstrum,
The slowly vafyiﬁg compenent can be extracted from the cepstrum by truncating
the cepstrum values to zero at about 3,84 ms, and then computing the inverse
FFT with pruning. This results in a smoothed spectrum shown in Fig, 4.3. For
the purposes of illustration, the smoothed spectrum is superimposed on the
corresponding log-magnitude spectrum, In Fig. 4.3 the formant frequenciles

correspond to the peaks in the smoothened spectrum,

*The speech data used is part of that collected for a joint study (of deaf
speech) between the Departments of Specch and Electrical Engineering.
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Let {Y(m)} denote a data sequence Y(m), m = 0, 1, ..., (N-1) obtained
from a short segment of a speech signal y(t). The steps involved to secure
analysis can be summarized as follows:

(1) Multiply {Y(m)} by a window sequence {W(m)} in order to minimize the
undesirable effects introduced as a consequence of the Fourier analysis of
a finite length data sequence. That is
N-1
X(m) =} Y@ w(@,m=0,1, ..., (N -1)
m=0
where

W) = % [1 - cos (2—;';‘1)],

which is usually referred to as the Hanning window.

(2) Compute the DFT of {X(m)} and denote it by C, k), k=0, 1, ..., (N-1).
(3) Compute the log-magnitude of Cx (k) and call it L,(k), k=0, 1, ..., (N-1);
(see Fig. 4.1).

(4) Compute IDFT of {Ly(k)} and call it CL(k), k=0, ..., (N-1).

This is the cepstrum of a segment of speech; (see Fig. 4.2).

(5) Low-time filter the cepstral values, that is,

-

C, (k) = Cy (0) » k=0
CL (k) = (£ Co (k) = 2CL(k) s k=1, ..., (W-1)
CL (k) =0 , N' < k< (N-1)
\

Where N'is an integer, which is less than of equal to the first half of the
cepstral values between two peaks.

(6) Compute the DFT of {CL(k)} using the FFT with pruning. The real values
. of the DFT are the required values to obtain the smoothed log-magnitude

spectrum.
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The preceding steps are summarized in the block diagram of Fig. 4.4.
Pruning is used in the low time filtering stage since the sequence CL (k),
k=0,1, ..., (N-1) generally consists of a large number of zeros; [see

step (5) above].

4.2 Ligh Speed Autocorrelation

FFT with pruning can also be used to compute the autocorrelation func-
tion of a data sequence. Some aspects of this are discussed in this section,
using an on-line method which was recently proposed by Rader [13].

Let x(n), n =0, 1, 2, ... be the given data sequence which may be of
indifinite length. We will follow the convention that n is a time index,
k is a frequency index, and m is a lag index. The upper case letters W, X,
Z denote DFT's of w, x, and z respectively.

The desired auto correlation function is defined as

Ry (m) = %’ 2 x*(n) x(ntm), m =0, 1, ..., M (4.1)
n=0
where x*(n) denotes the complex conjugate of x(n).
The given sequence is divided into blocks as illustrated im Fig. 4.5.
Each block consists of M/2 data points. This process results in a set of
subsequences. If the iP subsequence is denoted by {xi(n)}, then it is

constructed as follows [See Fig. 4.5]:

x (n+1M/2) 0 < n M/2
xy(n) = ! 0 M/2 < n < M,
i=0,1, 2, .... (4.2)

Let us form a second series of sequence, {Yi(n)}, (See Fig. 4.5).
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such that

yi(n) = x(n + 1 M/2) 0<n<M

=@, X, 2..00s (4.3)
The y; sequences are formed only as a pedagogical device.
The DFT's of {x;(n)} and {yi(n)} are given by
X;(k) = DFT {xj(n)} (4.4)
Y, (k) = DFT {y;(n)} (4.5)
Equations (4.4) and (4.5) are used to form the product
Wi k) = XN (k) Y4k (4.6)

The DFT's of the sequence {wi(n)} is denoted by {W;(k)} , where the sequence

{wi(n)} is given by
M/2-1)
wi(m) = 2 x* (n+iM/2) x(n+iM/24m), m = 0, 1, ..., M/2
n=0

onn kW) s
Except for the factor 1/N, we can obtain correlation by summing wy(m). Let

us define zi(m) such that

i
z;,(m) = E w; (m)
i j=0 j
i (M/2-1)
= ¥ 1 x*(mriM/2) x(n+iM/24m)
j=0 n=0
then
(1+1)M/2-1
Zi(m) = % x*(n) x(n+m) (4.8)

n=0
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When 1 = (28/M) - 1, zy(m) 1s N X R (m).
The sum in Eq. (4.8) can be carried out in the frequency domain. It follows
i
Z;() = § Wyk) = zg_3(k) + Wy(k) (4.9)
i=0
The computation of Y;(k) can be made without use of {y;(n)}. It can be shown
that [13]

Y (k) = Xg(k) + -1k x; + 1) (4.10)

The on-line computational procedure may be summarized as follows:

(1) Form the sequence {xo(n)} and compute Xg(k) using the FFT with pruning.

Clear out Zp(k).

(2) For i=0,1, ..., (2 N/M) -2,
a) form {xi+l(n)} and compute X;,q(k) using FFT with pruning;
b) compute

Zy41 (k) = Z3(k) + Xg* (k) [X3(k) + (-1)K X, ()];

(3) Compute
Re@m) = () IFFT {Z (g /gy ()}

keep only the first (M/2+1) values.

The step (3) gives the desired autocorrelation. The FFT with pruning which
is used in steps (1) and (2) saves considerable amount of computational time.
As M increases, the compution of the autocorrelation function in Eq. (4.1)
using the FFT with pruning becomes more economical. This is illustrated in
Fig. 4.6, where tFFT and tEFTP denote the execution times associated with

regular FFT and FFT with pruning respectively.
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Fig. 4.6.
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Comparison of regular FFT and FFI pruning execution times.
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CHAPTER V

CONCLUSIONS

From the results presented in Chapters III and IV, it is apparent
that FFT with pruning can be used effectively to save computational time
in the following areas:

1. Narrow band frequency analysis.

2, Formant analysis of speech in cases where smoothed log-

magnitude spectra are desired.

3. On-line computation of autocorrelation functions.

It is recommended that the computer programs developed in connection with
this study be used to analyze the speech of deaf speakers, samples of which

have been collected and digitized.*

*This data was collected in connection with a joint study between
the departments of Electrical Engineering and Speech of Kansas State
University.
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APPENDIX 1

This appendix provides a listing of a FORTRAN program implementation of

a time domain FFT pruning algorithm [See Fig. 3.2].
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FORTRAN IV G LEVFL 21 FFTP DATE = 74345 22724754

0001 SURROUT INE FFTP(IX,M,L)
CFomax P ks P AR AIEATA BRI I NIR R RN AR EHFERP IR AR A AR FE RIS AT IR NI REIEI S IR AR
5
C THIS SUBRNUTINT [S AN IMPLEMENTATINN OF A TIME PRUNED FFT, s
C USING THE DECIVATINN [N FRFQUENCY ALGORITHM,NUMBER OF OUTPUT *
C SAMPLFS=2#eM WHERE M IS GREATER THAN CP EQUAL TC L. L
c »
Crtassaddd bR RN RNAR R ARSI R C XA AR AR AR BRE R kAT E A r kR nh ek d kb b e nh bbb b kO R

0002 COVPLEX CMPLX¢WeX{512),7T

0003 K=M=|

006 N=2%s*M

nons L2=2%2L

0106 00 1 LO=1,V

NaGty LMx=2*%[{M=L0)

nQoa LIX=2%LMX

non9 SCL=6.283185/L1IX

0010 IF [LO-K)242,3

0011l 2 N0 4 LM=]1,L2

0012 ARG=(LM=-]1)*SCL

0013 W=C¥PLX(CDS{ARG) ,~SIN{ARG))

0Clé4 NN 4 LI=LIX,N,LIX

0915 Ji=LT-LIX+LM

0016 J2=J1 #LMX

0017 4 X{J2)=WeX(J])

0013 GG 10 1

0Cly 31 DN 5 LM=],LMX

0029 ARG=(LM=1)*SCL

0cz2i W=CYPLX(CCSLARG),~SINIARG))

noz? DO S LI=LIXyNsLIX

nn23 Ji=LI=-LIX#LM

0024 J2=J1 ¢LMX

nozs T=X{J1)=X(J2)}

nnza X{JLi=X(JL)+X(J2)

ne27v 5 X(J2)=u*T

QG228 1 CONTINUE

acrs NV2=N/2

neag ANM]l=K=1

nnii J=1

b3y OC 7 I=1,Nu1

nogi3 1FII.GE.J) GO YO &

0034 T=X(J)

0C3s x(J)=x(1)

BT X(1)=T1

0nay 6 K=NV2

NG iR 9 IF{K.GF.J)} GC TO 7

n019 J=J=-K

0C«0 K=K/2

OCatl GO TO 8

0042 T J=J+K

00413 RETURN

0Ca% END



APPENDIX II

This appendix provides a listing of a FORTRAN program implementation

of a frequency FFT pruning algorithm [See Fig. 3.6].
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FORTRAN IV G LEVEL 21 FFTP

0001

0oo?
a00d
o0ong
0006
o006
oon?
onna
oca9
Q019
0atLl
09012
0013
Nols
0015
0015
nCcL7
gcls
noLe
oc2d
ac2l
0022
QC23
N024
0025
gn?e
anz27
0g29
ac?9
0nin
neal
Q032
0033
I+
an3s
WEEY
acazr
IV ER
00419
0040
004l

SURROUTINF FFTP({X,M,L)

DATE = 74345

54

22724754

ISR IR R Rl a2 2Rt 2 R ARt R R 22 Rt A R R AR L E ]

c
c
c
c
o
C

THIS SURBRDUTINE IS AN IMPLEMEATATION CF A FREQUFNCY PRUNED
FFTLUSING THE NFCIMATION IN TIME ALGORITHM.NUMBER OF INPUT
SAMPLFS=2%sM _NUMBER CF OUTPUT SAMPLES=2%*L,WHEHRE M IS GREATER

THAN OR EQUAL TO L.

COMPLEX X(512),UsW,T,CMPLX
PI=3,141592
N=2%%}
Nl=2%%L
KV2=N/2
NM1=N-1
J=1
ng 7 I=1,.N¥]
IFI1.GE.J] GO TO §
T=X(J)
Xt =x{1)
xI1=v
5 K=Nv?Z
6 IF{K.GE.J) GO TO 7
J=J-K
K=K/2
GO 70 &
T J=J+K
N0 40 LO=1,M
LE=2%=*L0
LEL=LE/2
U=CMPLX{1.0,0,0)
W=CMPLXI{COS{PI/LEL) 4—SIN{PI/LEL1))
T1F{LO-L)} 20,20,30
20 DO 11 J=1,LEl
N] 9 [=sJ¢N,LE
1P=1+LF1l
T=X{1P)*»U
X(IPh=X(1)=-T
9 X({1)=X{1)+T
11 U=U%=W
GO TN 440
3N DO 12 J=1,N1L
NO 10 T=J,N,LE
IP=1+LEIL
10 X{I)=X{I)eX{IP)®U
12 U=U*nW
40 CONTINUE
RETURN
ENC

* % % N 48

22T EE RS R RS R SRR R R A s SR R T AR R R R 2R 222 R R R A R 2 R a2 R LY
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- APPENDIX II1I

This appendi# consists of a listing of the computer program used to
implement the MCZT and the PAM-CST. The parameters used in the program are
the following:

M = # of MCZT pts

N = NN = # of data points in the data sequence

NPAR = # of partitions. If it is MCZT, then NPAR = 1.

N = SPAR = Size of each partition; i.e. N = N/NPAR

L = the smallest integer power of 2, which > (M + ﬁ'— 1)

DF = frequency interval which is related to the specified resolution
FU = specified upper frequency in Hz.
FL = specified lower frequency in Hz.

T = sampling interval in seconds
The desired parameters L, RAPH, and RWPH are computed using the following
relations:
@ -1 = 2R
RWPH = ¢O = - (DF)T

RAPH = 6, = FL(T) (A3.1)

Illustrative example. We consider the case when

{X(m)} = Xk , k=0,1, ..., 31

where
(517

-l k7 i}
X = SinGon32) © sin (107k/32), k=0, 1, ..., 31

ceeeeses  (A3.2)
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Equation (A3.l) represents the sampled values of a 5 Hz damped sinuscid,

assumed to be sampled at 32 samples/sec.

The spectrum of X, using the MCZT and PAM-CZIT is desired such that the

DFT resclution is increased by a factor of 4 in the 3 Hz to 5.5 Hz region.

Solution: The desired spectra are shown in Fig. A3.1. In the case of MCIT,
the PAM-CZT algorithm was used with 8-artitions. The parameters for which

[See Eq. (A3.1)] are as follows:

~

N =1  for MCZT, 4 for PAM-CZT
M=11
L =16

RWPH = - 1/128

RAPH = 3/32

DF = 0.25 Hz

The program is listed in what follows.
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FPLTRAN IV G LEVFL 21 MAIN DATE = T4345 22724152

aaol
0002
0003
0C0%
anns

0206
0007
0208
0309
oolo0
n011
0012

09213
NH4
a015
00leé

0017
omas
0019
D020
0021
0922
0023
2024
0025
ad26
on27
0028
acz9
0nso
0031
0032
0033
0034
0035
nd3a
noar
0no3a
o0Ye
0040
0041

(o EA 2R RA RS2 RN AR R AR At RS AR RN RS R R R A2 2R R R R 2Rt R 122 2]

(4]

L}
C THIS PPOGRANM [WPLEMENTS THE MCZT ALRUPITH™ AS WFLL AS THE *
C oAw=CIT ALGGRITH4A., IT CAN BE USED TO CUMPUTE THE DFT COEFFS *
C AND THE POWER SPFCTRUM, L
C »
C *

L T T T R ey YY)
COvLFEX XNCU512)9Y(5120+215120+¥Y(512),BL,CMPLX
DTMENSINN XX(512).,A%P(512)
INTEGER SPAR
[NCARD=S
1PRMNTR=S

READ CCNTROAL PARAMETERS

[alainl

S FARMAT{*0r",5X, "NARRCW EANC SPECTRA USING MC2T?)
10 2EANLINCARD,20) KKy M,L, RAPH ,RWPH NPAR
20 FNAYAT(3113,2F10.8,110)
IF (ANN,EQ.O0) GC TO 900
PRINT 5
WRITE(IPANTR,39) NN,M,L,RAPHRHWPH,NPAR .
30 FOIMAT( V0" o //7/710%TNN=" J [ 4,5K,9M=1 (14,5XK,'L="14,5X,"RAPH=",F]
X5 HeI3Xy "AWPH=" FL15.8,5Xs"NPAR=",[5,///)

COMPUTE CONSTANTS

(alalal

SPAR=NN/KPAR
k2P1=6,.233185
DNN1=R2P1 =R APH*FLOAT(SPAR)
ONN2=R2P | *RWPH*FLOATL SPAR)

GENERATE T+E SIGNAL

(3 laln]

0l=3,141592
C=FXP{5./T.)/7(SINI(SO.*PI/NN))
NO &0 J=1,NN
AK=1J=-1)

40 XX{J)=CREXP({-AK/T.)*SIN{1 0. *PI*AK/NN)
PRINT 50

50 FORMAT{®Q%,9X,*N*y7X,*INPUT SIGNAL®)
N0 60 J=1,NN
1=J~1
WRITELIPRNTR,55) I,Xx{J}

55 FOQUAT(® *,8X,12,4X,FL0.5)

69 CONTINUE
DO 70 f=t,m

70 2t11=CMPLX(0.0,0.0)
DM 11D X=1 ,NPAR
™1 80 J=1,SPAR
1SPAR|=SPAR®(K~1)
ANC{ I =CrPLX(XX(J*ISPARL) ;0.0)

RO CONT INUE
CALL CHIRPI{XDC,SPAR,M,L,RAPH,RWPH,Y)
N 90 I=l.M
FIML=FLOAT(1-1}
RETAL ={DNN2#F IVl -DNN] ) *(K-1}
Bl=CMPLX(CNSIBETAL) ,SIN(BETALD)
YUL)=BL*Y L]}
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FORTRAN IV G LEVEL

nn&2
NC43
0044
0045
1]+ 7.3
Q0&T
0048
2049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
006l
0062

90

109
119

120

130

140
150

160

910

2 MATN NATE = T4345 22724752

CONT INUE

N0 1310 L=1,¥ ‘

ZLEI=201)+YLI) -

COANT INUE

PRINT 120

FARMAT {*0%,4X, "FREQENCY® , 12X, 'DF T COEFFS",24X,"POWER SPECTRUMY)
PRINT 130

FORMAT( "0 y5X, "IN HERTZY ,12X,"AFALY 412X, [MAG® )
FR=2.75

D0 15C J=l,.»

FR=FR+0.25

PS=CABSUZ{J})}

PS=PS¥PS

WRITE(IPANTR, 140) FR,Z(J)},PS

FORMAT{ "0 (6X 455.2,9%42F13.6,11X,Fl2.8)
CONTIKUE

PRINT 160

FORMAT{*1! ,5%,"NARROwW BANC SPECTRA USING PAM=CZT?)
Gn T0 10

sToP

END
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FCRTRAN IV G LEVEL

0901
ann2
0003
0004%
0005
0906
onn7
0008
0009
oclo
nall
adL2
03t13
0qla
0015

Qolé
aoL7

0o18
0019
0020
0121
0c22
ocz3
0024
0025
0226
0027
0928
0029
0039
0031
0032
0033
n034
no3s

0036
0037

a038
0839
0040

0041
0042
0043

la¥aka

[ EaKal

oon [alnlnl

o0

100

110

120

130
140

150

160

21 CHIRPZ DATE = T4345
SUBROUT INF CHIRPZIX NN, ML ,PAPH, RWPH,GK)

CrYPLEX X(502)Y(5L2)VIS12),GK(512),CL,C2,CMPLX
R2P1l=6,2R31 85

NNI=R2P1*RAPH

NN2=22P] *RWPH

07 170 I=1,NN

FIML=FLCAT(I=1)

THETAL=FIMI*(DN2*FIM]/2,0-NN1)
Cl=CYPLX{ZCS{THETAL),SINITHETAL))

Yinr=xtil=Cl1

CONT INUE

NNPL =AN+1

DC 110 I=NNPl,L

YLT)=CuPLX(0.0,0.0)

CONTINUE

CNMPUTE THE OFT OF ¥

11=0
CALL FFTAL.Y,I1)

FORM THF L POINT SEQUENCE

N0 120 I=1,¥~

FIMl=FLOAT(I-1)
THETA2=DN2*FTU|*22/2,0
VET)=CMPLX(COSITHETA2) ,~SINITHETAZ))
CONT INUE

I¥ (L.EQ.MeNN~-1) GO TD 140
LHNNl=L=NN+]

Ml=Ms]

N7 130 I=W],LMNN]L
VILI=CMPLX{0.0,0.0)

CONT INUE

CONTINUE

LYNPZ=L=-NN+2

N 150 1=LMAP2,L

FIMI=FLCAT{L=-T+1]}
THETAZ2=DN2*F M *22/2,0

VIT)=CVMOL X(COS(THETA2) ,=SINITHETA2)}
CONTINUE

CO#PJTE THE L POINT DFT OF ¥

CALL FFTIL,V,I1)
00 160 I=],L

MULTIPLY THE SEQUENCE Y AAD vV TO OBTAIN GK
G IIy=Y(1)ev(])

CONTINUE

11=1

COMPUTE THE DFY OF GK

CALL FFT(L.GK,IT}

NN 170 T=1,M
FIML=FLOAT(I=]1)

22/24/52
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FORTRAN IV G LEVEL

0N44
0045
0046
00&7
0Cs48
0049

170

21 CHIRPZ

THETA3=DN2*FIM]1222/2,0
C2=CMPLXICCSU{THETA3 )} ,SIN(THETA3})
GrL)=C2*GXK(1)

COAT [NUE

RETURN

END

DATE = 74345

22/24/52
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FORTRAN TV G LEVEL 21 FFT DATE = 74345 22/?4/52

000l

0002

0003
0Coe
0005
0006
ocor
Qoo
0co9
0410
ootl
o012
oo13
0014
0ols
00L&
o017
ooLs

0019
0029
0021
0022
0aQ23
0024
0025

0026
0027

ooza
ocz29
0030
003t
0032
0033

SUBPIUTINE FFT(N,X,II)

CEEZASRBIEL L SRANEI LSRN AR ERA RIS RARNRENARIRAP SRR XBFEIINEE BT EREPREBET SRS

c
c
C
c
C
c
C
c
c
C
c
C
c
c
10
20
c
C
C
c
c
=
C
c
c
c

THIS PRIGRAM [MPLFMENTS THE FFT ALGN2TTHKM TO COYPUTE THE DISCRETE
FOUalER CAFFFICIFNTS CF A4 DATA SEQUFNCE CF N PCINTS
CALLING SFQUENCE Fo0OM THE MAIN PROGRAMS
CALL FFTUIN.X,I1)
N: NUMEFR OF DaTA PNINTS (MAX.512)
c®ks COAMPLFX AHRAY CONTATHING THE DATA SEQUEMCE. IN THE END DFY
CNEFFS. ARE PETURKEC IN THE ARRAY. MATN PROGRAM SHOULD
DECLARE T aAS—- COWPLEX X{512)
I1t FLAG FOR INVERSE
11=0 FOR FNaWaRD TRANSFORM
1i=1 FOR [NVERSE TRANSFORM

STV RANFE AR XX RSN AR EIEAE PRI DET LRSS EITREFRIE TSRS S NP S PS TSR BES

COMPLEX XES5L12),CMPLX A, T, ALPHA
CALCULATE THE # CF ITERATIONS (LOG. N TO THE BASE 2}
ITER=D

IREMaN

IRFuU=[REM/2

IF [IRE%,EQ.0) GO TO 20

ITER=ITER®]

GO T0 10

CONT INUE

SIGN==-1

IF {I1T1.EQ.L1) SIGN=1

4RG=2.%3.141592/FLOATIN)}

Bl=COS{ARG]

82=51N[ ARG}

A=CwPLX{BL,SIGA=R2)

Ip=1

IGK=N

DO 50 K=1,1TER

COVMPUTATICN FOR EACH ITERATION

IGK=IGK/2
1LAST=[GK
La==1P

NN 40 1=1,ILAST
La=LA+IP

16K2= [GK+[GK
wx=-1GK2

CALCULATE THE MULTIPLIER

ALPHA=A®SLA i
1P: # OF PARTITIONS IN THE 1TERATION
DO 30 M=1,]P

COvPUTATION FOR EACH PARTITION

MX=MX¢IGK2

{PoY=l+eNy

[PMMe 1 PMXEIGK

T=x{ IPNX])=X({[PuM)
X{IPpux)=x{ [PMX)eX(IPMM])
X{1pvM)=AL PHA®T
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FNRTRAN IV 5 LEVEL

N03%
0035
0036
0n37
0038
00139
Q040
004l

0042
Q043
0044
0245
D046
0047
0048
0049
0050
0051
ocs2
0053
0054
0055
0056
0057

[aFaXal

30
40

50

55
58

59
60

65

21 FFY

CONT INUE

CONT INUE

[P={Pe]lP

CONT INUE

1F (11.E9.0) GC TO 58
DO 55 I=1,N
XU1)I=X{1)/FLOATIN)
CONT I NUE

UNSCRAMBLE THE BIT REVERSED DFT COEFFS

N2=N/2

Nl=N=-]1

J=1

DN 65 I=1,N1

IF (1.GE.J) GO TO 59
T2x{J)

XiJdi=x{1)

x([)=T7

K=N2

IF [K.GE.J) GO YO 65
J=J=-K

K=K/2

GO TO &0

J=JeK

RETURN

END

DATE = 74345

22724452
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NAR2NW ARANC SPECTeA USING MCIT

Nh= 32

DO~ nP W~ 0OZ

10
L
12
13
14
L5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3l

FREQENCY
IN HERTZ
3.00
3.25
3.50
1.75

4.00

M= 11 L=

INPUT SIGNAL
0.0
-1.50120
-1.446Q00
-0.26470
0.83167
1.00000
0.33824
-0.425617
-0.66420
-0.31989
0.19100
0.424317
0.26523
-0.06343
=0.26041
-0,20317
=-0.00000
0.152467
0.14706
0.02692
-0.08458
-0.10170
=0.03440
0.N4329
0.06755
0.03253
-0.01943
-0.04316
-0,026917
0.00645
0,02648
0.02066

DFT CDEFFS
REAL
=2.793992
-3.055629
-3.,338512
=3.5T4569

=3.834489

RAPH=

TMAG
0.782343
0.984810
1. 347240
1.829725

2.448029

0.09375000

POWER SPECTRUM

8.41B845131
10.30671408
12.9627T1625
16. 12562725

20.6961364T

RWPH= -0.00781250

64

NPAR=



-4.069627
-3.816283
-2.532948
-0.341800

1.841603

3.116057

3.445261
4.956975
6,5C3665
T.173411
6.500021

4©.964082

28, 43006897
39.135604856
48.71347046
51.57464600
45.64175415

34.35189819
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NAPRDW BAND SPECTRA WUSING PAM-CIT

NARROW BAND SPECTRA USING MCZIT

NN= 32

VWMt uN=O2Z

10
11

12
13
14
15
16
17
18
19
20
21
22
23
264
25
26
27
28
29
30
31

FREQENCY

TN HERTZ

Mz 11 L=

INPUT SIGNAL
c.o
-1.501240
-1.44600
-0.26470
0.83147
1.00000
0.33824
-0.42567
-0.66420
-7.31989
0.19100
0.42437
0.26523
-0.06343
-0.26041
-0.20317
-0.00000
0.15267
0.14706
0.,02692
-0.08458
-0.10170
=0.03440
0.04329
0.06755
0.03253
-0.01943
-0.064316
=0.02697
0.00645
0.02648
0.02066

DFT COEFFS
REAL

-2.793987
=3.055624
-3.,338517
=-3.57456%

=3.834494%

RAPH=

IMAG
0.782366
0.984815
1.347249
1.829732
2.448034%

0.09375000

POWFR SPECTRUM

8.41845131
10.30669022
12.96077156
16.12544250

20. 69619751

RWPH= -0.N0TBLZ250
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NPAR =



-4,069436
-3.816284
=2.53294%4
-0.341770

1841622

3.116057

3. 465270
4.956997
6.503680
To173414
6.500010

4,964058

2B.43016052
39.13581848
48.713053586
51.5T7466125
45.64170837

34.35166931)
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FFT pruning corresponds to eliminating arithmetic operations that do not
contribute to the output in the computation of DFT coefficients. It is shown
that FFT pruning is faster than other FFT algorithms, when (i) number of
nonzero input data points is considerably smaller than the desired number
of output points, or, (ii) the desired number of transform coefficients is
considerably smaller than the number of input points. It can be used effec-
tively in the frequency domain as well as the time domain,

Applications of FFT pruning that are considered in this report are
narrow-band spectral amalysis, formant analysis of speech and high speed

autocorrelation.



