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Classification of Image Pixels based on Minimum
Distance and Hypothesis Testing

Santosh Ghimire1 and Haiyan Wang2∗

1Department of Mathematics, Kansas State University, Manhattan, KS 66506

2Department of Statistics, Kansas State University, Manhattan, KS 66506

Abstract: In this article, we introduce a new method of image pixel classification. Our method
is a nonparametric classification method which uses combined evidence from the multiple hy-
pothesis testings and minimum distance to carry out the classification. Our work is motivated
by the test-based classification introduced by Liao and Akritas [2007]. We focus on binary and
multiclass classification of image pixels taking into account of both equal and unequal prior
probability of classes. Experiments show that our method works better in classifying image
pixels in comparison with some of the standard classification methods such as linear discrim-
inant analysis, quadratic discriminant analysis, classification tree, polyclass method, and Liao
and Akritas’s method. We apply our classifier to perform image segmentation. Experiments
show that our test-based segmentation has excellent edge detection and texture preservation
property for both grey scale and color images.

AMS 2000 subject classifications: Primary 68U10, 97K80, 62H35; secondary 62G10.

Keywords and phrases: Image processing, image classification, hypothesis testing, minimum
distance, image segmentation.

1. Introduction

Images can be considered as a finite collection of regions and thus can be realized by groups of
pixel values representing different regions in the image. The pixels representing a particular feature
or color in the image show more homogeneity in terms of distribution of pixel values. Groups of
similar image pixels can be formed by comparing pixels with each other and to pixels of known
identity. The groups so formed are called image pixel classes. These classes then represent different
informational categories of interest and can follow any distribution.

Image pixels classification is a process of assigning pixels to different classes in the image. It
is widely used in medical diagnosis and remote sensing. Some of the applications of multispec-
tral image pixels classification in remote sensing are identification of objects in satellite images,
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land-use analysis, mineral exploration, and determination of earth surface composition where the
knowledge of reflectance properties of various types of material is also needed for the classifica-
tion. Image pixels classification has been very helpful in medical diagnosis such as chromosome
karyotyping, comparison of normal and non normal blood vessels, categorization of database of
x-ray images, study of anatomical structure, computer-integrated surgery, quantification of tissue
volumes, treatment planning, etc. Some of the other applications of pixel classification include
astronomy, face recognition, traffic control systems, agricultural imaging, computer vision etc.

Commonly used statistical methods that can be implemented for image pixels classification are
linear discriminant analysis (LDA) (Hastie et al. [2009]), quadratic discriminant analysis (QDA)
(Hastie et al. [2009]), classification tree (Breiman et al. [1998]), polyclass method (Stone et al.
[1997]), maximum likelihood, and Bayes classifier. Commonly used computer-based classifiers
include nearest-neighbor classifier, K-nearest-neighbor, neural networks, and support vector ma-
chine (Vapnik [1982]). All the aforementioned computer-based classifiers are nonparametric in that
they make no assumptions on the distributions of the data to be classified. On the other hand, we
have mixed bag of classifiers in the given statistical classifier methods. Classification tree and poly-
class method are nonparametric whereas LDA, QDA, maximum likelihood, and Bayes classifier
are parametric classifiers making assumptions about the distribution of classes. For example, LDA
and QDA require that the distribution of values for all classes to be Gaussian. Similarly, maximum
likelihood and Bayes classifier generally assume that the pixel intensities are independent samples
from a mixture of Gaussian distributions. However in practice, image pixel values can follow any
distribution. The computer-based approaches are straightforward and intuitive but barely consider
the randomness of the data in each class. A classification method based on hypothesis testings
was developed by Liao and Akritas [2007]. This is a powerful nonparametric classification method
which can allow the variation within a class be taken into account through the test-statistics with-
out making distributional assumptions. However the implementation of their method in the context
of images reveals that the method can fail to correctly classify many image pixels in the given
image due to small p-values. Here we introduce a minimum distance into the test-based classifica-
tion and come up with a new classifier for image pixels. This new classification method eliminates
the drawback of Liao & Akritas’s method and works better than commonly used classification
methods.

The pixels classification will be employed to perform segmentation of color images. Image seg-
mentation is a process of dividing an image into different homogenous regions so that the image
can be represented differently making it easy to study and analyze. In fact, image segmentation
can be viewed as image pixels classification based on the spatial features and color of the images.
Segmentation extracts information about the structure of objects in the image and is helpful in sep-
arating and observing various parameters of interest within the image data. There are several ap-
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proaches for grey scale image segmentation. Commonly used approaches include histogram based
approach (Dutta and Chaudhari [2009]), clustering approach (Coleman and Andrews [1979]), wa-
tersheds transformation approach (Vincent and Soille [1991]), classifier method, region-based ap-
proach, edge detection-based approach, artificial neural networks etc. However there are not many
literature available for color image segmentation and most of the available methods for color image
are based on grey scale image segmentation approach. Readers can refer to Haralick and Shapiro
[1985] and Pal and Pal [1993] for surveys on image segmentation techniques.

Classifier methods work well in image segmentation for images with quantifiable features. They
can be employed in multichannel images and are efficient to employ in comparison with other
approaches. In classifier-based image segmentation, training data are manually obtained to be used
as references for segmentation of the entire image. As pixel values in image classes can follow
any distribution, nonparametric classifiers in general are expected to produce more realistic results
for a wide variety of data than the parametric classifiers. In this article, we describe how our
nonparametric classifier can be used to produce accurate segmentation of color images.

The rest of the article is organized as follows. Section 2 gives detail about the formation of
classes, training data and test points. Section 3 describes our method for the binary classification
of image pixels where we consider both equal and unequal prior probabilities of classes. In Section
4, we extend to multiclass classification for equal and unequal prior probabilities of classes. Section
5 discusses the classification of pixel values in color images. In Section 6, we provide implemen-
tation and exhibit the detailed aspects of our classification method in grey scale images. Section
7 is devoted to the comparisons of several methods of classification with our method. Section 8
discusses the segmentation of color images using our method of classifier followed by a summary.

2. Training data, classes and test points

Here, we give a description about the formation of training data, classes and test points in a
given image. This will be frequently used in the implementation of different classification methods
in later sections. In an image, we can define our classes of interest by selecting the regions marked
with different colors in it. We use some data that is known a priori to belong to the involved classes
to train the system about these classes and learn the class parameters. This data is referred to as
training data. We take a rectangular part of the regions representing the class to acquire the training
data of that class. We do this by choosing two points in the region which will be the end points
of the main diagonal of the rectangle. The rectangle so formed is simply a submatrix of the given
matrix (image is a matrix). Next, we put it into a vector form by adjoining each column of the
submatrix below its preceding column. Then we treat this vector of pixels as training data from the
corresponding class. In the classification of images, we classify a randomly selected pixel, known
as test point, in the image as belonging to one of the defined classes. In the implementation of all
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the considered classification methods, we will randomly select equal number of test points from
each of the region representing the different classes. This process of selecting equal number of test
points from the corresponding class will be helpful to determine the misclassification rate of the
method.

3. Binary Classification

Let us consider two image pixel classes with means µ1, µ2 and x0 be a randomly selected test
point in the image. Denote (x11,x12,x13, . . . ,x1n1) and (x21,x22,x23, . . . ,x1n2) as the training data
from class 1 and class 2 respectively. Liao and Akritas [2007] (denote as LA) suggested a classifi-
cation scheme based on the following two applications of a test. The null hypothesis can be that two
samples have equal mean, or more generally, class 1 and class 2 have identical distribution. The
t-test would correspond to equal mean hypothesis whereas Wilcoxon rank sum test is appropriate
for the other hypothesis.

• Test 1: Place x0 with the observations from class 1 and use (x0,x11,x12, . . . ,x1n1) and
(x21,x22, . . . ,x1n2) to test the null hypothesis H0.

• Test 2: Place x0 with the observations from class 2 and use (x11,x12, . . . ,x1n1) and
(x0,x21,x22, . . . ,x1n2) to test the null hypothesis H0.

We denote p-values from test 1 and test 2 by PV1(x0), PV2(x0) and use p1, p2 to denote the prior
probability of classes. A small PV1(x0) and a large PV2(x0) suggests that putting this observation in
class 1 will maintain the difference of the two classes. On the other hand, putting this observation
in class 2 will blur the boundary between the two classes. Thus, PV1(x0)/[PV1(x0)+PV2(x0)] can
be assumed as the relative test-based probability that the test point x0 is not from class 1 so that
(1−PV1(x0)/[PV1(x0)+PV2(x0)]) works as the probability that x0 is from class 1. LA classify
x0 as from class 1 if PV2(x0)p1 > PV1(x0)p2. They classify x0 as from class 2 if PV1(x0)p2 >

PV2(x0)p1. In practice, we have found out that this classification scheme tends to misclassify an
observation for image data when both p-values, PVi(x0), are too small. For example, consider
the image in Figure 1(a). We choose mountain region and water region as class 1 and class 2.
Training data for these classes are formed by following the procedure in Section 2. In the image,
size (number of pixels) of training data for class 1 and class 2 are 630 and 380 respectively. The
image has size 512× 512 and hence the proportion of the training data are 0.00240 and 0.00144
respectively. For the classification purpose, we select 20 test points labeled with numbers such that
first 10 of them are chosen from region representing class 1 and the rest are taken from class 2
region as shown in Figure 1(a). Kernel density estimate is used to obtain the density plot of pixel
values in each class and is shown in Figure 1(b). The plot shows that classes so formed are distinct
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and well separated.

FIG 1.
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(a) Image with training data and test points. (b) Density plot of classes.

The selected test points are classified using the LA method and are shown in Table 1 which
shows that their method has misclassified test points 2,4,5 and 7-10.

TABLE 1
Classification by Liao & Akritas method in image Figure 1(a)

TP LA PV1 PV2 Obs.
1 class 1 7.493683e-157 4.621872e-156 0.4745098
2 class 2 7.523930e-157 5.808925e-157 0.4352941
3 class 1 7.516353e-157 1.054541e-156 0.4549020
4 class 2 7.523384e-157 6.037376e-157 0.4392157
5 class 2 7.523930e-157 5.441142e-157 0.4274510
6 class 1 7.493683e-157 1.385811e-156 0.4588235
7 class 2 7.523649e-157 5.621821e-157 0.4313725
8 class 2 7.524070e-157 5.360952e-157 0.4235294
9 class 2 7.524086e-157 5.188463e-157 0.4039216
10 class 2 7.523992e-157 5.297517e-157 0.4196078
11 class 2 8.472896e-157 5.187623e-157 0.2392157
12 class 2 1.835294e-156 5.174205e-157 0.2235294
13 class 2 2.407138e-156 5.179641e-157 0.2196078
14 class 2 1.436675e-156 5.182781e-157 0.2274510
15 class 2 1.835294e-156 5.174205e-157 0.2235294
16 class 2 7.984479e-157 5.188075e-157 0.2431373
17 class 2 1.835294e-156 5.174205e-157 0.2235294
18 class 2 6.155528e-156 5.187333e-157 0.2039216
19 class 2 7.182948e-156 5.188463e-157 0.1803922
20 class 2 7.182948e-156 5.188463e-157 0.1764706

PV1= p-value from test 1, PV2= p-value from test 2,
TP= Test point, Obs= Test point pixel,

LA= Liao & Akritas’s classification result

Next we analytically explain why the LA method may fail to classify some test points accurately.
Let us consider two image pixel classes, class 1 and class 2 and consider a test point x0 which we
would like to classify using the LA method. We illustrate with the t-test case. Let (x11,x12, . . . ,x1n1)

and (x21,x22, . . . ,x2n2) be the training data for the class 1 and class 2 respectively. We take n1 =

n2 = n. Then the test statistics for the Test 1 described earlier is given by,

T1 =

x0 + x11 + x12 + . . .+ x1n

n+1
− x21 + x22 + . . .+ x2n

n√
sd2

1
n+1 +

σ̂2
2

n

,
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where σ̂2
2 is the sample variance of class 2 and sd2

1 = [(x0 − µ̂1)
2 +∑n

i=1(x1i − µ̂1)
2]/n with µ̂1 =

x1.+(x0 − x1.)/(n+1). Similarly the test statistics for the test 2 mentioned earlier is

T2 =

x11 + x12 + . . .+ x1n

n
− x0 + x21 + x22 + . . .+ x2n

n+1√
sd2

2
n+1 +

σ̂1
2

n

,

where σ̂2
1 is the sample variance of class 1 and sd2

2 = [(x0 − µ̂2)
2 +∑n

i=1(x2i − µ̂2)
2]/n with µ̂2 =

x2.+(x0 − x2.)/(n+1). Note that for large n, sd2
1 ≈ σ̂2

1 and so T1 ≈ t +(x0 − x1.)/
√

V1, where

V1 = (n+1)sd2
1 + σ̂2

2(n+1)2/n and t =
x1.− x2.√
(σ̂2

1 + σ̂2
2)/n

.

Similarly, T2 ≈ t − (x0 − x2.)/
√

V2, where V2 = (n+1)sd2
2 + σ̂2

1(n+1)2/n. The two statistics T1

and T2 differ in the second terms. Note that

V1 −V2 = (x0 − x1.)
2 − (x0 − x2.)

2 +(σ̂2
2 − σ̂2

1)(2n+2)/n,

which was obtained by writing

sd2
1 = (x0 − x1.)

2/(n+1)+ σ̂2
1(n−1)/n,

sd2
2 = (x0 − x2.)

2/(n+1)+ σ̂2
2(n−1)/n.

It can be seen that when |x0−x1.| and |x0−x2.| are close for x0 between x1. and x2. but |x0−x1.|<
|x0−x2.|, we have V1 >V2 if σ2 is much larger than σ1 (since σ̂2

i are consistent unbiased estimators
of σi, i = 1,2). Consequently, PV1(x0)> PV2(x0) and LA would classify x0 to class 2 even though
x0 is closer to class 1.

In lieu of above finding, we modify the LA classification criterion as follows.

• If max(PV 1,PV 2) ≥ 0.001(threshold), i.e., at least one of the test p-values is larger than the
threshold value, then a test point x0 belongs to class 1 if PV2(x0)p1 > PV1(x0)p2. Similarly,
the test point x0 belongs to class 2 if PV1(x0)p2 > PV2(x0)p1.

• If max(PV 1,PV 2) < 0.001(threshold), i.e., both of the test p-values are smaller than the
threshold value, then a test point x0 is classified to class 1 if the distance of x0 to class 1 is
less than the distance of x0 to class 2. The x0 is classified to class 2 if the distance of x0 to
class 2 is less than the distance of x0 to class 1.

The distance of a point x0 to a class can take one of the traditional forms such as complete
linkage, single linkage, average linkage, etc., or simply, the distance between x0 and the central
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tendency of class pixel values. In our experiments, we employ the distance of x0 to the mean pixel
values of each class.

In hypothesis testings, 0.001, 0.01, 0.05, 0.1 are typical significance levels used by practioners
to declare a significant result. In our experiments, we take the most conservative one, i.e. 0.001,
out of these four values as the threshold for significance levels. It could be a good idea to use
cross-validation with the training data to choose the best value among these such that the cross-
validation error rate is minimized for the training data. We are reluctant to take the threshold to be
values other than those listed above. For example, 0.06 is not a reasonable significance level to use
as a threshold for significance.

If the prior probability of classes are equal then p1 = p2 = 1/2. For the unequal prior case, we
can define prior probability of classes as follows. Define λ = (µ1 +µ2)/2.

• If µ1 is less than µ2, then

Prior of class 1 = Proportion of pixels in the training data that are less than λ;

Prior of class 2 = 1−Prior of class 1.

• If µ2 is less than µ1, then

Prior of class 2 = Proportion of pixels in the training data that are less than λ;

Prior of class 1 = 1−Prior of class 2.

Another way to define prior probability of classes is;

Prior of class 1 = N1/(N1 +N2) and Prior of class 2 = N2/(N1 +N2),

where N1 and N2 are the numbers of pixel values in the training data for classes 1 and 2 respectively.

In general, in the case of image data, we find that the first prior definition is more informative
than the second. This can be observed by the separation distance of classes in the density plots.
Due to this reason, we will employ the first definition to calculate the prior probability of classes
in all the classification methods.

4. Multiclass classification

Here, we extend the idea of binary classification to multiclass classification. Assume that there
are k pixel classes in the image with means µ1,µ2, . . . ,µk and prior probabilities p1, p2, . . . pk, re-
spectively. We use fi,Fi to denote the probability density function and cumulative density function
of class i. Let x0 be a test point which we would like to classify. Hypothesis testings are done as
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many times as the number of classes by placing the test observation in one of the classes every time.
Suppose that we have training data with observation (x11,x12, ...,x1n1), (x21,x22, ...,x2n2), . . . , and
(xk1,xk2, ...,xknk) from the classes 1,2, . . . , and k, respectively. We perform a series of hypothesis
testing in which we test to see the sample evidence that x0 belongs to each of the classes based on
the training data. For these hypothesis testings, we choose Kruskall-Wallis test for generality since
this test allows arbitrary distribution for each sample. The tests are as follows.

• Test 1: Place x0 with the observations from class 1. Assume
(x0,x11,x12, ...,x1n1)∼ f1(x),
(x21,x22, ...,x2n2)∼ f2(x),
...
(xk1,xk2, ...,xknk)∼ fk(x),
and test the null hypothesis H0 that all the distribution functions are identical.

• Test 2: Place x0 with the observation from class 2. Assume
(x11,x12, ...,x1n1)∼ f1(x),
(x0,x21,x22, ...,x2n2)∼ f2(x),
...
(xk1,xk2, ...,xknk)∼ fk(x),
and test the null hypothesis H0 that all the distribution functions are identical
and similarly,

• Test k: Place x0 with the observation from class k. Assume
(x11,x12, ...,x1n1)∼ f1(x),
(x21,x22, ...,x2n2)∼ f2(x),
...
(x0,xk1,xk2, ...,xknk)∼ fk(x),
and test the null hypothesis H0 that all the distribution functions are identical.

Let PV1(x0),PV2(x0), . . . and PVk(x0) denote the p-values of the Test 1, Test 2,..., and Test k
respectively. We mainly use these p-values and the distance of x0 to the classes. Depending upon
the test p-values, we now state our detailed classification rule as follows.

• If max
1≤i≤k

PVi ≤ 0.001 (threshold), i.e., all the test p-values are small, then we use minimum

distance classification. We assign x0 to the class with the smallest di, where di = min
1≤i≤k

Di and

Di is the distance of the observation x0 to the mean of class i.
• If min

1≤i≤k
PVi ≥ 0.001 (threshold), i.e., all the test p-values are large, then x0 is classified using

the following steps.

– Step 1: We calculate the prior probabilities pi of classes and eliminate the class with
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the largest (1− pi)×PVi(x0).

– Step 2: We repeat Step 1 until there are two classes of pixels left.

– Step 3: For the remaining two pixel classes, we classify x0 to the class with the smaller
(1− pi)×PVi(x0).

• If m (1 < m < k) of the test p-values are less than or equal to the threshold (0.001), then we
eliminate the k−m classes that have p-values larger than the threshold. We use the minimum
distance rule to determine the class label from these m classes.

• If m = 1, we assign the observation to that class with the p-value less than the threshold.

We note that when all the test p-values are larger than the threshold, then x0 is classified to the
class obtained by eliminating classes, one at a time and comparing (1− pi)×PVi(x0) as explained
above. We follow this stepwise elimination of classes instead of classifying x0 to the class with the
smallest (1− pi)×PVi(x0) to avoid masking phenomenon as is explained in Hastie et al. [2009]
and Liao and Akritas [2007]. The other reason to follow the stepwise elimination of classes is that
the prior probabilities of classes could be updated after a class is eliminated.

If the prior probability of classes are equal, then we use p1 = p2 = . . . = pk = 1/k. For the
unequal priors, we can define the prior probabilities of classes as follows. Let µ(1), µ(2), ..., µ(k) be
the ordered means of the classes. Then,

Prior of class i = Proportion of pixels larger than [µ(i−1)+ µ(i)]/2 and smaller than [µ(i)+
µ(i+1)]/2.

Another way to define prior probabilities of a class is,

Prior of class i = Ni/(N1 + . . .+Nk),

where Ni represents the number of pixel values in the training data for the ith class.

If classes t1, t2, · · · tr are excluded, the prior probabilities of classes for the next step can be
adjusted as, pi = Ni/(∑k

m=1 Nm −∑r
j=1 Nt j). The first definition of priors is more informative than

the second for the image data, which could be seen by the separation distance of different classes
in the density plots. Considering this fact, we will calculate prior probability of classes using the
first definition for all the classification methods.

5. Classification of pixel values in color images.

In this section, we discuss our method of classification for color image pixels. We can consider
two approaches of classification of color image pixels. In the first approach, we consider the three
grey scale images of the original image corresponding to the RGB components or channels. We
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implement our classification method, discussed in Sections 3 and 4, to classify pixels in each
component where we employ a univariate test in the hypothesis testings. After the classification
of the test points in each component, we assign the final classification labels using a majority of
votes. For example, if a test point is classified as coming from class 1 in the red component and as
belonging to class 2 in the green and blue components, the final classification for it will be in class
2. In the case of tie, we randomly assign the test point to one of the classes.

The other approach considers every image pixel as a 3-dimensional vector consisting of corre-
sponding pixel values for red, green, and blue components. The RGB model is mainly based on the
Young-Helmholtz theory of trichromatic color vision (Paul [1981]) and Maxwell’s theory of color
triangle (Paul [1981]). The RGB space is a three-dimensional orthogonal coordinate system in the
sense that the three axes, representing the red, green, and blue color intensities, are perpendicular
to each other. In this color space, a color is simply formed by superimposing the three colored
light beams which are called components of the color. The spectrum of the final color so formed is
obtained by adding together the spectra from each of the three lights, wavelength by wavelength.
In this sense, the RGB model is an additive model. Hence we can conclude that the three com-
ponents are independent of each other. Due to this reason the multivariate test is equivalent to
three independent univariate tests if the tests are under identical assumptions. We could perform
hypothesis testings of equal multivariate distribution employing a multivariate test to obtain test p-
values. Being in a three dimensional space, we use the Euclidean distance to measure the distance
between the test points and the mean of classes. Once we have the p-values and the distance, we
use the same decision rule discussed in Sections 3 and 4 to obtain the final classification of each
pixel. In practice, however, nonparametric multivariate tests are not as stable as univariate tests for
the same number of observations in the training data. Moreover, they need a large sample size to
perform well. For example, when the sample size is small it is harder to get good density estimate
in multivariate case than in the univariate case. Even when the large sample size is satisfied, there
are additional difficulty with multivariate tests. For example, to allow the pixel value from any
distribution, the multivariate test should not be restricted to multivariate normal distribution. Con-
sequently, a nonparametric version of the Kruskal-Wallis rank test is desired. However, ranks for
multivariate data are not uniquely defined. Ranking within each component is an example; spatial
ranks and affine ranks are two other examples (chapter 6 of Thomas and Joseph [2010]). In recent
years, ranking based on data depth was also studied (Yijun and Xuming [2006]). We defer detailed
examination and comparison of these multivariate tests in image pixel classification to a separate
study. Due to these reasons, we use the first approach for the classification of color images.

Before the implementation of our method and other classification methods, we remark that we
choose not to use cross validation or bootstrap method to estimate extra-sample prediction error
for the following reasons:
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• Our training and testing data are randomly selected.
• In order to do cross-validation or bootstrap method to estimate extra-sample prediction error,

we need the true class memberships for all pixels in the image. However this information is
not clearly available to us for the entire image. Instead, the class memberships of some of the
pixels are obvious, such as the pixels in a homogeneous region. Hence we are comfortable
to manually decide the class of some of pixels but not for all pixels.

• In addition to difficulty of unavailability of true classmemberships of all the pixels, k-fold
cross-validation tends to use more pixels as training data and less pixels as test data. In
order to estimate the extra-sample prediction error, k need to be large. Leave one out cross-
validation (LOOCV) is unbiased estimate for generalization error. This requires all pixels
but one to be used as training data. In our reported case, we only used a very small portion
of pixels to train the model.

• If our goal is to estimate the extra-sample generalization for one particular method, it would
be necessary to conduct LOOCV. However, here our purpose is to compare different meth-
ods trained on the same training data and testing on the same test data. Due to the identical
data used, the classification results from different methods do indicate how well each method
performs relative to others. We admit that some methods might be sensitive to the training
and test data selected. In our case, the training and test data are randomly selected from ho-
mogeneous regions. In images the between-class variations of pixels values are much bigger
than within-class variations (which can be seen from the density plots). So we expect the
classification results would not fluctuate a lot for different training and testing data selected.

6. Implementation

In this section, we implement our method along with the LA method for binary and multiclass
classification of some grey scale images and compare their performance. Consider the image in
Figure 2(a) and choose two classes, namely sky and mountain. Then following the procedure de-
scribed in Section 2, training data are formed. In this image, size of the training data are 136 and
84 for class 1 and class 2. The size of the original image is 625×500. Then the proportion of the
training data are 0.00043 and 0.00026. Kernel density estimate is used to obtain the density plot of
classes. We select 20 test points, labeled with numbers, in the image in such a way that the first 10
test points are selected from class 1 and the rest are from class 2. Prior probabilities of classes are
obtained by using the first definition in Section 3. The density estimates of pixel values are plotted
in the right panel of Figure 2 showing that the classes so formed are distinct.

The classification results of the LA method and our method are presented in Table 2. Our method
correctly classified all the test points in Table 2 whereas the LA method has misclassified test points
3−10. So our method performs better than the LA method for binary classification of image pixels
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(a) Image with training data and test points. (b) Kernel Density estimate of classes.

TABLE 2
Classification of test points in image Figure 2(a)

TP LA Our PV1 PV2 D1 D2 Pr1 Pr2 Obs.
1 class 1 class 1 2.489520e-36 5.717360e-35 0.009775 0.760224 0.258220 0.741779 0.992156
2 class 1 class 1 2.361023e-36 7.614957e-36 0.001989 0.748459 0.258220 0.741779 0.980392
3 class 2 class 1 2.506775e-36 1.748560e-36 0.009832 0.740616 0.258220 0.741779 0.972549
4 class 2 class 1 2.506775e-36 1.748560e-36 0.076499 0.673949 0.258220 0.741779 0.905882
5 class 2 class 1 2.506775e-36 1.748560e-36 0.103950 0.646498 0.258220 0.741779 0.878431
6 class 2 class 1 2.506775e-36 1.748560e-36 0.107872 0.642577 0.258220 0.741779 0.874509
7 class 2 class 1 2.506775e-36 1.748560e-36 0.201989 0.548459 0.258220 0.741779 0.780392
8 class 2 class 1 2.506775e-36 1.748560e-36 0.213754 0.536694 0.258220 0.741779 0.768627
9 class 2 class 1 2.506775e-36 1.748560e-36 0.135323 0.615126 0.258220 0.741779 0.847058
10 class 2 class 1 2.506775e-36 1.748560e-36 0.037283 0.713165 0.258220 0.741779 0.945098
11 class 2 class 2 2.506775e-36 1.748560e-36 0.676499 0.073949 0.258220 0.741779 0.305882
12 class 2 class 2 2.506775e-36 1.748560e-36 0.672577 0.077871 0.258220 0.741779 0.309803
13 class 2 class 2 2.506775e-36 1.748560e-36 0.652970 0.097479 0.258220 0.741779 0.329411
14 class 2 class 2 2.506775e-36 1.748560e-36 0.656891 0.093557 .258220 0.741779 0.325490
15 class 2 class 2 2.526761e-35 1.748560e-36 0.786303 0.035854 0.258220 0.741779 0.196078
16 class 2 class 2 2.506775e-36 1.748560e-36 0.672577 0.077871 0.258220 0.741779 0.309803
17 class 2 class 2 2.613017e-36 1.748480e-36 0.700028 0.050420 0.258220 0.741779 0.282352
18 class 2 class 2 2.506775e-36 1.748560e-36 0.692185 0.058263 0.258220 0.741779 0.290196
19 class 2 class 2 5.001380e-36 1.747767e-36 0.743166 0.007282 0.258220 0.741779 0.239215
20 class 2 class 2 4.542750e-36 1.748480e-36 0.735323 0.015126 0.258220 0.741779 0.247058

TP= Test point, Obs= Test point pixel, Our= Classification by our method, LA= Liao & Akritas’s method
PVi= p-value from test i, Pri=Prior probability of class i, Di= Distance of TP from mean of class i,

in the given image.

Next, we compare the performance of our method and LA method for multiclass classification of
grey scale image pixels. Consider the image in Figure 3(a), a 512×512 image, in which sky, tree,
and water are defined as three classes with training data formed accordingly described in Section
2. First 7 test points are from class 1; next 7 are from class 2 and the last 7 are from class 3 as
shown in Figure 3(a). Right panel of Figure 3 shows the kernel density estimate of pixel values of
the classes. Size and proportion of the training data for class 1 are 136 and 0.00051. Similarly 150
and 0.00057 are the size and proportion of training data for class 2. Finally, 96 and 0.00036 are
size and proportion of class 3 training data in the given image. We evaluate the prior probabilities
of the classes using the first definition in Section 4.

We applied the LA method and ours to classify the selected test points and the classification
results are displayed in Table 3. Our method classifies all the test points accurately but LA method
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(a) Image with training data and test points. (b) Kernel Density estimate of classes.

TABLE 3
Classification of test points in image Figure 3(a)

TP LA Our PV1 PV2 PV3 D1 D2 D3 Pr1 Pr2 Pr3 Obs.
1 class 1 class 1 1.198e-73 4.586e-72 3.920e-73 0.0411 0.6666 0.1490 0.1899 0.4731 0.3370 0.8431
2 class 1 class 1 1.198e-73 4.586e-72 3.920e-73 0.0372 0.6627 0.1451 0.1899 0.4731 0.3370 0.8392
3 class 1 class 1 1.198e-73 4.586e-72 3.920e-73 0.0725 0.6980 0.1803 0.1899 0.4731 0.3370 0.8745
4 class 1 class 1 1.198e-73 4.586e-72 3.920e-73 0.0725 0.6980 0.1803 0.1899 0.4731 0.3370 0.8745
5 class 1 class 1 1.198e-73 4.586e-72 3.920e-73 0.0647 0.6902 0.1725 0.1899 0.4731 0.3370 0.8667
6 class 1 class 1 1.198e-73 4.586e-72 3.920e-73 0.0568 0.6823 0.1647 0.1899 0.4731 0.3370 0.8588
7 class 1 class 1 1.193e-73 9.965e-73 1.870e-73 0.0019 0.6235 0.1058 0.1899 0.4731 0.3370 0.8000
8 class 3 class 2 1.532e-72 1.246e-73 2.538e-73 0.6294 0.0039 0.5215 0.1899 0.4731 0.3370 0.1725
9 class 3 class 2 2.966e-73 1.248e-73 1.089e-73 0.5588 0.0666 0.4509 0.1899 0.4731 0.3370 0.2431
10 class 3 class 2 4.327e-72 1.248e-73 4.324e-73 0.6568 0.0313 0.5490 0.1899 0.4731 0.3370 0.1451
11 class 3 class 2 2.966e-73 1.248e-73 1.089e-73 0.4961 0.1294 0.3882 0.1899 0.4731 0.3370 0.3059
12 class 3 class 2 2.966e-73 1.248e-73 1.089e-73 0.5588 0.0666 0.4509 0.1899 0.4731 0.3370 0.2431
13 class 3 class 2 1.532e-72 1.246e-73 2.538e-73 0.6294 0.0039 0.5215 0.1899 0.4731 0.3370 0.1725
14 class 3 class 2 5.301e-72 1.248e-73 4.797e-73 0.6725 0.0470 0.5647 0.1899 0.4731 0.3370 0.1294
15 class 3 class 3 1.262e-73 3.092e-73 1.089e-73 0.0803 0.5451 0.0274 0.1899 0.4731 0.3370 0.7216
16 class 3 class 3 2.435e-73 1.542e-73 1.089e-73 0.1235 0.5019 0.0156 0.1899 0.4731 0.3370 0.6784
17 class 3 class 3 2.055e-73 1.847e-73 1.089e-73 0.1117 0.5137 0.0039 0.1899 0.4731 0.3370 0.6902
18 class 3 class 3 1.741e-73 2.200e-73 1.089e-73 0.1039 0.5215 0.0039 0.1899 0.4731 0.3370 0.6980
19 class 3 class 3 2.925e-73 1.267e-73 1.089e-73 0.1431 0.4823 0.0352 0.1899 0.4731 0.3370 0.6588
20 class 3 class 3 2.185e-73 1.731e-73 1.089e-73 0.1156 0.5098 0.0078 0.1899 0.4731 0.3370 0.6863
21 class 3 class 3 2.185e-73 1.731e-73 1.089e-73 0.1156 0.5098 0.0078 0.1899 0.4731 0.3370 0.6863

TP= Test point, Obs= Test point pixel,
PVi= p-value from test i, Di = Distance of TP from mean of class i,

Pri=Prior probability of class i, Our= Classification by our method, LA=Liao & Akritas’s method

misclassifies 7 test points. So our method works better than the LA method in the given image.
Extensive experiments and comparisons were conducted for binary and multiclass classification on
image pixel values. The results can be found in Ghimire [2011]. The general conclusion from these
experiments is that the LA method works fine if all the p-values are large and could misclassify a
test point when multiple p-values are small. Our method, on the other hand, handles both situations
very well.

7. Comparison with other methods

In this section, we compare our method of classification with some of the standard classification
methods, both statistical and computer-based, in classifying image pixels in color images. The
standard statistical classifiers include LDA, QDA, polyclass, classification tree. Liao and Akritas’s
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method will also be included in the comparison. We will compare our method with a computer-
based method, namely support vector machine.

Consider the image in Figure 4(a) which is a 602×452 image. Let us define the vegetation and
sky region as our two classes and rectangles are formed as described in Section 2 to obtain the
training data. The training data for class 1 has size 315 and has proportion 0.00115. Similarly, 338
and 0.00124 are the size and proportion of class 2 training data. Density plots of RGB components
of classes are obtained by using kernel density estimates and are shown in Figure 4(b). As before,
some test points are selected from each of the regions representing classes. For the classification
of the selected test points by the given statistical classifiers, we consider each of the grey scale
components of the image, namely, red, green, and blue, and employ our method and the other
methods to classify the test points in each of these components. Componentwise classification of
the test points are shown in Table 4 along with the pixel values which is scaled to range [0,1].

FIG 4.
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(a) Image with training data and test points. (b) Kernel Density estimate of classes.

After the classification of test points in each component, we use the majority of votes discussed
in Section 5 to obtain the final classification of test points. As we have 2 classes and 3 components,
we will not have any tie while employing the majority of votes. Next, we employ support vector
machine to classify the selected test points in the image and the its classification result is presented
in Table 5 along with the final classification of chosen statistical classifiers.

We note that first 7 of the 14 selected test points in the given image were taken from class 1
(sky) and the rest of the test points were from class 2 (vegetation). Table 5 shows that our method
of classification has no misclassification while other methods have misclassifications.

Next, we compare the multiclass classification performance of our method with other methods
in Figure 5(a). In this image we consider three classes which are the grass region as class 1, the sky
region as class 2 and the tree region as class 3. The training data are formed and some test points
are selected in the image. Componentwise kernel density estimates of classes are shown in Figure
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TABLE 4
Classification of test points in RGB components in image Figure 4

Compt TP LA OUR LDA QDA TREE POLY Value
1 class 1 class 1 class 1 class 1 class 1 class 1 0.08
2 class 2 class 1 class 1 class 1 class 1 class 1 0.09
3 class 2 class 1 class 1 class 1 class 1 class 1 0.09
4 class 2 class 1 class 1 class 2 class 2 class 2 0.10
5 class 2 class 1 class 1 class 2 class 2 class 2 0.10
6 class 2 class 1 class 1 class 1 class 1 class 1 0.09

Red 7 class 1 class 1 class 1 class 1 class 1 class 1 0.08
8 class 2 class 2 class 2 class 2 class 2 class 2 0.14
9 class 2 class 2 class 2 class 2 class 2 class 2 0.16
10 class 2 class 2 class 2 class 2 class 2 class 2 0.15
11 class 1 class 1 class 1 class 2 class 2 class 2 0.05
12 class 2 class 2 class 2 class 2 class 2 class 2 0.22
13 class 2 class 2 class 2 class 2 class 2 class 2 0.18
14 class 2 class 2 class 2 class 2 class 2 class 2 0.18
1 class 1 class 1 class 1 class 2 class 2 class 2 0.21
2 class 1 class 1 class 1 class 2 class 2 class 2 0.21
3 class 1 class 1 class 2 class 2 class 2 class 2 0.22
4 class 1 class 1 class 2 class 2 class 2 class 2 0.22
5 class 1 class 1 class 2 class 2 class 2 class 2 0.22
6 class 1 class 1 class 1 class 2 class 2 class 2 0.19

Green 7 class 1 class 1 class 2 class 1 class 1 class 1 0.23
8 class 1 class 1 class 1 class 2 class 2 class 2 0.17
9 class 1 class 1 class 1 class 2 class 2 class 2 0.17
10 class 1 class 1 class 1 class 2 class 2 class 2 0.16
11 class 1 class 1 class 1 class 2 class 2 class 2 0.04
12 class 2 class 2 class 2 class 2 class 1 class 2 0.26
13 class 1 class 1 class 2 class 2 class 2 class 2 0.22
14 class 1 class 1 class 2 class 2 class 2 class 2 0.22
1 class 2 class 2 class 2 class 2 class 2 class 2 0.43
2 class 2 class 2 class 2 class 2 class 2 class 2 0.41
3 class 2 class 2 class 2 class 2 class 2 class 2 0.44
4 class 2 class 2 class 2 class 2 class 2 class 2 0.43
5 class 2 class 2 class 2 class 2 class 2 class 2 0.44
6 class 2 class 2 class 2 class 2 class 2 class 2 0.38

Blue 7 class 1 class 1 class 1 class 1 class 1 class 1 0.53
8 class 2 class 2 class 2 class 2 class 2 class 2 0.19
9 class 2 class 2 class 2 class 2 class 2 class 2 0.15
10 class 2 class 2 class 2 class 2 class 2 class 2 0.12
11 class 2 class 2 class 2 class 2 class 2 class 2 0.04
12 class 2 class 2 class 2 class 2 class 2 class 2 0.31
13 class 2 class 2 class 2 class 2 class 2 class 2 0.27
14 class 2 class 2 class 2 class 2 class 2 class 2 0.22

5(b). As shown in the image, first five test points are selected from class 1, the next five from class
2 and so on. Size of the training data for the defined classes are 275, 270 and 100 respectively. The
given image has size 512× 512 so that proportion of the training data are 0.00104, 0.00102 and
0.00038 respectively.

We perform the componentwise classification of the selected test points to employ the chosen
statistical classifiers and is displayed in Table 6. To obtain the final classification of the test points,
we use the rule of majority of votes described earlier. As before, in case of tie, we randomly assign
the test point to one of the classes. After the classification by statistical classifiers, we classify
the selected test points by support vector machine. The classification result of all the methods are
presented in Table 7.

From Table 7, we observe that only a test point, namely, 15, is misclassified by our method.
The other methods have more misclassified test points. Additional experiments were performed to
compare our method with the other methods in different color images (see Ghimire [2011]). These
experiments confirm that our method has a smaller misclassification rate than other methods. From
the above discussion, we can conclude that our method performs better than other methods for
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TABLE 5
Final classification of test points in Figure 4

TP LA OUR LDA QDA TREE POLY SVM
1 class 1 class 1 class 1 class 2 class 2 class 2 class 1
2 class 2 class 1 class 1 class 2 class 2 class 2 class 2
3 class 2 class 1 class 2 class 2 class 2 class 2 class 1
4 class 2 class 1 class 2 class 2 class 2 class 2 class 2
5 class 2 class 1 class 2 class 2 class 2 class 2 class 2
6 class 2 class 1 class 1 class 2 class 2 class 2 class 2
7 class 1 class 1 class 1 class 1 class 1 class 1 class 1
8 class 2 class 2 class 2 class 2 class 2 class 2 class 2
9 class 2 class 2 class 2 class 2 class 2 class 2 class 2
10 class 2 class 2 class 2 class 2 class 2 class 2 class 2
11 class 1 class 1 class 1 class 2 class 2 class 2 class 2
12 class 2 class 2 class 2 class 2 class 2 class 2 class 2
13 class 2 class 2 class 2 class 2 class 2 class 2 class 2
14 class 2 class 2 class 2 class 2 class 2 class 2 class 2

LA= Liao & Akritas’s method, OUR= Our method
LDA=Linear Discriminant Analysis, QDA=Quadratic Discriminant Analysis

TREE=Classification Tree, POLY=Polyclass method,
SVM=Support Vector Machine, TP=Test Point
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(a) Image with training data and test points. (b) Kernel Density estimate of classes.

color image pixel classification.

8. Segmentation of images and properties of the method.

In this section, we employ our method of classifier to segment color images. Formally, we can
define image segmentation as follows. If the domain of the image is given by Ω then the segmen-
tation problem is to determine the sets Sk ⊂ Ω whose union is the entire domain Ω. Thus, the sets
that make up a segmentation must satisfy Ω = ∪K

k=1Sk where Sk ∩S j = ϕ for k ̸= j, and each Sk is
connected (Dzung L. Pham and Prince [2000]). We first briefly discuss the implementation of our
classifier method for segmentation. For this, we define our classes (segments) in the image where
the classes are simply some quantifiable features in the image. Training data for these classes are
then obtained by forming the rectangles in the regions representing the classes. Pixel values cor-
responding to three components are then combined to form the training data. Using these training
data, we classify all the pixels in the image using our method of classification discussed in Sections
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TABLE 6
Classification of test points in image Figure 5

Compt TP LA OUR LDA QDA TREE POLY Value
1 class 1 class 1 class 1 class 1 class 1 class 1 0.80
2 class 1 class 1 class 1 class 1 class 1 class 1 0.79
3 class 1 class 1 class 1 class 1 class 1 class 1 0.77
4 class 1 class 1 class 1 class 1 class 1 class 1 0.71
5 class 2 class 2 class 2 class 2 class 2 class 2 0.65
6 class 3 class 2 class 2 class 2 class 2 class 2 0.60

Red 7 class 1 class 1 class 1 class 1 class 1 class 1 0.71
8 class 2 class 2 class 2 class 2 class 2 class 2 0.60
9 class 2 class 2 class 2 class 2 class 2 class 2 0.62
10 class 1 class 2 class 1 class 1 class 1 class 1 0.69
11 class 3 class 3 class 3 class 3 class 2 class 3 0.29
12 class 3 class 3 class 3 class 3 class 2 class 3 0.31
13 class 3 class 3 class 3 class 2 class 3 class 2 0.43
14 class 3 class 3 class 3 class 3 class 2 class 3 0.29
15 class 1 class 1 class 1 class 1 class 1 class 1 0.71
1 class 1 class 1 class 1 class 1 class 1 class 1 0.87
2 class 1 class 1 class 1 class 1 class 1 class 1 0.87
3 class 1 class 1 class 1 class 1 class 1 class 1 0.85
4 class 2 class 2 class 1 class 2 class 2 class 2 0.81
5 class 2 class 1 class 1 class 2 class2 class 2 0.82
6 class 2 class 2 class 2 class 2 class 2 class 2 0.69

Green 7 class 2 class 2 class 1 class 2 class 2 class 2 0.78
8 class 2 class 2 class 2 class 2 class 2 class 2 0.75
9 class 2 class 2 class 2 class 2 class 2 class 2 0.71
10 class 2 class 2 class 1 class 2 class 2 class 2 0.77
11 class 3 class 3 class 3 class 3 class 3 class 3 0.12
12 class 3 class 3 class 3 class 3 class 3 class 3 0.14
13 class 3 class 3 class 3 class 3 class 2 class 3 0.29
14 class 3 class 3 class 3 class 3 class 3 class 3 0.06
15 class 2 class 2 class 1 class 2 class 2 class 2 0.79
1 class 1 class 1 class 1 class 1 class 1 class 1 0.83
2 class 2 class 1 class 1 class 1 class 1 class 1 0.81
3 class 2 class 1 class 1 class 1 class 1 class 2 0.81
4 class 2 class 1 class 1 class 1 class 1 class 1 0.81
5 class 1 class 1 class 1 class 1 class 1 class 1 0.83
6 class 2 class 2 class 2 class 2 class 2 class 2 0.65

Blue 7 class 2 class 2 class 1 class 2 class 2 class 2 0.75
8 class 2 class 2 class 2 class 2 class 2 class 2 0.71
9 class 2 class 2 class 2 class 2 class 2 class 2 0.67
10 class 2 class 2 class 1 class 2 class 2 class 2 0.75
11 class 3 class 3 class 3 class 3 class 2 class 2 0.08
12 class 3 class 3 class 3 class 3 class 2 class 2 0.11
13 class 3 class 3 class 3 class 2 class 2 class 2 0.21
14 class 3 class 3 class 3 class 3 class 2 class 2 0.08
15 class 2 class 2 class 2 class 2 class 2 class 2 0.68

3-5, considering one dimension (RGB) of pixels at a time. For the final classification of each pixel
in the image, we employ the majority of votes classification described earlier. In this way, all the
image pixels are classified resulting in the complete segmentation of the image.

We first perform segmentation using our classifier method in the image shown in the upper
leftmost panel of Figure 6. The objects in this image has many ill-defined edges. We would like
to illustrate with this example that our classifier method works well in the segmentation of images
with too many edges or ill defined edges. The size of the given image is 256×384 where we define
6 classes as the segments and training data are obtained for these classes as before. Size of the
training data for the given six classes are 702, 936, 936, 957, 1485, and 1188 respectively. Then
the proportion of the training data of the classes are 0.00714, 0.00952, 0.00952, 0.00973, 0.01510,
and 0.01208 respectively. The size of the Kernel density estimate for each component was obtained
and plotted in the middle panel of the first row in Figure 6. Then we perform segmentation using
our method and the segmented image is displayed in the upper right panel of the Figure 6. It can
be seen that our method has segmented the image accurately. From the density plot of classes, we
see that majority of the classes are overlapping but our segmentation looks okay even if the classes
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TABLE 7
Final classification of test points in image Figure 5

TP LA OUR LDA QDA TREE POLY SVM
1 class 1 class 1 class 1 class 1 class 1 class 1 class 1
2 class 1 class 1 class 1 class 1 class 1 class 1 class 1
3 class 1 class 1 class 1 class 1 class 1 class 1 class 1
4 class 2 class 1 class 1 class 1 class 1 class 1 class 1
5 class 2 class 1 class 1 class 2 class 2 class 2 class 2
6 class 2 class 2 class 2 class 2 class 2 class 2 class 3
7 class 2 class 2 class 1 class 2 class 2 class 2 class 2
8 class 2 class 2 class 2 class 2 class 2 class 2 class 2
9 class 2 class 2 class 2 class 2 class 2 class 2 class 2
10 class 2 class 2 class 1 class 2 class 2 class 2 class 2
11 class 3 class 3 class 3 class 3 class 2 class 3 class 2
12 class 3 class 3 class 3 class 3 class 2 class 3 class 2
13 class 3 class 3 class 3 class 2 class 2 class 2 class 3
14 class 3 class 3 class 3 class 3 class 2 class 3 class 2
15 class 2 class 2 class 1 class 2 class 2 class 2 class 2

LA= Liao & Akritas’s method, OUR= Our method,
LDA=Linear Discriminant Analysis, QDA=Quadratic Discriminant Analysis

TREE=Classification Tree, POLY=Polyclass method,
SVM=Support Vector Machine, TP=Test Point

are overlapping indicating that segmentation can also be done by considering smaller number of
classes in the image.

Robustness of a segmentation method on noisy images is a desired property for image process-
ing. We consider the image from the previous example and add Gaussian noise with mean 0 and
variance 0.06 (for image pixel values in [0,1]) into it. The image in the bottom leftmost panel of
Figure 6 shows this noisy image along with the training data for the defined classes. In the noisy
image, size of the training data for the defined classes are 840, 960, 1218, 1116, 2100, 1722 and
hence the proportion are 0.00854, 0.00976, 0.01239, 0.01135, 0.02136, 0.01751 respectively. We
segment this noisy image with our classifier method. The result is shown in the lower rightmost
panel of Figure 6. From the segmented image, we see that the segmentation result is satisfactory
though it seems to be much noisier than in previous case.

Next, we perform segmentation in another image given in the upper leftmost panel of Figure
7. The given image has dimensions 481× 321. The purpose of this example is to show that our
classifier method produces a closed curve or boundary among different quantifiable features in a
segmented image. So, we form training data and obtain density estimates as before and employ
our method. Here the size of the training data for classes are 252, 1080, 1215, 546, 1014 and the
proportion to the original image are 0.00163, 0.00699, 0.00786, 0.00386, and 0.00656 respectively.
The segmented image is shown in the upper right panel of Figure 7. One can see that a clear
boundary among each object or feature of the segmented image was identified accurately. After
this, we add some noise in the given image whose pixel values are scaled to range [0,1] and as
before we segment this noisy image. The training data of classes in the noisy image has size 120,
1368, 1248, 1209, and 1395 respectively. Then the proportion of the training data of the defined
classes are 0.00777, 0.00886, 0.00808, 0.00783, and 0.00903. The image in the bottom leftmost
panel is the image with Gaussian noise with mean 0 and variance 0.06. Our method still produces
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FIG 6.
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a clear boundary among different features in the noisy segmented image. But we note that this
segmented image is much noisier than in previous case. From the density plot as shown in the
middle panel of Figure 7, we note that classes 1 and 2 overlap mostly. But the boundaries between
these classes in the segmented image are very well detected. Also there is well defined boundary
between classes 4 and 5 although they overlap in the density plot. The mass of the pixel values of
class 3 is well separated from the rest of the classes.

Finally, we perform an automatic segmentation of color images by our method. Here, by auto-
matic segmentation we mean the segmentation of images using the training data from a different
image. So for automatic segmentation, we consider the image shown in the leftmost panel of Figure
8 and form training data for the defined classes. The size of the training data for the classes are 702,
936, 936, 957, 1485, and 1188. Here the image has dimensions 256× 384 so that the proportion
of the training data are 0.00714, 0.00952, 0.00952, 0.00973, 0.01510, and 0.01208 respectively.
Using the training data of this image, we employ our method to segment a different image, namely
the image in upper leftmost panel of Figure 7. The segmented image is displayed in the rightmost
panel of Figure 8. In the segmented image we observe that the boundaries among the first three
classes are weak and are almost indistinguishable. From the density plot of classes, displayed in
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FIG 7.
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the middle panel of Figure 8, we observe that the first 3 classes overlap mostly which makes the
program to be almost blind to the boundaries of the first 3 classes. Due to this reason, there is a
weak boundary among some features in the segmented image. In this way, using training data from
an image, we can segment many other images resulting in the automatic segmentation of images.

From the above implementation, we see that our method is a straightforward classification
method and can easily be implemented. Manual selection of training data allow us to have bet-
ter classification accuracy. Vaguely defined classes from another image can also be used to guide
the classification. However, some of the boundaries may not be accurately identified due to dif-
ferent behavior of the training data compared to the image to be segmented. As the pixel values
within a well-defined class are relatively close, our hypothesis testing based method would pro-
duce similar decisions for these pixels. This guarantees that the segmented images are contiguous.
Moreover, our method can also be implemented in images where homogeneity criteria is hard to
define.



Ghimire and Wang 2011/ Image segmentation via test and distance 21

FIG 8.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Red Component

Pixel Values on scale [0,1]

D
e

n
s
it
y

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Green Component

Pixel Values on scale [0,1]

D
e

n
s
it
y

1
2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Blue Component

Pixel Values on scale [0,1]

D
e

n
s
it
y

1
2

3

4

5

6

Images and classes Kernel density estimate Segmented images

9. Summary

In this work, we introduced a new method of image pixels classification that works well in clas-
sifying pixels in grey scale and color images. The classifier uses p-values from hypothesis testings
and distance of test points from the mean of classes to make decisions. In the classification of
image pixels, we observed that test p-values are small due to the size of training data. Theoreti-
cally, the p-values in a valid test follow the uniform (0,1) distribution. Hence two test p-values
both smaller than a significance level do not provide a different level of evidence to reject the null
hypothesis. Consequently, p-values alone are not adequate to make correct classifications. So we
introduced a combination of hypothesis testing and minimum distance in our classification. In the
implementation of our method, we observed that distance was mostly used for the classification if
the pixel values of classes were separated. The minimum distance classification works well when
there is low variability within classes and classes are distinct. But for classes with large within
variability, the minimum distance alone may not give the correct classification and we need to use
p-values. Using our classifier method, we can also segment images. Our method is computation-
ally efficient and works well in noisy images too. The method produces a clear boundary among
different features which is essential in segmentation and the method works well in the images with
too many edges or ill defined edges. The drawback of our method is that the training data have to
be obtained manually.
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