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For time-independent and time-dependent inverse source problems the degree of nonuniqueness 
of solutions is characterized. 

PACS numbers: 03.50.De, 03.65.Nk, 03.80. + r 

I. INTRODUCTION 

1. Recently a number of authors discussed the inverse 
source problems 1-5 (see also the bibliography in Refs. 1 and 
5). The problem under discussion is as follows. Let 

(V2+k2)U=h, xER3
; h=O, Ixl>a. (1) 

Suppose the Cauchy data is given for u near infinity: 

Ullxl=R =Uo,'!!!!""/ =U 1, R>l. 
Jr Ixl =R 

Can one determine h from the data (2)? 

(2) 

(3) 

Most of the authors ask a slightly different but equivalent 
question. Namely, can one determine h from the radiation 
pattern/(B,t/J,k), which is defined by the formula 

/((},t/J,k ) = lim (eikr

) - 1 u(x,k ), 
r-+ 00 41Tr 

r = lxi, x = (r,B,t/J), (4) 

where u is the (unique) solution to (1) satisfying the radiation 
condition? The equivalence of the data (3) and (4) comes from 
the fact that the asympotics of u at infinity can be differenti­
ated. On a more formal level, the Cauchy data (3) defines the 
solution of the homogeneous equation (1) uniquely in the 
domain Ixl >a, and the radiation pattern (4) does the same 
(because of the Rellich's uniqueness theorem, see, e.g., Ref. 
6). The problem (3) is the time-independent inverse source 
problem. 

2. This problem for Maxwell's equations was discussed 
in detail in Ref. 7 (see also Ref. 8, pp. 208-211). The problem 
for Maxwell equations has some features which the scalar 
problem (1 )-(4) does not have. In particular, the radiation 
patterns for Maxwell's equations is a two-component vector 
field defined on the unit sphere S 2 C R3 and tangent to this 
sphere (it is two-component in the spherical coordinates: /r 
= 0). On the other hand, the sourcej(x) in Maxwell's equa­

tions: 

VXE=ikH, rotH= -ikE+j, E=f.i= 1, 

is a three-component vector. The corresponding radiation 
pattern is 

/ = ik (1",0", + Ioao), (5) 

where Or> ao, a", are the unit vectors ofthe spherical coordi­
nates at the point x = (r,8,t/J ), I = (I" 10 , I",), 

1= J exp! - i(k, y)j j( y)dy, k = (k,B,t/J), J == L; 
It is clear from (5) that the radiation pattern/(k,8,t/J ) given for 
a fixed k = ko as a vector field on the unit sphere does not 
determine I uniquely, and therefore does not determine the 
sources j uniquely. The degree of non uniqueness can be de­
scribed as follows: in order to determine the sources unique­
ly one should specify: (I) one scalar function I,(ko,8,t/J), and 
(2) three functions/o(k,B,t/J )J", (k,B,t/J ), Ir(k,B,t/J ), 0 < k < 00, 

which are equal to the functions/o(ko,B,t/J )J",(ko,B,t/J ), 
I r (ko,B,t/J ) at k = ko' Here we did not impose the important 
requirement that the sources have compact support. If this 
requirement is imposed then the functions Ir(k,B,t/J), 
/0 (k,B,t/J )J", (k,B,t/J ) should satisfy the condition that the vec­
tor function I = Iror + (l/ik If,,,a,,, + (l/ik lfooo be an en­
tire function ofk of exponential type, i.e., II I <c 1 exp(c2k ) for 
some constants C1,C2 > O. This requirement comes from the 
Paley-Wiener theorem which says that a function I (k) is a 
Fourier transform of a functionj with compact support iff I 
is an entire function of exponential type. In addition, JEI- 2 if 
lEI- 2(R3

). This analysis, a computational scheme for finding 
j from the radiation pattern, and some examples are given in 
Ref. 7. 

One should have in mind that in some concrete inverse 
source problems (e.g., synthesis of linear or spherical anten­
nas) the uniqueness of the solution holds because of some 
special assumptions about the sources. There is an extensive 
literature on this subject (see, e.g., Ref. 9). In order to explain 
how the uniqueness holds, consider the linear antenna syn­
thesis problem. The sources are currents along the line seg­
ment - 1 < z < I. The currents are defined by one scalar 
functionj(z) in this case. The radiation pattern is proportion­
al to JI_I exp(ikoZ cos 8 )j(z)dz=/(8), 0,;;8<17'. This can be 
written as JI_I exp(iAz)j(z)dz = /(A), - ko<A<ko, 
A = ko cos 8. The last equation clearly has no more than one 
solution. It is solvable iff/(A ) is an entire function of exponen­
tial type <I of A. 

3. In the scalar case one has 

/= - -l-JexPI-i(k,y)Jh(y)dY. 
417' 

Thus, the knowledge of/(ko,B,t/J ) does not determine the 
sources h (y) uniquely. The degree of nonuniqueness can be 
described as follows: given the radiation pattern at k = ko 
one can fix a (arbitrary continuous in k ) function/(k,B,t/J ) for 
o < k < 00 such that /(k,B,t/J ) I k = k" = /(ko,B,t/J ). These data 
determine the Fourier transform of the sources and there-
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fore the sources h (y) uniquely. In this argument we did not 
impose any a priori conditions on the sources. If one assumes 
(as is natural) that hEL 2 and h = 0 for Ix I ;;>a, then the radi­
ation pattern is an entire function of k of exponential type 
and the corresponding extension/(k,e,<p ) should satisfy this 
necessary requirement. This requirement is also sufficient 
for hEL 2 and h = 0, Ix I ;;>a if/EL 2. This is a complete descrip­
tion of the degree of non uniqueness in the scalar problem of 
finding the sources from the radiation pattern given at a 
fixed frequency. 

4. The reason why the problem (3) is discussed here is 
that the similar problem arises in time-dependent cases. 
Consider, for example, the following time-dependent inverse 
source problem. Let 

Utt -Llu =/(x,t), - 00 <t< 00, xER3
, 

/ = ° of tEf(O,T). (6) 

Suppose that 

u(O,x) = uo(x), u,(O,x) = ul(x), (7) 

u(T,x) = vo(x), u,(T,x) = VI(X). (8) 

Can one find the sources/(x,t) from the data (7), (8)? (9) 

Because of the uniqueness of the Cauchy problem for Eq. (6) 
the data (7), (8) determine the solution of (7) for t < 0 (t > T) 
uniquely. In Sec. II the description of the degree of non un i­
queness of the solution to problems (3) and (9) are given. 

II. DESCRIPTION OF THE DEGREE OF 
NONUNIQUENESS IN THE INVERSE SOURCE 
PROBLEMS 

1. Consider first problem (9). Taking the Fourier trans­
form in x, one obtains 

w + k 2W = g(t,k), 

W = _1_ fU(X,t ) exp [ - i(k,x) j dx-u, g=]; (to) 
(21T)3 

w(O,k) = wo=uo' w(O,k) = WI==U h w = dw, (11) 
dt 

w(T,k) = Po Va, w(T,k) = PI=VI, (12) 

Here k = (k l ,k2 ,k3 ), k 2 = k~ + ki + k L k = Ikl. The 
problem (to), (11) can be solved explicitly, 

_ i' sin { k (t - s)) ( k)d w - gs, s 
a k 

sin kt + Wa cos(kt) + WI--' (13) 
k 

From (13) and (12) one obtains 

i

T sin[k(T-s)) d 
Pa= g s 

a k 

sin(kT) + Wa cos(kT) + WI , 
k 

(14) 

PI = iTcos! k (T - s) jg ds - kWa sin(kT) 
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+ WI cos kT. 

This can be written as 

sin(kT) iT cos(ks)g ds - cos(kT) 
k a 

X iT sin(ks)g ds = bo(k ), 

cos(kT) IT . cos(ks)g ds + sm(kT) 
k 0 

X iT sin(ks)g ds = bl(k), 

where bo, b l are known explicitly: 

bo = Po - Wo cos(kT) - (w/k ) sin kT, 

b l = PI + kOJo sin(kT) - WI cos(kT). 

( 15) 

(16) 

The determinant of the system (15) is 1/ k > O. Thus, one can 
uniquely find from (15) the two integrals 

iT cos(ks)g(s,k)ds = <pI(k), 

iT sin(ks)g(s,k)ds = <p2(k), (17) 

where <pI(k) and <P2(k) are given explicitly. 
It is now possible to describe the degree of non unique­

ness of the solution to the inverse source problem (9). Name­
ly, the data (11), (12) determine <PI and <P2 in (17). Equations 
(17) determine g, the Fourier transform of the sources, of the 
form 

g = cl(k) cos(ks) + c2(k) sin(ks) + gl(s,k), (18) 

where cdk) and c2(k) are uniquely determined by <PI and <P2' 
while g I (s,k ) is an arbitrary function orthogonal to cos(ks) 
and sin(ks) in L 2([0,T]): 

iT sin(ks)gl(s,k)ds 

T 

= i cos(ks)gl(s,k)ds = 0 'rJ k. (19) 

This is a complete description of the degree of nonunique­
ness of the solution to problem (9) in the case when no condi­
tions are imposed on the sources/(x,t ) except the last condi­
tion (to) and, say, the mild requirement like/(x,t)EL 2(R3

) for 
any t and is of class C 2 in time. If one requires additionally 
that/(x,t) = 0 for Ixl;;>a (the sources have compact support), 
then g I should satisfy not only Eqs. (19), but also ensure that 
the functiong defined by formula (18) be an entire function of 
exponential type in the variables k = (kl,k2,k3)' Since g de­
termines the sources/uniquely, one can say that the solution 
of problem (9) is defined nonuniquely up to an additive term 
orthogonal to a two-dimensional subspace. The method of 
this section can be applied without any changes to the ab­
stract time-dependent inverse source problem. This problem 
is similar to the problem (6)-(9), but Eq. (6) is of the form 
UtI + Au = /(t), - 00 < t < 00, where A> 0 is a self-adjoint 
operator on a Hilbert space h,f(t )Ell. One assumes that the 
eigenfunction expansion theorem for A is known and the 
eigenfunctions satisfy the equation A<p = k 2<p, and obtains 
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the same equations (10)-(12) in which w is the coefficient of 
the expansion of u in the eigenfunctions ¢ (analog of the 
Fourier transform). The rest of the argument is unchanged. 

2. Let us consider problem (1)-(3). The Cauchy data (2) 
determines uniquely the solution to Eq. (1) in the domain 
Ix I >a in which (1) is homogeneous. Let 

au I 
ulr=a = "'0' -a = "'1> r r=a 

(20) 

where "'0 and "'I are uniquely determined by Uo and ul. (Of 
course, as is well known, the data Uo and u I for an elliptic 
equation cannot be given arbitrarily.) One can also find "'0 
and "'I from the knowledge of the radiation pattern. Let 
G (x, y) be the Green's function (V2 + k 2)G = - o(x - y), 
Ixl <a, G Ilxl = a = O. Then, the solution of the problem 

(V2+k2)U=h, Ixl<a, ullxl=a ="'0 (21) 

can be found explicitly provided that k 2 is not an eigenvalue 
of the Dirichlet Laplacian in the domain Ixl <a. Namely, 

u = G (x, y)h dy + "'0 ds, xEfiJ, (22) 1 i aG(x,s) 

y r aN 

wherefiJ = [x:lxl<aJ,r= [x:lxl =aJ,N=Ns is the out­
er unit normal to r at the point s. From (22) and the second 
condition (20) one obtains an equation for h. Since the prob­
lem is linear and one is interested in the description of non­
uniqueness, one can take "'0 = "'I = O. In this case the equa­
tion for h which follows from (20) and (22) is of the form 

0= r aG (s,y) h dy, sEF. (23) 
Jy aN 

To describe the degree of nonuniqueness of the solution to 
problem (3) one should describe the set of solutions to Eq. 
(23). If",o = 0 and "'I = 0 then u=Oin Ixl>a. Therefore one 
describes the nonradiating sources. This question was often 
discussed in the physical literature. 5 The following is a de­
scription of the set of all solutions ofEq. (23). Let us multiply 
(23) by a smooth function ¢ (s) and integrate over r to obtain 
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0= f dy h (y)F(y), 
J!2' 

(24) 

where F(y) = f r(aG (s,y)/aN)¢ (s)ds is the solution of the 
Dirichlet problem, 

(V2 + k2)F= 0 in fiJ, (25) 

Fir = - ¢. (26) 

Therefore F runs through the set of functions satisfying the 
homogeneous Helmholtz's equation in fiJ. Equations (23) 
and (24) are equivalent. Thus one obtains the following state­
ment. The set of all solutions of (23) (i.e., the set of all nonra­
diating sources) is precisely the set off unctions orthogonal to 
all of the solutions (inL 2 say) ofEq. (25). For example, if fiJ is 
a ball of radius a with center at the origin, then a basis in the 
set of solutions of Eq. (25) forms the functions 
r - I12Jn + 1/2 (kr)Ynm (O,¢), where I n is the Bessel function 
and Ynm are the spherical harmonics. 

Remark: It seems that the first paper on antenna syn­
thesis theory was published in 1937 by my father. \0 
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