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Abstract

Gene-environment (G×E) interaction is critical for understanding the genetic basis of

complex disease beyond genetic and environment main effects. In addition to existing tools

for interaction studies, penalized variable selection emerges as a promising alternative for

dissecting G×E interactions. Despite the success, variable selection is limited in the following

aspects. First, multidimensional measurements have not been taken into fully account in

interaction studies. Published variable selection methods cannot accommodate structured

sparsity in the framework of integrating multiomics data for disease outcomes. Second, in the

big data context, no variable selection method has been developed so far to conduct tailored

interaction analysis. Third, the solution to case control association G×E studies with high

dimensional genomics variants in the big data context has not been made available so far.

In this dissertation, we tackle these challenges rising from G×E interaction studies in the

modern era through the following projects.

In the first project, we have developed a novel variable selection method to integrate

multi-omics measurements in G×E interaction studies. Extensive studies have already re-

vealed that analyzing omics data across multi-platforms is not only sensible biologically but

also resulting in improved identification and prediction performance. Our integrative model

can efficiently pinpoint important regulators of gene expressions through sparse dimension-

ality reduction and link the disease outcomes to multiple effects in the integrative G×E

studies via accommodating a sparse bi-level structure. Simulation studies show the inte-

grative model leads to better identification of G×E interactions and regulators than that

of the alternative methods. In two G×E lung cancer studies with high dimensional multi-

omics data, the integrative model leads to improved prediction and findings with important

biological implications.



In the second project, we propose to conduct interaction studies in the big data con-

text by adopting the divide-and-conquer strategy. In particular, the sparse group variable

selection for important G×E effects has been developed within the framework of alternat-

ing direction method of multiplier (ADMM). To accommodate the large-scale data in terms

of either samples or features, we have developed two novel parallel ADMM based variable

selection methods across samples and features, respectively. The corresponding parallel al-

gorithms can be efficiently implemented in distributed computing platforms. Simulation

studies demonstrate that the parallel ADMM based penalization methods significantly im-

prove the computational speed for analyzing large scale data from G×E interaction studies

with satisfactory identification and prediction performance.

In the third project, we extend the proposed parallel ADMM based variable selection

for G×E interactions in the case-control association study of type 2 diabetes. Within the

parallel computation framework, we have developed a penalized logistic regression model

accommodating the bi-level selection tailored for the case control G×E interaction study.

The advantage of the proposed parallel penalization method has been fully illustrated in the

distributed learning scenario. Simulation studies show the proposed method dramatically

reduces the computational time while maintaining a competitive performance compared to

the non-parallel counterparts. In the case study of type 2 diabetes with environmental factors

and high dimensional SNP measurements, the proposed parallel penalization method leads

to the identification of biologically important interaction effects.
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Chapter 1

Introduction

Recent human disease studies have shown that gene-environment interaction effects are asso-

ciated with cancer outcomes beyond genetic and environment main effects. However, most of

existing cancer research studies have only focused on genetic main effects, and fewer studies

have considered the interaction effects between genetics and environmental factors. In this

dissertation, we develop novel and powerful statistical models for identifying important ge-

netics main and gene-environment (G×E) interaction effects. As interactions are described

using the product between variables, the identification of important genetics main and G×E

interaction effects is a high-dimensional problem, in which sample size (n) is much smaller

than number of variables (p). Penalized variable selection is one of the most popular ap-

proaches for analyzing high-dimensional data, see Wu et al. (2019). This section provides a

brief overview for penalized variable selection methods in high-dimensional data in general.

We also summarize two major computational frameworks for penalized variable selection.

We mainly review the two most popular frameworks, coordinate descent (CD) (Wu et al.

(2008)) and alternative direction method of multipliers (ADMM) (Boyd et al. (2011)). In

the last section, we discuss our motivations on G×E studies and the contributions in this

dissertation.

1



1.1 Penalized Variable Selection

Variable selection through penalization has become popular for biomedical and bioinformat-

ics studies in last two decades. As the number of genes is usually larger than the sample size,

this type of study is of ”large data dimensionality, small sample size” nature. For cancer

(and complex disease) studies, one of the most important questions is how to select a subset

of important genes that are associated with the disease. The question can be recasted as a

variable selection problem. There’s no doubt that high dimensional variable selection is one

of the most important research topics in statistics (Fan and Lv (2010), Wu et al. (2019)).

Let X be the design matrix, where it has p columns of variables, such as gene expressions

or single nucleotide polymorphisms (SNPs), and n rows of samples. Let Y be the disease

outcome, such as continuous disease phenotype, categorical disease status or survival time.

Penalization is one of the most important frameworks for variable selection. The model can

be expressed as

L(β;Y,X) + Pλ(β),

where L(·) is the loss function measuring the goodness-of-fit, and Pλ(·) is the penalty function

with tuning parameter λ to control shrinkage and sparsity on the coefficient β. By mini-

mizing the above penalized loss function, parameter estimation and variable selection can

be achieved simultaneously. LASSO (Tibshirani (1996)) is a well-known variable selection

approach in high-dimensional data analysis. It has the following form

1

2n
‖Y −Xβ‖2 + λ|β|,

where L(·) is least square loss function and Pλ(·) is `1 penalty. It can select important vari-

ables through shrinking the coefficients of unimportant variables to zeros. Nowadays, LASSO

is the baseline among the family of penalization methods. The development of penalties be-

comes more advanced for desired complicated data structure and estimator properties such

as sparsity, continuity, unbiasedness and so on. For example, widely adopted penalties with

unbiasedness property of estimators include smoothly clipped absolute deviation (SCAD)

2



(Fan and Li (2001)), the minimax concave penalty (MCP) (Zhang et al. (2010)), adaptive

LASSO (Zou (2006)).

• SCAD

Pλ,γ(β) =


λ|β|, |β| ≤ λ

−β2−2γλ|β|+λ2
2(γ−1)

, λ < |β| ≤ γλ

1
2
(γ + 1)λ2, |β| > γλ

• MCP

Pλ,γ(β) =


λ|β| − (2γ)−1β2, |β| ≤ γλ

1
2
γλ2, |β| > γλ

• Adaptive LASSO

Pλ,γ(β) = λ(|β(0)|−γ)|β|,

where γ > 2 for SCAD, γ > 1 for MCP and γ > 0 for adaptive LASSO. In adaptive LASSO,

β(0) is the initial estimate of β. For a detailed review on variable selection and its applications

in biology studies, please refer to Ma and Huang (2008), Fan and Lv (2010), and Wu and

Ma (2014).

For complex data structures, more advanced penalty functions need to be considered. For

example, group LASSO proposed by Yuan and Lin (2006) can be used to identify grouped

variables. This penalty is

Pλ(β) = λ
G∑
g=1

√
dg‖βg‖2,

where βg is the group coefficient vector with length dg and G defines total number of groups.

The term
√
dg adjusts the penalty function for the group size and ‖ · ‖2 is the euclidean

norm. Some other research studies also have been developed for grouping data structure

(Huang et al. (2012)).

Another example is to account for high correlation among genetic features. Elastic net

(Zou and Hastie (2005)) and fused-lasso (Tibshirani et al. (2005)) are among the most

3



widely used variable selection methods to analyze correlated genomic features. The elastic

net penalty function is formulated as a combination of LASSO and ridge penalties,

Pλ1,λ2(β) = λ1‖β‖2
2 + λ2|β|,

where ridge penalty accommodates correlations and LASSO penalty impose sparsity. While

the fused-lasso has the following penalty function,

Pλ1,λ2(β) = λ1

p∑
j=1

|βj|+ λ2

p∑
j=2

|βj − βj−1|,

where LASSO penalty imposes sparsity and fusion penalty induces smoothness among the

coefficients of neighboring features. In past few years, more advanced penalization methods

have been developed to accommodate data structure in more efficient and flexible ways. For

example, network-constrained regularization, including Li and Li (2008) and Huang et al.

(2011), are among these methods. For example, Huang et al. (2011) has developed a sparse

Laplacian shrinkage (SLS) penalty

Pλ1,λ2,γ(β) =

p∑
j=1

Pλ1,γ(βj) + λ2

∑
1≤j≤k≤p

|ajk|(βj − sign(ajk)βk)
2

where Pλ1,γ(βj) is the MCP (Zhang et al. (2010)) penalty to impose sparsity and Laplacian

quadratic accounts for the correlation structure. In their paper, they also show that SLS has

selection consistent property and its estimator is equivalent to oracle Laplacian shrinkage

estimator with high probability. Other network-based penalization discussions can be found

in Ren et al. (2017), Ren et al. (2019), Huang et al. (2018a), Kim and Sun (2019).

1.2 Computational Algorithms

With the development of the penalized variable selection approaches, efficient computation

algorithms play a critical role. Many efficient computational algorithms have been initially
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developed for LASSO, which is the baseline of the penalization approaches.Tibshirani (1996)

introduced the inequality constrains to obtain feasible solution based on karush-Kuhn-Tucker

(KKT) conditions. Efron et al. (2004) proposed a least angle regression (LARS) to obtain

LASSO solution. Later, a couple of improved LARS algorithms have been developed, see

Keerthi and Shevade (2007) and Zhou et al. (2013). MCMC has been the most widely

adopted to achieve fast computation with the Gibbs samplers for Bayesian studies. Green

(1990) derived a penalized EM algorithm, Beck and Teboulle (2009) derived an iterative

shrinkage-thresholding algorithms (ISTA) for solving linear inverse problems and many other

similar studies. Among all different computation frameworks, coordinate descent (CD) and

alternative direction method of multipliers (ADMM) are the most widely adopted in pe-

nalized variable selection. In this dissertation, we’ll focus on the frameworks of CD and

ADMM.

Coordinate descent (CD) is one of the primary frameworks in high dimensional data

analysis. The process of CD is to optimize the penalized loss function with respect to a

single parameter at a time, iteratively cycling through all parameters until convergence is

reached. For both robust and non-robust loss functions with convex and more complicated

penalty function, CD can solve a large family of optimization problems based on first order

methods including gradient-,sub gradient- and proximal- gradient based methods. To be

specific, we derive the following CD for LASSO as an example. Consider a least square loss

function with `1 penalty

L(β;λ) =
1

2n
‖Y −Xβ‖2 + λ|β| = 1

2n

N∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj|

L(β;λ) =
1

2n

N∑
i=1

(yi −
p∑
k 6=j

xikβk − xijβj)2 + λ

p∑
j=1

|βj|

5



Consider the update of jth covariate coefficient, j = 1, · · · , p,

Lj(βj;λ) =
1

2n

N∑
i=1

(ri − xikβj)2 + λ|βj|

where ri = yi−
∑p

k 6=j xijβk is called partial residuals with respect to the jth covariate. Then

the update of βj is the minimizer of Lj(βj;λ). The process of LASSO CD is summarized in

Algorithm 1.

Algorithm 1 LASSO Coordinate Descent Algorithm

Initialize β
(0)
j = 0, m = 1.

repeat

for j = 1, · · · , p do

Calculate ri = yi −
∑

k 6=j xikβk and zj = 1
N

∑N
i=1 xijri + β

(m)
j .

Update β
(m+1)
j ← sgn(zj)(|zj| − λ)+.

Update ri ← ri − (β
(m+1)
j − β(m)

j )xij, for i = 1, · · · , N .

Update m = m+ 1

end for

until convergence

Figure 1.1: Soft threshold function (Hastie
(2008))

Figure 1.2: Dual decomposition (Boyd et al.
(2011))

Besides, ADMM (Boyd et al. (2011)) can be considered as another major algorithm

for penalized variable selection. It solves convex optimization based on dual ascent and

augmented Lagrangian method. ADMM algorithm can handle multiple constraints in opti-
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mization. To be specific, we show the following LASSO ADMM as an example. First, we

need to introduce an extra variable z such that

1

2n
‖Y −Xβ‖2 + λ|z|, subject to β − z = 0.

The augmented Lagrangian with dual variable u and predefined tuning parameter 1/ρ > 0

is
1

2n
‖Y −Xβ‖2 + λ|z|+ 1

ρ
uT (β − z) +

1

2ρ
‖β − z‖2.

Clearly, those two extra terms do not change the problem. To update β, we simplify the

function with β related terms

min
β

1

2n
‖Y −Xβ‖2 +

1

ρ
uT (β − z) +

1

2ρ
‖β − z‖2,

which gives a closed form solution

β =

(
XTX +

1

ρ
I

)−1(
XTY +

1

ρ
(z − u)

)
.

To update z, we simplify the function with z related terms

min
z
λ|z|+ 1

ρ
uT (β − z) +

1

2ρ
‖β − z‖2,

which also leads to a closed form solution (soft thresholding solution)

z = sign(β + u)(|β + u| − λρ)+.

The dual update rule is

u(k) = u(k−1) +
1

ρ

(
β(k) − z(k)

)
where k is the iteration step. All the steps above can be done very efficiently. We summarize

LASSO ADMM in Algorithm 2.
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Regarding to the computation speed, ADMM is promising due to its nature as a dis-

tributed optimization method. In chapter 3, we demonstrate that by expressing traditional

ADMM framework into a parallel form for large number of samples and/or features. The

proposed parallel ADMM algorithm can be implemented on distributed computing platform

such as Hadoop (Dean and Ghemawat (2008)) and Spark (Zaharia et al. (2010)). It’s par-

ticularly useful for p, n, or both to be very large. In particular, most of existing penalized

variable selection approaches for G×E interaction studies have been developed based on CD,

but few studies have considered parallel ADMM. With similar variable selection accuracy,

parallel methods are significantly faster (Yu et al. (2017)).

Algorithm 2 LASSO ADMM

Initialize z(0), u(0), ρ, λ, k = 1

repeat

β(k) =
(
XTX + 1

ρ
I
)−1 (

XTY + 1
ρ
(z(k−1) − u(k−1))

)
z(k) = sign(β(k) + u(k−1))(|β(k) + u(k−1)| − λρ)+

u(k) = u(k−1) + 1
ρ

(
β(k) − z(k)

)
k = k + 1

until convergence

1.3 Gene-Environment (G×E) Interactions

It has been shown that beyond the genetic and environmental main effects, gene–environment

(G×E) interactions play a critical role in understanding the genetic basis of complex disease.

For instance, in type 2 diabetes, the interactions between gene TCF7L2 and environmental

variables, such as physical activity and lifestyle changes has been reported to be associated

with the risk of developing type 2 diabetes (Wu and Cui (2013), Wu et al. (2014) and Ren

et al. (2020), Ren et al. (2021)). In lung cancer study, the interaction between susceptible

genes and smoking status have been revealed to affect the prognosis (Wu et al. (2015) and Wu

et al. (2018a)). The high dimensionality of genetic measurements makes identification and

characterization of important G×E interactions especially challenging within the traditional

8



statistical framework.

Despite success, existing studies on G×E interactions still have limitations on identifica-

tion accuracy, prediction ability and computation efficiency. We develop a bi-level selection

to account for the hierarchical structure of main and interaction effects in G×E interactions.

The proposed penalized variable selection can achieve better identification accuracy for G×E

interactions under high-dimensional settings.

Furthermore, we improve prediction performance of cancer studies by integrating multiple

types of omics data, such as gene expression, copy number variation, DNA methylation,

mRNA and so on. In Chapter 2, we develop an integrative analysis to predict cancer outcome

with multidimensional omics measurements and G×E interactions. The proposed analysis

includes two steps. In the first step, a linear regulatory model (LRM) is constructed to

analyze the relationship between different types of omics measurements. In the second step,

cancer outcome is predicted by LRMs, residuals of LRMs, environment factors and G×E

interactions. With penalization, we can select a subset of important genes, regulators, and

G×E effects that can improve the prediction of cancer outcome. Simulation studies show

that the proposed integrative approach outperforms alternative approaches. In real data

analysis, we applied the proposed method to a survival cancer study under the accelerated

failure time (AFT) model. The identification of important genetic main effects and G×E

interaction effects has sensible biological meanings.

However, CD algorithm is not efficient enough in computation for conducting the pro-

posed penalized variable selection. For a large-scale data analysis, we propose a parallel

ADMM framework for G×E in Chapter 3. The parallel ADMM can be performed in a dis-

tributed computation platform more efficiently than other algorithms. In Chapter 3, we also

show the parallel ADMM framework can improve computation without loosing identification

accuracy or prediction ability. The detail derivation for both parallel in samples and features

through ADMM is provided. Simulation studies show parallel ADMM can achieve similar

prediction accuracy with much less computation time.

In chapter 4, we discuss the 3rd project of this dissertation. We’ll develop a novel pe-

nalized bi-level selection method for binary outcomes in G×E interaction studies within the
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parallel ADMM framework. The proposed method can be adopted to analyze the type 2

diabetes (T2D) case control data with high dimensional genomic variants from the Nurses’s

Health Studies (NHS). We expect that the distributted ADMM based sparse group identifi-

cation can lead to important genetic main effects and corresponding G×E interactions that

are related to T2D with much less amount of time.
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Chapter 2

Integrating Multi–omics Data for

Gene-Environment Interactions

2.1 Introduction

Gene-environment interactions reveal how the changes in environmental exposures mediate

the contribution of genetic factors to influence the variations in disease traits, which makes

it critical for understanding the comprehensive genetic architecture of complex diseases (Si-

monds et al. (2016), Dempfle et al. (2008)). Traditionally, G×E interaction studies have

been mainly conducted within the framework of genetic association studies, in order to hunt

down the important main and interaction effects associated with the disease phenotypes

(Hirschhorn et al. (2002), Wu et al. (2012)).

Most of the existing G×E studies are one-dimensional in that the interactions between

environmental factors and one type of genetic factor (such as gene expression or SNPs) have

been considered. In the multi-omics era, there is a pressing need to account for multi-platform

measurements in G×E studies. Consider a G×E analysis with environmental factors and

gene expression (GE) as the G factors. In addition, DNA methylation (DM) and copy

number alterations (CNA), which are the regulators of the genetic factors, are also available.

A typical G×E analysis only focus on the interaction effects involving the G factor (GE)
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and ignores its regulators, losing the extra power of elucidating the genetic basis of complex

disease using multi-level omics data.

Integrating multi-omics data for prognostic outcomes has been mainly conducted using

parallel and horizontal integration strategies (Wu et al. (2019)). With the parallel integra-

tion, different types of omics measurements are treated equally, and important associations

between these measurements and the prognostic outcome are identified in a joint model. The

hierarchical integration, on the other hand, fully accounts for the regulatory information by

accommodating the indirect effects of regulators, such as DM and CNA, on the prognostic

outcomes mediated through GEs. Meanwhile, the direct effects of regulators on the can-

cer outcomes, which have not been captured by GEs through other mechanisms such as

post-transcriptional regulations, should also been taken into consideration.

Given the availability of multi-omics features, the major limitation of existing G×E

interaction studies lies in the incapability of integrating regulators in the interaction model

under prognostic outcomes, which has motivated us to develop a two stage integrative model

for G×E interaction analysis using multi-level cancer omics data. At the first stage, the

sparse regulatory relationship has been determined through penalization, where the linear

regulatory modelling (Zhu et al. (2016)), or LRM, has been adopted to identify the sets of

regulators that influence the sets of GEs, as well as the residuals of gene expression and

residuals of regulators that cannot be captured by the LRMs. At the second stage, the

LRMs and both types of residuals are treated as direct effects on cancer outcomes in the

G×E model, and penalization has been conducted to identify important main and interaction

effects.

In the past decade, the effectiveness of regularization for G×E interaction studies has

been increasingly witnessed (Zhou et al. (2021)). Extension of the technique for an inte-

grated interaction study is not trivial. Our method significantly advances from existing

integration studies not tailored for interaction structures and interaction analysis ignoring

the multidimensional omics measurements. Extensive simulation studies have been per-

formed to demonstrate the advantage of the proposed method over multiple alternatives. In

two case studies of the lung cancer data (LUSC and LUAD) from TCGA, our method leads
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to main and interaction effects with sensible biological implications and improved prediction

performance.

2.2 Method

Let Yn×1 denote cancer outcome, En×q = (E1, · · · , Eq) denote the q environmental factors,

Gn×pg = (G1, · · · , Gpg) denote the pg gene expressions, and Rn×pr = (R1, · · · , Rpr) denote

the pr regulators. Suppose we have two measurements for the regulators, pr1 DM and pr2

CNA, then we can obtain Rn×pr by stacking the measurements together with pr = pr1 + pr2 .

Next, we describe overall analysis framework and the integrative model.

2.2.1 Analysis Framework

First, consider a G×E model in the multi-omics scenario where the regulators of the G

factors are also included, in addition to the main and interaction effects.

Y =

q∑
k=1

αkEk +

pg∑
j=1

(
βjGj +

q∑
k=1

ηjkGjEk

)
+

pr∑
t=1

γtRt + ε, (2.1)

where αk, βj and ηjk are the regression coefficients for the kth environmental factor, jth

gene expression and their interactions, respectively. Besides, γt is the regression coefficient

for the tth regulator, and ε is the random error.

Model (2.1) shares the spirit of parallel integration by treating the genetic factor and its

regulators equally. Although such a strategy has shown to be effective in several studies, a

more attractive alternative is to conduct vertical integration via accounting for the regulatory

information among different levels of omics measurements (Wu et al. (2019)). Typically,

integrating multi–omics data in a main effect model with prognostic outcomes consists of

two steps. At the first step, the sparse regulatory relationship can be identified, leading

to gene expressions that are modulated and not modulated by regulators, which can then
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be linked to clinical outcomes at the second step (Zhu et al. (2016), Wang et al. (2013)).

Specifically, Zhu et al. (2016) proposed the linear regulatory model (LRM) to pinpoint the set

of regulators that affect the corresponding set of GEs. Then clinical model incorporates the

GEs, residual GEs and residual regulators. In this study, we extend the LRM to investigate

the G×E interactions in the presence of multi–level omics measurements. In particular,

the prognostic model at the second stage consists of : (1) a low dimensional environmental

factors; (2) regulated GEs in the form of LRMs from the first stage and their interactions

with those environmental factors; (3) Residual GEs and their interactions with environmental

factors, and (4) residual effects of regulators.

2.2.2 Stage 1: the Linear Regulatory Model (LRM)

Denote g = (g1, · · · , gpg) as the pg gene expressions and denote r = (r1, · · · , rpr) as the pr

regulators. The LRM can be expressed as

E(gVpg×L|r) = a1×L + rUpr×L, (2.2)

where a is the intercept, V = (v1, · · · , vL) and U = (u1, · · · , uL) both contain L columns of

loading vectors (vl and ul for l ∈ {1, · · · , L}). Denote L as the total number of LRMs. Here,

we assume U and V have orthogonal columns, such that ul⊥ul> , vl⊥vl> , for l 6= l>. With

this assumption, no overlap between gene expressions and regulators exists in LRM. We

expect different LRMs represent different regulated relationship between gene expressions

and regulators (Ciriello et al. (2012)). In addition, vl and ul are assumed as sparse loading

vectors, as only a small number of gene expressions is regulated by at most a small number

of regulators (Kristensen et al. (2014)).

For the jth gene expression, j = 1, · · · , pg, we right multiply V > to both sides to simplify

equation (2.2). Then the LRM can be formulated as a regression model with response
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variable gj and predictors r:

E(gj) = a>j + rθj, for j = 1, · · · , pg, (2.3)

where a>j is an intercept and θj is the regression coefficient vector. Equation (2.3) indicates

that one gene expression is regulated by a number of regulators. We impose sparsity on θj

through penalization to identify sparse regulatory relationship. Then the penalized regression

model can be written as

1

2n

∥∥gj − a>j − rθj∥∥2

2
+ λ|θj|, for j = 1, · · · , pg, (2.4)

where λ is the tuning parameter. The LASSO is adopted for its computational simplicity and

satisfactory performance (Tibshirani (1996)). Equation (2.4) leads to a regularized estimate

of θj, indicating that one gene expression is regulated by a limited amount of regulators.

Next we further investigate the relationship between sets of gene expressions and reg-

ulators through singular value decomposition (SVD). The regression model (2.3) can be

collectively written as

E(g) = a> + rΘpr×pg (2.5)

where a> is the vector of the intercept, g1×pg = (g1, · · · , gpg), r1×pr = (r1, · · · , rpr), and

Θpr×pg = (θ1, · · · , θpg) is the transition matrix. The SVD is performed on the transition

matrix to separate regression coefficients representing gene expression and regulators:

Θ = UDV > = (u1, · · · , uL)D(v1, · · · , vL)> (2.6)

where D = diag(d1, · · · , dL) is a diagonal matrix with L diagonal elements. The diagonal

matrix D can account for the dissimilarity among loading vectors in terms of different scaling

factors. Subsequently, we can obtain estimated coefficients for gene expression and regulators

by decomposing the estimated transition matrix Θ̂. Under the sparse condition, one gene
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expression is regulated only by a few of regulators, and one regulator affects a few of gene

expressions (Kristensen et al. (2014)). To impose sparsity, we adopt the sparse SVD method

developed by Lee et al. (2010) where sparse singular vectors corresponding to the largest

singular values are obtained recursively. Consider the first largest singular value (d1, u1, v1),

then the regularized sparse SVD can be expressed as

1

2n

∥∥Θ̂− d1u1v1

∥∥2

F
+ λ|d1u1|+ λ|d1v1| (2.7)

where ‖·‖F is the Frobenius norm. Tuning parameter λ is same for u1 and v1 for computation

efficiency. Here d1 is treated as the scaling factor. After estimating (d1, u1, v1), we update

Θ̂ = Θ̂ − d̂1û1v̂
>
1 and recursively update (dl, ul, vl), for l = 2, · · · , L in a similar manner.

With sparse SVD, we can decompose coefficient and impose sparsity on pz and px for every

LRM. The standard LASSO is not applicable within the current LRM formulation since the

shrinkage has been imposed on scaled singular vectors.

2.2.3 Stage 2: the Penalized G×E Interaction Model

Now we integrate multiomics measurements for G×E interactions. The regulated GEs,

residual GEs, as well as residual regulators can be obtained through LRMs. The G factors

are represented by regulated GEs and residual GEs, which are involved in the interaction

with dimensional environmental factors. The partition of gene expressions into regulated

and non-regulated components proceeds as follows. The L sets of regulated gene expressions

(GV ) are equivalent to the corresponding sets of regulators (RU). We include the L sets of

regulated GEs (GV ) in the G×E model since gene expressions are more directly related to

cancer outcomes. The residual GEs, i.e. the non-regulated GEs which cannot be captured

by LRMs, is denoted as G̃n×pg . The G factors, consists of both GV and G̃, interact with

q environmental factors. Denote Wj = (GjVj, GjVjE1, · · · , GjVjEq, G̃j, G̃jE1, · · · , G̃jEq),

(j = 1, · · · , pg). Then Wj corresponds to the interaction with respect to the jth GE. We

only consider the main effect of residual regulators, because the influences of regulators on
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cancer outcomes are mostly mediated by gene expressions, and investigating its interactions

with environmental factors are not of interest.

The quantifications of the residuals G̃ and R̃ are conducted through perpendicular pro-

jection operation. As both can be calculated in the same manner, we take G̃ as an example.

For the jth gene expression, define Sj as the set of all LRMs that contains the j th gene

expression. If Sj is empty, then the jth gene expression is not regulated, which results in

G̃j = Gj. If Sj is not empty, we denote VSj as the sub-matrix of V that only contains

columns (LRMs) of the jth gene expression. Following the perpendicular projection oper-

ation, we calculate the residual as G̃j = (I − GVSj((GVSj)>(GVSj))
−1(GVSj)

>)Gj, which is

the projection of Gj onto the orthogonal space of GVSj .

Consider n subjects, pg gene expressions and L LRMs. Then all the main and interaction

effects can be collectively written as

W = (GV,GV E1, · · · , GV Eq, G̃, G̃E1, · · · , G̃Eq) = (X1, X2),

where X1 = (GV,GV E1, · · · , GV Eq) denotes the main effects of regulated GEs and their

interactions with the environmental factors. Similarly, the effects corresponding to resid-

ual GEs are defined as X2 = (G̃, G̃E1, · · · , G̃Eq). Subsequently, we consider the following

penalized regression models for G×E interactions:

1

2n

∥∥∥∥∥Y −
q∑

k=1

αkEk −
L∑
l=1

X1lb1l −
pg∑
j=1

X2jb2j −
pr∑
t=1

γtR̃t

∥∥∥∥∥
2

2

+
L∑
l=1

P1

(
b1l;λ1

)
+

pg∑
j=1

P2

(
b2j;λ2

)
+

pr∑
t=1

P3

(
γt;λ3

)
(2.8)

where X1l = (GVl, GVlE1, · · · , GVlEq), (l = 1, · · · , L), represents the lth LRM and its in-

teraction with q environmental factors, and X2j = (G̃j, G̃jE1, · · · , G̃jEq), (j = 1, · · · , pg)

denotes the main and interaction effects with respect to the jth residual GEs. Here, b1l and

b2j are corresponding regression coefficients for X1l and X2j. γt is the coefficients for R̃t

(t = 1, · · · , pr), the residual of regulators. Pi(·;λi), (i = 1, 2, 3), is the penalty function with
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λi as the tuning parameter to impose sparsity. Since regression coefficients from the three

components are on a similar scale, and different tunings dramatically increase the compu-

tational cost, the three tuning parameters are set as the same. Regularized identification

in G×E interaction studies demands tailored penalty functions (Zhou et al. (2021)). For

instance, b1l stands for all the main and interaction effects with respect to the lth LRM.

Selection of b1l on the group levels determines if the lth LRM has any effect at all. If so,

then selection of the individual effects within the group further determines the main and/or

interactions that are associated with the cancer outcome. Therefore, penalized selection

should accommodate the bi–level (or sparse group) structure. To be consistent with the

analysis in stage 1, we still adopt LASSO as the baseline penalty function. Specifically, we

have

P1(b1l;λ1) = λ1

∥∥b1l

∥∥
2

+ λ1

q+1∑
k=1

∣∣b1lk

∣∣, P2(b2j;λ2) = λ2

∥∥b2j

∥∥
2

+ λ2

q+1∑
k=1

∣∣b2jk

∣∣,
where P1(b1l;λ1) and P2(b2j;λ2) are sparse group LASSO. The L1 norm and L2 norm (‖ · ‖2)

result in penalized identification on the individual and group level, respectively. The sparse

group regularization has been adopted for bi-level selection of main and interaction effects

on the individual and group level simultaneously. Its advantage over LASSO in G×E studies

has been demonstrated in multiple studies (Zhou et al. (2021)). A corresponding price paid

is computational cost as different bi-level regularization usually demands different tunings.

As we only consider the main effect of residuals of regulators, the L1 norm penalty is adopted

for γt (t = 1, · · · , pr). Since the number of environmental factors is usually low, the selection

of them is not of interest. They are pre-determined with evidences of being associated with

cancer from previous studies. The proposed regularization respects a weak hierarchy between

main and interaction effects as the penalty has not been imposed on the environmental main

effects. So once an interaction effect is selected, at least one of the two corresponding main

effects will be in the model.
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2.2.4 Computation

The equation (2.8) can be expressed as:

1

2n

∥∥Y − Eα−X1b1 −X2b2 − R̃γ
∥∥2

2
+ P1(b1;λ1) + P2(b2;λ2) + P3(γ;λ3) (2.9)

where αq×1 = (α1, · · · , αq)> is the coefficient vector for q environmental factors, b1L(q+1)×1
=

(b11 , · · · , b1L)> and b2pg(q+1)×1
= (b21 , · · · , b2pg )> are the coefficient vectors for the main and

interaction effects of the regulated and residual GEs, respectively. In addition, γpr×1 =

(γ1, · · · , γpr)> is the coefficient vector for residual regulators.

The integrative analysis consists of two steps. In the first step, the loading matrices U

and V are estimated through the construction of LRMs. The jth column of Θ̂, denoted as

θ̂j, (j = 1, · · · , pg), is estimated by minimizing equation (2.4). For l = 1, · · · , L, the singular

vectors corresponding to the largest singular values, (ûl, v̂l, d̂l), are conducted through the

rank-1 sparse SVD on Θ̂. The rank-1 sparse SVD is performed recursively for l = 1, · · · , L,

by updating Θ̂(l+1) = Θ̂(l) − ûld̂lv̂
>
l at each l. In the second step, the shrinkage estimate

of the regression coefficients can be obtained in the G×E model, where GV , RU , residuals

of gene expressions (G̃), and residuals of regulators (R̃) are calculated accordingly. At the

kth iteration, the vector of estimated regression coefficients for all environmental factors is

computed by α̂(k+1) = (E(k)>E(k))−1E(k)>(Y −X1b̂
(k)
1 −X2b̂

(k)
2 − R̃γ̂(k)). Given α̂(k+1) fixed

at the current estimate, we obtain (b̂
(k+1)
1 , b̂

(k+1)
2 , γ̂(k+1)) by minimizing equation (2.9). The

iteration stops until convergence. The outline of algorithm is shown in Table Algorithm 3:
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Algorithm 3 The Integrative analysis for G×E Interaction

Step 1: Estimate the loading matrices of LRMs U and V: construct LRMs.

(a) For j = 1, · · · , pg, obtain θ̂j by minimizing equation (2.4). Then the estimate Θ̂ =

(θ̂1, · · · , θ̂pg).
Initialize l = 1.

for l = 1, · · · , L do

(b) Apply rank-1 sparse SVD on Θ̂ to obtain the singular vectors corresponding to

largest singular values (ul, vl, dl).

(c) Update Θ̂(l+1) = Θ̂(l) − uldlv>l .

(e) l = l + 1.

end for

Step 2: Estimate regression coefficients α, b1, b2, γ: construct the penalized G×E interac-

tion model.

(a) Calculate GV , RU , G̃ and R̃.

Initialize b̂
(0)
1 = b̂

(0)
2 = γ̂(0) = 0.

At the (k + 1)th iteration.

repeat

(b) Compute α̂(k+1) = (E(k)>E(k))−1E(k)>(Y −X1b̂
(k)
1 −X2b̂

(k)
2 − R̃γ̂(k)).

(c) Obtain (b̂
(k+1)
1 , b̂

(k+1)
2 , γ̂(k+1)) by minimizing equation (2.9) through bi-level selection.

until convergence

LASSO is adopted to conduct selection of important LRMs from the first stage. At the

second stage, a sparse group LASSO has been formulated to accommodate the identification

of main and interaction effects on both the group and individual level. We conjecture that

other penalization methods, such as adaptive LASSO (Zou (2006)), SCAD (Fan and Li

(2001)) and MCP (Zhang et al. (2010)) are also applicable in our framework. For example,

MCP can be adopted to identify sparse regulatory relationship from the first stage, and a

sparse group MCP is also tailored for the identification of important G×E interactions in

the clinical model. We do not compare the performances of different baseline penalization

methods within our framework as it is not the main interest here.

At the first step, we only use one tuning parameter λ for conducting sparse SVD due
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to the similarity in scales between GE and its regulators. The three tuning parameters,

λ1, λ2, λ3, have been used in the second step, where λ1 and λ2 determine the sparsity of

main and interaction effects with respective to the regulated and unregulated GEs corre-

spondingly, and λ3 controls the sparsity of the residuals from regulators. We choose the

optimal tuning parameters using five-fold cross-validation in both the simulation study and

real data analysis. The analysis has been implemented with statistical software R (ver-

sion 3.6.3). In simulation, the average CPU time of running one replicated simulated data

(n = 500, pg = pr = 200, q = 4) is 23.1 minutes on a regular desktop PC. The R codes are

available from the corresponding author.

2.3 Simulation

We perform simulation to evaluate the utility of the proposed method integrative G×E

model, termed as IGE. In addition, we consider three alternative methods: (1) The S-LASSO

selects gene expressions and regulators separately using LASSO. (2) The J-LASSO selects

gene expressions and regulators based on LASSO simultaneously. (3) ColReg, the collab-

orative regression (Gross and Tibshirani (2014)), identifies important GEs and regulators

jointly in terms of explaining similar variation under the cancer outcome.

We generate the data as follows. First, each row of R is independently generated from a

multivariate normal distribution with mean zero and one of the four covariance structures:

(i) AR–1 structure with correlation coefficient 0.25|i−j| for the ith and jth regulators; (ii)

Banded correlation structure where the ith and jth regulators have ρ = 0.33 if |i−j| = 1 and

ρ = 0 otherwise; (iii) the covariance extracted from TCGA lung squamous cell carcinoma

(LUSC) data in Section 2.4, and (iv) the covariance structure of the lung adenocarcinoma

(LUAD) from Section 2.4.

Choose L = 20 for the number of LRMs between gene expression and regulators. For

l = 1, · · · , 20, ul or vl is randomly assigned 5 non-zero entries, with values generated from

unif[2, 4]. Then Θ is computed as
∑20

l=1 ulv
>
l and G is generated as G = RΘ + ε, where each

row of matrix ε is independently generated from a multivariate normal distribution with
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mean zero and the same covariance structure as R. To generate the cancer outcome, each

row of E is generated independently from a multivariate normal distribution with marginal

mean zero and AR-1 structure where the ith and jth components have correlation coefficient

0.5|i−j|. Subsequently, we generate the response from model (2.1) under standard normal

errors.

200 gene expression, 200 regulators and 4 environmental factors are simulated with two

different sample sizes, 500 and 1000. To assign non-zeros effects in model (2.1), we ran-

domly select 30 gene expressions. For every selected gene expression, 4 non-zero entries

are randomly assigned to the coefficients of G factor or its corresponding G×E interactions.

Those values are generated from unif[0.25, 0.5] and unif[0.5, 1] for weak and strong coefficient

signals, respectively. The coefficients of regulators are randomly assigned with 30 non-zero

coefficients generated from unif[1, 2]. The coefficients of environmental factors are generated

from unif[2, 3].

For a comprehensive evaluation, we consider a sequence of tuning parameter values (from

0 to 3, total 100 lambda values) and use the receiver operating characteristic (ROC) curve and

partial area under the ROC curve (PAUC) to compare different methods. Total simulation

replication is 100. All PAUCs are tabulated in Table 2.1 and Table 2.2. The ROC curves

for AR-1 structure and estimated covariance from LUSC are shown in Figure 2.1 and Figure

2.2. Other scenarios of ROC curves are provided in Appendix A.1, respectively.
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(a) n = 500, weak signal (b) n=1000, weak signal

(c) n=500, strong signal (d) n=1000, strong signal

Figure 2.1: Four cases of ROC curves under AR-1 structure. The left panel corresponds to
comparison under both weak and strong signals for 500 subjects. The right panel corresponds
to comparison under both weak and strong signals for 1000 subjects. IGE, solid red; S-
LASSO, dashed blue; J-LASSO, long dashed purple; ColReg, long dashed green.
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(a) n = 500, weak signal (b) n=1000, weak signal

(c) n=500, strong signal (d) n=1000, strong signal

Figure 2.2: Four cases of ROC curves under estimated covariance from LUSC. The left panel
corresponds to comparison under both weak and strong signals for 500 subjects. The right
panel corresponds to comparison under both weak and strong signals for 1000 subjects. IGE,
solid red; S-LASSO, dashed blue; J-LASSO, long dashed purple; ColReg, long dashed green.

We consider using the receiver operating characteristic (ROC) curve and partial area

under the ROC curve (PAUC) to compare different methods. Total simulation replicates

is 100. All PAUCs are tabulated in Table 2.1 and Table 2.2. The ROC curves for AR-1

structure and estimated covariance from LUSC are shown in Figure 2.1 and Figure 2.2. The

ROC curves in other scenarios are provided in Appendix A.1. For all simulation scenarios,

the proposed method has higher PAUCs than the alternative methods. For example, in Table

2.1 with AR-1 correlation and weak signal, the proposed method has PAUC 0.73 (sd 0.07) for

the identification of G and G×E effects, while J-LASSO, S-LASSO, ColReg have PAUCs 0.54

(sd 0.04), 0.47 (sd 0.04), and 0.39 (sd 0.03), respectively. For the identification of regulators,

the proposed method has PAUC 0.76 (sd 0.10), while J-LASSO, S-LASSO and ColReg have

PAUCs 0.32 (sd 0.05), 0.46 (sd 0.13), and 0.45 (sd 0.15), respectively. The similar pattern can

be observed under settings with strong signals. When sample size increases, the identification
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results of all methods become better. The proposed IGE outperforms alternative approaches

across different scenarios. For instance, in Table 2.2 with AR-1 correlation and strong signal,

the proposed method has PAUC 0.89 (sd 0.02) in the identification of G and G×E, while

J-LASSO, S-LASSO, ColReg have PAUCs 0.62 (sd 0.04), 0.57 (sd 0.04), and 0.50 (sd 0.03),

correspondingly. For the identification of regulators, the proposed method also outperforms

the alternatives.

In addition, the proposed method outperforms the alternatives when the correlation is

extracted from real data. For example, in Table 2.1 with estimated covariance from LUSC

and weak signals, the proposed method has close PAUCs in both G and G×E and regu-

lators, 0.59 (sd 0.09) and 0.55 (sd 0.15). Other methods have low accuracy in identifying

main and interaction effects. In particular, J-LASSO, S-LASSO, ColReg have PAUCs 0.42

(sd 0.05) and 0.19 (sd 0.06), 0.39 (sd 0.04) and 0.21 (sd 0.06), and 0.28 (sd 0.04) and 0.21

(sd 0.07), respectively. When magnitude of the signals and sample size increase (e.g. with

LUSC and strong signals), the proposed method still have the best performance in identifi-

cation. Overall, the IGE model has much higher identification accuracy than other methods

across different simulation settings by borrowing strength from accounting for regulatory

relationship and bi-level selection in G×E interaction studies.
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Table 2.1: PAUC: mean (sd) based on 100 replicates. pg = pr = 200, n = 500

Covariance Signal Approaches G and G×E Regulators

AR-1 weak IGE 0.73(0.07) 0.76(0.10)

S-LASSO 0.47(0.04) 0.46(0.13)

J-LASSO 0.54(0.04) 0.32(0.05)

ColReg 0.39(0.03) 0.45(0.15)

strong IGE 0.77(0.07) 0.85(0.06)

S-LASSO 0.52(0.05) 0.48(0.14)

J-LASSO 0.55(0.04) 0.33(0.05)

ColReg 0.39(0.03) 0.46(0.15)

Banded weak IGE 0.74(0.06) 0.74(0.10)

S-LASSO 0.48(0.03) 0.44(0.11)

J-LASSO 0.54(0.05) 0.32(0.04)

ColReg 0.39(0.03) 0.43(0.12)

strong IGE 0.77(0.08) 0.84(0.06)

S-LASSO 0.52(0.04) 0.46(0.11)

J-LASSO 0.55(0.05) 0.32(0.04)

ColReg 0.39(0.03) 0.43(0.12)

LUSC weak IGE 0.59(0.09) 0.55(0.15)

S-LASSO 0.39(0.04) 0.21(0.06)

J-LASSO 0.42(0.05) 0.19(0.06)

ColReg 0.28(0.04) 0.21(0.07)

strong IGE 0.63(0.10) 0.71(0.13)

S-LASSO 0.42(0.05) 0.22(0.07)

J-LASSO 0.43(0.05) 0.19(0.06)

ColReg 0.28(0.05) 0.22(0.07)

LUAD weak IGE 0.64(0.09) 0.62(0.15)

S-LASSO 0.45(0.04) 0.21(0.06)

J-LASSO 0.47(0.05) 0.19(0.05)

ColReg 0.32(0.03) 0.22(0.07)

strong IGE 0.70(0.08) 0.77(0.11)

S-LASSO 0.47(0.05) 0.23(0.08)

J-LASSO 0.48(0.05) 0.18(0.05)

ColReg 0.31(0.04) 0.23(0.08)
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Table 2.2: PAUC: mean (sd) based on 100 replicates. pg = pr = 200, n = 1000

Covariance Signal Approaches G and G×E Regulators

AR-1 weak IGE 0.89(0.02) 0.91(0.02)

S-LASSO 0.57(0.04) 0.73(0.09)

J-LASSO 0.62(0.04) 0.40(0.04)

ColReg 0.50(0.03) 0.71(0.09)

strong IGE 0.91(0.02) 0.93(0.02)

S-LASSO 0.61(0.04) 0.71(0.08)

J-LASSO 0.64(0.05) 0.43(0.04)

ColReg 0.52(0.03) 0.70(0.09)

Banded weak IGE 0.89(0.03) 0.91(0.03)

S-LASSO 0.55(0.04) 0.73(0.07)

J-LASSO 0.62(0.04) 0.40(0.05)

ColReg 0.50(0.03) 0.71(0.08)

strong IGE 0.90(0.04) 0.92(0.02)

S-LASSO 0.61(0.04) 0.72(0.08)

J-LASSO 0.64(0.04) 0.44(0.06)

ColReg 0.53(0.04) 0.70(0.08)

LUSC weak IGE 0.82(0.04) 0.78(0.06)

S-LASSO 0.51(0.05) 0.36(0.07)

J-LASSO 0.56(0.05) 0.25(0.07)

ColReg 0.39(0.04) 0.35(0.08)

strong IGE 0.83(0.04) 0.82(0.06)

S-LASSO 0.57(0.05) 0.39(0.07)

J-LASSO 0.58(0.05) 0.25(0.08)

ColReg 0.42(0.04) 0.38(0.07)

LUAD weak IGE 0.83(0.04) 0.80(0.06)

S-LASSO 0.57(0.04) 0.43(0.06)

J-LASSO 0.59(0.04) 0.25(0.06)

ColReg 0.47(0.03) 0.43(0.06)

strong IGE 0.85(0.03) 0.84(0.04)

S-LASSO 0.61(0.04) 0.46(0.07)

J-LASSO 0.61(0.04) 0.26(0.06)

ColReg 0.49(0.03) 0.46(0.07)
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2.4 Analysis of TCGA Data

Lung cancer is a top rank cancer for both men and women. In this section, we apply

the proposed method as well as the alternatives on lung adenocarcinoma (LUAD) data

and lung squamous cell carcinoma (LUSC) data from the Cancer Genome Atlas (TCGA,

https://cancergenome.nih.gov/).

LUAD is at present the most common lung cancer subtype among non-smokers and

women, although it has been shown that smoking may increase the risk of LUAD (Subra-

manian and Govindan (2007), Couraud et al. (2012)). On the other hand, LUSC is closely

associated with smoking, and is more common in men than in women (Kenfield et al. (2008)).

LUAD grows more slowly with smaller masses than LUSC of the same stage, but LUAD

tends to initiate metastasis at the early stages (Kumar et al. (2017)).

The processed level 3 data has been downloaded from TCGA data portal using package

cgdsr. We match the multi-omics measurements with the clinical/environmental variables

and survival outcome. LUSC and LUAD has 344 and 426 subjects, correspondingly. We

first conduct screenings to reduce dimensionality so the regularization methods can be ap-

propriately applied. Here, we select the top 200 mRNA with the largest marginal variances.

As we matched the CNA and Methylation profiles with same mRNA, the corresponding

200 measurements on CNA and Methylation are selected at the same time. We select age,

gender, smoking pack years, and pathologic tumor stage as environmental variables. The

accelerated failure time (AFT) model (Appendix A.2) has been adopted to link the omics

and clinical measurements to survival outcomes.

2.4.1 Lung Adenocarcinoma (LUAD) Data

The proposed method identifies 8 LRMs with 1 residual effect of gene expression (mRNA)

and 14 residual effects of regulators (DM and CNA). Additionally, the proposed method

results in identification of 7 LRM×E interactions and 11 G×E interactions from mRNA

residual effects.

Table 2.3 provides the identified main effects of LRMs, residual GEs and regulators. We
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Table 2.3: Analysis of the TCGA LUAD data: LRMs and residual effects for gene expression
and regulators with the estimated coefficient or loadings in the parentheses.

LRMs
#1(0.07) #2(-0.01) #3(-0.02) #4(-0.03)

mRNA PIK3R2(0.35) PIK3R2(0.98) ECT2(-0.98) INTS7(-0.77)
STK3(-0.74) STK3(0.11) PSMD2(-0.17) PIK3R2(-0.62)

NCKAP5L(0.74) NCKAP5L(-0.08)
CUL9(0.14)

CNA NEK2(-0.22) CECR1(0.65) KPNA4(-0.44) INTS7(-0.70)
LPGAT1(0.22) C1QTNF6(-0.75) B3GALNT1(0.43) DTL(0.70)
INTS7(0.65) PSMD2(-0.55)
DTL(-0.65) LIPH(0.55)

CECR1(-0.19)
#5(-0.05) #6(0.08) #7(-0.06) #8 (0.06)

mRNA PIK3R2(0.12) INTS7(0.73) PIK3R2(-0.10) PSMD2(0.31)
STK3(-0.78) PIK3R2(0.63) STK3(-0.24) TMOD3(0.61)

NCKAP5L(0.57) STK3(0.18) CUL9(-0.96) DIAPH3(0.72)
CUL9(0.16) NCKAP5L(-0.14)

CNA INTS7(-0.16) NEK2(-0.69) INTS7(-0.34) MAPRE3(0.70)
DTL(0.16) LPGAT1(0.71) DTL(0.36) IFT172(-0.67)

CECR1(-0.78) CECR1(0.61) PSMD2(0.09)
C1QTNF6(-0.57) C1QTNF6(-0.61) ITGB1(0.09)

ADAM10(0.14)

Residual effects
mRNA MAST3(0.01)

DM ADSS(0.01) SLC2A1(0.01) PTCH2(0.01) ECT2(0.09)
TNS4(0.02) MUSTN1(0.05) DKK1(0.02) FSCN1(0.05)

GNPNAT1(0.04) HPS1(-0.04) MAPRE3(-0.02)
CNA LAMC2(-0.01) CD5(-0.03) E2F7(-0.01)
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can observe that LRMs does not contain effects from methylation, while most residual ef-

fects in regulators are from methylation.The identification results have important biological

implications. As a representative example, gene PIK3R2 is identified by 6 different LRMs.

From a recent study (Chen et al. (2020)), PIK3R2 is significantly associated with lung ade-

nocarcinoma and its pathway plays a critical role in the progress of LUAD. Besides, gene

STK3 is identified by 5 different LRMs. STK3 belongs to a large family of serine/threonine

kinases, which are implicated in the regulation of signaling pathways involved in cell growth,

cell differentiation cell death and cell volume (Huang et al. (2018b), Pombo et al. (2007)).

The identified LRMs are also meaningful. For example, we observe the regulatory relation-

ship between PIK3R2 and NEK2 from both LRM #1 and #6. One of the recent studies

shows that this natural downstream regulation is significantly related to cancer outcome

(Hameed and Ejaz (2020)). Among all the residual effects, we observe that most of them

are from methylation. For example, SLC2A1, ECT2, TNS4, DKK1, GNPNAT1 are found

to be associated with survival of lung cancer patients (Guo et al. (2020), Silva et al. (2019),

Misono et al. (2019), Yang et al. (2019), Zhang et al. (2020b)).

Table 2.4: Analysis of the TCGA LUAD data: G×E interaction identifications from LRMs
and gene expression with the estimated regression coefficients in the parentheses.

LRMs AGE GENDER SMOKING
#1 0.08 -0.25
#2 0.02
#3 0.01
#4 0.01 0.01
#5 0.01

mRNA Residual AGE GENDER SMOKING
MAST3 0.27
HPS1 0.01
BBS5 -0.04 -0.03
TLE1 -0.01

ADAM10 0.02 0.03
SLC16A3 0.07
BTN2A2 -0.02 -0.06
FAM71E1 0.02

Table 2.4 provides the identification results for interaction effects. The proposed method

selects variables with a sparse group nature. There are five LRMs interacting with environ-

ments. The first and fourth LRMs interact with two environment factors, and second, third
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and fifth interact with one environment factor. Additionally, the proposed method can iden-

tify a total of 11 interactions involving mRNA residual effects. Note that here, the G factor

is no longer in the usual sense from existing G×E studies. The G factor are represented

by the LRMs and residual mRNAs which correspond to the regulated and un-regulated G

factors, respectively.

In terms of prediction, we adopt a random sampling approach. More specifically, we

randomly select 30% data as test set and the remaining as training set. Estimates are

generated using the training set only and the predictions are made based on the testing set.

We dichotomize the predicted response at the median, create two risk groups, and compute

log-rank statistics, which measure the difference in survival between the two groups. Larger

log-rank test statistic indicates better predictive performance. To avoid extreme splits, the

procedure is repeated 100 times. The average log-rank test statistics are 5.97(IGE, sd 0.35),

4.76(S-LASSO, sd 0.25), 4.60(J-LASSO, sd 0.08), 3.74(ColReg, sd 0.26), respectively. The

proposed method has the largest log-rank statistic, hence the best prediction performance.

2.4.2 Lung Squamous Cell Carcinoma (LUSC) Data

The proposed method identifies 8 LRMs with 2 residual effects from GEs and 17 residual

effects from regulators (DM and CNA). The interactions involve 7 LRMs and 26 mRNAs.

Table 2.5 provides identified main effects by using the proposed method. As afore-

mentioned, we aim to find a sparse relationship between gene expressions and regulators.

Therefore, a small subset of regulators are related to genes and vice versa. Table 2.6 provides

the identifications of G×E interaction effects. There’s one LRM not interacting with any

other environmental factors. The findings have important implications. For instance, gene

RNF24 is identified by 2 different LRMs (#1, #2). RNF24 is a membrane protein, which

interacts with TRPC protein (Lussier et al. (2008)). A recent study shows that RNF24 acts

as one of the important factors for the prognosis of carcinoma (Lin et al. (2018)). RNF24

is also shown to be correlated with the occurrence of esophageal adenocarcinoma (Wang

et al. (2014)). For DM, RGP1 is identified by 3 different LRMs (#4, #6, #7). According
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Table 2.5: Analysis of the TCGA LUSC data: LRMs and residual effects for gene expression
and regulators with the estimated coefficient or loadings in the parentheses.

LRMs
#1(-0.01) #2(0.01) #3(0.01) #4(-0.02)

mRNA RNF24(-0.17) SEC23B(0.23) REEP3(-0.76) AP2A2(-0.59)
ESM1(-0.53) RNF24(-0.97) FUT11(-0.64) PNPLA6(-0.37)

RASAL2(-0.39) RFX1(-0.55)
LAMC1(-0.34) XRN2(0.45)

DLGAP4(-0.63)
DM DCBLD1(0.09) TCF7L2(0.22) RGP1(-0.52)

CHI3L1(0.18) NCOR2(0.27)
CNA CD163L1(-0.16) ENTPD6(0.68) RERE(-0.89) CD163L1(0.70)

DLGAP4(-0.96) ABHD12(-0.69) DLGAP4(-0.43) PARD6G(-0.39)

#5(0.16) #6(0.05) #7(-0.05) #8(0.01)
mRNA COL5A3(0.45) MGST3(0.33) TPM4(0.68) TCTN2(-0.45)

DCBLD1(0.57) OSBPL5(0.31) UBB(0.59) ANGPT2(-0.40)
PDGFA(0.31) SNX9(0.56) NCOR2(-0.42) UBE4B(-0.37)
CHST15(0.45) MYO1C(0.46) MBTPS1(-0.47)
LGALS1(0.39) CCDC68(0.49) FAM178B(-0.50)

DM DCBLD1(-0.86) CHST15(-0.97) RGP1(-0.55) NCOR2(0.16)
FAM178B(-0.37) RGP1(0.13)
CHST15(-0.17) NCOR2(-0.10)

LGALS1(-0.15)
CNA DLGAP4(0.27) STK40(-0.26) CD163L1(-0.35)

TCTN2(-0.78) DLGAP4(-0.92)

Residual effects
mRNA LRAT(-0.02) PLEKHA6(-0.02)

DM BAMBI(0.01) PYGB(0.02) FUT11(-0.18) ZNF394(0.03)
CCIN(-0.01) DEAF1(-0.10) ACOT7(0.04) KLK6(-0.12)
LHX8(-0.01) PLEKHB1(0.09)

CNA FGFRL1(-0.05) DCBLD1(-0.04) NEFL(-0.04) CHST1(0.02)
ULK1(-0.03) FPR2(0.02) PYGB(-0.10)
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to Anand et al. (2020), RGP1 belongs to the regulation of guanosine diphosphate (GDP)

reaction exchange, and it acts as a prognostic factor in cancer. For CNA, CD163L1 is iden-

tified by 3 different LRMs (#1, #4, #8), and it can be used as a significant biomarker of

cancer (Zahra et al. (2018)). The identified LRMs are also meaningful. For example, the

regulatory relationship between NCOR2 and TCTN2 can be identified in LRM #7. This

result has also been observed in a regulatory network analysis (Zeng et al. (2012)). Among

all the residual effects, LRAT, PLEKHA6, ACOT7, KLK6, PLEKHB1, FGFRL1, FPR2 are

associated with prognosis of LUSC patients from existing studies (Ke et al. (2020), Relli

et al. (2019), Zhang et al. (2020a), Wang et al. (2016), Bae et al. (2020), Hu et al. (2019)).

To evaluate prediction, we adopt a random sampling approach and apply log-rank test

for assessment. We adopt the similar procedure as previous real data analysis section. After

repeating 100 times, the average log-rank test statistics are 33.20(IGE, sd 2.32), 25.06(S-

LASSO, sd 1.84), 24.41(J-LASSO, sd 2.13), 27.88(ColReg, sd 2.45), respectively. The pro-

posed method has superior prediction performance over alternatives.

2.5 Discussion

We have conducted an integrative gene-environment interaction analysis for multi-dimensional

omics data based on the proposed two-step variable selection model. Specifically, at the first

step, sparse regulatory relationship between the G factor and its regulators have been pin-

pointed via penalization, which leads to effects that can be directly linked to the prognostic

outcomes. At the second step, a G× E prognostic model has been considered, where the

G factor involved in the interaction consists of regulated (corresponding to the LRM) and

unregulated (i.e., the residual GE) components. Besides, the residuals of the regulator are

also included. The integrative G× E analysis fully takes the advantage of the multi-omics

measurements, which distinguishes itself from most of the published studies.

Traditionally, statistical testing based marginal analysis has dominated the G× E studies.

The paradigm shift to the joint analysis has been mainly motivated by the gene set and

pathway based association analysis (Wang et al. (2011), Wu and Cui (2014), Jin et al.
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Table 2.6: Analysis of the TCGA LUSC data: G×E interaction identifications from LRMs
and gene expression with the estimated regression coefficients in the parentheses.

LRMs AGE GENDER SMOKING
#1 0.02 0.03
#2 0.03
#4 -0.02
#5 0.01 0.05 -0.02
#6 0.01 -0.01
#7 -0.36
#8 0.02

mRNA Residual AGE GENDER SMOKING
LRAT -0.17

PLEKHA6 -0.30
AP2A2 0.02

SLC12A7 -0.10 0.07
TCTN2 -0.15 -0.09

CLEC5A 0.01
RNF24 -0.06 0.04
PRRX2 0.04 -0.04

CCDC74A 0.14 -0.13
FGF9 0.03 -0.06
IGF2R 0.05 -0.02

CHMP4C 0.24 0.13 -0.01
SLC45A4 -0.11
SULF2 -0.05 -0.03
UBB -0.11
DVL1 -0.07
NID1 0.08 0.20
KLK8 0.01

DOCK6 0.26 -0.10
FHDC1 0.01 -0.16
OPLAH -0.12
VSTM1 -0.02

SLC28A1 -0.07
TCF7L2 0.12
DLGAP4 -0.04
CRNKL1 -0.25
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(2014), Jiang et al. (2017)). Recently, the effectiveness of regularized variable selection has

been recognized not only in joint G× E studies when a large number of genetic factors are

involved (Zhou et al. (2021)), but also in multi-level omics integrations (Wu et al. (2019),

Du et al. (2021)). Therefore, it has been adopted for here.

This study can be improved from the following aspects. As strong correlations have been

widely observed in among omics measurements, network based penalization can be imposed

to accommodate the correlations among regulators at the first stage (Li and Li (2008), Sun

and Wang (2012), Ren et al. (2017)). Besides, robustness can be incorporated at the first

stage to model the regulatory relationship between GE and its regulators (Wu et al. (2018b)),

and in the second stage for a robust prognostic model (Ren et al. (2019), Wu et al. (2018a)).

Accounting for the form of environmental factors has received much attention in G× E

studies, which results in the development of a wide range of nonparametric (Li et al. (2015),

Wu and Cui (2013), Wu et al. (2018c)) and semiparametric (Wu et al. (2015), Ma and Xu

(2015), Ren et al. (2020)) methods. However, in integrative G× E studies, capturing the

nonlinear form of interaction is challenging. In this study, we focus on prognostic outcomes.

With other types of outcomes, such as the longitudinal phenotypes (Zhou et al. (2019)), the

G×E model in the second stage can be modified accordingly. We will postpone these further

investigations to the future.
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Chapter 3

Parallel Penalized Variable Selection

for Large-Scale G×E Studies

3.1 Introduction

Many studies have shown that the interactions (G×E) between genetic and environmental

risk factors play a critical role in predicting complex disease outcome beyond genetic and

environmental main effects. In high-dimensional genetic studies, the identification of G×E

interactions attracts more attentions. Penalized variable selection is one of the most popular

approach. Despite success, the computation speed is still a challenge in G×E studies. For

example, we evaluate different penalization methods by applying Lung Adenocaricinoma

(LUAD) data from the Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/). The

data has been collected from hundreds of subjects with thousands and thousands of genetic

markers. If G×E interactions are taken into account, the total number of variables is huge,

which can cost extreme computation time for many penalization methods.

Coordinate descent (CD) is one of the primary computation frameworks widely adopted,

because it’s simple, stable and efficient for a variety of penalized regression models. The

process of CD is updating single parameter at a time and is iteratively cycling through all

parameters until convergence. However, CD can’t improve computation speed in either large

36



sample size, or large number of variables. The framework of CD lacks parallel computation

capability.

In this chapter, we propose an alternative computation framework by adopting the al-

ternating direction method of multipliers (ADMM). ADMM was first introduced by Gabay

and Mercier (1976) and Glowinski and Marroco (1975). This algorithm framework solves

optimization problems by splitting them into batches of samples or variables, then it can

be solved in parallel. Hence, The parallel ADMM can conduct the optimization by using

divide-and-conquer strategy without losing identification accuracy. Some existing research

studies have developed ADMM framework for LASSO, sparse logistic regression, support

vector machines, see examples in Bien et al. (2013), Ye et al. (2011), Peng et al. (2013), Zhu

(2017) and Yu et al. (2017), Boyd et al. (2011). Few research studies discuss ADMM or

parallel ADMM for penalized variable selection in G×E interactions. We will demonstrate

ADMM for the identification of G×E interactions through penalization method and propose

a parallel ADMM framework to improve computation speed in large-scale G×E studies.

3.2 A brief review of ADMM

Denote the response vector as Y ∈ Rn and the design matrix as X ∈ Rn×p, where n is the

sample size and p is the number of variables. The penalized least square function can be

expressed as

1

2n
‖Y −Xβ‖2 + P (β;λ), (3.1)

where β ∈ Rp is the regression coefficients, λ is the tuning parameter, and P (β;λ) is the

penalty function. To formulate ADMM framework, we introduce an auxiliary variable z ∈ Rp

and rewrite equation (3.1) as a constrained optimization

1

2n
‖Y −Xβ‖2 + P (z;λ), subject to β − z = 0. (3.2)
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Equation (3.2) is also equivalent to the following augmented form with ρ(> 0) as the aug-

mentation parameter

R(β, z, τ) =
1

2n
‖Y −Xβ‖2 + P (z;λ) + τT (β − z) +

ρ

2
‖β − z‖2. (3.3)

To further simplify the equation, a scaled form, u = 1
ρ
τ , is widely adopted in ADMM. Then

equation (3.3) can be rewritten as

R(β, z, u) =
1

2n
‖Y −Xβ‖2 + P (z;λ) +

ρ

2
‖β − z + u‖2 − ρ

2
‖u‖2, (3.4)

where equation (3.4) is called the Lagrangian formula with scaled form. The method of

multipliers can be used to solve equation (3.2) by iteratively minimizing equation (3.4) over

β, z, and maximizing it over u. At the (k + 1)th iteration, the solutions are

βk+1 = arg min
β
R(β, zk, uk) (3.5)

zk+1 = arg min
z
R(βk+1, z, uk) (3.6)

uk+1 = uk + (βk+1 − zk+1) (3.7)

We summarize this ADMM algorithm framework in Figure 3.1.
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Figure 3.1: Flowchart of the ADMM algorithm framework for a penalized regression model.

3.3 Identification of G×E Interactions via ADMM

Penalized variable selection is one of the most popular approaches in high-dimensional data

studies. Nowadays, many penalization methods have been developed to account for com-

plicated data structures. Despite success, existing methods on G×E interactions still have

limitations on identification. We develop a penalized bi-level selection method to better

identify important G×E interactions and conduct it through ADMM. The bi-level selection

penalization can determine the sparsity on both group and individual levels.

Denote Yn×1 as the cancer outcome, and genetic effects and environment effects matrices

as Gn×p = (G1, · · · , Gp) and En×q = (E1, · · · , Eq). The G×E interactions are denoted as

Xn×q = (X1, · · · , Xq), where Xj = (G1Ej, · · · , GpEj), j = 1, · · · , q. The penalized least

39



square function for bi-level selection can be expressed as

R(β) =
1

2n
‖Y −Xβ‖2 +

q∑
j=1

λ1‖βj‖+

q∑
j=1

p∑
h=1

λ2|βjh|, (3.8)

where βj = (βj1, · · · , βjp)T ∈ Rp, for j = 1, · · · , q and β = (β1, · · · , βq)T ∈ Rqp. There are

two tuning parameters, where λ1 controls the sparsity of genetic factors, and λ2 controls the

sparsity among G×E interactions.

To formulate ADMM framework, we start from expressing equation (3.8) as a constrained

optimization problem with auxiliary variable z ∈ Rqp

R(β, z) =
1

2n
‖Y −Xβ‖2 +

q∑
j=1

λ1‖zj‖+

q∑
j=1

p∑
h=1

λ2|zjh|, subject to β − z = 0, (3.9)

where zj and zjh are auxiliary variables for βj and βjh, for j = 1, · · · , q and h = 1, · · · , p.

Equation (3.9) is equivalent to the following augmented form with ρ1, ρ2(> 0) being the

augmentation parameters

R(β, z, τ) =
1

2n
‖Y −Xβ‖2 +

q∑
j=1

[
λ1‖zj‖+ τTj (βj − zj) +

ρ1

2
(βj − zj)2

]
+

q∑
j=1

p∑
h=1

[
λ2|zjh|+ τjh(βjh − zjh) +

ρ2

2
(βjh − zjh)2

]
, (3.10)

where β, z are the primal variables and τ is the dual variable. For simplicity, we impose a

scaled form (u = 1
ρ
τ) to simplify equation (3.10)

R(β, z, u) =
1

2n
‖Y −Xβ‖2 +

q∑
j=1

[
λ1‖zj‖+

ρ1

2
(βj − zj + uj)

2 − ρ1

2
u2
j

]
+

q∑
j=1

p∑
h=1

[
λ2|zjh|+

ρ2

2
(βjh − zjh + ujh)

2 − ρ2

2
u2
jh

]
(3.11)

At the (k+1)th iteration, the solutions of equation (3.11) can be derived in a similar manner
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as equation (3.4)

βk+1 = arg min
β
R(β, zk, uk), (3.12)

zk+1 = arg min
z
R(βk+1, z, uk), (3.13)

uk+1 = uk + (βk+1 − zk+1). (3.14)

Let’s start to consider to update β. Equation (3.11) can be simplified as

R(β, zk, uk) =
1

2n
‖Y −Xβ‖2 +

q∑
j=1

ρ1

2

(
βj − zkj + ukj

)2

+

q∑
j=1

p∑
h=1

ρ2

2

(
βjh − zkjh + ukjh

)2

. (3.15)

The matrix form of equation (3.15) can be expressed as

R(β, zk, uk) =
1

2n
‖Y −Xβ‖2 +

ρ1 + ρ2

2
(β − zk + uk)2. (3.16)

Hence, the minimizer of equation (3.16) with respect to β is

∂R(β, zk, uk)

∂β
= − 1

n
XTY +

1

n
XTXβ + (ρ1 + ρ2)β − (ρ1 + ρ2)(zk − uk) = 0,

βk+1 =
[ 1

n
XTX + (ρ1 + ρ2)I

]−1[ 1

n
XTY + (ρ1 + ρ2)(uk − zk)

]
. (3.17)

Next let’s consider to update z. Equation (3.11) can be simplified as

R(βk+1, z, uk) =

q∑
j=1

[
λ1‖zj‖+

ρ1

2
(βk+1

j − zj + ukj )
2
]

+

q∑
j=1

p∑
h=1

[
λ2|zjh|+

ρ2

2
(βk+1

jh − zjh + ukjh)
2
]
. (3.18)
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For j = 1, · · · , q, the minimizer of equation (3.18) with respect to zj is

R(βk+1
j , zj, u

k
j ) = λ1‖zj‖+

ρ1

2
(βk+1

j − zj + ukj )
2 +

p∑
h=1

[
λ2|zjh|+

ρ2

2
(βk+1

jh − zjh + ukjh)
2
]
,

∂R(βk+1
j , zj, u

k
j )

∂zj
=
λ1zj
‖zj‖

− ρ1(βk+1
j − zj + ukj ) + S

=
( λ1

‖zj‖
+ ρ1

)
zj − ρ1(βk+1

j + ukj ) + S = 0

where S =
(
λ2sign(zj1) + ρ2zj1− ρ2(βk+1

j1 + ukj1), · · · , λ2sign(zjp) + ρ2zjp− ρ2(βk+1
jp + ukjp)

)T
.

Define g(zj) =
(

λ1
‖zj‖+ρ1

)
. Fix zj at current estimate, use g to denote g(zj). For h = 1, · · · , p,

λ2sign(zjh) + (g + ρ2)zjh − (ρ1 + ρ2)(βjh + ujh) = 0

Hence, the individual update of zjh is

zk+1
jh = S1

λ2
g+ρ2

(ρ1 + ρ2

g + ρ2

(βk+1
jh + ukjh)

)
(3.19)

where S1
λ(t) = sign(t)(|t| − λ)+. Define tjh = gzk+1

jh , tj = (tj1, · · · , tjp). The group wise

update of zj is

( λ1

‖zj‖
+ ρ1

)
zj = tj,

zk+1
j = S2

λ1
ρ

( tj
ρ1

)
, (3.20)

where S2
λ(t) =

(
1− λ

‖t‖

)
+
t. We determine individual level sparsity in equation (3.19),

indicating that only a subset of G×E interactions is related to cancer outcome for each gene.

Group level sparsity is determined in equation (3.20), suggesting that only a subset of genetic

main effects is related to cancer outcome. The tuning parameters are ρ1, ρ2, λ1, and λ2.

For large-scale genetics data, the computation speed becomes a big challenge for penalized

variable selection. With the proposed penalization method, we adopt a parallel ADMM
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framework to improve computation speed without satisfactory identification accuracy. The

parallel ADMM can conduct the optimization by using divide-and-conquer strategy.

Figure 3.2: Flowchart of ADMM framework for bi-level selection from Section 3.3.
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3.4 The Parallel ADMM

The ADMM can be well suited to distributed convex optimization (Boyd et al. (2011)). We

can distribute different batches of data to different machines to improve computation speed.

In this section, we demonstrate that by formulating equation (3.1) into specific parallel

ADMM framework across samples or features. First, we review the discussion of parallel

ADMM framework in Boyd et al. (2011).

3.4.1 Split across Samples

For classical statistical problems, we consider large amount of samples with small number

of variables (n� p). In such case, we can divide the dataset into different batches of small

numbers of samples with same number of variables for each batch. Consider the following

distributed model fitting problem

N∑
i=1

1

2ni
‖Yi −Xiβi‖2 + Pλ(z), subject to βi − z = 0, (3.21)

where βi ∈ Rp and z ∈ Rp. Hence, Yi ∈ Rni and Xi ∈ Rni×p represent the ith block of

data, where
∑N

i=1 = n and i = 1, · · · , N . Each block of data can be processed in parallel by

different machines. At the (k + 1)th iteration, the solutions of the parallel ADMM across

samples are

βk+1
i = arg min

θi

( 1

2ni
‖Yi −Xiβi‖2 +

ρ

2
‖βi − zk + uki ‖2

)
, (3.22)

zk+1 = arg min
z

(
Pλ(z) +

Nρ

2
‖z − β̄k+1 − ūk‖2

)
, (3.23)

uk+1
i = uki + (βk+1

i − zk+1). (3.24)

The update of βi can be carried out in parallel for each block of data. Equation (3.23) shows

that the update of z requires to collect variables to form the average. As examples, we

conduct LASSO and group LASSO through the parallel ADMM across samples in Section
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B.3.1 and Section B.3.2.

3.4.2 Split across Features

On the other side, there’re many studies with a modest number of samples and a large

number of features (n � p). For example, there’re usually relatively few subjects with a

very large number of SNPs in the cancer studies. Compared to Section 3.4.1, for all the

samples, we can distribute the large number of variables into different batches. Consider the

following distributed model fitting problem

1

2n
‖Y −

N∑
i=1

Xiβi‖2 +
N∑
i=1

Pλ(zi), subject to Xiβi − zi = 0. (3.25)

The design matrix X is divided as X = [X1, · · · , XN ] with Xi ∈ Rn×pi , and partition

coefficient vector β as β = (β1, · · · , βN)T with βi ∈ Rpi , where
∑N

i=1 pi = p. The auxiliary

variable is zi ∈ Rpi . The corresponding penalty function can be partitioned as
∑N

i=1 Pλ(zi).

In addition, we use the same tuning parameter for different partitioned penalties because

each block of variables should be in similar scale.

The parallel approach can be thought as partial prediction of Y using only the features

referenced in βi. At the (k + 1)th iteration, the solutions of the parallel ADMM across

features are

βk+1
i = arg min

βi

(
Pλ(βi) +

ρ

2
‖Xiβi − zki + uki ‖2

)
zk+1 = arg min

z

( 1

2n
‖Y −

N∑
i=1

zi‖2 +
N∑
i=1

ρ

2
‖Xiβ

k+1
i − zki + uki ‖2

)
uk+1
i = uki + (Xiθ

k+1
i − zk+1

i ).

Let Xβ
k+1

= 1/N
∑N

i=1Xiβ
k+1
i . To further simplify the solutions, the update of z can be
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used by the average information such that

z̄k+1 = arg min
z̄

( 1

2n
‖Y − qz‖2 +

Nρ

2
‖z̄ −Xβk+1 − ūk‖2

)
zk+1
i = z̄k+1 +Xiβ

k+1
i + uki −Xβ

k+1 − ūk.

Applying the above results into the update of ui we’ll have

uk+1
i = Xβ

k+1
+ ūk − z̄k+1,

where it indicats that all the dual variables are equal. Replacing zi by the single dual variable

uk, the solutions of the parallel ADMM across features can be rewritten as

βk+1
i = arg min

βi

(
Pλ(βi) +

ρ

2
‖Xiβi −Xiβ

k
i − z̄k +Xβ

k
+ uki ‖2

)
(3.26)

z̄k+1 = arg min
z̄

( 1

2n
‖Y −Nz‖2 +

Nρ

2
‖z̄ −Xβk+1 − ūk‖2

)
(3.27)

uk+1 = uk + (Xβ
k+1 − z̄k+1) (3.28)

Hence, the parallel ADMM across features can solve N parallel regularized least squares

in pi variables, respectively. From (3.26 ) to (3.27), we collect all the partial predictions

Xiβ
k+1
i to form average prediction Xβ

k+1
. Then we update the average z̄k+1 by minimizing

the quadratic function. The dual variable update is based on (3.28). Each update of βi is

a regularized problem with pi variables, which can be solved in parallel. As examples, we

conduct LASSO and group LASSO through parallel ADMM across features in Section B.2.1

and Section B.2.2.

3.5 Parallel ADMM for Bi-level Selection

In this section, we develop a parallel ADMM across samples and across features to conduct

a penalized bi-level selection, so we can distribute different batches of data onto different
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machines to imputation speed with satisfactory identification accuracy.

3.5.1 Parallel ADMM for Bi-level Selection across Samples

Consider the following distributed model fitting problem

N∑
i=1

1

2ni
‖Yi −Xiβi‖2 +

q∑
j=1

λ1‖zj‖+

q∑
j=1

p∑
h=1

λ2|zjh|, subject to βi − z = 0 (3.29)

where βi ∈ Rqp, z ∈ Rqp, and i stands for the index of the ith block of data, for i = 1, · · · , N .

The data is divided into N blocks with the same number of variables. Yi ∈ Rni and Xi ∈

Rni×qp, where
∑N

i=1 = n. Then each block of data can be processed in parallel by different

machines to improve computation speed. Following equation (3.11), we write equation (3.29)

in Lagrangian form

R(β, z, u) =
N∑
i=1

1

2ni
‖Yi −Xiβi‖2 +

q∑
j=1

[
λ1‖zj‖+

ρ1

2
(βj − zj + uj)

2 − ρ1

2
u2
j

]
+

q∑
j=1

p∑
h=1

[
λ2|zjh|+

ρ2

2
(βjh − zjh + ujh)

2 − ρ2

2
u2
jh

]
(3.30)

Then the updates of (β, z, u) follow equations (3.22), (3.23) and (3.24). For i = 1, · · · , N ,

∂R(βi, z
k, uki )

∂βi
= − 1

ni
XT
i

(
Yi −Xiβi

)
+ (ρ1 + ρ2)(βi − zk + uki ) = 0

βk+1
i =

[ 1

ni
XT
i Xi + (ρ1 + ρ2)I

]−1[ 1

ni
XT
i Yi + (ρ1 + ρ2)(zk − uki )

]
(3.31)
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Next, we conduct the solution of z update through penalized bi-level selection. For j =

1, · · · , q,

∂R(βk+1
j , zj, u

k
j )

∂zj
=
λ1zj
‖zj‖

−Nρ1

(
β̄k+1
j − zj + ūkj

)
+ S

=
( λ1

‖zj‖
−Nρ1

)
zj −Nρ1

(
β̄k+1
j + ūkj

)
+ S

= g(zj)zj −Nρ1

(
β̄k+1
j + ūkj

)
+ S = 0

where S =
(
λ2sign(zj1) +Nρ2zj1−Nρ2(β̄k+1

j1 + ūkj1), · · · , λ2sign(zjp) +Nρ2zjp−Nρ2(β̄k+1
jp +

ūkjp)
)T

. Fix zj at current estimate and use g to denote g(zj). For h = 1, · · · , p,

λ2sign(zjh) + (g +Nρ2)zjh − (Nρ1 +Nρ2)(β̄k+1
jh + ūkjh) = 0

zk+1
jh = S1

λ2
g+Nρ2

(Nρ1 +Nρ2

g +Nρ2

(β̄k+1
jh + ūkjh)

)
Let tjh = gzk+1

jh and tj = (tj1, · · · , tjp). With tj = g(zj)zj, we have

( λ1

‖zj‖
+Nρ1

)
zj = tj, z

k+1
j = S2

λ1
Nρ1

( tj
Nρ1

)
(3.32)

The parallel ADMM across samples iteratively updates βi on different machines. For each

machine, group level and individual level sparsity are controlled by bi-level selection penal-

ization.
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Figure 3.3: Flowchart of parallel ADMM framework for bi-level selection across samples from
Section 3.5.1.
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3.5.2 Parallel ADMM for Bi-level Selection across Features

Consider the following distributed model fitting problem

1

2n
‖Y −

q∑
i=1

Xiβi‖2 +

q∑
i=1

[
λ1‖zi‖+

p∑
h=1

λ2|zih|

]
, subject to Xiβi − zi = 0, (3.33)

where the columns of the data are divided into q groups with Xi ∈ Rn×p and βi ∈ Rp, for

i = 1, · · · , q. Then the update of (β, z, u) follow corresponding equations (3.26), (3.27) and

(3.28). Equation (3.27) shows that the update of z̄ is not involved any penalization. Then

the update of z̄ can be derived

∂R(βk+1, z̄, ūk)

∂z̄
= −N

n

(
Y −Nz̄

)
−N

(
ρ1 + ρ2

)(
Xβ

k+1 − z̄ + ūk
)

= 0,

z̄k+1 =
[
N + (ρ1 + ρ2)n

]−1[
Y + (ρ1 + ρ2)nXβ

k+1
+ (ρ1 + ρ2)nūk

]
. (3.34)

Next, let’s consider the update of βi. Let M = Xiβ
k
i −Xβ

k
+ z̄k − uk. For i = 1, · · · , N ,

∂R(βi, z
k, uk)

∂βi
=
λ1βi
‖βi‖

+ ρ1X
T
i (Xiβi −M) + S = g(βi)βi − ρ1X

T
i M + S = 0,

where S = (λ2sign(βi1) + ρ2xi1(xi1 −M), · · · , λ2sign(βip) + ρ2xip(xip −M))T . Fix βi at the

current estimate and use g to denote g(βi). For h = 1, · · · , p,

λ2sign(βih) + (g + ρ2x
2
ih)βih − (ρ1 + ρ2)xihM = 0

βk+1
ih = S1

λ2
g+ρ2x

2
ih

( ρ1 + ρ2

g + ρ2x2
ih

xihM
)

Let tih = gβk+1
ih and ti = (ti1, · · · , tip). With g(βi)βi = ti, we have

( λ1

‖βi‖
+ ρ1n

)
βi = ti, β

k+1
i = S2

λ1
ρ1n

( ti
ρ1n

)
(3.35)
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The parallelization of the ADMM across features can be implemented on a distributed com-

puting framework. Each βi update can be solved on different machines.

Figure 3.4: Flowchart of parallel ADMM framework for bi-level selection across features from
Section 3.5.2.

3.6 Simulation

We compare the performance of the bi-level selection (SGLASSO) to two alternatives.

LASSO is an individual level penalty without considering the grouping structure in G×E.
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Group LASSO (GLASSO) is a group level penalty without achieving sparsity within groups,

that is, once a gene is selected, its main effect and all interactions are selected. To evaluate

the computation speed, we evaluate the performance of all three methods through paral-

lel and non-parallel ADMM frameworks. Denote PLASSO, PGLASSO and PSGLASSO as

parallel approaches for LASSO, GLASSO and SGLASSO, respectively.

To set up different simulation scenarios, we generate datasets with different correlation

structures and correlation levels, each with n subjects, p genes and q environmental factors,

respectively. For each subject, we simulate genetic matrix through Gn×p ∼ N(0,Σ), where

we consider the following four covariance structures for Σ:

1. (AR1-3) Autoregressive correlation structure with correlation coefficients 0.3|i−j| for

the ith and jth variables.

2. (AR1-5) Autoregressive correlation structure with correlation coefficients 0.5|i−j| for

the ith and jth variables.

3. (banded 1) Banded correlation structure, in which variable i and j have correlation

coefficients ρ = 0.11 if |i− j| = 1 and ρ = 0 otherwise.

4. (banded 2) Banded correlation structure, in which variable i and j have correlation

coefficients ρ = 0.2 if |i− j| = 1, 0.11 if |i− j| = 2 and 0 otherwise.

The environmental factors are from En×q ∼ N(0,ΣE), where we choose ΣE to be autore-

gressive with correlation coefficient 0.9. To assign nonzero coefficients, we randomly select 4

groups. For each group, we randomly select 5 entries with coefficients generated from Unif[0,

0.5]. Denote coefficient vector β = (β1, · · · , βp) ∈ Rpq, where βj ∈ Rq, for j = 1, · · · , p. Then

the response variable Y is generated from regression model Y = Xβ + ε, where ε ∼ N(0, 1).

Simulations are evaluated under 6 different settings: we choose (n, p, q) = (800, 100, 10),

(800, 50, 10), (1500, 100, 10), (1500, 50, 10), (5000, 100, 10), (10000, 100, 10), respectively. First

three settings are used to evaluate the performance of parallel ADMM across features and

last three settings are evaluated for performance across samples. Evaluation of feature selec-

tion accuracy is based on true positive (TP) and false positive (FP). Evaluation of prediction
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is based on mean square error between fitted values and true values. Computation time is

reported in seconds. The simulation is repeated 100 times and conducted on a PC with Core

i7 4-core processor and 8GB RAM.

The simulation results of the six approaches are tabulated in table 3.1, B.1, B.2, 3.2,

B.3. B.4. In general the bi-level selection has better identification than alternatives. For

example, in table 3.1, given n = 800, p = 100, q = 10, under covariance structure 1 (AR1-3).

LASSO identifies 17.80 (SD 1.90) TPs with 10.50 (SD 1.50) FPs. GLASSO identifies a larger

number of TPs, 18.23 (SD 2.35), with a larger number of FPs, 49.50 (SD 27.94). However,

the SGLASSO can identify larger number of TPs, 18.53 (SD 1.96), with a small number of

FPs, 2.63 (SD 1.24). Among three approaches, the difference in performance comes from

identifying G×E interactions. SGLASSO can determine the sparsity on both group and

individual levels. For prediction accuracy, SGLASSO outperforms LASSO with lower FPs.

GLASSO can obtain highest prediction accuracy because it identifies a larger number of

FPs. Overall, we can observe the similar patterns for the other covariance structures and

simulation settings.

In terms of computation speed, we compare parallel ADMM and traditional ADMM

frameworks under either large p or large n setting. In a word, the parallel ADMM can

significantly improve the computation speed and the proposed PSGLASSO has better iden-

tifications than alternatives. For example, in table 3.1, under p > n setting. For computation

time, all parallel approaches are almost four times faster than non-parallel approaches. For

identification under covariance structure 1 (AR1-3), PLASSO identifies 18.43 (SD 1.97) TPs,

which is better than the 17.80 (SD 1.90) TPs identified by LASSO. However, similar FPs

are identified by both approaches. PGLASSO identifies 18.66 (SD 5.07) TPs and 49.03 (SD

27.90) FPs, which are similar as the identification of GLASSO. The proposed PSGLASSO

identifies 18.36 (SD 2.79) TPs and 2.96 (SD 1.52) FPs, which are also similar as the identi-

fication of SGLASSO. Hence, the parallel ADMM across features can improve computation

speed without loosing identification accuracy.

Another example, in table 3.2, under n > p setting. For computation time, all parallel

approaches are almost two times faster than non-parallel approaches. For identification
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under covariance structure 1 (AR1-3), PLASSO identifies a slightly larger FPs, 13.50 (SD

2.75), but it identifies similar TPs, 18.03 (SD 1.12). PGLASSO identifies smaller FPs,

54.20 (SD 20.16), and similar TPs, 18.86 (SD 1.13). PSGLASSO identifies 3.23 (SD 2.45)

FPs, which is slightly larger than SGLASSO. However, PSGLASSO identifies similar TPs

as SGLASSO, which is 18.63 (SD 1.15). Overall, the parallel ADMM across samples can

improve computation speed with satisfactory identification accuracy.

The comparison of parallel ADMM in different numbers (M) of chunks is shown in Figure

3.5 from a large sample case. In particular, we evaluate the performance of differences for

LASSO penalty with (n, p, q) = (10000, 100, 10). Other methods have similar trends. The

number (M) of chunks is set to 1, 10 and 100, respectively. As shown in figure 3.5, the

parallel algorithm maintains prediction accuracy and it significantly reduces computation

time.

Figure 3.5: Comparison of parallel ADMM for splitting across samples with LASSO penalty
for different numbers (M) of subset of data. (n, p, q) = (10000, 100, 10).
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Table 3.1: Comparison between ADMM and parallel ADMM in splitting features for
(n, p, q) = (800, 100, 10) with LASSO, GLASSO and SGLASSO penalties. Numbers are
mean (standard deviation) of true positives (TP), false positives (FP), prediction and time.

Approach Correlation TP FP Prediction Time
LASSO AR1-3 17.80(1.90) 10.50(1.50) 0.82(0.04) 20.36(0.60)

AR1-5 18.10(1.88) 12.00(1.91) 0.81(0.05) 20.79(0.91)
banded1 18.10(2.09) 10.06(1.79) 0.82(0.05) 20.38(0.46)
banded2 17.70(1.93) 9.46(1.27) 0.85(0.05) 20.49(0.56)

GLASSO AR1-3 18.23(2.35) 49.50(27.94) 0.95(0.07) 20.34(1.20)
AR1-5 18.03(2.20) 43.13(21.70) 0.91(0.07) 20.60(0.94)

banded1 17.63(2.71) 50.13(24.58) 0.98(0.09) 20.20(0.77)
banded2 18.26(3.26) 52.73(24.54) 0.96(0.07) 20.42(0.92)

SGLASSO AR1-3 18.53(1.96) 2.63(1.24) 0.84(0.04) 22.85(1.03)
AR1-5 18.56(1.71) 3.60(1.99) 0.82(0.03) 23.30(1.07)

banded1 18.73(1.68) 2.30(1.20) 0.83(0.05) 22.81(0.30)
banded2 18.56(1.61) 1.90(1.02) 0.81(0.05) 23.02(0.75)

Approach Correlation TP FP Prediction Time
PLASSO AR1-3 18.43(1.97) 10.90(2.04) 0.84(0.05) 5.09(0.92)

AR1-5 18.26(2.58) 8.70(3.15) 0.83(0.05) 5.20(1.08)
banded1 18.46(2.37) 9.20(1.24) 0.84(0.05) 5.09(0.53)
banded2 18.20(2.15) 8.46(1.30) 0.84(0.04) 5.12(0.54)

PGLASSO AR1-3 18.66(5.07) 49.03(27.90) 0.91(0.47) 5.08(1.06)
AR1-5 19.06(3.94) 54.30(29.56) 0.91(0.30) 5.15(1.39)

banded1 17.63(5.54) 46.33(23.90) 0.86(0.49) 5.05(0.58)
banded2 17.50(5.11) 48.26(25.81) 0.85(0.52) 5.10(0.46)

PSGLASSO AR1-3 18.36(2.79) 2.96(1.52) 0.86(0.04) 5.71(2.81)
AR1-5 18.80(3.42) 2.86(2.14) 0.87(0.08) 5.82(2.75)

banded1 18.23(2.95) 2.53(0.90) 0.87(0.06) 5.70(1.01)
banded2 18.83(2.92) 2.96(1.18) 0.87(0.05) 5.75(0.86)
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Table 3.2: Comparison between ADMM and parallel ADMM in splitting samples for
(n, p, q) = (10000, 50, 10) with LASSO, GLASSO and SGLASSO penalties. Numbers are
mean (standard deviation) of true positives (TP), false positives (FP), prediction and time.

Approach Correlation TP FP Prediction Time
LASSO AR1-3 18.93(1.55) 10.60(2.65) 0.81(0.01) 55.30(1.08)

AR1-5 18.70(1.68) 9.70(2.12) 0.81(0.01) 55.39(1.25)
banded1 18.13(2.25) 10.00(3.08) 0.81(0.01) 55.91(0.61)
banded2 18.13(1.71) 11.26(3.06) 0.81(0.01) 55.59(1.44)

GLASSO AR1-3 18.90(2.21) 57.46(17.32) 0.81(0.02) 52.89(1.37)
AR1-5 18.86(2.06) 55.90(15.08) 0.83(0.02) 50.61(0.73)

banded1 18.13(2.31) 56.93(16.06) 0.82(0.02) 50.65(0.91)
banded2 18.23(1.75) 52.10(16.76) 0.82(0.01) 53.41(1.90)

SGLASSO AR1-3 18.76(1.10) 2.36(1.60) 0.80(0.01) 74.68(2.06)
AR1-5 18.60(1.35) 2.30(1.97) 0.80(0.01) 73.38(0.72)

banded1 18.06(1.33) 2.67(1.25) 0.80(0.01) 73.21(1.53)
banded2 18.23(1.22) 2.20(1.90) 0.80(0.01) 73.29(2.04)

Approach Correlation TP FP Prediction Time
PLASSO AR1-3 18.03(1.12) 13.50(2.75) 0.80(0.01) 25.65(1.55)

AR1-5 18.23(1.38) 10.16(2.81) 0.80(0.01) 25.69(1.01)
banded1 18.43(1.61) 12.83(1.91) 0.80(0.01) 25.45(1.07)
banded2 18.76(1.07) 11.56(1.54) 0.80(0.01) 25.79(1.74)

PGLASSO AR1-3 18.86(1.13) 54.20(20.16) 0.81(0.01) 26.44(4.08)
AR1-5 18.70(1.86) 55.06(29.37) 0.81(0.01) 25.30(0.94)

banded1 18.93(2.25) 55.50(22.61) 0.81(0.01) 25.32(1.01)
banded2 18.46(1.54) 56.86(27.47) 0.80(0.01) 26.70(1.74)

PSGLASSO AR1-3 18.63(1.15) 3.23(2.45) 0.80(0.01) 34.04(2.47)
AR1-5 18.56(1.35) 2.91(2.06) 0.81(0.01) 33.35(1.18)

banded1 18.03(1.35) 2.53(1.73) 0.80(0.01) 33.26(0.87)
banded2 18.23(1.22) 2.34(1.86) 0.80(0.01) 36.99(7.52)

Table 3.3: Summary of ADMM Frameworks

Framework Penalized Least Square Loss Solutions Method
General ADMM Equation (3.1) Equation (3.5), (3.6), (3.7) Existing

General Parallel ADMM across Samples Equation (3.21) Equation (3.22), (3.23), (3.24) Existing
General Parallel ADMM across Features Equation (3.25) Equation (3.26), (3.27), (3.28) Existing

ADMM for SGLASSO Equation (3.8) Equation (3.17), (3.8), (3.14) New
Parallel ADMM for SGLASSO across Samples Equation (3.29) Equation (3.31), (3.32), (3.24) New
Parallel ADMM for SGLASSO across Features Equation (3.33) Equation (3.35), (3.34), (3.28) New
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Chapter 4

Parallel Penalized Variable Selection

for GxE Interactions in Case Control

Study of Type 2 Diabetes

4.1 Introduction

Type 2 Diabetes (T2D) is a common human disease, which is related to both environmental

and genetic factors. Many studies have shown that gene-environment (G×E) interaction

effects are associated with disease traits beyond genetic and environment main effects. For

example, the interaction between gene TCF7L2 and environmental variables, such as physical

activity and lifestyle changes has been reported to be associated with the risk of developing

T2D (Wu and Cui (2013), Wu et al. (2014) and Ren et al. (2020)). With high dimensionality

of genetic data, it has been a challenge to identify important genetic main effects and G×E

interactions.

Penalized variable selection is one of the most popular approaches in high-dimensional

data studies. Nowadays, many penalization methods have been developed to account for

complicated data structures. Despite success, existing methods on G×E interactions still

have limitations on identification and computation speed. We develop a penalized bi-level
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selection method to better identify important genetics main effects and G×E interactions

for binary response in large-scale data.

With the proposed penalization method, we adopt a parallel ADMM framework to im-

prove computation speed for a large-scale data analysis. The parallel ADMM can conduct

the optimization by using divide-and-conquer strategy without losing identification accuracy.

From the simulation studies, the proposed penalized bi-level selection method outperforms

other alternatives with better identification of genetic main effects and G×E interactions

for binary response. Additionally, the proposed parallel ADMM framework can significantly

improve computation speed with satisfactory identification for binary response. In the case

control study of T2D from the Nursers’s Health Studies (NHS), the proposed parallel pe-

nalzied bi-level selection method has meaningful identifications of important genetic main

effects and G×E interactions with a much faster speed.

The rest of chapter is organized as follows. Section 4.2 describes the model in detail. In

Section 4.3, we evaluate the performance of proposed approach through simulation studies

and compare with alternative approaches. A case control study of T2D is presented in

Section 4.4.

4.2 Method

Denote Gn×p = (G1, · · · , Gp) as the p genes and En×q = (E1, · · · , Eq) as the q environment

factors. Denote Yn×1 = (y1, · · · , yn)> as the binary response, where yi = 1 indicate the case

of disease, and 0 otherwise, i = 1, · · · , n. Consider the following G×E model with the joint

effects of all E and G and their interactions
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µ = α0 +

q∑
h=1

αhEh +

p∑
j=1

βj0Gj +

p∑
j=1

q∑
h=1

βjhGjEh

= α0 +

q∑
h=1

αhEh +

p∑
j=1

(
βj0Gj +

q∑
h=1

βjhGjEh

)

= α0 +

q∑
h=1

αhEh +

p∑
j=1

Xjβj, (4.1)

where Xj = (Gj, GjE1, · · · , GjEq), α0 is the intercept, αh is the regression coefficient for

the hth environment factor, and βj0 is the regression coefficient for the jth gene. βj =

(βj0, βj1, · · · , βjq)> corresponds to the jth genetic main effect and its interactions with q

environment factors.

The logistic regression model can be expressed as

P (yi = 1|µi) = πi =
eµi

1 + eµi
, i = 1, · · · , n.

where µi is the ith component of µ. The corresponding loss function for logistic regression

is the negative log-likelihood

L(µ) =
1

n

n∑
i=1

Li(µi) = − 1

n

n∑
i=1

logP (Yi = yi|µi)

= − 1

n

n∑
i=1

{
yilogπi + (1− yi)log(1− πi)

}
. (4.2)

4.2.1 Penalized Logistic Regression for G×E Interactions

With the evidence of previous studies, a small number of environment factors are pre-selected.

They may be always included in the model, but the selection is not our interest. Hence, we

consider a weak hierarchical structure between main and interaction effects, under which if

an interaction term is selected as important, then at least one of the two corresponding main

effects is selected.
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The number of genetic factors and G×E interactions is much larger than the sample

size, and only a small subset of important genetic factors and G×E interactions that are

associated with disease status. We proposed a penalization method to identify important

effects in the G×E interaction study. Consider the following penalized likelihood

R(β) = − 1

n

n∑
i=1

{
yilogπi + (1− yi)log(1− πi)

}
+

p∑
j=1

λ1‖βj‖+

p∑
j=1

q∑
h=0

λ2|βjh|, (4.3)

where βj = (βj0, βj1, · · · , βjq) ∈ Rq+1 and β = (β1, · · · , βp)> ∈ Rp(q+1), for j = 1, · · · , p.

λ1 and λ2 are tuning parameters. On the group level, βj is the coefficient vector for the

jth genetic main effect and its interactions with q environment factors. The group LASSO

penalty determines whether the jth genetic factor is associated with the binary trait. If βj

is nonzero, then either the corresponding main effect or G×E interactions or both can be

associated with the outcome. On the individual level, the LASSO penalty further determines

the specific individual effects that are associated with disease outcome. Hence, the bi-level

selection can identify important main and interaction effects on group and individual levels

simultaneously. Both types of effects are penalized on group level and individual levels. The

environment main effects always exist in the model. So once at least one interaction effect

is nonzero, the genetic main effect can be either zero or nonzero, which respects the weak

hierarchical structure.

Penalized variable selection has been widely adopted for high dimensional genetic data

analysis. For G×E studies, tailored penalization methods need to be considered for the

interaction structure. Here, we develop the bi-level selection based on LASSO and group

LASSO, but other baseline penalties can also be developed, such as MCP and group MCP.

Computation is a challenge for the development of penalized variable selection approaches

in large-scale data. Coordinate descent algorithm (CD) is one of the most popular algorithms

for penalized variable selection in G×E studies, but it cannot be developed in parallel form to

improve computation speed. Here, we propose an alternative algorithm by applying alternat-

ing direction method of multiplier (ADMM) due to its nature as a distributed optimization

method. Specificly, we develop a parallel ADMM framework for bi-level selection across fea-
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tures. The proposed method conducts the optimization by using divide-and-conquer strategy

while achieving good efficiency and accuracy. The parallel ADMM can be further imple-

mented on distributed computing platform such as Hadoop (Dean and Ghemawat (2008))

and Spark (Zaharia et al. (2010)).

4.2.2 Parallel ADMM for Bi-level Selection across Features

The ADMM can be well suited to distributed convex optimization (Boyd et al. (2011)). We

develop a parallel ADMM across features to conduct a penalized bi-level selection with binary

outcome, so we can distribute different batches of data to different machines to improve

computation speed. The ADMM is constructed through a iteratively reweighed least square

algorithm for binary outcome, which yields a same form as the quadratic approximation to

the penalized objective function based on Taylor expansion about current estimates. Denote

α(k), β(k), as the estimates of regression coefficients at kth iteration . Let X = (X1, · · ·Xp) ∈

Rn×p(q+1) represent all genes and their corresponding G×E interactions. Then the quadratic

approximation to (4.3)

R(α, β) ≈ − 1

2n
(Ỹ − Eα−Xβ)>W (Ỹ − Eα−Xβ) +

p∑
j=1

λ1‖βj‖+

p∑
j=1

q∑
h=0

λ2|βjh|, (4.4)

where α = (α1, · · · , αq)> ∈ Rq is the regression coefficients for the environmental factors,

and β = (β1, · · · , βp)> ∈ Rp(q+1) is the regression coefficients for all genetic main effects and

their G×E interactions. Wn×n is a diagonal matrix of weights with elements wi = πi(1−πi),

which is evaluated at β(k). Define Ỹ as the working response, where Ỹ = Eα(k) + Xβ(k) +

W−1(Y − π).

We develop an iterative algorithm to update parameters. Given the current estimate

parameter β(k), we minimize the weighted least square function with respect to α. Then

compute α(k+1) = (E>E)−1E−1W (Ỹ −Xβ(k)). Next, fix α at the current estimate α(k+1) in

R(α, β) . To formulate the parallel ADMM framework, we start from expressing equation
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(4.4) as a constrained optimization problem with auxiliary variable z = (z1, · · · , zB).

R(α(k+1), β, z) ≈ − 1

2n

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)>
W

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)

+
B∑
b=1

p/B∑
j=1

{
λ1‖zbj‖+

q∑
h=0

λ2|zbjh|

}
subject to Xbβb − zb = 0, (4.5)

where we split the data columns into B groups with Xb ∈ Rn×p(q+1)/B and βb ∈ Rp(q+1)/B,

for b = 1, · · · , B. Therefore, the bi-level penalty function is partitioned as B groups, corre-

spondingly. As each partition of data should be on similar scale, we search two dimensional

grid of (λ1, λ2) to find optimal pair of tuning parameters through V-fold cross validation.

Equation (4.5) is equivalent to the following augmented form with ρ1, ρ2(> 0) being the

augmentation parameters

R(α(k+1), β, z, τ) ≈ − 1

2n

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)>
W

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)

+
B∑
b=1

p/B∑
j=1

{
λ1‖zbj‖+ τ>bj (βbj − zbj) +

ρ1

2
(βbj − zbj)2

+

q∑
h=0

[
λ2|zbjh|+ τbjh(βbjh − zbjh) +

ρ2

2
(βbjh − zbjh)2

]}
, (4.6)

where β, z are the primal variables and τ is the dual variable. For simplicity, we impose a

scaled form (u = 1
ρ
τ) to simplify equation (4.6)

R(α(k+1), β, z, u) ≈ − 1

2n

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)>
W

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)

+
B∑
b=1

p/B∑
j=1

{
λ1‖zbj‖+

ρ1

2
(βbj − zbj + ubj)

2 − ρ1

2
u2
bj

+

q∑
h=0

[
λ2|zbjh|+

ρ2

2
(βbjh − zbjh + ubjh)

2 − ρ2

2
u2
bjh

]}
.
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For each batch of data, the estimation can be treated as partial prediction of Y with

the features of βb. According to the discussion in Boyd et al. (2011) , the parallel ADMM

solutions at (k + 1)th iteration can be derived as

β
(k+1)
b = arg min

βb

{
P (βb;λ1, λ2) +

ρ

2

∥∥∥Xbβb −Xiβ
(k)
b − z̄

(k) +Xβ
(k)

+ u
(k)
b

∥∥∥2
}

(4.7)

z̄(k+1) = arg min
z̄

{
− 1

2n

(
Ỹ − Eα(k+1) −Nz

)>
W
(
Ỹ − Eα(k+1) −Nz

)
+
Nρ

2
‖z̄ −Xβ(k+1) − ū(k)‖2

}
(4.8)

u(k+1) = u(k) +
(
Xβ

(k+1) − z̄(k+1)
)

(4.9)

With the parallel ADMM framework, all the partial predictions Xbβ
(k+1)
b are collected to

form average prediction Xβ
(k+1)

from (C.15) to (C.16). Then we update the average z̄k+1

by minimizing the quadratic function. The dual variable update is based on (C.17). Each

update of βb is a regularized problem with p(q + 1)/B variables, which can be solved in a

parallel fashion.

With fixed tuning parameters, the proposed parallel ADMM algorithm proceeds as follows

(Algorithm 4) .

4.3 Simulation

We compare the performance of the bi-level selection (SGLASSO) to two alternatives.

LASSO is an individual level penalty without considering the grouping structure in G×E.

Group LASSO (GLASSO) is a group level penalty without achieving sparsity within groups,

that is, once a gene is selected, its main effect and all interactions are selected. To evaluate

the computation speed, we evaluate the performance of all three methods through paral-

lel and non-parallel ADMM frameworks. Denote PLASSO, PGLASSO and PSGLASSO as

parallel approaches for LASSO, GLASSO and SGLASSO, respectively.

To set up different simulation scenarios, we generate datasets with different correlation
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Algorithm 4 Parallel ADMM for BI-level Selection across Features

Initialize β(1), z(1), u(1), k = 1.

repeat

Compute α(k+1) = (E>E)−1E−1W (Ỹ −Xβ(k)).

for b = 1, · · · , B do

β
(k+1)
b = arg minβb

{
P (βb;λ1, λ2) + ρ

2

∥∥∥Xbβb −Xiβ
(k)
b − z̄(k) +Xβ

(k)
+ u

(k)
b

∥∥∥2
}

end for

z̄(k+1) = arg minz̄

{
− 1

2n

(
Ỹ − Eα(k+1) −Nz

)>
W
(
Ỹ − Eα(k+1) −Nz

)
+Nρ

2
‖z̄ −Xβ(k+1) − ū(k)‖2

}
u(k+1) = u(k) +

(
Xβ

(k+1) − z̄(k+1)
)

k = k + 1

until convergence

structures and correlation levels, each with n subjects, p genes and q environmental factors,

respectively. For each subject, we simulate genetic matrix through Gn×p ∼ N(0,Σ), where

we consider the following four covariance structures for Σ:

1. (AR1-3) Autoregressive correlation structure with correlation coefficients 0.3|i−j| for

the ith and jth variables.

2. (AR1-5) Autoregressive correlation structure with correlation coefficients 0.5|i−j| for

the ith and jth variables.

3. (banded 1) Banded correlation structure, in which variable i and j have correlation

coefficients ρ = 0.11 if |i− j| = 1 and ρ = 0 otherwise.

4. (banded 2) Banded correlation structure, in which variable i and j have correlation

coefficients ρ = 0.2 if |i− j| = 1, 0.11 if |i− j| = 2 and 0 otherwise.

The environmental factors are from En×q ∼ N(0,ΣE), where we choose ΣE to be autore-

gressive with correlation coefficient 0.9. To assign nonzero coefficients of all genetic main

effects and interactions, we randomly select 10 groups. For each group, we randomly select
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2 elements with coefficients generated from Unif[0.5, 1]. The nonzero coefficients of envi-

ronment factors are generated from Unif[0,1]. Follow equation 4.1, the binary response can

subsequently be simulated.

Simulations are evaluated under three different settings: we choose (n, p, q) = (500, 100, 4),

(500, 200, 4), (800, 100, 4), respectively. Evaluation of feature selection accuracy is based on

true positive (TP) and false positive (FP). Computation time is reported in seconds. The

simulation is repeated 100 times and conducted on a PC with Core i7 4-core processor and

8GB RAM.

The simulation results of the six approaches are tabulated in Table 4.1, Table C.1 and

Table C.2. In general, the bi-level selection has better identification than alternatives. For

example, in Table 4.1, given n = 500, p = 100, q = 4, under covariance structure (1).

LASSO identifies 15.96 (SD 1.29) TPs with 10.18 (SD 3.34) FPs. GLASSO identifies a

larger number of TPs, 18.52 (SD 1.26), with a larger number of FPs, 28.06 (SD 3.77).

However, the SGLASSO can identify larger number of TPs, 18.20 (SD 1.40), with a smaller

number of FPs, 6.30 (SD 2.92). Among three approaches, the difference in identification

performance comes from G×E interactions. SGLASSO can accommodate the group level

selection and individual level selection simultaneously. We can observe the similar patterns

for the other covariance structures in Table 4.1. As the dimension decreases (Table C.1) or

the sample size increases (Table C.2), the identification performance can be improved for all

approaches. However, we can observe that overall SGLASSO outperforms alternatives with

a higher TP and a lower FP under each setting.

In terms of computation efficiency, we compare parallel ADMM and traditional ADMM

frameworks. In a word, the parallel ADMM can significantly improve the computation

efficiency and the proposed PSGLASSO has better identification performance than alter-

natives. For example, in Table 4.1, under covariance structure (AR1-3). For computation,

both PLASSO and PSGLASSO are almost five times faster than LASSO and SGLASSO.

PGLASSO is almost three times faster than GLASSO. For identification, PLASSO identifies

14.02 (SD 1.50) TPs, which is less than the 15.96 (SD 1.29) TPs identified by LASSO, while

similar FPs are identified by both approaches. PGLASSO identifies 31.22 (SD 4.64) FPs,
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Table 4.1: Binary Response: Comparison between ADMM and parallel ADMM in split-
ting features for (n, p, q) = (500, 200, 4) with LASSO, GLASSO and SGLASSO penalties.
Numbers are mean (standard deviation).

Approach Correlation TP FP Time
LASSO AR1-3 15.96(1.29) 10.18(3.34) 11.24(0.12)

AR1-5 16.10(1.60) 6.64(2.31) 14.72(0.16)
banded 1 14.84(1.49) 14.82(4.06) 10.44(0.12)
banded 2 15.52(1.48) 10.74(3.23) 10.86(0.12)

GLASSO AR1-3 18.52(1.26) 28.06(3.74) 12.06(0.13)
AR1-5 18.02(1.85) 26.40(3.58) 15.82(0.24)

banded 1 17.12(1.89) 27.98(5.17) 10.61(0.11)
banded 2 18.24(1.55) 26.94(2.91) 11.09(0.10)

SGLASSO AR1-3 18.20(1.40) 6.30(2.92) 23.99(0.24)
AR1-5 18.00(1.60) 3.98(1.96) 33.01(0.57)

banded 1 16.74(1.70) 7.70(3.50) 20.81(0.14)
banded 2 17.88(1.63) 6.32(2.42) 22.44(0.20)

Approach Correlation TP FP Time
PLASSO AR1-3 14.02(1.50) 10.16(3.09) 2.25(0.06)

AR1-5 14.22(1.56) 9.00(3.01) 2.45(0.08)
banded 1 13.26(1.54) 11.06(3.18) 2.31(0.07)
banded 2 13.78(1.52) 9.34(3.00) 2.20(0.05)

PGLASSO AR1-3 18.60(1.29) 31.22(4.64) 4.09(0.10)
AR1-5 18.08(1.80) 28.78(4.04) 4.16(0.09)

banded 1 17.36(1.87) 31.20(6.28) 4.19(0.09)
banded 2 18.48(1.31) 30.22(4.51) 3.75(0.08)

PSGLASSO AR1-3 18.06(1.49) 6.34(2.98) 4.66(0.10)
AR1-5 17.84(1.68) 4.04(2.09) 4.79(0.10)

banded 1 16.68(1.77) 7.66(3.54) 4.64(0.08)
banded 2 17.86(1.65) 6.24(2.17) 4.49(0.09)

which is more than the FPs identified by GLASSO, 28.06 (SD 3.74), while similar TPs are

identified by both approaches. The proposed PSGLASSO identifies 18.06 (SD 1.49) TPs

with 6.34 (SD 2.98) FPs, which is similar to SGLASSO identification results. Hence, the

PSGLASSO is more stable in the identification of G×E interactions.

4.4 Real Data Analysis

We applied our model to the Nurse Health Study (NHS), a nested case control cohort study

of type 2 diabetes (T2D). This data set is from the Gene, Environment Association Studies
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Consortium (GENVEA) (Cornelis et al. (2010)). As a Genome Wide Association Study

(GWAS), the NHS aims at examining multiple hypotheses on the lifestyle and dietary factors

leading to complex diseases including type 2 diabetes. More details of the study can sbe

found from Colditz and Hankinson (2005) and Rimm et al. (1991). In this section, we focus

on studying SNPs from chromosome 10 and compare identifications of G×E interactions

between proposed methods and alternatives.

After matching phenotypes and genotypes, the dataset contains 3224 subjects and 17037

SNPs. Conducting screenings to reduce feature dimensionality and improve stability is very

common in many studies. For example, Li et al. (2015) applied single SNP analysis before

his downstream analysis to filter important SNPs in the genome-wide association study. In

this study, we apply a marginal logistic regression with binary response (1 indicating the case

of disease and 0 otherwise) to evaluate every single SNP significance by using genetic main

and G×E interaction effects as predictors. Then we select top 200 most significant SNPs.

The remaining environment factors are pre-selected. With evidences of being associated with

T2D from previous studies (Hu et al. (2001)), we select four environment factors: the total

physical activity (ACT), glycemic load (GL), age (AGE) and alcohol intake (ALCOHOL).

We analyze data using SGLASSO and LASSO through non-parallel ADMM. In addition,

we apply PSGL and PLASSO to compare identifications and computation efficiency. As

shown in Table 4.4 shows, the proposed SGL identifies 5 genetic main effects and 25 total

G×E interactions. From Table 4.4, we also observe that not all genes have main effects. Some

genes are identified because some of their corresponding G×E interactions are associated to

T2D. Table C.4 shows the result from approach LASSO, which it identifies 4 genetic main

effects and 28 total G×E interactions. The results of approaches PSGLASSO and PLASSO

are provided in Table C.3 and Table C.5, respectively. The parallel ADMM framework can

generate similar identification results as traditional ADMM framework, but it sufficiently

improved computation time. The PSGL identifies 6 genetic main effects and total 25 G×E

interactions. The PLASSO identifies 8 genetic main effects and total 28 G×E interactions.

We use 5-fold cross validation to select tuning parameters. The computation time for 4

approaches are 28.41(SGLASSO), 16.30(PSGLASSO), 35.60(LASSO) and 12.19 (PLASSO)
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seconds, respectively.

To further compare the identifications by different approaches, we provide Table 4.2 and

Table 4.3 to show the numbers of identifications and overlaps as well as the RV coefficients.

The RV coefficient measures the similarity of overlapping information, with a larger value

indicating a higher similarity. As shown in Table 4.2 and Table 4.3 , the proposed approach

identifies more similar number of G×E interactions between traditional ADMM and paral-

lel ADMM frameworks. All approaches identify similar genetic main effects. In addition,

SGLASSO and PSGLASSO can identify similar G×E interactions as LASSO. For parallel

ADMM framework, we improve computation time by distributing different batches of data

to different machines. Without loosing satisfactory identifications, the proposed PSGL is

more stable than PLASSO to identify G×E interactions.

Table 4.2: Analysis of NHS T2D: numbers of main effects identified by different approaches
and their overlaps. RV coefficients are in the parentheses.

Approach LASSO PLASSO SGL PSGL
LASSO 4 4(0.99) 3(0.99) 3(0.99)

PLASSO 8 4(0.99) 4(0.96)
SGL 5 4(0.98)

PSGL 6

Table 4.3: Analysis of NHS T2D: numbers of total G×E interactions identified by different
approaches and their overlaps. RV coefficients are in the parentheses.

Approach LASSO PLASSO SGL PSGL
LASSO 28 18(0.65) 20(0.7) 19(0.52)

PLASSO 28 13(0.76) 14(0.67)
SGL 25 15(0.72)

PSGL 25
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Table 4.4: Analysis of NHS T2D: G×E interaction identifications from SGL. Numbers are
estimated regression coefficients for genetic main effect and G×E interactions.

Gene Name SNP ID Main ACT GL AGE ALCOHOL
CAMK1D rs12763487 -0.0866

PRPF38AP1 rs1538511 -0.1180
RP11-195B3.1 rs7070200 0.0573 -0.0725

UPF2 rs11257429 0.0144
VIM rs359296 -0.1335

PHYH rs1556718 -0.0594 0.0753
RP5-1119O21.2 rs1538246 -0.0876

AKR1C2 rs10904384 0.0100
RP11-556E13.1 rs1919738 -0.1115

REEP3 rs10822184 -0.0898
SVIL rs1247093 0.0843 -0.1031

RP11-135D11.2 rs12354667 -0.1079
8-Mar rs7081687 -0.0796

LUZP4P1 rs12262659 0.0564
RP11-543F8.2 rs2152963 -0.0651

SNRPEP8 rs2891427 0.0041
PRKCQ rs650652 -0.1085 -0.0707
MIR4675 rs7922148 -0.0808

AL512640.1 rs1545844 -0.0720 -0.0910
DNAJC1 rs2666775 0.0729 -0.0851

RP11-445P17.5 rs10904468 -0.1079
RP11-490O24.2 rs12252306 0.0948

PRKG1 rs10995831 -0.0930
ASAH2 rs7908522 -0.1234
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Chapter 5

Summary

Gene-environment (G×E) interaction is critical for understanding the genetic basis of com-

plex disease beyond genetic and environment main effects. This dissertation focuses on

developing penalized variable selection methods to conduct efficient variable selection of

G×E interactions.

The multidimensional measurements are gaining significant popularity in cancer studies.

In Chapter 2, we conduct an integrative G×E interaction analysis for multidimensional

omics data based on a two-step variable selection model. Specifically, at the first step, the

sparse regulatory relationship between gene expression (GE) and its regulators have been

pinpointed via penalization. At the second step, the G×E prognostic model consists of: (1)

environmental factors; (2) regulated GEs and their interactions with environmental factors;

(3) residual effects of GEs and their interactions with environmental factors; (4) residual

effects of regulators. Our method distinguishes from most of the published studies, which

takes the advantage of the two-step model to integrate multi-omics measurements in G×E

studies. The paper associated with this study is under review.

With the development of the penalized variable selection approaches, efficient compu-

tation algorithms play a critical role in G×E studies. In Chapter 3, we propose an alter-

native computation framework by adopting the alternative direction method of multipliers

(ADMM). Compared to coordinate descent (CD) algorithm, the ADMM can conduct the
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optimization in parallel. To accommodate the large scale data in terms of either samples

or features, we develop two novel ADMM based variable selection methods across samples

or features in G×E studies. Simulation studies demonstrate that the proposed methods

significantly improve the computation speed with satisfactory identification and prediction

performance.

In the last chapter of the dissertation, we utilize the proposed parallel ADMM based

variable selection for G×E interactions in the case-control study of type 2 diabetes. Our

method significantly distinguishes from others: (1) we adopt the logistic regression model

for the binary response; (2) the bi-level selection is considered to be the tailored penalization

method for the G×E interaction structure; (3) a parallel ADMM framework for bi-level se-

lection across features is developed to conduct the optimization by using divide-and-conquer

strategy while achieving good efficiency and accuracy. The proposed method can be further

implemented on distributed computing platform such as Hadoop.
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Analyse Numérique, 9(R2):41–76, 1975.

Peter J Green. On use of the em algorithm for penalized likelihood estimation. Journal of

the Royal Statistical Society: Series B (Methodological), 52(3):443–452, 1990.

Samuel M Gross and Robert Tibshirani. Collaborative regression. Biostatistics, 16(2):326–

338, 2014.

Wei Guo, Sijin Sun, Lei Guo, Peng Song, Xuemin Xue, Hao Zhang, Guochao Zhang, Renda

Li, Yibo Gao, Bin Qiu, et al. Elevated slc2a1 expression correlates with poor prognosis

in patients with surgically resected lung adenocarcinoma: A study based on immunohis-

tochemical analysis and bioinformatics. DNA and Cell Biology, 39(4):631–644, 2020.

Yasir Hameed and Samina Ejaz. Up-regulation of fn1, activation of maturation promoting

factor and associated signaling pathway facilitates epithelial-mesenchymal transition, in-

hibits apoptosis and elevates proliferation rate of breast cancer cells. Silico Analysis of

Microarray Datasets, 2020.

Trevor Hastie. Fast regularization paths via coordinate descent. In The 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Denver, volume 2009,

2008.

Joel N Hirschhorn, Kirk Lohmueller, Edward Byrne, and Kurt Hirschhorn. A comprehensive

review of genetic association studies. Genetics in medicine, 4(2):45–61, 2002.

Frank B Hu, JoAnn E Manson, Meir J Stampfer, Graham Colditz, Simin Liu, Caren G

74



Solomon, and Walter C Willett. Diet, lifestyle, and the risk of type 2 diabetes mellitus in

women. New England journal of medicine, 345(11):790–797, 2001.

Jing Hu, Lutong Xu, Tao Shou, and Qiang Chen. Systematic analysis identifies three-lncrna

signature as a potentially prognostic biomarker for lung squamous cell carcinoma using

bioinformatics strategy. Translational Lung Cancer Research, 8(5):614, 2019.

Hai-Hui Huang, Jing-Guo Dai, and Yong Liang. Clinical drug response prediction by using

a lq penalized network-constrained logistic regression method. Cellular Physiology and

Biochemistry, 51(5):2073–2084, 2018a.

Jian Huang, Shuangge Ma, Hongzhe Li, and Cun-Hui Zhang. The sparse laplacian shrinkage

estimator for high-dimensional regression. Annals of statistics, 39(4):2021, 2011.

Jian Huang, Patrick Breheny, and Shuangge Ma. A selective review of group selection in high-

dimensional models. Statistical science: a review journal of the Institute of Mathematical

Statistics, 27(4), 2012.

Ningyu Huang, Wenbo Lin, Xiuyu Shi, and Tao Tao. Stk24 expression is modulated by

dna copy number/methylation in lung adenocarcinoma and predicts poor survival. Future

Oncology, 14(22):2253–2263, 2018b.

Yu Jiang, Yuan Huang, Yinhao Du, Yinjun Zhao, Jie Ren, Shuangge Ma, and Cen Wu.

Identification of prognostic genes and pathways in lung adenocarcinoma using a bayesian

approach. Cancer Informatics, 1(7), 2017.

Lv Jin, Xiao-Yu Zuo, Wei-Yang Su, Xiao-Lei Zhao, Man-Qiong Yuan, Li-Zhen Han, Xiang

Zhao, Ye-Da Chen, and Shao-Qi Rao. Pathway-based analysis tools for complex diseases:

a review. Genomics, proteomics & bioinformatics, 12(5):210–220, 2014.

Di Ke, Qiang Guo, Teng-Yang Fan, and Xue Xiao. Analysis of the role and regulation

mechanism of hsa-mir-147b in lung squamous cell carcinoma based on the cancer genome

atlas database. Cancer biotherapy & radiopharmaceuticals, 2020.

75



S Sathiya Keerthi and Shirish Shevade. A fast tracking algorithm for generalized lars/lasso.

IEEE Transactions on Neural Networks, 18(6):1826–1830, 2007.

Stacey A Kenfield, Esther K Wei, Meir J Stampfer, Bernard A Rosner, and Graham A

Colditz. Comparison of aspects of smoking among the four histological types of lung

cancer. Tobacco control, 17(3):198–204, 2008.

Kipoong Kim and Hokeun Sun. Incorporating genetic networks into case-control association

studies with high-dimensional dna methylation data. BMC bioinformatics, 20(1):510, 2019.

Vessela N Kristensen, Ole Christian Lingjærde, Hege G Russnes, Hans Kristian M Vollan,

Arnoldo Frigessi, and Anne-Lise Børresen-Dale. Principles and methods of integrative

genomic analyses in cancer. Nature Reviews Cancer, 14(5):299, 2014.

Vinay Kumar, Abul K Abbas, and Jon C Aster. Robbins basic pathology e-book. Elsevier

Health Sciences, 2017.

Mihee Lee, Haipeng Shen, Jianhua Z Huang, and JS Marron. Biclustering via sparse singular

value decomposition. Biometrics, 66(4):1087–1095, 2010.

Caiyan Li and Hongzhe Li. Network-constrained regularization and variable selection for

analysis of genomic data. Bioinformatics, 24(9):1175–1182, 2008.

Jiahan Li, Zhong Wang, Runze Li, and Rongling Wu. Bayesian group lasso for nonparametric

varying-coefficient models with application to functional genome-wide association studies.

The annals of applied statistics, 9(2):640, 2015.

Ting Lin, Jingxian Gu, Kai Qu, Xing Zhang, Xiaohua Ma, Runchen Miao, Xiaohong Xiang,

Yunong Fu, Wenquan Niu, Junjun She, et al. A new risk score based on twelve hepa-

tocellular carcinoma-specific gene expression can predict the patients’ prognosis. Aging

(Albany NY), 10(9):2480, 2018.

Marc P Lussier, Pascale K Lepage, Simon M Bousquet, and Guylain Boulay. Rnf24, a new

76



trpc interacting protein, causes the intracellular retention of trpc. Cell calcium, 43(5):

432–443, 2008.

Shuangge Ma and Jian Huang. Penalized feature selection and classification in bioinformatics.

Briefings in bioinformatics, 9(5):392–403, 2008.

Shujie Ma and Shizhong Xu. Semiparametric nonlinear regression for detecting gene and

environment interactions. Journal of Statistical Planning and Inference, 156:31–47, 2015.

Shunsuke Misono, Naohiko Seki, Keiko Mizuno, Yasutaka Yamada, Akifumi Uchida, Hiroki

Sanada, Shogo Moriya, Naoko Kikkawa, Tomohiro Kumamoto, Takayuki Suetsugu, et al.

Molecular pathogenesis of gene regulation by the mir-150 duplex: mir-150-3p regulates

tns4 in lung adenocarcinoma. Cancers, 11(5):601, 2019.

Zhimin Peng, Ming Yan, and Wotao Yin. Parallel and distributed sparse optimization. In

2013 Asilomar conference on signals, systems and computers, pages 659–646. IEEE, 2013.
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Appendix A

Appendix for Chapter 2

A.1 Other Simulation Results

(a) n = 500, weak signal (b) n=1000, weak signal

(c) n=500, strong signal (d) n=1000, strong signal

Figure A.1: Four scenarios ROC curves under banded covariance structure. Left two columns
are 500 subjects to compare weak and strong signal performance. Right two columns are
1000 subjects to compare weak and strong signal performance. IGE, solid red; S-LASSO,
dashed blue; J-LASSO, long dashed purple; ColReg, long dashed green.
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(a) n = 500, weak signal (b) n=1000, weak signal

(c) n=500, strong signal (d) n=1000, strong signal

Figure A.2: Four scenarios ROC curves under LUAD covariance structure. Left two columns
are 500 subjects to compare weak and strong signal performance. Right two columns are
1000 subjects to compare weak and strong signal performance. IGE, solid red; S-LASSO,
dashed blue; J-LASSO, long dashed purple; ColReg, long dashed green.

A.2 AFT Model

Denote T as the logarithm of the failure time and denote C as the logarithm of the censoring

time. Under right censoring, we observe Y = min(T,C), δ = I(T ≤ C). We adopt the

Kaplan-Meier weights for censoring. Let F̂ be the Kaplan-Meier estimator of the distribution

function F of T . According to Stute and Wang (1993), we have F̂ (y) =
∑n

i=1wiI{Y(i) ≤ y},

where wi can be computed as

w1 =
δ(1)

n
,wi =

δ(i)

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δj
, i = 2, ..., n,

where Y(1) ≤ · · · ≤ Y(n) are the order statistics of Yi and δ(1), · · · , δ(n) are the corresponding

censoring indicators. Denote (E(i), X1(i) , X2(i) , R̃(i)) as the measurements associated with
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(Y(i), δ(i)), where the notations are from equation (2.9). We center E(i), X1(i) , X2(i) , R̃(i), Y(i)

using wi-weighted mean as follows:

Ēw =
n∑
i=1

wiE(i)/

n∑
i=1

wi, X̄1w =
n∑
i=1

wiX1(i)/

n∑
i=1

wi, X̄2w =
n∑
i=1

wiX2(i)/

n∑
i=1

wi

¯̃Rw =
n∑
i=1

wiR̃(i)/

n∑
i=1

wi, , Ȳw =
n∑
i=1

wiY(i)/

n∑
i=1

wi.

Then the centered predictors and responses are Ew(i)
=
√
wi(E(i)−Ēw), X1w(i)

=
√
wi(X1(i)−

X̄1w), X2w(i)
=
√
wi(X2(i) − X̄2w), R̃w(i)

=
√
wi(R̃(i) − ¯̃Rw) and Yw(i)

=
√
wi(Y(i) − Ȳw).

Hence, Y = (Yw(1), · · · , Yw(n))
T , E = (Ew(1), · · · , Ew(n))

T , X1 = (X1w(1)
, · · · , X1w(n)

)T , X2 =

(X2w(1)
, · · · , X2w(n)

)T , and R̃ = (R̃w(1), · · · , R̃w(n))
T .
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Appendix B

Appendix for Chapter 3

B.1 ADMM

B.1.1 Lasso

Let’s consider following target function with Lasso penalty function

R(β) =
1

2n
‖Y −Xβ‖2 + λ|β|

Let’s apply ADMM with scaled form (u = 1
ρ
τ)

R(β, z) =
1

2n
‖Y −Xβ‖2 + λ|z|+ ρ

2
(β − z + u)2 − ρ

2
u2

Hence, the solutions can be achieved through gradient ascent algorithm

∂R(β)

β
= − 1

n
XT (Y −Xβ) + ρ(β − z + u), β̂ =

( 1

n
XTX + ρI

)−1( 1

n
XTY + ρ(z − u)

)
∂R(z)

z
= λsign(z)− ρ(β − z + u), ẑ = S1

λ
ρ

(
β + u

)
ûk+1 = ûk + (β̂k+1 − ẑk+1)
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B.1.2 Group Lasso

Let’s consider following target function with group Lasso penalty function

R(β) =
1

2n
‖Y −Xβ‖2 + λ

q∑
j=1

‖βj‖

Let’s apply ADMM with scaled form (u = 1
ρ
τ)

R(β, z) =
1

2n
‖Y −Xβ‖2 +

q∑
j=1

[
λ‖zj‖+

ρ

2
(βj − zj + uj)

2 − ρ

2
u2
j

]

Note that we can write group wise βj in a matrix form and the solution is same as Lasso

β update. The residual update is same for any penalty function approach. Hence, we only

show the derivation of z update. For j = 1, · · · , q,

∂R(zj)

∂zj
=

λzj
‖zj‖

− ρ(βj − zj + uj), ẑj = S2
λ
ρ

(
βj + uj

)

B.2 Parallel ADMM across Features

From the general derivation forms, we can see different penalty functions can only provide

different β updates. Hence, we only show the derivation of β update.

B.2.1 Lasso

Let’s consider following target function with Lasso penalty

R(βi) = λ|βi|+ +
ρ

2

(
Xiβi −Xiβ

k
i − z̄k +Xβ

k
+ uki

)2

Then solution can be achieved through first derivative of target function equals to zero

∂R(βi)

∂βi
= λsign(βi) + ρXT

i Xiβi − ρXT
i (Xiβ

k
i + ūk −Xβ =k) = 0
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Let’s assume the design matrix group wise columns are orthonormalized, that is, XT
i Xi/n =

I. Then the solution is β̂i = S1
λ/nρ

(
XT
i M/n

)
, where M = Xiβ

k
i − Xβ

k
+ z̄k − uk. For

i = 1, · · · , N .

B.2.2 Group Lasso

Let’s consider following target function with group Lasso penalty and assume N is the

number of groups

R(βi) = λ‖βi‖+ +
ρ

2

(
Xiβi −Xiβ

k
i − z̄k +Xβ

k
+ uki

)2

Then solution can be achieved through first derivative of target function equals to zero

∂R(βi)

∂βi
=

λβi
‖βi‖

+ ρXT
i

(
Xiβi −M

)
= 0

Let’s assume the design matrix group wise columns are orthonormalized, that is, XT
i Xi/n =

I. Then the solution is β̂i = S2
λ/nρ

(
XT
i M/n

)
, where M = Xiβ

k
i − Xβ

k
+ z̄k − uk. For

i = 1, · · · , N .

B.3 Parallel ADMM across Samples

From the general derivation forms, we can see different penalty functions can only provide

different z updates. Hence, we only show the derivation of z update.

B.3.1 Lasso

Let’s consider following target function with Lasso penalty

R(z) = λ|z|+
N∑
i=1

ρ

2
(βi − z + ui)

2
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Then it’s not hard to obtain the solution by taking the first derivatives

∂R(z)

∂z
= λsign(z)−

N∑
i=1

ρ(βi − z + ui)

= λsign(z)− ρ(
N∑
i=1

βi −Nz +
N∑
i=1

ui)

= λsign(z)− ρ(β̄ −Nz + ū)

ẑ = S1
λ/Nρ

(
β̄ + ū

)

B.3.2 Group Lasso

Let’s consider following target function with Group Lasso penalty

R(z) =

q∑
j=1

[
λ‖zj‖+

N∑
i=1

ρ

2
(βij − zj + uij)

2
]

For j = 1, · · · , q,

R(zj) = λ‖zj‖+
N∑
i=1

ρ

2
(βij − zj + uij)

2

∂R(zj)

∂zj
=

λzj
‖zj‖

−Nρ(β̄j − zj + ūj)

ẑj = S2
λ/Nρ

(
β̄j + ūj

)
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B.4 Other Simulation Results

Table B.1: Comparison between ADMM and parallel ADMM in splitting features for
(n, p, q) = (800, 50, 10) with LASSO, GLASSO and SGLASSO penalties. Numbers are mean
(standard deviation).

Approach Correlation TP FP Prediction Time

LASSO AR1-5 18.133(2.013) 11.667(1.322) 0.836(0.051) 5.796(0.610)

AR1-8 18.100(1.807) 10.467(1.570) 0.842(0.061) 5.911(0.568)

banded1 17.933(1.701) 11.300(1.179) 0.847(0.035) 5.755(0.722)

banded2 17.833(2.245) 11.767(1.654) 0.847(0.053) 5.850(0.564)

GLASSO AR1-3 18.167(2.627) 51.167(1.704) 0.879(0.034) 5.854(0.560)

AR1-5 18.533(2.713) 57.100(10.067) 0.893(0.084) 5.773(0.602)

banded1 19.133(4.066) 50.300(31.456) 0.854(0.057) 5.642(0.727)

banded2 19.567(2.635) 54.000(21.158) 0.880(0.057) 5.628(0.609)

SGLASSO AR1-3 18.300(2.336) 3.067(0.907) 0.841(0.064) 6.728(0.725)

AR1-5 18.167(1.642) 5.200(2.091) 0.840(0.052) 6.735(0.484)

banded1 17.733(1.999) 2.633(0.765) 0.825(0.061) 6.531(0.749)

banded2 17.967(1.956) 2.933(1.081) 0.850(0.049) 6.613(0.533)

Approach Correlation TP FP Prediction Time

PLASSO AR1-3 18.600(2.430) 11.800(2.007) 0.841(0.056) 3.864(0.696)

AR1-5 18.600(1.831) 12.767(2.515) 0.853(0.056) 3.941(0.221)

banded1 18.433(1.942) 10.633(0.765) 0.854(0.047) 3.837(0.533)

banded2 18.567(2.300) 11.300(1.393) 0.847(0.057) 3.900(0.672)

PGLASSO AR1-3 18.333(4.901) 58.667(22.046) 1.020(0.359) 3.902(0.689)

AR1-5 18.667(4.498) 58.667(22.200) 1.021(0.292) 3.848(0.448)

banded1 18.00(6.017) 45.200(26.945) 0.926(0.434) 3.761(0.622)

banded2 18.467(5.084) 48.600(39.718) 1.028(0.370) 3.788(0.835)

PSGLASSO AR1-3 18.667(2.808) 2.233(1.612) 0.860(0.079) 4.520(0.659)

AR1-5 18.533(2.488) 2.467(1.583) 0.881(0.067) 4.490(0.400)

banded1 18.433(2.700) 2.300(0.466) 0.861(0.054) 4.354(0.671)

banded2 18.667(3.209) 3.067(1.172) 0.865(0.046) 4.408(0.346)
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Table B.2: Comparison between ADMM and parallel ADMM in splitting features for
(n, p, q) = (1500, 100, 10) with LASSO, GLASSO and SGLASSO penalties. Numbers are
mean (standard deviation).

Approach Correlation TP FP Prediction Time

LASSO AR1-3 18.800(1.990) 9.467(0.776) 0.842(0.039) 24.878(1.707)

AR1-5 18.833(1.821) 12.300(1.466) 0.831(0.036) 24.883(2.033)

banded1 19.633(2.125) 10.067(1.254) 0.833(0.029) 24.352(2.156)

banded2 18.900(1.647) 10.167(1.379) 0.830(0.028) 25.138(1.553)

GLASSO AR1-3 18.100(5.732) 67.467(32.765) 0.912(0.133) 24.928(1.660)

AR1-5 17.900(2.496) 56.933(37.115) 0.911(0.066) 24.858(2.143)

banded1 17.600(4.264) 59.867(27.973) 0.892(0.110) 23.503(0.517)

banded2 17.767(5.900) 53.733(32.192) 0.926(0.139) 25.178(2.762)

SGLASSO AR1-3 18.433(1.870) 2.400(0.814) 0.829(0.038) 29.453(1.769)

AR1-5 18.567(1.569) 3.567(1.695) 0.830(0.040) 29.258(2.110)

banded1 18.833(1.840) 2.067(1.254) 0.825(0.038) 28.110(0.666)

banded2 18.700(1.557) 2.300(1.794) 0.819(0.035) 28.096(4.884)

Approach Correlation TP FP Prediction Time

PLASSO AR1-3 18.933(1.946) 10.800(2.398) 0.827(0.040) 9.218(3.262)

AR1-5 18.667(1.539) 11.867(3.884) 0.829(0.025) 8.627(2.703)

banded1 18.033(1.903) 10.533(1.819) 0.824(0.041) 8.615(1.396)

banded2 17.433(1.654) 9.267(1.799) 0.825(0.036) 8.074(1.014)

PGLASSO AR1-3. 18.000(4.472) 63.033(39.670) 0.803(0.091) 8.852(3.328)

AR1-5 18.133(3.848) 61.333(39.207) 0.823(0.084) 8.77(3.197)

banded1 17.333(3.698) 59.667(36.230) 0.868(0.085) 8.727(1.297)

banded2 18.167(4.292) 58.100(34.816) 0.841(0.102) 9.949(4.551)

PSGLASSO AR1-3 18.467(2.556) 3.867(1.193) 0.844(0.036) 9.707(3.924)

AR1-5 17.933(1.639) 3.100(1.458) 0.842(0.032) 9.737(2.154)

banded1 18.600(2.044) 3.467(1.730) 0.835(0.034) 9.188(1.612)

banded2 17.933(1.837) 2.700(1.466) 0.829(0.043) 9.014(1.862)
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Table B.3: Comparison between ADMM and parallel ADMM in splitting samples for
(n, p, q) = (5000, 100, 10) with LASSO, GLASSO and SGLASSO penalties. Numbers are
mean (standard deviation).

Approach Correlation TP FP Prediction Time

LASSO AR1-3 18.740(1.536) 10.492(2.624) 0.807(0.016) 50.273(1.070)

AR1-5 18.509(1.668) 9.601(2.107) 0.810(0.013) 50.357(1.241)

banded1 17.948(2.232) 9.997(3.054) 0.804(0.016) 50.549(0.608)

banded2 18.146(1.699) 11.152(3.034) 0.806(0.011) 50.533(1.431)

GLASSO AR1-3 18.707(2.195) 56.881(17.147) 0.809(0.020) 48.079(1.363)

AR1-5 18.675(2.042) 55.330(14.935) 0.824(0.029) 46.006(0.726)

banded1 17.948(2.291) 56.352(15.900) 0.819(0.021) 46.044(0.909)

banded2 18.047(1.737) 51.569(16.593) 0.817(0.016) 48.557(1.881)

SGLASSO AR1-3 18.576(1.093) 2.343(1.590) 0.796(0.016) 67.890(2.048)

AR1-5 18.410(1.340) 2.277(1.953) 0.799(0.013) 66.704(0.718)

banded1 17.883(1.323) 2.643(1.241) 0.796(0.012) 66.549(1.516)

banded2 18.047(1.211) 2.178(1.882) 0.797(0.017) 66.628(2.021)

Approach Correlation TP FP Prediction Time

PLASSO AR1-3 17.849(1.117) 13.362(2.717) 0.801(0.016) 23.319(1.537)

AR1-5 18.047(1.374) 10.063(2.786) 0.799(0.015) 23.360(1.003)

banded1 18.245(1.596) 12.700(1.892) 0.801(0.016) 23.139(1.062)

banded2 18.576(1.062) 11.449(1.531) 0.801(0.012) 23.449(1.731)

PGLASSO AR1-3 18.675(1.125) 53.647(19.960) 0.807(0.015) 24.039(4.042)

AR1-5 18.509(1.841) 54.505(29.073) 0.811(0.016) 23.003(0.938)

banded1 18.740(2.235) 54.934(22.379) 0.806(0.016) 23.022(1.003)

banded2 18.279(1.532) 56.287(27.197) 0.801(0.017) 24.278(1.728)

PSGLASSO AR1-3 18.443(1.147) 3.200(2.434) 0.795(0.014) 30.948(2.454)

AR1-5 18.378(1.343) 2.880(2.044) 0.803(0.012) 30.323(1.176)

banded1 17.849(1.337) 2.507(1.716) 0.796(0.012) 30.242(0.870)

banded2 18.047(1.211) 2.318(1.841) 0.800(0.015) 33.632(7.445 )
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Table B.4: Comparison between ADMM and parallel ADMM in splitting samples for
(n, p, q) = (10000, 100, 10) with LASSO, GLASSO and SGLASSO penalties. Numbers are
mean (standard deviation).

Approach Correlation TP FP Prediction Time

LASSO AR1-3 19.122(1.568) 10.706(2.678) 0.823(0.016) 55.859(1.092)

AR1-5 18.887(1.702) 9.797(2.150) 0.826(0.013) 55.952(1.267)

banded1 18.314(2.278) 10.201(3.116) 0.820(0.016) 56.166(0.620)

banded2 18.516(1.734) 11.380(3.096) 0.822(0.011) 56.148(1.460)

GLASSO AR1-3 19.089(2.240) 58.042(17.497) 0.825(0.020) 53.421(1.391)

AR1-5 19.056(2.084) 56.459(15.240) 0.840(0.029) 51.118(0.740)

banded1 18.314(2.338) 57.502(16.225) 0.835(0.021) 51.161(0.927)

banded2 18.415(1.773) 52.621(16.932) 0.833(0.016) 53.952(1.919)

SGLASSO AR1-3 18.955(1.115) 2.391(1.622) 0.812(0.016) 75.434(2.090)

AR1-5 18.786(1.368) 2.323(1.993) 0.815(0.013) 74.116(0.732)

banded1 18.248(1.350) 2.697(1.267) 0.812(0.012) 73.943(1.547)

banded2 18.415(1.235) 2.222(1.920) 0.813(0.017) 74.031(2.062)

Approach Correlation TP FP Prediction Time

PLASSO AR1-3 18.213(1.140) 13.635(2.772) 0.817(0.016) 25.910(1.569)

AR1-5 18.415(1.402) 10.269(2.843) 0.815(0.015) 25.956(1.023)

banded1 18.617(1.628) 12.959(1.931) 0.817(0.016) 25.710(1.084)

banded2 18.955(1.084) 11.683(1.562) 0.817(0.012) 26.054(1.766)

PGLASSO AR1-3 19.056(1.148) 54.742(20.368) 0.823(0.015) 26.710(4.125)

AR1-5 18.887(1.879) 55.618(29.667) 0.827(0.016) 25.559(0.957)

banded1 19.122(2.281) 56.055(22.836) 0.822(0.016) 25.580(1.023)

banded2 18.652(1.563) 57.436(27.752) 0.817(0.017) 26.976(1.763)

PSGLASSO AR1-3 18.819(1.171) 3.265(2.484) 0.811(0.014) 34.386(2.504)

AR1-5 18.753(1.371) 2.931(2.086) 0.819(0.012) 33.693(1.200)

banded1 18.213(1.365) 2.558(1.751) 0.812(0.012) 33.602(0.888)

banded2 18.415(1.235) 2.365(1.879) 0.816(0.015) 37.369(7.597)
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Appendix C

Appendix for Chapter 4

C.1 Penalized Logistic Regression

C.1.1 ADMM for Bi-level selection (SGLASSO)

Consider the following quadratic approximation to the penalized likelihood with sparse group

LASSO penalty

R(α, β) ≈ − 1

2n
(Ỹ − Eα−Xβ)>W (Ỹ − Eα−Xβ) +

p∑
j=1

λ1‖βj‖+

p∑
j=1

q∑
h=0

λ2|βjh|, (C.1)

Given the current estimate parameter β(k), we minimize the weighted least square function

with respect to α. Then compute α(k+1) = (E>E)−1E−1W (Ỹ −Xβ(k)). Next, fix α at the

current estimate α(k+1) in R(α, β) . To formulate the parallel ADMM framework, we start

from expressing equation (C.1) as a constrained optimization problem with auxiliary variable

z.

R(α(k+1), β, z) ≈ − 1

2n

(
Ỹ − Eα(k+1) −Xβ

)>
W
(
Ỹ − Eα(k+1) −Xβ

)
+

p∑
j=1

λ1‖zj‖+

p∑
j=1

q∑
h=0

λ2|zjh|, subject to β − z = 0, (C.2)
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where zj and zjh are auxiliary variables for βj and βjh, for j = 1, · · · , p and h = 0, · · · , q.

Equation (C.2) is equivalent to the following augmented form with ρ1, ρ2(> 0) being the

augmentation parameters

R(α(k+1), β, z, τ) ≈ − 1

2n

(
Ỹ − Eα(k+1) −Xβ

)>
W
(
Ỹ − Eα(k+1) −Xβ

)
+

p∑
j=1

{
λ1‖zj‖+ τ>j (βj − zj) +

ρ1

2
(βj − zj)2

+

q∑
h=0

[
λ2|zjh|+ τjh(βjh − zjh) +

ρ2

2
(βjh − zjh)2

]}
, (C.3)

where β, z are the primal variables and τ is the dual variable. For simplicity, we impose a

scaled form (u = 1
ρ
τ) to simplify equation (C.3)

R(α(k+1), β, z, u) ≈ − 1

2n

(
Ỹ − Eα(k+1) −Xβ

)>
W
(
Ỹ − Eα(k+1) −Xβ

)
+

p∑
j=1

{
λ1‖zj‖+

ρ1

2
(βj − zj + uj)

2 − ρ1

2
u2
j

+

q∑
h=0

[
λ2|zjh|+

ρ2

2
(βjh − zjh + ujh)

2 − ρ2

2
u2
jh

]}
.

According to the discussion in Boyd et al. (2011) , the ADMM solutions at (k+1)th iteration

can be derived as

β(k+1) = arg min
β
R(α(k+1), β, z(k), u(k)), (C.4)

z(k+1) = arg min
z
R(α(k+1), β(k+1), z, u(k)), (C.5)

u(k+1) = uk + (βk+1 − zk+1). (C.6)
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C.1.2 ADMM for LASSO

Consider the following quadratic approximation to the penalized likelihood with LASSO

penalty

R(α, β) ≈ − 1

2n
(Ỹ − Eα−Xβ)>W (Ỹ − Eα−Xβ) + λ|β|, (C.7)

Given the current estimate parameter β(k), we minimize the weighted least square function

with respect to α. Then compute α(k+1) = (E>E)−1E−1W (Ỹ −Xβ(k)). Next, fix α at the

current estimate α(k+1) in R(α, β) . To formulate the parallel ADMM framework, we start

from expressing equation (C.7) as a constrained optimization problem with auxiliary variable

z.

R(α(k+1), β, z) ≈ − 1

2n

(
Ỹ − Eα(k+1) −Xβ

)>
W
(
Ỹ − Eα(k+1) −Xβ

)
+ λ|z|

subject to β − z = 0, (C.8)

Equation (C.8) is equivalent to the following augmented form with ρ(> 0) being the aug-

mentation parameters

R(α(k+1), β, z, τ) ≈ − 1

2n

(
Ỹ − Eα(k+1) −Xβ

)>
W
(
Ỹ − Eα(k+1) −Xβ

)
+ λ
∣∣∣z∣∣∣+ τ>

(
β − z

)
+
ρ1

2

(
β − z

)2

where β, z are the primal variables and τ is the dual variable. For simplicity, we impose a

scaled form (u = 1
ρ
τ) to simplify equation (C.9)

R(α(k+1), β, z, u) ≈ − 1

2n

(
Ỹ − Eα(k+1) −Xβ

)>
W
(
Ỹ − Eα(k+1) −Xβ

)
+ λ
∣∣∣z∣∣∣+

ρ

2

(
β − z + u

)2

− ρ

2
u2
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According to the discussion in Boyd et al. (2011) , the ADMM solutions at (k+1)th iteration

can be derived as

β(k+1) = arg min
β
R(α(k+1), β, z(k), u(k)), (C.9)

z(k+1) = arg min
z
R(α(k+1), β(k+1), z, u(k)), (C.10)

u(k+1) = uk + (βk+1 − zk+1). (C.11)

C.1.3 Parallel ADMM for LASSO (PLASSO)

Consider the following quadratic approximation to the penalized likelihood with LASSO

penalty

R(α, β) ≈ − 1

2n
(Ỹ − Eα−Xβ)>W (Ỹ − Eα−Xβ) + λ|β|, (C.12)

Given the current estimate parameter β(k), we minimize the weighted least square function

with respect to α. Then compute α(k+1) = (E>E)−1E−1W (Ỹ − Xβ(k)). Next, fix α at

the current estimate α(k+1) in R(α, β) . To formulate the parallel ADMM framework, we

start from expressing equation (C.12) as a constrained optimization problem with auxiliary

variable z = (z1, · · · , zB).

R(α(k+1), β, z) ≈ − 1

2n

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)>
W

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)

+
B∑
b=1

λ
∣∣∣zb∣∣∣, subject to Xbβb − zb = 0, (C.13)

where we split the data columns into B groups with Xb ∈ Rn×p(q+1)/B and βb ∈ Rp(q+1)/B, for

b = 1, · · · , B. Equation (C.13) is equivalent to the following augmented form with ρ(> 0)
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being the augmentation parameters

R(α(k+1), β, z, τ) ≈ − 1

2n

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)>
W

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)

+
B∑
b=1

[
λ|zb|+ τ>b (βb − zb) +

ρ

2
(βb − zb)2

]
, (C.14)

where β, z are the primal variables and τ is the dual variable. For simplicity, we impose a

scaled form (u = 1
ρ
τ) to simplify equation (C.14)

R(α(k+1), β, z, u) ≈ − 1

2n

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)>
W

(
Ỹ − Eα(k+1) −

B∑
b=1

Xbβb

)

+
B∑
b=1

[
λ|zb|+

ρ

2
(βb − zb + ub)

2 − ρ

2
u2
b

]

For each batch of data, the estimation can be treated as partial prediction of Y with

the features of βb. According to the discussion in Boyd et al. (2011) , the parallel ADMM

solutions at (k + 1)th iteration can be derived as

β
(k+1)
b = arg min

βb

{
λ|βb|+

ρ

2

∥∥∥Xbβb −Xiβ
(k)
b − z̄

(k) +Xβ
(k)

+ u
(k)
b

∥∥∥2
}

(C.15)

z̄(k+1) = arg min
z̄

{
− 1

2n

(
Ỹ − Eα(k+1) −Nz

)>
W
(
Ỹ − Eα(k+1) −Nz

)
+
Nρ

2
‖z̄ −Xβ(k+1) − ū(k)‖2

}
(C.16)

u(k+1) = u(k) +
(
Xβ

(k+1) − z̄(k+1)
)

(C.17)
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C.2 Other Simulation Results

Table C.1: Binary Response: Comparison between ADMM and parallel ADMM in split-
ting features for (n, p, q) = (500, 100, 4) with LASSO, GLASSO and SGLASSO penalties.
Numbers are mean (standard deviation).

Approach Correlation TP FP Time

LASSO AR1-3 16.94(1.64) 8.88(2.66) 2.29(0.09)

AR1-5 17.28(1.19) 6.86(2.68) 2.63(0.09)

banded 1 16.32(1.28) 12.58(3.05) 2.14(0.08)

banded 2 16.72(1.52) 11.26(2.96) 2.33(0.08)

GLASSO AR1-3 15.40(2.33) 21.18(3.43) 3.96(0.10)

AR1-5 16.68(2.01) 22.66(2.63) 5.56(1.06)

banded 1 12.72(2.22) 17.24(2.75) 3.11(0.08)

banded 2 15.22(1.96) 20.62(2.67) 3.82(0.03)

SGLASSO AR1-3 18.18(1.52) 3.00(2.02) 3.07(0.08)

AR1-5 18.52(1.24) 2.02(1.30) 3.48(0.08)

banded 1 16.90(1.69) 4.66(2.64) 3.17(0.08)

banded 2 17.74(1.54) 3.54(2.02) 3.09(0.09)

Approach Correlation TP FP Time

PLASSO AR1-3 15.14(1.71) 7.76(2.45) 0.95(0.03)

AR1-5 15.00(1.51) 7.80(2.66) 0.88(0.02)

banded 1 14.90(1.65) 8.94(3.33) 1.06(0.05)

banded 2 14.88(1.33) 8.44(2.74) 0.98(0.05)

PGLASSO AR1-3 13.40(2.00) 19.94(3.11) 2.37(0.09)

AR1-5 15.04(1.81) 22.32(2.72) 2.69(0.10)

banded 1 11.95(2.27) 14.16(3.40) 2.12(0.08)

banded 2 11.92(2.42) 17.70(3.56) 2.32(0.09)

PSGLASSO AR1-3 17.86(1.81) 2.70(2.01) 2.77(0.09)

AR1-5 18.42(1.37) 1.66(1.11) 2.88(0.08)

banded 1 16.52(1.89) 4.08(2.32) 2.65(0.09)

banded 2 17.58(1.51) 3.02(1.90) 2.68(0.09)
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Table C.2: Binary Response: Comparison between ADMM and parallel ADMM in split-
ting features for (n, p, q) = (800, 100, 4) with LASSO, GLASSO and SGLASSO penalties.
Numbers are mean (standard deviation).

Approach Correlation TP FP Time

LASSO AR1-3 18.74(0.98) 7.42(2.50) 5.53(0.10)

AR1-5 18.84(0.91) 5.50(2.40) 7.06(0.09)

banded 1 18.30(1.09) 10.88(2.79) 4.93(0.07)

banded 2 18.64(1.10) 8.58(3.13) 5.22(0.09)

GLASSO AR1-3 15.54(2.34) 20.10(3.36) 4.76(0.09)

AR1-5 16.74(1.79) 22.64(2.89) 6.19(0.12)

banded 1 11.96(2.36) 14.90(3.08) 3.84(0.10)

banded 2 14.28(2.24) 18.62(3.16) 4.47(0.09)

SGLASSO AR1-3 19.42(0.73) 2.34(1.67) 5.13(0.15)

AR1-5 19.36(0.98) 1.26(1.24) 5.46(0.27)

banded 1 18.78(0.97) 3.02(1.49) 5.03(0.14)

banded 2 19.34(0.79) 1.92(1.15) 5.76(0.17)

Approach Correlation TP FP Time

PLASSO AR1-3 17.90(1.26) 6.88(2.38) 1.50(0.07)

AR1-5 17.66(1.04) 6.20(2.23) 1.30(0.04)

banded 1 17.58(1.26) 7.86(2.35) 1.53(0.07)

banded 2 17.78(1.32) 7.12(2.52) 1.53(0.07)

PGLASSO AR1-3 16.60(1.71) 26.22(2.60) 3.03(0.11)

AR1-5 16.76(1.64) 26.54(2.46) 3.75(0.11)

banded 1 15.60(1.76) 23.26(2.60) 2.83(0.10)

banded 2 16.00(1.94) 25.42(2.92) 2.87(0.09)

PSGLASSO AR1-3 19.44(0.83) 2.54(2.07) 3.96(0.13)

AR1-5 19.38(0.85) 1.58(1.14) 4.22(0.11)

banded 1 19.80(1.14) 3.22(2.00) 4.11(0.13)

banded 2 19.46(0.86) 2.24(1.46) 3.68(0.11)
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C.3 Real Data Analysis: other approaches

Table C.3: Analysis of NHS T2D: G×E interaction identifications from PSGL. Numbers are
estimated regression coefficients for genetic main effect and G×E interactions.

Gene Name SNP ID Main ACT GL AGE ALCOHOL

WDFY4 rs2663058 0.0190

RP11-445P17.5 rs10904468 -0.0304

SVIL rs914279 0.0224 0.0312 -0.0496

DKK1 rs7093925 -0.0192

RP11-490O24.2 rs12252306 0.0308

REEP3 rs10822184 -0.0291

CAMK1D rs12763487 -0.0277

UPF2 rs2062982 -0.0321

RP11-523O18.7 rs2663058 0.0190

PRPF38AP1 rs1538511 -0.0486

DNAJC1 rs2666775 0.0251 -0.0329

CHAT rs1917810 -0.0153

RP11-543F8.2 rs2646425 -0.0125 -0.0247 -0.0112

RNU6-413P rs875598 -0.0173

CUBN rs11254275 -0.0269

RP11-174J11.1 rs10761833 -0.0469

RP11-195B3.1 rs7070200 -0.0143

PRKCQ rs650652 -0.0433

VIM rs359296 -0.0554

LRRC18 rs2663058 0.0190

RP5-1119O21.2 rs1538246 -0.0213

AKR1C2 rs2518044 0.0291

PRKG1 rs10995831 -0.0284

SNRPEP8 rs2891427 -0.0199

ASAH2 rs7908522 -0.0423

PHYH rs1556718 0.0192
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Table C.4: Analysis of NHS T2D: G×E interaction identifications from LASSO. Numbers
are estimated regression coefficients for genetic main effect and G×E interactions.

Gene Name SNP ID Main ACT GL AGE ALCOHOL

REEP3 rs10822184 -0.0867

RP11-478B11.2 rs9804334 -0.0864

RP5-1119O21.2 rs1538246 -0.0794

MIR4675 rs7922148 -0.0893

RP11-174J11.1 rs2578070 0.0229

ASAH2 rs7908522 -0.1146

PRKCQ rs650652 -0.1007

PHYH rs1556718 0.0808

LINC00838 rs1331690 0.0675

AKR1C2 rs10904384 0.0249

RP11-543F8.2 rs2152963 -0.0466

RP11-490O24.2 rs12252306 0.0871

RP11-71J2.1 rs10825013 -0.0797

CHAT rs6537547

DKK1 rs7093925 -0.0777

DNAJC1 rs2066270 -0.0066

RNU6-413P rs875598 -0.0856

8-Mar rs7081687 -0.0948

CAMK1D rs12763487 -0.0965

SNRPEP8 rs2891427 -0.0345

CUBN rs11254275 -0.0822

VIM rs359294 0.0429

AKR1C1 rs7915338

PRKG1 rs10995831 -0.0893

PRPF38AP1 rs1538511 -0.1115

AL512640.1 rs1545844 -0.1002

RP11-195B3.1 rs7070200 -0.0677

RP11-445P17.5 rs10904464 -0.0567

RP11-556E13.1 rs1919738 -0.0944

LUZP4P1 rs12262659 0.0586

UPF2 rs11257429 0.0101

AMD1P1 rs7918915 0.0936

RP11-135D11.2 rs12354667 -0.1069

SVIL rs6481643 0.0136
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Table C.5: Analysis of NHS T2D: G×E interaction identifications from PLASSO. Numbers
are estimated regression coefficients for genetic main effect and G×E interactions.

Gene Name SNP ID Main ACT GL AGE ALCOHOL

RP11-174J11.1 rs2256778 0.1133

RP11-71J2.1 rs10825013 -0.0937

WDFY4 rs2943246 0.0562

RP11-543F8.2 rs2152963 -0.0968 -0.0427

PHYH rs1556718 0.0783

AKR1C1 rs7915338 0.0059

RP11-523O18.7 rs2943246 0.0562

RP11-445P17.5 rs10904455 0.0722

PRKCQ rs650652 -0.1055

SVIL rs6481643 0.0387

ANTXRL rs7895458 -0.0935

AMD1P1 rs7918915 0.0879

LUZP4P1 rs12262659 0.0725

RPL7P37 rs2767051 0.1234

REEP3 rs10822184 -0.0963

ASAH2 rs7908522 -0.1184 0.0565

ADARB2 rs4554799 -0.0657

RP11-556E13.1 rs1919738 -0.0790

CAMK1D rs12763487 -0.1125

8-Mar rs7081687 -0.1202

LRRC18 rs2943246 0.0562

ANTXRLP1 rs11259760 0.0671

LINC00838 rs1331690 0.0667

RP11-195B3.1 rs7070200 -0.0811

PRPF38AP1 rs1538510 -0.1198

MIR4675 rs7922148 -0.0878

VIM rs359294 -0.1242

RNU6-163P rs7906409 -0.0906

RNU6-413P rs875598 -0.1230

CHAT rs6537547 -0.2351

RP11-490O24.2 rs12252306 0.0785

PRKG1 rs10995831 -0.0940

DKK1 rs7093925 -0.0769

AKR1C2 rs10904384 0.0720
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