This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

Solving vehicle assignment problems by process-network synthesis to minimize cost and environmental impact of transportation

Mate Barany, Botond Bertok, Zoltan Kovacs, Ferenc Friedler, L. T. Fan

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Barany, M., Bertok, B., Kovacs, Z., Friedler, F., & Fan, L. T. (2011). Solving vehicle assignment problems by process-network synthesis to minimize cost and environmental impact of transportation. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Barany, M., Bertok, B., Kovacs, Z., Friedler, F., & Fan, L. T. (2011). Solving vehicle assignment problems by process-network synthesis to minimize cost and environmental impact of transportation. Clean Technologies and Environmental Policy, 13(4), 637-642.

Copyright: © Springer-Verlag 2011

Digital Object Identifier (DOI): doi:10.1007/s10098-011-0348-2

Publisher's Link: http://www.springerlink.com/content/g35308166414021l/fulltext.pdf

This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu

Solving vehicle assignment problems by process-network synthesis to minimize cost and environmental impact of transportation

Mate Barany, Botond Bertok, Zoltan Kovacs, Ferenc Friedler, L. T. Fan

Department of Computer Science and Systems Technology, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary

Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, U.S.A.

+36-88-424483

+36 - 88 - 428275

friedler@dcs.uni-pannon.hu

www.p-graph.com

A method and software are proposed for optimal assignment of vehicles to transportation tasks in terms of total cost and emission. The assignment problem is transformed into a process-network synthesis problem that can be algorithmically handled by the P-graph framework. In the proposed method, each task is given by a set of attributes to be taken account in the assignment; this is also the case for each vehicle. The overall mileage is calculated as the sum of the lengths of all the routes to be travelled during, before, after and between the tasks. (Desaulniers et al. 1998; Baita et al. 2000). Cost and emission are assigned to the mileages of each vehicle type. In addition to the the globally optimal solution of the assignment problem, the P-graph framework provides the *n*-best suboptimal solutions that can be ranked according to multiple criteria. The viability of the proposed method is illustrated by an example.

P-graph, combinatorial optimization, vehicle assignment, transportation

Abbreviations:

(T, S, A, t_s , t_e , l_s , l_e , d, l_a , c_t , e_t , v_{max}) vehicle assignment problem; T: set of tasks; S: set of resources; $P_i \in T$: trip i to be performed; $t_s(P_i)$: starting time of trip i; $l_s(P_i)$: starting location of trip i; $t_e(P_i)$:ending time of trip i; $t_e(P_i)$:ending location of trip i; $t_e(P_i)$: ending location of trip t; $t_e(P_i)$: the cost of locations; $t_e(P_i)$: the $t_e(P_i)$: actual location of the vehicle t; $t_e(P_i)$: the cost of vehicle t; $t_e(P_i)$: the CO₂ emission of vehicle t; $t_e(P_i)$: the maximum speed of vehicle t; $t_e(P_i)$: the set of resources potentially capable of performing task $t_e(P_i)$:

 $(P, R, O, a, c, U_c, L_p, U_p, l, u)$: process-network synthesis (PNS) problem; P: the set of the final targets to be achieved; R: the set of the initially available resources; M: the set of entities; m_j : entity j; $o_i = (\alpha_i, \beta_i)$: activity i with α_i set of preconditions and β_i set of targets; O: the set of candidate activities; L_{p_j} : lower bound on the gross result; U_{p_j} : upper bound on the gross result; U_{c_j} : upper bound on gross utilization; u_i : upper bound for the volume of activity o_i ; l_i : upper bound for the volume of activity o_i ; l_i : upper bound for the volume of activity o_i ; l_i : upper bound for the volume of activity l_i : upper boun

target; cp_i : proportional constant of activity i; cf_i : fixed charge of activity i; a_{ij} :the difference between the production and consumption rate of entity m_j by activity o_i ;

 (m^*, o^*, x^*, z^*) optimal solution of PNS problem; m^* :set of entities in the optimal structure; o^* :set of activities in the optimal structure; x^* : the vector of the optimal volumes of activities; z^* :objective value of the optimal solution;

1. Introduction

According to EPA reports, transportation accounted for approximately 29% of the total U.S. greenhouse gas (GHG) emissions in 2006. Moreover, transportation is the fastest growing source of U.S. GHGs, corresponding to 47% of the net increase in total U.S. emissions since 1990. Transportation is also the largest enduse source of CO₂ (Ilyas et al. 2010). Nevertheless, these estimates do not include emissions from additional processes involved in the lifecycle of the transportation systems, such as the extraction and refining of fuel and manufacture of vehicles, which are also significant sources of domestic and international GHG emissions (U.S. EPA 2009).

The two major means for reducing the pollution caused by the transportation are changing the personal behavior (Aizura et al. 2010) of the end users and improving the quality of transporting networks (Atkins et al. 2009; Crilly et al. 2010), for which the economic crisis of these years serves as a motivation.

Optimization software for supporting human decisions is essential to implement the two major means mentioned above (Perry et al. 2007; Tan and Foo 2009; Klemes et al. 2010). Presented herein is an algorithmic method for calculating the optimal assignment of vehicles to transportation tasks supported by software tools at each step.

2. Problem definition

The vehicle assignment problem of interest is defined by a set T of tasks, a set S of resources, and related parameters. For each $P_i \in T$ task, i.e., trip to be performed, the starting time $t_s(P_i)$ and location $l_s(P_i)$ as well as the ending time $t_e(P_i)$ and location $l_e(P_i)$ are given.

The actual location $l_a(R_k)$, cost $c_t(R_k)$, CO₂ emission $e_t(R_k)$, and maximum speed $v_{max}(R_k)$ are specified for each $R_k \in S$ resource, i.e., vehicle. Moreover, set

 $A(P_i)$ lists those resources potentially capable of performing task P_i , for each $P_i \in T$. Each task is considered to require the full capacity of a single resource. Tables 1 and 2 contain the details of the example with three tours and three vehicles. The distances between pairs of the locations in the example are indicated in Figure 1.

3. Methodology

The vehicle assignment problem is transformed into the corresponding processnetwork synthesis (PNS) problem. The P-graph representation of the PNS problem provides an easily discernable structural model and the basis for effective solution by combinatorial accelerations as well (Friedler et al. 1992, 1993, 1995 and 1996; Varbanov and Friedler 2008; Lam et al. 2010). The proposed approach ensures that the resultant solution is globally optimal; in addition, it yields the *n*best feasible assignments in the ranked order.

For a set M of entities, a PNS problem is given by a triplet (P, R, O), where the set $P \subseteq M$ contains the final targets to be reached; set $R \subseteq M$ contains the initially available resources; and set $O \subseteq \wp(O) \times \wp(O)$, comprising the candidate activities for forming a network to reach each of the final targets by deploying any of the available resources. Each activity o is defined by the pair of its preconditions and outcomes, i.e., for each $o \in O$: $o = (\alpha, \beta)$ where $\alpha, \beta \subseteq M$. A precondition can be the availability of a resource or an outcome of another activity. In any transportation network, the location and time of availability of resources and outcomes are essential, and thus, they are well defined. For each vehicle assignment problem, what follows is either specified or defined: The tasks to be completed serve as the final targets of the network in set P; the resources are listed in set R; and set O of candidate activities involves the tasks performed by each appropriate resource or movement of resources from one location to another. Figure 2 shows algorithm VAPtoPNS for constructing the corresponding process synthesis (PNS) problem for a vehicle assignment problem (VAP). It generates three classes of activities (Barany et al. 2010); in the first class, an activity is assigned to the movement of each resource from its initial location to each task, which can be performed by the resource; in the second class, an activity is assigned to each task-resource pair, where the task can potentially be completed by the resource; and finally, in the third class, activities are defined for the movement of the resources between two tasks. The third class of activities occur if

and only if both tasks can be performed by a single activity; the first task precedes the second task; and the resource can travel to from the ending location of the first task to the starting location of the second task in time by its maximal speed. Tables 3, 4, and 5 list the resources, targets, and candidate activities, respectively, generated by the algorithm VAPtoPNS to be considered in process synthesis for the example.

Beside structural information, optimization entails the definition of a set of parameters. A parametric definition of the PNS problem involves the following: The lower bound L_{p_j} on the gross result is greater than zero for each m_j final target; and it is equal to zero for any other entity. Thus,

$$L_{p_{j}} = \begin{cases} >0, \forall m_{j} \in P \\ 0, otherwise \end{cases}$$
 (1)

The upper bound, U_{p_j} , on overall result for each m_j resource is equal to zero, and greater than or equal to L_{p_j} for any other entity, i.e.,

$$U_{p_{j}} = \begin{cases} 0, \forall m_{j} \in R \\ \geq L_{p_{j}}, otherwise \end{cases}$$
 (2)

The upper bound, U_{c_j} , on gross utilization of a m_j resource is greater than zero, and equal to zero for any other entity, i.e.,

$$U_{c_j} = \begin{cases} >0, \forall m_j \in R \\ 0, otherwise \end{cases}$$
 (3)

Also given are the lower bound, l_i , and the upper bound, u_i , for the volume of each activity o_i and the price, cm_j , for each resource or target. The cost of an activity is estimated by a linear function of its volume with a fixed charge. For the cost function of each activity the proportionally constant cp_i and the fixed charge cf_i are defined. Note that the objectives in PNS problems corresponding to vehicle assignment problems, including the costs and emissions of transportations, are represented as resources. Thus, cost parameters of the activities are equal to zero. Relations between entities and activities are denoted by a_{ji} which gives the difference between the production and consumption rate of entity m_j by activity o_i . Furthermore, in the optimal structure let $m^*\subseteq M$ denote the set of entities; $o^*\subseteq O$, the set of activities; x^* , the vector of the optimal volumes of activities for the problem; and z^* , its objective value. The aim is to determine the network $(m^*, o^*, o^*, o^*, o^*)$

 x^* , z^*) satisfying the following conditions (Eqs.4 - 10); z^* , minimal as given in Eq. 11 below

$$\forall o_i = (\alpha_i, \beta_i) \in o^* : m_i \in \alpha_i \Leftrightarrow a_{ii} < 0, m_i \in \beta_i \Leftrightarrow a_{ii} > 0$$
 (4)

$$m^* = \bigcup_{(\alpha_i, \beta_i) \in o^*} \alpha_i \cup \beta_i \tag{5}$$

$$x^* = \left[x_1^*, x_2^*, ..., x_n^*\right]^T \tag{6}$$

$$0 < x_i^*, l_i \le x_i^* \le u_i \Leftrightarrow o_i \in o^*$$

$$\tag{7}$$

$$\forall m_j \in m^* \cap R : -Uc_j \le \sum_{o_i \in o^*} a_{ji} x_i \le 0$$
(8)

$$\forall m_j \in m^* \cap P : Lp_j \le \sum_{o_i \in o^*} a_{ji} x_i \le Up_j \tag{9}$$

$$\forall m_j \in m^* \setminus R \setminus P : 0 \le \sum_{o_i \in o^*} a_{ji} x_i \le U p_j \tag{10}$$

$$z^* = \sum_{(\alpha_i, \beta_i) = o_i \in o^*} \left(cf_i + x_i^* * \left(cp_i - \sum_{m_j \in \alpha \cup \beta} a_{ji} cm_j \right) \right)$$

$$\tag{11}$$

In the P-graph framework, algorithm MSG gives rise to the maximal structure for the PNS problem (Friedler et al. 1993). This maximal structure serves as the input to the generation and solution of the mathematical model by algorithm ABB (Friedler et al. 1996). Figure 3 depicts the maximal structure for the example. Algorithm ABB yields the optimal and a finite number of *n*-best suboptimal networks in the ranked order. Table 6 contains the five best vehicle assignments for the example. Algorithms MSG and ABB have been executed by software PNS Studio (P-graph.com 2010).

4. Results and discussion

The alternative feasible solutions generated by algorithm ABB can be ranked according to multiple criteria. Such criteria can be, e.g., the costs and emissions of the vehicles. Even if both cost and emission are usually related to the mileage of a vehicle, the optimal or *n*-best assignments may differ for these two objectives due to the reduced emissions from modern vehicles of high costs; see Solutions #4 and #5 for the example in Table 6.

Note that the optimal solution is identical from the economical and ecological points of view as depicted in detail in the Gannt diagram in Figure 4. In contrast,

Table 6 highlights that the rankings of assignments by their costs and emissions result in different orders, and thus, it is important to generate alternative assignments.

5. Conclusions

An algorithmic method has been proposed for generating optimal and *n*-best suboptimal solutions for a vehicle assignment problem. The method has been crafted by reformulating an assignment problem as a PNS problem and solving the resultant problem by algorithms and software of the P-graph framework. The potential of the proposed method has been illustrated by solving an example in which the optimal and suboptimal alternative assignments of the different ranked order emerge by regarding the costs and emissions of the vehicles as the objective function.

6. Acknowledgements

Authors acknowledge the support of the Hungarian Research Fund under project OTKA 81493 K.

References

- Aizura AB, Mahlia TMI, Masjuki HH (2010) Potential fuel savings and emissions reduction from fuel economy standards implementation for motor-vehicles. Clean Technologies and Environmental Policy 12:255-263
- Atkins M, Walmsley M, Morrison A, Kamp P (2009) Carbon emissions pinch analysis (cepa) for emissions reduction in the New Zealand electricity sector. Chemical Engineering Transactions 18:261-266. doi:10.3303/CET0918041
- Baita F, Presenti R, Ukovich W Favaretto D (2000) A comparison of different solution approaches to the vehicle scheduling problem in a practical case. Computers and Operations Research 27:1249-1269
- Barany M, Bertok B, Kovacs Z, Friedler F, Fan LT (2010), Optimization software for solving vehicle assignment problems to minimize costs and environmental impacts of transportation. Chemical Engineering Transactions 21:499-504. doi:10.3303/CET1021084
- Crilly D, Zhelev T (2010) Further emissions and energy targeting: an application of CO₂ emissions pinch analysis to the Irish electricity generation sector. Clean Technologies and Environmental Policy 12:177-189
- Desaulniers G, Lavigne J Soumis F (1998) Multi-depot vehicle scheduling problems with time windows and waiting costs. European Journal of Operations Research 111:479-494.

- Friedler F, Tarjan K, Huang YW, Fan LT (1992) Combinatorial Algorithms for Process Synthesis. Computers Chem Engng 16:S313-S320
- Friedler F, Tarjan K, Huang YW, Fan LT (1993) Graph-Theoretic Approach to Process Synthesis: Polynomial Algorithm for Maximal Structure Generation. Computers & Chemical Engineering 17:929-942.
- Friedler F, Varga JB, Fan LT (1995) Decision-Mapping for Design and Synthesis of Chemical Processes: Application to Reactor-Network Synthesis. AIChE Symposium Series (Eds: LT Biegler and MF Doherty) 91:246-250
- Friedler F, Varga JB, Feher E, Fan LT (1996) Combinatorially Accelerated Branch-and Bound Method for Solving the MIP Model of Process Network Synthesis. In: C.A. Floudas and P.M. Pardalos (eds) Nonconvex Optimization and Its Applications, State of the Art in Global Optimization, Computational Methods and Applications, Kluwer Academic Publishers, Dordrecht, pp 609-626
- Ilyas SZ, Khattak AI, Nasir SM, Quarashi T, Durrani R (2010) Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technologies and Environmental Policy 12:291-299
- Klemes J, Friedler F, Bulatov I, Varbanov P (2010) Sustainibility in the Process Industry:

 Integration and Optimization (Green Manufacturing & Systems Egineering). McGraw-Hill
 Professional
- Lam HL, Varbanov P, Klemes J (2010) Optimisation of regional energy supply chains utilising renewables: P-graph approach. Computers & Chemical Engineering 34:782-792
- Perry S, Bulatov I, Klemes J (2007) The potential of the EMINENT tool in the screening and evaluation of emerging technologies for CO₂ reduction related to bulindings. Chemical Engineering Transactions 12:709-714
- P-graph.com (2010) PNS Studio. http://www.p-graph.com. Accessed 14 November 2010
- Tan RR, Foo DC (2009) Recent trends in pinch analysis for carbon emissions and energy footprint problems. Chemical Engineering Transactions 18:249-254. doi:10.3303/CET0918039
- US EPA (2009) Transportations and Climate.U.S. Environmental Protection Agency. http://www.epa.gov/otaq/climate. Accessed 14 September 2010
- Varbanov P, Friedler F (2008) P-graph methodology for cost-effective reduction of carbon emissions involving fuel cell combined cycles. Applied Thermal Engineering 28:2020-2029

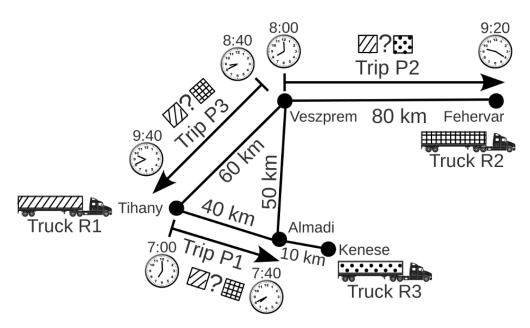


Figure 1. Map of the tasks, resources, and locations for the example

```
input: (T, S, A, t_s, t_e, l_s, l_e, d, l_a, c_t, e_t, v_{max}) assignment problem
output: (\mathcal{P}, \mathcal{R}, \mathcal{O}, a, c, U_c, L_p, U_p, l, u) parametric process synthesis problem
begin
      \mathcal{P} := T; \mathcal{R} := S \cup \{EUR, CO2\}; \mathcal{O} := \emptyset;
      U_{c_{EUR}} := \infty; c_{EUR} := 1; U_{c_{CO2}} := \infty; c_{CO2} := 0;
      for all R_k \in S do
             U_{c_{R_k}} := 1, c_{R_k} := 0;
             Travel_R_k := (\{EUR, CO2\}, \{km_R_k\});
             \mathcal{O} := \mathcal{O} \cup \{Travel\_R_k\};
             l_{Travel\_R_k} := 0, u_{Travel\_R_k} := \infty;
             a_{EUR,Travel\_R_k} := -c_t(R_k); a_{CO2,Travel\_R_k} := -e_t(R_k);
             a_{km\_R_k,Travel\_R_k} := 1;
      end for
      q := 1;
      for all P_i \in T do
             L_{p_{P_i}} := 1, U_{p_{P_i}} := 1, c_{P_i} := 0;
             for all R_k \in A(P_i) do
                    O_q := (\{R_k, km_-R_k\}, \{R_k l_s(P_i) t_s(P_i)\});
                    \mathcal{O} := \mathcal{O} \cup \{O_q\}; q := q + 1;
                    l_{O_q} := 0, u_{O_q} := \infty;
                    a_{R_k,O_q} := -1; a_{km\_R_k,O_q} := -d(l_a(R_k), l_s(P_i));
                    a_{R_k - l_s(P_i) - t_s(P_i), O_q} := 1;
                    P_i - by - R_k := (\{R_k - l_s(P_i) - t_s(P_i), km - R_k\}, \{R_k - l_e(P_i) - t_e(P_i), P_i\});
                    \mathcal{O} := \mathcal{O} \cup \{P_i by R_k\};
                    l_{P_i - by - R_k} := 1, u_{P_i - by - R_k} := 1;
                    a_{R_k l_s(P_i) - t_s(P_i), P_i - by - R_k} := -1; \ a_{km l_k, P_i - by l_k} := -d(l_s(P_i), l_e(P_i))
                    a_{R_k - l_e(P_i) - t_e(P_i), P_i - by - R_k} := 1; a_{P_i, P_i - by - R_k} := 1;
             end for
             for all P_j \in T do
                    for all R_k \in A(P_i) \cap A(P_i) do
                          if t_e(P_i) \le t_s(P_j) and \frac{d(l_e(P_i), l_s(P_j))}{t_s(P_j) - t_e(P_i)} \le v_{max}(R_k) then
                                 O_q := (\{R_k l_e(P_i) t_e(P_i), km R_k\}, \{R_k l_s(P_i) t_s(P_i)\});
                                 \mathcal{O} := \mathcal{O} \cup \{O_q\}; q := q + 1;
                                 l_{O_a} := 0, u_{O_a} := \infty;
                                 a_{R_k - l_e(P_i) - t_e(P_i), O_q} := -1; a_{km - R_k, O_q} := -d(l_e(P_i), l_s(P_i));
                                 a_{R_k l_s(P_j) t_s(P_j), O_q} := 1;
                           end if
                    end for
             end for
      end for
end
```

Figure 2. Algorithm for transforming a vehicle assignment problem into the corresponding process-network synthesis problem

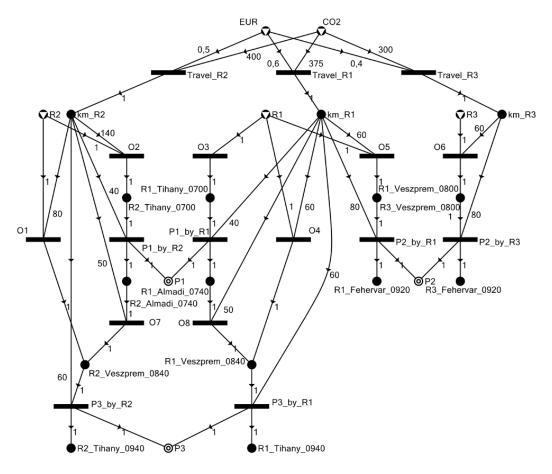


Figure 3. P-graph representation of the maximal structure for the example

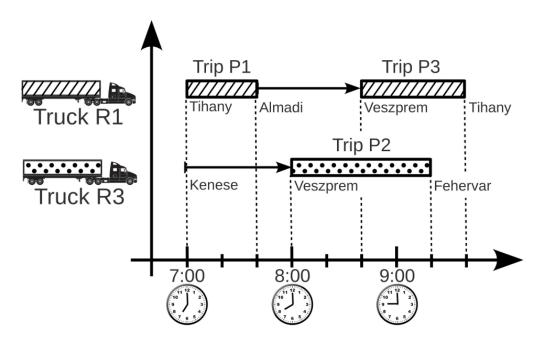


Figure 4. Optimal assignment of vehicles to trips for the example

Table 1. Tasks to be completed for the example

Task $P_i \in T$	Starting time	Starting location	Ending time	Ending	Potential	
	$t_s(P_i)$	$l_s(P_i)$	$t_e(P_i)$	location $l_e(P_i)$	Resources $A(P_i)$	
P1	7:00	Tihany	7:40	Almadi	R1,R2	
P2	8:00	Veszprem	9:20	Fehervar	R1,R3	
P3	8:40	Veszprem	9:40	Tihany	R1,R2	

Table 2. Available resources for the example

Resources $R_k \in S$	Location $l_a(R_k)$	Cost $c_t(R_k)$ CO ₂ emission $e_t(R_k)$		Maximum speed	
		[€/km]	[g/km]	$v_{max}(R_k)$ [km/h]	
R1	Tihany	0.6	375	90	
R2	Fehervar	0.5	400	90	
R3	Kenese	0.4	300	90	

Table 3. Resources to be considered in process synthesis for the example

Resource R_j	Upper bound Uc_{Rj}	Cost C_{Rj}
R1	1	0
R2	1	0
R3	1	0
EUR	∞	1
CO2	∞	0

Table 4. Targets to be considered in process synthesis for the example

Target P_j	Lower bound L_{Pj}	Upper bound U_{Pj}
P1	1	1
P2	1	1
P3	1	1

Table 5. Activities to be considered in process synthesis for the example

Activity o _i	Precondition $a_{ji} m_j$ for all	Result $a_{ji} m_j$ for all	Lower	Upper
	$m_j \in \alpha_i$	$m_j \in \beta_i$	bound l_i	bound
				u_i
Travel_R1	0.6 EUR, 375 CO2	km_R1	0	∞
Travel_R2	0.5 EUR, 400 CO2	km_R2	0	∞
Travel_R3	0.4 EUR, 300 CO2	km_R3	0	∞
01	R2, 80 km_R2	R2_Veszprem_0840	0	∞
O2	R2, 140 km_R2	R2_Tihany_0700	0	∞
O3	R1	R1_Tihany_0700	0	∞
O4	R1, 60 km_R1	R1_Veszprem_0840	0	∞
O5	R1, 60 km_R1	R1_Veszprem_0800	0	∞
O6	R3, 60 km_R3	R3_Veszprem_0800	0	∞
O7	R2_Almadi_0740, 50	R2_Veszprem_0840	0	∞
	km_R2			
O8	R1_Almadi_0740, 50	R1_Veszprem_0840	0	∞
	km_R1			
P1ByR1	R1_Tihany_0700, 40	R1_Almadi_0740, P1	1	1
	km_R1			
P1ByR2	R2_Tihany_0700, 40	R2_Almadi_0740, P1	1	1
	km_R2			
P2ByR1	R1_Veszprem_0800, 80	R1_Fehervar_0920, P2	1	1
	km_R1			
P2ByR3	R3_Veszprem_0800, 80	R3_Fehervar_0920, P2	1	1
	km_R3			
P3ByR1	R1_Veszprem_0840, 60	R1_Tihany_0940, P3	1	1
	km_R1			
P3ByR2	R2_Veszprem_0840, 60	R2_Tihany_0940, P3	1	1
	km_R2			

Table 6. Five best vehicle assignments for the example

Solution	Assignments		Mileage [km]		Total	Cost	CO_2			
								mileage	[€]	emission
						[km]		[kg]		
	P1	P2	Р3	R1	R2	R3				
#1	R1	R3	R1	150	0	140	290	146	98.25	
#2	R1	R3	R2	40	140	140	320	150	113.00	
#3	R2	R3	R2	0	290	140	430	201	158.00	
#4	R2	R3	R1	120	180	140	440	218	159.00	
#5	R2	R1	R2	140	290	0	430	229	168.50	