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Abstract 

In biomedical studies, the treatment main effect is often expressed in terms of an 

“average difference.” A treatment that appears superior based on the average effect may not be 

superior for all subjects in a population if there is substantial “subject-treatment interaction.” A 

parameter quantifying subject-treatment interaction is inestimable in two sample completely 

randomized designs. Crossover designs have been suggested as a way to estimate the variability 

in individual treatment effects since an “individual treatment effect” can be measured. However, 

variability in these observed individual effects may include variability due to the treatment plus 

inherent variability of a response over time. We use the “Neyman - Rubin Model of Causal 

Inference” (Neyman, 1923; Rubin, 1974) for analyses. 

This dissertation consists of two parts: The quantitative and qualitative response analyses. 

The quantitative part focuses on disentangling the variability due to treatment effects from 

variability due to time effects using suitable crossover designs. Next, we propose a variable that 

defines the variance of a true individual treatment effect in a two crossover designs and show 

that they are not directly estimable but the mean effect is estimable. Furthermore, we show the 

variance of individual treatment effects is biased under both designs. The bias depends on time 

effects. Under certain design considerations, linear combinations of time effects can be 

estimated, making it possible to separate the variability due to time from that due to treatment. 

The qualitative section involves a binary response and is centered on estimating the 

average treatment effect and bounding a probability of a negative effect, a parameter which 

relates to the individual treatment effect variability. Using a stated joint probability distribution 



of potential outcomes, we express the probability of the observed outcomes under a two 

treatment, two periods crossover design. Maximum likelihood estimates of these probabilities are 

found using an iterative numerical method. From these, we propose bounds for an inestimable 

probability of negative effect. Tighter bounds are obtained with information from subjects that 

receive the same treatments over the two periods. Finally, we simulate an example of observed 

count data to illustrate estimation of the bounds. 
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Abstract 

In biomedical studies, the treatment main effect is often expressed in terms of an 

“average difference.” A treatment that appears superior based on the average effect may not be 

superior for all subjects in a population if there is substantial “subject-treatment interaction.” A 

parameter quantifying subject-treatment interaction is inestimable in two sample completely 

randomized designs. Crossover designs have been suggested as a way to estimate the variability 

in individual treatment effects since an “individual treatment effect” can be measured. However, 

variability in these observed individual effects may include variability due to the treatment plus 

inherent variability of a response over time. We use the “Neyman - Rubin Model of Causal 

Inference” (Neyman, 1923; Rubin, 1974) for analyses. 

This dissertation consists of two parts: The quantitative and qualitative response analyses. 

The quantitative part focuses on disentangling the variability due to treatment effects from 

variability due to time effects using suitable crossover designs. Next, we propose a variable that 

defines the variance of a true individual treatment effect in a two crossover designs and show 

that they are not directly estimable but the mean effect is estimable. Furthermore, we show the 

variance of individual treatment effects is biased under both designs. The bias depends on time 

effects. Under certain design considerations, linear combinations of time effects can be 

estimated, making it possible to separate the variability due to time from that due to treatment. 

The qualitative section involves a binary response and is centered on estimating the 

average treatment effect and bounding a probability of a negative effect, a parameter which 

relates to the individual treatment effect variability. Using a stated joint probability distribution 



of potential outcomes, we express the probability of the observed outcomes under a two 

treatment, two periods crossover design. Maximum likelihood estimates of these probabilities are 

found using an iterative numerical method. From these, we propose bounds for an inestimable 

probability of negative effect. Tighter bounds are obtained with information from subjects that 

receive the same treatments over the two periods. Finally, we simulate an example of observed 

count data to illustrate estimation of the bounds. 
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CHAPTER 1 - Introduction 

1.0: An Overview 

In clinical trials and other scientific studies comparing two or more treatments, the 

treatment effect is often expressed in terms of an “average” effect although the importance of 

variability of the effect has been recognized. A treatment that appears superior based on a 

general population average effect may not be superior for all subjects in a population. Less focus 

has been put on assessing the variability of the individual treatment effects or “subject-

treatment” interaction (Gadbury, 2004) within the population. If substantial, this variance is 

worth considering in efficacy and safety measures. This dissertation focuses on estimating the 

individual treatment effect variability and the probability of a negative treatment effect for both 

the quantitative and qualitative responses using crossover designs. The “Rubin Model of Causal 

Inference” (Holland, 1986) which employs the “potential outcomes” framework is used.  

 

1.1:  The Potential Outcomes Framework  

Briefly, let 
i

X  and 
i

Y  denote the response when unit (subject) i  receives treatment T  

and control C  (say) respectively. The bivariate pair ( ),i iX Y  are potential outcomes (Rubin, 

2005, Neyman, 1923) for unit i .  Only one of 
i

X  or 
i

Y  is observed for the 
th

i  unit at a given 

time since we cannot expose a subject to both treatments at the same time. This is called the 

“fundamental problem of causal inference” (Holland, 1986). The unobservable outcome in the 
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pair ( ),i iX Y
 

is sometimes called counterfactual (Glymour, 1986). Note that this bivariate 

specification holds only when we are comparing two treatments. For a study comparing t  

treatments, the potential outcomes would be a vector containing t  outcomes (rather than two) 

and only one of the t  outcomes would be observable for a given subject at a particular time. The 

next section, expands on the Rubin model.  

 

1.1.1:  The Rubin Model for Causal Inference 

Often called the Neyman-Rubin Model of causal inference, the framework originated with 

Neyman’s (1923) model (in the context of completely randomized experiments) whereby each 

unit had two potential outcomes with only one of the two observable. Later Rubin (1974, 2005) 

and others developed the model into a general framework for causal inference in relation to 

behavioral science. Holland (1986) also wrote an influential paper using this model emphasizing 

the philosophical aspects of the framework. On the basis of the work done by Neyman and 

Rubin, the model is sometimes referred to as the “Neyman-Rubin Model” or sometimes 

“Neyman-Rubin-Holland Model” or simply the “Rubin Model.” Suppose we are to compare 

these two treatments, the Rubin Model specifies that the true treatment effect for unit i  is given 

as 
i i i

D X Y= − . This treatment effect applies to both quantitative and qualitative responses. This 

Rubin Model assumes the “stable unit treatment value assumption” (SUTVA, Rubin 1980, 

1990). Essentially, SUTVA has two assumptions: (1) there is only one version of a specific 

treatment, either T or C, assigned to all subjects (for example, two or more manufacturers are 

assumed to produce the exact drug assigned to the subjects) and (2) there is no interference 

between subjects – that is, the value of each subject’s potential outcome does not depend on the 
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treatment assigned to other subjects.  When SUTVA is violated, “an experiment will not yield 

unbiased estimates of the causal effect of interest” (Sekhon, 2007, p.5). An added assumption in 

this dissertation is that, the potential outcomes is not affect by “how or whether we try to learn 

about it” Rubin (2005, p.323). In general, when the causal inference assumptions are defied, 

randomization of subjects to treatments and the subsequent analysis becomes very complicated. 

In this dissertation, we will be using the Rubin Model along with the SUTVA conditions. 

Furthermore, we assume there are carryover effect, no covariates and no missing values or if 

there are, then, the values are missing completely at random (MCAR, Little and Rubin 2002). 

 

1.1.2:  The Definition of Individual Effects, Treatment Effect Homogeneity/Heterogeneity 

and Subject-Treatment Interaction  

Using the Rubin Model 
i i i

D X Y= −  for the th
i  individual, the individual treatment effect 

may be defined as the difference in the response on an individual subject as a result of receiving 

treatment T  versus C  at a given time. This is unlike the average effect which is the mean 

response due to both treatments. Since a subject receives one treatment at a time, this individual 

treatment effect is not observable. When the focus is on an overall mean effect, the difference 

i i i
D X Y= −  is implicitly assumed constant for all individuals in the population when the mean 

effect is being tested using Fisher’s Randomization Test (Fisher, 1935; Rubin, 1980). This 

assumption is what is referred to as treatment (effect) homogeneity (Longford, 1999). Kravitz et 

al. (2004, p.660) defined treatment heterogeneity as “…patient diversity in risk of disease, 

responsiveness to treatment, vulnerability to adverse effects, and utility for different outcomes.” 

They further argue that individual treatment effect heterogeneity can lead to outcomes with a 
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mixture of “substantial benefit for some, little benefit for many and harm for a few” Kravitz et al. 

(2004, p.661).  The variable treatment effect for each subject results in what is referred to as 

subject-treatment interaction (Marshall, 1997; Longford, 1999). Senn (2001, p. 1481) defines 

subject-treatment interaction as “the extent to which the difference between treatments differ 

from one patient to another” or equivalently, “the extent to which the difference between patients 

being given the same treatment depends on treatment given.”  

This dissertation consists of two parts: The quantitative and qualitative parts. The 

quantitative part of the dissertation seeks to estimate individual treatment effect variability and to 

separate such variability from variability due to time effects in multiple time point trials. The 

method of potential outcomes will be used to achieve this goal. Meanwhile, in the qualitative 

parts, focus will be placed on the average treatment effect and the “probability of negative 

effect” – a component which implicitly reflects individual treatment effect variability. If 

substantial, the individual effect variability or the probability of negative effect is worth 

considering in conclusions about effectiveness and safety of the treatment being analyzed. 

 

1.2:  Background 

The effects of many treatments across individuals may vary widely. When such variation 

is present, there may be non-negligible proportion of a population that has an adverse effect of a 

treatment despite studies showing the effect of treatment to be beneficial, “on average.” 

Complicating the detection of the individual effect variability is the fact that some response 

measures, such as blood pressure, vary widely at different time points. Determining whether a 

change in a response is due to the effect of a treatment or just due to natural variation of a 
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response over time can be challenging.  A case in point is the controversy surrounding Dietary 

Approaches to Stop Hypertension (DASH), a salt and blood pressure or hypertension study 

(Obarzanek et al, 2003).  

The DASH study is a widely published clinical trial that suggests that systolic blood 

pressure (SBP) could be reduced by eating diets rich in fruits, vegetables and with low-fat diary. 

Five institutions collaborated in the original study in which there were two treatments, a DASH 

diet and a control diet, each delivered at three levels of salt at 8g(high-H) a day or 140mmol/d, 

6g a day or 104mmol/d (Medium-N: government’s recommendation) and 4g(Low-L) a day or 

62mmol/d. The response variable was the mean of 5 pairs of SBP measurements for each of the 

188 participants taken over the final 9 days of each 30-day feeding period. Obarzanek et al 

(2003) concluded that most of the variability in SBP was caused by “other factors’ than salt 

intake. They also pointed out that the variability depends on the group of individuals involved, 

suggesting a case for the introduction of covariates.  

DASH study is one of many that may involve individual treatment effect heterogeneity or 

variability. Considering the controversies and limitations of the DASH-Sodium Trial, the 

knowledge and the ability to estimate variability in an individual treatment effect using the 

appropriate design is of critical importance. A treatment that appears superior based on the 

average effect may not be superior for all subjects in a population if there is substantial 

individual treatment effect variability expressed in terms of “subject-by-treatment” interaction. 

This interaction may consist of component factor-by-treatment interactions like “gene-by-

treatment” interaction, “social status-by-treatment” interaction and so forth. 

Cross-over designs have been suggested as a way to estimate the variability in individual 

treatment effects since some degree of a treatment effect’s “separability” from effects of time can 
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be achieved. The DASH-Sodium results suggests that variability in observed individual effects 

may include variability due to the treatment plus inherent variability of a response over time and 

would require special types of cross designs to identify and estimate.  

Disentangling variability due to treatment effects from variability due to time effects is 

challenging. Essentially, we will analyze the individual treatment effects as a random variable 

(rather than a constant effect) for a specified population of subjects and it suffices to look at the 

variance as well as mean effect parameters (Longford, 1999).  

We present a method of potential outcomes analyses using various two treatment designs. 

For instance, we use the two treatments, three periods crossover design – a class of repeated 

crossover design or the “n-of-1” trial (Senn, 2001). This dissertation work builds on earlier work 

by Gadbury and others (2000, 2001, 2004). A parameter quantifying subject-treatment 

interaction is inestimable in two treatments, two period balanced crossover designs. The two 

treatments, three periods design used here extends the initial work on the two treatments, two 

periods design by Gadbury et al. (2004). The design used here permits certain inseparable effects 

or a combination of effects to be measured or estimated.  

The first part of the research (Chapter 2 and 3) is based on quantitative treatment 

response variables. In the next Section 1.3, we present previous work involving the complete 

randomized design and the two treatments, two periods crossover designs. Section 1.4 introduces 

some population types to be used in the analyses presented in chapter 2 and 3. Chapter 2 deals 

with an extended two treatments, two periods design, a design whereby some subjects stay on the 

same treatments over the two periods. In chapter 3, we extend the analyses to a three period 

design for quantitative response and in chapter 4, we further the work done with qualitative 
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responses in Gadbury et al (2004), summarily presented in Section 1.3.3.  Chapter 5 sums up the 

dissertation work and lays out some future challenges and research opportunities. 

 

1.3:  Previous Work on Subject-Treatment Interaction 

Senn (2001, Vol. 35) outlined the various error terms and sources of variability (Table 

1.1) that are identifiable with different types of designs (Table 1.2).  With a 2 treatments, 2 

period cross-over design, it is impossible to separate the variability due to patient-by-treatment 

interaction from the within-patient variation even in the absence of carryover effects but a 

repeated period crossover design will make it possible for such effects to be separable. In the 

table below, Senn (2001, Vol. 35) describes and lists the effects that are identifiable plus the 

various errors terms. 

Table 1.1: Sources of Variation in Clinical Trials 

Label Source 

 

Description 

A Between Treatments 

 

The average difference between treatments over all 

randomizations (and hence over all patients). The ‘true’ mean 

difference between treatments 

B Between patients 

 

The average difference between patients. (Averaged over both 

experimental and control treatments.) 

C 

Patient-by- treatment 

interaction 

 

The extent to which the difference between treatments differ 

from one patient to another. (Equivalently, the extent to which 

the difference between patients being given the same treatment 

depends on treatment given.) 

D Within-patient error 

The variability shown from treatment period to   treatment period 

when the same patient is given the same Treatment 
Source: Senn, S. (2001, p.1481). “Individual Therapy: New Dawn or False Dawn?” British Medical Journal (BMJ), 

Vol. 35 
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Table 1.2: Indentifiability and Clinical Trials 

Type of Trial                          Description                     Identifiable Effects            Error Term 

 

Parallel                                     Each patient receives one            A                              B + C+ D 

                                                 treatment 
 

Cross-over                                Each patient receives each           A and B                   C + D 

                                                 treatment in one period only 

 

Repeated period cross-over      Each patient receives each            A and B and C         D 

(Sets of n-of-1 trials)                treatment in at least two periods 

 
Source: Stephen Senn (2001, p. 1481). “Individual Therapy: New Dawn or False Dawn?” British Medical Journal 

(BMJ), Vol. 35. Total Error E = A+B+C+D 
 

In another paper, Senn (2001, Vol. 329) further echoes the ideas presented on Table 1.2 

and recommends random effect models in the analysis of repeated periods cross-over design to 

identify individual effect variability represented by the subject-by-treatment interaction, though 

as will be shown, assumptions are still needed and these assumptions are not always obvious 

without the structure of potential outcomes. Thus, it appears worthy to consider a repeated period 

crossover design using potential outcomes. One particular example  where a repeated period 

crossover design was used to study subject-by-treatment interaction is the double blind 

randomized comparison of paracetamol 1g b.i.d. (bis in die – twice a day)  and diclofenac 50 mg 

b.i.d. osteoarthritis study reported by March et al.(1994), although their analysis did not used the 

random effect model nor were potential outcomes considered.  

 

1.3.1: Two treatment completely randomized designs 

Let 
i

X  and 
i

Y  denote quantitative or categorical outcomes when unit (subject) i  receives 

treatment T  and C  respectively for 1,2,...,i N= . The set of N potential outcomes has the form 
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given below (left bracket), which after treatment assignment, produces observed outcomes of the 

form shown (right bracket), and where the “?” represents an unobservable potential outcome 

(Gadbury et al., 2004). 

1

21 1

1

?

?

?

?

Treatment Assignment

NN N

N

X

YX Y

YX Y

X

−

 
 

   
   →    
   

 
 

� �� �  

This two treatments randomized complete design assumes SUTVA. That is, subject’s 

response to a particular treatment stays the same regardless of what treatment other subjects 

receive or whether there may be different types of treatments.  

The individual treatment effect 
i i i

D X Y= −  cannot be observed because only one of the 

i
X  or 

i
Y  is observed for an individual at a particular time. So, some have proposed crossover 

design, whereby, the treatment effect for an individual can be observed. But the observed 

treatment effects also contain time effects. The next section explores this in a 2 treatments, 2 

periods crossover design.   

 

1.3.2:  Initial Work on Two Period (TC CT) Cross-Over Designs for Quantitative Response 

Gadbury (2001) developed some initial results for a two treatment balanced cross over 

design. Accordingly, consider two treatments labeled T and C in a 2 period design                                    

 

                                 

1

2

                      Period

                       1    2

Sequence     
T C

C T
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Assume a finite population of 2n  subjects used to define the potential outcomes. We 

assign n  subjects to each sequence. Potential outcome framework for the 2n  subjects is given 

by 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 2

1

2 n n n n n n n n

Subject Time Time

X t Y X t Y

n X t Y X t Y

τ τ

τ τ

− − + +

− − + +

� � � � �
 

 

with potential outcomes ( )1 1,  i iX t Y τ− −  for period 1 and ( )2 2,  i iX t Y τ+ +  for period 2. 

Furthermore, define the “true” mean individual treatment effect for the 
th

i  subject as the 

average of the two true treatment effects over the two time periods so that the time effects cancel, 

that is, the “true” finite population mean treatment effect is given as D X Y= − , where 

2

1

(1 / 2 )
n

i
i

X n X
=

= ∑  and 
2

1

(1/ 2 )
n

i
i

Y n Y
=

= ∑ .  

The true finite population variance of the individual treatment effects, denoted 
2
DS , is given as 

22 2
1

1
( ) ( ) ( )

2

n
D ii

S Var X Y Var D D D
n =

= − = = −∑  

The observed treatment effect for the 
th

i  subject is  

( ) ( ) ( ) ( ) ( )1i i i i i i i i i i id X t Y T X t Y Tτ τ   = − − + + + − − −     

where iT  represent the random assignment to sequence with 1 or 0iT =  for assignment to T-C 

or to C-T, respectively. 
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It was shown that, the estimated “observed” mean treatment effect d is unbiased for 

D with respect to the randomization distribution for iT . Gadbury (2001) defined a reasonable 

estimator of 
2
DS  as 

2
dS  where ,  ( )

2
22

1

1

2

n

d i
i

S d d
n =

= −∑  and showed that, 

( ) ( )
( )22 2 22 1

2 1
d D t

n
E S S S t

n
τ τ+

−
= + + +

−
 

where, 
2
tS τ+  is the finite population variance of the sum of time effect terms, t τ+  and t and 

τ are the finite population averages of t and τ . The bias term is given as 

( )
( )222 1

2 1
t

n
bias S t

n
τ τ+

−
= + +

−
 

This bias is always positive and will only be zero if 0t τ+ = , in which case, 
2
dS  estimates 

2
DS exactly. In the next part, we present the previous work on qualitative (binary) response 

variable. 

 

1.3.3:  Initial Work on Two Period (TC – CT) Cross-Over Designs for Binary Response  

Suppose that the outcome 1 denotes a “success” and 0, a “failure”, the following table 

provides the assumed bivariate distribution of potential outcomes in an infinite population, as 

presented in Gadbury et al. (2004): 

         
( ) ( ) ( ) ( ) ( )

( ) 1 2 3 4

, 0,0 0,1 1,0 1,1

,

x y

P X x Y y π π π π= =
                           where  

4

1

1i
i

π
=

=∑ . 

They noted that the individual treatment effect variable D X Y= −  is discrete with possible 

values 0, -1, and 1 with probabilities 1 4 2 3,   and π π π π+  respectively. Subject-Treatment 
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interaction is present in the population unless one of these three probabilities, 

1 4 2 3,   and π π π π+ , is equal to one.  A detrimental or unfavorable effect means that 1D = − . 

Thus, the proportion of the population experiencing a negative effect is 2π . They showed that, 

the mean treatment effect is given by ( ) ( ) 3 2E D E X Y π π= − = − . The population parameters 

,  ( 1,2,3,4)i iπ =  are by themselves, nonestimable. In addition, the constructed bounds for the 

risk involved in administering the treatment T to the population were given as 

( ) ( )( )2 3 2 3 4 2 4max 0,  min 1 ,  π π π π π π π− ≤ ≤ − + + . 

Gadbury et al., (2004) also considered a matched-pairs design and showed that a design 

that includes some pairs receiving the same treatment can tighten the bounds for 2π , though the 

tightness depends on ‘quality of matching’ criteria that cannot directly be assessed from 

observable outcomes. 

 

Remark 1.3.1 

In the next chapter , we focus on the TC – CT – TT – CC design for quantitative response 

variable. Thus, in chapter 2, we let some subject stay on the same treatment (TT and CC) over 

the two periods. This is an extension of the TC – CT crossover design presented in Sections 1.3.2 

above. These subjects will provide the additional information necessary to estimate the bias 

( )
( )222 1

2 1
t

n
bias S t

n
τ τ+

−
= + +

−
 and subsequently, the true variance of the individual treatment 

effects, 
2
DS , using a certain assumption. These estimations were not possible with the previous 
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TC – CT crossover design because 
2
tS τ+  (and hence

( )
( )222 1

2 1
t

n
bias S t

n
τ τ+

−
= + +

−
) could not 

be estimable, without even more restrictive and perhaps implausible assumptions.  

In both chapters 2 and 3 involving quantitative response variable, we will be working 

with three types of populations described in the next subsection. In chapter 4 that considers a 

binary response, the multinomial population model is used. 

 

1.4: A List of Populations Used For the Quantitative Analysis 

For a smooth understanding of the quantitative analyses, we list three types of 

populations used herein.  

1). First, a finite population of potential outcomes from which we define a true individual 

effect, D , with finite population parameters D  and 
2

DS .  We begin the analyses with this finite 

population of potential outcomes. 

2). Second, a population distribution of time effects designated t  and τ . The population will 

have parameters tµ , τµ , 
2
tσ  and 

2
τσ . This population will be used when estimation of a bias 

term comes to focus.  

3). Third, a “super – population” (Smith and Sugden, 1988) distribution for treatment effects. 

This population will be used to determine the distribution of D  with population parameters 

Dµ and 
2

Dσ . The population of treatment effects will be used in the illustrative examples. 

Again, note that these lists of populations will be useful with the quantitative response 

only. The qualitative analysis will make use of a binomial or multinomial population model. 
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CHAPTER 2 -  A Two Period, Two Treatment Design for 

Quantitative Responses 

2.1:  A Two Period  − − −TC CT TT CC Design for Quantitative Responses 

Previously, Gadbury (2001) worked on the two period TC and CT design. In this section, 

we will extend this design to include TT and CC. 

Accordingly, consider two treatments labeled T and C in the following 2 periods designs: 

                                                      

                                                                                  

 

                                                                                                                                         

Design 2.1.1: Two sequence-two periods.                      Design 2.1.2: Four sequence-two periods.                                                      

                     

Using a slightly different estimator of the true individual treatment effect variability, Gadbury 

(2001) developed some initial results for Design 2.1.1(see section 1.3.2). However, it is 

impossible to estimate 
2
DS  with Design 2.1.1. But, if we allow some subjects to stay on the same 

treatments as shown in Design 2.1.2 (sequences 3 and 4), estimation of 
2
DS  is possible, with 

certain assumptions, through estimation of linear combinations of time effect parameters.  Note 

that we cannot observe the treatment effects for subjects in sequences 3 and 4 of Design 2.1.2. 

Sequence

Period

  

                          1     2

1

2
        

3

4

T C

C T

T T

C C

1

2

Period

 Sequence

                       1    2

     
T C

C T
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Those subjects will provide the time effect information necessary to estimate 
2
DS  from Design 

2.1.1. 

Following the Gadbury (2001), assume we have finite population of 2n  subjects from 

which we define our potential outcomes framework as shown below. 

1 11 1 11 1 12 1 12

2 2 1 2 2 1 2 2 2 2 2 2

Subject Period 1 Period 2

1

2
n n n n n n n n

X t Y X t Y

n X t Y X t Y

τ τ

τ τ

+ + + +

+ + + +

� � � � �
 

with potential outcomes ( )1 1,  i i i iX t Y τ+ +  for period 1 and ( )2 2,  i i i iX t Y τ+ +  for period 2 

( )1, 2,..., 2i n= . iX  and iY  are the average responses to treatments T and C , respectively, over 

the two time periods for subject 1,2,...,2i n= ; ijt (associated with treatment T ) and 

ijτ (associated with treatment C )  are the time effect parameters for subject 1,2,...,2i n=  in 

period 1,2j = . We assume 1 2 1 20 and 0i i i it t τ τ+ = + = . 

 

Remark 2.1 

The symbols of the time parameters used here is a slight deviation from those in Gadbury 

(2001) where time parameters are simply denoted  and i it τ . The reason for specifying the time 

parameters as  1 2 1 2,  and ,  i i i it t τ τ  is to synchronize the symbols with those of a more complex 

design (to be seen in chapter 3). Nonetheless, the results will not be affected by this change since 

it may be assumed that 1 2 1 2 and i i i i i it t t τ τ τ= = − = = −  

Using Design 2.1.2, the observed outcome framework is given as 
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1 2

1 2

1 2

1 2

                              Period

                           1              2

  

  
Sequence  

  

  

i i i i

i i i i

i i i i

i i i i

X t YT C

Y X tC T

X t X tT T

Y YC C

τ

τ

τ τ

+ +

+ +

+ +

+ +

 

Define the true individual treatment effect on the 
th

i  subject as 

2 2

1 1
i i i ij ij i i

j j

D X Y t X Yτ
= =

= − + − = −∑ ∑  . 
i

D  is not observable for any i . The true finite 

population mean effect of treatment, D  is given as D X Y= −  where 
2

1

(1 / 2 )
n

i
i

X n X
=

= ∑  and 

2

1

(1/ 2 )
n

i
i

Y n Y
=

= ∑ .  Define the true finite population variance of individual treatment effects, 

denoted 
2
DS , as  

22 2
1

1
( )

2

n
D ii

S D D
n =

= −∑  

Let 1iγ  be an indicator variable which takes the value 1  when the 
th

i  subject is in 

sequence 1, for 1,2,...,2i n= .  Observe that, 1 Binomial(1,1 / 2)iγ ∼ .  The observed treatment 

effect for the 
th

i  subject under Design 2.1.2 is   

( ) ( ) ( ) ( ) ( )1 2 1 2 1 11i i i i i i i i i i id X t Y X t Yτ γ τ γ   = + − + + + − + −    . 

This simplifies to 

                             ( ) ( ) ( )2 1 1 2 1 2 1i i i i i i i i i id X Y t t tτ τ τ γ= − + − + − + −  
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Thus, ( )1  1 1/ 2iP γ = = . In addition, ( )1 1/ 2iE γ =  and ( )1 1/ 4iVar γ = .  

If i i′=  then ( ) ( ) ( )2
1 1 1 1 1/ 2i i i iE E Eγ γ γ γ′ = = = .   

For i i′≠ , ( ) ( )1 1 1 1

1 1
1, 1  

2 2 1
i i i i

n
E P

n
γ γ γ γ′ ′

− 
= = = =  

− 
when subjects i  and i′  are in 

sequence 1 and ( )( )1 1

1
1  

2 2 1
i i

n
E

n
γ γ ′

 
− =  

− 
when subjects  and i i′ are in sequence 1 and 

sequence 2, respectively. 

 

Proposition 2.1 

The observed mean treatment effect, d ,  is an unbiased estimate of the true mean 

treatment effect D . That is, ( )E d D= , where expectation is taken over all possible 

randomizations 1iγ . 

Proof: 

 

 

 

 

� 

Note that the proof was established with the fact that ( )1 1/ 2iEγ γ =  and the assumptions 

that
2 2

1 1

0 and 0ij ij
j j

t τ
= =

= =∑ ∑  for subject 1,2,...,2i n=  and period 1,2j = . 

( ) ( ) ( ) ( )( )

( )

2 1 1 2 1 2 1
1

2

1

1

2

1
          

2

          

          

n

i i i i i i i i i
i

n

i i
i

E d X Y t t t
n

X Y
n

X Y

D

γ τ τ τ γ
=

=

= − + − + − + −

= −

= −

=

∑

∑
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Define the observed individual treatment effect variability, denoted
2
dS , as  

( )
2

22

1

1

2 1

n

d i
i

S d d
n =

= −
−
∑ . 

 

Proposition 2.2 

For each subject, the observe treatment effect variability is not an unbiased estimator of 

the true individual treatment variability. That is,  

2 22 1

2
d D

n
E S S Bias

n

− 
= + 

 
 

where ( )
222 1

2
t

n
Bias S t

n
τ τ+

−  = + + 
 

, 
2
tS τ+  and  ( )

2

1 1
1

1

2

n

i i
i

t t
n

τ τ
=

+ = +∑  are the finite 

population variance and finite population mean of the sum of time effect terms t τ+ . 

Expectation is taken over all possible randomization of the 2n  subject. 

Proof:  See Appendix A 

 

Remark 2.2: 

With Design 2.1.1, it is impossible to estimate 
2

DS  due to the presence of 
2
tS τ+ and t τ+  

in the bias formula. 
2
tS τ+ and t τ+ cannot be estimable because the combination of time effect 

parameters, t τ+ , cannot be observed for any individual. In order for 
2

DS
 
to be estimated, 

consider a design where some subjects stay on the same treatments as given in Design 2.1.2. In 

the next section, Design 2.1.2 is used to estimate 
2

DS  with a particular assumption. 
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Estimation of 
2

DS  

In Design 2.1.2, we let some subjects stay on same treatments as provided by sequences 

TT and CC . These subjects provide no information about the individual treatment effect and are 

used here to provide useful information about the combination of time effects t τ+ . This 

information will be used to estimate the finite population variance 
2
tS τ+ and the finite population 

mean t τ+  parameters. Sequences TC  and CT  considered together will give us same 

information as obtained above.  

Assume a total of 2n  subject where 1,2,...i n=  subjects are assigned to each of 

sequences TT and CC . The observed outcome is   

1 2

1 2

                              Period

                           1              2

Sequence  
i i i i

i i i i

X t X tT T

Y YC C τ τ

+ +

+ +

 

From the TT and CC  randomizations, we obtain 2 1i it t− and 2 1i iτ τ−  respectively. Using the 

assumption that 
2

1

0ij
j

t
=

=∑  and 
2

1

0ij
j

τ
=

=∑ , we obtain 12 it  and 12 iτ from which we get the 

combination ( )t τ+  where 1
1

1 n

i
i

t t
n =

= ∑  and 1
1

1 n

i
in

τ τ
=

= ∑  are the observed mean time effects 

obtained from those who stayed on TT and CC  respectively. Thus, we denote an estimate of 

t τ+  by t τ
∧

+  where ( )t tτ τ
∧

+ = + .   

Define 
2ˆ
tS τ+  as the finite population variance of t τ+ . 
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Assuming t and τ  are independent, we can estimate 
2
tS τ+ by 

2ˆ
tS τ+ . Plugging-in the estimated 

bias, we have  

2

22 1 ˆ
2

t

n
Bias S t

n
τ τ

∧∧

+

  −  = + + 
  
  

 

where  ( )t tτ τ
∧

+ = + . 

Suppose we designate the estimated true individual treatment effect variability as 
2ˆ
DS , 

2ˆ
DS is 

given as 

2 22 1ˆ
2

D d

n
S S Bias

n

∧−
= −  

Remark 2.3 

Despite the added information from the TT – CC design, it is worthwhile noting that 

estimation of
2

DS , denoted 
2ˆ
DS , was possible because of the important assumption of 

independence between t and τ . Without this assumption only bounds for 
2

DS  can be estimated 

(as was mentioned in Gadbury, 2001, though Gadbury did not produce the bounds nor were the 

TT CC sequences considered.  

 

2.2:  A Two Period     − − −TC CT TT CC Design with Binary Responses 

This is similar to the topic in Section 2.2 except for binary responses. Some related work 

was done by Gadbury et al., (2004) for matched-pairs, but exchangeability assumptions that were 

relevant for matched-pairs do not necessarily hold when subjects are matched to themselves over 
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time periods. Thus, the details in Gadbury et al., (2004) will be modified to redefine a 

‘successful’ response to treatment and to deal with time effects as opposed to matching criteria in 

matched-pairs. Chapter 4 provides the detailed analyses for this two period TC – CT – TT – CC 

design with binary responses. In the next chapter, we analyze a two treatment, three period 

crossover design. This design facilitates the estimation of the individual treatment effect 

variability, a task that could not be achieved with the two periods TC – CT crossover design 

considered in chapter 2. 
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CHAPTER 3 - Chapter Three: A Three Period, Two Treatment 

Design with Quantitative 

3. 0.  A Three Period, Two Treatment Design with Quantitative Responses 

In classic jargon, this design falls under the general classification referred to as “n – of – 

1 trial” or Repeated Period Cross-Over design (Senn, 2001). These types of design are 

particularly useful for patients with chronic diseases – like hypertension, cancer, diabetes, 

alzheimer, arthritis, asthma and so on – although it has been known to be useful other purposes 

like examining the short term choice of drugs for osteoarthritis (Yelland et al, 2006). In addition, 

repeated period cross-over designs are necessary for cases where the physician doubts the 

effectiveness of a certain drug on a patient. Generally, the main advantage of repeated period 

cross-over design is that patients act as their own control.  

Assume two treatments denoted T  and C where one could be the control. Also assume 

we have kn  subjects assigned to the 
th

k  sequence. Define kN n=∑ .  Let the 
th

i  subject and 

the 
th

j  period be such that 1,2,3,...i N= and 1,2,3j = . Ratkowsky et al. (1993) compared the 

efficiencies of various 2 treatments and 3 periods design for estimating a mean treatment effect. 

In the pictures below, we present a few of the designs compared.  
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Design 1:                            Period                             Design 2:                  Period 

                                           1      2    3                                                        1      2    3                                                       

               Sequence      

1

2

3

4

  

T C C

C T C

C T T

T C T

                      Sequence       

1

2

3

4

  

T C C

C T T

C C T

T T C

  

 

Design 3:                             Period                                          

                                           1      2    3                                                                             

               Sequence      

1

2

3

4

5

6

  

T T C

T C T

C T T

C C T

C T C

T C C

          

 

They concluded that the most efficient of the three designs – in terms of variability and 

computational difficulties – was Design 2. Using all three designs, we performed some 

superficial analyses of individual treatment effect variability using the potential outcome method. 

Among the three, Design 3 had the advantage of separating time effects from true individual 

treatment effects. So, Design 3 is used for analyses in this chapter. 

The following random assignment of treatment is used, where 6 sequences are grouped 

into 2 squares as shown below. 

          

               
               
           1      2      3

             1

1

    2   

3

Period

Square

T T C

Sequence T C T

C T T

        

                               

                                  
                              1       2     3

 2

1

   2   

3

Period

Square

C C T

Sequence C T C

T C C

                          (R-1) 
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Notice that, for every subject, there are  
3

2 2 6k = − =  different possible assignments of 

the treatments in the three periods. The treatment options, TTT and CCC do not concretely 

capture the cross over design as subjects do not change treatment (parallel design). Initially, we 

will restrict the randomization of treatments to Square 1.  Square 2 is a mirror image of square 1 

with T and C flipped. The analysis will be done under two situations: Unequal and equal number 

of subjects per sequence. 

 

3.1:  Unequal Number of Subjects per Sequence 

Assume the subjects are independently and randomly assigned to the sequences. Note 

that this allows for a possible unequal number of subjects per sequence. Let an indicator random 

variable ijδ  be a sequence assignment variable for the 
th

i subject, 
th

j  period with 

1,2,3,...,i N=  and 1,2,3j = . 

For square 1, define 

                               
1,     if subject  receives  is in period 

0,                                   otherwise           
ij

i C j
δ = 


 (1.1) 

Thus, (1,1 / 3)ij Binomialδ ∼ .  Thus, ( ) 1 1 / 3ijP δ = =  for all j  and  

}

}

}

1 1 2 3

2 2 1 3

3 3 1 2

    1,  0,  0

    1,  0,  0

    1,  0,  0

i i i i

i i i i

i i i i

CTT or

TCT or

TTC or

δ δ = δ = δ =

δ δ = δ = δ =

δ δ = δ = δ =

 

For each i  and j j′≠ , we have that, ( ) 1/ 3ijEδ δ = , ( ) 0ij ijE ′δ δ δ =  
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( ) ( )
( ) ( )

( )

1,  1

                 1 1

1/9 , if   j
                   

1 / 9, if  j

ij i j ij i j

ij i j

E P

P P

j
i i

j

′ ′ ′ ′δ

′ ′

δ δ = δ = δ =

= δ = δ =

′=
′= ≠

′≠

 

and ( ) ( )2

ij ijE Eδ δδ = δ . Note, ( )...Eδ  denoted the expectation with respect to the finite 

population randomization. The total number of subjects in the sequences constitutes the size of 

the population.  

We assume no carryover effects. Let ij
t  and ijτ denote the unobservable time effects due 

to treatment T and C respectively. ( )1 2 3, ,i i it tt t′ =  and ( )1 2 3, ,i i iτ ττ τ′ =  are periodic effect 

parameters. That is, these parameters quantify the unobservable effects from period to period 

when the same subject is given the same treatment. Let i ijX t+  and Y +i ijτ  be the observed 

responses to T andC respectively. The potential outcomes at time periods 1, 2 and 3 are 

 1 1 2 2 3 3

1 2 3

, Y +   ;  , Y +   ;  , Y +   i i i i i i i i i i i i

P P P

X t X t X t+ τ + τ + τ
������� ������� �������  (1.2) 

where P1, P3 and P3 denote the periods . iX  and iY  denote the average response (to treatments T 

and C respectively) over the three periods. For the 
thi subject we have, 

3

1

0 ij

j

t
=

=∑  and 

3

1

0ij
j=

τ =∑  . 
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These potential treatment outcomes are established under the condition that only one 

measurement of the subject’s response at a particular period is observable. The true individual 

treatment effect on the 
th

i  subject in the 
thj  period is defined  

ij i i ij ijD X Y t= − + − τ ………………………………………..(#) 

Define, 
3

1

1

3
i ij

j

D D
=

= ∑ . Thus, 

3 3

1 1
i i i ij ij i i

j j

D X Y t X Y
= =

= − + − τ = −∑ ∑    (since 

3 3

1 1

0 and 0ij ij
j j

t
= =

= τ =∑ ∑ ) 

Note 
i

D  is not observable for any 1,2,...,i N= . The “true” (overall) mean effect of treatment 

D  is given as D X Y= − . That is, 

                                                           
1 1

1 1N N

i i
i i

D X Y
N N= =

 
= − 
 

∑ ∑    

 

Remark 3.1 

D is the true finite population mean treatment effect of the N  subjects in the study. The 

finite population variance of the true individual treatment effects (denoted
2

D
S ) is 

( )
22

1

1 N

D i
i

S D D
N =

= −∑ . 

 

Remark 3.2 

2
DS  represents the overall individual treatment response variability or overall subject-by-

treatment interaction.  That is, the variability of subjects’ responses on the same treatment that 
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depends on the treatment administered or the extent to which the difference between treatments 

T and C depend on the subject.  

Let id  be the observed treatment effect for the 
thi subject taken over the Square 1 

randomization (R-1). We have that, 

           

( )

( )

( )

1 2
3 3

2 3
1 1

1 3
2 2

                               (for TTC)
2

                                   (for CTT)
2

                     
2

i i i i
i i i i

i i i i
i i i

i i i i
i i i

X t X t
d Y

X t X t
Y

X t X t
Y

+ + + 
= − + τ δ 
 

+ + + 
+ − + τ δ 
 

+ + + 
+ − + τ δ 
 

              (for TCT)

 

( )
3

2 3 1 3 1 2
1 2 3 1 1 2 2 3 3

1

              
2 2 2

i i i i i i
i i i ij i i i i i i i i i

j

t t t t t t
d X Y

=

+ + +     
⇒ = − δ + δ + δ + δ −τ δ −τ δ −τ δ     

     
∑

  

Thus,       ( )
3 3

1 1

  - i i i ij ij ij
j j

d X Y
= =

= − δ α δ∑ ∑  

    ( )
3

1

  -                                i i i ij ij
j

d X Y
=

= − α δ∑  (1.3) 

where  
2

ij

ij ij

t 
α = + τ 

 
  and 

3

1

1ij
j=

δ =∑ . Now, let d be the mean observed effect over all 

subjects. We have that, 

1

1 N

i
i

d d
N =

= ∑ . We also assume that the observed individual response 

variability, denoted 
2
dS , is ( )

22

1

1

1

N

d i
i

S d d
N =

= −
−
∑ . 
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Remark 3.3 

2
dS  is the total observed variability that results from subjects given different treatments at 

different periods of time. Hence, 
2
dS  may be seen as the sum of subject-by-treatment interaction 

and the variability within the subject over time.  

 

Proposition 3.1   

The mean observed treatment effect is an unbiased estimate of the true mean effect.  That is, 

 ( )E d Dδ =  (1.4) 

Proof: 

( ) ( )
1

1 N

i
i

E d E d
N

δ
=

= ∑  

               ( )
3

1 1

1 N

i i ij ij
i j

X Y
N = =

 
= − − α δ 

 
∑ ∑                                          

             ( ) ( )
3

1 1

1
 

N

i i ij ij
i j

X Y E
N = =

 
= − − α δ 

 
∑ ∑  

             ( )
3

1 1

1 1
 

3

N

i i ij
i j

X Y
N = =

 
= − − α 

 
∑ ∑  

             ( )
1

1
 

N

i j
i

X Y
N =

= −∑               

3 3

1 1

since 0 and 0ij ij
j j

t
= =

 
= τ = 

 
∑ ∑  

                D=        � 
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Proposition 3.2 

For each subject, the observe treatment effect variability is not an unbiased estimator of 

the true individual treatment variability. That is, 

2 21
d d IND

N
E S S Bias

N
δ

− 
= + 

 
 

Hence, 
2

d
S  is a biased estimate of 

2

D
S , where 

3
2

2
1 1

1

3

N

IND ij
i j

N
Bias

N = =

−
= α∑∑ , 

2

ij

ij ij

t
α = + τ  and 

INDBias  represents the bias for the design where subjects are independently assigned to 

sequences. 

Proof:  See Appendix B 

 

Remark 3.4 

INDBias  involves only time effect parameters and may be thought to quantify variability 

of treatment responses within subject. That is, the variability that results when the same subject 

is given the same treatment at different periods of time. 

 

Corollary 3.1 

Define 2ij ijt = − τ then, from (1.3), i id D= . That is, the observed treatment effect, id ,  is 

same as the true treatment effect, iD ,  but ijD , defined in Equation (#), is not constant across 

periods because, under this condition, 1 13i i i iD X Y= − − τ , 2 23i i i iD X Y= − − τ , 
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3 33i i i iD X Y= − − τ  and each of these depend on the time effect parameter ijτ . Note, again, that 

3

1

1

3
i ij

j

D D
=

= ∑ . 

A stronger condition exists when ijt  and ijτ  are all equal to zero.  In this case, i id D= , 

2 2

d D
S S=  and iD is the same across periods since, in this case, 1 2 3i i i i iD D D X Y= = = − . 

Next, we turn our attention to the second situation in the analyses of individual treatment 

effect variability for quantitative responses: Equal number of subjects per sequence. 

 

3.2:  Equal Number of Subjects Assigned to Sequence  

In the last section, we dealt with a possible case of unequal number of subjects per 

sequence due to the independent assignment of subjects to sequences. Now, assume that the 

randomization must result in equal number of subjects per sequence. Suppose we assign n 

subjects to each sequence, we would have a total of 3N n=  subjects assigned to the three 

sequences under consideration.  

Total Randomization

� �
# for seq3#  for seq1 #  for seq2

n
 

n

N N n

nn

−     
=      

     �����

 

Furthermore, ( )1/ 3ij Bernoulliδ ∼ .  Thus, ( ) 1 1 / 3ijP δ = =  for all j  and  

 

3N n=    

}

}

}

1 1 2 3

2 2 1 3

3 3 1 2

    1,  0,  0

    1,  0,  0

    1,  0,  0

i

i

i

CTT or

TCT or

TTC or

δ δ = δ = δ =

δ δ = δ = δ =

δ δ = δ = δ =
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For the 
th

i  subject, ( ) 1/ 3ijEδ δ = , 
2( ) ( )ij ijE Eδ δδ = δ  and ( ) 0ij ijE ′δ δ δ =  (for j j′≠ ).  

Now, for ( )i i′≠ , ( ) ( 1,  1)ij i j ij i jE P′ ′ ′ ′δ δ δ = δ = δ =  

                                       ( 1| 1) ( 1)ij i j i jP P′ ′ ′ ′= δ = δ = δ =  

                 

1 1
                   for j = j

1 3
    

1
                   for j j

1 3

n

N

n

N

−  ′  − 
= 
  ′≠  − 

 

 

Proposition 3.3 

For each subject, the observe treatment effect variability is not an unbiased estimator of 

the true individual treatment variability. That is,  

2 21
d D DEP

N
E S S Bias

N
δ

− 
= + 

 
 (1.5) 

Thus,
2
dS  is not an unbiased estimate of 

2
DS   where    

3 3 3 3
2

2
1 1 1 1 1 1 1 1 1

( )  ( )

1 1
( 1)

1 13

N N N N N

DEP ij ij i j ij i j
i j i i j i i j j

i i i i and j j

n n
Bias N

N NN
′ ′ ′

′ ′ ′= = = = = = = = =

′ ′ ′≠ ≠ ≠

 
 −
 = − α − α α − α α

− − 
 
 

∑∑ ∑∑∑ ∑∑∑∑
��������� �����������

 

where 
2

ij
ij ij

t
α τ

 
= + 
 

 and DEPBias  represents the bias for the design where the assignment of 

the next subject to a sequence depends on the previous subject’s assignment.  

Proof:  See Appendix C                                    
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 Corollary 3.2 

  If 2ij ijt = − τ , the conditions in corollary 3.1 also apply here. In general, the observed 

treatment effect variability is biased for the true treatment effect variability.  

 

3.3:  Parameter Estimation 

To proceed further with the estimation of the individual treatment effect variability, we 

use a population of time effects. We make the following assumptions. Let 1 2 3, , )( i i it t tt′ =  and 

1 2 3, , )( i i iτ τ ττ′ = , for 1,2,...,  and 1,2,3.i n j= =  Assume 
1

2

 
i

i

t

t

 
 
 

and 
1

2

i

i

 
 
 

τ

τ
 are independent and 

identically distributed (i.i.d.) 
1 2

2

1

1

t

t

t

ρ µ   
σ    ρµ    

 and 
3 2

4

1

1

τ
τ

τ

ρ µ   
σ    ρµ    

, respectively. Also 

assume, 
1

2

 
i

i

t

t

 
 
 

and 
1

2

i

i

 
 
 

τ

τ
 are jointly independent. We note that ( )3 1 2i i it t t= − +  and 

( )3 1 2i i iτ = − τ + τ . Estimates of the distribution parameters will be derived. 

The variables 1 2 3, ,i i it t t  or 1 2 3, ,i i iτ τ τ  cannot be observed separately. However, certain 

combinations of 1 2 3, , )( i i it t tt′ =  or 1 2 3, , )( i i iτ τ ττ′ =  can be used as estimates of the effect 

parameters. That is, from the combination TTC , we can observe 1 2( )i it t− . Similarly, from the 

data in sequences TCT and CTT, we can observe ( )1 3i it t−  and ( )2 3i it t− , respectively. Upon 

substituting for 3it , they simplify to 1 2( )i it t− , ( )1 22 i it t+ and ( )1 22i it t+  respectively. The 

matrix  
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1 2

1

1 2

2

1 2

1 1

2 1 2

2 2 1

i i

i

i i

i

i i

t t
t

M t t
t

t t

− −   
    = + =     
    +   

  contains only two linear combinations that are linearly 

independent so one can make use of any two of  1 2( )i it t− , ( )1 22i it t+ and ( )1 22 i it t+ . 

Correspondingly, from the data in Square 2 of (R-1), we can observe 1 2( )i iτ − τ , ( )1 22i iτ + τ and 

( )1 22 i iτ + τ . Henceforth, we will omit the “ i ” in expressions like 1 2( )i it t− , 1 2( )i iτ − τ  etc. 

Thus, we have that, 

1 2 1 2( )E t t µ µ− = −  (1.6) 

1 2 1 2( 2 ) 2E t t+ = µ + µ  (1.7) 

1 2 1 2(2 ) 2E t t+ = µ + µ  (1.8) 

where the expectation is taken with respect to the population of time effects given above. Using 

the above equations, we propose the estimates, 1µ̂  and 2µ̂ , corresponding to the population 

means, 1µ  and 2µ , as 1 1 2 1 2

1
ˆ 2( ) ( 2 )

3
t t t t µ = − + +   and  2 1 2 1 2

1
ˆ ( 2 ) ( )

3
t t t t µ = + − −  . 

Similarly we have, ( )3 1 2 1 2

1
ˆ 2 ( 2 )

3
 µ = τ − τ + τ + τ
 

 and 4 1 2 1 2

1
ˆ ( 2 ) ( )

3
 µ = τ + τ − τ − τ  , where 

1 2t t−  and 1 22t t+ , are the means of the observed differences between responses from subjects 

who received treatment T in sequences TTC  and CTT , respectively. Similarly, 1 2τ − τ  and 

1 22τ + τ  are the means for those who received treatment C  in sequences CCT and TCC ,  

respectively. 
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Let  
2 2 2 2

1 2 3 4,  ,  ,  S S S S  be the sample variances of 1 2t t− , 1 22t t+ , 1 2τ − τ  and 1 22τ + τ  

respectively. We observe that, 
2

1 1 2( ) ( )E S Var t t= −  and 
2

2 1 2( ) ( 2 )E S Var t t= + . Similarly, 

2

3 1 2( ) ( )E S Var= τ − τ  and 
2

4 1 2( ) ( 2 )E S Var= τ + τ .  

 

Proposition 3.4 

Let 1 2i i iu t t= −  or simply 1 2u t t= −  and 1 22v t t= + . Assume  1 2, ,...u u   and 1 2, ,...v v  

are . .i i d  with finite fourth moments. Define 
2 2 2

1 2

1
ˆ 2

9
t S S σ = +   and  

2 2 2

3 4

1
ˆ 2

9
S Sτ

 σ = +  . 

Then, 
2ˆ
tσ  and 

2ˆ τσ are unbiased and consistent estimates of 
2

tσ  and 
2

τσ respectively.  

Proof: 

We will show the proof for the formulas involving t . Those with τ  follow in the same manner. 

2

1 1 2( ) ( )E S Var t t= −  

            
2

1 22 2 ( , )t Cov t t= σ −                                                                                     (1.9) 

2

2 1 2( ) ( 2 )E S Var t t= +  

           
2

1 25 4 ( , )t Cov t t= σ +                                                                                    (1.10) 

Hence, by elimination, 

2 2 2

1 2

1
2 ( ) ( )

9
t E S E S σ = +  .  

Similarly, we obtain 
2 2 2

3 4

1
2

9
S Sτ

 σ = +  .  Define 
2 2 2

1 2

1
ˆ 2

9
t S S σ = +   and  

2 2 2

3 4

1
ˆ 2

9
S Sτ

 σ = +  , 

we have that,                                                        



 

 

 35 

( ) ( ) ( )

[ ]

( ) ( )

2 2 2

1 2

1 2 1 2

2 2

1 2 1 2

2

1
ˆ 2

9

1
          2 ( ) ( 2 )

9

1
          2 2 2 ( , ) 5 4 ( , )

9

          

t

t t

t

E E S E S

Var t t Var t t

Cov t t Cov t t

 σ = + 

= − + +

 = σ − + σ + 

= σ

 

Hence, 
2ˆ
tσ

 
is an unbiased estimate of 

2

tσ . Similarly, we can show that 
2ˆ τσ  is unbiased for 

2

τσ . 

Consistency:  Since the fourth moments exists, by using two applications of the weak law of 

large numbers and the continuous mapping theorem, we have that, 

( ) ( )( ) ( )
22 2 2 2

1 1 1 1
1

1
1 var

1

N
P

i N
i

N
S u u E u E u u

N N =

 
= − → − = −  

∑ . 

Thus, ( )2

1 1 2

P
S Var t t→ − .  

Similarly, ( )2

2 1 22
P

S Var t t→ + .  Hence, ( ) ( ) ( )( )2 2

1 2 1 2 1 2, , 2
P

S S Var t t Var t t→ − + .  

Now, let ( )2 2 2

1 2
ˆ ,t g S Sσ = . Also, let, 

2 2:g →� �  be continuous at every point on a set G such 

that, ( )( )2 2

1 2, 1P S S G∈ = . Further applications of continuous mapping theorem and Slutsky 

theorem leads to  

( ) ( ) ( )2 2 2 2

1 2 1 2 1 2

1
ˆ , 2 2

9

P

t tg S S Var t t Var t tσ = → − + + = σ   . That is 
2 2ˆ P

t tσ →σ . Hence, 

2ˆ
tσ  is a consistent estimator of 

2

tσ .  Similar proof for 
2ˆ τσ  can be established.                              � 

 

Corollary 3.3 

From proposition 3.4, we may define estimates of the true correlation values tρ and τρ as  
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2 2

2 1

2 2

2 1

1 2 5
ˆ

2 2
t

S S

S S

 −
ρ =  

+ 
 and 

2 2

4 3

2 2

4 3

2 51
ˆ

2 2

S S

S S
τ

 −
ρ =  

+ 
. We propose that ˆ

tρ and ˆ
τρ  are consistent 

estimates of tρ and τρ respectively. 

Proof: 

Using equations (1.8) and (1.9), we have that 

2 2

1 2 1

1
( , ) ( )

2
tCov t t E S= σ −  

    ( )2 2

2 1

1
2 ( ) 5 ( )

18
E S E S= −  

after substituting 
2

t
σ  from above. Hence,  

1 2

1 2

( , )

( ) ( )
t

Cov t t

Var t Var t
ρ =  = 

2 2

2 1

2 2

2 1

1 2 ( ) 5 ( )

2 ( ) 2 ( )

E S E S

E S E S

 −
 

+ 
 

Define 

2 2

2 1

2 2

2 1

1 2 5
ˆ

2 2
t

S S

S S

 −
ρ =  

+ 
 and 

2 2

4 3

2 2

4 3

2 51
ˆ

2 2

S S

S S
τ

 −
ρ =  

+ 
. From Proposition 3.4, 

( )2

2 1 22
P

S Var t t→ + .  Hence, ( ) ( ) ( )( )2 2

1 2 1 2 1 2, , 2
P

S S Var t t Var t t→ − + .  Assume 

( )2 2

1 2
ˆ ,t h S Sρ = . Let, 

2 2:h →� �  be continuous at every point on a set H such that, 

( )( )2 2

1 2, 1P S S ∈Η = .  Further applications of continuous mapping theorem and Slutsky 

theorem, gives  

( ) ( ) ( )
( ) ( )

2 2
2 2 1 2 1 22 1
1 2 2 2

1 2 1 22 1

2 2 51 2 5 1
ˆ ,

2 2 2 22

P

t t

Var t t Var t tS S
h S S

Var t t Var t tS S

   + − −−
ρ = = → = ρ    + + −+   
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Thus,  ˆ P

t tρ →ρ  and ˆtρ  is a consistent estimator of tρ . The proof for ˆτρ follows in a similar 

manner.                                                                                                                                            � 

 

3.4:  Expected Bias Estimation 

Now find estimates for the bias factor developed in the previous sections are found under 

various situations. 

 

3.4.1:  Bias Estimation for the Case of Unequal Subjects per Sequence 

First consider the case for the bias under the independent assignment of subjects which 

was given as   

3
2

2
1 1

1

3

N

IND ij
i j

N
Bias

N = =

−
= α∑∑  

where   
2

ij

ij ij

t 
α = + τ 

 
 and 1,2,3,...,i N=  is the total number of subjects in the sequences. 

 

Proposition 3.5 

Given the 
1

2

 
t

t

 
 
 

and 
1

2

 
 
 

τ

τ
 are independent and identically distributed 

1 2

2

1

1

t

t

t

ρ µ   
σ    ρµ    

 

and 
3 2

4

1

1

τ
τ

τ

ρ µ   
σ    ρµ    

, respectively,  and assuming 
1

2

 
t

t

 
 
 

and 
1

2

 
 
 

τ

τ
 are jointly independent, we 

propose that, 
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1
( )

6
IND

N
E Bias Q

N

−
=  

where expectation is taken over the distribution of 
1

2

 
t

t

 
 
 

and 
1

2

 
 
 

τ

τ
 and  

( ) ( ) ( ) ( )

( )( )( )

222 2

1 2 1 2 3 4 3 4

1 2 3 4 1 4 2 3

2 4 2 4 4

      2

t tQ τ τ= + ρ σ + + ρ σ + µ + µ − µ µ + µ + µ − µ µ

+ µ + µ µ + µ + µ µ + µ µ
 

Proof: 

( )
2

3

2
1 1

1

23

N
ij

IND ij
i j

tN
E Bias E

N = =

 −
= + τ 

 
∑∑ . 

But,     ( ) ( )
2 23 3 3 3

2

1 1 1 12 4

j j

j j j j
j j j j

t t
E E E E t

= = = =

  
+ τ = + τ + τ       

∑ ∑ ∑ ∑           

                       ( ) ( ) ( ) ( )
2 22 2 2

2 23
3 3 3

1 1 14 4

j

j j j
j j j

t t
E E E E E t E t

= = =

   
= + + τ + τ + τ + τ       
∑ ∑ ∑  

Now,  ( )
3

3 1 2
1

0j
j

t t t t
=

= ⇒ = − +∑  and ( )
3

3 1 2
1

0j
j=

τ = ⇒ τ = − τ + τ∑ . Thus, 

( ) ( ) ( ) ( ) ( )( )( )
2 23 2 2 2

2 22

1 2 1 2 1 2 1 2
1 1 1 1

1

2 4 4

j j

j j j j
j j j j

t t
E E E t t E E E t E t t

= = = =

  
+τ = + + + τ + τ +τ + τ + + τ +τ       

∑ ∑ ∑ ∑  

                        

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
22 2 2 2

2 1 2 1 21
1 1

2

1 1 1 2 2 1 2 2
1

1 1 1 1

4 4 4 2

  

j j
j j

j j
j

E t E t E t E t t E E

E t E t E t E t E t

= =

=

= + + + + τ + τ + τ

+ τ + τ + τ + τ + τ

∑ ∑

∑
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From Section 3.3, ( )2 2 2

11
 tE t = σ + µ and ( ) ( ) 2

1 2 1 2 1 2 1 2, t tE t t Cov t t= + µ µ = ρ σ + µ µ . In 

addition, ( ) ( ) ( ) ( )1 1 1 1 1 1 1 3,E t Cov t E t Eτ = τ + τ = µ µ  (τ ’s and t ’s jointly independent) - this 

relationship applies to other expectations in the formula above. Thus, 

( ) ( ) ( )

( ) ( ) ( )
( )

2
3

2 2 2 2 2

1 2 1 2
1

2 2 2 2 2

3 4 3 4

1 3 2 4 1 4 2 3

2 2 1
 

2 4 4 2

                         2 2 2

                         2

j

j t t t t
j

t
E

=

τ τ τ τ

 
+ τ = σ + µ + σ + µ + ρ σ + µ µ 

 

+ σ + µ + σ + µ + ρ σ + µ µ

+ µ µ + µ µ + µ µ + µ µ

∑

 

                
( ) ( ) ( ) ( )

( )( )( )

222 2

1 2 1 2 3 4

3 4 1 2 3 4 1 4 2 3

1
2 4 2 4

2

       4 2

t t τ τ
= + ρ σ + + ρ σ + µ + µ − µ µ + µ + µ


− µ µ + µ + µ µ + µ + µ µ + µ µ 

  

                
1

2
Q=                                                                                             (1.11) 

where,  

( ) ( ) ( ) ( )

( )( )( )

222 2

1 2 1 2 3 4

3 4 1 2 3 4 1 4 2 3

2 4 2 4

      4 2

t tQ τ τ= + ρ σ + + ρ σ + µ + µ − µ µ + µ + µ

− µ µ + µ + µ µ + µ + µ µ + µ µ
 

We then have, 

     ( )
2

3

2
1 1

1

23

N
ij

IND ij
i j

tN
E Bias E

N = =

 −
= + τ 

 
∑∑  

( ) 2
1

1 1

23

N

IND
i

N
E Bias Q

N =

−
⇒ = ∑  

               
1

6

N
Q

N

−
=                                                 �  



 

 

 40 

Next, the analyses are continued with the bias estimation for the case where the randomization 

should result in equal number of subjects per sequence. 

 

3.4.2:  Bias Estimation for the Case of Equal Number of Subjects per Sequence 

Consider finding the estimate of the expectation of the second bias.  From proposition 

3.3, the bias is given as 

( )
3 3 3 3

2

2
1 1 1 1 1 1 1 1 1

( )  ( )

1 1
1

1 13

N N N N N

DEP ij ij i j ij i j
i j i i j i i j j

i i i i and j j

n n
Bias N

N NN
′ ′ ′ ′

′ ′ ′= = = = = = = = =

′ ′ ′≠ ≠ ≠

 
 −
 = − α − α α − α α

− − 
 
 

∑∑ ∑∑∑ ∑∑∑∑
��������� �����������

 

where 
2

ij

ij ij

t 
α = + τ 

 
 and 3N n=  is the total number of subjects in the three sequences with n  

subjects each. 

 

 

Proposition 3.6 

Given the 
1

2

 
t

t

 
 
 

and 
1

2

 
 
 

τ

τ
 are independent and identically distributed 

1 2

2

1

1

t

t

t

ρ µ   
σ    ρµ    

 

and 
3 2

4

1

1

τ
τ

τ

ρ µ   
σ    ρµ    

, respectively,  and assuming 
1

2

 
t

t

 
 
 

 and 
1

2

 
 
 

τ

τ
 are jointly independent, 

we propose that, 

1
( )

6
DEPE Bias Q=  
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where expectation is taken over the distribution of 
1

2

 
t

t

 
 
 

and 
1

2

 
 
 

τ

τ
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( ) ( ) ( ) ( )

( )( )( )

222 2
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3 4 1 2 3 4 1 4 2 3

2 4 2 4

      4 2
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Proof: 

Let’s define the following quantities as 
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3

1 1 1
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i i j
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1 13
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− 
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where expectation is taken over the distribution of 
1

2

 
t

t

 
 
 

and 
1

2

 
 
 

τ

τ
.  Next, we find the expectation 

of each quantity in the bias statement. Hence,   
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3
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ij
i j
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( )1

2

N N
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−
=                                                                                                             (1.14) 

Finally, 
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Putting (1.13), (1.14) and (1.15) into (1.12) gives 
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Remark 3.6 

From the estimated expected bias formulas above, we observe that 

( ) ( )IND DEPE Bias E Bias≤  for all n values. In addition,  

( ) ( )IND DEP
N
LimE Bias E Bias

→∞
=  because 

1 1

6 6N

N
Lim Q Q

N→∞

− 
= 

 
 since  

1 1
 as N

6 6

N

N

−
→ →∞ . 

 

Earlier, we saw that, the true individual treatment effect variability,
2

DS , cannot be 

measured. Furthermore, the observed treatment effect variability is not unbiased for 
2

DS .  

However, having established the formulas for the expected bias in both situations, in the next 

section, we propose an estimate the true individual treatment effect variability.  

 

3.5:  Estimate of the True Individual Treatment Response Variability 

Consider the case when the subject assignment to treatment is independent. We had that, 

2 21
d D IND

N
E S S Bias

N
δ

− 
= + 

 
. Thus, ( )2 21

D d IND

N
S E S Bias

N
δ

−
= −  . An estimate of 

2

DS , 

denoted 
2ˆ
DS ,  is given as 

2 21 1ˆ ˆ
6

D d

N N
S S Q

N N

− −
= −  

where 
2
dS  is the observed individual treatment response variance and  

( ) ( ) ( ) ( )

( )( )( )

222 2

1 2 1 2 3 4 3 4

1 2 3 4 1 4 2 3

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 4 2 4 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ     2

t tQ τ τ= + ρ σ + + ρ σ + µ + µ − µ µ + µ + µ − µ µ

+ µ + µ µ + µ + µ µ + µ µ
 



 

 

 44 

Remark 3.7 

An estimate for the case of equal number of subjects per sequence is given as 

2 21 1ˆ ˆ
6

D d

N
S S Q

N

−
= −  

where      

( ) ( ) ( ) ( )

( )( )( )

222 2

1 2 1 2 3 4 3 4

1 2 3 4 1 4 2 3

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 4 2 4 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ     2

t tQ τ τ= + ρ σ + + ρ σ + µ + µ − µ µ + µ + µ − µ µ

+ µ + µ µ + µ + µ µ + µ µ
 

In the next, we compare the estimated values with the actual parameters in an illustrated 

example.  The illustrated example puts a normal distribution to the second population type stated 

above. That is, time effect parameters are given a bivariate normal distribution.  

 

3.5.1:  Illustrative Example 1: Estimating the Bias Term 

As an example to compare the actual parameter values with the estimated values, we 

simulated two bivariate normal data of 
1

2

 
t

t

 
 
 

and 
1

2

 
 
 

τ

τ
. Assume  

1

2

5.667 31.333 6.667
 

7.333 6.667 31.333

iidt
N

t

−      
      

− −      
∼  giving 0.213tρ = −  and 

1

2

0.667 7.333 6.167
  

1.333 6.167 7.333

iid
N

τ −      
      τ − −      

∼  producing 0.841τρ = − . The parameter values were 

taken from a previous simulation work on randomization and they are considered known.  1000 

estimates (using the formulas above) were calculated from simulated data sets consisting of 300 

subjects per sequence. Table 3.1 summarizes the findings. 
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     Table 3.1: Comparing True Values and Values from Estimators using 1000 simulated data of    size 

300 

Population Parameter         True Pop. Value *Estimated Mean *Estimated Std dev. 

Mean of 1t                    5.667 5.663 0.387 

Mean of 2t                    -7.333 -7.335 0.272 

Mean of 1τ                   0.667 0.668 0.205 

Mean of 2τ                   -1.333 -1.334 0.113 

Variance of t                31.333 31.340 1.820 

Variance of τ               7.333 7.333 0.507 

Covariance ( )1 2,t t        -6.667 -6.646 2.134 

Covariance ( )1 2,τ τ       -6.167 -6.162 0.630 

Correlation ( )1 2,t t        -0.213 -0.211 0.066 

Correlation ( )1 2,τ τ       -0.841 -0.839 0.039 

Expected bias – Indep. 28.191 28.270 1.602 

Expected bias – Dep. 28.163 28.300 1.604 
     *Estimated mean is the mean of 1000 estimates obtained from simulated data with 300 subjects per sequence.  

      *Estimated Stdev. is standard  deviation of 1000 estimates obtained from simulated data. 

 

Notice the closeness between the estimates and the actual values. In addition, the 

standard errors of the estimates are small. The graphs below further explore the estimated bias 

(for the case of equal subjects per sequence) with increasing sample sizes. Increasing the sample 

size reduces the difference.  
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Figure 3.1: Graph of estimated bias for various sample sizes 

 

Figure 3.2: Graph showing the variance of the estimated bias for various sample sizes 

 

We note that, for increasing sample sizes, the estimated bias approaches the true bias 

value (a). In addition, the variance of the estimated bias approaches zero with increasing sample 

size (b). This illustrates consistency of the bias estimator.   
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Recall that, we analyzed Squares 1 and 2 sequences separately. In the following Section 

3.6, we combine the two analyses and propose an estimate of the overall true individual 

treatment effect variability, which, as expected, consists of the estimates from Squares 1 and 2.  

A note on symbols used here: Estimates with subscripts “1” indicate that they were derived using 

Square 1 sequences; likewise, those with subscripts “2” were are derived using Square 2 

sequences. The estimates from the combined sequences have subscripts “12.” 

 

3.6:  Generalization to all Six Sequences 

It is important to note that, up to this point, we focused on just the three sequences of 

Square 1. Let 1N , 2N , 1D , 2D , 
2

1DS and 
2

2DS denote: the sample sizes, the true finite population 

mean effects and variances of the effects from Squares 1 and 2, respectively. Let 
2

12DS denote the 

true individual treatment effect variability from the two Squares, we have that, 
1

1
11

1 N

i
i

D D
N =

= ∑ , 

2

2
12

1 N

i
i

D D
N =

= ∑ . We define ( )
2

1 2
2

1212
11 2

1 N N

D i
i

S D D
N N

+

=

 
= − 

+   
∑  where  

( )
1 2

12 1 1 2 2
11 2 1 2

1 1N N

i
i

D D N D N D
N N N N

+

=

= = +
+ +

∑ .  Hence, we have  

( )
22 2 2 2 2

1 2 1 1 2 2 1 1 2 212 1 2
1 2 1 2

1 1
D D DS N S N S N D N D N D N D

N N N N

 
= + + + − + 

+ + 
 

We state the plug-in estimate of 
2

12DS  as, 
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( )
22 2 2 2 2

1 2 1 1 2 2 1 1 2 212 1 2
1 2 1 2

1 1ˆ ˆ ˆ
D D DS N S N S N d N d N d N d

N N N N

 
= + + + − + 

+ + 
                  (1.16) 

 

If 1 2 12N N N= =  then ( )
12

2 12

12 1 2
1

1 1

2 2

N

i
i

D D D D
N =

= = +∑ , ( )12 1 2

1

2
d d d= +  

( ) ( )
22 2 2

1 212 1 2

1 1

2 2
D D DS S S D D

 
= + + −  

 and ( ) ( )
22 2 2

1 212 1 2

1 1ˆ ˆ ˆ
2 2

D D DS S S d d
 

= + + −  
 

 

3.7:   Illustrative Example 2: Simulated Blood Pressure Dataset  

The following example is based on equal number of subjects per sequence. Blood 

pressure (a.k.a. arterial pressure) is the force of circulating blood on the walls of blood vessel. 

Blood pressure is one of the four vital signs sensitive to periodic changes and large individual 

variations. The other three are body temperature, pulse or heart rate and respiratory rate. Blood 

pressure can be systolic or diastolic in nature.  For healthy, resting human adults, normal blood 

pressure ranges from a systolic level less than120mmHg (millimeter mercury) to a diastolic level 

less than 80mmHg, often written as 120/80mmHg. In this example, we simulate blood pressure 

(BP in mmHg) data for 1800 patients who received two treatments T and C for high blood 

pressure related disease at different time periods. The BP values are assumed to come from a 

normal distribution. 300 subjects as randomly assigned to each of the six sequences. The Table 

3.2 below shows the result of the randomization reported in the potential outcome format. All 

values are in millimeters mercury (mmHg). The light grey shaded cells show the observed values 

following assignment to the three sequences in Square 1. 
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This example brings into focus our third population: A super – population distribution of 

treatment effects. Initially, we generate bivariate normal blood pressure responses ( ),X Y  to two 

treatments T and C. In addition, we simulated a bivariate normal time effects under three 

different time periods, the third being determined by the other two. Both treatment responses 

were simulated for each of the three periods. Hence, it was possible to compute the actual 

parameter values and compare with estimates derived using the observed data in Squares 1 and 

2. Section 3.7.1 below details the simulated example. 

 

3.7.1:  Detailed Distributional Specifications for Blood Pressure Date 

In this section, we provide the details of the distributional assumptions that produced the 

blood pressure data, summarized on Table 3.2. The distributions used here illustrate the list of 

distributions mentioned in Section 1.4.  

First, we assumed a pair of blood pressure treatment response variables ( ),X Y  have an 

independent and identically distributed bivariate normal distribution with means 

100X mmHgµ =  and 90Y mmHgµ = , variances 
2 29X mmHgσ =  and 

2 25Y mmHgσ = , 

respectively. Let ( ), 2Cov X Y = . That is, 
100 9 2

 
90 2 5

iidX
N

Y

      
      

      
∼ . From the 

distribution of ( ),X Y , we define a “super-population” distribution of individual treatment 

effects D X Y= −  with parameters ( )D E X Yµ = −  and ( )2

D Var X Yσ = − . That is, 

( )
. .

10,10
i i d

D N∼ .   
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Second, from the super-population, we draw a finite random sample of 1800 values with 

finite population mean 9.88D mmHg=  and finite population variance
2 210.62DS mmHg= . We 

note that, the quantitative section of this dissertation in centered on estimating
2

DS .  

 Third, we let the time effects be distributed as such: 
1

2

5 8 1
 

7 1 8

iidt
N

t

      
      
      

∼  and 

1

2

1 5 1
  

2 1 5

iid
N

τ       
      τ       

∼ . Using the values of ( ),X Y  and the time effects, we found the 

potential outcomes for 1800 subjects and the observed outcomes when 300 subjects are assigned 

to each of the six sequences in Squares 1 and 2. The resulting data for Squares 1 is shown on 

Table 3.2 below. 
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Table 3.2: Simulated data of Blood Pressure (BP in mmHg) for 900 subjects with 300 per sequence. The 

light- grey shaded cells are observed data values for corresponding to the sequences. 

 Time Period 1 Time Period 2 Time Period 3 

1x t+  1y τ+  2x t+  2y τ+  3x t+  3y τ+   

Square Seq. Subject       

1 109 92 103 89 85 79 

2 97 89 101 87 88 88 

3 98 90 105 90 86 90 
 * * * * * * * 

TTC * * * * * * * 

298 103 87 100 89 101 83 
 299 99 93 108 91 104 92 

Square 1 

 

300 106 92 109 92 99 83 

301 101 89 104 91 85 92 

302 106 89 110 90 90 83 

303 110 93 110 91 83 89 
 * * * * * * * 

TCT * * * * * * * 

598 98 94 105 93 86 83 

599 107 85 105 84 96 92  

600 108 89 113 94 82 90 

601 110 90 113 93 89 88 

602 103 85 108 88 94 90 

603 106 91 107 95 83 77 
 * * * * * * * 

CTT * * * * * * * 

898 106 90 107 95 87 81 

899 107 92 108 88 85 84 
 

 

900 103 88 101 88 98 94 

 

Using the potential outcome method, the true finite population average 

is 1 9.796mmHgD = with point estimate of 1 9.82mmHgd =  for Square 1 data. For the 

randomizations in Square 2, the true finite population mean is 2 9.958mmHgD = with estimate 

given as 2 9.871mmHgd = .  For the combined dataset of six sequences, the true finite 

population average is 12 9.88mmHgD = with point estimate of 12 9.85mmHgd = .  These 
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estimates give the average increase in blood pressure due to treatment T relative to treatment C. 

These are the finite population mean estimates upon which decisions about the treatment efficacy 

are sometimes based with less consideration of the individual treatment response effect 

variability. Furthermore, the true standard deviation of the individual treatment effect for the BP 

data and its estimate are
12

3.258mmHg DS = and 
12

ˆ 3.692mmHgDS = , respectively. The 

estimated coefficient of variation is 0.375 compared to the actual value of 0.330 for the final 

population. The coefficient of variation represents the proportion of the mean treatment effect to 

the standard deviation of the effects. 

The overall actual finite population mean effect, 12 9.88mmHgD = , is positive and the 

standard deviation is a 37.482% “fraction” of the mean.  If it is important that the treatment 

produces a positive effect for most subjects, then the fraction should be small; otherwise the 

fraction could be bigger in favor of applying the treatment to a large population (Longford, 

1999). 

 

3.8:  A Probability of Negative treatment effect 

Let P−  denote the probability that a subject will experience a “negative” individual 

treatment effect. Suppose the focus is on the effect of treatment T say, then, negative treatment 

effect means D X Y= − < λ , where 0λ ≥  is a threshold value.  That is, for those individual, C 

is more effective relative to T. Assume that D  has a normal distribution with mean Dµ  and 

variance 
2

D
σ . Note that the distribution of D  is determined by the distribution of response 

variables X  and Y which, in this case, are assumed normal.  
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Estimate P−  as 

( )

     = 

    

D
D

D

D

D

P P D

P Z

− = < λ

 λ − µ
< 

σ 

 λ − µ
= Φ  

σ 

 

where D

D

 λ − µ
Φ  

σ 
 is the cumulative standard normal distribution function evaluated at 

D

D

λ − µ

σ
. Assuming the finite population is large and representative enough, we use the finite 

population mean, 12d ,  and variance, 
12

ˆ
DS , as estimates of Dµ  and 

2

D
σ , respectively. That is, 

12 12
ˆˆ ˆ and D D Dd Sµ = σ = . Thus, we estimate P−  by 12

12

ˆ
ˆ

D

d
P

S
−

 λ −
= Φ  

 
 

.  

 

3.8.1:  Illustrative Example 3: Probability of Negative Effect  

Continuing with the analysis of the blood pressure data with 0,λ =  suppose we wish to 

estimate the probability that the true effect of T is less effective in treating hypertension than that 

of C , that is, ( ) ( )0P X Y P D< = < . Using the potential treatment method, the estimated 

probability is given as 

( ) ( )
0 9.85

0 2.67 0.0038
3.692

P P D
Λ

−

− 
= < = Φ = Φ − = 

 

	
, where 0,λ = 12

ˆ 9.85 D dµ = = and 

12
ˆˆ 3.692D DSσ = = . Thus, a randomly selected individual has an estimated probability of 0.0038 
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of being better off on treatment C relative to treatment T. C is estimated to be more effective 

than T for at most 0.38% of the population. If there is a tolerance or threshold probability level, 

we may then decide whether of not T is superior to C. 

 

3.9: Repeated Measure Analyses and Potential Outcome Method 

The Grizzle (1965, 1974) model for two treatments - two periods crossover design could 

be extended to higher design. Here we extend it to the 2 treatments, 3 periods crossover design 

without carryover. With  more than one subject per sequence, the general model for the treatment 

response variable Y  with random subjects within sequence specification – modified form of 

Cross-Over Experiment by Ratkowski et al. (1993, page 60)  and Jones and Kenward (1989) – 

can be written as 

 ( ) ( )ijk j t it ijki k
y S= µ + η + π + θ + θ + ε                                                 (1.17) 

with  

( )ijk ij j tE y = µ = µ + π + θ  

where, 

ijky  is the observed response for the 
th

i  subject in the 
thj period of the 

th
k sequence 

ijµ  is the true mean response for the 
th

i  subject in the 
thj period  

µ  =  an overall mean effect 

( )i k
η =  the random effect due to the 

th
i  subject in the  

th
k sequence; 1,2,3,...,6k = ; 

1,2,3,..., ki n= , kn  being the number of subjects per sequence  
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jπ =  the period effect, 1,2,3j =  

tθ =  the effect of treatment t  

( )itηθ =  the random effect of interaction between the 
th

i  subject and the 
th

t  treatment. 

ijkε = the random experimental error effect of the 
th

i  subject in period j  of sequence 
th

k . 

Assume ( ) ( )20, si k

iid
Nη σ∼ , ( )2( ) 0,it s

iid
N θηθ σ∼  and ( )20,ijk w

iid
Nε σ∼ . Observed 

values at the different periods and sequences (in Square 1) are listed on Table 3.3 below 

Table 3.3: Observed data for GLM model and the potential outcome values for the sequences in Square 

1 

Time Period 1 Time Period 2 Time Period 3 

Sequences GLM POT. OUT GLM POT. OUT GLM POT. OUT 

TTC 11iy  ( )1i iX t+  21iy  ( )2i iX t+  31iy  ( )3i iY + τ  

TCT 12iy  ( )1i iX t+  22iy  ( )2i iY + τ  32iy  ( )3i iX t+  

CTT 13iy  ( )1i iY + τ  23iy  ( )2i iX t+  33iy  ( )3i iX t+  

 

Using the model (1.17) we have that, 

Sequence TTC: 

( ) ( )11 1 1 111 1i ii i
y = µ + η + π + θ + ηθ + ε  

( ) ( )21 2 1 211 1i ii i
y = µ + η + π + θ + ηθ + ε  

( ) ( )31 3 2 311 2i ii i
y = µ + η + π + θ + ηθ + ε  
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Sequence TCT: 

( ) ( )12 1 1 122 1i ii i
y = µ + η + π + θ + ηθ + ε  

( ) ( )22 2 2 222 2i ii i
y = µ + η + π + θ + ηθ + ε  

( ) ( )32 3 1 322 1i ii i
y = µ + η + π + θ + ηθ + ε  

Sequence CTT: 

( ) ( )13 1 2 133 2i ii i
y = µ + η + π + θ + ηθ + ε  

( ) ( )23 2 1 233 1i ii i
y = µ + η + π + θ + ηθ + ε  

( ) ( )33 3 1 333 1i ii i
y = µ + η + π + θ + ηθ + ε  

 

Proposition 3.7 

Given the model (1.17) and the potential outcomes observed data, the difference between 

the least square mean of the treatment effects is an unbiased estimate of the mean of the observed 

treatment effect (hence, an unbiased estimate of the true mean treatment effect). Let 

1 2 3,   and n n n  be the number of subjects in sequences TTC , TCT  and CTT  respectively. We 

assume 1 2 3n n n n= = = . Define 1θ̂  and 2θ̂  as 

( ) ( ) ( )
31 2

11 21 12 32 23 33
1 1 1

1

1 2 3

1ˆ
3 2 2 2

nn n

i i i i i i
i i i

y y y y y y

n n n

= = =

 
+ + + 

 θ = + +
 
  

∑ ∑ ∑
 (1.18) 

and  
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31 2

31 22 13
1 1 1

2

1 2 3

1ˆ
3

nn n

i i i
i i i

y y y

n n n

= = =

 
 
 θ = + +
 
  

∑ ∑ ∑
 (1.19) 

 then, 

1 2
ˆ ˆ dθ − θ =  

where d  is the observed mean treatment effect from the potential outcome method.  

Proof: 

( ) ( ) ( )
31 2

11 21 12 32 23 33
1 1 1

1

1 2 3

1ˆ
3 2 2 2

nn n

i i i i i i
i i i

y y y y y y

n n n

= = =

 
+ + + 

 θ = + +
 
  

∑ ∑ ∑
 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
31 2

1 2 1 3 2 3
1 1 1

1

1 2 3

1ˆ
3 2 2 2

nn n

i i i i i i i i i i i i
i i i

X t X t X t X t X t X t

n n n

′ ′′= = =

 
+ + + + + + + + + 

 ⇒θ = + +
 
  

∑ ∑ ∑
 

( ) ( ) ( )
31 2

2 1 1 3 2 3
1 1 1

1

1 2 3

2 2 2
1ˆ
3 2 2 2

nn n

i i i i i i i i i
i i i

X t t X t t X t t

n n n

= = =

 
+ + + + + + 

 ⇒θ = + +
 
  

∑ ∑ ∑
.  

Similarly,  

( ) ( ) ( )
31 2

3 2 1
1 1 1

2

1 2 3

1ˆ
3

nn n

i i i i i i
i i i

Y Y Y

n n n

= = =

 
+ τ + τ + τ 

 θ = + +
 
  

∑ ∑ ∑
.  

Hence,  
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( ) ( ) ( )
31 2

2 1 1 3 2 3
1 2 3 2 1

1 1 11 2 3

2 2 21 1 1 1ˆ ˆ
3 2 2 2

nn n
i i i i i i i i i

i i i i i i
i i i

X t t X t t X t t
Y Y Y

n n n= = =

 + + + + + +     
θ −θ = − +τ + − +τ + − +τ      

      
∑ ∑ ∑  

( ) ( ) ( )
31 2

2 1 1 3 2 3
1 2 3 2 1

1 1 11 2 3

1 1 1 1ˆ ˆ
3 2 2 2

nn n
i i i i i i

i i i i i i i i i
i i i

t t t t t t
X Y X Y X Y

n n n= = =

 + + +     
θ −θ = − + −τ + − + −τ + − + −τ      

      
∑ ∑ ∑  

Now, 1 2 3n n n n= = =  

( ) ( ) ( )2 1 1 3 2 3
1 2 3 3 2 2 1 1

1 1 1

1 1 1 1ˆ ˆ
3 2 2 2

n n n
i i i i i i

i i i i i i i i i i i i
i i i

t t t t t t
X Y X Y X Y

n n n= = =

+ + +      
θ −θ = − + −τ δ + − + −τ δ + − + −τ δ      

      
∑ ∑ ∑  

( )
3

1 2
1 1 1

1ˆ ˆ
2

n n
ij

i i ij ij
i i j

t
X Y

n = = =

  
⇒θ −θ = − − +τ δ  

  
∑ ∑∑  .       

And from (1.3),  

1 2
1

1ˆ ˆ
n

i
i

d d
n =

θ −θ = =∑                                                                                                                          � 

 

Remark 3.5 

A similar correspondence between estimates of time effects in a repeated measure 

framework and the potential outcome framework was also noted and shown in a numerical 

illustration.  
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3.9.1: Illustrative Example 4: Comparing Potential Outcome with Repeated Measures   

Estimates  

We continue with Example 2 with application of the generalized mixed model (1.17) with 

repeated measures. We obtain 1 9.82mmHgd = , 2 9.87mmHgd = with standard errors of 

0.1722 and 0.2245 for the randomization in Squares 1 and 2 respectively. Furthermore, for the 

combined data, we have 12 9.88mmHgd = with a standard error of 0.1581. Thus, as stated in 

Proposition 3.7, the GLM estimates are equal to the potential outcomes estimates. That is, we 

may think of the PROC GLM or PROC MIXED outputs as estimates of the true population mean 

treatment effects. Furthermore, from the GLM output, the p-value is less than 0.0001, hence, 

there is evidence that X Yµ µ> .  

We also compared the estimates of the linear combination of the time effects parameters 

as explained in Corollary 3.5. Using the potential outcome method on subjects in the first and 

third sequences of Square 1, we have estimates: 1 2 2.127t t
Λ

− = − , 1 3 16.650t t
Λ

− =  and 

2 3 2 12 18.777t t t t
Λ Λ

− = + = . Similarly, for Square 2 we have estimates: 1 2 1.043
Λ

τ − τ = − , 

1 3 3.693
Λ

τ − τ =  and 2 3 4.737
Λ

τ − τ = .  

Using all the sequences in square 1, the estimates of the period contrasts produced by 

GLM are 1 2
ˆ ˆ 2.124π − π = − , 1 3

ˆ ˆ 16.654π − π =  and 2 3
ˆ ˆ 18.779π − π =  with standard error 

0.2812 in all cases. For Square 2, SAS Proc GLM gives estimates: 1 2
ˆ ˆ 0.932π − π = − , 

1 3
ˆ ˆ 3.916π − π =  and 2 3

ˆ ˆ 4.848π − π = , all, with standard error 0.23358.  
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In this chapter and chapter 2, we estimated the true individual treatment effect variability 

and the probability of negative effects for quantitative response variable using the method of 

potential outcomes. The analyses employed the two treatments, two periods and the two 

treatments, three periods randomizations. Furthermore, we compared the potential outcome 

estimates with the usual repeated measures estimates gotten using GLM. In the following 

chapter, we extend our analyses to qualitative response, precisely, the binary response variables. 

We limit the analyses to two treatments, two periods TC – CT and the TC – CT – TT – CC 

designs. For these designs, we will estimate the average treatment effect and the probability of 

negative effect – a component that implicitly reflects the individual treatment effect variability. 

Earlier, we saw that some work had been done these designs by Gadbury et al. (2004). However, 

their analyses assumed “exchangeability.” Initially, we relax the exchangeability assumption and 

later consider it. We show that, when the exchangeability assumption is factored into our 

analyses, the “without – exchangeability” analyses boils down to the analyses presented in the 

paper Gadbury et al. (2004).   
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CHAPTER 4 -  Analysis Using Binary Data 

4.0: Two Treatments, Two Periods with Binary Outcome  

In this chapter, we will base our analyses on two treatments, two periods with a binary 

response. The focus will be on the designs: TC – CT and TC – CT – TT – CC. The first part of 

the analyses will deal with the TC – CT crossover design for which we will estimate the true 

average treatment effect and construct bounds for an inestimable “probability of negative effect.” 

The second part involves the design, TC – CT – TT – CC. That is, some subjects will stay on the 

same treatment over the two periods. Observed responses from these subjects will enable us to 

construct tighter bounds for the probability of a negative effect. The expression of “probability of 

negative effect” carries a connotation of an “unexplained individual treatment variation” 

(Gadbury et al, 2004). An example will be used for illustrations. 

 

4.1:  A Two Treatment Design with Binary Response: One Time Point 

Let X and Y represent the response to treatments T and C  respectively. We let “1” 

denote “success” and “0” denote “failure.”  In addition, let ( ),X Y  be a set of bivariate discrete 

potential outcomes from an infinite population of outcomes. The joint discrete probability 

distribution of ( ),X Y , ( ),  P X x Y y= = , is given as on Table 4.1 below (Gadbury et al., 

2004). 
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Table 4.1: Joint Probability distribution of ( ),x y  

( ),x y
 

( )0,0  ( )0,1  ( )1,0  ( )1,1  Total 

( ),P X x Y y= =  
1ω  2ω  3ω  4ω  

4

1

1i

i=

ω =∑  

 

where ( ),x y  are the observed outcomes of ( ),X Y  and ( ), iP X x Y y= = = ω , ( )1,2,3,4i = , 

is the true probability of ( ),x y  for an individual at a specific time. Since only one of either X or 

Y is measured at a specific time (the fundamental problem of causal inference), [ ]0,1iω ∈  

cannot be directly estimated for 1,2,3,4i =  separately. 

As before, define D X Y= −  as the true treatment (causal) effect. That is, D  expresses 

the actual effect of T relative to C  and note that D is not observable. Let ( )P D  denote the 

probability of D . Note that ( )P D  is a discrete probability distribution. Possible values of D  

and the associated probabilities are listed in Table 4.2 and 4.3 below  

Table 4.2: Possible values of D  

( ),x y
 

( )0,0
 

( )0,1
 

( )1,0
 

( )1,1
 

D X Y= −  0  1−  1  0  

 

For example, 1D = −  means treatment T leads to an unfavorable effect(failure) relative to 

treatment C  at a particular time.  

Table 4.3: Probability of observing D   

D  1−  0  1  

( )P D
 2ω  1 4ω + ω  3ω  
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Remark 4.1.1 

Let ( )1p E X=  and ( )2p E Y=  be the mean of the marginal distributions of X  and Y , 

and note that these are estimable. Then from Table 4.3, ( )1 3 41p P X= = = ω + ω  and 

( )2 2 41p E Y= = = ω + ω . Denote the true average individual treatment effect of T relative to 

C  as ( )E D .  Then, 

( ) 3 2 1 2E D p p= ω − ω = − . 

Note that ( )E D  represents the true mean treatment effect of T relative to C  at a particular 

time.  

For example, ( ) 0.6E D =  could mean several things 

1). 3 20.60  0andω = ω = : That is, 60% of the patients will succeed on T  but fail on C and the 

remaining 40% will either succeed on both T and C or fail on both T and C . 

2). 3 20.65  0.05andω = ω = : That is, 65% of the patients will succeed on T and fail on C , 5%  

will succeed on C  and fail on T and 30% will either succeed on both T and C or fail on both 

T and .C  

3). 3 20.80  0.20andω = ω = : 80% of the patients will succeed on T  and fail on C , 20%  will 

succeed on C  and fail on T  and 0% will either succeed on both T and C or fail on both T and 

.C  

So, if the average treatment effect probability equals 0.60 does not immediately imply C  

is completely ineffective as (1) may suggest. Notice that (3) indicates 20% responded well on C  

and fail on T .  

 



 

 

 64 

Remark 4.1.2 

The variance of the true individual treatment effect is given as 

( ) ( ) ( )

( )

( ) ( )

22

2

2 3 3 2

2 2 3 3 2 3

           

           1 1 2

Var D E D E D= −

= ω + ω − ω − ω

= ω − ω + ω − ω + ω ω

 

( )Var D  cannot be estimated because D  cannot be observed. In this chapter, less focus will be 

placed on ( )Var D  although we will establish bounds for it. Furthermore, we move the analysis 

of ( )Var D  to the appendix section of this dissertation. Instead, we will focus on estimating the 

probability of negative individual treatment effect, ( )0P D <  – a component that results from 

the variability of the individual effect – and the average individual treatment effect of T relative 

to C . In addition, the variance of a discrete distribution, usually, is a function of the mean. 

These make ( )Var D  difficult to interpret.  

In the next section, we present the two treatments, two periods TC – CT crossover design 

for binary outcomes.  Results will be outlined with and without the assumptions of 

“exchangeability.”  

 

4.2: Two Treatments Two Periods: Potential Outcomes and True Probabilities  

The prior section established the potential outcomes framework for a particular time 

point. This section considers two time points periods, so potential outcome variables are in four 

dimensions with ( )1 1,X Y  for time point Period 1 and ( )2 2,X Y  for time point Period 2. Thus, 
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there is a true individual treatment effects for both periods, given by 1 1 1D X Y= −  and 

2 2 2D X Y= − . It will be assumed that the bivariate marginal distribution for each time period 

will be given as in Table 4.4. However, in the 4 – dimensional joint distribution, exchangeability 

of bivariate outcomes may not hold due to time effects. Initially, it is assumed that 

exchangeability does not hold. As stated above, suppose there are two treatments T and C  with 

binary response, Table 4.4 below shows a constructed distribution of all possible potential 

outcomes for a population. 

Table 4.4: Potential outcomes framework and probabilities of two treatments, two periods crossover 

design 

 Period 2  

For an 

Individual ( ) ( )
 

2 2, 0,0
T C

x y =  ( ) ( )
 

2 2, 0,1
T C

x y =  ( ) ( )
 

2 2, 1,0
T C

x y =  ( ) ( )
 

2 2, 1,1
T C

x y =  
Marginal 

Total 

  ( ) ( )
                    

1 1, 0,0
T C

x y =  
11β  12β  13β  14β  1ω  

Per.1 ( ) ( )
  

1 1, 0,1
T C

x y =  
21β  22β  23β  24β  2ω  

( ) ( )
 

1 1, 1,0
T C

x y =  
31β  32β  33β  34β  3ω  

( ) ( )
 

1 1, 1,1
T C

x y =  
41β  42β  4 3β  44β  4ω  

 
Marginal 

Total 1ω  2ω  3ω  4ω  1ω =∑  

 

From Table 4.4, we note that marginal distributions are assumed equal. That is,  

( ) ( )1 1 2 2, ,i i i i iP X x Y y P X x Y y= = = ω = = =  for 1,2,3,4i = . Furthermore,  

( ) ( ) ( ) ( )1 1 2 2, , , , ,ij i i j jP X Y x y X Y x y β = = =   for , 1,2,3,4i j =  is the true joint probability 

of ( )1 1,X Y  outcomes in Period 1 and ( )2 2,X Y  outcomes in Period 2 ( as on Table 4.4). Note 

here that, “ i ” goes with the row outcomes in Period 1 while “ j ” is associated with the columns 
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outcomes in Period 2. So, ijβ  is the actual probability of the 
th

i  outcome in Period 1 and the 
thj  

outcome in Period 2, as given on Table 4.4.  In addition, [ ]0,1ijβ ∈  is inestimable for 

, 1,2,3,4i j = , since we cannot observed both ( )1 1,X Y  and ( )2 2,X Y , simultaneously. For 

example ( ) ( ) ( ) ( )11 1 1 2 2, 0,0 , , 0,0P X Y X Yβ = = =    is the true probability that both treatments 

are ineffective in periods 1 and 2 and ( ) ( ) ( ) ( )23 1 1 2 2, 0,1 , , 1,0P X Y X Yβ = = =    is the true 

probability of succeeding on C and failing on T  in Period 1 and succeeding on T  and on failing 

C  in Period 2. These probabilities cannot be estimated. 

 

Remark 4.2.1 

Additional remarks about Table 4.4: 

1). The true probability of potential outcomes at one period, conditioned on the outcomes at 

another period are the same, regardless of which period is conditioned, as long as the outcomes 

are the same at each period. That is,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 1 1 1 2 2, , , , , , , ,ii
i i i i i i i i

i

P X Y x y X Y x y P X Y x y X Y x y
β

= = = = = =      ω
, 

for 1,2,3,4i = .  

2). Exchangeability occurs when 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2 2 1 1, , , , , , , , , ,ij i i j j i i j j jiP X Y x y X Y x y P X Y x y X Y x y   β = = = = = = = β   
 

 We will reserve the detailed look at the notion of exchangeability for the later part of the 

dissertation. However, it is worthwhile noting that, for , 1,2,3,4i j = : 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 1 1 1 2 2, , , , , , , ,j j i i i i j jP X Y x y X Y x y P X Y x y X Y x y   = = ≠ = =    , 

unless i j= . 

This difference in probabilities suggests a possible time period effect or a dependency of 

outcomes in one period on outcomes in the other. Notice that with the assumption of 

exchangeability, the conditional probability effect is same regardless of the time period the 

treatment is administered.  

 

Marginal Probability 

The distribution of Table 4.4 has been constructed such that, even in the absence of 

exchangeability, the row and column probabilities for an individual in a given period sum to iω  

as presented on the Table 4.4. That is, 
4 4

1 1
ij i ij

j i= =

β = ω = β∑ ∑  and 
4

1

1i
i=

ω =∑ . 

 

Remark 4.2.2 

Having defined the distribution on Table 4.4, in the following sections, we use this 

distribution to study our observed data from the TC – CT (Section 4.3) and the TC – CT – TT – 

CC (Section 4.6) designs. We will express the probabilities of observing a particular outcome as 

a function of the actual probabilities on Table 4.4. Estimates of these estimable probabilities of 

observing an outcome will be found. In the first part of the analyses, we assume exchangeability 

condition does not hold (Section 4.5, 4.7). Later, we assume that it does hold and show that the 

analyses become that presented in Gadbury et al. (2004). 
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4.3:  Potential Outcomes and Probabilities of Observed Outcomes for the TC 

– CT Design  

Consider the two treatments, two periods crossover design.  The observed data will be of 

the form 

           
          1         2

  

1
    

2

Period

T C
Sequence

C T
 

The following schematic diagram illustrates the possible observed outcomes under the TC – CT 

design: 

                                   Sequence                  Period 1             Period 2 

                                       T C                      1 1X =                 2 1Y =    

                                                                   1 0X =                2 0Y =  

 

                                       C T                       1 1Y =                2 1X =  

                                                                    1 0Y =               2 0X =         

       

The options below illustrate the possible probabilities ( ) 1,2,...,4; 1,2ki i kφ = =  for the 
th

i  

observed outcome in the 
th

k  sequence expressed in terms of the true probability values ijβ  on 

Table 4.4. Hereafter, we will label these probabilities of observed data, “Estimable 

Probabilities.” 
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 TC – Sequence (1):  

1.) 

Estimable Probability Potential Outcomes  

 Period 1 Period 2  

( )11 1 20 ,  0P X Yφ = = =  ( )1 1 10 ,  X Y y= =  ( )2 2 2 ,  0X x Y= =  Probability 

 0             0 0           0 11β  

 0             0 1           0 13β  

 0             1 0           0 21β  

 0             1 1            0 23β  

Thus, ( )11 00 1 2 11 13 21 230 ,  0TC P P X Yφ = = = = = β + β + β + β  

2.) 

Estimable Probability Potential Outcomes  

 Period 1 Period 2  

( )12 1 20 ,  1P X Yφ = = =  ( )1 1 10 ,  X Y y= =  ( )2 2 2 ,  1X x Y= =  Probability 

 0             0 0           1 12β  

 0             0 1           1 14β  

 0             1 0           1 22β  

 0             1 1            1 24β  

( )12 01 1 2 12 14 22 240 ,  1TC P P X Yφ = = = = = β + β + β + β  

3.) 

Estimable Probability Potential Outcomes  

 Period 1 Period 2  

( )13 1 21 ,  0P X Yφ = = =  ( )1 1 11 ,  X Y y= =  ( )2 2 2 ,  0X x Y= =  Probability 

 1             0 0           0 31β  

 1             0 1           0 33β  

 1             1 0           0 41β  

 1             1 1            0 43β  

( )13 10 1 2 31 33 41 431 ,  0TC P P X Yφ β β β β= = = = = + + +  
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4.)  

Estimable Probability Potential Outcomes  

 Period 1 Period 2  

( )14 1 21 ,  1P X Yφ = = =  ( )1 1 11 ,  X Y y= =  ( )2 2 2 ,  1X x Y= =  Probability 

 1             0 0           1 32β  

 1             0 1           1 34β  

 1             1 0           1 42β  

 1             1 1            1 44β  

( )14 11 1 2 32 34 42 441 ,  1TC P P X Yφ = = = = = β + β + β + β  

Similarly, for sequence CT, 

CT  – Sequence (2):  

5.) 

Estimable Probability Potential Outcomes  

 Period 1 Period 2  

( )21 2 10 ,  0P X Yφ = = =  ( )1 1 1 ,  0X x Y= =  ( )2 2 20 ,  X Y y= =  Probability 

 0             0 0           0 11β  

 0             0 0           1 12β  

 1             0 0           0 31β  

 1             0 0            1 32β  

( )21 00 2 1 11 12 31 320 ,  0CT P P X Yφ = = = = = β + β + β + β  

6.) 

Estimable Probability Potential Outcomes  

 Period 1 Period 2  

( )22 2 1 X 0 ,  1P Yφ = = =  ( )1 1 1 ,  1X x Y= =  ( )2 2 20 ,  X Y y= =  Probability 

 0             1 0           0 21β  

 0             1 0           1 22β  

 1             1 0           0 41β  

 1             1 0            1 42β  

( )22 10 2 1 21 22 41 42X 0 ,  1CT P P Yφ = = = = = β + β + β + β  
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7.) 

Estimable Probability Potential Outcomes  

 Period 1 Period 2  

( )23 2 1X 1 ,  0P Yφ = = =  ( )1 1 1 ,  0X x Y= =  ( )2 2 21 ,  X Y y= =  Probability 

 0             0 1           0 13β  

 0             0 1           1 14β  

 1             0 1           0 33β  

 1             0 1            1 34β  

( )23 01 2 1 13 14 33 34X 1 ,  0CT P P Yφ = = = = = β + β + β + β  

8.) 

Estimable Probability Potential Outcomes  

 Period 1 Period 2  

( )24 2 1X 1 ,  1P Yφ = = =  ( )1 1 1 ,  1X x Y= =  ( )2 2 21 ,  X Y y= =  Probability 

 0             1 1           0 23β  

 0             1 1           1 24β  

 1             1 1           0 43β  

 1             1 1            1 44β  

( )24 11 2 1 23 24 43 44X 1 ,  1CT P P Yφ = = = = = β + β + β + β  

In summary, the estimable probabilities of the four possible observed outcomes from each 

sequence are 

Sequence (1) TC: 

                            ( )11 00 1 2 11 13 21 230 ,  0TC P P X Yφ = = = = = β + β + β + β               (1.20)    

                                  ( )12 01 1 2 12 14 22 240 ,  1TC P P X Yφ = = = = = β + β + β + β           (1.21) 

                                  ( )13 10 1 2 31 33 41 431 ,  0TC P P X Yφ = = = = = β + β + β + β               (1.22)                             

                             ( )14 11 1 2 32 34 42 441 ,  1TC P P X Yφ = = = = = β + β + β + β                (1.23) 
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Sequence (2) CT: 

                           ( )21 00 2 1 11 12 31 320 ,  0CT P P X Yφ = = = = = β + β + β + β               (1.24)   

                           ( )22 10 2 1 21 22 41 42X 0 ,  1CT P P Yφ = = = = = β + β + β + β                (1.25) 

                                ( )23 01 2 1 13 14 33 34X 1 ,  0CT P P Yφ = = = = = β + β + β + β                (1.26)           

                           ( )24 11 2 1 23 24 43 44X 1 ,  1CT P P Yφ = = = = = β + β + β + β                 (1.27) 

 

Remark 4.3.1 

1.) We note that, 
4

1

1ki
i=

φ =∑  for 1,2k = , [ ]0,1kiφ ∈  since 
4 4 4 4

1 1 1 1

1ki ij i
i i j i= = = =

φ = β = ω =∑ ∑∑ ∑ .  

2.) If arbitrary labeling of the time periods was possible, then, ij jiβ = β  for i j≠  and 

, 1,2,3,4i j = . This would imply exchangeability holds and thus, we can equate probabilities 

from the two sequences. For example, consider the outcome ( )1 21 ,  0X Y= =  in (1.22) above 

and ( )2 1X 1 ,  0Y= =  in (1.26), if exchangeability was possible then 13 31β = β , 34 43β = β  and 

hence, 13 10 01 23TC CTP Pφ = = = φ . This would suggest no sequence effect for the subjects with 

this outcome. But the reverse is not sufficiently true. That is, if 10 01TC CTP P=  does not directly 

imply exchangeability. That is,  

 ( ) ( ) ( )13 31 34 43 13 10 01 23 and TC CTP P
⇒

β = β β = β φ = = = φ
⇐

 

This relationship is true for all other combinations of probabilities involving the two sequences. 

The proof will be outlined later. 
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4.3.1: Analysis of the Estimable Probabilities, kiφ , of the Observed Outcomes 

Here is a more detailed look at the probabilities, ( ) 1,2,...,4; 1,2ki i kφ = = , for the 
th

i  

observed outcome in the 
th

k  sequence expressed in terms of the true or actual probability values 

ijβ  on Table 4.4. The probabilities are given in equations (1.20) through (1.27) above. Below, 

kiφ are expressed in terms of the marginal probabilities, iω  and the actual joint probabilities ijβ , 

for 1,2,...,4;  1,2 and 1,2i j k= = = . Inferences will then be drawn from the established 

relationships after some algebraic manipulations. For example, 

( ) ( )
11 11 13 21 23

1 21 12 23 14

1 1

    

    

φ = β + β + β + β

= ω + β − β + β − β

= ω − ∆

               

from the fact that ( ) ( )1 11 12 13 14 11 13 1 12 14ω = β + β + β + β ⇒ β + β = ω − β + β . Note that 

( ) ( )1 12 21 14 23∆ = β − β + β − β . This derivation involving 1ω  was established using the Period 1 

marginal. We can easily extend it to 2 3 4,   and ω ω ω . Due to the assumption of equality in 

marginals, similar equations, for the two sequences TC and CT, can be found using Period 2 

marginals (that is, column totals in Table 4.4). This is addressed in the following two columns: 

Using time Period 1 marginals in sequence TC      Using time Period 2 marginals in sequence TC 

11 1 1φ = ω − ∆                                         (1.28)        11 1 3φ = ω − ∆                                            (1.29) 

12 2 1φ = ω + ∆                                        (1.30)        12 2 4φ = ω + ∆                                           (1.31) 

13 3 2φ = ω + ∆                                        (1.32)        13 3 3φ = ω + ∆                                           (1.33) 

14 4 2φ = ω − ∆                                        (1.34)        14 4 4φ = ω − ∆                                          (1.35) 
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Using time Period 1 marginals in sequence CT      Using time Period 2 marginals in sequence CT 

21 1 5φ = ω − ∆                                          (1.36)        21 1 7φ = ω − ∆                                          (1.37) 

22 2 6= + ∆φ ω                                          (1.38)        22 2 7φ = ω + ∆                                         (1.39) 

23 3 5φ = ω + ∆                                          (1.40)        23 3 8φ = ω + ∆                                         (1.41) 

24 4 6φ = ω − ∆                                          (1.42)        24 4 8φ = ω − ∆                                         (1.43) 

where, 

( ) ( )1 12 21 14 23∆ = β − β + β − β , ( ) ( )2 43 34 41 32∆ = β − β + β − β , ( ) ( )3 31 13 41 23∆ = β − β + β − β , 

( ) ( )4 24 42 14 32∆ = β − β + β − β , ( ) ( )5 13 31 14 32∆ = β − β + β − β , ( ) ( )6 42 24 41 23∆ = β − β + β − β ,  

( ) ( )7 21 12 41 32∆ = β − β + β − β , ( ) ( )8 34 43 14 23∆ = β − β + β − β . 

 

Remark 4.3.1.1 

From Equations (1.28) through (1.35), there are some noticeable equalities between the 

equations to be considered. For instance, Equations (1.28) and (1.29) imply 1 3 0∆ − ∆ = . 

Similarly, we note that, 1 4 0∆ − ∆ = , 2 3 0∆ − ∆ =  and 2 4 0∆ − ∆ = . For example,  

( ) ( ) ( ) ( )1 3 12 21 14 23 31 13 41 23 1 11 1 11 0∆ − ∆ = β − β + β − β − β − β + β − β = ω − β − ω − β = . 

Furthermore, it can also be showed that, ( ) ( )1 4 2 22 2 22 0∆ − ∆ = ω − β − ω − β = , 

( ) ( )2 3 3 33 3 33 0∆ − ∆ = ω − β − ω − β =  and ( ) ( )2 4 4 44 4 44 0∆ − ∆ = ω − β − ω − β = . Hence, we 

note that, 1 2 3 4 TC∆ = ∆ = ∆ = ∆ = ∆  and, 5 6 7 8 CT∆ = ∆ = ∆ = ∆ = ∆ . Thus, as anticipated, any 

one of the two time period 1 and 2 marginals provides sufficient information about the actual or 
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true probability, iω , from the probabilities of observed outcomes, kiφ . Thus, (1.28) through 

(1.43) simplify to (1.48) through (1.51) given below.   

For sequence TC: 

11 1 TCφ = ω − ∆                                                 (1.44) 

12 2 TCφ = ω + ∆                                                (1.45) 

13 3 TCφ = ω + ∆                                                (1.46) 

14 4 TCφ = ω − ∆                                                (1.47) 

For sequence CT: 

21 1 CTφ = ω − ∆                                                (1.48) 

22 2 CTφ = ω + ∆                                                (1.49) 

23 3 CTφ = ω + ∆                                                (1.50) 

24 4 CTφ = ω − ∆                                               (1.51) 

From various combinations of (1.44) to (1.47) the TC∆  cancels out and we have, for 

sequence TC: 11 12 1 2φ + φ = ω + ω , 11 13 1 3φ + φ = ω + ω , 14 12 4 2φ + φ = ω + ω , 

13 14 3 4φ + φ = ω + ω  and for sequence CT: 21 22 1 2φ + φ = ω + ω , 21 23 1 3φ + φ = ω + ω , 

24 22 4 2φ + φ = ω + ω , 24 23 4 3φ + φ = ω + ω . Thus, linear combinations of iω  are estimable, 

although, separately iω  cannot be estimated even after applying the TC – CT randomization. 

This point is further reinforced by an attempt to calculate iω  using the matrix manipulations 

below.  Thus,  
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11 12 11 121 1

11 13 11 132 2

12 14 12 143 3

13 14 13 144 4

1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

TCA

φ + φ φ + φω ω       
        φ + φ φ + φω ω        = ⇒ =
        φ + φ φ + φω ω
       

φ + φ φ + φω ω        

 

where  

1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

TC CTA A

 
 
 = =
 
 
 

. We note that the matrix TCA  (and hence, CTA ) is not a full-rank 

matrix since the sum 2
nd

 and 3
rd

 columns minus the first equals the 4
th

 column. In addition, the 

Eigen values of TCA  (and hence, CTA ) are 2.000, 1.414, 0.000 and -1.414. Hence, no unique 

solution for iω  exist. In the next section, we derived estimates for the probabilities in Equations 

(1.44) to (1.51). 

 

4.4: Estimations Using Data of Observed Counts from a TC – CT Crossover 

Design 

In a typical TC – CT crossover design, the various possible observed outcomes and 

counts in Period 1 and 2 can be classified into ( ) ( ) ( ) ( )0,0 ,  0,1 ,  1,0 ,  1,1 , where ( ),a b  

indicates response “ a ”  in Period 1 and “ b ”  in  Period 2. In addition, for sequence TC , 

( ) ( )1 2, ,a b x y= . That is, a  represents response to T  in Period 1 and b  denotes response to C  

in Period 2. Meanwhile for sequence CT , ( ) ( )1 2, ,a b y x= . Thus, a  symbolizes response to C  

in Period 1 and b  signifies response to T  in Period 2. 
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 Let 1n •  and 2n •  denote the number of subjects assigned to sequence TC  and CT  

respectively. Also, let 11n , 12n , 13n , 14n , 21n , 22n , 23n , 24n  denote the number of subjects with 

response such that the first subscript correspond to the sequence and the second subscript 

enumerate the four outcomes. For example, 22n  denotes the number of subject that succeeded on 

treatment C in time Period 1 and failed on treatment T in time Period 2, meanwhile, 23n  denotes 

the number of subject that succeeded on treatment T in time Period 2 and failed on treatment C 

in time Period 1.  These counts are illustrated on Table 4.5 below.   

Table 4.5: Standard table of observed counts of responses to treatments in each period in a 2  

treatments, 2 periods crossover design with focus on sequence 

Sequence ( )0 ,  0  ( )0 ,  1  ( )1 ,  0  ( )1 ,  1  
Marginal 

Total 

( )1 TC  
11n  12n  13n  14n  1n •  

( )2 CT  
21n  23n  22n  24n  2n •  

 

Notice the interchange between 22n  and 23n . Here, 22n  is the number of 

( )1 2,y x outcomes where ( )1 21, 0y x= =  and 23n  is the number of ( )1 2,y x outcomes with 

( )1,0 . This interchange was made to match the arrangement of outcomes ( )0,0 , ( )0,1 , ( )1,0  

and ( )1,1 . 

 

Remark 4.4.0 

Note that 
4

1i
ki kn n

=
•=∑  for 1,2,3,4;  1,2i k= = .  Similarly, 

2 4

1 1k i
kin n

= =

=∑∑ , where n  

denoted the total sample size in both sequences. We note that period effect favors one treatment 

over the other when 12 13n n+  is substantially different from 22 23n n+  (Jones and Kenward, 
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1989, p. 93).  Inferentially, period effect, in favor of one treatment, is present when 12 13φ + φ  

differs substantially differs from 22 23φ + φ . We have that, 

( ) ( )

( ) ( )
12 13 1 2 1 2

12 14 22 24 31 33 41 43

0 ,  1 1 ,  0

            

P X Y P X Yφ + φ = = = + = =

= β + β + β + β + β + β + β + β
 

( ) ( )

( ) ( )
22 23 2 1 2 1

21 41 22 42 13 33 14 34

0 ,  1 1 ,  0

            

P X Y P X Yφ + φ = = = + = =

= β + β + β + β + β + β + β + β
 

In the presence of exchangeability, 12 13 22 23φ + φ = φ + φ  and there is no sequence or 

period effect. That is, time periods are randomly labeled. In the coming section, we explore 

methods of estimating the probabilities of the observed outcomes kiφ  for 1,2,3,4; 1,2i k= = .   

 

4.4.1: Maximum Likelihood Estimation of Probabilities Using Observed 

Count Data 

In the previous analysis involving the TC – CT crossover design, we got the estimable 

probabilities , kiφ , for 1,2,3,4; 1,2i k= = .  

We assume ( ) ( )1 2 3 4 1 2 3 4, , , , , ,k k k k k k k kn n n n multinomial φ φ φ φ∼ . The likelihood function of the 

observed data is given as 

( )
2 4

1 2 3 4 1 2 3 4
1 1

, , , | , , , kin

k k k k k k k k ki

k i

L n n n n
= =

φ φ φ φ ∝ φ∏∏     ………………………. ( )∗  
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where  
4

1i
ki kn n

=
•=∑ , for 1,2,3,4;  1,2i k= =  and subject to the constraints: 

4

1
1

1i
i=

φ =∑  
4

2
1

1i
i=

φ =∑ , 

and 12 21 22 11φ = φ + φ − φ , 23 11 13 21φ = φ + φ − φ  - a set of constraints that result from the 

following combinations of probabilities, kiφ , in design TC – CT:  

11 12 21 22φ + φ = φ + φ , 13 14 23 24φ + φ = φ + φ , 11 13 21 23φ + φ = φ + φ  and 12 14 22 24φ + φ = φ + φ  

 The likelihood expression in ( )∗  contains 4 distinct parameters leading to 4 nonlinear 

equations. Solving these equations requires an iterative numerical method subject to 4 

constraints. These 4 nonlinear equations could still be reparameterized with no constraints (as 

will be done in an illustrative example), but then, we would still require an iterative method of 

solution.  Various iterative numerical procedures are available for use. Here, we will use the 

optim package in R for evaluation (www.r-project.org). 

Assume the maximum likelihood estimates of the probabilities kiφ  have been found and 

denote them, ˆ
kiφ , where 1,2,3,4; 1,2i k= = .  We state the following proposition: 

 

 

Proposition 4.4.1 

The average individual effect of treatment T relative to treatmentC , ( )E D , is given as 

( ) ( ) ( )13 23 12 220.5E D = φ + φ − φ + φ    and is estimated by  

( ) ( ) ( )13 23 12 22
ˆ ˆ ˆ ˆ0.5E D

Λ

 = φ + φ − φ + φ
 
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Proof: 

Recall that ( ) 3 2E D = ω − ω .  From equations (1.45) and (1.46) in sequence TC: 

( )3 2 13 12ω − ω = φ − φ . From equations (1.49) and (1.50) in sequence CT: 

( )3 2 23 22ω − ω = φ − φ . Thus, combining the effect from the two sequences, we have that,       

( ) ( ) ( )3 2 13 12 23 220.5E D = ω − ω = φ − φ + φ − φ   .  

( ) ( ) ( )13 12 23 22
ˆ ˆ ˆ ˆ0.5E D

Λ

 ⇒ = φ − φ + φ − φ
 

                                                                                   �                

 

Remark 4.4.1 

( )E D
Λ

 is an estimate of ( )E D - the actual average individual treatment effect of T versus C  - 

in a TC CT− crossover design. ( )E D  expresses the average difference in response for the 

( )1,0  and ( )0,1  outcomes at a particular time point. We now turn our focus to the “probability 

of negative effect.”  

 

4.4.2: Probability of a Negative Effect 

Consider the probability of fairing well on treatment C  relative to treatment T . In this 

case, 0D X Y= − < .  From Table 6, the probability of negative effect is given as 2ω . That is, 

( ) 21P D = − = ω .  From Table 4.4, we have that, ( ) 2 21 22 23 241P D = − = ω = β + β + β + β  

(using Period 1 probabilities) or ( ) 2 12 22 32 421P D = − = ω = β + β + β + β  (using Period 2 

probabilities), where, ( )2 0,  1P X Yω = = = . The expression of probability of negative effect 
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carries a connotation of an “unexplained individual treatment variation” (Gadbury et al, 2004, p. 

173).  Furthermore, it may also provide information on the “possible magnitude of a treatment by 

covariate interaction” (Gadbury et al, 2004, p. 173), and treatment by period interaction, thus 

shedding more light on the extent of the unexplained individual treatment effect variability. 

 

Proposition 4.4.2 

For the TC – CT crossover design, the combined probability of a negative effect, 

( )12 01 1 20 ,  1TC P P X Yφ = = = =  and ( )22 10 2 1X 0 ,  1CT P P Yφ = = = =  is not an unbiased 

estimate of the actual probability of negative effect given as ( )2 0, 1P X Yω = = = .  

Proof: 

From equations (1.45) and (1.50), we have that 

( )( )2 12 220.5 TC CTω = φ + φ − ∆ + ∆                                                                                     (1.52) 

Thus, the probability of observing ( )0,1  is not unbiased for the true probability of ( )0,1  denoted 

2ω .  

 

Remark 4.4.2 

As a consequence of the proposition 4.4.3, we will establish bounds, [ ]1 1,L U , for the true 

probability of negative effect, ( )2 0, 1P X Yω = = = , since it is impossible to estimate 

( )TC CT∆ + ∆  using the TC – CT design.  This statement holds even with the inclusion of 

exchangeability because, then, TC CT∆ = ∆  - as will be shown later - and ( )TC CT∆ + ∆  does not 

cancel out. The next proposition builds on this remark.  
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Proposition 4.4.3 

The bounds for 2ω  using the TC – CT crossover design are 1L  and 1U  such that  

1 2 1L U≤ ω ≤  

where ( ) ( ){ }1 12 22 13 23max 0,  0.5L = φ + φ − φ + φ    and 

( ) ( ) ( ) ( ){ }1 11 21 22 12 14 2412 22min 0.5 ,  0.5U = φ + φ + φ + φ φ + φ + φ + φ        

Proof: 

From Equations (1.44) of sequence TC and (1.48) of sequence CT, we have, 11 12 1 2φ + φ = ω + ω  

and  21 23 1 2φ + φ = ω + ω  respectively. This leads us to the equation, 

( )1 2 11 12 21 230.5ω + ω = φ + φ + φ + φ . Similarly, from Equation (1.46): 14 12 4 2φ + φ = ω + ω , and 

Equation (1.50): 24 23 4 2φ + φ = ω + ω , we have  ( )4 2 14 12 24 230.5ω + ω = φ + φ + φ + φ . 

Hence,  

( ) ( ) ( ) ( ){ }2 11 21 22 12 14 2412 22min 0.5 ,  0.5Uω ≤ = φ + φ + φ + φ φ + φ + φ + φ       . 

Furthermore, we had that  ( ) ( )3 2 13 23 12 220.5ω − ω = φ + φ − φ + φ   . This implies 

( ) ( )2 3 12 13 22 230.5ω = ω + φ − φ + φ − φ    and thus, 

( ) ( ){ }2 12 22 13 23max 0,  0.5Lω ≥ = φ + φ − φ + φ                                                                         � 
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Proposition 4.4.4 

1L  and 1U
 
are identifiable and have M.L.E.s  given as 1L̂  and 1Û where 

( ) ( ){ }1 12 22 13 23
ˆ ˆ ˆ ˆˆ max 0,  0.5L  = φ + φ − φ + φ

 
and 

( ) ( ) ( ) ( ){ }1 11 21 12 22 12 22 14 24
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ min 0.5 ,  0.5U    = φ + φ + φ + φ φ + φ + φ + φ

   
 

where ˆ
kiφ , ( )1,2,3,4 and 1,2i k= =  are MLE estimates of the probabilities kiφ . Furthermore, 

there exists a distribution for which 1L  and 1U  are attained. 

Proof: 

There exists a unique M.L.E for each ˆ
kiφ , 1,2,3,4;  1,2i k= = . Thus, identifiability follows.  

We also note that, 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 11 21 22 12 14 24

11 21 22 11 21 14 24

14 24 12 11 21 14 24

12 22

12

22

min 0.5 ,  0.5

0.5     
     

0.5    

U

if

if

= φ + φ + φ + φ φ + φ + φ + φ      

 φ + φ + φ + φ φ + φ ≤ φ + φ   
= 

φ + φ + φ + φ φ + φ ≥ φ + φ   

 

 

These bounds are attained when the distribution of Table 4.4 leads to probability of observed 

outcomes shown on the Tables 4.6 and 4.7 below. 
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      Table 4.6: A distribution of probabilities of observed 

        outcomes for which the upper bound is be attained 

 

 

 

 

 

 

 

or 

      Table 4.7: A distribution of probabilities of observed 

      outcomes for which the lower bound is be attained 

 

 

 

 

 

 

 

respectively, where ( )1 11 21θ = φ + φ , ( )2 12 22θ = φ + φ , ( )3 13 23θ = φ + φ , ( )4 14 24θ = φ + φ .  

Similarly,  

( ) ( ){ }
( ) ( )

( ) ( ) ( ) ( )

1 12 22 13 23

12 22 13 23

12 13 23 12 22 13 2322

max 0,  0.5

0                                               
   

0.5    

L

if

if

= φ + φ − φ + φ  

 φ + φ ≤ φ + φ
= 

φ + φ − φ + φ φ + φ ≥ φ + φ   

 

and the bounds are attained with a distribution of the forms, 

For an 

Indiv. ( )
    

0,0
T C

 ( )
 

0,1
T C

 ( )
 

1,0
T C

 ( )
 

1,1
T C

 

( )
    

0,0
T C

 0 0 0 0 

( )
 

0,1
T C

 0 20.5θ  0 0 

( )
 

1,0
T C

 0 0 30.5θ  0 

( )
 

1,1
T C

 0 0 0 40.5θ  

For an 

Indiv. ( )
    

0,0
T C

 
( )

 

0,1
T C

 
( )

 

1,0
T C

 
( )

 

1,1
T C

 

( )
    

0,0
T C

 10.5θ  0  0 0 

( )
 

0,1
T C

 0 20.5θ  0 0 

( )
 

1,0
T C

 0 0 30.5θ  0 

( )
 

1,1
T C

 0 0 0 0 
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      Table 4.8: A distribution of probabilities of observed outcomes  

      for which the lower bound is be attained. 

       

   

 

 

 

 

or  

 

      Table 4.9: A distribution of probabilities of observed outcomes 
      for which the lower bound is be attained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively.                                                                                                                               � 

 We continue the analyses with the examination of the concept of exchangeability. We 

define certain criteria which will be useful, subsequently. Later in the analyses, we impose the 

exchangeability assumption and investigate the impact on the conclusions already reached. 

 

 

For an 

Indiv. ( )
    

0,0
T C

 
( )

 

0,1
T C

 
( )

 

1,0
T C

 
( )

 

1,1
T C

 

( )
    

0,0
T C

 
( )1 20.5 θ +θ  0 0 0 

( )
 

0,1
T C

 0 20.5θ  0 0 

( )
 

1,0
T C

 0 0 ( )3 20.5 θ − θ  0 

( )
 

1,1
T C

 0 0 0 40.5θ  

For an 

Indiv. ( )
    

0,0
T C

 
( )

 

0,1
T C

 
( )

 

1,0
T C

 
( )

 

1,1
T C

 

( )
    

0,0
T C

 40.5θ  0  0 0 

( )
 

0,1
T C

 0 30.5θ  0 0 

( )
 

1,0
T C

 0 0 ( )2 30.5 θ − θ  0 

( )
 

1,1
T C

 0 0 0 ( )1 30.5 θ +θ  
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4.5: Exchangeability 

The notion of exchangeability can be explained in terms of the true probabilities ijβ  and 

estimable probabilities, kiφ , from the observed data, where , 1,2,3,4;  1,2i j k= = .  

First, exchangeability occurs when ij jiβ = β . Until now, we have assumed that exchangeability 

does not hold, that is, ij jiβ ≠ β  for i j≠  and , 1,2,3,4i j =  in Table 4.4.  

As a consequence of ij jiβ = β ,  we have exchangeability in the observed outcomes. That 

is, ki k i′φ = φ  for 1,2,3,4i =  and ( ), 1,2k k k k′ ′= ≠ . That is, if ij jiβ = β , then 

11 21 12 22,  ,φ = φ φ = φ  13 23 14 24 and φ = φ φ = φ .  

 In general, exchangeability may not be reasonable in a two – time period design. This is 

especially true in the presence of carryover and/or correlation between the outcomes in the first 

and second periods for a given treatment. The absence of exchangeability emphasizes the 

presence of time period effect. However, Gadbury et al. (2004) showed that exchangeability is 

reasonable with matched pairs because it is reasonable to assume subjects 1 and 2 within a pair 

are randomly labeled.  But applying this assumption to a two treatment, two periods crossover 

design would suggest the periods are randomly labeled.  
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4.5.1: Definition of Some Criteria 

Define the following criteria: 

1). periods - TC - perfect match if ( )1 1,x y and ( )2 2,x y are such that 1 2x x=  and 1 2y y= . From 

Table 4.4, the various combinations of outcomes are: 

 ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 0,0 , 0,0x y x y = , ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 0,1 , 0,1x y x y = , 

( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 1,0 , 1,0x y x y = and ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 1,1 , 1,1x y x y = . 

The actual probabilities associated with these combinations of outcomes are 11β , 22β , 33β , 44β , 

respectively. These are the diagonal probabilities in Table 4.4. 

2). periods - TC - perfect mismatch if ( )1 1,x y and ( )2 2,x y are such that 1 2x x≠  and 1 2y y≠ . 

Combinations of outcomes in this domain include: 

 ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 0,1 , 1,0x y x y = , ( ) ( ){ }1,0 , 0,1 , ( ) ( ){ }0,0 , 1,1 and ( ) ( ){ }1,1 , 0,0 . These 

constitute the outcomes with cross-diagonal ( )↗  probabilities in Table 4.4. 

3). periods - T - match if ( )1 1,x y and ( )2 2,x y are such that 1 2x x=  and 1 2y y≠ . The following 

combinations of outcomes under this definition include: 

( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 0,1 , 0,0x y x y = , ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 0,0 , 0,1x y x y = , 

( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 1,0 , 1,1x y x y =  and ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 1,1 , 1,0x y x y = . 

4). periods - C - match if ( )1 1,x y and ( )2 2,x y are such that 1 2x x≠  and 1 2y y= . The following 

combinations of outcomes fall under this category:  

( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 0,0 , 1,0x y x y = , ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 1,0 , 0,0x y x y = ,    

( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 0,1 , 1,1x y x y =  and ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 1,1 , 0,1x y x y = . 
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Proposition 4.5.1 

Consider the true probabilities given on Table 4.4.  

If exchangeability holds (i.e. ij jiβ = β ), then ki k i′φ = φ  for , 1,2,3,4i j =  and
 

( ), 1,2k k k k′ ′= ≠ . 

Assume that the “periods - TC - perfect match” and “periods - TC - perfect mismatch” 

probabilities are zero. If ki k i′φ = φ  then exchangeability holds and we obtain ij jiβ = β . 

Proof: 

We will show the proof for one probability expression, 13 23φ = φ . The others follow likewise.  

 If ij jiβ = β   (for i j≠  and , 1,2,3,4i j = ), then from Table 4.4 and equations (1.19) to (1.26),  

we will have, for the first case, 

 

( )

( )

( )

13 10 1 2

31 33 41 43

13 33 14 34

10

2 1

23

1 ,  0

                 

                   since 

                 

                 1 ,  0

                 

TC

ij ji

CT

P P X Y

P

P X Y

φ = = = =

= β + β + β + β

= β + β + β + β β = β

=

= = =

= φ

 

This is true for all other combinations of probabilities. Hence, 12 01 10 22TC CTP Pφ = = = φ , 

14 11 11 24TC CTP Pφ = = = φ  and 11 00 00 21TC CTP Pφ = = = φ . 

If we assume “periods - TC - perfect match” and “periods - TC - perfect mismatch” 

probabilities are zero, then the diagonal and cross-diagonal ( )↗  probabilities are zero. That is, 

11 0β = , 22 0β = , 33 0β = , 44 0β = , 14 0β = , 23 0β = , 32 0β = , 41 0β = . Thus, Table 4.4 

becomes Table 4.8 shown below.  
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   Table 4.10: Probabilities of potential Outcomes for two treatments, two periods crossover design     

showing zero values for periods - TC - perfect match and periods - TC - perfect mismatch  

 Period 2  

For an 

Individual ( )
    

0 ,  0
T C

 ( )
    

0 ,  1
T C

 ( )
    

1 ,  0
T C

 ( )
    

1 ,  1
T C

 
Marginal 

Total 

 ( )
    

0 ,  0
T C

 0  12β  13β  0  1ω  

Period 

1 ( )
    

0 ,  1
T C

 
21β  0  0  24β  2ω  

( )
    

1 ,  0
T C

 
31β  0  0  34β  3ω  

( )
    

1 ,  1
T C

 0  42β  43β  0  4ω  

 
Marginal 

Total 1ω  2ω  3ω  4ω  

4

1

1i
i=

ω =∑  

 

Equating the marginals, iω , on Table 14, we have the following equations 

12 13 21 31β + β = β + β  (1.53) 

21 24 12 42β + β = β + β  (1.54) 

31 34 13 43β + β = β + β  (1.55) 

42 43 24 34β + β = β + β  (1.56) 

 

Now, from (1.19) and (1.25), we had that  

( )

( )
13 10 1 2 31 33 41 43

31 43 33 41

1 ,  0

                                                       since 0,  0

TC P P X Yφ = = = = = β + β + β + β

= β + β β = β =
 

( )23 01 2 1 13 14 33 34

13 34

X 1 ,  0

                                                    

CT P P Yφ = = = = = β + β + β + β

= β + β
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So, if we assume 13 10 10 23TC CTP Pφ = = = θ , then,  

                                                31 43 13 34β + β = β + β  (1.57) 

But from Equation (1.56), 34 13 43 31β = β + β − β . Substituting into (1.58) and simplifying gives  

                                                    31 13 13 312 2β = β ⇒ β = β  (1.58) 

We can repeat the process for other probability expressions and obtain 12 21β = β , 14 41β = β , 

24 42β = β  and 34 43β = β . Thus, ij jiβ = β  for , 1,2,3,4i j = .                                                        � 

 

From the above proposition, we note that, exchangeability in the observed probability is a 

necessary but not a sufficient condition for exchangeability in the true probability. That is, 

exchangeability in the observed outcome is necessary for the actual exchangeability. But by 

itself, observed exchangeability is not sufficient. In symbols, ( ) ( )ij ji ki k i′

⇒
β = β φ = φ

⇐
. 

 

Remark 4.5.1 

So far, we have looked at analyses of the TC – CT crossover design. We were able to 

express the probabilities of the observed outcomes, kiφ , in terms of the true or actual 

probabilities. Furthermore, we estimated the probabilities, kiφ , using observed count data. In 

addition, we constructed bounds for the probability of negative effect, 2ω , denoted [ ]1 1,L U . We 

note that, using the equation ( )( )2 12 220.5 TC CTω = φ + φ − ∆ + ∆ , a new – and hopefully, tighter 

– bounds, [ ]2 2,L U , for 2ω  can be found by first constructing bounds for ( )TC CT∆ + ∆  using 

information gained from additional analyses of the TT – CC design. Such bounds for 
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( )TC CT∆ + ∆  will also be useful in the construction of bounds for the true variance of the 

individual treatment effect, ( )Var D (see Appendix 4). Hereafter, we proceed with the analysis of 

an additional design:  TC – CT – TT – CC. Notice this is just an extension of the TC – CT 

crossover. 

 

4.6:  Potential Outcomes and Probabilities of Observed Outcomes for the TC 

– CT – TT –  CC Design  

             Suppose some patients are allowed to stay on the same treatment over the two periods 

resulting in the TT – CC. The new TC – CT – TT – CC design is an extension of the TC – CT 

crossover design. The randomization is of the form 

           
          1         2

  

1
    

2

Period

T C
Sequence

C T
      

           
          1         2

  

1
    

2

Period

T T
Sequence

C C
 

Consider the following schematic diagram illustrates the observed possible outcomes under the 

TC – CT design: 

                                   Sequence                  Period 1             Period 2 

                                       T C (1)                 1 1X =                2 1Y =    

                                                                   1 0X =                2 0Y =  

 

                                       C T (2)                 1 1Y =                 2 1X =  

                                                                    1 0Y =                2 0X =               

 

                                       T T (3)                 1 1X =                2 1X =  

                                                                    1 0X =               2 0X =               
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                                       C C (4)                  1 1Y =                2 1Y =  

                                                                     1 0Y =               2 0Y =             

 

Earlier, we analyzed the probabilities of observed outcomes obtained using the TC – CT design. 

Below, we present the possible options for these probabilities for the TT – CC design.  

TT  – Sequence (3): 

Estimable Probability Potential Outcomes  

 Period 1 Period 2  

( )31 1 20 ,  X 0P Xφ = = =  ( )1 1 10 ,  X Y y= =  ( )2 2 20,  X Y y= =  Probability 

 0             0 0           0 11β  

 0             0 0           1 12β  

 0             1 0           0 21β  

 0             1 0           1 22β  

That is, ( )31 01 1 2 11 12 21 220 ,  X 0TT P P Xφ = = = = = β + β + β + β  

Similar breakdown results in the following probabilities for the respective observed outcomes: 

Sequence (3) TT: 

                            ( )31 01 1 2 11 12 21 220 ,  X 0TT P P Xφ = = = = = β + β + β + β                 (1.59)              

                               ( )32 01 1 2 13 14 23 240 ,  X 1TT P P Xφ = = = = = β + β + β + β                    (1.60) 

                              ( )33 10 1 2 31 41 32 421 ,  X 0TT P P Xφ = = = = = β + β + β + β                     (1.61)                                               

                             ( )34 11 1 2 33 34 43 441 ,  X 1TT P P Xφ = = = = = β + β + β + β                      (1.62) 

Sequence (4) CC:            

 ( )41 00 1 2 11 13 31 330 ,  0CC P P Y Yφ = = = = = β + β + β + β  (1.63)                                     

 ( )42 01 1 2 12 32 14 340 ,  1CT P P Y Yφ = = = = = β + β + β + β  (1.64)             

 ( )43 10 1 2 21 23 41 431 ,  0CC P P Y Yφ = = = = = β + β + β + β  (1.65)       
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       ( )44 11 1 2 22 24 42 441 ,  1CC P P Y Yφ = = = = = β + β + β + β  (1.66) 

From Equation (1.59) through (1.66) we infer the certain combinations, we express the following 

combination of probabilities: 31 32 1 2φ + φ = ω + ω , 31 33 1 3φ + φ = ω + ω , 34 33 3 4φ + φ = ω + ω , 

34 32 2 4φ + φ = ω + ω , 41 42 1 2φ + φ = ω + ω , 41 43 1 3φ + φ = ω + ω , 44 43 3 4φ + φ = ω + ω , 

44 42 3 4φ + φ = ω + ω . The following proposition gives bounds for the TC CT∆ + ∆  involving 

estimable probabilities in the TC – CT – TT – CC design. 

 

Proposition 4.6.1 

Under the framework established above, ( ) ( ){ }31 34 41 44min 1 ,1TC CT∆ + ∆ ≤ − φ + φ − φ + φ , 

where 12φ , 22φ , 31φ , 34φ , 41φ  and 44φ  are as given above. 

Proof: 

Recall that ( )31 1 20 ,  X 0P Xφ = = = , ( )34 1 21 ,  X 1P Xφ = = = , ( )41 1 20 ,  0P Y Yφ = = =  

and ( )44 1 21 ,  1P Y Yφ = = = . In addition, we saw that,  

( ) ( )1 12 21 14 23∆ = β − β + β − β , ( ) ( )2 43 34 41 32∆ = β − β + β − β , ( ) ( )3 31 13 41 23∆ = β − β + β − β , 

( ) ( )4 24 42 14 32∆ = β − β + β − β , ( ) ( )5 13 31 14 32∆ = β − β + β − β , ( ) ( )6 42 24 41 23∆ = β − β + β − β ,  

( ) ( )7 21 12 41 32∆ = β − β + β − β , ( ) ( )8 34 43 14 23∆ = β − β + β − β . Furthermore, we showed that 

 1 2 3 4 TC∆ = ∆ = ∆ = ∆ = ∆  and 5 6 7 8 CT∆ = ∆ = ∆ = ∆ = ∆ .  

Consider the 1 7 and ∆ ∆ combination. 

  

( ) ( )

1 7

14 23 41 32

14 41 23 32

               

               

TC CT∆ + ∆ = ∆ + ∆

= β − β + β − β

= β + β − β + β
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Note that, the expression, ( ) ( )14 41 23 32β + β − β + β  involve perfect – TC – mismatch 

probabilities, 14β , 41β , 23β  and 32β  corresponding to ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 0,0 , 1,1x y x y = , 

( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 1,1 , 0,0x y x y = , ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 0,1 , 1,0x y x y = , and 

( ) ( ){ } ( ) ( ){ }1 1 2 2, , , 1,0 , 0,1x y x y = , respectively. Furthermore, using the principle of triangle 

inequality, we have ( ) ( )14 41 23 32TC CT∆ + ∆ ≤ β + β + β + β . But,  

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

14 41 23 32 1 2 3 4 11 12 13 21 22 24

31 33 34 42 43 44

11 12 21 22

                                                                      

                                   1

β + β + β + β = ω + ω + ω + ω − β + β + β − β + β + β

− β + β + β − β + β + β

≤ − β + β + β + β + β( )

( ) ( )

( )

33 34 43 44

1 2 1 2

31 34

                                   1 0 ,  X 0 1 ,  X 1

                                   1

P X P X

+ β + β + β  

= − = = + = =  

= − φ + φ

 

Thus, ( ) ( ) ( )14 41 23 32 31 341β + β + β + β ≤ − φ + φ .  Similarly,  

( ) ( ) ( ) ( )

( ) ( )

( )

14 41 23 32 11 13 31 33 22 24 42 44

1 2 1 2

41 44

1

                                   1 0 ,  Y 0 1 , 1

                                   1

P Y P Y Y

β + β + β + β ≤ − β + β + β + β + β + β + β + β  

= − = = + = =  

= − φ + φ

 

Hence, ( ) ( ) ( )14 41 23 32 41 441β + β + β + β ≤ − φ + φ . Combining gives 

 ( ) ( ){ }31 34 41 44min 1 ,1TC CT∆ + ∆ ≤ − φ + φ − φ + φ                                                         (1.67)    � 

 

Remark 4.6.1 

The proof above uses the 1 7 and TC CT∆ = ∆ ∆ = ∆  combination although 

1 2 3 4 TC∆ = ∆ = ∆ = ∆ = ∆  and that 5 6 7 8 CT∆ = ∆ = ∆ = ∆ = ∆ . Other possible combinations 

like 2 8 3 5 4 6 and ;  and ;  and ∆ ∆ ∆ ∆ ∆ ∆  will produce the same results with varied degree of 
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analysis. Equation (1.67) gives bounds for TC CT∆ + ∆ . These bounds will now be used to 

construct, hopefully tighter, bounds for the probability of negative effect 2ω  and (in Appendix 

D) the true variance individual treatment effects, ( )Var D   

 

Proposition 4.6.2 

Given that  ( ) ( ){ }31 34 41 44min 1 ,1TC CT∆ + ∆ ≤ − φ + φ − φ + φ , a refined set of bounds for 2ω is 

2 2 2L U≤ ω ≤
 

where, ( ) ( ) ( ){ }{ }2 12 22 31 34 41 44max 0,0.5 min 1 ,1L  = φ + φ − − φ + φ − φ + φ   and 

 ( ) ( ) ( ){ }2 12 22 31 34 41 440.5 min 1 ,1U  = φ + φ + − φ + φ − φ + φ  . 

Proof: 

( ) ( ){ }31 34 41 44min 1 ,1TC CT∆ + ∆ ≤ − φ + φ − φ + φ

( ) ( ){ } ( ) ( ) ( ){ }31 34 41 44 31 34 41 44min 1 ,1 min 1 ,1TC CT⇒ − − φ + φ − φ + φ ≤ ∆ + ∆ ≤ − φ + φ − φ + φ

 

But we showed that ( )( )2 12 220.5 TC CTω = φ + φ − ∆ + ∆ . Thus,  

( ) ( ) ( ){ }

( )( )

( ) ( ) ( ){ }

12 22 31 34 41 44

12 22

12 22 31 34 41 44

0.5 min 1 ,1

                    0.5

0.5 min 1 ,1

TC CT

 φ + φ − − φ + φ − φ + φ 

≤ φ + φ − ∆ + ∆ ≤

 φ + φ + − φ + φ − φ + φ 

 

2 2 2L U⇒ ≤ ω ≤ , 

where, ( ) ( ) ( ){ }{ }2 12 22 31 34 41 44max 0,0.5 min 1 ,1L  = φ + φ − − φ + φ − φ + φ   and 

 ( ) ( ) ( ){ }2 12 22 31 34 41 440.5 min 1 ,1U  = φ + φ + − φ + φ − φ + φ                                                     � 
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Proposition 4.6.3 (See Appendix D) 

 

         Consider an extended data of observed counts on Table 4.11 shown below. 

Table 4.11: Standard table of observed counts of responses to treatments in each 

 period in a 2 treatments, 2 periods crossover design with focus on sequence 

Sequence ( )0 ,  0  ( )0 ,  1  ( )1 ,  0  ( )1 ,  1  
Marginal 

Total 

( )1 TC  
11n  12n  13n  14n  1n •  

( )2 CT  
21n  23n  

2 2n  
24n  2n •  

( )3 TT  
31n  32n  

3 3n  34n  3n •  

( )4 CC  
41n  42n  

4 3n  44n  4n •  

 

Estimating kiφ for the TC – CT – TT – CC design follows the same pattern involving iterative 

numerical evaluations. Consider the likelihood function for the TC – CT – TT – CC as developed 

below. 

Assume ( ) ( )1 2 3 4 1 2 3 4, , , , , ,k k k k k k k kn n n n multinomial φ φ φ φ∼  for , 1,2,3,4i k = . The likelihood 

function is  

( )
4 4

1 2 3 4 1 2 3 4
1 1

, , , | , , , kin

k k k k k k k k ki

k i

L n n n n
= =

φ φ φ φ ∝ φ∏∏     ………………………. ( )∗∗  

where  
4

1i
ki kn n

=
•=∑ , for 1,2,3,4;  1,2i k= =  and subject to the two constraints:  

4

1
1

1i
i=

φ =∑ , 
4

2
1

1i
i=

φ =∑ , 
4

3
1

1i
i=

φ =∑  and 
4

4
1

1i
i=

φ =∑ . Other constraints are 12 21 22 11φ = φ + φ − φ , 

23 11 13 21φ = φ + φ − φ , 32 11 12 31φ = φ + φ − φ  and 42 21 23 41φ = φ + φ − φ  - restrictions that result 

from the following combinations of probabilities in observed outcomes for design TC – CT – TT 

– CC.  
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Thus, the likelihood function ( )∗∗  contains 8 distinct parameters leading to solving a system of 

8 nonlinear equations with 8 constraints. Further we may reparameterize into a system of 8 

nonlinear equations without constraints. However, like before, their solutions would require an 

iterative numerical method. Assuming estimates of kiφ , denoted ˆ
kiφ , can be found, we proceed 

with stating estimates for the bounds. An estimate of the bounds, [ ]2 2,L U , for 2ω  is given as 

2 2
ˆ ˆ,L U 

  , where, ( ) ( ) ( ){ }( )2 12 22 31 34 41 44
ˆ ˆ ˆ ˆ ˆ ˆˆ max 0,0.5 min 1 ,1L  = φ + φ − − φ + φ − φ + φ

 
 

 and ( ) ( ) ( ){ }2 12 22 31 34 41 44
ˆ ˆ ˆ ˆ ˆ ˆˆ 0.5 min 1 ,1U  = φ + φ + − φ + φ − φ + φ

 
.  

 

4.7: Analyses with the Assumption of Exchangeability 

So far, our analyses have been based on the fact that exchangeability does not hold. In the 

following sections, we assume exchangeability and investigate the impact on the analyses this 

far. The analyses involving exchangeability has been dealt with in Gadbury et al. (2004).  In the 

following sections, we will explain the transition from the analyses without exchangeability and 

restate (where necessary and without proofs) the key results from the Gadbury et al. (2004) 

paper. As a consequence of exchangeability, equations (1.48) through (1.51) become   

1 1φ = ω − ∆                                                 (1.68) 

2 2φ = ω + ∆                                                (1.69) 

3 3φ = ω + ∆                                                (1.70) 

4 4φ = ω − ∆                                                (1.71) 
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where i ki k i′φ = φ = φ  for 1,2,3,4;  1,2i k k′= ≠ =  - for instance 1 11 21φ = φ = φ , 2 12 22φ = φ = φ , 

3 11 23φ = φ = φ  -  and thus, 14 23TC CT∆ = ∆ = ∆ = β − β . From equations (1.69) through 

(1.72), we have the following adaptations. 

 

4.7.1: Bounds for the Probability of Negative Effect with Exchangeability 

           Earlier, we saw that [ ]2 1 1,L Uω ∈  where ( ) ( ){ }1 12 22 13 23max 0,  0.5L = φ + φ − φ + φ    

and ( ) ( ) ( ) ( ){ }1 11 21 22 12 14 2412 22min 0.5 ,  0.5U = φ + φ + φ + φ φ + φ + φ + φ       . With the 

assumption of exchangeability, 11 21 1φ = φ = θ , 12 22 2φ = φ = θ , 13 23 3φ = φ = θ  and 

14 24 4φ = φ = θ  where the , 1,2,3,4i iθ =  are used as in Gadbury et al. (2004).  Note that 

( )1 1 20 ,  Y 0P Xθ = = = , ( )2 1 20 ,  Y 1P Xθ = = = , ( )3 1 21 ,  Y 0P Xθ = = =  and 

( )4 1 21 ,  Y 1P Xθ = = =  for the TC – CT crossover design and ( )31 1 20 ,  X 0P Xφ = = = , 

( )34 1 21 ,  X 1P Xφ = = = , ( )41 1 20 ,  0P Y Yφ = = =  and ( )44 1 21 ,  1P Y Yφ = = =  for the 

additional TT – CC design.  Thus, 1 1 and L U  become 1 1,E E
L U    where  

[ ]{ } { }1 2 3 2 3 1max 0,  0.5 2 2 max 0,  E
L L= θ − θ = θ − θ =  and 

( ) ( ){ } { }1 1 2 2 4 1 2 2 4 2min 0.5 2 2 ,  0.5 2 2 min ,  EU U= θ + θ θ + θ = θ + θ θ + θ = .  

Thus, { }1 2 3max 0,  E
L = θ − θ  and { }2 1 2 2 4min ,  E

U = θ + θ θ + θ . These are same bounds 

specified in Gadbury et al. (2004).   
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4.7.2: Refined Bound for the Probability of Negative Effect 

              Previously, we derived (1.53) that, ( )( )2 12 220.5 TC CTω = φ + φ − ∆ + ∆ . Imposing the 

exchangeability assumption leads to 2 2ω = θ − ∆  where  2 12 22θ = φ = φ  and 

14 23TC CT∆ = ∆ = ∆ = β − β .  This constitutes part of equation (4) in Gadbury et al. (2004) where 

14 23∆ = δ = β − β . Furthermore, the assumption of exchangeability results in symmetry of 

probabilities on Table 4.4. Let ( )1p E X=  and ( )2p E Y=  be the mean of the marginal 

distributions of X  and Y . Using symmetry, it can be proven that, 

1 31 1 34 2 41 2 441  and 1p p p p− φ = − − φ − φ = − − φ . Applying these equations to the bounds 

[ ]2 2,L U  gives bounds 2 2,E E
L U    where, { }2 2 1 3 2 4min ,E

L p p= θ − − θ − θ  and 

{ }2 2 1 3 2 4min ,E
U p p= θ + − θ − θ . These are the same bounds given in (Proposition 3 of) 

Gadbury et al. (2004). 

Having developed the theory, the next sections follow with a simulated illustrative 

example. We will illustrate the results outlined above on a simulated count data. We first state a 

joint probability distribution similar to that given on Table 4.4. Then, using Table 4.4, we 

simulate the observed count data, from which our maximum likelihood estimates are found using 

the optim procedure in R (www.r-project.com). Because the actual probabilities are known, we 

are able to find the true probability quantities and compare these with their respective estimates. 
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4.7.4: Illustrative Example 5: Simulated Observed Count Data  

In the following example, we first state a joint probability distribution, ijβ (for , 1,2,3,4i j = ), 

similar to that given on Table 4.4. Table 4.12 below gives the actual joint probability distribution 

of the potential outcomes for response variable X  and Y .  

Table 4.12: Joint probabilities distribution obtained from the simulated example involving 600 

subjects with focus on period 1 marginals using the TC – CT design without the exchangeability 

assumption  

 Period 2  

For an 

Individual ( ) ( )
 

2 2, 0,0
T C

x y =  ( ) ( )
 

2 2, 0,1
T C

x y =  ( ) ( )
 

2 2, 1,0
T C

x y =  ( ) ( )
 

2 2, 1,1
T C

x y =  
Marginal 

Total 

 ( ) ( )
                    

1 1, 0,0
T C

x y =  0.016 0.065 0.032 0.048 0.161 

Per. 1 ( ) ( )
  

1 1, 0,1
T C

x y =  0.032 0.016 0.113 0.081 0.242 

( ) ( )
 

1 1, 1,0
T C

x y =  0.081 0.032 0.048 0.113 0.274 

( ) ( )
 

1 1, 1,1
T C

x y =  0.032 0.129 0.081 0.081 0.323 

Marginal 

Total 0.161 0.242 0.274 0.323 1.000 

 

 

Clearly, exchangeability condition does not hold. The marginal probabilities are 

( ) ( )1 2 3 4, , , 0.161,0.242,0.274,0.323ω ω ω ω = . The parameter values for the unmatched design 

are ( )1 0.597p E X= =  and ( )2 0.565p E Y= = . Hence, the true average treatment T effect 

relative to treatment C is ( ) 0.032E D = .  A sample of 600 observations was generated from 

Table 4.12. Furthermore, from these 600 observations, 1 200n =  and 2 200n =  were randomly 

selected to receive treatment (T, C) and (C, T), in that order, respectively. Responses are either 

“1” – for success – or “0” – for failure. The values of the parameters under the TC – CT design 
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are 11 0.193φ = , 12 0.210φ = , 13 0.242φ =  and 14 0.355φ =  for the TC sequence and  

21 0.194φ = , 22 0.209φ = , 23 0.241φ =  and 24 0.356φ =  for the CT sequence. We also have 

0.065TC CT∆ + ∆ = − . The observed count data was also recorded. Table 4.13 below shows 

observed count data corresponding to the given outcomes.  

Table 4.13: Standard table of observed counts in a TC - CT crossover design for  

the simulated example 

Sequence ( )0 ,  0  ( )0 ,  1  ( )1 ,  0  ( )1 ,  1  
Marginal 

Total 

( )1 TC  42 39 59 60 200 

( )2 CT  39 52 50 59 200 

 

Form Table 4.13, the maximum likelihood estimates of the probabilities, ˆ
kiφ , were 

calculated using the numerical iterative method, optim  in R. The result is presented on Table 

4.14 below. 

Table 4.14: Estimates of probabilities of the observed data ˆ
kiφ  for the TC - CT  

crossover design 

Sequence ( )0 ,  0  ( )0 ,  1  ( )1 ,  0  ( )1 ,  1  
Marginal 

Total 

( )1 TC  0.2240 0.2295 0.2676 0.2789 1.0000 

( )2 CT  0.2118 0.2798 0.2417 0.2667 1.0000 

 

The standard errors for these estimated probabilities are given on Table 4.15 below. 

Table 4.15: Standard error of estimates ˆ
kiφ for the TC – CT design 

Sequence ( )0 ,  0  ( )0 ,  1  ( )1 ,  0  ( )1 ,  1  

( )1 TC  0.0246` 0.0257 0.0250 0.0251 

( )2 CT  0.0246 0.0260 0.0245 0.0249 
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Using Table 4.14, the estimated average treatment effect, ( )E D
Λ

, was found to be 

0.0382. That is, on average, 3.82% subjects succeeded on treatment T relative to success on C.  

The actual value of the inestimable probability of negative effect, 2ω , is 0.242. In the theoretical 

analysis, we showed that this number is not measurable. Thus, we estimate bounds. The estimate 

of the lower bound for 2ω  is 1
ˆ 0L =  and the estimate of the upper bound is 1

ˆ 0.4535U = . That 

is, [ ]2 0,0.4535ω ∈ . Thus, between 0% and 45.4% of the subjects succeeded on C and failed on 

T.  

Furthermore, from the 600 observations, 3 100n =  and 4 100n =  were assigned to 

sequence TT and CC respectively. For the TT – CC design, the values of the parameters are 

31 0.129φ = , 32 0.274φ = , 33 0.274φ =  and 34 0.323φ =  for the TT sequence and  

41 0.177φ = , 42 0.258φ = , 43 0.258φ =  and 44 0.307φ =  for the CC sequence. Table 4.16, 

shows the added observed count data.  

Table 4.16: Standard table of observed counts in the a TC – CT – TT – CC design  

Sequence ( )0 ,  0  ( )0 ,  1  ( )1 ,  0  ( )1 ,  1  
Marginal 

Total 

( )3 TT  12 25 27 36 100 

( )4 CC  20 30 20 30 100 

 

The multinomial parameter estimates using the observed count data on Table 4.16 are given as 

on Table 4.17 below 
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Table 4.17: Estimates of probabilities of the observed data ˆ
kiφ  for the  

TC – CT – TT – CC design  

Sequence ( )0 ,  0  ( )0 ,  1  ( )1 ,  0  ( )1 ,  1  
Marginal 

Total 

( )1 TC  0.2086 0.2167 0.2823 0.2925 1.0000 

( )2 CT  0.2113 0.2796 0.2139 0.2952 1.0000 

( )3 TT  0.1461 0.2792 0.3281 0.2467 1.0000 

( )4 CC  0.2259 0.2650 0.1334 0.3757 1.0000 

 

The standard errors for these estimated probabilities given on Table 4.17 are as shown on Table 

4.18 below 

Table 4.18: Standard errors of estimates ˆ
kiφ for the TC – CT –  

TT – CC design 

Sequence ( )0 ,  0  ( )0 ,  1  ( )1 ,  0  ( )1 ,  1  

( )1 TC  0.0229 0.0233 0.0239 0.0246 

( )2 CT  0.0230 0.0249 0.02224 0.0243 

( )3 TT  0.0346 0.0365 0.0378 0.0351 

( )4 CC  0.0369 0.0366 0.0276 0.0335 

 

The estimated refined lower bound for 2ω  is 2
ˆ 0.0161L =  and the estimate of the upper 

bound is 2
ˆ 0.4145U = . This constitutes a 12.14% reduction on the previous bounds 

[ ]1 1
ˆ ˆ, 0,0.4535L U  =   for the probability of negative effect, 2ω , established under the TC – CT 

crossover design. Thus, with a sample size of 600, we got a tighter bound upon addition of the 

information from subjects who stayed on the same treatments over the two periods. 

We did not consider the case when exchangeability holds because an example was 

outlined in Gadbury et al. (2004). 
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CHAPTER 5 - Summary and Future Challenges 

5.1: Summary 

This dissertation was centered on using the potential outcomes method to estimate the 

individual treatment effect variability and a probability of a negative treatment effect in multiple 

time point settings. The assumptions were: no carryover effects, no covariate effects, no missing 

data, and a particular assumption about independence of time effects for different potential 

outcome variables.  For a quantitative response, we analyzed a two-treatment, two-periods and a 

two-treatment, three-periods crossover design. We saw that estimation of the individual 

treatment effect variable was not possible with the two-treatment, two-periods crossover design 

unless we add the information provided by subjects under an added parallel design. Under the 

two-treatment, three-periods design, we proposed an estimate for the finite population treatment 

effect mean and variance.  Furthermore, we estimated a parameter for the probability of negative 

effect. A simulated blood pressure data was use for illustration.   

In the qualitative section, a binary, “0 – 1,” response variable was analyzed. Using a 

given joint probability distribution of potential outcomes, we expressed the probability of the 

observed outcomes under a two treatment, two periods crossover design. Maximum likelihood 

estimates based on observed outcomes were found using an iterative numerical method. Using 

these estimates, we proposed bounds for an inestimable probability of a negative effect. Tighter 

bounds were obtained with information from subjects that received the same treatments over the 

two periods. Finally, for illustration, we used a simulated example of count data. 
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5.2: Future Challenges  

We note that, the analyses assumed no carryover effect, no covariate effect and no 

missing data. It will be interesting to see how the results are affected when there is carryover 

effect. In addition, covariates like gender, age and others may be factored in. For a brief 

consideration, let’s assume carryover effects are present. The next section introduces the 

analyses of a two treatment, two periods TC – CT crossover design when carryover effects are 

added. 

 

5.2.1: Potential Outcome Framework with Carryover Effect – Quantitative Response 

Variable 

           In Section 1.3.2, we presented the potential outcome framework when there is no 

carryover effect. Such a framework was defined as 

1 11 1 11 1 12 1 12

2 2 1 2 2 1 2 2 2 2 2 2

Subject Period 1 Period 2

1

2
n n n n n n n n

X t Y X t Y

n X t Y X t Y

+ + + +

+ + + +

� � � � �

τ τ

τ τ

 

 with potential outcomes ( )1 1,  i i i iX t Y τ+ +  for period 1 and ( )2 2,  i i i iX t Y τ+ +  for period 2 

( )1, 2,..., 2i n= .  

Now, assume there is the effect carryover. The first question arises on how to factor the 

carryover effect into the potential outcome framework. For instance, for the 
th

i  subject, let 

1, 1i j−ξ  and 2, 1i j−ξ  denote the carryover effects of treatments C to T and T to C, respectively, 

administered in the 
thj  period. We assumed 1,0 0iξ =  and 2,0 0iξ = . In a design involving more 
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than two periods or with the added TT and CC designs, we may further define the carryover 

effect from treatment T to T and treatment C to C. 

For a two treatment, two periods design, a possible potential outcomes framework is  

1 11 1 11 1 12 1,1 1 12 2,1

2 2 1 2 2 1 2 2 2 1,1 2 2 2 2,1

Subject Period 1 Period 2

1

2

i i

n n n n n n i n n i

X t Y X t Y

n X t Y X t Y

τ ξ τ ξ

τ ξ τ ξ

+ + + + + +

+ + + + + +

� � � � �  

 That is, the potential outcomes are ( )1 1,  i i i iX t Y τ+ +  for period 1 and 

( )2 1,1 2 2,1,  i i i i i iX t Yξ τ ξ+ + + +  for period 2 ( )1, 2,..., 2i n= .   

Using this framework for potential outcome in a TC – CT randomization, the observed outcomes 

framework become 

1 2 2,1

1 2 1,1

                              Period

                             1    2

  
Sequence 

  

i i i i i

i i i i i

T C X t Y

C T Y X t

τ ξ

τ ξ

+ + +

+ + +

 

The observed treatment effect is then defined accordingly. Detailed development on this topic 

and more is left for further research. 

In the situation with binary outcomes, carryover effect could imply the marginals, at the two time 

periods, are not the same as assumed on Table 4.4. 
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5.2.2. Use of covariates 

As noted in Section 2.1 for quantitative outcomes in the TC, CT, TT, CC design, the 

variance of individual effects could be estimated assuming independence of t  and τ . If these are 

not independent, then only bounds for the variance can be estimated. Producing these bounds and 

their estimates would be interesting for future research. When covariates (i.e., variables not 

affected by treatment such as baseline measurements) are available, they may be used to tighten 

bounds. In such cases, a large lower bound for the variance of individual effects may then be 

evidence of substantive individual treatment effect heterogeneity.  

 

5.1.3 Missing Data  

Missing data may occur in a multiple time point trial when individuals drop out for various 

reasons. It has been assumed herein that complete data are available, that is, individuals complete 

the trial. This is equivalent to data missing completely at random. Missing data due to drop out 

might not be missing at random and this fact would add complexity in even obtaining unbiased 

estimates of the mean treatment effect. How such missing data would affect the variance of 

individual effects (or bounds for this variance) could be another avenue of future investigation. 
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Appendix A - Proof of Proposition 2.2 

Proposition 2.2 

2 22 1

2
d D

n
E S S Bias

n

− 
= + 

   

where ( )
222 1

2
t

n
Bias S t

n
τ τ+

−  = + + 
 

 

2
tS τ+  and  t τ+  are the population variance and population mean of the sum of time effect terms 

t τ+ .  

Proof: 

We observe that  

2
2 2

1

1
( )  ( )

2 1

n

d i
i

E S E d d
n

γ γ
=

 
= − 

− 
∑  

              
2

2

1

1
2

2 1

n

i
i

E d nd
n

γ
=

  
= −  

−   
∑  

   
2

2 2
2

1 1

1 1
( )

2 1 2

n n

i i
i i

E d E d
n n

γ γ
= =

  
 = −  
 −   

∑ ∑  

              
2 2 2 2

2 2

1 1 1 1

1 1
( )

2 1 2

n n n n

i i i i
i i i i

i i

E d E d d d
n n

γ γ ′
′= = = =

′≠

  
  
  = − +

−   
  
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2 2 2
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1 1 1

1 2 1 1
( ) ( )

2 1 2 2

n n n
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i i i

i i
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n n n
γ γ ′
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 
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i i
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n n

γ γ ′
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′≠

 
 
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− 
 
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But,  

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )

1

2 2 22
1 1 1 1 1 1

22 2 2
1 1 1

2 2
1 1

 2 2 1 2 1

             4 4 1

             

i

i i i i i i i i i i i

i i i i i

i i i i

E d X Y X Y E t E t

X Y t E E

X Y t

γ γ γ

γ γ

τ γ τ γ

τ γ γ

τ

= − − − + − + + −

= − + + − +

= − + +

 

since ( ) ( )2
1 1 1/ 2i iE Eγ γγ γ= =  means ( ) ( )( )2

1 14 4 1 0i iE Eγ γγ γ− + =  . 

( ) ( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )

( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1 1 1

2 1 2 1

                = 4 2 2 1

               

i i i i i i i i i i i i

i i i i i i i i i i i i

i i i i

E d d X Y X Y t t E

X Y X Y t t E

X Y X Y

γ γ

γ

τ τ γ γ

τ τ γ γ γ γ

′ ′ ′ ′ ′ ′
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′ ′

= − − + − − − −

− − + − − − − +

= − −

 

since ( )1 1 1/ 4i iEγ γ γ ′ =  and ( )1 1/ 2iEγ γ =  means ( )1 1 1 14 2 2 1 0i i i iEγ γ γ γ γ′ ′− − + = . Thus, 
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−    
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Thus, 

2 22 1

2
d D

n
E S S Bias

n

− 
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 
 

where  ( )
222 1

2
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n
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n
τ τ+
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 

         � 

It is worthwhile noting that, if we assume that the randomization must result in equal number of 

subjects in each sequence, we still obtain the same result above because, in this case,  
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1 1
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2 2 1

1
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2 2 1

ij i j

n
j j
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j j
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γ γ ′
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Appendix B - Proof of Proposition 3.2 

Proposition 3.2 

2 21
d D IND

N
E S S Bias

N
δ

− 
= + 

 
 

where    

3
2

2
1 1
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i j
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−
= ∑ ∑  and  
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ij
ij ij

t
α τ

 
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Proof: 

 

We observe that  
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1

( )  2 ( ) i i i i i ij j
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E d X Y X Y Eδ α δ
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= − − − ∑  

          ( ) ( ) ( )
3

1
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3
i i i i ij i i
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X Y X Y X Yα
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2

3 3
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1 1

 2  + i i i i i ij ij ij ij
j j

d X Y X Y α δ α δ
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 
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 
 

∑ ∑  

( ) ( )
3 3 3 3

22 2 2

1 1 1 1

 2  +  i i i i i ij j ij j ij ij j j
j j j j

j j

d X Y X Y α δ α δ α α δ δ′ ′
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( ) ( )
3 3 3 3

22 2 2

1 1 1 1
( )

( )  2 ( ) +  ( ) ( )

j

i i i i i ij j ij j ij ij j j
j j j j

E
j j

E d X Y X Y E E Eδ
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α δ α δ α α δ δ′ ′
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But, Binomial(1,1/ 3)jδ ∼ .  Thus, ( ) 1 1/3ijP δ = =  for all j  and  

}

}

}

1 1 2 3

2 2 1 3

3 3 1 2

    1,  0,  0
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i

i

i
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δ δ δ δ

δ δ δ δ

δ δ δ δ
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⇒ ( ) 1/3
j

Eδ δ = , ( ) ( 1,  1) ( 1) ( 1) 0j j j j j jE P P Pδ δ δ δ δ δ δ′ ′ ′= = = = = = =  (for each i  and j j′≠ ) 

and 
2( ) ( )j jE Eδ δδ δ=  

Thus,  

( ) ( )
3 3

22 2

1 1

2 1
( )   +  

3 3
i i i i i ij ij

j j

E d X Y X Yδ α α
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= − − − ∑ ∑  

           ( )
3

2 2

1

1
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3
i i ij

j

X Y α
=
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3

1

since  0ij
j

α
=

 
= 

 
 

∑  

Now, we have 

2 2

1

1
( )  ( )

1

N

d i
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E S E d d
N

δ δ
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              2
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E d Nd
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  
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E d E d
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δ δ
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  
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2 2

1 1 1 1

1 1
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1

N N N N

i i i i
i i i i

i i

E d E d d d
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δ δ ′
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  
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 

∑ ∑∑
�������
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Under independence, ( ) ( ) ( )i i i iE d d E d E dδ δ δ′ ′= .  
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Appendix C - Proof of Proposition 3.3 

Proposition 3.3 

2 21
d D DEP
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Proof:   

From Appendix B 
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where,  
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Appendix D - Bounds for the True Variance of Individual 

Treatment Effects  

4.4.1: Bounds for the Variance of Individual Treatment Effects 

Previously, we had that the variance of the true individual treatment effect is given as 

( ) ( ) ( )

( ) ( )

( ) ( )

22

2

2 3 3 2

2 2 3 3 2 3

           

           1 1 2

Var D E D E D= −

= ω + ω − ω − ω

= ω − ω + ω − ω + ω ω

 

Using the TC – CT design, ( )Var D  cannot be estimated since ( )2 3ω + ω  cannot be estimated. 

That is,  

( ) ( ) ( )( )
2

2 3Var D E D= ω + ω −  

However, if we denote an estimate of ( )Var D  as ( )Var D
Λ

, then, we would have, 

( ) ( ) ( ) ( )
2

13 23 12 22
ˆ ˆ ˆ ˆ 0.5 TC CTVar D E D

Λ Λ 
= φ + φ + φ + φ − ∆ + ∆ −  

 
 

where ( ) ( )2 3 13 23 12 23
ˆ ˆ ˆ ˆ0.5 TC CT

Λ

ω + ω = φ + φ + φ + φ − ∆ + ∆  is derived from equations (1.45), 

(1.46), (1.49) and (1.50). ( )Var D
Λ

 cannot be measured using the TC – CT design even with the 

assumption of exchangeability since ( )TC CT∆ + ∆  still persists. However, considering the fact 

that, an estimate of 2 3ω + ω  can be expressed as: 

( ) ( )2 3 13 23 12 23
ˆ ˆ ˆ ˆ0.5 TC CT

Λ

ω + ω = φ + φ + φ + φ − ∆ + ∆                           (1.72) 
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Additional information from the TT – CC design can be used to establish bounds for 

( )TC CT∆ + ∆  and hence for ( )Var D . The next theorem uses the knowledge from the additional 

TT – CC design to bound ( )TC CT∆ + ∆  and subsequently, ( )Var D
Λ

. 

 

 

Proposition 4.6.3 

Given that ( ) ( ){ }31 34 41 44min 1 ,1TC CT∆ + ∆ ≤ − φ + φ − φ + φ , the true variance of the 

individual treatment effects, ( ) ,Var D L U
∗ ∗ ∈    

 where, ( ) ( ) ( ){ }{ }12 22 13 23 31 34 41 44max 0,0.5 min 1 ,1L
∗  = φ + φ + φ + φ − − φ + φ − φ + φ   and  

( ) ( ) ( ){ }12 22 13 23 31 34 41 440.5 min 1 ,1U ∗ = φ + φ + φ + φ + − φ + φ − φ + φ  

Proof: 

Previously, we established that  

( ) ( ) ( )( )

( ) ( ) ( )

2

2 3

2

13 23 12 22            0.5 TC CT

Var D E D

E D
Λ

= ω + ω −

 
= φ + φ + φ + φ − ∆ + ∆ −  

 

 

( )( )
2

E D is always positive. Thus, ( ) ( ) ( )13 23 12 220 0.5 TC CTVar D≤ ≤ φ + φ + φ + φ − ∆ + ∆  

Using the fact that ( ) ( ){ }31 34 41 44min 1 ,1TC CT∆ + ∆ ≤ − φ + φ − φ + φ , it follows that, 

( ) ( ){ } ( ) ( ) ( ){ }31 34 41 44 31 34 41 44mi n 1 ,1 min 1 ,1TC CT⇒ − − φ + φ − φ + φ ≤ ∆ + ∆ ≤ − φ + φ − φ + φ

. 

 Thus, ( ) ,Var D L U
∗ ∗ ∈    
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 where, ( ) ( ) ( ){ }{ }12 22 13 23 31 34 41 44max 0,0.5 min 1 ,1L∗ = φ + φ + φ + φ − − φ + φ − φ + φ  and  

( ) ( ) ( ){ }12 22 13 23 31 34 41 440.5 min 1 ,1U ∗ = φ + φ + φ + φ + − φ + φ − φ + φ                                       � 

 

4.7.3: Bound for the Variance of the Individual Treatment Effect with Exchangeability 

          Using the exchangeability assumption, the bounds for the true variance of the individual 

treatment effect ,L U
∗ ∗    given become ,E EL U

∗ ∗    where,  

Thus, ( ) ,Var D L U
∗ ∗ ∈    

 where, 

( ) ( ) ( ){ }{ }
{ }{ }

12 22 13 23 31 34 41 44

2 3 1 3 2 4

*

max 0,0.5 min 1 ,1

   max 0, min ,

   E

L

p p

L

∗ = φ + φ + φ + φ − − φ + φ − φ + φ

= θ + θ − − θ − θ

=

 and  

( ) ( ) ( ){ }
{ }

12 22 13 23 31 34 41 44

2 3 1 3 2 4

*

0.5 min 1 ,1

    min ,

    E

U

p p

U

∗ = φ + φ + φ + φ + − φ + φ − φ + φ

= θ + θ + − θ − θ

=

                                                 

Thus, { }{ }*

2 3 1 3 2 4max 0, min ,EL p p= θ + θ − − θ − θ  

 and { }*

2 3 1 3 2 4min ,EU p p= θ + θ + − θ − θ , 

 where, ( )1 1 20 ,  Y 0P Xθ = = = , ( )2 1 20 ,  Y 1P Xθ = = = , ( )3 1 21 ,  Y 0P Xθ = = =  and 

( )4 1 21 ,  Y 1P Xθ = = = . 

 

 

 


