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Abstract

In biomedical studies, the treatment main effect is often expressed in terms of an
“average difference.” A treatment that appears superior based on the average effect may not be
superior for all subjects in a population if there is substantial “subject-treatment interaction.” A
parameter quantifying subject-treatment interaction is inestimable in two sample completely
randomized designs. Crossover designs have been suggested as a way to estimate the variability
in individual treatment effects since an “individual treatment effect” can be measured. However,
variability in these observed individual effects may include variability due to the treatment plus
inherent variability of a response over time. We use the “Neyman - Rubin Model of Causal
Inference” (Neyman, 1923; Rubin, 1974) for analyses.

This dissertation consists of two parts: The quantitative and qualitative response analyses.
The quantitative part focuses on disentangling the variability due to treatment effects from
variability due to time effects using suitable crossover designs. Next, we propose a variable that
defines the variance of a true individual treatment effect in a two crossover designs and show
that they are not directly estimable but the mean effect is estimable. Furthermore, we show the
variance of individual treatment effects is biased under both designs. The bias depends on time
effects. Under certain design considerations, linear combinations of time effects can be
estimated, making it possible to separate the variability due to time from that due to treatment.

The qualitative section involves a binary response and is centered on estimating the
average treatment effect and bounding a probability of a negative effect, a parameter which

relates to the individual treatment effect variability. Using a stated joint probability distribution



of potential outcomes, we express the probability of the observed outcomes under a two
treatment, two periods crossover design. Maximum likelihood estimates of these probabilities are
found using an iterative numerical method. From these, we propose bounds for an inestimable
probability of negative effect. Tighter bounds are obtained with information from subjects that
receive the same treatments over the two periods. Finally, we simulate an example of observed

count data to illustrate estimation of the bounds.
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CHAPTER 1 - Introduction

1.0: An Overview

In clinical trials and other scientific studies comparing two or more treatments, the
treatment effect is often expressed in terms of an “average” effect although the importance of
variability of the effect has been recognized. A treatment that appears superior based on a
general population average effect may not be superior for all subjects in a population. Less focus
has been put on assessing the variability of the individual treatment effects or ‘“subject-
treatment” interaction (Gadbury, 2004) within the population. If substantial, this variance is
worth considering in efficacy and safety measures. This dissertation focuses on estimating the
individual treatment effect variability and the probability of a negative treatment effect for both
the quantitative and qualitative responses using crossover designs. The “Rubin Model of Causal

Inference” (Holland, 1986) which employs the “potential outcomes” framework is used.

1.1: The Potential Outcomes Framework

Briefly, let X, and Y, denote the response when unit (subject) i receives treatment T’

and control C (say) respectively. The bivariate pair (X,,Y;) are potential outcomes (Rubin,

2005, Neyman, 1923) for unit ;. Only one of X, or Y, is observed for the i unit at a given

time since we cannot expose a subject to both treatments at the same time. This is called the

“fundamental problem of causal inference” (Holland, 1986). The unobservable outcome in the

1



pair (X,Y;) is sometimes called counterfactual (Glymour, 1986). Note that this bivariate

specification holds only when we are comparing two treatments. For a study comparing
treatments, the potential outcomes would be a vector containing ¢ outcomes (rather than two)
and only one of the ¢ outcomes would be observable for a given subject at a particular time. The

next section, expands on the Rubin model.

1.1.1: The Rubin Model for Causal Inference

Often called the Neyman-Rubin Model of causal inference, the framework originated with
Neyman’s (1923) model (in the context of completely randomized experiments) whereby each
unit had two potential outcomes with only one of the two observable. Later Rubin (1974, 2005)
and others developed the model into a general framework for causal inference in relation to
behavioral science. Holland (1986) also wrote an influential paper using this model emphasizing
the philosophical aspects of the framework. On the basis of the work done by Neyman and
Rubin, the model is sometimes referred to as the “Neyman-Rubin Model” or sometimes
“Neyman-Rubin-Holland Model” or simply the “Rubin Model.” Suppose we are to compare
these two treatments, the Rubin Model specifies that the true treatment effect for unit i is given

as D, =X, —Y,. This treatment effect applies to both quantitative and qualitative responses. This

Rubin Model assumes the ‘“stable unit treatment value assumption” (SUTVA, Rubin 1980,
1990). Essentially, SUTVA has two assumptions: (1) there is only one version of a specific
treatment, either T or C, assigned to all subjects (for example, two or more manufacturers are
assumed to produce the exact drug assigned to the subjects) and (2) there is no interference

between subjects — that is, the value of each subject’s potential outcome does not depend on the



treatment assigned to other subjects. When SUTVA is violated, “an experiment will not yield
unbiased estimates of the causal effect of interest” (Sekhon, 2007, p.5). An added assumption in
this dissertation is that, the potential outcomes is not affect by “how or whether we try to learn
about it” Rubin (2005, p.323). In general, when the causal inference assumptions are defied,
randomization of subjects to treatments and the subsequent analysis becomes very complicated.
In this dissertation, we will be using the Rubin Model along with the SUTVA conditions.
Furthermore, we assume there are carryover effect, no covariates and no missing values or if

there are, then, the values are missing completely at random (MCAR, Little and Rubin 2002).

1.1.2: The Definition of Individual Effects, Treatment Effect Homogeneity/Heterogeneity

and Subject-Treatment Interaction
Using the Rubin Model D, = X, Y, for the i" individual, the individual treatment effect

may be defined as the difference in the response on an individual subject as a result of receiving
treatment 7 versus C at a given time. This is unlike the average effect which is the mean
response due to both treatments. Since a subject receives one treatment at a time, this individual
treatment effect is not observable. When the focus is on an overall mean effect, the difference

D, =X, -Y, is implicitly assumed constant for all individuals in the population when the mean

effect is being tested using Fisher’s Randomization Test (Fisher, 1935; Rubin, 1980). This
assumption is what is referred to as treatment (effect) homogeneity (Longford, 1999). Kravitz et

113

al. (2004, p.660) defined treatment heterogeneity as “...patient diversity in risk of disease,
responsiveness to treatment, vulnerability to adverse effects, and utility for different outcomes.”

They further argue that individual treatment effect heterogeneity can lead to outcomes with a



mixture of “substantial benefit for some, little benefit for many and harm for a few” Kravitz et al.
(2004, p.661). The variable treatment effect for each subject results in what is referred to as
subject-treatment interaction (Marshall, 1997; Longford, 1999). Senn (2001, p. 1481) defines
subject-treatment interaction as ‘“the extent to which the difference between treatments differ
from one patient to another” or equivalently, “the extent to which the difference between patients
being given the same treatment depends on treatment given.”

This dissertation consists of two parts: The quantitative and qualitative parts. The
quantitative part of the dissertation seeks to estimate individual treatment effect variability and to
separate such variability from variability due to time effects in multiple time point trials. The
method of potential outcomes will be used to achieve this goal. Meanwhile, in the qualitative
parts, focus will be placed on the average treatment effect and the “probability of negative
effect” — a component which implicitly reflects individual treatment effect variability. If
substantial, the individual effect variability or the probability of negative effect is worth

considering in conclusions about effectiveness and safety of the treatment being analyzed.

1.2: Background

The effects of many treatments across individuals may vary widely. When such variation
is present, there may be non-negligible proportion of a population that has an adverse effect of a
treatment despite studies showing the effect of treatment to be beneficial, “on average.”
Complicating the detection of the individual effect variability is the fact that some response
measures, such as blood pressure, vary widely at different time points. Determining whether a

change in a response is due to the effect of a treatment or just due to natural variation of a



response over time can be challenging. A case in point is the controversy surrounding Dietary
Approaches to Stop Hypertension (DASH), a salt and blood pressure or hypertension study
(Obarzanek et al, 2003).

The DASH study is a widely published clinical trial that suggests that systolic blood
pressure (SBP) could be reduced by eating diets rich in fruits, vegetables and with low-fat diary.
Five institutions collaborated in the original study in which there were two treatments, a DASH
diet and a control diet, each delivered at three levels of salt at 8g(high-H) a day or 140mmol/d,
6g a day or 104mmol/d (Medium-N: government’s recommendation) and 4g(Low-L) a day or
62mmol/d. The response variable was the mean of 5 pairs of SBP measurements for each of the
188 participants taken over the final 9 days of each 30-day feeding period. Obarzanek et al
(2003) concluded that most of the variability in SBP was caused by “other factors’ than salt
intake. They also pointed out that the variability depends on the group of individuals involved,
suggesting a case for the introduction of covariates.

DASH study is one of many that may involve individual treatment effect heterogeneity or
variability. Considering the controversies and limitations of the DASH-Sodium Trial, the
knowledge and the ability to estimate variability in an individual treatment effect using the
appropriate design is of critical importance. A treatment that appears superior based on the
average effect may not be superior for all subjects in a population if there is substantial
individual treatment effect variability expressed in terms of “subject-by-treatment” interaction.
This interaction may consist of component factor-by-treatment interactions like “gene-by-
treatment” interaction, “social status-by-treatment” interaction and so forth.

Cross-over designs have been suggested as a way to estimate the variability in individual

113

treatment effects since some degree of a treatment effect’s “separability” from effects of time can
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be achieved. The DASH-Sodium results suggests that variability in observed individual effects
may include variability due to the treatment plus inherent variability of a response over time and
would require special types of cross designs to identify and estimate.

Disentangling variability due to treatment effects from variability due to time effects is
challenging. Essentially, we will analyze the individual treatment effects as a random variable
(rather than a constant effect) for a specified population of subjects and it suffices to look at the
variance as well as mean effect parameters (Longford, 1999).

We present a method of potential outcomes analyses using various two treatment designs.
For instance, we use the two treatments, three periods crossover design — a class of repeated
crossover design or the “n-of-1” trial (Senn, 2001). This dissertation work builds on earlier work
by Gadbury and others (2000, 2001, 2004). A parameter quantifying subject-treatment
interaction is inestimable in two treatments, two period balanced crossover designs. The two
treatments, three periods design used here extends the initial work on the two treatments, two
periods design by Gadbury et al. (2004). The design used here permits certain inseparable effects
or a combination of effects to be measured or estimated.

The first part of the research (Chapter 2 and 3) is based on quantitative treatment
response variables. In the next Section 1.3, we present previous work involving the complete
randomized design and the two treatments, two periods crossover designs. Section 1.4 introduces
some population types to be used in the analyses presented in chapter 2 and 3. Chapter 2 deals
with an extended two treatments, two periods design, a design whereby some subjects stay on the
same treatments over the two periods. In chapter 3, we extend the analyses to a three period

design for quantitative response and in chapter 4, we further the work done with qualitative



responses in Gadbury et al (2004), summarily presented in Section 1.3.3. Chapter 5 sums up the

dissertation work and lays out some future challenges and research opportunities.

1.3: Previous Work on Subject-Treatment Interaction

Senn (2001, Vol. 35) outlined the various error terms and sources of variability (Table

1.1) that are identifiable with different types of designs (Table 1.2). With a 2 treatments, 2

period cross-over design, it is impossible to separate the variability due to patient-by-treatment

interaction from the within-patient variation even in the absence of carryover effects but a

repeated period crossover design will make it possible for such effects to be separable. In the

table below, Senn (2001, Vol. 35) describes and lists the effects that are identifiable plus the

various errors terms.

Table 1.1: Sources of Variation in Clinical Trials

Label Source Description
The average difference between treatments over all
randomizations (and hence over all patients). The ‘true’ mean
A | Between Treatments | difference between treatments
The average difference between patients. (Averaged over both
B Between patients experimental and control treatments.)
The extent to which the difference between treatments differ
from one patient to another. (Equivalently, the extent to which
Patient-by- treatment the difference between patients being given the same treatment
C interaction depends on treatment given.)
The variability shown from treatment period to treatment period
D | Within-patient error |[when the same patient is given the same Treatment

Source: Senn, S. (2001, p.1481). “Individual Therapy: New Dawn or False Dawn?” British Medical Journal (BMJ),

Vol. 35



Table 1.2: Indentifiability and Clinical Trials

Type of Trial Description Identifiable Effects Error Term

Parallel Each patient receives one A B+C+D
treatment

Cross-over Each patient receives each A and B C+D

treatment in one period only

Repeated period cross-over  Each patient receives each A and B and C D
(Sets of n-of-1 trials) treatment in at least two periods

Source: Stephen Senn (2001, p. 1481). “Individual Therapy: New Dawn or False Dawn?” British Medical Journal
(BMJ), Vol. 35. Total Error E = A+B+C+D

In another paper, Senn (2001, Vol. 329) further echoes the ideas presented on Table 1.2
and recommends random effect models in the analysis of repeated periods cross-over design to
identify individual effect variability represented by the subject-by-treatment interaction, though
as will be shown, assumptions are still needed and these assumptions are not always obvious
without the structure of potential outcomes. Thus, it appears worthy to consider a repeated period
crossover design using potential outcomes. One particular example where a repeated period
crossover design was used to study subject-by-treatment interaction is the double blind
randomized comparison of paracetamol 1g b.i.d. (bis in die — twice a day) and diclofenac 50 mg
b.i.d. osteoarthritis study reported by March et al.(1994), although their analysis did not used the

random effect model nor were potential outcomes considered.

1.3.1: Two treatment completely randomized designs

Let X, and Y, denote quantitative or categorical outcomes when unit (subject) i receives

treatment 7 and C respectively for i =1,2,..., N . The set of N potential outcomes has the form



given below (left bracket), which after treatment assignment, produces observed outcomes of the
form shown (right bracket), and where the “?” represents an unobservable potential outcome

(Gadbury et al., 2004).

X, ?

X, Y, 7Y

. . Treatment Assignment . .
Xy Yy 7 Yy

Xy ?

This two treatments randomized complete design assumes SUTVA. That is, subject’s
response to a particular treatment stays the same regardless of what treatment other subjects
receive or whether there may be different types of treatments.

The individual treatment effect D, = X, —Y, cannot be observed because only one of the
X, or Y, is observed for an individual at a particular time. So, some have proposed crossover

design, whereby, the treatment effect for an individual can be observed. But the observed
treatment effects also contain time effects. The next section explores this in a 2 treatments, 2

periods crossover design.

1.3.2: Initial Work on Two Period (TC CT) Cross-Over Designs for Quantitative Response
Gadbury (2001) developed some initial results for a two treatment balanced cross over
design. Accordingly, consider two treatments labeled T and C in a 2 period design

Period
1 2

1 |T C
C T

Sequence

9



Assume a finite population of 2n subjects used to define the potential outcomes. We
assign n subjects to each sequence. Potential outcome framework for the 2n subjects is given
by

Subject Time 1 Time 2

1 X, -4 -1 X, +y Yi+1

2n XZn —ly Y2n —Ton X2n +1, Y2n + 7

with potential outcomes (X i —h, Y — Tl) for period 1 and (X it Y+ Tz) for period 2.

Furthermore, define the “true” mean individual treatment effect for the i subject as the

average of the two true treatment effects over the two time periods so that the time effects cancel,

that is, the “true” finite population mean treatment effect is given as D =X —Y , where

. 2n . 2n
X=(@1/2n)) X; and Y =(1/2n)D Y.
i=1 i=1

The true finite population variance of the individual treatment effects, denoted S 12) , 1s given as
2 l <2 —2
Sy =Var(X =Y)=Var(D) = Ezijl(z)i - D)
The observed treatment effect for the i subject is

di =[(X; ;)= (Y +7) |G +[ (X, +4,) - (% —7) |(1-T;)

where T; represent the random assignment to sequence with 7; =1 or O for assignment to T-C

or to C-T, respectively.
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It was shown that, the estimated “observed” mean treatment effect d is unbiased for

D with respect to the randomization distribution for 7;. Gadbury (2001) defined a reasonable

1 2 2
—-d ) and showed that,

estimator of Slz) as S 5 where , SC% =—

2n i:1(d-

l

2(n—-1 N
E(Sj):S%+%S,2H+(t +7)

where, S,2 L7 is the finite population variance of the sum of time effect terms, #+7 and ¢ and

7T are the finite population averages of 7 and 7. The bias term is given as

2(n—1)

bias = S2_+(T+7)

This bias is always positive and will only be zero if t+7 =0, in which case, S 5 estimates

512) exactly. In the next part, we present the previous work on qualitative (binary) response

variable.

1.3.3: Initial Work on Two Period (TC - CT) Cross-Over Designs for Binary Response
Suppose that the outcome 1 denotes a “success” and 0, a “failure”, the following table
provides the assumed bivariate distribution of potential outcomes in an infinite population, as

presented in Gadbury et al. (2004):

(x,y) (O’O) (0’1) (1’0) (1’1) where iﬂ-=1-

P(X=xY=y) m m m m i=1
They noted that the individual treatment effect variable D = X —Y is discrete with possible

values 0, -1, and 1 with probabilities 7, + 7, 7, and 73 respectively. Subject-Treatment

11



interaction is present in the population unless one of these three probabilities,

T+ Ty, 7T and 73, is equal to one. A detrimental or unfavorable effect means that D = -1.
Thus, the proportion of the population experiencing a negative effect is 7,. They showed that,
the mean treatment effect is given by £ (D) =FE (X -Y ) = T3 — T . The population parameters

7T;, (i=1,2,3,4) are by themselves, nonestimable. In addition, the constructed bounds for the
risk involved in administering the treatment 7 to the population were given as
max (0, 77, —713) < 1, <min(1- (73 + 7 ), 7, + 7).
Gadbury et al., (2004) also considered a matched-pairs design and showed that a design
that includes some pairs receiving the same treatment can tighten the bounds for 7,, though the

tightness depends on ‘quality of matching’ criteria that cannot directly be assessed from

observable outcomes.

Remark 1.3.1

In the next chapter , we focus on the TC — CT — TT — CC design for quantitative response
variable. Thus, in chapter 2, we let some subject stay on the same treatment (TT and CC) over
the two periods. This is an extension of the TC — CT crossover design presented in Sections 1.3.2

above. These subjects will provide the additional information necessary to estimate the bias

. 2(” - 1) 2 —  —\2 . e
bias = ﬁst 4T +(t + T) and subsequently, the true variance of the individual treatment
n —

effects, S%, using a certain assumption. These estimations were not possible with the previous

12



2(n—1)

SIZ_H. + (7+?)2) could not
2n—

TC — CT crossover design because St2 47 (and hencebias =

be estimable, without even more restrictive and perhaps implausible assumptions.
In both chapters 2 and 3 involving quantitative response variable, we will be working
with three types of populations described in the next subsection. In chapter 4 that considers a

binary response, the multinomial population model is used.

1.4: A List of Populations Used For the Quantitative Analysis

For a smooth understanding of the quantitative analyses, we list three types of
populations used herein.

1). First, a finite population of potential outcomes from which we define a true individual
effect, D, with finite population parameters D and SLZ). We begin the analyses with this finite
population of potential outcomes.

2). Second, a population distribution of time effects designated ¢ and 7. The population will
have parameters &, , U, , O}z and O'T2 . This population will be used when estimation of a bias

term comes to focus.
3). Third, a “super — population” (Smith and Sugden, 1988) distribution for treatment effects.

This population will be used to determine the distribution of D with population parameters
W, and G% . The population of treatment effects will be used in the illustrative examples.

Again, note that these lists of populations will be useful with the quantitative response

only. The qualitative analysis will make use of a binomial or multinomial population model.

13



CHAPTER 2 - A Two Period, Two Treatment Design for

Quantitative Responses

2.1: A Two Period TC-CT-TT-CC Design for Quantitative Responses
Previously, Gadbury (2001) worked on the two period TC and CT design. In this section,
we will extend this design to include TT and CC.

Accordingly, consider two treatments labeled T and C in the following 2 periods designs:

Period Period

1 2 1 2

1 |T C 1 |[T C

Sequence
c T 2 |C T
Sequence
3 |\T T
4 |C C
Design 2.1.1: Two sequence-two periods. Design 2.1.2: Four sequence-two periods.

Using a slightly different estimator of the true individual treatment effect variability, Gadbury

(2001) developed some initial results for Design 2.1.1(see section 1.3.2). However, it is

impossible to estimate Slz) with Design 2.1.1. But, if we allow some subjects to stay on the same

treatments as shown in Design 2.1.2 (sequences 3 and 4), estimation of S% is possible, with

certain assumptions, through estimation of linear combinations of time effect parameters. Note

that we cannot observe the treatment effects for subjects in sequences 3 and 4 of Design 2.1.2.

14



Those subjects will provide the time effect information necessary to estimate Slz) from Design

2.1.1.
Following the Gadbury (2001), assume we have finite population of 2n subjects from

which we define our potential outcomes framework as shown below.

Subject Period 1 Period 2
1 X1+t11 Y1+T11 X1+t12 YI+T12
2n’ XZn + t2n1 Y2n + Tan X2n + t2n2 Y2n + TZnZ

with potential outcomes (X; +1;;, ¥; +7;,) for period 1 and (X; +1,5, Y; +7;,) for period 2

(i=12,..,2n). X, and Y, are the average responses to treatments 7 and C, respectively, over

the two time periods for subject i=1,2,...,2n; tij (associated with treatment 7 ) and
Tjj (associated with treatment C) are the time effect parameters for subject i =1,2,...,2n in

period j =1,2. We assumet;; +1;, =0 and 7;; +7;, =0.

Remark 2.1

The symbols of the time parameters used here is a slight deviation from those in Gadbury

(2001) where time parameters are simply denoted #; and 7;. The reason for specifying the time
parameters as 1, t;,b and 7;;, T;, is to synchronize the symbols with those of a more complex
design (to be seen in chapter 3). Nonetheless, the results will not be affected by this change since

it may be assumed that ¢, =1;; =—t;, and 7; = 7;; =—7T;,

Using Design 2.1.2, the observed outcome framework is given as

15



Period
1 2
T ClX;+1t; Y +15
C Ti Y+7,;, X, +1;
T\ X;+t; X;+ip
C CiYi+7y Yi+1,

Sequence

Define the true individual treatment effect on  the i subject  as

2 2
D, =X;,-Y + z Lij = z T; =X, Y, . D, is not observable for any i. The true finite

1

Jj=1 Jj=1

2n
population mean effect of treatment, D is given as D =X —Y where X =(1/ 2n)z X; and
i=1

2n
Yy=@a/ 2”)ZY1' . Define the true finite population variance of individual treatment effects,
i=1

denoted S% , as
g2 :iz%@ (D, - D)>
Dy &=t
Let ¥; be an indicator variable which takes the value 1 when the i subject is in

sequence 1, for i=1,2,...,2n. Observe that, y; ~ Binomial(1,1/2). The observed treatment

effect for the i subject under Design 2.1.2 is

di =[(X;+11) = (Y +72) |7 +[ (X +12) = (Y +7) [ (1= 7).

This simplifies to

16



Thus, P(¥; = 1)=1/2.1n addition, E(%;;)=1/2 and Var(y;)=1/4.

If i=i then E(¥171) (721) (7:1)=1/2.

For i#i, E(Q/ﬂ}/ifl):P(}/ﬂ:l,}/i'l=1)=%(2n_11j when subjects I and i’ are in
n_

n

2n—1

| . y
sequence 1 and E (%‘1(1_71"1))25( j when subjects i and i are in sequence 1 and

sequence 2, respectively.

Proposition 2.1

The observed mean treatment effect, d, is an unbiased estimate of the true mean

treatment effect D . That is, E (d)ZD, where expectation is taken over all possible

randomizations };; .

Proof:
_ 1 &
E}/(d)zgg((xz_y)ﬂfzz 7)) +(tn—tin +7, )%1)
=S, -n)
2nl:1 l l
_X-7
=D .

Note that the proof was established with the fact that E (71 )— 1/2 and the assumptions

2 2
that z tj = 0 and z T =0 for subject i =1,2,...,2n and period j =1,2.

17



Define the observed individual treatment effect variability, denoted S 5 , as

1 2n

2 _ _7)\?
S; _2n—ll§1(dl d)" .

Proposition 2.2
For each subject, the observe treatment effect variability is not an unbiased estimator of

the true individual treatment variability. That is,

2n-1
E( n S§j=S§+Bias

2n
. 2n—=1( » —\\2 ) — 2n
where Blas=2— St+T+(t+T) , S;4; and t+T=—Z(z‘l~1+Ti1) are the finite
n -

population variance and finite population mean of the sum of time effect terms f+7.
Expectation is taken over all possible randomization of the 2n subject.

Proof: See Appendix A

Remark 2.2:
With Design 2.1.1, it is impossible to estimate S é due to the presence of St2 yrand 1+7
in the bias formula. S,2 L rand £+ 7 cannot be estimable because the combination of time effect

parameters, ¢+ 7, cannot be observed for any individual. In order for SLZ) to be estimated,
consider a design where some subjects stay on the same treatments as given in Design 2.1.2. In

the next section, Design 2.1.2 is used to estimate SLZ) with a particular assumption.
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Estimation of S,

In Design 2.1.2, we let some subjects stay on same treatments as provided by sequences
TT and CC . These subjects provide no information about the individual treatment effect and are

used here to provide useful information about the combination of time effects 7+ 7. This

information will be used to estimate the finite population variance St2 7 and the finite population

mean ?+7 parameters. Sequences 7C and CT considered together will give us same
information as obtained above.

Assume a total of 2n subject where i=1,2,...n subjects are assigned to each of

sequences 17 and CC . The observed outcome is

Period
1 2
T T|X;+t; X;+1;
Sequence !
ClY+t Yi+7,
From the TT and CC randomizations, we obtain #;, —f;;and 7;, —7;; respectively. Using the
2 2

assumption that Y t;; =0 and > 7;; =0, we obtain 2f; and 27;from which we get the
Jj=1 Jj=1

o - = _ 1 _ 1 .
combination (t +7 ) where ¢ :_Ztil and 7 = _Zfil are the observed mean time effects
iz iz
obtained from those who stayed on TT and CC respectively. Thus, we denote an estimate of

A AN

[+7T by t+7 where t+7=(7 +7).

Define S tz +¢ as the finite population variance of +7 .
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Assuming fand 7 are independent, we can estimate St2 ) St2 + - Plugging-in the estimated

bias, we have

A

2
2n—1| 4 T

Bias =" S,2+T+£t+rJ
2n

N

where t+T=(t_+z_').

Suppose we designate the estimated true individual treatment effect variability as S%, S% is
given as

a2 2n-1 A
S%= n Sﬁ—Bias

2n
Remark 2.3

Despite the added information from the TT — CC design, it is worthwhile noting that
estimation of S[2), denoted 512) , was possible because of the important assumption of

independence between fand 7. Without this assumption only bounds for § é can be estimated

(as was mentioned in Gadbury, 2001, though Gadbury did not produce the bounds nor were the

TT CC sequences considered.

2.2: A Two Period TC- CT- TT- CC Design with Binary Responses

This is similar to the topic in Section 2.2 except for binary responses. Some related work
was done by Gadbury et al., (2004) for matched-pairs, but exchangeability assumptions that were

relevant for matched-pairs do not necessarily hold when subjects are matched to themselves over

20



time periods. Thus, the details in Gadbury et al., (2004) will be modified to redefine a
‘successful’ response to treatment and to deal with time effects as opposed to matching criteria in
matched-pairs. Chapter 4 provides the detailed analyses for this two period TC — CT — TT — CC
design with binary responses. In the next chapter, we analyze a two treatment, three period
crossover design. This design facilitates the estimation of the individual treatment effect
variability, a task that could not be achieved with the two periods TC — CT crossover design

considered in chapter 2.
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CHAPTER 3 - Chapter Three: A Three Period, Two Treatment

Design with Quantitative

3. 0. A Three Period, Two Treatment Design with Quantitative Responses

In classic jargon, this design falls under the general classification referred to as “n — of —
1 trial” or Repeated Period Cross-Over design (Senn, 2001). These types of design are
particularly useful for patients with chronic diseases — like hypertension, cancer, diabetes,
alzheimer, arthritis, asthma and so on — although it has been known to be useful other purposes
like examining the short term choice of drugs for osteoarthritis (Yelland et al, 2006). In addition,
repeated period cross-over designs are necessary for cases where the physician doubts the
effectiveness of a certain drug on a patient. Generally, the main advantage of repeated period
cross-over design is that patients act as their own control.

Assume two treatments denoted 77 and C where one could be the control. Also assume
we have 7y, subjects assigned to the k™ sequence. Define N = an . Let the i" subject and

the j” period be such that i =1,2,3,...N and j =1,2,3. Ratkowsky et al. (1993) compared the

efficiencies of various 2 treatments and 3 periods design for estimating a mean treatment effect.

In the pictures below, we present a few of the designs compared.
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Design 1: Period Design 2: Period
1 2 3 1 2 3
1 |T C C 1 |T C C
2 |C T C 2 |C T T
Sequence Sequence
3|1C T T 3|1C C T
4T C T 41T T C
Design 3: Period
1 2 3
1 |\T T C
2 |\T C T
3|1C T T
Sequence
4 |C C T
5/1C T C
6 |T C C

They concluded that the most efficient of the three designs — in terms of variability and

computational difficulties — was Design 2. Using all three designs, we performed some

superficial analyses of individual treatment effect variability using the potential outcome method.

Among the three, Design 3 had the advantage of separating time effects from true individual

treatment effects. So, Design 3 is used for analyses in this chapter.

The following random assignment of treatment is used, where 6 sequences are grouped

into 2 squares as shown below.

Square 1

Period

1 2 3

1 |\T T C

Sequence 2 |T C T
3|/C T T

Square 2
Period
1 2 3
1 |1C C T
Sequence 2 |C T C (R-1)
3|T C C
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Notice that, for every subject, there are k = 23 —2=6 different possible assignments of
the treatments in the three periods. The treatment options, 77T and CCC do not concretely
capture the cross over design as subjects do not change treatment (parallel design). Initially, we
will restrict the randomization of treatments to Square 1. Square 2 is a mirror image of square 1
with T and C flipped. The analysis will be done under two situations: Unequal and equal number

of subjects per sequence.

3.1: Unequal Number of Subjects per Sequence
Assume the subjects are independently and randomly assigned to the sequences. Note

that this allows for a possible unequal number of subjects per sequence. Let an indicator random

variable é;j be a sequence assignment variable for the ith subject, jth period with
i=1,2,3,..,N and j =1,2,3.
For square 1, define

i

B {1, if subject i receives C is in period j (L.1)

0, otherwise
Thus, 81.]. ~ Binomial(1,1/3). Thus, P(Sij = 1) =1/3 forall j and

CTT } 8, ord,=1,6,=0,8,=0
TCT } 6., or 8,,=1,8,=0,8,=0
TTC } 85 0or §,5=1,8,=0,§,,=0

For each i and j # j ', we have that, Ej (5,-1-) =1/3, E, (81.].51.].,) =0
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(i=i")

179, if j=j
179, if j= j

and ES(SUZ) :ES(SU)- Note, Eg(...) denoted the expectation with respect to the finite

population randomization. The total number of subjects in the sequences constitutes the size of

the population.

We assume no carryover effects. Let ; and 7;; denote the unobservable time effects due

to treatment T and C respectively. ' = (t;1,ti2,13) and T "= (7;1,T;2,T13) are periodic effect

parameters. That is, these parameters quantify the unobservable effects from period to period

when the same subject is given the same treatment. Let X, +17; and Y;+T; be the observed

responses to 1 and C respectively. The potential outcomes at time periods 1, 2 and 3 are

X+, Y47, \)(i o, V4T, ) \)(i 5, YT, (1.2)
Pl P2 P3
where P/, P3 and P3 denote the periods . X; and Y; denote the average response (to treatments 7
3
. . th _
and C respectively) over the three periods. For the ! subject we have, Zf,_-,- =0 and

Jj=1

3

ZIU. =0.
j=1
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These potential treatment outcomes are established under the condition that only one

measurement of the subject’s response at a particular period is observable. The true individual

treatment effect on the i subject in the j” period is defined

Dy=X, =Y +1, =T #
1 3 3 3
Define, D, = EZDU . Thus, D.=X,-Y. +Ztij —Z’Cl.j =X,-Y (since
j=1 Jj= =

3 3
Ztij =0 and ZTU =0)
j=1 j=1

Note D, is not observable for any i =1,2,..., N. The “true” (overall) mean effect of treatment

D is given asD =X —Y . That 18,

Remark 3.1

D is the true finite population mean treatment effect of the N subjects in the study. The

finite population variance of the true individual treatment effects (denotedS [2,) is

L
N S

Remark 3.2

S% represents the overall individual treatment response variability or overall subject-by-

treatment interaction. That is, the variability of subjects’ responses on the same treatment that
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depends on the treatment administered or the extent to which the difference between treatments

T and C depend on the subject.

1h
Let d; be the observed treatment effect for the i subject taken over the Square 1

randomization (R-1). We have that,

d; Z(Xi ha ;Xi—i_tiz -(Y; +Ti3)j8i3

(Xi+ti2+X.+t.
+

5 " _(Yz +Til)j6il

(X,.+tﬂ+X.+t.
+

> - _(Yz +Ti2)j8i2

_[ %
where Ol; = E"'Tij

subjects. We have that, d=—

j=1
N
i=1

1 N
variability, denoted S 5 ,is S 5 =—>

-1

27

_ (x- )Z (nmg) - (t,-l;tiaJSiﬁ (tﬂ;t,-z

(for TTC)
(for CTT)

(for TCT)

jSiS ~T,0,~T,0, ~T:05

(1.3)

and Z 81.]. =1, Now, let d be the mean observed effect over all

Zdi . We also assume that the observed individual response



Remark 3.3

S 5 is the total observed variability that results from subjects given different treatments at

different periods of time. Hence, S 3 may be seen as the sum of subject-by-treatment interaction

and the variability within the subject over time.

Proposition 3.1

The mean observed treatment effect is an unbiased estimate of the true mean effect. That is,
Ey(d)=D (14)

Proof:
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Proposition 3.2
For each subject, the observe treatment effect variability is not an unbiased estimator of

the true individual treatment variability. That is,

E; [% Sjj =S’ + Bias,,,

. . . . N-1&¢ L
Hence, S; is a biased estimate of S, , where Bias,, :WZZO@, o, =§+’CU. and
i=l j=1

Bias,,, represents the bias for the design where subjects are independently assigned to

sequences.

Proof: See Appendix B

Remark 3.4

Bias;yp involves only time effect parameters and may be thought to quantify variability

of treatment responses within subject. That is, the variability that results when the same subject

is given the same treatment at different periods of time.

Corollary 3.1

Define #; = —2’cl.j then, from (1.3), d; = D,. That is, the observed treatment effect, d;, is
same as the true treatment effect, D;, but Dij , defined in Equation (#), is not constant across

periods because, under this condition, D, =X,-Y -3t,, D,=X,-Y -3t,,
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D;; = X, —Y, —37;; and each of these depend on the time effect parameter T, . Note, again, that

1

A stronger condition exists when tij and T, are all equal to zero. In this case, di =D,

S? =S} and D;is the same across periods since, in this case, D,, =D, =D,; =X, -Y..
Next, we turn our attention to the second situation in the analyses of individual treatment

effect variability for quantitative responses: Equal number of subjects per sequence.

3.2: Equal Number of Subjects Assigned to Sequence

In the last section, we dealt with a possible case of unequal number of subjects per
sequence due to the independent assignment of subjects to sequences. Now, assume that the
randomization must result in equal number of subjects per sequence. Suppose we assign n
subjects to each sequence, we would have a total of N =3n subjects assigned to the three

sequences under consideration.

o N)Y(N-n) (n

Total Randomization =
n n n
—— ——

%/_/
# forseql # for seq2 # for seq3

Furthermore, 50. ~ Bernoulli(1/3). Thus, P(Sij = 1) =1/3 forall j and

. CIT } §, or d,=1,38,=0, 8,=0

N =3n > TCT}?Si2 ord,=1,9,=0,98,=0

T T—— L TTC} 8, 0r8,=1,8,=0,8,=0
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For the i sub]ect E(5 )=1/3, E, (52) E. (8 ) and Ej (8,0,7) =0 (for i# 7).
Now, for (i;ti) E5(5U l]) P(Sij =1, Bi’j’ =1)

=P(3, =118, =D)P@, =1)

)
)

forj=7

W | =

forj=#j

W | =

Proposition 3.3
For each subject, the observe treatment effect variability is not an unbiased estimator of

the true individual treatment variability. That is,

ES(NN 152j S’ + Bias (1.5)

Thus, S 5 is not an unbiased estimate of S% where

BiasDEP (N DZZ zj lj Zzzz ij l]

i=1 j=1 i=l i'=l j=1 i=1 i'=1 j=1 j=1

i (i) and (j#))
t.:
where a; =| -~ +7.. | and Bias represents the bias for the design where the assignment of
ij 5 i pep TCP g g

the next subject to a sequence depends on the previous subject’s assignment.

Proof: See Appendix C
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Corollary 3.2

If 1, = —2‘Cij , the conditions in corollary 3.1 also apply here. In general, the observed

treatment effect variability is biased for the true treatment effect variability.

3.3: Parameter Estimation
To proceed further with the estimation of the individual treatment effect variability, we

use a population of time effects. We make the following assumptions. Let ¢ = (t,,1,,t,;) and

: : ly T .
T = (T,,T:,T;3), for i=1,2,...,n andj=1,2,3. Assume and are independent and
2

? Ty

1 1

1 1
identically distributed (i.i.d.) [[HJ ( thGzZJ and [[uﬁj ( ptjcﬁj, respectively. Also
m) P 1 w) \p: 1

I, T
assume, [HJ and LIIJ are jointly independent. We note that 7, :—(tl.1+tl.2) and
ln T

i
T,=—(T,+ ’ciz) . Estimates of the distribution parameters will be derived.

The variables t,,t,,t,; or T,,T,,T,; cannot be observed separately. However, certain
combinations of t’=(ti1,ti2,ti3) or ’C’Z(TH,TQ,TB) can be used as estimates of the effect
parameters. That is, from the combination 77C, we can observe (l‘l.1 _tiz) . Similarly, from the
data in sequences TCT and CTT, we can observe (l‘l.1 _ti3) and (ti2 —tB) , respectively. Upon
substituting for f,;, they simplify to (¢, —1,,), (2ti1 +ti2)and (tn +2ti2) respectively. The

matrix
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Ih =Ty -l
I
M=\t,+2t, |=|1 2 {’1} contains only two linear combinations that are linearly
t
2,4t | |2 1 |-7

independent so one can make use of any two of (f;—1,), (tn +2t;, ) and (Ztil + ti2) .
Correspondingly, from the data in Square 2 of (R-1), we can observe (T, —7T;,), (T, +27;, ) and
(27, +7T,,). Henceforth, we will omit the “i” in expressions like (7, —1,,), (T, —T,,) etc.

Thus, we have that,

Et =)=~ i (1.6)
E(t +2t,)=n,+2u, (1.7)
EQ2t +1t,) =2y, +1, (1.8)

where the expectation is taken with respect to the population of time effects given above. Using

the above equations, we propose the estimates, [i; and [i,, corresponding to the population

| |
means, W, and W,, as ul=§[2(tl—t2)+(tl+2t2)J and u2=§[(t1+2t2)—(t1—t2)]

Similarly we have, [l, = %[Z(Tl -1, ) + (T, + 2‘52)] and (1, = %[(11 +21,)— (T, — ’Cz)} , where

t,—t, and t, +2¢,, are the means of the observed differences between responses from subjects

who received treatment 7 in sequences T7C and CTT , respectively. Similarly, T,—T, and

T, +27, are the means for those who received treatment C in sequences CCT and TCC,

respectively.
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Let S, S;,S2,S; be the sample variances of t,—t,, t,+2t,, T,—7T, and T, + 21,
respectively. We observe that, E(Slz)=Var(tl—t2) and E(S22 )=Var(t,+2t,). Similarly,

E(S7)=Var(t,—1,) and E(S})=Var(t, +21,).

Proposition 3.4

Let u, =t —t, or simply u=t —t, and v=1 +2t,. Assume u,,U,,... and V,V,,...

] ]

N 1 . 1
are ii.d with finite fourth moments. Define 6° 2—[2512 +Szz] and 63 2—[2532 +Sj}.
9 9

t

Then, &, and &7 are unbiased and consistent estimates of G, and G- respectively.

Proof:

We will show the proof for the formulas involving ¢ . Those with 7 follow in the same manner.
E(S})=Var(t,—t,)

=26, —2Cov(t,,t,) (1.9)
E(S7)=Var(t,+2t,)

=56, +4Cov(t,,t,) (1.10)

Hence, by elimination,

G :é[ZE(SfH E(Sg)].

Similarly, we obtain Gi 25[2532 +Sf]. Define Gtz 25[2512 +Sz2} and (AS,% 25[2532 +Sf],

we have that,

34



£(61)= g 26(s5)+ £(52)]
= é[2Var(tl —1,)+Var(t, +2t,)]

= [2(207 ~2Cov(1.1) +(50? + 4Con(r.n) |

:Gt

Hence, 6? 18 an unbiased estimate of Gtz. Similarly, we can show that 63 18 unbiased for 63.

Consistency: Since the fourth moments exists, by using two applications of the weak law of

large numbers and the continuous mapping theorem, we have that,

N | 1& _
s? :ﬁhgu; —uﬁ}%l(E(uf)—E(ul)z) = var(u, ).

Thus, S) —L—Var(t, —t,).
Similarly, S; —£—Var (1, +21,). Hence, (87,85 )—L—(Var (1, —1,).Var(t, +21,)).
Now, let 63 =g (Slz,Szz). Also, let, g :R* = R? be continuous at every point on a set G such

that, P ((512,522 )e G) =1. Further applications of continuous mapping theorem and Slutsky

theorem leads to
~ 1
Gtz = g(Slz,Szz)%ngar(tl —t2)+Var(t1 +2f2 )] = 6[2 . That is 6? L}Gtz, Hence,

6,2 is a consistent estimator of Gtz . Similar proof for (ASi can be established. u

Corollary 3.3

From proposition 3.4, we may define estimates of the true correlation values P, and o, as
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. _1[255—555} and _1[255—5532

T2l S2+28? T2l S2+282

P, 5 5 J We propose that p,and P, are consistent

estimates of p,and p_respectively.
Proof:

Using equations (1.8) and (1.9), we have that
» 1 2
Cov(t,,t,) =0, _EE(SI )

— - (2EH-SE(SD)

after substituting ¢ from above. Hence,

P: = \/Var(tl)Var(tz) 2

2 cQ2 2 Q2
Define p, = 1 M and P, _1 M . From  Proposition 3.4,
20 85 +28; 2\ S, +285;

Cov(t,t,) 1| 2E(S;)=5E(S})
E(S2)+2E(S?)

S;%Var(tl+2t2). Hence, (SIZ,SZZ)%(VCZ}’(II—tz),Var(tl+2t2)). Assume
f)t :h(Slz,Sz2 ) Let, h:R?> - R? be continuous at every point on a set H such that,

P((S12,S22 ) € H) =1. Further applications of continuous mapping theorem and Slutsky

theorem, gives

2

. 1(28;-58; 1( 2Var(t,+2t,)—5Var(t, -t
p,:h(Slz,Szz):_ 22 21 P s (1 2) (1 2) =p,
20 S, +28; Var(t,+2t,)+2Var (1, - t,)
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Thus, p,—=—p, and P, is a consistent estimator of p,. The proof for P, follows in a similar

manner. u

3.4: Expected Bias Estimation

Now find estimates for the bias factor developed in the previous sections are found under

various situations.

3.4.1: Bias Estimation for the Case of Unequal Subjects per Sequence
First consider the case for the bias under the independent assignment of subjects which

was given as

N 3
Bias;y, = NE ZZOLUZ

t.
where oy = (% + ‘CUJ and i =1,2,3,..., N is the total number of subjects in the sequences.

Proposition 3.5

1 1
Given the [1j and qu are independent and identically distributed [[“1) ( ptjqz j
[2 1:2 “2 pt 1

1 S
and [(ng [ pTJC’zJ, respectively, and assuming ( 1} and (q] are jointly independent, we
M4 p’c 1 t2 TZ

propose that,
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. N -1
E(Bzas,ND) :WQ

t
where expectation is taken over the distribution of [ lj and LTIJ and
) )

Q=(2+p,)0; +4(2+p.)o; +(1, +H2)2 — M, +4(u, +“4)2 — 41,
+2((by 1y ) (M 1) + Ry 1M,

:iE@”@zEwE<r%>+iE<fm>+E<w

j=1 j=1

3 3
Now, th =0=1, =—(t1+t2) and Z‘Cj =0=>1, =—(’Cl+’cz).Thus,
j=1 J=l

ZE[%MJ —iELjJ+iEt+t2 +ZE( 2)+E(t +1,)° +ZE( ) +E((4+0) (5 +1,))

j=1 j=1

LS E(E) L E() 4 E(R) S B+ X E(R) + E(5 )

J=1

+> E(t77,)+E(t1)+ E(141,) + E(t,7)) + E(1,7,)

Jj=1
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From Section 3.3, E(tlz) =6’ +U; and E(1,ty)=Cov(t,,t,)+ W1, = p,6. +WM,. In

addition, E(tl‘cl) = Cov(tl,’cl)+ E(II)E(‘CI) =W, (7 ’s and 7 ’s jointly independent) - this

relationship applies to other expectations in the formula above. Thus,

L Y 2 o 2 oy D
Zf(—éﬂ‘,-] = (o7 +ui)+ (o] +13 )+ (p0] +aums )
]:

+2(07 +13)+2(07 +115 ) +2(p.07 + 11,
+ 2(Mgbs + HoH )+ M + LM,

1
:5[(2+p,)03 +4(2+p,)os + (1, +M2)2 — 1, +4 (U, +u4)2

Aty 2 (1 1 ) (1 1)+ bty + 1) |

=—Q0 (1.11)
where,

Q=(2+p,)0% +4(2+p,) 02 + (1, +1,)" —pp, +4(p, +i, )’
— A, +2( (1 + 1y ) (s + 1) G, + L)

We then have,
N1 (1, Y
E(Bias,y,, ) :3—ZZE[§+‘CUJ

N
. - 1
= E(Bias;y, ) =WZ§Q
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Next, the analyses are continued with the bias estimation for the case where the randomization

should result in equal number of subjects per sequence.

3.4.2: Bias Estimation for the Case of Equal Number of Subjects per Sequence
Consider finding the estimate of the expectation of the second bias. From proposition

3.3, the bias is given as

' 1 N3 el L n NN 3
BlasDEP:W (N_l)zza ZZ_:ZO‘U%' _ ZZZZ% iy

i=l j=1 N - 11111]1 tltljljl

it (i#i') and (j#])
t.
where o; = [% + ’cijj and N =3n is the total number of subjects in the three sequences with n

subjects each.

Proposition 3.6

1 1
Given the [lj and LTIJ are independent and identically distributed ({Hj ( ptjqz j
t2 1:2 “2 pt 1

1 t
and ((ng [ TJCﬁJ respectively, and assuming (1] and (q] are jointly independent,
H4 p’c 1 t2 TZ

we propose that,

. 1
E(Biasygp) = gQ
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t
where expectation is taken over the distribution of [ 1j and LTIJ and
) )

0=(2+p,)0% +4(2+p, )02 + (1, +1,)" —pp, +4(p, +i, )’
— A, +2( (1 1) (s + 1)+ G + L)
Proof:

Let’s define the following quantities as

UZiiOCU,V iii 0,0, and W= ZZZZ% i

j=1 i=1 i'=1 j=l1 i=1 i’=1 j=1 j’=1

Il
—_
JUR
—

i#i’ (i#i") and (j#j)

E(Biaspgp) :#[(N_I)E(U) - ]’:,_1

E(V)-—" E(W)j (1.12)

t
where expectation is taken over the distribution of ( 1} and (Tl
h

. Next, we find the expectation
)

of each quantity in the bias statement. Hence,

N 3 2
ZZE[ . J o (1.13)

i=1 j=1 2
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_ 0 (1.14)

Finally,

N N

)=EX Y3 S a0,

i=1 i'=1 j=1 j’=1

(i#i) and (j#j)

i=l i'=1 j=1 j=1j’=1 j=1
() (=)

N N 3 3
:—EZZZOLU i since Za,-j =0

i=1 i'=1 j=l1 j=1

(i#i)
N(N -1

=—E(V)=—¥Q (1.15)

Putting (1.13), (1.14) and (1.15) into (1.12) gives

E(Bias ) =

=—Q m

1 (N(N—l) _n-1 N(N—I)QJr n N(N—l)Q}

1
3N? 2 N-1 2 N-1 2 6
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Remark 3.6
From the estimated expected bias formulas above, we observe that

E(Bias,,,) < E(Biasp) for all n values. In addition,

N-1 1 N-1 1
Lim E(Bias = E(Bias because Lim| —— QO |=—0 since —— asN —oo,
N—soo ( IND) ( DEP) N—)oo( 6N Qj 6Q 6N 6

Earlier, we saw that, the true individual treatment effect variability, S é, cannot be

measured. Furthermore, the observed treatment effect variability is not unbiased for Slz).

However, having established the formulas for the expected bias in both situations, in the next

section, we propose an estimate the true individual treatment effect variability.

3.5: Estimate of the True Individual Treatment Response Variability

Consider the case when the subject assignment to treatment is independent. We had that,

N-1 N-1
ES(TS§j=Sé+BiaSIND. Thus, SL2)=TE5(S§)—Bias,ND . An estimate of S,

52 . .
denoted S p» 18 given as

A A A

ﬁt)fﬁ +(111 +n2 )2 _llluz +4(ﬂ3 +a4)2 _4“3“4
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Remark 3.7

An estimate for the case of equal number of subjects per sequence is given as

N-1 1A
=Ty Sl
where
Q: 2+l5t)6t2+4(2+l51)63+(!3h+ﬁlz)2—ﬁ1ﬂ2+4(ua+u4)2—4ﬁ3ﬁ4
+2( (8 + 01, () + A, +L,0)

In the next, we compare the estimated values with the actual parameters in an illustrated
example. The illustrated example puts a normal distribution to the second population type stated

above. That is, time effect parameters are given a bivariate normal distribution.

3.5.1: Ilustrative Example 1: Estimating the Bias Term

As an example to compare the actual parameter values with the estimated values, we

1
simulated two bivariate normal data of ( 1} and (TlJ Assume
) >

1, lid 5.667 31.333 —6.667 o
~N giving p, =—0.213 and
, —7.333) |-6.667 31.333

T, iid 0.667 7333 —6.167 _
~N producingp. = —0.841. The parameter values were
T, -1.333) (-6.167 7.333

taken from a previous simulation work on randomization and they are considered known. 1000
estimates (using the formulas above) were calculated from simulated data sets consisting of 300

subjects per sequence. Table 3.1 summarizes the findings.
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Table 3.1: Comparing True Values and Values from Estimators using 1000 simulated data of

300

size

Population Parameter

True Pop. Value

*Estimated Mean

*Estimated Std dev.

Mean of 7, 5.667 5.663 0.387
Mean of ¢, -7.333 -7.335 0.272
Mean of T, 0.667 0.668 0.205
Mean of T, -1.333 -1.334 0.113
Variance of 1 31.333 31.340 1.820
Variance of T 7.333 7.333 0.507
Covariance (tl A ) -6.667 -6.646 2.134
Covariance (1:1 T, ) -6.167 -6.162 0.630
Correlation (7,,1,) -0.213 -0.211 0.066
Correlation (T,,7, ) -0.841 -0.839 0.039
Expected bias — Indep. 28.191 28.270 1.602
Expected bias — Dep. 28.163 28.300 1.604

*Estimated mean is the mean of 1000 estimates obtained from simulated data with 300 subjects per sequence.
*Estimated Stdev. is standard deviation of 1000 estimates obtained from simulated data.

Notice the closeness between the estimates and the actual values. In addition, the

standard errors of the estimates are small. The graphs below further explore the estimated bias

(for the case of equal subjects per sequence) with increasing sample sizes. Increasing the sample

size reduces the difference.
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Estimated Bias for various Sample Sizes
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Figure 3.1: Graph of estimated bias for various sample sizes

Variance of Estimated Bias versus Sample Sizes
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Figure 3.2: Graph showing the variance of the estimated bias for various sample sizes

We note that, for increasing sample sizes, the estimated bias approaches the true bias
value (a). In addition, the variance of the estimated bias approaches zero with increasing sample

size (b). This illustrates consistency of the bias estimator.
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Recall that, we analyzed Squares I and 2 sequences separately. In the following Section
3.6, we combine the two analyses and propose an estimate of the overall true individual
treatment effect variability, which, as expected, consists of the estimates from Squares I and 2.
A note on symbols used here: Estimates with subscripts “1” indicate that they were derived using
Square 1 sequences; likewise, those with subscripts “2” were are derived using Square 2

sequences. The estimates from the combined sequences have subscripts “12.”

3.6: Generalization to all Six Sequences
It is important to note that, up to this point, we focused on just the three sequences of

Square 1. Let N;,N, ,131 , 52, SZZ,1 and SLZ)2 denote: the sample sizes, the true finite population

mean effects and variances of the effects from Squares I and 2, respectively. Let Sf)l 5 denote the

true individual treatment effect variability from the two Squares, we have that, 51 = — Z D, ,
1 i=1

1 No 1 Ni+Np

D, =—> D..Wedefine S5 = D -D, where
2 N2 ; i Dyp N1 +N2 P i 12)

_ 1 N1+Np 1 _ _

D, = Z D.= (NID1 +N2D2). Hence, we have

N, +N, I N, +N,

) 1

_ — 1 — — \2
By = m{legI +N,Sp, + N,D} + N,D; =—————(N,D, + N,D, ) }
1 2

N,+N,

We state the plug-in estimate of Sf,l , as,
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~ 1 ~ 1 — —\2
2 2 2 2 2
N,S;, +N,S, +Nd +N,d; - d, +N,d
Dy» N1+N2|: 1~ Dy 2~ Dy 11 22 1+N2( 11 2 2):|
e T (e W
If Ny =Ny =Ny then Dy =—-=3 D= (D +D,). dyy = (d) +d,)

1 1, = = A 1|4 A 1,—- =
Shis =5{(S§,1 +S§2)+5(D1 —Dz)ﬂ and S}, =§{(S,§1 +55,)+=(4, —dZ)z}

3.7: Illustrative Example 2: Simulated Blood Pressure Dataset

The following example is based on equal number of subjects per sequence. Blood
pressure (a.k.a. arterial pressure) is the force of circulating blood on the walls of blood vessel.
Blood pressure is one of the four vital signs sensitive to periodic changes and large individual
variations. The other three are body temperature, pulse or heart rate and respiratory rate. Blood
pressure can be systolic or diastolic in nature. For healthy, resting human adults, normal blood
pressure ranges from a systolic level less than120mmHg (millimeter mercury) to a diastolic level
less than 80mmHg, often written as 120/80mmHg. In this example, we simulate blood pressure
(BP in mmHg) data for 1800 patients who received two treatments T and C for high blood
pressure related disease at different time periods. The BP values are assumed to come from a
normal distribution. 300 subjects as randomly assigned to each of the six sequences. The Table
3.2 below shows the result of the randomization reported in the potential outcome format. All
values are in millimeters mercury (mmHg). The light grey shaded cells show the observed values

following assignment to the three sequences in Square 1.
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This example brings into focus our third population: A super — population distribution of
treatment effects. Initially, we generate bivariate normal blood pressure responses (X Y ) to two
treatments T and C. In addition, we simulated a bivariate normal time effects under three
different time periods, the third being determined by the other two. Both treatment responses
were simulated for each of the three periods. Hence, it was possible to compute the actual
parameter values and compare with estimates derived using the observed data in Squares I and

2. Section 3.7.1 below details the simulated example.

3.7.1: Detailed Distributional Specifications for Blood Pressure Date
In this section, we provide the details of the distributional assumptions that produced the
blood pressure data, summarized on Table 3.2. The distributions used here illustrate the list of

distributions mentioned in Section 1.4.

First, we assumed a pair of blood pressure treatment response variables (X,Y) have an
independent and identically distributed bivariate normal distribution with means

u, =100mmHg and W, =90mmHg, variances Gi =9mmHg® and Gi =SmmHg”,

' ' X id 100 9 2
respectively. Let Cov(X Y ) =2. That is, ~N . From the
Y 90 25

distribution of (X Y ), we define a “super-population” distribution of individual treatment

effects D =X —Y with parameters },LDZE(X—Y) and GéZVar(X—Y). That is,

iid

D ~ N(10,10).
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Second, from the super-population, we draw a finite random sample of 1800 values with

finite population mean D =9.88mmHg and finite population variance S;, =10.62mmHg” . We

note that, the quantitative section of this dissertation in centered on estimating S é .

) ) . L iid 5 8 1
Third, we let the time effects be distributed as such: , ~N - |8 and
2

T, id 1 51 _ .
~ N 5 L sl Using the values of (X ,Y) and the time effects, we found the
T,

potential outcomes for 1800 subjects and the observed outcomes when 300 subjects are assigned

to each of the six sequences in Squares 1 and 2. The resulting data for Squares 1 is shown on

Table 3.2 below.
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Table 3.2: Simulated data of Blood Pressure (BP in mmHg) for 900 subjects with 300 per sequence. The

light- grey shaded cells are observed data values for corresponding to the sequences.

79
97 89 101 87 88 88
98 90 105 90 86 90
k % * k % k
% % & %
103 87 100 89 101 83
99 93 108 91 104 92
106 92 109 92 99 83
101 89 104 91 85 92
106 89 110 90 90 83
110 93 110 91 83 89
* % k * * *
% & % % & %
98 94 105 93 86 83
107 85 105 84 96 92
108 89 113 94 82 90
110 90 113 93 89 88
103 85 108 88 94 90
106 91 107 95 83 77
* * * * * *
%k % & % & %
898 106 90 107 95 87 81
899 107 92 108 88 85 84
900 103 88 101 88 98 94
Using the potential outcome method, the true finite population average

is D, =9.796mmHg with point estimate of ‘71 =9.82mmHg for Square 1 data. For the

randomizations in Square 2, the true finite population mean is 52 =9.958mmHg with estimate

given as d, =9.87ImmHg.

For the combined dataset of six sequences, the true finite

population average is D,, =9.88mmHg with point estimate of d,, =9.85mmHg. These
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estimates give the average increase in blood pressure due to treatment T relative to treatment C.
These are the finite population mean estimates upon which decisions about the treatment efficacy
are sometimes based with less consideration of the individual treatment response effect

variability. Furthermore, the true standard deviation of the individual treatment effect for the BP
data and its estimate areS;, =3.258mmHg and S b, =3-692mmHg, respectively. The

estimated coefficient of variation is 0.375 compared to the actual value of 0.330 for the final
population. The coefficient of variation represents the proportion of the mean treatment effect to

the standard deviation of the effects.
The overall actual finite population mean effect, D;, =9.88mmHg, is positive and the

standard deviation is a 37.482% “fraction” of the mean. If it is important that the treatment
produces a positive effect for most subjects, then the fraction should be small; otherwise the
fraction could be bigger in favor of applying the treatment to a large population (Longford,

1999).

3.8: A Probability of Negative treatment effect
Let P denote the probability that a subject will experience a “negative” individual

treatment effect. Suppose the focus is on the effect of treatment T say, then, negative treatment
effect means D =X —Y < A, where A >0 is a threshold value. That is, for those individual, C

is more effective relative to T. Assume that D has a normal distribution with mean W, and
variance 02D . Note that the distribution of D is determined by the distribution of response

variables X and Y which, in this case, are assumed normal.
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Estimate P as

where CID[_—MDJ 18 the cumulative standard normal distribution function evaluated at
Gp

A— . - L . .
ﬁ. Assuming the finite population is large and representative enough, we use the finite
cSD

A

population mean, 6712, and variance, S Dy > 38 estimates of W, and 02D , respectively. That is,

—— A & . 5 A—d,
i, =d,, and 6, =S, . Thus, we estimate P by P. =CI>£ 3 12}.
Dip

3.8.1: Illustrative Example 3: Probability of Negative Effect

Continuing with the analysis of the blood pressure data with A =0, suppose we wish to
estimate the probability that the true effect of T is less effective in treating hypertension than that
of C, that is, P (X < Y) =P (D < O). Using the potential treatment method, the estimated
probability is given as

— A —_
P :p(D<0):cp(w
3.692

j =®(-2.67)=0.0038, where A=0,(,=d,=9.85 and

6, = S p, = 3.692. Thus, a randomly selected individual has an estimated probability of 0.0038
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of being better off on treatment C relative to treatment T. C is estimated to be more effective
than T for at most 0.38% of the population. If there is a tolerance or threshold probability level,

we may then decide whether of not T is superior to C.

3.9: Repeated Measure Analyses and Potential Outcome Method

The Grizzle (1965, 1974) model for two treatments - two periods crossover design could
be extended to higher design. Here we extend it to the 2 treatments, 3 periods crossover design
without carryover. With more than one subject per sequence, the general model for the treatment
response variable Y with random subjects within sequence specification — modified form of
Cross-Over Experiment by Ratkowski et al. (1993, page 60) and Jones and Kenward (1989) —

can be written as
Vi =MAN ) + T, +6, +(50), +¢€; (1.17)
with
E(yijk) =W, =u+x; +6,
where,
;i 18 the observed response for the i subject in the jth period of the k" sequence
W; is the true mean response for the i subject in the jth period
WL = an overall mean effect
Ny = the random effect due to the i subject in the K sequence; k=1,2,3,...,6;

i=1,2,3,...,n,, n, being the number of subjects per sequence
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T ;= the period effect, j=12,3

0, = the effect of treatment ¢

(NO),, = the random effect of interaction between the i subject and the " treatment.

€, = the random experimental error effect of the i" subject in period j of sequence k™.

iid

iid

iid

Assume T]l.(k)~N(O,Gf), me), ~ N(O,Gfe) and €, ~N (O,va). Observed

values at the different periods and sequences (in Square 1) are listed on Table 3.3 below

Table 3.3: Observed data for GLM model and the potential outcome values for the sequences in Square

i
Time Period 1 Time Period 2 Time Period 3
Sequences| GLM POT. OUT GLM POT. OUT GLM POT. OUT
TTC Y | (Xi+ty) Yi21 (X;+1,) Yi31 (¥ +75)
TCT Yaa | (Xi+1y) Yin (¥ +1,) YViz2 (X;+1;5)
CTT Yii3 (¥, +7,) Yi23 (X;+1,,) Yi33 (X;+1;5)

Using the model (1.17) we have that,

Sequence TTC:

Y =M+ + 7, +6, +(n®), +&,
Yior =H ANy + T, +6, + (9), +€5,

Yz =H ANy + T +6, +(ﬂ9),-2 TE€s5
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Sequence TCT:

Yir =W AN+, +0,+(10), +e,,
Yizy SHAN o) + T, +6, +(m#),, +¢
YVigy =M AN + 75 +6, + (ne), +¢
Sequence CTT:

Yiz =H AN + T + 0, + (119),-2 te
Yizs =M ANy + T, +6, + (ne), +¢

Yizg =R+ MN;5 + T3 + 6, +(ﬂ9)ﬂ tE€

Proposition 3.7

Given the model (1.17) and the potential outcomes observed data, the difference between
the least square mean of the treatment effects is an unbiased estimate of the mean of the observed
treatment effect (hence, an unbiased estimate of the true mean treatment effect). Let

n,, n, and n; be the number of subjects in sequences T7C, TCT and CTT respectively. We

assume n, =n, =n, =n. Define 0, and 0, as

n ny 3
Z()’m + yl'zl) Z(inZ + )’i32) Z Vit )’133
i=1 i=1 i1

6, = 1 +
3 2n, 2n, 2n,

(1.18)

and
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n ) 3
R 1 Zyi31 ZinZ Z)’m
92 — | 1=l + i=1 4 i=1

3 m n, n,

then,

6,-6,-a

where d is the observed mean treatment effect from the potential outcome method.

Proof:
n ny n3
] Z(yi11+yi21) Z()’i12+)’i32) Z(}’i23+)’i33)
61 —_| 2= + i=1 + i=1
3 2n, 2n, 2n,

n m n
o 2K (X)) (X)) + (X)) 2 (X +10) +(X +15))
391:— =l +l:1 +l:1
3 2n, 2n, 2n,
ny n n
<1 Z(in +ti2+til) Z(zxi +ti1+ti3) Z(in +ti2+ti3)
:>91 =_| = + i=1 + i=1
3 2n, 2n, 2n,
Similarly,
n ny n3
“ 1 Z(Yi+rl3) . (Yi+T12) (Yl+Tll)
92 S i=1 + i=1 + i=1
3 n, n, n,
Hence,
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A A i nl . . . YQ . . . 713 . . .

561" W—(zm)}l M_(gm))g w_(gﬂl)j
3ng 2 Y= 2 i 2

o r n : : m ] : 2] . .

60,1 -3 (x —z)+m—r,-3j+1z((x —znm—%jézﬁx—mwﬂ —rﬂj
3 n e 2 na 2 i 2

Now, nj =n, =ny=n

él _éz :l {1 Z(()(z _Z) +ti2—2i_tﬂ _11'3)61' +1 Z(()(z _X) "jlli—;ﬁ _’92}51'2 "l (Xz _Z) +M _Tiljail:|
i=l i=l

3l n n ng 2
~ ~ 1 & n 3 ti'
=0,-0,=—| D (X,-Y)-D > Z+1, |5, |-
n\ = i1 =\ 2
And from (1.3),
A oAl _
6,-6, :_Zdi:d u
niq
Remark 3.5

A similar correspondence between estimates of time effects in a repeated measure
framework and the potential outcome framework was also noted and shown in a numerical

illustration.

58



3.9.1: Illustrative Example 4: Comparing Potential Outcome with Repeated Measures
Estimates

We continue with Example 2 with application of the generalized mixed model (1.17) with
repeated measures. We obtain d; =9.82mmHg, d, =9.87mmHg with standard errors of
0.1722 and 0.2245 for the randomization in Squares I and 2 respectively. Furthermore, for the
combined data, we have d,, =9.88mmHg with a standard error of 0.1581. Thus, as stated in

Proposition 3.7, the GLM estimates are equal to the potential outcomes estimates. That is, we
may think of the PROC GLM or PROC MIXED outputs as estimates of the true population mean
treatment effects. Furthermore, from the GLM output, the p-value is less than 0.0001, hence,
there is evidence that i, > 4, .

We also compared the estimates of the linear combination of the time effects parameters

as explained in Corollary 3.5. Using the potential outcome method on subjects in the first and

A A
third sequences of Square I, we have estimates: f, —t, =—2.127, t, —t,=16.650 and

A A A
t,—t,=2t,+1t, =18.777. Similarly, for Square 2 we have estimates: T,—7T, =—1.043,

A A
T,—7T,=3.693 and T, -7, =4.737.
Using all the sequences in square 1, the estimates of the period contrasts produced by

GLM are Rt,—%,=-2.124, f, —f,=16.654 and R, -7, =18.779 with standard error
0.2812 in all cases. For Square 2, SAS Proc GLM gives estimates: #t, —%, =—0.932,

R, =T, =3.916 and &, —ft; =4.848, all, with standard error 0.23358.
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In this chapter and chapter 2, we estimated the true individual treatment effect variability
and the probability of negative effects for quantitative response variable using the method of
potential outcomes. The analyses employed the two treatments, two periods and the two
treatments, three periods randomizations. Furthermore, we compared the potential outcome
estimates with the usual repeated measures estimates gotten using GLM. In the following
chapter, we extend our analyses to qualitative response, precisely, the binary response variables.
We limit the analyses to two treatments, two periods TC — CT and the TC — CT — TT - CC
designs. For these designs, we will estimate the average treatment effect and the probability of
negative effect — a component that implicitly reflects the individual treatment effect variability.
Earlier, we saw that some work had been done these designs by Gadbury et al. (2004). However,
their analyses assumed “exchangeability.” Initially, we relax the exchangeability assumption and
later consider it. We show that, when the exchangeability assumption is factored into our
analyses, the “without — exchangeability” analyses boils down to the analyses presented in the

paper Gadbury et al. (2004).
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CHAPTER 4 - Analysis Using Binary Data

4.0: Two Treatments, Two Periods with Binary Outcome

In this chapter, we will base our analyses on two treatments, two periods with a binary
response. The focus will be on the designs: TC — CT and TC — CT — TT — CC. The first part of
the analyses will deal with the TC — CT crossover design for which we will estimate the true
average treatment effect and construct bounds for an inestimable “probability of negative effect.”
The second part involves the design, TC — CT — TT — CC. That is, some subjects will stay on the
same treatment over the two periods. Observed responses from these subjects will enable us to
construct tighter bounds for the probability of a negative effect. The expression of “probability of
negative effect” carries a connotation of an “unexplained individual treatment variation”

(Gadbury et al, 2004). An example will be used for illustrations.

4.1: A Two Treatment Design with Binary Response: One Time Point
Let X and Y represent the response to treatments 7 and C respectively. We let “1”

denote “success” and “0” denote “failure.” In addition, let (X ,Y) be a set of bivariate discrete

potential outcomes from an infinite population of outcomes. The joint discrete probability
distribution of (X ,Y), P(X =x, Y= y), is given as on Table 4.1 below (Gadbury et al.,

2004).
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Table 4.1: Joint Probability distribution of (x, y)
(x.y) (0,0) | (0.1) | (1LO0) | (L) | Toal

=1
P(X=xY=Yy) o, o, o, o, Zw‘

where (x,y) are the observed outcomes of (X,Y) and P(X =x,Y =y) =,

1

(i=1,2,3,4),
is the true probability of (x, y) for an individual at a specific time. Since only one of either X or

Y is measured at a specific time (the fundamental problem of causal inference), M, € [0,1]

cannot be directly estimated for i =1,2,3,4 separately.
As before, define D = X —Y as the true treatment (causal) effect. That is, D expresses

the actual effect of 7 relative to C and note that D is not observable. Let P(D) denote the

probability of D . Note that P(D) is a discrete probability distribution. Possible values of D

and the associated probabilities are listed in Table 4.2 and 4.3 below

Table 4.2: Possible values of D

(%) (0,0) | (0.1) | (1L0) | (LI)
D=X-Y 0 —1 1 0

For example, D =—1 means treatment 7 leads to an unfavorable effect(failure) relative to
treatment C at a particular time.

Table 4.3: Probability of observing D

D -1 0 1

P(D) ®, W, + 0, Q3
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Remark 4.1.1

Let p=E (X ) and p, =E (Y ) be the mean of the marginal distributions of X and ¥,
and note that these are estimable. Then from Table 4.3,p, =P(X =1)=w,+®, and
p,=F (Y = 1) = ®, + ®,. Denote the true average individual treatment effect of T relative to
C asE(D). Then,

E(D)=w,~,=p,—p,.
Note that E (D) represents the true mean treatment effect of 7 relative to C at a particular
time.
For example, E(D)=0.6 could mean several things

D). ®, =0.60 and ®, =0: That is, 60% of the patients will succeed on 7" but fail on C and the

remaining 40% will either succeed on both T and C or fail on both T and C .
2). ®, =0.65 and mw, =0.05: That is, 65% of the patients will succeed on 7 and fail on C, 5%
will succeed on C and fail on T and 30% will either succeed on both 7T and C or fail on both
T and C.
3). ®, =0.80 and ®, =0.20: 80% of the patients will succeed on 7" and fail on C, 20% will
succeed on C and fail on T and 0% will either succeed on both 7 and C or fail on both 7 and
C.

So, if the average treatment effect probability equals 0.60 does not immediately imply C

is completely ineffective as (1) may suggest. Notice that (3) indicates 20% responded well on C

and failon T .
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Remark 4.1.2
The variance of the true individual treatment effect is given as
2 2
Var(D)=E(D*)-E(D)

:(’)2"'(’33_((’33_(’)2)2

=0, (1-o,)+o,(1-0,)+ 20,0,
Var(D) cannot be estimated because D cannot be observed. In this chapter, less focus will be
placed on Var(D) although we will establish bounds for it. Furthermore, we move the analysis
of Var(D) to the appendix section of this dissertation. Instead, we will focus on estimating the

probability of negative individual treatment effect, P(D < 0) — a component that results from
the variability of the individual effect — and the average individual treatment effect of 7T relative
to C. In addition, the variance of a discrete distribution, usually, is a function of the mean.
These make Var (D) difficult to interpret.

In the next section, we present the two treatments, two periods TC — CT crossover design

for binary outcomes. Results will be outlined with and without the assumptions of

“exchangeability.”

4.2: Two Treatments Two Periods: Potential Outcomes and True Probabilities

The prior section established the potential outcomes framework for a particular time

point. This section considers two time points periods, so potential outcome variables are in four

dimensions with (X 1’Y1) for time point Period 1 and (X 2,Y2) for time point Period 2. Thus,
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there is a true individual treatment effects for both periods, given by D, =X;-Y; and
D, = X, =Y, . It will be assumed that the bivariate marginal distribution for each time period

will be given as in Table 4.4. However, in the 4 — dimensional joint distribution, exchangeability
of bivariate outcomes may not hold due to time effects. Initially, it is assumed that
exchangeability does not hold. As stated above, suppose there are two treatments 7" and C with
binary response, Table 4.4 below shows a constructed distribution of all possible potential
outcomes for a population.

Table 4.4: Potential outcomes framework and probabilities of two treatments, two periods crossover
design

Period 2
For an re rc rc I' C | Marginal
Individual |(*2:¥2) =(0,0)|(%2,32) =(0.1)| (%2, 32) =(L,0) | (%2, ¥2) =(L1) | Total
TC
(xl’yl) :(O’O) By B Bis B o,
TC
Per.1 (xl’yl) :(0’1) B, B B B ®,
TC
(xl’ yl) = (1’ O) B, B, B B, Q3
TC
(xl’yl) :(1’1) B Ba B s Bas wy
Marginal
Total o, o, Q3 W, z w=1

From Table 4.4, we note that marginal distributions are assumed equal. That is,

P(X,=x.Y,=y,)=0,=P(X,=x,Y,=y,) for i =1,2,3,4. Furthermore,
By = P (X1, %) = (%, 3,)-(X5, %) = (x,3,) | for i,j=1,2,3,4 is the true joint probability

of (X 1,Yl) outcomes in Period 1 and (X 2,YZ) outcomes in Period 2 ( as on Table 4.4). Note

here that, “i” goes with the row outcomes in Period 1 while * j” is associated with the columns
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outcomes in Period 2. So, BU is the actual probability of the i"™ outcome in Period 1 and the jth
outcome in Period 2, as given on Table 4.4. In addition, BU € [0,1] 18 inestimable for
i,j=1,2,3,4, since we cannot observed both (X le) and (X 5. Y, ), simultaneously. For
example B,, = P[(Xl,Yl) =(0,0),(X,.Y,) = (0,0)] is the true probability that both treatments
are ineffective in periods 1 and 2 and [323 = P[(Xl,Yl) = (0,1),(X2,Y2) = (1,0)] is the true

probability of succeeding on C and failing on T in Period 1 and succeeding on T and on failing

C in Period 2. These probabilities cannot be estimated.

Remark 4.2.1

Additional remarks about Table 4.4:
1). The true probability of potential outcomes at one period, conditioned on the outcomes at
another period are the same, regardless of which period is conditioned, as long as the outcomes

are the same at each period. That is,

PI:(XZ’YZ):(xi’yi) | (Xpyl):(xi’yi):lzl?)ii =P[(X1,Y1)=(xl.,yl.) | (X,.1,)

(xi’yi):l’

for i=1,2,3,4.

2). Exchangeability occurs when

8= P[00 =300 = 10 ] = P[0 )= 011,08,

We will reserve the detailed look at the notion of exchangeability for the later part of the

dissertation. However, it is worthwhile noting that, for i, j =1,2,3,4:
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PLX, %)= (x3,) | (X0 7%) = (0 0) |2 P(X0 1) = (3.3) | (X0 1) = (x,03,) .
unless i = j.

This difference in probabilities suggests a possible time period effect or a dependency of
outcomes in one period on outcomes in the other. Notice that with the assumption of

exchangeability, the conditional probability effect is same regardless of the time period the

treatment is administered.

Marginal Probability

The distribution of Table 4.4 has been constructed such that, even in the absence of

exchangeability, the row and column probabilities for an individual in a given period sum to ;

4 4 4
as presented on the Table 4.4. Thatis, ) B, =, =) B, and > @, =1.

j=1 i=1 i=1

Remark 4.2.2

Having defined the distribution on Table 4.4, in the following sections, we use this
distribution to study our observed data from the TC — CT (Section 4.3) and the TC - CT - TT -
CC (Section 4.6) designs. We will express the probabilities of observing a particular outcome as
a function of the actual probabilities on Table 4.4. Estimates of these estimable probabilities of
observing an outcome will be found. In the first part of the analyses, we assume exchangeability
condition does not hold (Section 4.5, 4.7). Later, we assume that it does hold and show that the

analyses become that presented in Gadbury et al. (2004).
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4.3: Potential Outcomes and Probabilities of Observed Outcomes for the TC

— CT Design

Consider the two treatments, two periods crossover design. The observed data will be of

the form

Period
1 2
T C
Sequence
2/1C T

The following schematic diagram illustrates the possible observed outcomes under the TC — CT

design:
Sequence Period 1 Period 2
TC X, =1 XYZZI
X, =0 Y,=0
CT Y, =1 X, =1
Y, =0 X,=0

The options below illustrate the possible probabilities (), (i =12,....4:k =1,2) for the "

observed outcome in the k" sequence expressed in terms of the true probability values on

i
Table 4.4. Hereafter, we will label these probabilities of observed data, “Estimable

Probabilities.”
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TC — Sequence (1):

1.)
Estimable Probability Potential Outcomes
Period 1 Period 2
¢, =P(X,=0,Y,=0) [(X,=0,Y=y)|(X,=x,,¥,=0) Probability
0 0 0 0 B
0 0 1 0 Bis
0 1 0 0 Ba
0 1 1 0 B
Thus, ¢y = 7c Ry = P(X1 =0, = 0) =Py +Bis + B + B
2.)
Estimable Probability Potential Outcomes
Period 1 Period 2
0,=P(X,=0, %=1 |(X,=0,Y=y)|(X,=x,, ¥,=1) Probability
0 0 0 1 Bi>
0 0 1 1 Bra
0 1 0 1 B
0 1 1 1 Bas
O1p = 7c By :P(Xl =0, :1) =Py + Py + B + By
3)
Estimable Probability Potential Outcomes
Period 1 Period 2
0, =P(X,=1,Y,=0) | (X,=1,Y,=y)|(X,=x,,¥,=0) Probability
1 0 0 0 Bsi
1 0 1 0 B
1 1 0 0 Bas
1 1 1 0 Bas

P =1cho :P(Xl =1,7, :0):ﬂ31+ﬁ33+ﬂ41+ﬂ43
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4.)

Estimable Probability Potential Outcomes
Period 1 Period 2
0,=P(X,=1,Y,=1) | (X,=1, Y =y) | (X,=x,, \,=1) Probability
1 0 0 1 B
1 0 1 1 Bss
1 1 0 1 B
1 1 1 1 Bas
Oy = 7c By :P(Xl =1, 1 :1) =P, + B3y + By +Buy
Similarly, for sequence CT,
CT - Sequence (2):
5.)
Estimable Probability Potential Outcomes
Period 1 Period 2
0, =P(X,=0,%=0) | (X, =x,Y%=0)|(X,=0,Y,=y,) Probability
0 0 0 0 B
0 0 0 1 B>
1 0 0 0 Bsi
1 0 0 1 B
02 = cr By :P(Xz =0, :0) =Py + B +B5 +Bs
6.)
Estimable Probability Potential Outcomes
Period 1 Period 2
0,=P(X,=0,%=1)| (X, =x,Y%=1)|(X,=0,V,=y,) Probability
0 1 0 0 Ba
0 1 0 1 B
1 1 0 0 Bas
1 1 0 1 Baz
0n =crBo= P(Xz =0.,Y :1) =By +Br +By +Bs
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7)

Estimable Probability Potential Outcomes
Period 1 Period 2
0;=P(X,=1,Y=0) | (X,=x,%=0)|(X,=1,Y,=y,) Probability
0 0 1 0 Bis
0 0 1 1 Bra
1 0 1 0 B
1 0 1 1 Bss
0 = cr By :P(Xz =1, 1 :0) =Pi3 +Bis +Pss + P
8.)
Estimable Probability Potential Outcomes
Period 1 Period 2
0, =P(X,=1,Y=1) [ (X;=x, Y =1) | (X,=1,Y,=y,) Probability
0 1 1 0 B
0 1 1 1 Bas
1 1 1 0 Bas
1 1 1 1 Bas

¢24 = cr By

:P(Xz =1, Y :1):B23+B24+B43+B44

In summary, the estimable probabilities of the four possible observed outcomes from each

sequence are

Sequence (1) TC:

O = 7cFyo :P(X1 =0, Y, :O):BII+B13+BZI+BZ3

0, = ¢ By :P(Xl =0,Y, :1):[312"'[-)’14"'[-)’22"'[324

013 = 7c Py :P(X1 =

¢14 =B
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, Y :0):[-)’31"'[333"'[341"'[343

:P(Xl =1,7, :1):B32+B34+B42+B44

(1.20)

(1.21)

(1.22)

(1.23)



Sequence (2) CT:

0y = cr By =P(X,=0, ¥, =0)=P,, +B, +B; +By, (1.24)
0p = By =P(X,=0, Y, =1)=p,, +B,, +By +By (1.25)
0= o By = P(X, =1, ¥,=0) =B + B, + B3 + B3, (1.26)
0ry = B =P(X, =1, ¥, =1)=By +B,, +Bys +Bu (1.27)

Remark 4.3.1

4 4 4 4 4
1.) We note that, Z(I)ki =1 for k=1,2, ¢,, € [0,1] since Z(I)ki =ZZBU :Zcol. =1.
i=1 i=1

i=1 i=1 j=1
2.) If arbitrary labeling of the time periods was possible, then, BU = i for i#j and
i,j=1,2,3,4. This would imply exchangeability holds and thus, we can equate probabilities
from the two sequences. For example, consider the outcome (X, =1, ¥, =0) in (1.22) above
and (X, =1, ¥, =0) in (1.26), if exchangeability was possible then B,; =P, Bs, =B,; and
hence, O3 = ;P = v Fy; = 0y . This would suggest no sequence effect for the subjects with
this outcome. But the reverse is not sufficiently true. That is, if ;- B, = o F,, does not directly

imply exchangeability. That is,

=
(B =B ) and (B, = B43)><(¢13 = rcBo = cr By = 023)

This relationship is true for all other combinations of probabilities involving the two sequences.

The proof will be outlined later.
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4.3.1: Analysis of the Estimable Probabilities, ¢, of the Observed Outcomes

Here is a more detailed look at the probabilities, @,; (i =12,....4:k= 1,2) , for the i"

observed outcome in the k" sequence expressed in terms of the true or actual probability values

Bij on Table 4.4. The probabilities are given in equations (1.20) through (1.27) above. Below,

¢, are expressed in terms of the marginal probabilities, ®, and the actual joint probabilities 3

U’

for i=1,2,....4; j=1,2 and k =1,2. Inferences will then be drawn from the established

relationships after some algebraic manipulations. For example,

¢11 :Bn +B13 +BZI +BZ3
=, + (B, —B1») + (B —Bis)

:wl_Al

from the fact that @ =P, +PB,+B;+Bu = (B, +B;s)=0 —(B,,+B,,). Note that

A, =(B,, =B, )+ (B, —B,3)- This derivation involving @, was established using the Period 1

marginal. We can easily extend it to ®,, ®, and ®,. Due to the assumption of equality in

marginals, similar equations, for the two sequences TC and CT, can be found using Period 2

marginals (that is, column totals in Table 4.4). This is addressed in the following two columns:

Using time Period 1 marginals in sequence TC

Using time Period 2 marginals in sequence TC

¢y =0 — A,
0, =, +A
0, =0;+A,
0y =0, = A,

(1.28)

(1.30)

(1.32)

(1.34)

0y = —A,
0,=0,+A,
O3 =05 +A,
O, =0,—A,
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(1.35)



Using time Period 1 marginals in sequence CT  Using time Period 2 marginals in sequence CT

0, =0 — Ay (1.36) 0, =, —A, (1.37)
0, = 0, + A (1.38) 0, =0, +A, (1.39)
0y = 05 +Ag (1.40) Oy =0, +A, (1.41)
0, =0, —Ag (142) 0y =, — A (1.43)
where,

A :(B12_BZI)+(Bl4_BZ3)’ A, :(B43_B34)+(B41_B32)’ A, :(B31_B13)+(B41_Bz3)’
A, :(824_842)"‘([314_[332)’ As :(B13_B31)+(B14_B32)’ Ag :(642_[324)"'([341_[323)’
A7 (le _B12)+(B41 _[332)’ AS :([-)’34_[-)’43)"'([-)’14 _[323)-

Remark 4.3.1.1

From Equations (1.28) through (1.35), there are some noticeable equalities between the

equations to be considered. For instance, Equations (1.28) and (1.29) imply A, —A,=0.
Similarly, we note that, A, —A, =0,A, —A; =0 and A, —A, =0. For example,

A-A;y= (BIZ _le +B14 _[323)_([331 _[-)’13 +B41 _[323) = (0)1 _[-)’11)_(0)1 _Bn) =0.
Furthermore, it can also be showed that, A, —A,=(®,—B,,)-(®,-p,,)=0,
Ay =Ay=(0;=By;)— (@, =B33) =0 and A, —A, =(0, —B,,)— (0, —B,,) =0. Hence, we
note that, A\, =A, =A, =A, =A;. and, A; =A, =A, =A; =A,,. Thus, as anticipated, any

one of the two time period 1 and 2 marginals provides sufficient information about the actual or

74



true probability, ,, from the probabilities of observed outcomes, (I)ki. Thus, (1.28) through

(1.43) simplify to (1.48) through (1.51) given below.

For sequence TC:

0, =0, —Ay (1.44)
0, =0, +A, (1.45)
Oy3 = @3 +Age (1.46)
Oy =0y —Agc (1.47)
For sequence CT:
0, =0, A, (1.48)
0,, =W, +A; (1.49)
0y =05 +Ag (1.50)
0y =0, — Ay (1.51)

From various combinations of (1.44) to (1.47) the A, cancels out and we have, for
sequence TC: O+ 0, =0 +0,, Opy + 03 = 0 + s, Oy + 0, =0, + O,
0;+0,=0,+m, and for sequence CT: 0§, +0,, =0 +®,, ¢, +0,; =0 +O,,
0,y +0,, =0, +®,, 0,,+9,; =0, +®,. Thus, linear combinations of , are estimable,
although, separately , cannot be estimated even after applying the TC — CT randomization.

This point is further reinforced by an attempt to calculate , using the matrix manipulations

below. Thus,
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I 1T 0 0| o _¢11+¢12_ @, _¢11+¢12
1 01 0f|m, B 0, + 0, o, | O +0p3
= = Arc =
0 1 0 1||o| |¢,+0, ;| |0, +0y,
00 1 1{o,) [05+0,] @) [0+ |
where
11 0 0]
1 01 0 . .
A = 01 0 1 = Ay We note that the matrix A;. (and hence, A.;) is not a full-rank
0 0 I 1

matrix since the sum 2™ and 3™ columns minus the first equals the 4™ column. In addition, the

Eigen values of ATC (and hence, ACT) are 2.000, 1.414, 0.000 and -1.414. Hence, no unique
solution for ®, exist. In the next section, we derived estimates for the probabilities in Equations

(1.44) to (1.51).

4.4: Estimations Using Data of Observed Counts from a TC — CT Crossover
Design
In a typical TC — CT crossover design, the various possible observed outcomes and

counts in Period I and 2 can be classified into (0,0), (0,1), (1,0), (1,1), where (a,b)
indicates response “a” in Period I and “b” in Period 2. In addition, for sequence 7TC,

(a,b) = (xl, Y, ) That is, a represents response to T in Period 1 and b denotes response to C
in Period 2. Meanwhile for sequence CT , (a,b) = (yl,x2 ) Thus, a symbolizes response to C

in Period 1 and b signifies response to T in Period 2.
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Let n, and n,, denote the number of subjects assigned to sequence 7C and CT
respectively. Also, let n,,, n,, 05, Ny,, Ny, Ny, Ny, Ny, denote the number of subjects with
response such that the first subscript correspond to the sequence and the second subscript
enumerate the four outcomes. For example, n,, denotes the number of subject that succeeded on
treatment C in time Period I and failed on treatment T in time Period 2, meanwhile, n,, denotes

the number of subject that succeeded on treatment T in time Period 2 and failed on treatment C
in time Period 1. These counts are illustrated on Table 4.5 below.

Table 4.5: Standard table of observed counts of responses to treatments in each period in a 2
treatments, 2 periods crossover design with focus on sequence

Marginal
Sequence (O ’ 0) (O ’ 1) (1 ’ O) (1 ’ 1) Total
|(TC) ny, "y 3 iy e
2 ( CT) Ny, N3 Ny, Ny, Ny,

Notice the interchange between n,,

(y,,x, ) outcomes where (y,

and n,,. Here,

is the number of

=1,x,=0) and n,; is the number of (y,,x,)outcomes with

(1,0). This interchange was made to match the arrangement of outcomes (0,0), (0,1), (1,0)

and (1,1).

Remark 4.4.0

4 2 4
Note that ani =n, for i=1,2,3,4; k=1,2. Similarly, Zani =n, where n
i=1 k=1 i=1

denoted the total sample size in both sequences. We note that period effect favors one treatment

over the other when n,, +n,; is substantially different from n,, +n,; (Jones and Kenward,
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1989, p. 93). Inferentially, period effect, in favor of one treatment, is present when ¢, +¢,,
differs substantially differs from ¢,, +¢,;. We have that,

¢12+¢13:P(X1:O ) Y2:1)+P(X1:1 , Y2=0)
:([312"‘514"‘[322"'524)"'(531+B33+B41+B43)

¢22+¢23:P(X2:O ) lel)"'P(Xz:l ) Yl:O)
:(B21+B41+Bzz+B42)+(B13+B33+B14+B34)

In the presence of exchangeability, 0,, +®;; =0,, +0,; and there is no sequence or

period effect. That is, time periods are randomly labeled. In the coming section, we explore

methods of estimating the probabilities of the observed outcomes ¢, for i =1,2,3,4;k =1,2.

4.4.1: Maximum Likelihood Estimation of Probabilities Using Observed

Count Data

In the previous analysis involving the TC — CT crossover design, we got the estimable
probabilities , ¢, fori =1,2,3,4;k =1,2.

We assume (n,,,7,,,7,5,1,, ) ~ multinomial (¢,,,9,,,0,5,0,, ) . The likelihood function of the

observed data is given as

L (51 s g 103000005 0030 00 ) o< [T T O0 oo (%)

2 4
k=1 i=1
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4 4 4
where Zn,a- =n,, for i=1,2,3,4; k =1,2 and subject to the constraints: Z% =1 Z(T)zl. =1,

i=l i=1 i=1
and ¢, =0y +0, =0y, 0y =0, +0;—0,, - a set of constraints that result from the

following combinations of probabilities, ¢,; , in design TC — CT:

O+ 01, =0y + 0, O3+ 01, =0p3 + sy, O + 013 =0 +0y5 and ¢, + 0,4 =, + 0y
The likelihood expression in (*) contains 4 distinct parameters leading to 4 nonlinear

equations. Solving these equations requires an iterative numerical method subject to 4
constraints. These 4 nonlinear equations could still be reparameterized with no constraints (as
will be done in an illustrative example), but then, we would still require an iterative method of
solution. Various iterative numerical procedures are available for use. Here, we will use the

optim package in R for evaluation (www.r-project.org).

Assume the maximum likelihood estimates of the probabilities ¢;; have been found and

denote them, (T) i » Where i =1,2,3,4;k =1,2. We state the following proposition:

Proposition 4.4.1

The average individual effect of treatment 7 relative to treatmentC , E (D), is given as

E(D)= 0.5[((1)13 + 0,3 ) — (0, + oy )] and is estimated by

A

E(D)= 0'5|:((,1\)13 +a)23)_(a)12 +qA)22 )}
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Proof:

Recall that E(D)=®,—®,. From equations (1.45) and (1.46) in sequence TC:
®, -0, =(¢;—0,). From equations (1.49) and (1.50) in sequence CT:
W, —0, = ((1)23 - (1)22) . Thus, combining the effect from the two sequences, we have that,

E(D) =0, — W, :O-SI:(¢13 _¢12)+(¢23 _¢22)]-

A

:>E(D):O'S[(&)B_6)12)4_(&)23_&)22)} ]

Remark 4.4.1

A
E (D) is an estimate of E (D)— the actual average individual treatment effect of 7 versus C -

in a TC —CT crossover design. E(D) expresses the average difference in response for the

(1,0) and (0,1) outcomes at a particular time point. We now turn our focus to the “probability

of negative effect.”

4.4.2: Probability of a Negative Effect

Consider the probability of fairing well on treatment C relative to treatment 7 . In this

case, D =X —Y <0. From Table 6, the probability of negative effect is given as ®,. That is,
P(D=-1)=w,. From Table 4.4, we have that, P(D=-1)=w, =0, +B,, +B,; + B,
(using Period 1 probabilities) or P(D=-1)=w, =B, +B,, +P;, +B,, (using Period 2

probabilities), where, ©, = P(X =0,Y = 1). The expression of probability of negative effect
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carries a connotation of an “unexplained individual treatment variation” (Gadbury et al, 2004, p.
173). Furthermore, it may also provide information on the “possible magnitude of a treatment by
covariate interaction” (Gadbury et al, 2004, p. 173), and treatment by period interaction, thus

shedding more light on the extent of the unexplained individual treatment effect variability.

Proposition 4.4.2

For the TC - CT crossover design, the combined probability of a negative effect,
0, =70 =P(X,=0,Y=1) and ¢,,= - PB,=P(X,=0, ¥,=1) is not an unbiased
estimate of the actual probability of negative effect given as ®, = P (X =0,Y = 1).

Proof:

From equations (1.45) and (1.50), we have that
®, :O'S(¢12+¢22 _(ATC+ACT)) (1.52)
Thus, the probability of observing (0,1) is not unbiased for the true probability of (0,1) denoted

(1)2-

Remark 4.4.2

As a consequence of the proposition 4.4.3, we will establish bounds, [L,,U l], for the true
probability of negative effect, ®, =P(X =0Y =1), since it is impossible to estimate
(ATC +ACT) using the TC — CT design. This statement holds even with the inclusion of

exchangeability because, then, A, = A, - as will be shown later - and (ATC + ACT) does not

cancel out. The next proposition builds on this remark.
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Proposition 4.4.3

The bounds for @, using the TC — CT crossover design are L, and U, such that

L <o, U,
where L, =max{0, 0.5[ (¢, +0,)—(¢,3+0,) ]} and

U, =min{0.5[ (¢, +02;) + (012 + 025) | 0.5[ (01 +02) + (914 +05,) |}

Proof:

From Equations (1.44) of sequence TC and (1.48) of sequence CT, we have, ¢,, +0,, = ®, + ®,
and 0,, +0,; =0, +®, respectively. This leads wus to the equation,
®, +®, =0.5(,, +0,, +0,, +d,;) . Similarly, from Equation (1.46): ¢,, +¢,, = ®, + ®,, and

Equation (1.50): ¢,, +{,; = ©, + ®,, we have @, +®, =0.5(,, + 0, +0,, +0,,).

Hence,

0, <U = min{O.S [(q)n +0y ) + (¢12 +0y )] ) 0'5[((1)12 +0y, ) + (¢14 +0,, )]} :
Furthermore, we had that W, -0, = 0.5[(¢13 + 0,5 ) — (0, + 0y )] . This implies

W, =0, + 0-5[((1)12 —013) + (92, — 0y )] and thus,

w, 2 L= maX{O, 0-5[((1)12 + 05 ) = (015 +0s3 )]} u
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Proposition 4.4.4

L, and U, are identifiable and have M.L.E.s given as lA,1 and U | Where

iq = maX{O, 0-5[(6)12 + (1322 ) - (&’13 + 6)23 )}} and

A

0, =min{0.5 (6, +8:.)+ (8 + 82, 03[ (b 48 ) (6461,

where (T)ki , (i =1,2,3,4 and k = 1,2) are MLE estimates of the probabilities ¢, . Furthermore,
there exists a distribution for which L; and U, are attained.

Proof:

There exists a unique M.L.E for each (T)ki ,1=1,2,3,4; k =1,2. Thus, identifiability follows.

We also note that,

U, =min{0.5[ (¢, +0,,) + (012 +02) |, 0.5[ (01 + 02 ) + (s +024) ]}

_[05[(00+02) + (0 +0) ] iF (04 +02) < (014 +024)
0.5[(0y + 00y )+ (D1 +050) | i (011 +021) 2 (04 +0s4)

These bounds are attained when the distribution of Table 4.4 leads to probability of observed

outcomes shown on the Tables 4.6 and 4.7 below.
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Table 4.6: A distribution of probabilities of observed
outcomes for which the upper bound is be attained

T C TC TC TC
i | (0.0) | (01) | (1L0) | (L1)
T C
(0,0)] o 0 0 0
TC
(0.1)) o 058, | o 0
TC
(L0)| o 0o | 0.6, 0
TC
Ly 0 0 0.50,
or

Table 4.7: A distribution of probabilities of observed
outcomes for which the lower bound is be attained

T C TC TC TC
.| (0.0) | (01) | (1L0) | (L)
T C
(00) 056, | o | o | o
TC
(0.1)] o | 058, | ¢ 0
TC
(LO)| o o |05 | o
TC
(L) | o 0 0 0

respectively, where 0, = (q)u + ¢21) , 6, = (¢12 + ¢22)’ 0, = (¢13 + 03 ) , 0, = (¢14 + ¢24)'
Similarly,

L= max{O, 0.5[(4)12 +0,,) = (05 + 0,5 )]}

— 0 if (¢12+¢22)S(¢13+¢23)
O~5[(¢12 +¢22)_(¢13 +¢23)] if (¢12 +¢22) 2 (¢13 +¢23)

and the bounds are attained with a distribution of the forms,
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Table 4.8: A distribution of probabilities of observed outcomes

for which the lower bound is be attained.

Foran| T ¢ TC T C T C
Indiv.| (0,0) | (0.1) (1,0) (11)
T C

(O’O) 0-5(91 +92) 0 0 0
TC

(0,1) 0 0.50, 0 0
TC

(1,0) 0 o [05(8;-6,)]
T C

(11) 0 0 0 0.56,

or

Table 4.9: A distribution of probabilities of observed outcomes

for which the lower bound is be attained

Foran| T C T C TC T C
mdiv.| (0.0) | (0.1) | (10) (L.1)
T C
(0,0) 0.58, 0 0 0
TC
(0,1) 0 0.56, 0 0
TC
(LO)] o o [05(6,-65)| o
TC
LH] o 0 o |05(6+6)
respectively.

We continue the analyses with the examination of the concept of exchangeability. We
define certain criteria which will be useful, subsequently. Later in the analyses, we impose the

exchangeability assumption and investigate the impact on the conclusions already reached.
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4.5: Exchangeability
The notion of exchangeability can be explained in terms of the true probabilities BU and
estimable probabilities, ¢,; , from the observed data, where i, j =1,2,3,4; k =1,2.

First, exchangeability occurs when BU =B ji- Until now, we have assumed that exchangeability
does not hold, that is, BU # Bﬁ. for i # j and i, j =1,2,3,4 in Table 4.4.

As a consequence of Bij =P ji» we have exchangeability in the observed outcomes. That
is, 0,=0,, for i=1,2,34 and k,k'=1,2(k#k’). That is, if BU = Bﬁ, then

O =015 01y =05 013 =0, and ¢, =0,,.

In general, exchangeability may not be reasonable in a two — time period design. This is
especially true in the presence of carryover and/or correlation between the outcomes in the first
and second periods for a given treatment. The absence of exchangeability emphasizes the
presence of time period effect. However, Gadbury et al. (2004) showed that exchangeability is
reasonable with matched pairs because it is reasonable to assume subjects 1 and 2 within a pair
are randomly labeled. But applying this assumption to a two treatment, two periods crossover

design would suggest the periods are randomly labeled.
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4.5.1: Definition of Some Criteria

Define the following criteria:

1). periods - TC - perfect match if (x,,y,)and (x,,y,)are such that x, =x, and y, =y,. From
Table 4.4, the various combinations of outcomes are:

{06231, (%32} ={(0,0),(0,0)} { (3 1) (3, 3,)} ={(0.1), (0. 1)}

{30+ (20 ) ={(1,0),(1.0)and {3 (3. v2)} ={(1.1). (L)}

The actual probabilities associated with these combinations of outcomes are B, B,,, Bs;» B>
respectively. These are the diagonal probabilities in Table 4.4.

2). periods - TC - perfect mismatch if (x,,y,)and (x,,y,)are such that x, #x, and y #y,.
Combinations of outcomes in this domain include:

{(5o3)- (o)} ={(00).L0)} {(L0).(0D}. {(0.0).(L)}and  {(11).(0.0)}. These

constitute the outcomes with cross-diagonal (/' ) probabilities in Table 4.4.

3). periods - T - match if (x,,y,)and (x,,y,)are such that x, =x, and y, # y,. The following

combinations of outcomes under this definition include:

{('xl’ yl)’(x2’y2)} :{(1’0)’(1’1)} and {(xl’ yl)’(x2’y2)} :{(1’1)’(1’0)}'

4). periods - C - match if (xl, yl)and (xz, yz)are such that x; # x, and y, =y,. The following

combinations of outcomes fall under this category:

{(xl’ yl)’(xz’)’Z )} :{(0’0)’(1’0)} ’{(xl’)ﬁ)’(xz’)’z )} :{(1’0)’(0’0)} ’
{(xl’ %)%, )} :{(0’1)’(1’1)} and {(xl’ %)5(%, 5, )} :{(1’1)’(0’1)}'
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Proposition 4.5.1

Consider the true probabilities given on Table 4.4.

If exchangeability holds (i.e. Bij =P i) then 0,=¢, for i,j=1234 and
k,k'=1,2(k * k').

Assume that the “periods - TC - perfect match” and “periods - TC - perfect mismatch”
probabilities are zero. If ¢,, = @, then exchangeability holds and we obtain BU = It

Proof:

We will show the proof for one probability expression, ¢,; = ¢,, . The others follow likewise.

If Bu = [Sﬁ. (for i # j and i, j =1,2,3,4), then from Table 4.4 and equations (1.19) to (1.26),

we will have, for the first case,

013 = 7c By :P(Xl =1, Y, :O)
= 531 +B33 +B41 +B43
=B3 + B + B, +Bsy (since Bl] = Bji)

= crBo
=P(X,=1, ¥,=0)

=0y,
This is true for all other combinations of probabilities. Hence, (1)12 =By =cr By =¢22,
Oy =7cB1 = cr B =05 and @ = yc By = op By = 0.
If we assume “periods - TC - perfect match” and “periods - TC - perfect mismatch”
probabilities are zero, then the diagonal and cross—diagonal(/l ) probabilities are zero. That is,

,31120, ,32220,,333:(), ﬂ44:0, ﬂ1420, ﬂ23:0, ﬂ32:0, ﬂ41:O. ThUS, Table 4.4

becomes Table 4.8 shown below.
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Table 4.10: Probabilities of potential Outcomes for two treatments, two periods crossover design
showing zero values for periods - TC - perfect match and periods - TC - perfect mismatch

Period 2
For an r c r c r c r C | Marginal
Individual (0 ’ O) (0 ’ 1) (1 > 0) (1 ’ 1) Total
T C
(O ) 0) 0 B12 B13 0 o,
Period T €
1 (0 ) 1) B21 0 0 B24 o,
T C
(1 ) 0) B31 0 0 B34 0,
T C
(1 ) 1) 0 B Bus 0 W,
Marginal iwi =1
Total o, ®, Q5 W, i=1

Equating the marginals, ., on Table 14, we have the following equations

Bio +Bis =Boy +By
By +Ba =By +Ba
B +Bsy =Bz +Bas
Bur +Bas = Boy +Bss

Now, from (1.19) and (1.25), we had that

O3 = 7By =P(X, =1, Y, =0)=B5 + P55 + B, + B
=B + By ( since 3;; =0, By, :O)

¢23 = cr by :P(Xz =1, Y 20)2[313"‘314"‘533"‘534
:B13+B34
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So, if we assume ¢,; = ;- B, = o7 B, = 0,3, then,
B31 + B43 = B13 + B34 (1.57)
But from Equation (1.56), B;, =B, +B,; —Bs,- Substituting into (1.58) and simplifying gives

2B5, =2B,; = B3 =B, (1.58)

We can repeat the process for other probability expressions and obtain B, =B,,, B, =By,

Bos =By, and Py, =Pys. Thus, B; =P for i, j=1,2,3,4. =

From the above proposition, we note that, exchangeability in the observed probability is a
necessary but not a sufficient condition for exchangeability in the true probability. That is,

exchangeability in the observed outcome is necessary for the actual exchangeability. But by

0y = q)k'i) :

itself, observed exchangeability is not sufficient. In symbols, (BU =B ji)

i

Remark 4.5.1

So far, we have looked at analyses of the TC — CT crossover design. We were able to

express the probabilities of the observed outcomes,(bki, in terms of the true or actual
probabilities. Furthermore, we estimated the probabilities, ., using observed count data. In

addition, we constructed bounds for the probability of negative effect, ®, , denoted [L,,U,]. We
note that, using the equation ®, = ().5((1)12 +0,, — (ATC +Aqr )) , a new — and hopefully, tighter

— bounds, [L,,U, ], for ®, can be found by first constructing bounds for (A, +A.; ) using

information gained from additional analyses of the TT — CC design. Such bounds for
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(A, +A;) will also be useful in the construction of bounds for the true variance of the

individual treatment effect, Var (D) (see Appendix 4). Hereafter, we proceed with the analysis of

an additional design: TC — CT — TT — CC. Notice this is just an extension of the TC — CT

Crossover.

4.6: Potential Outcomes and Probabilities of Observed Outcomes for the TC
- CT -TT - CC Design
Suppose some patients are allowed to stay on the same treatment over the two periods

resulting in the TT — CC. The new TC — CT — TT — CC design is an extension of the TC — CT

crossover design. The randomization is of the form

Period Period
1 2 1 2
T C 1\T T
Sequence Sequence
2|1C T 2|1C C

Consider the following schematic diagram illustrates the observed possible outcomes under the

TC — CT design:

Sequence Period 1 Period 2
TC@) X, = Y, =1
X1:O Y2:O
CT(Q®) Y, =1 X, =1
Y1:0 X2:0

TTQ@3) Xl_ X 2—1
=0 X, =0
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cCC@) lelozYzzl
Y= Y, =0

Earlier, we analyzed the probabilities of observed outcomes obtained using the TC — CT design.
Below, we present the possible options for these probabilities for the TT — CC design.

TT - Sequence (3):

Estimable Probability Potential Outcomes
Period 1 Period 2
05, =P(X,=0,X,=0)(X,=0, Y =y)| (X,=0,¥,=y,) |probability
0 0 0 0 Bis
0 0 0 1 Bio
0 1 0 0 B2
0 1 0 1 Ba
Thatis, ¢, = ;7B =P(X; =0, X, =0)=B,, + B, + B, + B

Similar breakdown results in the following probabilities for the respective observed outcomes:

Sequence (3) TT:
O3 =Py =P(X; =0, X, =0)=0; +Bj, +B; +Pn (1.59)
030 = 7 By = P(X, =0, X, =1)=By5 + By, + B, + By (1.60)
033 = By = P(X, =1, X, =0) =By, +B,; +B5, + B (1.61)
03 = By = P(X, =1, X, =1) =By + B3 +Bys +Buy (1.62)
Sequence (4) CC:
04 = ccho =P(Y, =0, ¥, =0) =Py, +By5 + By +B5; (1.63)
0= cr By =P =0, ¥, =1) =By, + By, + By, +Bs, (1.64)
0s3 = ccRo =P (Y =1, Y, =0) =By +Bs +Bu +Bss (1.65)
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¢44:ccPu:P(Y1:1’ Y2:1)2522+Bz4+[342+[344 (1.66)
From Equation (1.59) through (1.66) we infer the certain combinations, we express the following
combination of probabilities: @5, +0;, =@, +®,, ¢ +05; =0, +®;, O, +0,;, =0, +®,,
03y + 03, = 0, + O, Oy + 0, =@ + 0y, Oy + 045 = 0 + 0, Puy +0u3 = 03 + 0,
0, +9,, =0, +®,. The following proposition gives bounds for the A,.+A.; involving

estimable probabilities in the TC — CT — TT — CC design.

Proposition 4.6.1

Under the framework established above,

Arc +ACT| < min{l—(¢31 +03, ), 1= (0, +¢44)}’

where ¢,, 0,5, 95, 054, 9,, and @, are as given above.

Proof:

Recall that ¢,, =P(X,=0, X,=0), ¢,,=P(X,=1,X,=1), ¢,,=P(¥,=0, Y¥,=0)
and ¢,, = P(Y, =1, ¥, =1). In addition, we saw that,

Ay =B =Bor) + (B =Bas)- Ay =(Bus =Bss) + (Bas =Bs2) - Ay = (B =Biz) +(Bay —B23)
(Bas =Biz) + (B =Bsn) . As = (Bis =Bsi) +(Brs =Bs2) . Ag = (Bar =Bas) +(Bas =B23).

A,

A; =By —Bi2) +(Ba =Bs2) . Ay =(Bss —Bus) +(Bis —By;) - Furthermore, we showed that
A=A =A=A,=A,and A;=A;=A, =A; =A,;.
Consider the A, and A, combination.

A +A; =A +A,
= B14 - [323 + [341 _832
= ([314 +B41)_(Bz3 +B32)
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Note that, the expression, (B, +PB,)—(By+PBs,) involve perfect — TC — mismatch
probabilities, PB,,, PB,;, B,; and 5, corresponding to {(xl,yl),(xz,yz)}:{(0,0),(1,1)},
{0631, (3, 3,)) ={(1.1),(0,0)], {31, (3, 3,)} ={(0.1). (1,0)], and
{(xl,yl),(xz,yz)}={(1,0),(O,1)}, respectively. Furthermore, using the principle of triangle

inequality, we have ‘ATC + ACT‘ <(B,, +B,,)+(By +Bs,)- But,

(Bis+Bar)+(Bos +B3y) = (o + 0, + 05+ @, ) = (By +Bry +Bis ) = (By + By +Bou)
= (B3 +Bss +Bsy) —(Baz +Bus +Bua)

1=[ (B +Biz +Bs +Br) +(Bys +Bay +Bis +Bu) |

1-[P(X,=0,X,=0)+P(X,=1, X, =1)]

1= (05, + 34

IA

Thus, (Bm +B. ) + (B23 + B32) <l- (¢31 + ¢34) - Similarly,

(B14 +B41)+(B23 +B32) Sl_[(Bn +B13 +B31 +B33)+(Bzz +Bz4 +B42 +B44)]
=1-[P(¥,=0,Y,=0)+P(¥,=1.Y,=1)]
:1_(¢41+¢44)

Hence, (B, +B,, )+ (B, +Bs,) <1-(0,, +0,, ). Combining gives

|ATC +ACT| < min{l—(¢31 +05,),1= (0, + 0y )} (1.67) m

Remark 4.6.1

The proof above wuses the A;-=A andA.=A; combination although
A=A, =A;=A,=A,. and that A;=A;=A, =A; =A_,. Other possible combinations

like A, and Ag; Ay and Ag; A, and A will produce the same results with varied degree of
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analysis. Equation (1.67) gives bounds for A,.+A,;. These bounds will now be used to
construct, hopefully tighter, bounds for the probability of negative effect ®, and (in Appendix

D) the true variance individual treatment effects, Var (D)

Proposition 4.6.2

Given that |A,. + ACT| < min{l (05, + 05, ), 1—(0,, + 0y, )} , a refined set of bounds for ©, is

L<w,<U,
where, L, = maX{O,O.S[((I)IZ +¢22)—min{1—((])31 + 034 ), 1= (041 + 0us )}J} and

U, = 0-5[(¢12 +¢22)+min{1—(¢31 +¢34)’1_(¢41 +¢44)}J-
Proof:

|ATC +ACT| < min{l—(¢3l +¢34)’1_(¢41 +¢44)}
= —min{l—(%l +¢34)’1_(¢41 +¢44)} < (ATC +ACT) < min{l—(¢31 +¢34)’1_(¢41 +¢44)}

But we showed that ®, = O.S(Q)12 + 0,0 — (Aje + Ay )) Thus,

0'5[((1)12 +¢22)—min{1—(¢31 +05), 1= (s +¢44)}J
< 0-5(¢12 + 05— (Are +ACT)) =
0'5[((1)12 +¢22)+min{1—(¢31 +05,).1-(9y +¢44)H

=>L<n,<U,,
where, L, = max{(),O.S[((I)12 +¢22)—min{1—(¢31 +05, ), 1= (04 + 0y )}:|} and
U, = 0-5[(¢12 +¢22)+min{1—(¢31 +¢34)’1_(¢41 + 0, )}} u
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Proposition 4.6.3 (See Appendix D)

Consider an extended data of observed counts on Table 4.11 shown below.

Table 4.11: Standard table of observed counts of responses to treatments in each
period in a 2 treatments, 2 periods crossover design with focus on sequence

Sequence (0 ’ 0) (0 ’ 1) (1 ’ 0) (1 ’ 1) l%iiﬁmal
|(TC) 1y, "y 3 Ty e
2(cr ) ) 3 Ny e el
3(7T) 3, I3 UEE T3y 36
4 ( CC) Ny, Ny, Ny Nyy Ny,

Estimating @,. for the TC — CT — TT — CC design follows the same pattern involving iterative
numerical evaluations. Consider the likelihood function for the TC — CT — TT — CC as developed
below.

Assume (1,1, 5,15, ) ~ multinomial (0,,,0,,,0,5,0,,) for i,k =1,2,3,4. The likelihood

function is

L(”kl’”kz’”m’”m |¢k1’¢k2’¢k3’¢k4) o< H

4
k=1 i

DR e (%)

4
=1

4
where Zn,a- =n,,for i=1,2,3,4; k =1,2 and subject to the two constraints:
=l

4 4 4 4
Zd)u =1, Zq)zl. =1, Z¢3i =1 and Z¢4,- =1. Other constraints are ¢, =0,, +0,, —0,,.
i=1 i=1 i=1 i=1

O3 =0, +05—0,, 03, =0, +0,, =03 and ¢, =0, +¢,; —@,, - restrictions that result

from the following combinations of probabilities in observed outcomes for design TC — CT — TT

- CC.
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Thus, the likelihood function (* *) contains 8 distinct parameters leading to solving a system of

8 nonlinear equations with 8 constraints. Further we may reparameterize into a system of 8

nonlinear equations without constraints. However, like before, their solutions would require an
iterative numerical method. Assuming estimates of ¢,., denoted @,,, can be found, we proceed

with stating estimates for the bounds. An estimate of the bounds, [L,,U, ], for ®, is given as
[£,.0, ). where, L, = max(o,o.s[(q>12 46,0 ) - min{1— (&, + 65, )1 (B, + s )}})

and (jz :0'5[((1)12 +(T)22)+min{l—((f)3l +(T)34)’1_((T)41 +<T>44 )H

4.7: Analyses with the Assumption of Exchangeability

So far, our analyses have been based on the fact that exchangeability does not hold. In the
following sections, we assume exchangeability and investigate the impact on the analyses this
far. The analyses involving exchangeability has been dealt with in Gadbury et al. (2004). In the
following sections, we will explain the transition from the analyses without exchangeability and
restate (where necessary and without proofs) the key results from the Gadbury et al. (2004)

paper. As a consequence of exchangeability, equations (1.48) through (1.51) become

O, =, —A (1.68)
0, =0, +A (1.69)
0=, +A (1.70)
o, =w,—A (1.71)
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where O, =¢,;, =¢,, for i=1,2,3,4; k #k"=1,2 - for instance ¢, =, =0,,,0, =0, =0,,,

0;=0,, =0, - and thus, A=Apc=Arr =Bi4 —Bo3. From equations (1.69) through

(1.72), we have the following adaptations.

4.7.1: Bounds for the Probability of Negative Effect with Exchangeability

Earlier, we saw that M, € [Ll,Ul] where L, = max{(), 0.5[((1)12 +¢22)—(¢13 +0,, )]}

and U, =min{0.5[ (9, + 0, )+ (013 +05,) |, 0.5[ (0, +050)+ (05 +0,,) [} With  the
assumption of exchangeability, ¢, =0, =0,, 0,=0,=6,, ¢,=0,,=6, and
O, =0, =0, where the 0,,i=1,2,3,4 are used as in Gadbury et al. (2004). Note that
8,=P(X,=0,Y,=0), 0,=P(X,=0,Y,=1),6,=P(X,=1, Y,=0) and
0,=P(X,=1,Y,=1) for the TC — CT crossover design and ¢,, =P (X, =0, X, =0),
0, =P(X,=1,X,=1), ¢0,,=P(¥,=0,Y,=0) and ¢, =P(Y¥,=1,Y,=1) for the
additional TT — CC design. Thus, L, and U, become | Ly, U/’ | where

L, =max{0, 0.5[26, —26,]} =max{0, 6, -6,} = Lt and
U, =min{0.5(26, +26,), 0.5(26, +26,)} =min{6, +6,, 6, +6,} =U, .

Thus, L’ =max{0, 0,—6,} and U, =min{6,+0,, 6,+6,}. These are same bounds

specified in Gadbury et al. (2004).
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4.7.2: Refined Bound for the Probability of Negative Effect

Previously, we derived (1.53) that, ®, = O.S(Q)12 + 0, — (Aje + Ay )) Imposing the
exchangeability ~assumption leads to ®,=0,—A  where 0,=0¢,=0, and
A=A, =A. =B,, —B,;. This constitutes part of equation (4) in Gadbury et al. (2004) where
A=08=,, —B,;. Furthermore, the assumption of exchangeability results in symmetry of
probabilities on Table 4.4. Let p, =FE (X) and p, =F (Y) be the mean of the marginal
distributions of X and Y. Using symmetry, it can be proven that,
p—0;,=1-p,—0,, andp, —0,,=1- p, —0,,. Applying these equations to the bounds

[L,,U,] gives bounds [Lg,UZEJ where, L] =0,—min{p, —0,,p,—0,} and

Ur=6, +min{p, —6,,p,—0,}. These are the same bounds given in (Proposition 3 of)

Gadbury et al. (2004).

Having developed the theory, the next sections follow with a simulated illustrative
example. We will illustrate the results outlined above on a simulated count data. We first state a
joint probability distribution similar to that given on Table 4.4. Then, using Table 4.4, we
simulate the observed count data, from which our maximum likelihood estimates are found using
the optim procedure in R (www.r-project.com). Because the actual probabilities are known, we

are able to find the true probability quantities and compare these with their respective estimates.
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4.7.4: llustrative Example 5: Simulated Observed Count Data

In the following example, we first state a joint probability distribution, ﬂij (fori, j=1,2,3,4),

similar to that given on Table 4.4. Table 4.12 below gives the actual joint probability distribution
of the potential outcomes for response variable X and Y .

Table 4.12: Joint probabilities distribution obtained from the simulated example involving 600
subjects with focus on period 1 marginals using the TC — CT design without the exchangeability

assumption
Period 2
For an rc rc rc I'C | Marginal
Individual |(%2:Y2)=(0.0)] (x2,32) =(0.1) |(x2,2) =(L0) [(%2,32) =(L1)| " Toral
TC
(4,31)=(0.0] 0016 0.065 0.032 0.048 0.161
TC
Per. 1 (:31)=(0.1)] 0032 0.016 0.113 0.081 0.242
TC
(xq.1)=(LO)|  0.081 0.032 0.048 0.113 0.274
TC
(xq.31)=(L) | 0032 0.129 0.081 0.081 0.323
Marginal
Total 0.161 0.242 0.274 0.323 1,000

Clearly, exchangeability condition does not hold. The marginal probabilities are

(0)1,(02,(03,(04) = (O. 161,0.242,0.274,0.323). The parameter values for the unmatched design
are p,=E(X)=0.597 and p, =E(Y)=0.565. Hence, the true average treatment T effect
relative to treatment C is E (D) =0.032. A sample of 600 observations was generated from

Table 4.12. Furthermore, from these 600 observations, n, =200 and n, =200 were randomly

selected to receive treatment (T, C) and (C, T), in that order, respectively. Responses are either

“1” — for success — or “0” — for failure. The values of the parameters under the TC — CT design
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are ¢, =0.193, ¢,=0.210, ¢,;,=0.242 and ¢,, =0.355 for the TC sequence and
¢,, =0.194, ¢,, =0.209, ¢,; =0.241 and ¢,, =0.356 for the CT sequence. We also have
A;c + Ao =—0.065. The observed count data was also recorded. Table 4.13 below shows

observed count data corresponding to the given outcomes.

Table 4.13: Standard table of observed counts in a TC - CT crossover design for
the simulated example

Marginal
Sequence (0 ’ O) (O ’ 1) (1 ’ O) (1 ’ 1) Total
1(TC) 42 39 59 60 200
2(CT) 39 52 50 59 200

Form Table 4.13, the maximum likelihood estimates of the probabilities,@)ki, were

calculated using the numerical iterative method, optim in R. The result is presented on Table

4.14 below.

Table 4.14: Estimates of probabilities of the observed data (T)ki for the TC - CT

crossover design

Marginal

Sequence (O ’ 0) (O ’ 1) (1 ’ 0) (1 ’ 1) Total
I(TC) 02240 | 02295 | 02676 | 02789 | 1.0000
2(CT) 02118 | 02798 | 02417 | 02667 | 1.0000

The standard errors for these estimated probabilities are given on Table 4.15 below.

Table 4.15: Standard error of estimates (T)kl. for the TC — CT design

Sequence (0 ’ O) (0 ’ 1) (1’ O) (1 ’ 1)

1(TC) 0.0246° | 0.0257 | 0.0250 | 0.0251

2(CT) 0.0246 | 0.0260 | 0.0245 | 0.0249
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A
Using Table 4.14, the estimated average treatment effect, E (D), was found to be

0.0382. That is, on average, 3.82% subjects succeeded on treatment T relative to success on C.

The actual value of the inestimable probability of negative effect, ®, , is 0.242. In the theoretical
analysis, we showed that this number is not measurable. Thus, we estimate bounds. The estimate

of the lower bound for ®, is lA,1 =0 and the estimate of the upper bound is U , =0.4535. That

is, ®, € [0,0.4535] . Thus, between 0% and 45.4% of the subjects succeeded on C and failed on

T.

Furthermore, from the 600 observations, ny; =100 and n, =100 were assigned to

sequence TT and CC respectively. For the TT — CC design, the values of the parameters are

0,, =0.129, ¢,,=0.274, ¢,;,=0.274 and ¢,,=0.323 for the TT sequence and
¢,,=0.177, ¢,, =0.258, ¢,;=0.258 and ¢,, =0.307 for the CC sequence. Table 4.16,

shows the added observed count data.

Table 4.16: Standard table of observed counts in the a TC — CT — TT — CC design

Marginal
Sequence (0 ’ 0) (0 ’ 1) (1 ’ 0) (1 ’ 1) Total
3(7T) 12 25 27 36 100
4(cc) 20 30 20 30 100

The multinomial parameter estimates using the observed count data on Table 4.16 are given as

on Table 4.17 below
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Table 4.17: Estimates of probabilities of the observed data (T)ki for the
TC — CT —TT — CC design

Sequence | (0.0) | (0.1) | (1.0) | (1) | "qa
1(TC) 0.2086 | 0.2167 | 0.2823 | 0.2925 | 1.0000
2(CT) 02113 | 02796 | 02139 | 02952 | 1.0000
3(TT) 0.1461 | 02792 | 0.3281 | 0.2467 | 1.0000
4(cc) 0.2259 | 0.2650 | 0.1334 | 0.3757 | 1.0000

The standard errors for these estimated probabilities given on Table 4.17 are as shown on Table

4.18 below

Table 4.18: Standard errors of estimates qA)kl. for the TC - CT —

TT — CC design
Sequence (O ’ O) (0 ’ 1) (1 ’ 0) (1 ’ 1)
1(TC) 0.0229 | 0.0233 | 0.0239 | 0.0246
2(CT) 0.0230 | 0.0249 | 0.02224 | 0.0243
3(TT) 0.0346 | 0.0365 | 0.0378 | 0.0351
4(cc) 0.0369 | 0.0366 | 0.0276 | 0.0335

The estimated refined lower bound for @, is i,z =0.0161 and the estimate of the upper
bound is U , =0.4145. This constitutes a 12.14% reduction on the previous bounds

[ZA,I U 1] = [0,0.4535] for the probability of negative effect, ®,, established under the TC — CT

crossover design. Thus, with a sample size of 600, we got a tighter bound upon addition of the
information from subjects who stayed on the same treatments over the two periods.
We did not consider the case when exchangeability holds because an example was

outlined in Gadbury et al. (2004).
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CHAPTER S - Summary and Future Challenges

5.1: Summary

This dissertation was centered on using the potential outcomes method to estimate the
individual treatment effect variability and a probability of a negative treatment effect in multiple
time point settings. The assumptions were: no carryover effects, no covariate effects, no missing
data, and a particular assumption about independence of time effects for different potential
outcome variables. For a quantitative response, we analyzed a two-treatment, two-periods and a
two-treatment, three-periods crossover design. We saw that estimation of the individual
treatment effect variable was not possible with the two-treatment, two-periods crossover design
unless we add the information provided by subjects under an added parallel design. Under the
two-treatment, three-periods design, we proposed an estimate for the finite population treatment
effect mean and variance. Furthermore, we estimated a parameter for the probability of negative
effect. A simulated blood pressure data was use for illustration.

In the qualitative section, a binary, “O — 1,” response variable was analyzed. Using a
given joint probability distribution of potential outcomes, we expressed the probability of the
observed outcomes under a two treatment, two periods crossover design. Maximum likelihood
estimates based on observed outcomes were found using an iterative numerical method. Using
these estimates, we proposed bounds for an inestimable probability of a negative effect. Tighter
bounds were obtained with information from subjects that received the same treatments over the

two periods. Finally, for illustration, we used a simulated example of count data.
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5.2: Future Challenges

We note that, the analyses assumed no carryover effect, no covariate effect and no
missing data. It will be interesting to see how the results are affected when there is carryover
effect. In addition, covariates like gender, age and others may be factored in. For a brief
consideration, let’s assume carryover effects are present. The next section introduces the
analyses of a two treatment, two periods TC — CT crossover design when carryover effects are

added.

5.2.1: Potential Outcome Framework with Carryover Effect — Quantitative Response
Variable
In Section 1.3.2, we presented the potential outcome framework when there is no

carryover effect. Such a framework was defined as

Subject Period 1 Period 2
1 X1+t11 YI+T11 X1+t12 Y1+T12
2” X2n + t2n1 Y2n + Tan X2n + t2n2 YZn + T2n2

with potential outcomes (X it Y +Tl~1) for period 1 and (X it Y +Tl~2) for period 2
(i=12,..2n).

Now, assume there is the effect carryover. The first question arises on how to factor the
carryover effect into the potential outcome framework. For instance, for the i" subject, let
éil’ I and éﬂ’ = denote the carryover effects of treatments C to T and T to C, respectively,
administered in the jth period. We assumed gn,o =0 and &'2,0 =0. In a design involving more
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than two periods or with the added TT and CC designs, we may further define the carryover

effect from treatment T to T and treatment C to C.

For a two treatment, two periods design, a possible potential outcomes framework is

Subject Period 1 Period 2
1 X, +1, Y +17, X, +1,+6,, Y1+T12+512,1
2n X, +t, Y,,+7, Xyttt Y, 0,16,

That is, the potential outcomes are (Xi +11, Y +z'i1) for period 1 and

(Xi +15 + 51‘1,1’ Y +7 + 51‘2,1) for period 2 (i =1,2,...,2n).
Using this framework for potential outcome in a TC — CT randomization, the observed outcomes

framework become

Period
1 2
Sequence rc ! Xi+t; Yi+7p+8n,
CT Y+t Xi+tpn+s,

The observed treatment effect is then defined accordingly. Detailed development on this topic

and more is left for further research.

In the situation with binary outcomes, carryover effect could imply the marginals, at the two time

periods, are not the same as assumed on Table 4.4.
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5.2.2. Use of covariates

As noted in Section 2.1 for quantitative outcomes in the TC, CT, TT, CC design, the
variance of individual effects could be estimated assuming independence of ¢ and 7. If these are
not independent, then only bounds for the variance can be estimated. Producing these bounds and
their estimates would be interesting for future research. When covariates (i.e., variables not
affected by treatment such as baseline measurements) are available, they may be used to tighten
bounds. In such cases, a large lower bound for the variance of individual effects may then be

evidence of substantive individual treatment effect heterogeneity.

5.1.3 Missing Data

Missing data may occur in a multiple time point trial when individuals drop out for various
reasons. It has been assumed herein that complete data are available, that is, individuals complete
the trial. This is equivalent to data missing completely at random. Missing data due to drop out
might not be missing at random and this fact would add complexity in even obtaining unbiased
estimates of the mean treatment effect. How such missing data would affect the variance of

individual effects (or bounds for this variance) could be another avenue of future investigation.
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Appendix A - Proof of Proposition 2.2

Proposition 2.2

E(Z”‘lsgj:sg + Bias
2n

- -2
where Bias =£(St2+f +(t+z') )
2n

St2 +r and 7+ 7 are the population variance and population mean of the sum of time effect terms

r+7.
Proof:

We observe that
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y(7) =112 means (4E, (73 )~ 4E, (1) +1) =0 .
E,(didy)=(X; =Y )(Xy =Yy )+ (15 =71 ) (t11 =71 ) E (29 —1) (271 = 1)

=(X; =Y)(Xy =Yy )+ (tq =7 ) (121 =71 ) Ey (471701 =20 =271 +1)

since E;/(Viﬂ/i’ )—1/4 and E (7[ )—1/2 means E;/(47i17i’1 =2¥4 271 +1)=O. Thus,
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- -2
where Bias = 20 I(Stz+T +(t+z') j [
2n

It is worthwhile noting that, if we assume that the randomization must result in equal number of

subjects in each sequence, we still obtain the same result above because, in this case,

E(y;7)= . i (i=12,.2nj=12) and
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Appendix B - Proof of Proposition 3.2

Proposition 3.2

-1

where

. N-1& &, [
Bias;yp = 2 Y. 2 aj and o= E+z-l.j

i=1j=1

Proof:

We observe that
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Es(d®= (X;-Y)" -2(X,-Y)) Y GEG) + > o EGH+Y Y aogyE(5;5;)
j=1 i=1 ?E(’é‘_)/ j=1j=1

=]
But, &; ~ Binomial(1,1/3). Thus, P(J;= 1)=1/3 forall j and

CTT} 107‘6‘1—1 52—0 53—
TCT} 5'2 or 52:1 51:0, 53:
TTC} i3 OF 53—1 51 O, 52:()

= E43)=1/3, E5(0,07)=P(0;=1, 8y =1)=P(6; =)P(6y =1)=0 (for each i and j# j)
and E5(5,)=E5(5)

Thus,

2 2 2 3 1 3 2
Es(d)= (X;=X%) —=(X;-¥) Yo + - >0
3 A A

2 13 3
=(X; )"+ 52;,% since Zlal-j =0
= j=

Now, we have

1 & =0
Eg(S3)= E({N—z (d;—d) }
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N
:NL ZEa(dz)——Ea Zdz +Z Z

i=1i'=l1
i#i’

ZEs(d >——ZZE5(d

z 1i’=1
i#i’

2

Z Es(d; )——ZZEs(dz ZEs(d )—N—ZZEa(d )Es(dy)

l 1i'=1 i=li'=1
i#i i#i

Under independence, Eg(d;dy)=Es(d;)Es(dy).

E5<S§>—— Z(X ~¥)? 4= ZZ : ——ZZ(X ~Y)(X;-Y))

ll] Nlllll

N N PN 2
because | O Y (X; —Y)(X;-Y, [Z(X Y)j Z( i)

i=1i’=1 i=1

i#i’

1 % X, - )2+1Zia..2—L %(X -Y) : %(X-—Y)z
N| o 3i=1j 7 N-1 i=1 i=1 C

iz

Thus,

Es(Sﬁ):%(%DiZJFIZ a——({ND} Z#ﬂ

zl]
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2
N-1 N-1&3. (1
Thus, Eg(TSd) SD 2 ZZ 17T

= S% + BiasIND
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Appendix C - Proof of Proposition 3.3

Proposition 3.3
N

where

(R PE) 39 3 i S Ya,
BiaSDEP = (N_l) a:;

2 ij Q% —

3N i=1 j=1 N - 11 —1i'=1 j=1 N-1.5/555
L i#i (#') and (%)) |

here, a; =| 0+
whnere, l]_ 2 l]

Proof:

From Appendix B

N —
E5(Si)= E{—Nl_lm —d)z}
i=1

Z Es(d; )——ZZE(;(d, ..................................... (%)

l 1i'=1
i#i’
We have that,
3 3 ,
Es(didy)=Ey| (X =)~ X055, | (Xe—¥)= Y oy (i #0)
i Jj=1 j=l
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3 3 3 3
[(X,- ) (Xe =)~ Xe =¥) 2050 ~(X;=X) 2oyl +2.04 Z%@y]
j= A A

j=

==l

= (% )(X“—YJHXJ—Y*)Z%EMHX Y)Z%Ex%HZZ%%Ea(%}

1 3 1 n 3 3 o
= (X;—¥)(X-¥) —g(Xi' ~¥) 2 0 _E(Xi “Y) D+ D a0 Es Gy | (%))
=

: i=l j=1=1
=0 =0
3 3 )
= (X)X 1)+ 3D B0y (1)
j=17=1
L3y
(e 1078% (=)
3(N l)J =1,'=1 o .
Furthermore, ZZ 7 Es(6,07) = 3 3 ((#0)
j=1j'=1 . o
a0y (J#7J)
3(N - 1)12112_:1 Y
Hence from (*%),
oo 11X 1
E5(S)= —| Y Es(d? )——ZZE(s(ddio
N i=1 N 11 =1i'=l1
il
- PS5 Sy 51
_ 00— iy
g4 AN- ey /4 R\ b 3(N I i = j=1 = !
i#ad (j=f) i# @#) ad (j#)
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ID Y R, 5 S AL VLIS 3 3 3
=— | Y DF——>>" DD+ - 0%, - o0z
N3 N_11=11=1 304 T 3N-1Y i=17=1 j=1 T 3(N )* i=17=1 j=1 /=1 T
%/_J
i# i () and (j#])

1NN3 NN 3

;%Pkwlﬁié%gi}*22¢‘ S S 3SS Yaa

== AN-D"ig= = AN-D)"iqra A=

i# () and (j#])
S P C R ) ) R DT ) I
NI N-1:5 N-1 344 IN=D" 5721 =1 =D =121 j=1 =1
iz’ (i#') and (j#J)
Pyt 55 S Sam - L3S Y
= 4 Dz —ND" + i i
N-1 i=1 i=l j=1 " 3N(N 111—1]1 i 3N(N 1)111—1] =1j'=1
i#i’ (i#') and (j#])
Hence,
S Y L D) Y LIS 3D )}
E5s(Sp)=—— SD — o0 — o0y
2 y-ij 2 y=—ij
N-1 NS o~ 3NIN-D)" a5 3N(N D™ imi=1 j=1 =1
i# () and (j#£])
N— 1 2 N— 1 NN 3 NN 3
R e DY T O W) VI ) NI
( N i=l j=1 3N2(N 1)1—11—1]—1 v 3N2(N 1)1—11—1]—1]—1 v
i# () and (j#))
n—1 N N 3
= (N—I)ZZ“ —N_IZZZ% l]_—_lzzzzay iy
i=1j=1 i=1i'=1 j=1 i=1i'=1 j=1j’=1
i#i’ (i#i") and (j#]")

= S% +BiaSDEP
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1 N 3 3

ol NN 4w NN 33
where, Biaspgp =—— | (N=DY Y g ——— 3> > a0 ——— 3. >, > ¥ &y

2 _ T N=
3N o= N-lZ3a N-ligizja =

i# (i#i") and (j#])
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Appendix D - Bounds for the True Variance of Individual

Treatment Effects
4.4.1: Bounds for the Variance of Individual Treatment Effects

Previously, we had that the variance of the true individual treatment effect is given as

Var(D)=E(D*)-E(D)’

:((’32"'(’33)_((03_(02)2

=0, (1-o,)+o,(1-0,)+ 20,0,
Using the TC — CT design, Var(D) cannot be estimated since ((1)2 + (1)3) cannot be estimated.

That is,
2

Var(D)=(0)2+0)3)—(E(D))

A
However, if we denote an estimate of Var(D) as Var(D) , then, we would have,

VarA(D) = 0-5(4313 +(T)23 +(T)12 ‘HT)zz)_(ATc +Acr) _(E([\D)j

A ~ ~ ~ A
where ®, +®, = O.S(Q)13 + 0,5 +0, +0,, ) —(Ay-+A,p) is derived from equations (1.45),

A
(1.46), (1.49) and (1.50). Var(D) cannot be measured using the TC — CT design even with the

assumption of exchangeability since (ATC +ACT) still persists. However, considering the fact

that, an estimate of ®, + ®; can be expressed as:

A A A A A
W, + 0, = 0-5(¢13 + 0y + 0, + ¢23)_ (ATC + ACT) (1.72)
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Additional information from the TT — CC design can be used to establish bounds for

(A, +A.; ) and hence for Var (D). The next theorem uses the knowledge from the additional

A
TT — CC design to bound (ATC + Ao ) and subsequently, Var(D) .

Proposition 4.6.3

Given that ATC+ACT|Smin{l—(¢31+¢34),1—(¢41+¢44)}, the true variance of the

individual treatment effects, Var(D) € [L* U *J

where, L =max{0,0.5[ (0, + 05, + 05 + 055 ) ~min{l— (0, +05,).1= (0, +0,,)} |} and

U =0.5(dy, +0n + O3+ 0o )+ min{1— (9, +05,) .1 (0, +0,)}

Proof:

Previously, we established that
2
Var(D)=(0,+w,)-(E(D))

= 05(¢13 +¢23 +¢12 +¢22)_(ATC +ACT ) _(E(AD))

(E(D))2 is always positive. Thus, 0 <Var(D) < 0.5(0; + 0,5 + 01y + 0,0 ) = (Aye +Ary)
Using the fact that |ATC + ACT| < min{l — (g + 03, ), 1= (0, + 0, )} , it follows that,

= —min{l—((])31 +63,),1- (04 +¢44)} <(Ape+Ag) < min{l—((])31 +05, ), 1= (04 +¢44)}

Thus, Var(D)e | L',U" |
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where, L' = maX{O,O.5(¢12 +0y + 05 +(])23)—min{1—(q)31 + 03, )5 1= (04 + 04y )}} and

U =0.5(dy, + 0o + O3+ 0o )+ min{1— (9, +05,) .1 (0, +0,)}

4.7.3: Bound for the Variance of the Individual Treatment Effect with Exchangeability

Using the exchangeability assumption, the bounds for the true variance of the individual

treatment effect [L* U *] given become [Lz U 2] where,
Thus, Var(D)e | L,U" |

L= maX{0,0.S(q)lz +0y + 05 +q)23)—min{1—(¢31 + 03, )5 1= (04 + 0y )}}

where, =max{0,0,+6,—min{p —6,,p,—6,}} and
=L,

U’ :0-5(¢12 + 0y + 03 +¢23)+min{1_(¢31 +¢34)’1_(¢41 +¢44)}
=0,+0,+min{p, -6,,p,—0,}
=U,

Thus, L, = max{0,0, +0, —min{p, - 6,, p, —0,}}

and U, =0, +0, +min{p, —0,,p,—6,},

where,8, = P(X, =0, Y,=0), 6,=P(X,=0,Y,=1),6,=P(X,=1,Y,=0) and
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