//4he Design of a Small Business Database using the
Semantic Database Model

by

Jac F. Morgan ~U

B.S., Kansas State University, 1975
M.S., Kansas State University, 1978

A MASTER'S REPORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

r Advi

LD
2669 e

N Table of Contents @ ALL202 9b4489

J9¢5

MGe7

Cog-/

List of Figures ¢ ¢ ¢ ¢ ¢t o & o s & s o o o s 4
Introduction - Chapter 1 . . &« ¢ ¢« ¢ ¢« v & & & s & o « o &
The problem environment - Chapter 2 . . ¢« ¢ ¢« ¢« ¢ o « « &
An overview of SDM - Chapter 3 . +¢ ¢« & v « ¢ ¢ « ¢ o &« «

A description of the SDM = Chapter U4 . & v ¢« ¢ ¢ « ¢ & « &
SDM application — Chapter 5 . ¢« & ¢« ¢ ¢« ¢ o ¢ &« « « o« o
Converting an SDM model to a relational model - Chapter 6
Conclusion = Chapter 7 « + ¢« & ¢ ¢ ¢« o « o o o ¢ s o o s

SDM DbDL Syntax (BNF) - Appendix A @ * . »

SDM DbDL syntax (Warnier) _ Appendix B + + & &+ « «

Q

List of classes and attributes after step 3 - Appendix

Final SDM schema for insurance agency - Appendix D

Forms used by insurance agency - AppendixXx E . ¢ v o « s o « & &

References . . « o o + 5 o o o o 5 o » o o » o o o s s &«

12
22
72
96
103
110
112
17
122
148
159

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

ILLEGIBLE

DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

List of figures appearing in this report

Figure number and title Page
3=-1 Example of a class description ¢« ¢« ¢ ¢« ¢ v o ¢ ¢+ « s+« 15
3-2 Example of a subeclass description . . . « &+ « ¢« « & o o o s « 4« o « » 15
3=-3 Example of interclass connection describing a subelass . ., 17
3-4 Example of a subclass description . . . ¢« ¢ v ¢ &+ « ¢ 0 ¢ o« e o000 AT
3=-5 Example of inverse attribute interrelationship + ¢« + « « . « 18
3-6 Example of match attribute interrelationship « . + + « «» 19
3=-7 The target class of the match in figure 3=6 . . + + + ¢« &+ & « = » » » 20
F=1 Initial entities and events « « ¢« + + « & i i i b mwa T8
5-2 The subeclass approach to entity relatiomships « . . 80
5=-3 The grouping approach to entity relationships s oo . 80
5~} Initial assessment of entities and events N e e . 83
5-5 Entities and events described as SDM categories . 6 6 % w e . 84
5-6 A class description demonstrating two methods of matchi when

the target is an attribute €1ass . . . ¢« ¢« ¢« ¢« + ¢« ¢« s « = « o o« « « 88
5-7 Attribute class, the target of thematech « + + « + + « « 89
5-8 Base class, the target of themateh « + ¢« ¢« « v + « » « « +» B89
5=-9 Diagram showing the 2 match strategies « +« ¢« ¢« ¢« + ¢« ¢« « 90
5-10 Attribute class, the target of the mateh . . . F « o+ s« B89

5-11 Diagram showing matching on different attribute Rames« « « « 91
5=-12 Base class, the target of themateh ., S 4
5=13 Attribute description requiring multiple value classes T
5-14 Attribute description requiring multiple value classes 93
6-1 Classes and attributes remaining after eliminating derived attributes
and name ClasSSe8 . . « s s+ s s s 6 8 s x s s e s 0w s oe s v e« o 97
6-2 Relational model of the insurance agency e o s =« « 100
7-1 Description using alternative match attribute interrelationshipa
descriptions . . . ¢ . ¢ 4 e« s s s e b 4 s 4 4 e« s s n e e e s s 106
7-2 Proposed modifications to the match attribute interrelationships . . 106

Chapter 1

Introduction

Database management systems were developed to bring the data rescurces of
an enterprise into a centralized, manageable system. They were intended to
bear the burden of the management of data, specifically to insure data
compatibility; eliminate or reduce data duplication; create a programming
environment free from considerations of the physical storage of data;
centralize the management of data; and enhance programmer productivity.

The implementation of a database management system involves gathering all
the data used by the enterprise and determining its use. Because a major
objective of the DBMS implementation is to reduce data redundancy, thus
enhancing data currency and consistency, each project's data must be
integrated with data from all other projects. Even if the implementation is
not that ambitious and only one section's data is to be incorporated into the
DBMS, the scale of the project is diminished but not its complexity.

Database (DB) designers must understand the meaning of all the data
elements and their relationships to all other data elements that will populate
the DBMS. They must also keep an eye on the future and create a design that
will facilitate the addition, deletion and modification of data within the DB.
All of this requires an extraordinary amount of detailed knowledge of the
data's organization,

Realizing the inordinate complexity and management nightmares that are
associated with such an undertaking, researchers have proposed several

database design methodologies.

A database design life cycle was proposed by Unger and Fisher (13) which
identified six phases. They are as follows:
1. Predesign evaluation
2. Information modeling
3. Logical database design
)4, Database management system selection

5. Cost/benefit analysis
6. Physical design and implementation

Predesign evaluation, the first phase, is accomplished by collecting
information about the enterprise, the data it uses and how it is used. This
will provide a perspective of what is needed and the expectations of the
individuals who will be using the system. If after phase one it is decided
that a database is the most feasible approach then phase two begins.

This report will be concerned with the second phase of the design life
cycle, information modeling which is often referred to as conceptual modeling.
Conceptual modeling involves using the information collected in phase one to
create, on paper, a facsimile of the day to day operations of the enterprise,
e.2., the data requirements and processing requirements of the users. The most
common method for accomplishing this task is to view the data and processes of
the enterprise as a collection of "things" that are relevant to the
enterprise, An intuitive knowledge of these "things"™ is required to insure a
successful database implementation. The concept of "things" seems so
ambiguous, yet an understanding of them is of such importance that a few
paragraphs concerning the nature of things is essential to the successful
conceptual and logical modeling of a database.

Many authors have addressed the issue of nthings", however, Hsu and
Roussopoulos (5) have provided an extremely illuminating description which
places things in perspective and which can be summarized in what follows:

Things in the real world can be concrete or abstract --- houses, people,

ships are concrete while time, dates, phone numbers and events are abstract.
Intuitively we all recognize and understand what things are, but in order to
model them we must break them into smaller "definable™ parts. We thus say

that "things" consist of entities, properties and relationships.

Entities
Entities and objects are often used synonymously when describing objects

in an application environment. Hsu and Roussopoulos (5) put it quite well
when they said,

"Entities are a state of mind ... Intuitively, an entity

may be defined as something that is of interest in a given

context and it may have properties that are of interest in

the same context. A property may be thought of as scmething

that characterizes an entity or set of entities.”
The value of these properties cﬁn, at times, be used to uniquely identify an
entity. It must be realized that the difference between entities and their
properties depend on the context in which they are viewed. In this case
context not only refers to a current state but also the perspectives of
different individuals when viewing the same state. The latter is referred to
as user views and will be discussed later. It is argued that an entity may
exist on its own but a property can exist only if the entity it characterizes
also exists. Once again we must emphasize the fact that the distinction is
relative to the context in which they are used. For example, from Hsu (5)

"This car has red color.
Color red has wavelength X."

The entity color in the first sentence is a property of the object car. In

the second sentence the entity wavelength is a property of the object color.

Belationships
Relationships describe the way in which two or more entities are
connected to define an action, a state, a concept, an object, or a
transaction. A list of entities and their properties by themselves would
impart little meaning without some means of relating the entities one to
another., A relationship may exist between different entity types, e.g., a
person owns an insurance policy (a relationship between a person and an
insurance policy); or a relationship may exist between the same entity types,
e.g., George is Jim's client (a relationship between two people). A
relationship may exist as a one to one assoclation between two entities, e.g.,
John's wife is Sally; a one to many association, e.g., John's children are
Sue, Mark and Tom; or a many to many association, e.g., John has many friends
and each friend has many friends including John. Relationships may also have
properties. For example, John owns four insurance policies the total value
of which is $250,000. The four policies are not attributes which characterize
John, and the sum of $250,000 does not characterize each policy, so it must
characterize the association between John and his insurance policies. Because
entities may be abstract things in the real world and they are characterized
by properties, it can be argued that relationships may be viewed as abstract
entities. Hsu and Roussopoulos defended this assertion in the following
manner:
"In our view, associations are entities. Since no two
people will agree on what a real world view is, entities are
a state of mind. Our view is based on the observation that
an assoclation may be a property of another object. The
entity of supply association between suppliers and parts has
property, the quantity; viz., suppliers supply parts in
quantities. The supply association is an object in this case.
The entity of birth date association among month, day and
year 1s a property of a person. We believe our view of
regarding associations as entities is a pragmatic one,

because our view is consistent with the human mental process
of abstractions.”

The Semantic Database Model (SDM) (2,3,4,10,11) is a conceptual modeling
tool which was designed not only to specify entities and relationships but
also to provide a means for formally adding the meaning of entities and
relationships to the model. As with other conceptual meodels (1,6,7,12,13) the
SDM views a database as a collection of entities and relationships between
entities. It diverges from the other models in the manner in which these
relationships are described.

One's view of a conceptual model may range from the data section of a
COBOL program to Sowa's conceptual graphs (12) The former view pertains more
to a physical implementation and the latter view provides a framework
extensive enough for the development of artificial intelligence in the
computer. 'The COBOL description of an application's enviromment is rejected
as a conceptual model because it has been more or less agreed upon that a
conceptual model should be free of logical as well as physical implementation
considerations. The degree of sophistication of a modeling tool then becomes
a function of the application to be modeled. Sowa measures the difference
between artificial intelligence systems and database systems as a ratio of
data descriptors to individual data items. In a database system one
descriptor may describe thousands of records whereas in an artificial
intelligence application there is so little repetition that each record may
have its own descriptor. Sowa's graphs were developed to provide an
exhaustive description of a unique application environment. There is no
argument that his graphs would fulfill the qualitative requirement of a
database conceptual model, however, the model would be voluminous and too
complex for the normal user to understand.

Of the conceptual models introduced to date,the SDM was chosen for study
because it seemed to provide a facility for incorporating meaning into a

conceptual model without placing it beyond the comprehension of the people who

are to manage and use the database.

This report will deal with the creation of an SDM schema of an insurance
agency. The agency has been the subject of a database class design project and
is currently being used as a pedagogical tool for teaching a graduate database
course, The information and knowledge acquired to date will be used to assist
in the application of the SDM database definition language (DbDL) to this
problem domain. The purpose of this endeavor is two fold. First, it is written
in an attempt to provide a comprehensive guide to the use of the SDM as a
conceptual modeling tool in sufficient detail that it may be used as a
pedagogical tool, and second, to evaluate the strengths and weaknesses of the
SDM in representing the semantics of the problem domain. As a teaching tool
this report will at times appear somewhat redundant, a necessary aspect of
instruction.

This chapter has discussed the need for a viable conceptual modeling
tool. Chapter 2 will provide the reader with a description of the enterprise
to be modeled.Chapter 3 will present an overview of the SDM in general terms
without exposing the reader to specifics of the model's syntax.Chapter 4 will
provide a detailed description of the SDM's DbDL and demonstrate its use with
- examples from the insurance agency schema. If needed, situations not present
within the enterprise schema will be contrived in order to demonstrate
specific points. Chapter 5 will provide steps to follow when applying the SDM
to a problem domain and detail their use in the development of an SDM schema
for the insurance agency. Chapter 6 will demonstrate a method for converting
an SDM model into a relational model. Chapter 7 will critique the SDM in
light of experiences gained by its use and also provide suggestions as to the

direction of future study.

Chapter 2

The problem environment

This chapter will describe the insurance agency to be modeled. It will
provide the information that would have been gathered by on-site visits to the
agency. From the narrative presented here and an examination of the forms
used by the agency which appear in Appendix E, the reader may begin to form a
conceptual image of the enterprise and the "things" that will populate the
conceptual schema.

The agency has one general agent, i.e., an individual who has primary
responsibility to the various insurance and investment companies for whom the
agency sells products. There are agents (alias subagents) who are responsible
to the general agent, and an office manager who manages the office staff,

The agency sells products for three insurance companies, annuities for
two companies, and IRA's for three companies at the present time. The number
of companies for which products are sold increases occasionally and
presently there is consideration to expand the types of products offered to
include some of the limited partnership products available.

Each agent has to be licensed to sell a type of product and then under
contract to a company to sell that product type. A commission accrues for
each product and the company. The commissions are always a percentage of the
client payment. The general agent receives an override commission on all
products sold by the agency. This override commission is determined by the
product and the company and is expressed as a percentage of the client
payment.

When the agency was originally visited seven documents were gathered.
These documents were studied to determine the type and volume of data that was

to populate the database. Close examination of the forms will reveal much

duplicate information. It is the job of the database designer to identify the
types and categories of data and with the assistance of the employees of the
enterprise, determine what data should go into the database. The forms
collected were as follows: a) client file card (p. 148); b) insurance
application (p, 149); e¢) client asset sheet (p. 153); d) estate
settlement worksheet {(p. 154); e) cash flow statement (p. 155); f) pro
forma cash flow statement (p. 156); g) statement of financial position
(p. 157); and policy record (p. 158).

The client file cards form the easy access role for the agent to use on a
daily basis. A facsimile of this document is needed by the agents when they
have to respond to phone requests by the client and for information to meet
most of the daily reminder events.

The life insurance form is filled out and sent to the home office when
insurance is requested. A copy is kept in the clients folder. Very few pieces
of data are needed from this form for continued interaction with the client.
These include the type and amount of insurance and other information required
on the policy record (p. 158).

The client asset sheet is a data collection document; the data is used by
the agents to run a financial analysis for the client. This form is to be
stored with the client file and updated each year. Totals for the four
columns of information are to be calculated.

The estate settlement worksheet is created for each spouse as part of the
financial analysis that is provided by the agency as a service to its clients.
This form is filled out for both husband and wife if that is appropriate.

The cash flow statement is a device to aid clients in the determination
of the amount of money they can expect in investments, ete. It and the pro
forma cash flow statement are always filled out by the client.

The Statement of Financial Position is a form that the agent has the

client fi1ll out prepatory to creating a financial analysis for the client.

The policy record sheet is an often referenced document on a client. It
provides the agent with information from the policies the client has in force
and provides information to assist the agent in preparing the annual review,
The cash values change each year and must be updated by the secretaries prior
to the client's annual review.

Reports

The daily contact report is a reminder system which currently is kept on
filing cards. Its purpose is to remind the agents and secretaries of events
that will occur, e.g., appointments and things which must be done that day.
Such things may be reminders of annual reviews for clients, policy issuance
follow=-up, client courtesy cards (e.g., birthday cards), bills to be paid,
etc. These events may be added to the daily card up to one year prior to the
day they must be processed.

Most events added to the daily contact file may be generated
automatically. Annual reviews should be scheduled at one year intervals from
the date of the last scheduled review. Thus a reminder to schedule this
appointment should be inserted one week before a year has elapsed since the
last review. The reminder for the next year should be inserted one year shy
one week from the last review, For courtesy cards a reminder should be
inserted into the file 3 working days before the actual birthday.

Client follow=-up for insurance clients can be scheduled automatically.
This procedure begins when an APS form is received by the office manager from
the home office of the insurance company. After 5 working days have elapsed,
the secretary should be reminded to call the homé office of the insurance
company to see if the doctor's follow-up to the APS form has been received. If
it has been received then no additional reminders are needed; if it has not,

the secretary should immediately call the doctor's office, If that office says

the form has been sent, in 2 days the secretary should again be reminded to
call the home office. Also, upon receipt of a second notice APS form the
secretary should call the doctor's office in 4 working days. This procedure
continues until the APS is received by the home office., All calls should be
recorded in the client's record for the agent's information,

Reinstatement follow-up for insurance clients can also be automated. This
process is initiated when a client fails to pay an insurance premium on time
and subsequently payment is sent. The agent should be notified in two weeks to
check with the home office to sée if the forms and the money have been
received.

When an agent sells insurance to an cut-of-town client, the secretary
should be reminded in two weeks to check on receipt of the application by the
agency.

Replacement follow-up for insurance clients is still another procedure
which may be done semi-automatically. Here the goal is to minimize the payment
for the client. Two weeks after the replacement policy 1s sold the secretary
should be reminded to contact the insurance home office to see if the policy
has been issued; if so, the client is to be notified immediately to stop
payment on the replacement contract.

Prospect letters are sent daily. The follow-up for these should take
place 3 days later by the agent.

All daily reminder items are to be automatically scrolled to the next
working day if they are not accomplished.

Other Qutput Reports Required

Quarterly and annual reports of the state of the business are required
for management purposes. These reports simply list the income and the expenses
of the business. These, at the present time, are backed-up by detailed

listings monthly. An entry for an expense gives the date, description, amount

10

and the individual to whom the expense is charged. An entry for the income
glives the date, amount and the individual who brought that money into the
business. All commissions have been divided by the companies at this point,

Only the incomes to the general agent are considered income to the agency.

11

Chapter 3

An overview of the SDM

This chapter will introduce the reader to the syntax of the SDM using a
minimum amount of its database definition language (DbDL) and little detail.
The intent is to ease the reader into a general understanding of the SDM and
how it can be used before exposing him to a detailed description of its DbDL
syntax (Chapter 4)., While reading this chapter the reader should keep the

following facts in mind.

1. An SDM schema is a conceptual representation of the application
environment. Implementation consideration should be ignored. In fact,
approaching the SDM with the databases ultimate implementation in mind
will hamper your understanding of the use and potential of this
conceptual tool.

2. A schema is constructed entirely of class discriptions.

3. A class represents an entity or collection of entities.

4, Attributes describe the properties of the class.

5. Classes are related by interclass connections, attribute
interrelationships and interattribute derivations.

6. The value of an attribute is selected from a domain of values
described by a value class, or it calculated (derived) using

information within the database.

These aspects will be discussed in general terms in the remainder of this
chapter,

The basic building block of the SDM is the class (4). A class is an
entity or meaningful collection of entities. Entities represent the objects

found in the application environment, They may be concrete objects such as

12

agents, secretaries, or policies sold by one company; events such as contact
reminders or renewal notices; or higher-level entities such as all life
insurance policies sold by one company or all employees of the enterprise. You
may have entities which provide representations of the values of the entities
that populate the database.The syntactic identifiers used to represent values
are referred to as name classes, Name classes are always described as a subset
of the set of all possible strings, integers or reals, Examples of names
include: all possible calendar dates, all possible first names, all possible
social security numbers, ete. All of these -- concrete objects, events,
higher-level entities, names -~ are described relative to the user's
perspective,

A database designer may view a class as a logical grouping of entities.
For example, one class describing the enterprise may represent its employees.
The employee class might contain such descriptors as the employees name;
personal information about the employee; information about the employees
spouse and children; the date the employee joined the company; something that
would identify the employee's position within the enterprise, i.e., an agent,
a subagent, an office worker, etc.; the employee's rate of pay; a ranking
which implies the employee's seniority with respect to the other employees of
the enterprise; and finally a count of the number of enterprise employees.
These entities are grouped together because they constitute a reasonable
description of an employee and thus form a logical grouping. The SDM
representation of the employee class appears in figure 3-1. The class
description in figure 3-1 probably seems ominous and confusing and rightly so,
it's written in a 1anguage'that most are not familiar with and which is the
subject of the remainder of this report. It would be a good idea to take a few
minutes to study figure 3-1 to get an impression of what a class desecription

looks like. Don't be concerned if it appears foreign to you =--- it should!

13

The organization and structure of the database is specified by an SDM
schema which consists entirely of class descriptions. A class description
contains 1) a class name including all synonyms, 2) an optiocnal class
description, 3) a description of any relationships in which the class may
participate, and 4) a 1ist of attributes., Attributes describe the class and
derive their values from other classes (the attribute's value class) or from
calculation performed on information contained within the database (derived
attribute). Relationships between entities are both implicitly and expliecitly
desceribed., To list an attribute's value c¢lass implicitly implies a
relationship between the class defined by the attribute and the class
providing the value for the attribute. The attribute Status_of in the class
EMPLOYEE has as its value class EMPLOYEE TYPES (figure 3-2). This says that
the value of Status_of is selected from the domain of values described by the
class EMPLOYEE_TYPES (the implieit relationship). (The SDM syntax requires
that class names appear in full capital letters and attribute names appear
with their first letter capitalized.) EMPLOYEE TYPES, in turn, is defined as a
subelass (interclass connection) of the built-in class STRINGS and is further
restricted to values that are specified by the user. This condition is denoted
by the ™where specified" within the description of EMPLOYEE TYPES. The class
STRINGS is included within the SDM by its authors and is defined as the basic
set of alphanumeric characters (1). The occurrence of several member
attributes in the definition of EMPLOYEE implies that the entitiles
PERSON_NAMES, PERSONAL_INFO, SPOUSE_INFO, DEPENDENT_INFO, etc., form a
relationship with the entity EMPLOYEE and also a relationship with one another
(they form the set of entities from whose domains the attributes defining
EMPLOYEE acquire their values).

Explicit relationships are described by interclass connections,attribute

14

EMPLOYEE
description: all people who work for the enterprise.
member attributes:
Employee_name
value class: PERSON_NAMES
Employee_perscnal_info
value class: PERSONAL_INFO
Employee_spouse_info
value class: SPOUSE_INFO
Employee_dependent_info
value class: DEPENDENT_INFO
multivalued
Date_Jjoined_company
value class: DATES
Status_of
value class: EMPLOYEE_TYPES
Pay
value class: PAY
Seniority
value class: INTEGERS
derivation: order by increasing Date_Joined_company
class attributes:
Number_ of_employees
value class: INTEGERS
derivation: number of members in this class.
identifiers: Employee_name

Figure 3-1: An example of a class description using the SDM DbDL.

EMPLOYEE_TYPES
description: The types of employees at the agency, values may be
magent”, "subagent"™ and "office staff".
interclass connection: subclass of STRINGS where specified

Figure: 3-2: An example of a subclass description.

15

interrelationships and interattribute derivations. An example of the first is
found in the definition of EMPLOYEE_TYPES. EMPLOYEE_TYPES is defined as a
subset of the built-in class STRINGS. Once again the class STRINGS is a built-
in class of the SDM and it represents the domain of all possible strings.
Another example of an interclass connection is found in the definition of
AGENT (figure 3-3). AGENT is a subset of EMPLOYEE where the value of the
attribute Status_of = agent. By virtue of attribute inheritance from parent
class to subclass the attributes of the class EMPLOYEE aid in the description
of AGENT if the employee in question is an agent. If the employee in gquestion
is an office worker then those attributes describing EMPLOYEE aid in the
deseription of OFFICE_STAFF (figure 3-4). A second type of interclass
connection allows the grouping of classes into aggregates based on common
values of one or more attributes, on enumerated groups or a user=-controllable
grouping.

Attribute interrelationships are provided by SDM to accommodate multiple
views of the data, Binary associations can be established between entities of
a ¢class by defining each to be the inverse of the other. For example, the
attribute Agent_of record of the class CLIENT is specified as the inverse of
attribute Client_of of the class AGENT_INFO (figure 3-5) Both then provide a
perspective as to a clients agent and an agent's clients. Binary and higher
degree association are accomplished by matching the value of an attribute with
an attribute of an entity that also possesses data desired. The insurance
agency conceptually requires a high degree of redundant data. This semantic
redundancy is supported in SDM in a conceptual manner, SDM allows the database
designer to reference data which already occurs within the database by
matching., For example, the values of the attributes of the class
CLIENT_FILE_CARD_POLICY_INFO (figure 3-6) are obtained from a particular

instance of the class POLICY_RECORD (figure 3-7) by matching on the value of

16

AGENT
description: The owner and primary agent of the enterprise,
interclass connection: subclass of EMPLOYEE where Status_of="Agent"
member attributes:
Agent_particulars
value class: AGENT_INFO
Agent_commission
description: The agent receives a commission on all products scld
by the agency. The rate varies with type and age of policey,
the details of which are beyond the scope of this report.
value class: DOLLARS

Figure 3-3: An example of an interclass connection which describes a
class as a subclass of another class,

OFFICE_STAFF
description: The class that identifies the office staff and the office
manager.
interclass connection: subclass of EMPLOYEE where Status_of =
moffice worker™®
member attributes:
Is_office_manager
description: "yes" if the instance is the office manager, "no"
otherwise.
value class: BOOLEAN

Figure 3-4: Example of a subclass description.

17

CLIENT
description: Individuals who purchase products from the enterprise,
member attributes:
Client_name
value class: PERSON_NAMES
Client_personal_info
value class: PERSONAL_INFO
Client_spouse_info
value class: SPOUSE_INFO
Client_dependent_info
value class: DEPENDENT_INFO
mulitvalued
Client_business info
value class: CLIENT_BUSINESS_INFO
Miscellaneous_information
value class: MISC_INFO
Annuities_owned :
value class: ANNUITIES_INFO
mulitvalued
IRA's_owned
value class: IRA_INFO
multivalued
Agent_of_record
value class: AGENT_INFO
inverse: Client_of
identifiers: Client_name

AGENT_INFO
description: Attributes that the agent and subagents have in common.
Used as a value class for Agent_particulars of AGENT and
Subagent_particulars of SUBAGENT.
member attributes:
Clients_of
value class: CLIENT
inverse: Agent_of_record
multivalued
exhausts value class
no overlap in values
Licensed_with
value class: COMPANIES
multivalued
Number_of clients
value class: INTEGERS
derivation: number of unique members in Client_of

Figure 3=-5: An example of two classes which utilizes the attribute
interrelationship, inverse.

18

CLIENT FILE CARD_POLICY_INFO
description: A summary of the policies a client owns.
member attributes:
Policy_number
description: client will have 1 instance of POLICY_RECORD for
each policy owned. The policy numbers of the policies owned by
each client can be derived from POLICY_RECORD., A match on the
clients name will result in several policy numbers each of
which should be used in turn to provide multiple instances of
Client_policy_info, an attribute of CLIENT_FILE_CARD whose
value class is CLIENT FILE CARD POLICY_INFO.
value class: POLICY_NUMBERS
match: Policy_number of POLICY_RECORD on Client_name (of
CLIENT FILE CARD)
Plan
value class: POLICY_TYPES
mateh: Type of POLICY_RECORD on Policy_number
Company
value class: COMPANY_ NAMES
match: Company of POLICY_RECORD on Policy_number
Mode_of_premium payment
value class: MODE_OF_PAYMENT
Premium_amount
value class: DOLLARS
matech: Premium amount of POLICY RECORD on Policy_number
Date_premium_due
value class: DATES
match: Date premium_due of POLICY_RECORD on Policy_number
Face_amount
value class: DOLLARS
match: Face_amount of POLICY_RECORD on Policy_ number
Date_of_ issue
value class: DATES
match: Date of issue of POLICY_RECORD on Policy_number
Age_of_issue
value class: AGE
match: Age_of issue of POLICY_RECORD on Poliey_number
Primary_beneficiary
value class: PERSON_NAMES
match: Primary beneficiary of POLICY_RECORD on Policy_number
WP_rider
value class: BOOLEAN
match: WP_rider of POLICY_RECORD on Poliey_ number
Dividend_option
value class: BOOLEAN
match: Dividend_option of POLICY_RECORD on Policy_number

Figure 3-6: An example of a class which derives attribute values from
attributes of another class (POLICY_RECORD, figure 3-7).

19

POLICY_RECORD
description: a collection of specifications about insurance policies
owned by each client. The POLICY RECORD class will act as the master
record of each policy sold.
member attributes:
Client_name
value class: PERSON_NAMES
Poliey_number
value class: POLICY_NUMBERS
Type
value class: POLICY_TYPES
Company
value class: COMPANY_ NAMES
Face_amount
value class: DOLLARS
Date_of_issue
value class: DATES
Age_of_issue
value class: AGE
Primary_beneficiary
value class; PERSON_NAMES
WP_rider
value class: BOOLEAN
Dividend_option
value class: BOOLEAN
Gross_yearly_ premium
value class: DOLLARS
Add_rider
value class: BOOLEAN
Cpd_rider
value class: BOOLEAN
Apl_rider
value class: BOOLEAN
Loans
value class: LOAN_INFO
Cash_value_record
value class: CASH_VALUE_SCHEDULE
Contingent_beneficiary
value class: PERSON_NAMES
Total_insurance_owned
value class: DOLLARS
derivation: sum of Face_amount
Total_gross_yearly premium
value class: DOLLARS
derivation: sum of Gross_yearly_premium
identifiers: Client_name + Policy_number

Figure 3-7: A class from which attribute values are derived by other
classes.

20

Policy number,

Derived attributes provide a method for describing a value that is
algorithmically derived from the information in the database., Derived values
are common within application programs but are not normally included within a
conceptual model. The addition of derived attributes within the SDM adds
another layer of meaning to the relationships and use of the data. The
attribute Seniority within the class EMPLOYEE describes a method for deriving
the seniority status of an employee based on the date the employee joined the
company.

The intent of this section was to prepare the reader for a more formal
description of the SDM DbDL presented in Chapter 4. The reader is encouraged
to review the six points mentioned at the beginning of this chapter and to

study the figures presented. Some of them will appear again in Chapter y,

21

Chapter 1

A description of the Semantic Database Model

The organization and structure of the database is specified by an SDM
schema, which ldentifies the classes in the database and explicitly defines
the relationships between them. The authors of the SDM have provided a
detailed syntax of the Database Definition Language (DbDL) used by the SDM,
The DbDL is presented in Appendix A in Backus-Naur form and in Appendix B in
Warnier diagrams (15). This chapter will step through the DbDL, presented in
Appendix A, explaining the various syntactic forms and providing examples in
an effort to familiarize the user with the SDM and its application. This
chapter is organized differently from the other chapters in that it is
intended to be used as a student handout. For this reason the chapter was
written in the form of a manual. The major topics covered will appear double
underlined and in bold type at the top left of each page that deals with its
description. It's syntax will then be presented followed by a description of
the syntax and how it is used. Finally examples demonstrating the topic will
be presented. Most may be found in Appendix D. This general format will be
followed throughout this chapter, however, the presentation format will be
altered from time to time to accommodate specific situations. A table of

contents of this student manual appears on the following page.

22

Table of Contents

page

25
26
28
29
33

35
36

32

50

SDM formalisms
Class
Class name and class description
Attributes
Base class feature
33 Identifier
33 Attribute name
Interclass connection
Subclass
36 Attribute predicate
37 Specified
38 Set-operator-defined subclasses
38 Intersect (is in CLASS _NAME and is in CLASS_NAME)
39 Union (is in CLASS_NAME or is in CLASS NAME)
4o Difference (is not in CLASS_NAME)
40 1Is a value of ATTRIBUTE_NAME of CLASS_NAME
41 Format is FORMAT
Attribute predicate
42 Simple predicate
42 MAPPING SCALAR_COMPARATOR [CONSTANT,MAPPING],
L2 MAPPING SET_COMPARATOR [CONSTANT; CLASS_NAME; MAPPING]
Grouping
46 Expression_defined grouping class (GROUPING of CLASS_NAME on
common value of <ATTRIBUTE_NAME> {groups defined as classes are
<CLASS_NAME>)
48 Enumerated grouping class (GROUPING of CLASS_NAME consists of classes
<CLASS_NAME>)
48 User-controllable grouping class (GROUPING of CLASS NAME as specified)
MEMBER_ATTRIBUTES
50 ATTRIBUTE_NAME and ATTRIBUTE_DESCRIPTION
51 Value class: CLASS_NAME
51 Inverse - Match
Attribute derivations
51 Single valued; multivalued {with size between CONSTANT and CONSTANT}
53 May not be null
53 Not changeable
53 Exhausts value class
54 No overlap in values

55 INVERSE

57 MATCH

59 ATTRIBUTE_DERIVATIONS

60 INTERATTRIBUTE_DERIVATIONS

60 Same as MAPPING

61 Subvalue of MAPPING where is in [CLASS_NAME; ATTRIBUTE_PREDICATE]

61 Where is in MAPPING and is in MAPPING; is in MAPPING or is in
MAPPING; is in MAPPING and is not in MAPPING

62 = MAPPING_EXPRESSION

63 [Maximum; minimum; average; sum] of MAPPING

64 Number of {unique} members in MAPPING

23

Table of Contents continued

page

66 MEMBER-SPECIFIED_DERIVATIONS
66 Order by [increasing; decreasing] <MAPPING> {within <MAPPING>}
67 If in CLASS_NAME
67 [up to CONSTANT; all} levels of values of ATTRIBUTE_NAME
68 Contents
T0 CLASS_ATTRIBUTES
71 CLASS-~-SPECIFIED_DERIVATIONS

2y

Before proceeding with a description of the SDM, the reader must be aware
of the items and terms used within the SDM syntax. A list of the formalisms

and symbols used within the DbDL has been offered by Hammer and McLeod (4) and

appear in the following:

1. The left side of a production is separated from the right
by a "{-",

2. The first level of indention in the syntax description is
used to help separate the left and right sides of a
production; all other indentation is in the SDM data
definition language.

3. Syntactic categories are capitalized while all literals
are in lowercase,

4, {} means optional.

5. [] means one of the enclosed choices must appear; choices
are separated by a ";" , when used with "{}" one of the
choices may optionally appear.

6. <> means one or more of the enclosed can appear,
separated by spaces with optional "and" at the end.

7. <<>> means one or more of the enclosed can appear,
vertically appended.

8. # ® encloses a "meta"-description of a syntactic
category, to informally explain it.

25

Syntax
CLASS <=
{CLASS_NAME>
{description: CLASS DESCRIPTION}
{[BASE_CLASS_FEATURES; INTERCLASS_CONNECTION]}
{MEMBER_ATTRIBUTE}
{CLASS_ATTRIBUTE}
Description

The syntax diagram for a Class i8 read to mean that: 1) a class is
constructed of one or more identifiers called CLASS_NAME {synonyms are
defined by including more than one CLASS_NAME); 2) a class may have an
optional description of category CLASS_DESCRIPTION; 3) a class may have an
optional BASE_CLASS FEATURE category or an INTERCLASS_CONNECTION category
but not both; 4) a class may have MEMBER_ATTRIBUTES; and 5) a class may
have CLASS_ATTRIBUTES.,

Examples

EMPLOYEE
description: all people who work for the enterprise.
member attributes:
Employee_name
value class: PERSON_NAMES
Employee personal_info
value class: PERSONAL_INFO
Employee_spouse_info
value class: SPOUSE_INFO
Employee_dependent_info
value class: DEPENDENT_INFO
multivalued
Date_joined_company
value class: DATES
Status_of
value class: EMPLOYEE_TYPES
Pay
value class: PAY
Seniority
value class: INTEGERS
derivation: order by increasing Date_Jjoined_ company
class attributes:
Number_of_employees
value class: INTEGERS
derivation: number of members in this class.
identifiers: Employee_name

26

OFFICE_STAFF
description: The claas that identifies the office staff and
the office manager.
interclass connection: subclass of EMPLOYEE where
Status_of="office worker"
member attributes:
Is_office_manager
description: "yes®" if the instance is the office manager
"no" otherwise.
value class: BOOLEAN

27

CLASS_NAME and CLASS_DESCRIPTION

- o o ——— -
e+t -+ -+ +

Syntax

CLASS_NAMES <= *string of capitals including special characters.#
CLASS_DESCRIPTION <- ®STRING#®

Description

The CLASS NAME definition thus says that a Class must have a class name
made up of uppercase letters and special characters; the designer may also
include multiple names for the same class. This then provides a method for
dealing with synonyms directly within the conceptual model. EMPLOYEE and
OFFICE_STAFF (see example under CLASS) are examples of class names. As the
DbDL specifies, the names appear in capital letters and include special
characters. The underscore character is used extensively in an SDM schema.

A class description should give a brief description of the class, the
entities making up the class (if appropriate) and the role they have in the
enterprise. The class description provides a means and a place for internal

documentation within the semantic model.

Example

ANNUAL_REVIEW_SCHEDULE
description: An anmual review is conducted for each client
once a year., The next review is scheduled 1 year from the
last review. A notice is posted in the event schedule one
week prior to the review date. Some of the attribute
values may be derived from attributes of CLIENT (match on
client name).

28

- ——— —— —— ——
2+

Description

In order to discuss BASE_CLASS_FEATURES and INTERCLASS_CONNECTIONS you
must understand the nature of attributes and the role they play in the SDM.
The next few paragraphs are intended to provide you with a basie
understanding of attributes.

Classes have distinctive features called attributes that set them apart
from other classes. The term attribute in its simplest form implies an
association between a value from a domain of possible values to an entity.
The SDM has expanded the meaning of an attribute value to include the
¢lass, thus, an attribute value is either a class in the database, a
collection of logically related classes, or is derived. The domain of
values from which an attribute's value may be selected is called its
yalue class. Any class within the SDM schema may be referenced as the value
class of an attribute. For the insurance agency, EMPLOYEE is a class with
several attributes, one of which is Employee_name. Employee_name has a
value class of PERSON_NAMES which associates a value from the domain of
PERSON_NAMES to individuals within the class EMPLOYEE. However,
PERSON_NAMES is a class with the attributes Title, First, Middle and Last.
These attributes in turn associate values from the domain of titles, e.g.,
Mr., Ms., Dr., etc., to the attribute Title, and values from the domain of
first names, middle names and last names to their respective attribute
names, Thus it is natural to have a class as the value of an attribute.

These domains are described in more detail by the value classes from
which the attribute's value is drawn. This example introduces th; concept
of a name class. The values populating a database represents actual values
encountered in the application environment. These values are denoted by

strings of symbols taken from the set of alphanumeric characters. A name

29

class 1s described as a subset of the built-in SDM class STRINGS. For
convenience the name classes NUMBERS, INTEGERS, REALS and YES/NO (Boolean)
are also recognized as built-in SDM classes. Name classes can be described
in the following manners:

1. The class can be described as the intersect, union or difference of

two other name classes.

2. The class can be described as a subset of some other name class

with the predicate ™where specified".

3. Constraints on the acceptable data values a ¢lass can have are

specified by the predicate "format is FORMAT"™.

4., If constraints as in 1,2 and 3 are not placed on the name class

then all strings are valid values.

SDM recognizes two types of attributes, member attributes and class
attributes. A member attribute describes a property of each member of a
class and thus has a value for each member. Each member of EMPLOYEE has the
attributes Name, Employee_personal_info, Employee_spouse_info,
Employee_dependent_info, Date_joined_company, Status_of, Pay, Seniority and
Number_of_employees, Number_of_employees, a class attribute, does not
pertain to each member of the class, rather it describes a property of the
class EMPLOYEE as a whole and has only one value for the class, i.e., the

number of employees employed by the agenecy.

30

Examples

EMPLOYEE
description: all people who work for the enterprise,
member attributes:
Employee_name
value class: PERSON_NAMES
Employee_personal_info
value class: PERSONAL_INFO
Employee_spouse_info
value class: SPOUSE_INFO
Employee_dependent_info
value class:; DEPENDENT_INFO
multivalued
Date_Jjoined_company
value class: DATES
Status_of
value class: EMPLOYEE_TYPES
Pay
value class: PAY
Seniority
value class: INTEGERS
derivation: order by increasing Date_Jjoined_company
class attributes:
Number_of_employees
value class: INTEGERS
derivation: number of members in this class
identifiers: Employee_name

PERSON_NAMES
description: The form a person's name may take,
member attributes:
Title
value class: TITLES
First
value class: FIRST NAMES
Middle
value class: MIDDLE_NAMES
Last
value class: LAST_NAMES

TITLES
description: The title a person may have preceeding his name
e.g., Dr., Mr., Ms., Mrs.
interclass connection: subclass of STRINGS where specified

FIRST _NAMES
description: The first name of a person,
interclass connection: subclass of STRINGS where specified

31

MIDDLE_NAMES
description: The middle name identifiers a person may have. It
may be one or mocre initials or one or more names.
interclass connection: subclass of STRINGS where specified

LAST_NAMES
description: The last name of a person, it may be one or more
names or hyphenated.
interclass connection: subeclass of STRINGS where specified

32

BASE_CLASS FEATURE

- —
S+ + -+ 5+ 4

Syntax

BASE_CLASS_FEATURE <- ([duplicates allowed;duplicates not allowed])
(<<IDENTIFIERS>>)

IDENTIFIER <- [ATTRIBUTE_NAME;ATTRIBUTE_NAME+IDENTIFIER]
ATTRIBUTE_NAME <- #string of lowercase letters beginning with a capital
and may include special characters.®
Deseription

SDM recognizes a class as being either a base class or a nonbase class
(interclass connection, discussed later). A base class is considered a
primitive entity in that it cannot be defined in terms of one or more
classes, although it may be made up of one or more entities., EMPLOYEE is a
base class. The database designer can specify that a base class may contain
duplicate instances of its members. The default, by definition (i) is
"duplicates allowed", If it is required that all of the member attributes
taken together comprise a unique identifier then "duplicates not allowed"
must be specified.

Although the DbDL syntax implies an order to the components of a class
description, the base class features are placed at the bottom of the
examples., This is done to be consistent with the examples provided by the
authors of the SDM (4). Each member of a base class is identified by its
identifier. An identifier is constructed of an attribute name or an
attribute name plus ("+") another identifier. The 1latter method for

describing an identifier is used in the class CLIENT_COURTESY_CARD.

33

BASE_CLASS_FEATURE

-——— - - - - - -
- e e s e Es===a=

Example

CLIENT_COQURTESY_CARD
description: Courtesy cards are send to clients on special
occasions, e.g., birthdays.
member attributes:
Name_of_agent
value class: PERSON_NAMES
Client_name
value class; PERSON_NAMES
Client_address
value class: ADDRESSES
match: Client_personal_info.Address of CLIENT on
Client_name
Client_birthday
value class: DATES
match: Client_personal_info.Date of _birth of PERSONAL
on Client_name
Date to_send_card
Value class: DATES
derivation: Client_birthday - 3 working days
identifiers: Client_name + Date_to_send_card

34

INTERCLASS_CONNECTION

++ 5+ -+ + + + 3+ -+ 5
Syntax

INTERCLASS_CONNECTION <- [SUBCLASS;GROUPING_CLASS]

Description

A nonbase class does not enjoy an independent existence but must be
defined in terms of one or more classes. The syntactic argument used to
define a nonbase class is referred to as an interclass connection.

Classes may be partitioned into subelasses inheriting attributes from
their parent class. The subclass must be of type nonbase because it is
defined in terms of its parent class., OFFICE_STAFF is an example of a
subclass and it also offers a very good demonstration of attribute
inheritance. The subeclass OFFICE_STAFF has only one attribute deseription
which is used to identify the office manager. It inherits all of the
attributes from its parent class EMPLOYEE (see Examples of ATTRIBUTES).

Classes may also be aggregated into groups based on one or more common
attribute values, They differ from a class in that the grouping is not
necessarily permanent; in this case the grouping is based upon the values
of attributes. The group class provides a convenient interclass connection

for aggregates with changing member classes.

Example

OFFICE_STAFF
description: The class that identifies the office staff and
the office manager.
interclass connection: subelass of EMPLOYEE where
Status_of="office worker"
member attributes:
Is office_manager
description: "yes" if the instance i1s the office manager
"no" otherwise.
value class: BOOLEAN

32

- —
3+ ¢+

Syntax
SUBCLASS <=~ subclass of CLASS_NAME where SUBCLASS_PREDICATE
SUBCLASS_PREDICATE <~

[ATTRIBUTE_PREDICATE;

specified;

is in CLASS_NAME and is in CLASS_NAME;

is not in CLASS_NAME;

is in CLASS_NAME or is in CLASS_NAME;

is a value of ATTRIBUTE_NAME of CLASS_NAME;

format is FORMAT]

Description
A subeclass contains some but not all of the members of the parent

class. The factor that determines the entities that belong to the subclass
is the subclass predicate. An entity can thus be a member of any subclass
for which the subeclass predicate is satisfied. This is one of the SDM
features which provides for multiple views of the same data. A subagent who
specializes in annuities may be interested in only those clients who own
annuities. An appropriate subclass of clients from his viewpoint would be
one containing only those clients. Another subagent whose speciality is
IRA's may choose a viewpoint which includes only those clients who own
IRA's. This subeclass may include some or all of those included in the

annuity subelass. Thus, different perspectives on the same data are

provided.

ATTRIBUTE PREDICAIE
Description
* The discussion of attribute_predicates (attribute defined
subclasses) will require additional syntax diagrams and thus will

occur as a major topiec.

36

————— - ——
- 1

Description
The term "specified" defines a user-contrcllable subclass.
Users of the database manually specify the entities which belong to
this subeclass, If a group of clients was selected for some type of
preferential treatment (the agent's in-laws perhaps) a subclass of
CLIENT called SPECIAL CLIENTS could be defined that would contain

only the members of CLIENT that were manually placed into it.

Examples

CLIENT
definition: individuals who purchase products from the
enterprise.
member attributes:
Client_name
value class: PERSON_NAMES
Client_personal_info
value class: PERSONAL_INFO
Client_spouse_info
value class: SPOUSE_INFO
Client_dependent_info
value class: DEPENDENT_INFC
multivalued
Client_business_info
value class: CLIENT_BUSINESS_INFO
Miscellaneous_information
value class: MISC_INFO
Annuities_owned
value class: ANNUITIES_INFO
mulitvalued
IRA's_owned
value class: IRA_INFO
multivalued
Agent_of_record
value class: AGENT_INFO
inverse: Client_of
identifiers: Client_name

SPECIAL_CLIENTS
description: Those clients selected to receive
preferential treatment.
interclass connection: subclass of CLIENT where specified

3T

Description

The next three subclass types to be discussed, are referred to
as set-operator-defined subclasses. Membership into subeclasses
defined using these predicates 1s based upon the attribute's
membership within two other classes. An intersect relationship (is
in CLASS_NAME and is in CLASS_NAME) specifies that the members of
the subclass are just those members that belong to Class 1 (C4) and
Class 2 (02). Set union (is in CLASS_NAME or is in CLASS_NAME)
requires that the members of the subclass be members of C4 or C,.
Set difference (is not CLASS_NAME) limits the members of a subclass
to those members of C but not in C4, To insure that C4 and C, are
of the same data type, C1 and C, must both be subclasses of the
same parent class either directly or through a series of subclass
relationships.

Examples of the set_operator_defined subclasses were not
readily available in the insurance agency SDM schema, because the
schema is to reflect the actual working environment of the agency.
For demonstration purposes artificial classes will be created when

specific examples are needed to demonstrate a concept

Intersect

Description
The schema might contain a subclass of CLIENT which contains
only those clients who are 55 years of age or older. This type

of subclass is called an attribute defined subeclass and will be

38

- — —— -
L+ -

discussed later. Its description is necessary to demonstrate
the intersect relationship. If the database designer then
wished to define a subclass which contained only those clients
who were preferred clients and also over 55 years of age, the
class Special_Clients_over_55 would be defined. This class

would then include the members who belong to both classes.

Examples
SENIOR_CLIENTS

description: Those clients 55 years of age or eolder.
interclass connection: subeclass of CLIENT where AGE=>55.

SPECIAL_CLIENTS OVER_55
description: Special clients who are 55 years of age or
older.
interclass connection: subclass of CLIENT where is in
SPECIAL_CLIENTS and is in SENIOR_CLIENTS

Inion

Description
If the database designer desired a subclass of all clients
who are preferred clients and all those who are 55 years of age
or older the class SPECIAL_CLIENTS_OR _SENIOR_CLIENTS would be
defined, This subelass would contain the members of both

classes.,

Example

SPECIAL_CLIENTS_OR_SENIOR_CLIENTS
description: All special clients and all clients 55 years of
age and older.
interclass connections: subclass of CLIENT where i= in
SPECIAL_CLIENTS or is in SENIOR CLIENTS

32

- —————
P+

Description
The agency's clients who are not yet 55 years old can be
collected into their own subeclass. YOUNGER_CLIENTS would
contain those members of the class CLIENT that are not members

of the subclass SENIOR_CLIENTS.

Example
YOUNGER_CLIENTS
deseription: Those clients who are not yet 55 years old.

interclass connection: subclass of CLIENT where in not in
SENIOR_CLIENTS.

ds a value of ATTRIBUTE NAME of CLASS NAME

Description
This is a predicate that identifies the members of the subclass as
being those that are already values of an attribute defining another
class, This is referred to as an existence subclass. For example, a
subelass of CLIENT which would contain those clients who are also

employees (EMPLOYEE PATRONS) is deseribed as an existence subelass.

Example

EMPLOYEE_PATRONS

description: Those employees who are also clients of the agency.
interclass connection: subelass of CLIENTS where is a value
of Employee_name of EMPLOYEE.

4o

Syntax

FORMAT <~ %3 name class definition pattern#

Description

This is a clause that allows the database designer to explicitly
specify the format of values which the subclass may contain (9).
SOCIAL_SECURITY_NUMBER is described as a subclass of STRINGS where
format is a 3 digit number between 000 and 999 followed by a hyphen
then a 2 digit number between 00 and 99 followed by a hyphen then a 4
digit number between 0000 and 9999. Format is used primarilyin the

description of name classes.

Example

SOCIAL_SECURITY_NUMBER
interclass connection: subclass of STRINGS where format is
000<=number<=999

00<=number<=99

n_n

0000<=number<=9999

41

ATTRIBUTE_PREDICATE

= - o
1+ b bt

Syntax
ATTRIBUTE_PREDICATE <~
[SIMPLE_PREDICATE; {ATTRIBUTE_PREDICATE};
not ATTRIBUTE_PREDICATE;
ATTRIBUTE_PREDICATE and ATTRIBUTE_PREDICATE;
ATTRIBUTE_PREDICATE or ATTRIBUTE_PREDICATE]

SIMPLE_PREDICATE <- [MAPPING SCALAR_COMPARATOR [CONSTANT;MAPPING];
MAPPING SET_COMPARATOR [CONSTANT; CLASS_NAME: MAPPING]]

MAPPING <- [ATTRIBUTE_NAME; MAPPING.ATTRIBUTE_NAME]
SCALAR_COMPARATOR <- [EQUAL_COMPARATOR; >; >=; <; <=]
EQUAL_COMPARATOR <- [=, <>]

CONSTANT <- ®*a string of number constants#

Set_Comparator <~ [is {properly} contained in; {properly} contains]

Description

The attribute predicate is used to delimit the members of a subclass by
specifying the assertions which must be true for each member of the
subclass. The attribute predicate thus is defined as a simple predicate or
combination of simple predicates jJoined by one of the following Boolean

cperators: "not" , "and" and "or",
Mapping is a means of referring to specific values of an attribute.
In the examples both attribute names and mappings are used to reference
specific values. Example 1 demonstrates the use of the first option of the
mapping syntax (Attribute_name). The value being referenced is a specific
value of the attribute Status_of. A mapping may also represent a
concatenation of attribute names in order to allow direct reference to the
value of an attribute. In example 2 the first attribute being referenced is
Client_name-Last. A pericd is used to separate the attribute names which
comprise the mapping. Mappings occurring within the narrative will be

elevated to the middle of the printed line to distinguish it from the

42

ATTRIBUTE_PREDICATE

= o - -
-+ P 2+

period ending the sentence, The attribute Last is found in the class
PERSON_NAMES (example 6). PERSON_NAMES is the value class of the attribute
Client_name of the class CLIENT (example 7), thus the notation
Client_name*Last. The 8econd value being referenced
(Client_spouse_info'Name'Last) is the attribute Last of the class
PERSON_NAMES which is a value class of the attribute Name of the class
SPOUSE_INFO (example 8). SPOUSE_NAME is the value c¢lass of
Clients_spouse_info of the class CLIENT.

By applying a simple predicate or a combination of simple predicates
we are able to select from the members of a class, specific members that
form a meaningful subclass of the original parent class. More complex
sﬁipulations can be formed by combinations of simple predicates joined by

one or a combination of the boolean operators "and", "or" and "not".

Examples
1) Mapping scalar_comparator constant;

AGENT
interclass connection: subclass of EMPLOYEE where

Status_of = Magent'
2) Mapping scalar_comparator mapping;
CLIENT _WHOSE_SPOUSE_HAS_A_DIFFERENT NAME

interclass connection: subeclass of CLIENT where
Client_name.Last <> Client_spouse_info.Name.Last

3) Mapping set_comparator Constant;
INSURANCE_COMPANIES
interclass connection: subclass of COMPANIES where
Company_type contains "insurance®™
}) Mapping Set_Comparator Class_Name;
AGENT'S_SENIOR_CLIENTS

interclass connection: subeclass of CLIENT where Client_of
is in SENIOR_CLIENTS

43

ATTRIBUTE_PREDICATE

-+ + -t -+ 3+ 3+ ++ 3+ 1
5) Mapping Set_Comparator Mapping;

AGENT'S_PREFERRED_CLIENTS _OVER_S5
interclass connection: subclass of CLIENT where Preferred_client
is in Client_over_ 55

6) PERSON_NAMES
description: The form a person's name may take
member attributes:
Title
value class: TITLES
First
value class: FIRST_NAMES
Middle
value class: MIDDLE_NAMES
Last
value class: LAST NAMES

Ty CLIENT
definition: individuals who purchase products from the enterprise.
member attributes:
Client_name
value class: PERSON_NAMES
Client_personal_info
value class: PERSONAL_INFO
Client_spouse_info
value class: SPOUSE_INFO
Client_dependent_jinfo
value class: DEPENDENT_INFO
multivalued
Client busineas info
value class: CLIENT BUSINESS_INFO
Miscellaneous_information
value class: MISC_INFO
Annuities_owned
value class: ANNUITIES_INFO
mulitvalued
IRA's_owned
value class: IRA_INFO
multivalued
Agent_of record
value class: AGENT_INFO
inverse: Client_of
identifiers: Client_ name

by

ATTRIBUTE_PREDICATE

- — ——— ——— — - - ————
e -t

8) SPOUSE_INFO
description: That information relevant to a clients or
employee’s spouse.
member attributes:
Name
value class: PERSON_NAMES
Home_address
value class: ADDRESSES
Phone_number
value class: PHONE_NUMBERS
Date_of_birth
value class: DATES

45

GROUPING

Syntax
GROUPING <=~
[GROUPING of CLASS_NAME on common value of < ATTRIBUTE NAME >
{groups defined as classes are < CLASS_NAME >};
GROUPING of CLASS_NAME consists of classes <CLASS_NAME)>;
GROUPING of CLASS_NAME as specified]
Description
The second type of interclass connection used to describe a nonbase
class 1s the grouping interclass connection. Grouping provides a means for

describing higher level, abstract entities which are constructed out of

basic entities.

Expression-defined grouping class

The first predicate defines a grouping class made up of members
having a common value for one or more designated member attributes .
For example, a class TYPES_OF COMPANIES can be defined as a grouping
class of COMPANIES based on common values of Company_type.
Company_type thus represents a collection of types of companies whose
instances are the members of the various types of companies represented
by the agency. The contents of TYPES_OF COMPANIES represent subsets of
the class COMPANIES and thus correspond to a collection of attribute
defined subelass definitions. For example, the subeclass
TYPES_OF_COMPANIES represents the grouping of subclasses which may be
defined as Company_type = "insurance®", Company_type = "IRA", etc.
Because some of these subclasses may already be defined as subclasses
within the SDM schema, it is recommended that these subclasses be
referenced within the grouping class definition by naming the

subeclasses defined within the schema. INSURANCE_COMPANIES is described

46

GROUPING

-
-+

as a subclass of COMPANIES where Company_type = "insurancen",

This type of grouping is intended to focus attention on the shared
properties of the entities that are its contents, rather than to the
collection of entities itself, Although the name would infer an
aggregation of classes, a grouping class still represents an abstract

subclass of some underlying parent class.

Examples

TYPES_OF_COMPANIES
description: Types of Companies represented by the agency.
interclass connection: grouping of COMPANIES on common
value of Company_type groups defined as classes are
INSURANCE_COMPANIES, ANNUITY_COMPANIES

INSURANCE_COMPANIES
description: All insurance companies represented by the
agency.

interclass connection: subclass of COMPANIES where
Company_type = "Insurance"

ANNUITY_COMPANIES
description: Companies which offer annuities through the
agency.
interclass connection: subclass of COMPANIES where
Company_type = "Annuities"

.

COMPANIES
description: the companies whose products are sold by the
enterprise.
member attributes:
Company_type
value class: COMPANY_TYPES
Company_name
value class: COMPANY_NAMES
Company_address
value class: ADDRESSES
Company_phone
value class: PHONE_NUMBERS
Products_offered
value class: PRODUCT_TYPE
identifiers: Company_name

b7

GROUPING

——
=S=S======

Description
The second grouping predicate of allows the database designer to
specify the classes that will belong to the grouping class. However,
the specific classes must all have been previocusly defined as a
subeclass of some underlying parent class. The c¢lass
SPECIAL_CLIENT_GROUPS is described in such a manner, This grouping
class description is useful when there is no appropriate attribute

value which can be used to distinguish the various groups.

Example
SPECIAL_CLIENT_GROUPS
description: Those clients that are special to the agency
at present are special clients and are those over 55
years of age.

interclass connection: grouping of CLIENTS consisting of
classes SPECIAL_CLIENTS and SENIOR_CLIENTS.

.
.

Dser-controllable grouping class

This last grouping predicate consists of a collection of
user_controllable subclasses of some underlying parent class. It is a
vehicle to use when the database designer wishes to define a class of
clients considered "special cases", i.e.,, individual clients who
require special attention which is not based on some common attribute
value. The class would not contain groups of clients as in the first
two cases. Each member of this class would be an individual client.
Such a class would thus represent an aggregate of individual members

which were chosen by the users.

48

GROUPING

Example
SPECIAL_ATTENTION
description: Those clients requiring special attention.
interclass connection: grouping of CLIENTS as specified

49

Syntax

MEMBER_ATTRIBUTE <=~
<ATTRIBUTE_NAME>
{ATTRIBUTE_DESCRIPTION}
value class: CLASS_NAME
{inverse:; ATTRIBUTE_NAME}
{[match: ATTRIBUTE_NAME of CLASS_NAMEon ATTRIBUTE_NAME};
derivation: MEMBER_ATTRIBUTE_DERIVATION]}
{single valued; multivalued {with size between CONSTANT
and CONSTANT}}
{may not be null}
{not changeable}
{exhausts value class}
{no overlap in values}

Description
SDM recognizes two types of attributes, member attributes and class
attributes. Member attributes describe properties belonging to each member
of the class and class attributes describe properties about the class in
general. The syntactic clauses shared by the two attribute types (attribute
name, attribute description, single valued-multivalued, may not be null,
not changeable) will be addressed during the discussion of member

attributes.

Syntax

ATTRIBUTE_NAME <~ ®string of lowercase letters beginning with a capital
and possibly including special characters#

ATTRIBUTE_DESCRIPTION <~ # string ®

Description
For the purpose of standardization, attribute names will begin with
a capital letter with the remainder lowercase and may contain special

characters. An attribute name must be unique with respect to all

50

— - - -
B £ 2 1 4 1 4 + 5+ +

attribute names used in the class; it cannot have been used in its
parent class if the class being defined is a subclass, and it cannot be
used in any subclasses that may be defined from it. Synonyms are
permitted. An attribute description may also be included and is

encouraged to aid in the documentation of the schema.

Example
Spouse_amount_insurance
description: If it is assumed that if the spouse i= also a
client then a record of total insurance owned should also
be present for the spouse. This value is derivable by

matching Spouse_name to Client_name in POLICY_RECORD.
value class: DOLLARS

.
*

Yalue class: CLASS NAME

Deseription

The value class of an attribute is the class which describes the
domain of values an attribute may have, The attribute described in

the above example has a value class of DOLLARS.

Inverse-Match

Inverse and match will be discussed as separate major topies.

Attribute derivations

Attribute derivations will be discussed as a major topiec.

Desceription

The Agent_of_record attribute in the class CLIENT is an example of

an attribute that may have only one value. Each agent sells to only his

51

P T T ———
—EEEEEEESEE=EsEEE=EE

own clients, they do not share clients. The Annuities_owned
attribute in the class CLIENT is an example of a multivalued attribute.
This attribute is a list of information pertaining to all annuities
sold to the client by the agent. If we think of a multivalued attribute
as being a subset of a value ¢lass, the number of values this set may
contain can be controlled by specifying the set size ("with size
between CONSTANT and CONSTANT"). For example, if for some reason we
wished to limit the number of clients an agent may have, we could
specify it in the manner displayed in a modified version of the class

AGENT_INFO,.

Examples

CLIENT
definition: individuals who purchase products from the
enterprise.
member attributes:
Client_name
value class: PERSON_NAMES
Client_personal_info
value class: PERSONAL_INFO
Client_spouse_info
value class: SPOUSE_INFO
Client_dependent_info
value class: DEPENDENT_INFO
mulitvalued
Client_business_info
value class:; CLIENT BUSINESS_INFO
Miscellanecus information
value class: MISC_INFO
Annuities_owned
value class: ANNUITIES_INFO
mulitvalued
IRA's_owned
value class: IRA INFO
nultivalued
Agent_of_record
value class:AGENT_INFO
inverse: Client_of
identifiers: Client_name

52

AGENT_INFO
member attributes:
Clients_of

value class: CLIENT
multivalued with size between 1 and 150

May pnot be pull

Description
Attributes may be specified as mandatory. This means that a null

value is not a valid value for this attribute.

Not_changeable

Deseription
Specifying that the attribute value is not changeable implies that
it cannot be updated. It may however be changed to correct erroneous

information.

Exhausts value class

Description
This feature allows the database designer to specify that every
member of the value set must be the value of some attribute. The
attribute Clients_of class AGENT_INFO "exhausts value c¢lass"™ because

every client must be the client of some agent.

83

- - — - - — - -
B L

AGENT_INFO
description: Attributes that the agent and subagents have in
common. Used as a value class for Agent_particulars of AGENT
and Subagent_particulars of SUBAGENT.
member attributes:
Clients_of
value class: CLIENT
inverse: Agent_of_record
multivalued
exhausts value class
no overlap in values

Licensed_with
value class: COMPANIES
multivalued
Number_of_clients
value class: INTEGERS
derivation: number of unique members in Client_of

No overlap in values

Description

This feature can be used to specify exclusive ownership of avalue

by an attribute. The attribute Clients_of, in the above example, is

also declared as having ™"no overlap in value, which means that no two

Agents can have the same Client.

54

Syntax

inverse: ATTRIBUTE_NAME

Description

The matching and inverse clauses allow the occurrence of data
redundancy within the database. They were created intentionally to support
the incorporation of user views into the SDM schema. In the design of a
database it sometimes becomes convenient and meaningful to think of an
attribute and entities switching places to accommodate different user
perspectives. Inverse is used to accommodate such a situation. The
attribute Client_of in AGENT_INFO has a value class of CLIENT and 1its
inverse is the attribute Agent_of_record in the class CLIENT which has a
value c¢lass of AGENT INFO. Kroenke (6) points out that the inverse clause
allows us to describe two entities which are contained within each other.
Thus if we know a client, his agent can be determined by the attribute
agent_of_record. A different view of the data might present us with an

agent whose clients may be determined by the attribute, Client_of.

Examples

AGENT_INFO
description: Attributes that the agent and subagents have in
common. Used as a value class for Agent_particulars of AGENT
and Subagent_particulars of SUBAGENT.
member attributes:
Clients_of
value class: CLIENT
inverse: Agent_of_record
multivalued
exhausts value class
no overlap in values
Licensed_with
value class: COMPANIES
multivalued
Number_of_clients
value class: INTEGERS
derivation: number of unique members in Client_of

55

CLIENT
definition: individuals who purchase products from the
enterprise.
member attributes:
Client_name
value class: PERSON_NAMES
Client_personal info
value class: PERSONAL_INFO
Client_spouse_info
value class: SPOUSE_INFO
Client_dependent_info
value class: DEPENDENT_INFO
mulitvalued
Client_business info
value class: CLIENT_BUSINESS INFO
Miscellaneous_information
value class: MISC_INFO
Annuities_owned
value class: ANNUITIES_INFO
mulitvalued
IRA's_owned
value class:; IRA_INFO
multivalued
Agent_of_record
value class:AGENT_INFO
inverse: Client_of
identifiers: Client_name

56

Syntax

match: ATTRIBUTE NAME OF CLASS NAME on ATTRIBUTE_NAME

Description

Where inversion allows the description of binary associations between
attributes, matching supports binary and higher degree associations.
Matching provides a means of deriving an attribute's value from information
within the database by matching common values of attributes from different
classes, There is some disagreement as to the interpretation of the match
derivation. In this text, match will be used as a method for deriving a
single attribute value. The other interpretation is a more powerful join in
which a match derives an entire class instance. An example of matching is
found in the class PRO_FORMA_CASH FPLOW_STATEMENT. In this example the total
insurance premiums paid by a client is derived from the value of the
attribute Total_gross_yearly_bpremiums of the class POLICY_RECORD by a match
on the client's name. Matching can be thought of as a high level join. It
is used extensively in the insurance agency schema because of the highly
redundant nature of the application environment. In this application
environment example CLIENT and POLICY_RECORD serve as the primary sources
of information. Attribute values of most of the other classes may be
derived from these primary classes by matching on the client's name or on a
specific policy number. Additional examples may be seen in
CLIENT_FILE_CARD, CLIENT_FILE CARD_POLICY_INFO, and the FOLLOW-UPs

{Appendix D).

5

Example

PRO_FORMA_CASH_FLOW_STATEMENT
description: That data stored in the database that would be
of use when filling out a client's pro forma cash flow
atatement.
member attributes:
Client_name
value class: PERSON_NAMES
Client_address
value class: ADDRESSES
Client's_total_vearly insurance_premiums
value class: DOLLARS
match: Total_gross yearly_ premiums of POLICY_ RECORD
on Client_name
identifiers: Client_name

58

ATTRIBUTE DERIVATIONS

- —— i ——— - —— - -
T+ + T 4+t + 3+

Syntax
MEMBER_ATTRIBUTE_DERIVATION <=
[INTERATTRIBUTE DERIVATION; MEMBER-SPECIFIED_DERIVATION]

CLASS_ATTRIBUTE_DERIVATION <-

[INTERATTRIBUTE_DERIVATION; CLASS-SPECIFIED_DERIVATION]

Description

Attribute values may be derived from other information stored within
the database or in fact may take the form of statistics about the data
within the database, e.g., maximum, minimum, average and sum. Values for
member attributes and class attributes may be derived, and they share
common interattribute derivations., They differ in member specified
derivations and class-specified derivations as seen in the syntax diagrams.

As a brief review , the diagrams specify that a
MEMBER_ATTRIBUTE_DERIVATION may take the form of an
INTERATTRIBUTE_DERIVATION or a MEMBER-SPECIFIED_DERIVATION and a
CLASS_ATTRIBUTE_DERIVATION may take the form of an

INTERATTRIBUTE_DERIVATION or a CLASS-SPECIFIED_DERIVATION.

59

INTERATTRIBUTE_DERIVATION

- -
=ttt x4

Syntax

INTERATTRIBUTE_DERIVATION <-

[same as MAPPING;
subvalue of MAPPING where [is in CLASS_NAME; ATTRIBUTE_PREDICATE];

where [is in MAPPING and is in MAPPING; is in MAPPING or is
in MAPPING; is in MAPPING and is not in MAPPING];

= MAPPING_EXPRESSION

[maximum; minimum; average; sum] of MAPPING;

number of {unique} members in MAPPING]

Description

Interattribute derivations allow the database designer extreme

flexibility in specifying the values a derived attribute may have.

Same ag MAPPING

Description

This clause allows the database designer to derive the value of an

attribute by stating that it is the same as that for another attribute.

Example

OTHER_APPOINTMENTS
description: Appointments other then those that are normally
scheduled.
member attributes:

Date_of appointment
value class: DATES
Next_date of_action
description: This attribute must be present if
OTHER_APPOINTMENTS is to be included in
DAILY SCHEDULE, Membership in DAILY_SCHEDULE is
based on a match with Next_date_of_action. Rather
than change the name of the attribute
Date_of appointment, which is familiar to all
employees, Next_date_of_ action was coined as a
synonym.
value class: DATES
derivation: same as Date_of_appointment

60

INTERATTRIBUTE_DERIVATION

Description
We can define an attribute or mapping to be a subset of the values
of a multivalued attribute requiring that they be members of scme other
class or by specifying some predicate which must be satiasfied. This
derivation could be used to describe a new attribute of AGENT_INFO
whose members would include all clients who are members of the class

SPECIAL_CLIENT described in the discussion of subclass predicates.

Example

Agent's_special_clients
description: all of the agent's clients who are members of
the class SPECIAL_CLIENT
value class: CLIENT
derivation: subvalue of Client_of where is in SPECTAL_CLIENT

Description

The database designer could use this predicate to define an
attribute whose value represents the intersect, union or difference of
two other member attributes or mappings. To demonstrate this predicate

two additional member attributes of AGENT_INFO must be defined.

61

INTERATTRIBUTE_DERIVATION

- - - v e s e e e e e
L2 P

Examples

Agent's_clients_55_and_ over
description: All of the agent's clients who are members of
the class SENIOR_CLIENTS.
value class: CLIENT
derivation: subelass of Client_of where is SENIOR_CLIENTS

Agent's special_clients_55_and_over
description: An agent's clients who are members of both
Agent's_special_clients and Agent's_clients_55_and_over
value class:; CLIENT
derivation: subvalue of Clients_of where is in
Agent's_special_clients and Agent's_clients_55_and_over

=_MAPPING EXPRESSION

Description

An attribute's value can be derived by applying an arithmetic
expression to the values of other member attributes or mappings. This
type of derivation can be seen in the Date_of_next_action definitions
of the "FOLLOW-UP"'s (Appendix D). The example demonstrates its use in
the description of the class REINSTATEMENT FOLLOW-UP. Although it is
specified that the involved attributes or mappings must have numeric
values the SDM syntax has been expanded by the database designer to
include the arithmetic manipulation of dates, The various symbols and
their meanings are as follows: (+) addition; (-) subtraction; (¥)

multiplication; (/) division; and (!) exponentiation.

62

INTERATTRIBUTE_DERIVATION

Example

REINSTATEMENT_ FOLLOW-UP
description: Calls to insurance company to ascertain whether a
client has paid his premium.
member attributes:

.

Date_of next_action

value class: DATES

derivation: = Date_notified_of_delinquency + 14
if this is the first attempt

or Date_of_ next_action + 1
if elient was not notified on the initial date,
denoted by a ™no" value of Contact_completed of class
DAILY SCHEDULE for this instance
#E#% Note: This is not part of the SDM syntax., #eE#

.
.

Description
"The operators 'maximum', 'minimum', 'average', and 'sum' can be
applied to a member attribute or mapping that is multivalued; the value
class of the attributes involved must be an eventual subeclass
NUMBERS. The maximum, minimum, average, or sum is taken over the
collection of entities that comprise the current value of the attribute
or mapping."(1) The SDM syntax was modified by the database designer to

allow these operators to be applied to the name class DOLLARS.

63

INTERATTRIBUTE_DERIVATION

Examples

Total_gross_yearly_ premium
value class: DOLLARS
derivation: sum of Gross_yearly_premium

DOLLARS
description: The form a reference to money may take.
interclass connection: subeclass of STRINGS where format is
ﬂstl
000 < number <= 999
nn
¥
000 <= number <= 999
nn
]
000 <= number <= 999
nn
00 <= number <=99
where leading zeros are omitted

Description

The value of an attribute may be defined as being equal to the
number of members in a multivalued attribute or mapping. This
derivation may count all members or only unique members of a
multivalued attribute., The member attribute Number_of_clients of
AGENT_INFO is used to represent the number of unique clients an agent

has.

64

INTERATTRIBUTE_DERIVATION

Example

AGENT_INFO
description: Attributes that the agent and subagents have in

common., Used as a value class for Agent_particulars of AGENT
and Subagent_particulars of SUBAGENT.
member attributes:
Clients_of
value class: CLIENT
inverse: Agent_of_record
multivalued
exhausts value class
no overlap in values
Licensed_with
value class: COMPANIES
multivalued
Number_of_clients
value class: INTEGERS
derivation: number of unique members in Client_of

65

MEMBER-SPECIFIED-DERIVATIONS

e - -_
Sy

Syntax

MEMBER~SPECIFIED_DERIVATIONS <-

[order by [increasing;decreasing] <MAPPING> {within <MAPPING>};
if in CLASS_NAME;

[up to CONSTANT; all] levels of values of ATTRIBUTE NAME;
contents]

Deseription

Member attributes and class attributes can be defined using

interattribute derivations or derivations unique to each attribute type

(member attributes or class attributes).

Description

The ordering derivation allows the definition of an attribute which
denotes the sequential position of each specific member of the class
with respect to some other attribute or mapping within the class. The
member attribute Seniority of the class EMPLOYEE is described as being
the sequential position of each employee with respect to the date he
began working for the agency. Ordering can be either increasing or
decreasing with respect to the attribute value; the default is
increasing. Ordering can also take place within a subset of the members
of a class by specifying "within MAPPING". This causes the ordering of
a subset of the members of the class whose values are the same for the
mapping referenced to in the above mentioned predicate. For example,
the database designers could have described a seniority attribute that
would specify each employee's seniority within his employee type. This
would have the affect of assigning a sequential ordering value to each

office worker based on his seniority among the office staff, assign a

66

MEMBER-SPECIFIED-DERIVATIONS

- - - - -——— - - -
++ -+t ¢+~ 2 1

subagents seniority with respect to other subagents, etec.

Examples
Seniority

value class: INTEGERS
derivation: order by decreasing Date_joined_company

Seniority_within_type
value class: INTEGERS
derivation: order by decreasing Date_joined_company within
Status_of.

If in CLASS NAME

Description

An existence attribute is provided that allows the assignment of a
boolean value to a member attribute based on the presence of the member
in some other specified class., If the database designer wished to
signify for each client whether he was considered a special client
{(described earlier in the discussion of subclasses) a new member
attribute of class CLIENT could be described that would assign the
boolean value "yes" if the member in question was also a member of the

class SPECIAL_CLIENTS or "no" otherwise.

Example

Is_special
value class: YES/NO
derivation: if in SPECIAL_CLIENTS

Description

To describe the next clause ™up to [CONSTANT;ALL] levels of value

of ATTRIBUTE_NAME"™ a new attribute of CLIENT must be defined.

67

MEMBER-SPECIFIED~-DERIVATIONS

Relatives_who_are _clients will allow us to combine all the entities
obtained by recursively ¢tracing the values of
Client_dependent_info'Name. This will provide a list of a client's
children, the children's children, etc, The recursive process can be
repeated a specified number of times (up to CONSTANT levels) or for
all occurences (all levels). Although the syntax does not specify that
a mapping can be used, a mapping is necessary to impart the proper
meaning, thus the ".Name®™ enclosed in parentheses in the description of
the attribute Relatives_who_are c¢lients., This then tells us that we
must trace relatives by identifying those dependents that are also
listed as clients, We must use the dependent's name as an identifier

for CLIENT.

Example
Relatives_who_are_clients
description: a recursive descent through Client_dependent_ info
that will produce a list of relatives who are also clients.

value class: CLIENT
derivation: all levels of values of Client_dependent_info (.Name)

Contents

Description
The last member-specified_derivation clause, "contents", is stated
by Hammer and McLeod (i) to automatically exist when a grouping class
is defined. "The value of this attribute is the collection of members
(of the class underlying the grouping) that form the contents of that
member®(4). To demonstrate the use and significance of "contents" we
will have to add a member attribute to our definition of the class

TYPE_OF_COMPANIES. The attribute Instances has as its members all

68

MEMBER-SPECIFIED-DERIVATIONS

instances of companies which have the same value for Company_type.

Example

TYPE_OF_COMPANIES
description: Type of companies represented by the agency.

interclass connection: grouping of COMPANIES on common
value of Company_type groups defined as classes are . .
member attributes:

Instances
description: the instances of the type of companies,

value class: COMPANIES
derivation: same as contents
multivalued

69

E=E=S===========

Syntax
CLASS_ATTRIBUTE <~
<ATTRIBUTE_NAME>

{ATTRIBUTE_DESCRIPTION}

value class: CLASS_NAME

derivation: CLASS_ATTRIBUTE DERIVATION]}

{single valued; multivalued {with size between CONSTANT

and CONSTANT}}

{may not be null}

{not changeable}

Description
SDM recognizes two attribute types, member attributes (discussed
previously) and class attributes. Member attributes describe properties
belonging to each member of the class and class attributes describe
properties of the class as a whole. Class attributes and member attributes
share most of their formal description in common. The major difference is
in the description of CLASS_SPECIFIED_DERIVATIONS and the lack of the
follow two clauses in the class attribute description, "exhausts value
class" and "no overlap in value”.
Descriptions of those clauses shared in common can be found in the

section discussing member attributes. The class-specified derivations will

appear as a major topic and follows next.

70

CLASS-SPECIFIED_DERIVATION

- —— o T
St e)

Syntax

CLASS-SPECIFIED_DERIVATIONS

[number of {unique} members in this class;
[maximum;minimum;average;sum] of ATTRIBUTE_NAME over members of this
class]

Description

The class-specified_derivations allow the database designer to
maintain statistical information about the members of the clasa and
attributes of the class. An example of the derivation "number of
{unique} members in this class" appears in the deseription of the
attribute Number_of_employees., The second derivation, "[maximum;
minimum; average; sum] of ATTRIBUTE_NAME over members of this class"
would be applied in the same fashion as its member-specified derivation
counterpart, The statistical derivations maximum, minimum, average and
sum in the original SDM syntax applied only to attributes with the
value class NUMBERS. This restriction has been relaxed in this paper to
allow for the summation of of attributes with the value class of

DOLLARS.

Examples

Number_of_ employees
value class: INTEGERS
derivation: number of members in this class

71

Chapter §

SDM Application

Now that the reader has been introduced to the SDM DbDL, it is time to
consider how to apply the SDM to an application domain. The first part of
this chapter will provide a list of several steps that in the schema design
process a database designer may follow., The designer follows these steps
with repeated iteration of some steps to complete the schema.

The second part of this chapter will trace the use of these steps to
develop the insurance agency schema, An exhaustive description of these steps
would be cumbersome and inappropriate for this report. The steps will be
presented in sufficient detail as to provide the reader with an understanding

of what they involve,

Design steps
No definitive algorithm exists for the design of an SDM schema. McLeod

(10) summarizes the design process by describing 3 principle tasks which must
be accomplished. They are:
"1, A core of c¢lasses containing basic things must be
defined.

2. Families of related classes must be formed, using
subclasses and grouping primitives .

3. Asscciations among things must be expressed, using
attribute inversion, attribute matching and classes."

Iteration of these tasks is necessary. These tasks have been further
refined byMcLeod (11). A summarized list of the steps he suggests is given

here:

72

Prepare an initial 1list of the classes, 1l.e., entities, events, that are
to be present in the SDM database. The list should contain the objects
and events (things of interest) that occur in the application
environment. A brief description of each class should also be included
with the list,

Examine the class list to determine subclasses and grouping-classes that
exist or are implied by the 1ist. This is accomplished by considering
each class in the list and determining if there are any entities that are
subclasses of the c¢lass in question or if the c¢lass in question suggests
any abstract or aggregate classes whether as a class or as a member of
such a class.

While perusing the class list, the database designer should look for
similarities in classes which would suggest that they be collected into a
commen class, McLeod and King (11) refer to such a collection as a
family and define a family in the following manner:

"A family is a set of classes that all have, at some level

of abstraction, a common type of member; that is , the members

of each component of a family of classes belong to some common

class."

The classes agent, subagent, office manager and office personnel, by
virtue of common attributes would seem to form a meaningful family called
Employee. Employee would thus become the parent class and agent,
subagent, office manager and office personnel would be defined as
subclasses of Employee. The primary consideration when looking for
families of classes is to determine at what level of abstraction parent
classes should be defined. Classes which describe fundamentally
different things should not be defined as subclasses of the same class.
Those classes which share common attributes become likely candidates as

subeclasses of a common parent class.

73

The degree of subclass differentiation must also be considered when
defining classes and subclasses. For example, defining subagent as a
subclass of agent which in turn is a subelass of Employee was considered
inappropriate for our model. The database designer found it more
appropriate and meaningful to define both as subclasses of the parent
Employee. Such decisions are arbitrary and at some point can only be
based onthe designer's intuition. However, McLeod and King (11) have
provided the following suggestion:

"A useful heuristic for determining the appropriate degree
of specificity (i.e., differentiation) is that a subeclass be
defined if and only if one or both of the following are true:
-=~ the members of the subelass have attributes that are
not possessed by all of the members of its parent
class.
--= the subeclass will often be manipulated as a
meaningful unit."
New classes recognized at this point should be described as in step 1.
Produce a list of the aspects (attributes) of interest for each class in
the class list. Each aspect must be identified as being an aspect of
each member (member attributes) or as an aspect of the class as a whole
(class attributes). The designer should provide as a minimum, a2 name for
the attribute, a description of its meaning and should specify if the
attribute is multi-valued (default is single-~valued). Additional
descriptors which may be specified at this time include: whether the
attribute may have a null value; whether the value of the attribute is
changeable; and in the case of a member attribute, whether every member
of the underlying value class must be the value of some attribute
(exhausts value class); and/or whether a specific value may be shared by
other instances of the attribute (no overlap in values), These optional

descriptors may be added later as additional insight into the nature of

Th

the application environment is gained.

Assign a value class to each attribute identified in step 3. The
designer should examine the class list established in step 1 to select
the appropriate value class. If no such value class exists, a new class
is added to the list and steps 1 through 3 are repeated for it.
Determine the interclass connections for the subclasses and groups
defined in step 2. Subeclass connections may be defined by applying a
predicate on the other member attributes of the parent class (attribute=-
defined subclass), by the predicate "where specified" (user-controllable
subelass), by a predicate on members of two other specified database
classes (set-operator-defined subclasses) or by a predicate on current
values of some attribute of another database class (existence subclass).
The database designer must also guard against circular definitions when
defining grouping classes. MclLeod (11) provides the following
recommendations when defining subclasses: 1) guard against circular
definitions, e.g., defining a subclass, C1, of class C2 then later
defining C2 as a subclass of C1; 2) it is desirable to define a subclass
via a multiset operator using other classes that are of interest, this
allows the subclass to inherit attributes from all of the classes
involved; 3) multiple levels of subclasses should only be defined when
the class at each level is of interest,

Crouping connections may be defined as all those classes having a
common value for one or more designated member attributes (expression=-
defined grouping class); by explicitly specifying the classes which are
members of the grouping class (enumerated grouping class) or by defining
a grouping class that consists of user-controllable subclasses of some
underlying class (a user-controllable grouping class). The last two

methods differ in that in the enumerated grouping class all members of

75

those classes which constitute the grouping class are members of the
grouping class, Members of a user-controllable grouping are those
specific instances of a class which have been specified as being members
of the grouping class.

Determine whether each attribute of every class is either primitive or
derived. The value of a primitive attribute is directly modifiable by
users, The value of a derived attribute can not be directly modified by
a user. However, the value of only one attribute in an inverse
interrelationship is modifiable and no attribute described with a match
interrelationship is modifiable.

Primitive member attributes may be further defined by the optional
descriptors discussed in step 3 (e.g., may not be null, not changeable,
exhaust value class, no overlap in values). Class attributes may be
further defined by the optional descriptors ™may not be null®™ and " not
changeable®.

Derived attributes are assigned a derivation specification.
Knowledge of the attribute's value class gained in step 4 will assist in
selecting the appropriate derivation specification {see
INTERATTRIBUTE_DERIVATION, MEMBER-SPECIFIED_DERIVATION AND CLASS-
SPECIFIED_DERIVATION of Appendix A and B).If no appropriate derivation
type can be found, auxiliary attributes may be defined. The database
designer must repeat step U for each new attribute defined.

Select one or more member attribute to serve as a unique identifier for
each base class if appropriate.

Identify all name classes, define each as subclass of either STRINGS or
NUMBERS and apply derivation specifications if desired to further

describe the c¢lass.

76

In brief, the steps described above can be summarized as

follows:

1. Prepare an initial list of the entities (class list).

2. From the class 1list determine the subelasses and grouping
classes of interest.

3. Identify member attributes and class attributes.

y, Assign a value class to each attribute,

5. Determine the interclass connection for subclasses and
grouping classes,

6. Add descriptive options to primitive attributes, assign attribute
interrelationship specifications if appropriate or and assign derivation
specifications to derived attributes.

Toa Select member attributes to serve as unique identifiers of
appropriate base class.

8. Identify name classes, define them as subclasses of either STRING,
INTEGER or NUMBERS, and apply derivation specifications as desired.

As new classes and attributes emerge, repeat the appropriate steps for

each.

Application of the design steps

The remainder of this chapter will follow the evolution of the SDM schema
for the insurance agency described in Chapter 3. The resulting schema appears
in Appendix D. An exhaustive review of the design phase is impossible thus the
following discussion will focus on the problems encountered. The reader is
encouraged to examine Appendix D, refer to Appendix A and B, and study the
discussion of the SDM syntax in Chapter 3 for a more thorough understanding of

SDM,

T7

Step 1

I 1. Prepare an initial list of classes of interest. |

On-site interviews and examination of the forms used by the enterprise

revealed an initial set of entities and events which appear in figure 5-1.

Entities
Agent Client
Subagents Payment
Office manager Client asset sheet
Office staff Client file card
Estate settlement worksheet
Insurance Client courtesy cards
Annuities
IRA's Quarterly state of business
report
Companies Annual state of business
Product license report
Commission, subagent Monthly cash-flow
Commission, agent
Events
Appointments Client follow=-up
Reinstatement fol low-up Replacement fol low-up
Prospect letter follow=up Annual reviews

Daily contacts

Figure 5-1. A list of initial entities and events collected
from on-site interviews and examination of forms used by the
insurance agency.

Step 2
Io2. From the class list determine the subclasses, grouping classes |
! and class families of interest. !
An interesting phenomenon which is obvious but often overlooked is the
fact that as we discuss objects and events, we naturally tend to group like
"things"™ together. We can use this phenomenon to our advantage during the on=-

site visit and while perusing the forms the enterprise uses. While compiling

78

the entity-event 1list (figure 5-1) the designer found that related "things"
seemed to be grouped and such groups can be used when proceeding with step 2.

The first four entities (agent, subagent, office manager and office
staff) suggested a family of classes which represent the Employees of the
enterprise. This appears to be a convenient, natural grouping both
intuitively and because they are likely to share common attributes. The
designer must now decide the most appropriate level of abstraction in which to
model this relationship.

One metheod of representing this relationship would be to define a new
class that we shall call EMPLOYEE and define agent, subagent, office manager
and office staff as subclasses of EMPLOYEE. We could then differentiate the
various members of each subclass by specifying a unique value of some
classification attribute (figure 5-2).

A second method of representing this relationship would be to treat each
type of employee as members of a common class and assert their relationship,
one to another, by describing them as members of an overlaying grouping

elass. Such an approach would provide the alternative represented in figure

5-3 .

T3

EMPLOYEE
description all people whe work for the agency.

member attributes:

Status_of
value class EMPLOYEE_TYPES

AGENT
description: The owner and primary agent of the

enterprise.
interclass connection: subset of EMPLOYEE where
Status_of = "Agent"

SUBAGENT
description: people licensed to sell products and work

for the primary agent.

interclass connection: subset of EMPLOYEE where Status_of =
"subagent"

member attributes:

.
.

Figure 5=-2, Agent, subagents, office manager and office_staff
described as subclasses of EMPLOYEE (attribute-defined subclasses).

EMPLOYEE
description: all people who work for the agency.

member attributes

Status_of
value class EMPLOYEE_TYPES

EMPLOYEE_TYPES
description: groups of employees by type.
interclass connection: grouping of EMPLOYEE on common
value of Status_of.
member attributes:

.
.

Figure 5-3. Agent, subagents, office manager and office_staff
implicitly described as groups of employees whose instances are the
members of the groups that make up EMPLOYEE_TYPES (expression-

defined grouping).

80

EMPLOYEE_TYPES could be defined as an expression-defined grouping class
which would group the various employee types of the base class EMPLOYEE with
respect to common values of a specific attribute of EMPLOYEE, e.g. Status_of.
In this case the addition of a new employee type to the schema would require
no further definition. All employees would then belong to the base class
EMPLOYEE and nothing would distinguish one type from another except the value
of the Status_of attitude,

A second example involving levels of abstraction is seen in the
consideration of the entity Subagent. Should subagent be included within the
base class EMPLOYEE as in figure 5-3? Should it be defined as a subclass of
EMPLOYEE as in figure 5-2, or would it be more appropriate to define Subagent
as a subclass of the subclass Agent? Is office manager a subclass of office
staff? Because of the number of attributes each employee type have in common,
it seems more natural for at least some of them to be modeled as subclasses of
the parent class EMPLOYEE (figure 5-2). If we apply the heuristics mentioned
in step 2 we might conclude that based on the difference in the way
commissions are calculated Agent and Subagent should be treated as separate
subclasses of the parent class EMPLOYEE. Because the attributes which
describe office ataff and office manager are the same, these two subclasses
will be consolidated under office staff and the office manager will be
distinguished in some other manner,

The next group of classes on the list --- insurance, annuities, IRA'S ===
are sufficiently different that they should be treated as separate base
classes, However, they suggest a higher level grouping class that would be
convenient if one wishes to treat all products offered by the enterprise as a
single unit, e.g., total wvalue of products sold. Collecting these classes into
a grouping class would seem appropriate, however, none of the clauses

available to use for defining a grouping class seem to fit. All grouping

81

predicates require that the classes constituting its description be defined as
subclasses of some parent class. So if we wish to treat these three classes
as a single unit, we cannot define them as separate base classes. It was
decided that the agency desired information about these products only with
respect to what individual clients owned and general information about
products as a whole was not needed. Thus they were treated as value classes
for attributes describing CLIENT.

A first assessment of the remaining classes on our list appears in figure
5-4, The results of applying step 2 to the initial list of classes appears in

figure 5«5,

Step 3
| 3. Identify member attributes and class attributes. !

The database designer must now produce a list of the attributes for the
classes listed above. Attributes of interest for the forms and reports can be
determined directly from these articles, Most of the élients attributes can be
ascertained from the client file card. Additional attributes of interest will
have been obtained from those interviewed during the on-site visit. From
these resources an initial 1list of attributes for each class can be produced.
After this step a second visit to the enterprise should be planned to
determine the validity of assumptions made up to this point and to discuss
other issues which may have arisen.

Appendix C contains the results of step 3. Class descriptions have been
included but attribute descriptions were intentionally omitted to elucidate
each class and its attributes. It is important to inelude class and attribute
descriptions as you proceed with the SDM schema. The designers soon realized
that the descriptions offered in this Appendix C were inadequate when

attempting to continue with the next steps in the design process. As we

82

proceed with the construction of the SDM schema the absolute necessity of
comprehensive class descriptions (and attribute descriptions when appropriate)
was realized. The grand design that the designers had in mind when the classes
were identified was no longer self evident when it became time to piece the
puzzle together. It was only after time was taken to regroup and, for all
practical purposes, start again beginning with the 1ist prepared in step 1
(figure 5-1) were the designers able to progress toward the completion of the

schema.

Company -- base class

Product license -- value class of an attribute describing the
products an agent is licensed to sell

Commission, agent and Commission subagent -- probably derived
attributes of agent and subagent respectively.

Client =-- base ¢lass
Payment -~ subclass of events

Client asset sheet, client file card, cash flow statement, pro forma
cash flow statement, policy record, statement of financial
position, life insurance form and estate settlement worksheet
-~ forms used by the enterprise. Much of the data gathered on
these forms are redundant and much is not needed within the
database. The decision as to how much should be stored is a
function of memory storage available and the frequency of use
of each data item (data field). It was decided that the Policy
record form and the Client file card are the only forms to be
incorporated into the database. Data stored within the database
which could be used by individuals when completing the other
forms will be modeled within the database as summaries of each

form.

Daily contact report -- this report is the event scheduler of the
enterprise. A1l events listed have a close relationship to this
report. (The name was later changed to DAILY_SCHEDULE.)

Appointments, Client follow=-up, reinstatement follow-up, replacement
follow-up, Prospect letter, Prospect letter follow-up, Annual
review, Daily contacts -- subclasses of the base class event.

Quarterly state of business, Annual state of business, monthly cash
flow -- subclasses of the base class event.

Figure 5-4: An initial assessment of the entities and events appearing in
figure 5-1.

83

Base classes

Empl oyee

Products

Companies

Product license

Client

Policy record

Client file card

Client asset sheet

Client file card

Cash flow statement

Pro forma cash flow statement
Policy record

Statement of financial position
Life insurance form

Estate settlement worksheet

Attributes
Commission, agent
Commission, subagent

sSubclasses

Appointment

Client follow=-up

Reinstatement follow=-up

Prospect letter

Annual review

Daily contacts

Agent

Subagent

Office staff

Insurance

Annuities

IRA's

Payment

Client asset sheet summary

Cash flow statement summary

Pro forma cash flow statement
statement

Statementoffinancial
position summary

Life insurance summary

Estate settlement worksheet
summary

Grouping Classes
none identified

Figure 5-5. A list of entities and events described in terms of SDM
categories.

84

Steps 4-6

| 4, Assignavalueclasstoeachattribute. |
5. Determine the interclass connection for subclasses and |
grouping classes. !
6. Add descriptive options to primitive attributes, assign |
attribute interrelationship specifications if appropriate or |
and assign derivation specifications to derived attributes. |

The assignment of value classes, determining interclass connections and
assigning derivation specifications claimed the bulk of the time required to
design the SDM schema. All three steps resulted in the discovery of additional
classes, the realization that some were not needed and the need to restructure
others. Steps 2 through 6 were repeated numercus times as new avenues of
expression were explored. In addition to the insight gained by creating the
enhanced class and attribute descriptions, "clutter" was removed from the
model by the decision to place commonly referenced groups of attributes into
their own classes,

An examination of Appendix C will reveal a number of classes that share
common groups of attributes (at least they have the same attribute names). The
SDM model allows the use of non-unique attribute names as long as they occur
in different class hierarchy. In other words, attributes with the same names
cannot be related by grouping classes or subclasses. We have not determined
the interclass connections for our model as yet but having just compiled a
1ist of classes and their associated attributes we have an idea of the
attributes that are identical within different class definitions. It is both
cumbersome and somewhat ambiguous to repeatedly reference each individual
attribute within these groups when we describe a class. The group of

attributes consisting of Name_of_agent, Client_name, Policy name and
Policy_type is used in the description of five different classes (APS_FOLLOW-

UP, CLIENT_FOLLOW-UP, OUT_OF_TOWN_FOLLOW-UP, REINSTATEMENT_FOLLOW-UP, and
REPLACEMENT FOLLOW-Up). It is obvious to those currently involved with the

construction of this conceptual model that the attributes are the same in all

85

five descriptions, this is not to say that they represent the same instances
in all five classes, but rather, they share the same value class. However, a
new applications programmer or a new employee wishing to understand the
function and relationships of "things" within the enterprise will not share
such insight. Recognizing that these groups of attributes appear frequently
and wishing to exploit SDM's capabilities to impart meaning into a conceptual
schema the database designers decided to place commonly referenced groups of
attributes into their own classes. Now when a reference is made to the four
attributes, Name_of_agent, Clients_name, Policy_type, and Company, a new
attribute description is used with a value class of POLICY_INFO_FOR_FOLLOW=UP
which will contain the above mentioned attributes. As a result of collecting
commonly used attributes into their own class six "attribute® classes were
added to our schema., The new classes are described at the bottom of Appendix C
and are proceeded by a number. The number corresponds to the number enclosed
in parentheses behind attributes which were initially defined in other classes
and are now part of the new class definitions.

It is important to remember that the Mattribute" class was introduced to
conceptually "save space" in the schema and to enhance the understanding of
these attributes and the role they play in the schema, We save space by
placing attributes which are commonly referenced together into a single class.
We enhance understanding by emphasizing the fact that they are indeed the same
attributes that are being referenced in several class definitions. The
designers and users of the model must be comfortable with the fact that
attributes which were partitioned into "attribute" classes are still part of
the original class description in which they now appear as a value ¢lass. If
this detracts from the understanding of the model then the members of the
nattribute™ class should be moved back into the original class descriptions.

Although the addition of attribute classes clarified some aspects of the

86

schema it complicated the matech derivation. The syntax for the match

derivation is as follows:
match: ATTRIBUTE_NAME of CLASS_NAME on ATTRIBUTE_NAME

Mapping and a type of reverse mapping were needed to accommodate matching on
attributes that are members of an attribute class. A portion of the
description of the class INSURANCE APPLICATION_INFO_SUMMARY demonstrates the
extended matching derivation (figure 5-6).

The client's home address (Client_address) 1is contained within the
database and is derivable by assuming the value of the attribute Home_address
which is a member of the attribute class PERSONAL_INFO (figure 5-=T).
PERSONAL_INFO is the value class of Clierit_personal_info which is an attribute
of CLIENT (figure 5-8). The description of CLIENT also contains Client_name as
an attribute, Thus by matching Client_name of INSUR-
ANCE_APPLICATION_INFO_SUMMARY with Client_name of CLIENT the attribute
Client_address may be obtained. This match description is also represented in
a diagram in figure 5-9. In this match example the class CLIENT is specified
as the source of the information and a mapping is used to specify the
attribute containing the information ("match:
Client_personal_info.Home_address of CLIENT on Client_name").

The description of Spouse_name (figure 5-7) demonstrates another match
approach. This value also resides within the database and may be obtained by
knowing the name of the client whose spouse’s name we seek. The same
attribute class as above is being queried, however, it is named explicitly as
the source of the information in a reverse manner. The phrase "Client_name (of

CLIENT)" is a form of reverse mapping that tells us where to find Client_name

87

INSURANCE_APPLICATION_INFO_SUMMARY
degeription: That data stored in the database that would be of
use when filling out an insurance application form for a
current client.
member attributes:
Client_name
value class: PERSON_NAMES
Client_address
value class: ADDRESSES
match: Client_personal_info.Home_address of CLIENT on
Client_name
Spouse_name
value class: PERSON_NAMES
match: Name_of_spouse of SPOUSE_INFO on Client_name (of
CLIENT)
Spouse_date_of birth
value class: DATES
match: Client_spouse_info.Date_of_birth of CLIENT on
Client_name
Dependents_name
value class: PERSON_NAMES
match: Name_of_dependent of DEPENDENT_INFO on Client_name
{of CLIENT)
Dependents_date_of birth
value class: DATES
match: Client_dependent_info.Date_of_birth of CLIENT on
Client_name
Spouse_amount_insurance
description: If it is assumed that if the spouse is also
a client then a record of total insurance owned should
also be present for the spouse. This value is
derivable by matching Spouse_pame to Client_name in
CLIENT_FILE_CARD,
value class: DOLLARS
mateh: Total_ insurance_owned of POLICY_RECORD on Spouse_name

.
-

Figure 5-f, Partial description of the class INSURANCE_ APPLI-
CATION_INFO_SUMMARY excerpt from Appendix D.

88

PERSONAL_INFO
description;: The personal information relevant to each person,
both elient and employee.
member attributes:
Home_address
value class: ADDRESSES
SSN
value class:; SOCIAL_SECURITY_NUMBER
Phone_number
value class: PHONE_NUMBERS
Date_of birth
value class: DATES

Figure 5-7. Description of the class PERSONAL_INFO excerpt
from Appendix D.

CLIENT
definition: individuals who purchase products from the
enterprise.
member attributes:
Client_name
value class: PERSON_NAMES
Client_perscnal_info
value class: PERSONAL_INFO
Client_spouse_info
value class: SPOUSE_INFO
Client_dependent_info
value class: DEPENDENT_INFO

Figure 5-8. Partial description of the class CLIENT
excerpt form Appendix D.

SPOUSE_INFO
deseription: That information relevant to a client's or
enmployee!s apouse,
member attributes:;
Name
value class: PERSON_NAMES
Heme_address
value class: ADDRESSES
Phone_number
value class: PHONE_NUMBERS
Date_of birth
value c¢lass: DATES

Figure 5-10. Description of the class SPOUSE_INFO excerpt
from Appendix D.

89

because it is not an attribute of the class SPOUSE_INFO (figure5-10). This
match description 1s also represented in the diagram in figure 5-9. The above
examples of the match derivation were adapted for use with attribute classes

and were thus extensions to the SDM syntax offered by Hammer and McLeod (4).

e e e e e e Y - - -+

| INSURANCE_APPLICATION_INFO_SUMMARY |

- - - - - - +
! | |

| ! !
< Client_name > < Client_address > < Spouse_name >

! / !
| / derived ! derived
| / !
match | < Home_address > < Name >
! | /
! ! /
| + - -+ S —— +
! | PERSONAL_INFO | | SPOUSE_INFO |
] + + L T +
| | H
| | value class | value class
| !

!
< Client_name > < Client_personal_info > < Client_spouse_info >
\ ! /

\ ' —if

Figure 5-9:; Illustration of a match attribute interrelationship,
attributes are enclosed in "¢ >" and classes are enclosed in boxes.
The values of the attributes Home_address and Spouse_name in the
class INSURANCE_APPLICATION_INFO_SUMMARY are derived by matching the
values of Client_name. The derivation path leads from an attribute
through its value class to a specific attribute of the value class.

Another peculiarity was encountered in the description of
Spouse_amount_insurance (figure 5-6), however, this was not due to the use of
attribute classes. If the spouse is also a client then the amount of
insurance owned by the spouse which was sold by this agency should also be

derivable. A match is specified which would obtain the value of the attribute

90

Total_insurance_owned of the c¢lass POLICY_RECORD (figure 5-12) by matching the
value of Spouse_name with its representation (the attribute Client_name)
within POLICY_RECORD. This match description is represented in the diagram in
figure 5-11. One must be well versed in the syntax of the match derivation to

fully understand the intended match.

-+ - -+~

| INSURANCE_APPLICATION_INFO_SUMMARY |

P - o

/ \
/ \
< Spouse_name > < Spouse_amount_insurance >
| |
! |
| match | derive
| i
| !
< Client_name > < Total_insurance_owned >
\ /
\ /
- —
| POLICY_RECORD |
e o o e e -

Figure 5=-11:; Illustration of a match attribute interrelationship,
attributes are enclosed in "¢ >" and classes are enclosed in boxes.
The value of the attribute Spouse_amount_insurance in the class
INSURANCE_APPLICATION_INFO_SUMMARY is derived by matching the value
of Spouse_name to a value of Client_name of the class POLICY_RECORD.
This particular approach to deriving an attribute's value is unusual
because of the match of dissimilar attribute names.

The database designers were alsc unable to develcp a meaningful
description of DAILY_SCHEDULE (figuret5-13) and Contact_record of
CLIENT_FILE_CARD(figure 5=14) using the SDM syntax provided by Hammer and
McLeod (4). The daily schedule was to contain a reference to all events,
e.g., appointments, follow-ups, ete., for each day. To do this, values from

the above menticned c¢lasses had to be collected based on the current day's

91

POLICY_RECORD
description: a collection of specifications about insurance policies
owned by each client. The POLICY RECORD class will act as the master
record of each policy sold.
member attributes:
Client_name
value class: PERSON_NAMES

Total_insurance_owned
value class: DOLLARS
derivation: sum of Face_amount

Figure 5-12, Partial description of the class POLICY_RECORD
excerpt from Appendix D.

DAILY_SCHEDULE
description: A schedule of events (follow-ups, appointments, ete.) that
are to occur on the current day.
member attributes:
Event
value class: APS_FOLLOW-UP, REINSTATEMENT_FOLLOW-UP,
PROSPECT_FOLLOW=-UP, REPLACEMENT_FOLLOW-UP, OUT_OF_TOWN_FOLLOW=UP,
ANNUAL_REVIEW, CLIENT COURTESY_CARD, OTHER_APPOINTMENTS
derivation: where Date_of next_action = Today's_date
BR#8% Note: This is not part of the SDM syntax, ####
Today's_date
value class: SYSTEM DATE

Figure 5=13. Partial description of the class
DAILY_SCHEDULE, excerpt from Appendix D.

92

date. Originally these classes were to be described as subclasses of some
overlaying parent class. However, this approach became extremely complicated
when it came to describing various scheduling criteria and dealing with
different attribute names which essentially described the same attributes,
e.g., Date_of_next_action. It was more meaningful to describe each event as a
separate base class thus allowing the use of similar attribute names.
Subsequently, one can specify multiple value classes for the attributes Event
of DAILY_SCHEDULE and finally gather all events scheduled for the current day
by the derivation "where Date_of_next_action = Today's_date”. A similar
procedure is used in the description of Client_record of CLIENT_FILE_CARD
where all events involving a single client are collected by the derivation

"where Client_name = Client_name (of the appropriate class)".

CLIENT_FILE CARD

description: a summary of the client attributes, history of
client contacts and a summary of POLICY_RECORD. Most
attributes pertaining to insurance will be derived from
attributes of POLICY_RECORD based on a match with
Policy_number of CLIENT_FILE_CARD_POLICY_INFO. Those
attributes pertaining to the client will be derived from
attributes of CLIENT based on a match with Client_name.

member attributes:
Client_name

value class: PERSON_NAMES

-e

..

Contact_record

value class: APS_FOLLOW-UP, REINSTATEMENT_FOLLOW-UP,
PROSPECT_FOLLOW~UP, REPLACEMENT FOLLOW=UP,
OUT_OF_TOWN_FOLLOW-UP, ANNUAL_REVIEW,
CLIENT_COURTESY_CARD, OTHER_APPOINTMENTS

match:; Event of DAILY SCHEDULE on Client_name (of
appropriate class)

#%#% Note: This is not part of the SDM syntax. WE&#

Figure 5-14, Partial description of the classes
DAILY_SCHEDULE and CLIENT_FILE_CARD excerpt from
Appendix D.

93

Steps 7-8

T Select member attributes to serve as unique identifiers of |
appropriate base class. |
8. Identify name classes, define them as subclasses of either |
STRING, INTEGER or NUMBERS, and apply derivation specifications |
as desired, |

The selection of identifiers for base Classes is mostly straight forward,
however the use of attribute classes did cause a problem. The use of an
attribute class (class 6 of Appendix C) to gather common attributes of events
resulted in the identifier, Client_name, for the events being placed in the
attribute class POLICY_INFO_FOR_FOLLOW-UP. At some later date, it may be
desirable to collect all events scheduled for a specific agent on a given day,
thus Name_of_agent is another potentially useful attribute which was also
placed into POLICY_INFO_FOR_FOLLOW=UP. Rather than introduce a mapping as an
identifier, it was decided that the class POLICY_INFO_FOR_FOLLOW_UP be deleted
and its 5 attributes would be returned to the event descriptions from which
they came. These classes appear in Appendix C and have certain attribute names
which are followed by the number 6.

Identifiers are optional and it was thus decided that identifiers for
the "attributes" classes discussed previously were not appropriate. The
description of name classes is also straight forward and will not be
elaborated upon. However, the description of name classes and the selection

of identifiers should not be necessarily postponed until last.

Summary

The design steps provide some guidelines for applying the DbDL to the
application domain. It was immediately recognized that exhaustive
descriptions were essential to the schema's successful completion. Attribute
classes provided a convenient and conceptually sound means of representing

commonly referenced groups of attributes. Discovered shortcomings inelude:

94

1) The SDM's lack of facilities for manipulating times and dates; 2) The

lack of a convenient means for grouping dissimilar entities; and 3) A need

for some type of automated tool to assist the designer in the application

process.

95

Chapter 6

Converting an SDM model into a relational model

This chapter will briefly outline the steps that were taken to convert
the insurance agency schema into a relational model. Because the focus of the
report is on the development of a conceptual model, only a few paragraphs will
be spent discussing this conversion.

We assume that the system will be implemented on a microcomputer, With
this as a guide ocur ultimate objective will be to minimize data storage
requirements. Our initial implementation will minimize the amount of data
redundancy within the database. At a later date if it is determined that
certain redundancy is necessary to improve efficiency, the implementation will
be modified. With this criteria in mind we will proceed with the conversion.

In order to reduce the bewilderment fostered by 26 pages of SDM schema
(Appendix D) we will eliminate consideration of all derived attributes. They
will be calculated or otherwise retrieved from the database by the
applications programs which will access the database. If you are interested in
achieving domain/key normal form (8), the name classes may be rewritten as
domain definitions. We will not attempt a domain/key representaticn of this
application environment, thus the name classes may be set aside as external
documentation., They will not be directly represented within the model,

Having eliminated all derived attributes and name classes, we find that
the number of classes and attributes with which we must deal is greatly
reduced. A list of the remaining classes appears in figure 6-1.

All base classes which were not attribute classes (those classes
containing groups of commonly referenced attributes) become relations. All
single valued attributes that are not derived become tuples within the

relation (figure 6=2).

96

ADDRESS
House#_Apt#
Street_Route
State
Zip_code

AGENT_INFO
Clients_of
Licensed_with

ANNUAL_REVIEW_SCHEDULE
Client_name
Date_of_last_review
Date_of_appointment
Time_of_appointment

identifiers:
Client_name

+ Date_of_appointment

ANNUITY_INFO
Company

Annuity_ identification

Annuity_value

APS_FOLLOW=UP
Policy_number
Policy _type
Name_of_doctor

CASH_VALUE_SECOND_DATE

Date
Guaranteed_value
Total_value

CLIENT

Client_name
Client_personal_info
Client_spouse_info
Client_dependent_info
Client_business_info
Miscellaneous_information
Annuities_owned
IRA's_owned

Agent_of_ record

identifiers: Client_name

CLIENT_BUSINESS_INFO

Occupation
Phone_number
Address

CLIENT_FILE_CARD

Client_name
Referred_to_agency_by
Reference_phone
Miscellaneous_information
Approximate_income

Doctors_phone Best_time_to_contact_at_home
Date_of_next_action Best_time_to_contact_at_work
Date_of_last_action Contact_record
Last_action identifiers: Client_name
identifiers: Client_name
+ Policy_number CLIENT_FILE_CARD_POLICY_INFO
Poliey_number
CASH_VALUE_AT_AGE Mode_of_premium payment
Age
Guaranteed_value COMPANIES
Total_value Company_type
Company_name
CASH_VALUE_FIRST_DATE Company_address
Date Company_phone
Guaranteed_value Products_offered
Total_value identifiers: Company_name
CASH_VALUE_SCHEDULE DEBITS
Value_first_date Debit_date
Value_second_date Debit_amount
Value_at_specific_age Description of_expenditure

To_whom_charged

Figure 6-1:Classes remaining after eliminating derived attributes.

97

DEPENDENT_INFO
Nanme
Date_of_birth

EMPLOYEE
Employee_name
Employee_perscnal_info
Employee_spouse_info
Employee_dependent_info
Date_joined_company
Status_of
Pay

identifiers: Employee name

IRA_INFO
Company
IRA_identification
IRA_value

LOAN_INFO
Loan_amount
Loan_interest

OTHER_APPOINTMENTS
Name_of_agent
Client_name
Date_of_appointment
Time_of_appointment
Description_of_appointment
Next_date_of_action
identifiers:
Client_name
+ Date_of_ appointment

OUT_OF_TOWN_FOLLOW-UP
Client_name
Policy_number
Date_of_next_action
Date_policy_sold

identifiers:
Client_name
+ Date_policy_sold

PERSON_NAMES
Title
First
Middle
Last

PERSCNAL__INFO
Home_address
SSN
Phone_number
Date_of birth

POLICY_RECORD
Client_name
Poliey_number
Type
Company
Face_amount
Date_of_ issue
Age_of issue
Primary_beneficiary
WP_rider
Dividend_option
Gross_yearly_ premium
Add_rider
Cpd_rider
Apl_rider
Contingent_beneficiary
identifiers:
Client_name
+ Poliecy_number

PROSPECT_FOLLOW=UP
Name of prospect
Prospect_phone
Contact_made
Date_of_contact
identifiers: Name_of_ prospect

PROSPECT_LETTER
Name_of_agent
Name_of_prospect
Address_of_prospect
Type_of_product
Date_mailed
identifiers: Name_of prospect

REINSTATEMENT_FOLLOW=UP
Client_name
Policy_number
Date_of_next_action

Date_notified_of_delinquency

identifiers: Client_name

Figure 6=1 continued

REPLACEMENT_FOLLOW-UP SPOUSE_INFO

Client_name Name

Policy_number Home_address

Date_of next_action Phone_number
identifiers: Client_name Date_of_birth

Figure 6-1 continued

Next we will consider the best representation of the attribute classes.
We may 1) move all attributes described with an attribute eclass back into
their original parent class; 2) represent the value class of a multivalued
attribute as a separate relation; 3) represent multivalued attributes within
an attribute class as their own relations and return the remaining attributes
to thelr parent class; represent the attribute class as a separate relation
even though it is not the value of a multivalued attribute.

The attributes of attribute classes which are single valued will be
placed back into their parent class, These attributes are denoted by having
the attribute class name from which they came as part of their name, e.g.,
PERSONAL_INFO.PERSON_NAMES.First, LOAN_INFO.Loan_amocunt. The class
PERSON_NAME, ADDRESS, LOAN_INFO, CASH_VALUE_AT_AGE, CASH VALUE_FIRST_DATE and
CASH_VALUE_SECOND_DATE exemplify this type of attribute class, Examples of
value classes that became separate relations include ANNUITY_INFO, IRA_INFO
and DEPENDENT_INFO. Individual multivalued attributes that were placed into
their own relations include: Licensed_with (of AGENT_LICENSED_WITH),
Client_name (of AGENT'S_CLIENTS) and Products_offered (of
COMPANY_ PRODUCTS_OFFERED). Other single valued attribute classes which were
left as separate relations were SPOUSE_INFO, CLIENT_BUSINESS_INFO, and
PERSONAL_INFO. You will notice that in all situations when relations other
than the major base classes were constructed, identifiers had to be included
within the tuples.

It can be seen from this example that converting the SDM schema to a

99

relational model was not that complicated. If we had been concerned about
normal forms the procedure would have required additional attention., (Second

normal form was achieved in this demonstration.)

ANNUAL_REVIEW_SCHEDULE(Client pame.Date of appointment,

Date_of_last_review,Time_of_appointment)

APS FOLLOW-UP(Policy number,Name_of_ doctor,Doctor's_phone,
Date_of next_action,Date_of_last_action,Last_action,APS_number)

CLIENT(Client name,Miscellaneous_information,Agent_of record)

CLIENT_FILE _CARD(Client name,Referred_to_agency_by,Reference_phone,
Miscellaneous_information,Approximate_income,
Best_time_to_contact_at_home,Best_time_to_contact_at_work)

COMPANIES(Company name,Company_ type, ADDRESSES.House#_Apt#,
ADDRESSES.Street_Route, ADDRESSES.State, ADDRESSES.Zip_code,
Company_phone)

COMPANY_PRODUCTS_OFFERED(Companv name,Products_offered)

CREDITS(Credit date.Credit amount,Source of credit,
Person responsible)

DEBITS(Debit date,Debit amount,Description of expenditure,
To whom charged)

EMPLOYEE(Employee name,PERSONAL_INFO.PERSON_NAMES.Name_title
PERSONAL_INFOQ.PERSON_NAMES.Name_First,
PERSONAL_INFO.PERSON_NAMES.PERSONAL_INFO.Name Middle
PERSONAL_INFO.PERSON_NAMES.PERSONAL_INFO.Name_Last
Date_joined_company,Status_of, Pay)

OTHER_APPOINTMENTS(Name of agent.Date of appointment.Client name,

Time_of_appointment,Description_of_ appointment,Next_date of_action)

Figure 6-2: Insurance agency relational model.

100

OUT_OF_TOWN_FOLLOW-UP(Client name.Date policy sold,Name of_ agent,

Policy_number,Date_of_next_action,)

POLICY_RECORD(Policy number,Client_name, Type,Company,Face_amount,
Date _of_issue,Age_of_ issue,Primary_beneficiary,WF_rider,
Dividend_option,Gross_yearly_premium, Add_rider,Cpd_rider,Apl_rider,
LOAN_INFO.Loan_amount,LOAN_INFO.Loan_interest,CASH_VALUE_AT_AGE.Age,
CASH_VALUE_AT_AGE,Guaranteed_value,CASH_VALUE_AT_AGE.Total_value,
CASH_VALUE_FIRST_DATE.Date,CASH_VALUE_FIRST_ DATE.Guaranteed_value,
CASH_VALUE_FIRST_DATE,Total_value,CASH VALUE_SECOND_DATE.Date,
CASH_VALUE_SECOND_DATE.Guaranteed_value,
CASH_VALUE_SECOND_DATE.Total_value,Contingent_beneficiary,
CLIENT_FILE_CARD_POLICY_INFO.Mode_of_premium_ payment)

PROSPECT_FOLLOW-UP(Name of prospect.Date of contact,Prospect_phone,
Type_of_product,Contact_made,)

PROSPECT_LETTER(Name of prospect,Date_mailed,Name_ of_agent,
PERSON_NAMES.Title,
PERSON_NAMES.Name_Firsat, PERSON_NAMES, Name_Middle,
PERSON_NAMES.Name_lLaat,ADDRESSES.House#_Apt#,
ADDRESSES.Street_Route, ADDRESSES.State, ADDRESSES, Zip_code,
Type_of_product,)

REINSTATEMENT_FOLLOW-UP(Client name,Policy_number,
Date _of_ next_action,Date_notified_of_delinquency)

REPLACEMENT_FOLLOW~UP(Client name,Policy_number,Date_of_next_action)

AGENT'S_CLIENTS(Agent name,Client_name)

AGENT_LICENSED_WITH(Agent pame,Licensed_with)

ANNUITY INFO(Mame of owner,Company,Annuity identification,
Annuity_value)

CLIENT_BUSINESS_INFO(Client name,Occupation,Phone_number,
ADDRESSES.House#_ Apt#, ADDRESSES,Street_Route,ADDRESSES.State,
ADDRESSES.Zip_code)

Figure 6-2 continued

101

DEPENDENT_INFO(Parent name, PERSON_NAMES.title,PERSON NAMES.First,

PERSON_NAMES.Dependent_Middle,PERSON NAMES.Dependent Last,
Date_of _birth)

IRA_INFO(Qwner pame,Company,IRA_identification,IRA value)

PERSONAL_INFO(Name, PERSON_NAMES.Title, PERSON_NAMES.Name_ First,
PERSON_NAMES,.Name_Middle, PERSON_NAMES,Name_Last,
ADDRESSES .House#_Apt#,ADDRESSES.Street_Route,ADDRESSES,State,
ADDRESSES. Zip_code,SSN, Phone_number,Date_of_ birth)

SPOUSE_INFO(Client name,Name, PERSON NAMES,.Title,
PERSON_NAMES. Spouse_First, PERSON_NAMES.Spouse_Middle,
PERSON_NAMES, Spouse_Last, ADDRESSES.House#_Apt#,
ADDRESSES,Street_Route, ADDRESSES.State, ADDRESSES.Zip_code,
Phone_number,Date_of birth)

Figure 6-2 continued

102

Chapter 7

Conclusion

This final chapter will review several of the ideas discussed in previous
chapters as well as present suggestions for an automated SDM design tool. The
SDM DbDL proved to be an adequate tocl for modeling most of the situations
encountered within this application domain, However, several shortcomings
were discovered that are worthy of further discussion,

The SDM does not support the manipulation of dates, In order to
increment a date by a constant, the date must be stored as a number which
implies Julian dates. Julian dates are not natural in a business enviromment,
This then would require the description of a function that would convert
Gregorian dates to Julian dates, add the appropriate time increment and
convert back to Gregorian dates. The aforementioned function would have to be
modified to allow for applications which dealt with update increments of less
than 24 hours. Another problem arises when one wishes to model the
incremental updates in working days rather than simply n days in the future,

SDM does not provide adequate constructs for the aggregation of
dissimilar time and date attributes into a sequence of events. The various
follow-ups, the client annual review, and appointments could not be collected
together as a simple multivalued attribute. Grouping predicates were
inadequate in that they required all members of the aggregation to be defined
a8 subclasses of an underlying class. This stipulation then required that
unique names be given to the various follow-up attributes which denoted the
date of next action. With different attribute names no derivation could be
found within the syntax defined that would allow the integration of the dates
into a common 1list, If all follow-ups were defined in one class and thus

being differentiated from one another by the value of a member attribute, the

103

date of next action for each follow-up could thus be defined as another
member attribute. A class attribute could then be defined as a derivation of
the date of next action ordered by date or equal to a specified date but
there is no way to selectively update the date of next action with the
appropriate time increment.

When a situation is encountered that cannot be adequately modeled by
strictly following the DbDL syntax, there are two courses of action that can
be taken: 1) Construct the model up to the point of conflict, define the
attributes and/or classes invelved, and describe the circumstances or actions
that must be applied to the attributes within the description clause; 2)
Define an extension to the DbDL syntax. In most cases the unusual situations
which cannot be modeled by SDM will be an application's consideration, not a
database consideration.

The present DbDL syntax forces the db designer to use the same name in
both classes for the matching attribute. In several instances within the
insurance agency schema, attribute values were derived by matching on the
client's name. In step 3 of the application of the SDM (chapter 5) the
designer is instructed to 1ist the attributes for each class, Finally, in
step 6, the designer 1s asked to identify attribute interrelationships
{inverse or match) and at this time it is realized that attributes that are
the subject of a match must have the same attribute name. This discovery
required several name changes within the insurance agency schema.
Specifically, it was found that a client's name had been represented as
Client_name and Name_of_Client in almost equal proportions. Because the name
of the client 1s used extensively for matching, its identifier was
standardized as Client_name.

Arguments can be made in favor of standardization if for no other reason

than it enhances understanding. However, the designer should be allowed the

104

freedom of assigning attribute names based upon their role or based upon what
is familiar to the end user. No practical solution to this dilemma is
suggested other than perhaps including a step 0 to the design steps which

would read:

0. Read all of the steps before continuing.

The addition of this new step provides a perfect lead into the discussion
of the topic concerning iterative use of the design steps. It is unfortunate
but often true that new concepts or procedures are not fully understood until
they have been put to use. It was necessary for me to blunder through the
design steps several times before fully appreciating what they implied. The
most useful lesson learned was to keep subsequent steps in mind while
performing each other step. Knowledge of what comes next helps in aveiding
certain pit falls such as the attribute naming problem just discussed.
However, knowing the steps that follow at times led to being sidetracked into
describing a class in its finest detail which included describing supporting
classes in their finest detail. This soon led to utter chaos. The chaos
resulted from forgetting plans for the other classes,

In(11) it is suggested that related attributes be grouped together in
some type of hierarchy. The example is one of the attribute Size of class
SHIP which in turn has attributes Length and Draft. In this highly redundant
insurance enviromment, there are many classes which share common attributes.
Thia was pointed out in Chapter 5. The designers chose to group these common
attributes into classes of their own and reference them as a value class. A
problem arises when one wishes to reference one of the attributes that is
tucked away as an attribute of a value class. To one unfamiliar with SDM or
to a casual user a reference to one of these attributes is unclear and

confusing. Such a situation prompted the modifications to the match

105

derivation discussed in Chapter 5 and demonstrated in figure 5-6. Two
modifications were suggested to remedy the situation. One would apply the use
of mapping, and the second would provide a means for identifying the class to
which the match attribute belonged (figure 7-1). Suggested DbDL changes appear

in figure T7-2.

Spouse_name
value class: PERSON_NAME
match: Client spouse_info.Name of CLIENT on Client_name
or
Spouse_name

value class: PERSON_NAMES
matech: Name SPOUSE_INFO on Client_name of CLIENT

Figure 7-1: Alternative descriptions of a match descriptor using
proposed syntax extensions illustrated in Figure T7-1.

match: Mapping of CLASS_NAME on ATTRIBUTE_NAME
or
match: ATTRIBUTE NAME of CLASS_ NAME on ATTRIBUTE_NAME of CLASS_NAME.

Figure 7-2 Proposed modifications to SDM DbDL to accommodate
matching within attribute classes.

The reader will notice that the class targetted as containing the desired
information is different depending upon the method of representation chosen,
The class CLIENT is the target in the first example which uses mapping to
ultimately identify the attribute containing the value desired. The class
SPOUSE_INFO is the target in the second example which requires that the
location (class containing the attribute) of the match attribute be specified.

Although the introduction of attribute classes has caused some DbDL

106

problems, it is not without precedent (5). Attribute classes are extremely
useful conceptual descriptors. How would the notion of multiple dependents
(Client_dependent_info of CLIENT Appendix D), all with their own unique
attribute values, be modeled without the use of the attribute class
DEPENDENT_INFO? Or, how would all the information pertaining to each
insurance policy, annuity or IRA owned by each client be represented
conceptually without the use of their corresponding attribute classes? Other
examples include Client_annuities of INSURANCE_APPLICATION_INFO_SUMMARY;
Loan_info of POLICY_RECORD; Client_policy_info of CLIENT_FILE_CARD;
Client_dependent_info of Client; Employee _dependent_info of EMPLOYEE; etec.

In summary, the SDM is an extremely useful and semantically rich
modeling tocl. However, even though its designers attempted to keep it as
simple as possible with a minimum amount of syntax, the SDM isunwieldy and
complicated. The lack of strictly enforceable design steps allows a designer
to become easily sidetracked and muddled in detail. The only recourse one has
is to justify the creation of each class and attribute and detail their
intended use within the description of each. For those who have already been
concerned with implementation details in other projects, casual use of the SDM
can lead to confusion between conceptual modeling and implementation
considerations., It is very easy to project past conceptual considerations and
allow implementation issues to restrict and limit the semantic potential of
the SDM.

It is already apparent that extensions to the SDM will be necessary to
accommodate unique situations. The addition of new constructs should be
closely scrutinized. It is easy to envision adding DbDL extensions ad
infinitum in lieu of solving complicated problems or special case descriptions

with the established DbDL.

107

Future work
Although the SDM is by comparison simpler to understand and use than

Sowa's conceptual graphs, it is apparent from the schema developed in this
report that a thorough description of an application environment can become
quite complicated. If the SDM is to blossom as a usable conceptual modeling
tool, it must be incorporated into an interactive computer program, Arguments
supporting this premise have already been presented in this chapter. Ideally
an interactive SDM system would contain the following features:

--= A menu driven mode of operation which would provide each alternative
available at each stage of a class description., As information is
gathered it will be added to a growing knowledge base which will be used
to enforce the DbDL syntax.

===~ The system would not require that a class be described in its entirety at
any one time. The designer may choose to simply enter all class names;
or may choose to describe each class in its entirety or any level in
between. The system would keep track of the stage of development of each
class and could be queried as to the status of each class deseription or
provide detailed reports similar to the "who references what® reports
available from some data dictionary systems,

-=-= The system should provide some form of graphic representation of the
developing schema, A hierarchical or network representation might be the
most appropriate.

-== For inexperienced users or students the system could provide examples
from an existing SDM schema to illustrate the use of specific parts of
the DbDL syntax.

=== It should provide a means for defining and incorporating extensions to
the DbDL.

-==- An option that would allow generation of logical schema of your choice

108

from the SDM schema would be nice, but realistically the break down of
the SDM schema into the beginnings of a relational model would be most

likely within the scope of such a system.

109

Appendix A

Syntax of the SDM Data Definition Language 1/

1. The left side of a production is separated from the right by
a "-",

2. The first level of indention in the syntax description is
used to help separate the left and right sides of a
production; all other indentation is in the SDM data
definition language.

3. Syntactic categories are capitalized while all literals are
in lowercase.

4, {} means optional.

5. [] means one of the enclosed choices must appear; choices
are separated by a ";" , when used with "{}" one of the
choices may optionally appear.

6. <> means one or more of the enclosed can appear, separated
by spaces with optional "and"™ at the end.

T. <>> means one or more of the enclosed can appear,
vertically appended.

8. ® ® gncloses a "meta"-description of a syntactic category ,
to informally explain it.

SCHEMA <~
<{CLASS>>

CLASS <~
<CLASS NAME>
{description: CLASS DESCRIPTION}
{[BASE_CLASS FEATURE; INTERCLASS CONNECTION]}
{MEMBER_ATTRIBUTE}
{CLASS ATTRIBUTE}

CLASS NAME <-
%string of capitals possibly including special characters#®

CLASS DESCRIPTION <-
#string®

BASE_CLASS FEATURE <-
{[duplicates allowed; duplicates not allowed]}
{<<IDENTIFIERS>>}

1/ Hammer,M. and D. McLeod."Database description with SDM: a

Semantic Database Model"™, ACM Trans. Database Syst., Vol.6,
No. 3, Sept. 1981

110

IDENTIFIERS <-
[ATTRIBUTE_NAME; ATTRIBUTE_NAME+IDENTIFIERS]

MEMBER ATTRIBUTES <-
member attributes:
<<MEMBER_ATTRIBUTE>)>

CLASS_ATTRIBUTES
class attributes:
<<CLASS_ATTRIBUTES>>

INTERCLASS CONNECTION <-
[SUB_CLASS; GROUPING CLASS]

SUBCLASS <=
subclass of CLASS NAME where SUBCLASS PREDICATE

GROUPING <~
[grouping of CLASS NAME on common value of <ATTRIBUTE NAME>
{groups defined as classes are <CLASS NAME>};
grouping of CLASS NAME consisting of classes <CLASS NAME>;
grouping of CLASS NAME as specified]

SUBCLASS_PREDICATE <~
[ATTRIBUTE_PREDICATE;
specified;
is in CLASS NAME and is in CLASS NAME;
is not in CLASS NAME;
is in CLASS NAME or is in CLASS NAME;
is a value of ATTRIBUTE NAME of CLASS NAME;
format is FORMAT]

ATTRIBUTE_PREDICATE <-
[SIMPLE_PREDICATE; (ATTRIBUTE_PREDICATE);
not ATTRIBUTE PREDICATE;

ATTRIBUTE_PREDICATE and ATTRIBUTE_PREDICATE;
ATTRIBUTE__PREDICATE or ATTRIBUTE PREDICATE]

SIMPLE_PREDICATE <~
[MAPPING SCALAR_COMPARATOR [CONSTANT;MAPPING];
MAPPING SET_COMPARATOR [CONSTANT; CLASS NAME; MAPPING]]

MAPPING <-
[ATTRIBUTE_NAME ; MAPPING. ATTRIBUTE_NAME]

[EQUAL_COMPARATOR; > ; >= ; < ; <=]

-

EQUAL,_ COMPARATOR <-
[-5 <]

SET_COMPARATOR <~
[is {properly} contained in; {properly} contains]

CONSTANT <-
#a string or mmber constant®

FORMAT <~
%2 name class definition pattern#

MEMBER_ATTRIBUTE <=~

<ATTRIBUTE_DESCRIPTION>
{ATTRIBUTE_DESCRIPTION}
value class: CLASS NAME
{inverse:ATTRIBUTE NAME}
{[match:ATTRIBUTE NAME of CLASS NAME on ATTRIBUTE NAME};
derivation:MEMBER ATTRIBUTE_DERIVATION]}
{single valued; multivalued {with size between CONSTANT and

CONSTANT

{may not be null}
{not changeable}
{exhausts value class}
{no overlap in values}

CLASS ATTRIBUTE <-
<ATTRIBUTE DESCRIPTION>
{ATTRIBUTE_DESCRIPTION}
value class: CLASS NAME
derivation:MEMBER ATTRIBUTE DERIVATION]}
{single valued; multivalued {with size between CONSTANT and
CONSTANT
{may not be mull}
{not changeable}

ATTRIBUTE_NAME <~
%string of lowercase letters beginning with a capital and
possibly including special characters#

ATTRIBUTE_DESCRIPTION <-
nEstring#n

MEMBER_ATTRIBUTE,_DERIVATION <-
[INTERATTRIBUTE_DERIVATION; MEMBER-SPECIFIED DERIVATION]

CLASS_ATTRIBUTE_DERIVATION <-
[INTERATTRIBUTE_DERIVATION; CLASS-SPECIFIED DERIVATION]

INTERATTRIBUTE_DERIVATION <-
[same as MAPPING;
subvalue of MAPPING where [is in CLASS NAME;
ATTRIBUTE PREDICATE]
where [is in MAPPING and is in MAPPING;
is in MAPPING or is in MAPPING;
is in MAPPING and is not in MAPPING];
=MAPPING _ EXPRESSION;
[maximum; minimum; average; sum] of MAPPING;
number of {unique} members in MAPPING]

MEMBER-SPECIFIC_DERIVATION <-
[order by {increasing; decreasing} <MAPPING>
{within <MAPPING>};
if in CLASS NAME;
[up to CONSTANT; all] levels of values of ATTRIBUTE NAME;
contents]

CLASS-SPECIFIC_DERIVATION <-
[number of {unique} members in this class;
[maximum; minimm; average; sum] of ATTRIBUTE_NAME over
members of this class]

MAPPING EXPRESSION <~
[MAPPING; (MAPPING); MAPPING NUMBER OPERATOR MAPPING]

NUMBER_OPERATOR <-
[+;=-3%;/7;1]1

SCHEMA <~ <<CLASS>> <~

|
i
!
|
|
|
!
I
|
|
|
|
|
|
|
!
|
!
!
!
|
|
!
!
I
!
|
|

Appendix B

The Semantic Database Model DbDL Syntax represented in Warnier like diagrams.

<CLASS NAME> <- ®string of capitals possibly including special characters¥

(description: CLASS DESCRIPTION) <~ ®string®*

I
|
|
|
[BASE_CLASS FEATURE; <- I
!
!
!
!

([duplicates allowed

duplicates not allowed

|
| [ATTRIBUTE_NAME; <- #string of lowercase letters beginning with

INTERCLASS CONNECTION] <- |

(MEMBER_ATTRIBUTE)

(CLASS_ATTRIBUTE)

(<<IDENTIFIERS>>) <~ | .a capital and possibly including special characters#
| ATTRIBUTE_NAME+IDENTIFIERS]
|
|
| SUB_CLASS
| GROUPING_CLASS

|
| MAPPING SCALAR COMPARATOR CONSTANT;

I MAPPING SCALAR_COMPARATOR MAPPING;
[SDIPLE_PREDICATE;(-I MAPPING SET_COMPARATOR CONSTANT;
I MAPPING SET_COMPARATOR CLASS_NAME;
i MAPPING SET_COMPARATOR MAPPING]

[ATTRIBUTE_PREDICATE; <~

!

! subclass of CLASS NAME
SUBCLASS <=|

! where SUBCLASS PREDICATE <-] SUBCLASS PREDICATE <-

!

L e e e e e e I T S S ————————

(ATTRIBUTE_PREDICATE);

not ATTRIBUTE_PREDICATE;

ATTRIBUTE_PREDICATE and ATTRIBUTE_ PREDICATE;

ATTRIBUTE_PREDICATE or ATTRIBUTE_ PREDICATE]

———— — — —— — ————— — T SR S S—— — —— — — — — — — — — —— — —— —

specified;

is in CLASS NAME and is in CLASS NAME;

is not in CLASS NAME;

is in CLASS NAME or is in CLASS NAME;

is a value of ATTRIBUTE NAME of CLASS NAME;
!

format is FORMAT] <~ | #a name class definition pattern®
|

T — — — — — —— e e S EmES S S S e m e SR e S Swen S S S S - —— —— — — —— — —— — — —— —— — ——— —— — —— — —— — —

I
I
I
|
!
!
!
!
!
!
!
!
|
|
|
|
|
I
|
|
I
|
|
|
|

i13

114

!

| [ATTRIBUTE_NAME;
MAPPING <-|

| MAPPING.ATTRIBUTE_NAME]

|

 T—
[EQUAL, COMPARATOR; <-| [-;
; | 1

|
CONSTANT <-| ®*a string or mumber constant#®
1

|
SET_COMPARATOR <-| [is (properly) contained in;
{ (properly) contains]

|

| [grouping of CLASS NAME on common value of <ATTRIBUTE_NAME>
|

(groups defined as classes are <CLASS NAME)>);

grouping of CLASS NAME consisting of classes <CLASS NAME>;

!
!
|
!
| grouping of CLASS NAME as specified]
|

|
| [same as MAPPING; <- See SUBCLASS for MAPPING
I 3 &
| subvalue of MAPPING where is in CLASS NAME;

!

| subvalue of MAPPING where is in ATTRIBUTE_PREDICATE;

!
| where [is in MAPPING and is in MAPPING;

!
| where is in MAPPING or is in MAPPING;

|
| where is in MAPPING and is not in MAPPING]

|

! |
] | [MAPPING;
! !

<ATTRIBUTE NAME> <- See SUBCLASS

| e ———
{ATTRIBUTE_DESCRIPTION} <~ | "#string#®
| m———e

value class: CLASS NAME

!
| =MAPPING _ EXPRESSION; <-| {MAPPING}; I [+
{inverse:ATTRIBUTE_NAME} [INTERATTRIBUTE DERIVATION; <-| | | =3
| MAPPING NUMBER OPERATOR <-] ¥;
{[match: ATTRIBUTE_NAME of MAPPING] | /;
CLASS NAME on ATTRIBUTE NAME}; 1 1]

!

— — — —

MEMBER _ATTRIBUTE <- | derivation:MEMBER ATTRIBUTE DERIVATION]} <-

!
|
|
]
|
|
| maximm of MAPPING;

!

| minimm of MAPPING;

!

| average of MAPPING;

]

| sum of MAPPING]

]

| number of {unique} members in MAPPING;
!

multivalued {with size between
CONSTANT and CONSTANT}}

{may not be null}

{exhausts value class} I
| [order by increasing <MAPPING> {within <MAPPING>};
} order by decreasing <MAPPING> {within <MAPPING)>};
MEMBER-SPECIFIED DERIVATION] <—: it in CLASS NAME;
; up to CONSTANT levels of value of ATTRIBUTE NAME]

]

|

!

|

| {not changeable}
|

|

|

| {no overlap in values}
!

]
| all levels of value of ATTRIBUTE NAME;

!
| contents]

T —— —— — — — — — — — — —— — — — — — — — — — — — — —— —— — — — — — —— — —— ——— — — — — — i —— —— — e — —

115

CLASS_ATTRIBUTE <=

<ATTRIBUTE NAME> <~ see subclass

{ATTRIBUTE_DESCRIPTION} <- ; n#string#n
]

value class: CLASS NAME

I
!
!
!
!
!
I
|
i
| {derivation:CLASS ATTRIBUTE_DERIVATION}
!

!

!

!

{single valued

| miltivalued {with size between
] CONSTANT and CONSTANT}

|
{may not be null}

!
1
1
| {not changeable}
!

116

o

—————— —— — —— — — — —— — —— — ————— —— — — — ————— — - —— — — —— e S —— — S — —— —— — — — —

| [same as MAPPING;

|
| subvalue of MAPPING where

|
| subvalue of MAPPING where

is in CLASS NAME;

is in ATTRIBUTE_PREDICATE;

| where is in MAPPING and is in MAPPING;

|
| where is in MAPPING or is

in MAPPING;

| where is in MAPPING and is not in MAPPING;

[INTERATTRIBUTE_DERIVATION; <-| =MAPPING _ EXPRESSION; <-

maximum of MAPPING

|
| minimm of MAPPING
|
| average of MAPPING

|
| sum of MAPPING

|
| [MAPPING;
| |
: {MAPPING}; | [+
' | =5
| MAPPING NUMBER OPERATOR <-| #;
MAPPING] | /;
| 1]

| mmber of {unique} members in MAPPING

| [number of {unique} members in this class;

!
| maximm of ATTRIBUTE NAME

|
CLASS-SPECIFIED_DERIVATION] <-| minimm of ATTRIBUTE NAME

!

| average of ATTRIBUTE NAME

|

over members of this class;
over members of this class;

over members of this class;

| sum of ATTRIBUTE NAME over members of this class]

Appendix C

SDM schema after step 3 Chapter 5.

ANNUAL_REVIEW_SCHEDULE

description: An annual review is
conducted for each client once a
year, The next review is
scheduled 1 year from the last
review. A notice is posted in
the schedular one week prior to
the review date.

member attributes:
Name_of_agent
Client's_name
Date_of_appointment
Time_of_appointment

ANNUAL_STATE_OF_BUSINESS
description: An annual report of
all debits and credits.

APS_FOLLOW=UP

description: A follow-up to insure
that a client's medical papers
are recelved by the appropriate
insurance company when new
pelicies are purchased.

member attributes:
Name_of_agent (6)
Client_name (6)
Policy_number (6)
Policy_type (6)
Company_name (6)
Name_of_doctor
Doctors_phone
Date_of_call
Time_of_call

class attributes:
Call_number

CASH_FLOW

description: That data stored in
the database that would be of
use when filling out a client's
cash flow statement.

member attributes:
Client_name
Client_address
Client's_total_yearly_insurance

_premiums

1117

CLIENT

description: individuals who
purchase products from the
enterprise.

member attributes:
Name
Home_address (1)
Social_security_number (1)
Phone_number (1)
Date_of birth (1)
Spouse's_name (2)
Spouse's_address (2)
Spouse's_data_of _birth (2)
Spouse's_phone_number (2)
Dependent's_name (3)
Depentent?’s_date_of birth (3)
Occupation (4)
Business phone (%)
Business_address (1)
Miscellaneous_information
Insurance_purchased
Annuities_owned
IRA's_owned

CLIENT_ASSET SHEET

description: That data stored in
the database that would be of
use when filling out a client's
asaset sheet.

member attributes:
Client_name
Client_address
Spouse_name
Client's_total_life_insurance
Spouse's_total_life_insurance

CLIENT_COURTESY_ CARD

description: Courtesy cards are
send to clients on special
occasions, e.g., birthdays.

member attributes:
Name_of_ agent
Client_name
Client_address
Occasion

CLIENT_FILE_CARD CLIENT'S_INSURANCE_AND_ANNUITIES

description: a summary of the _IN_FORCE
client attributes, history of description: A summary of zll
¢lient contacts and a summary of insurance and annuities that a
POLICY_RECORD. client has with the agency.
member attributes: member attributes:
Name Company_name
Occupation (4) Amount
Home_address (1) Year issued
Home_phone (1) Accidental_death
Business_address (4)
Business_phone (4) COMPANIES
Referred_to_agency_by description: the companies whose
Reference_phone products are scld by the
Miscellaneous_information enterprise.
Approximate_income member attributes:
Spouse's_name {(2) Company_type
Spouse's_date_of_birth (2) Company_name
Children[_names (3) Company_address
Client's_date_of birth (1) Company_phone
Children's_dates_of birth (3)
Insurance_owned,_dollar value CREDITS
Best_time_to_ contact_at_home description: All funds coming into
Best_time_to_contact_at_work the agency.
Contact_record member attributes:
Company_name (5) Date
Policy_number (5) Amount
Face_amount (5) Source
Type (5) Person_responsible
Date_of_issue (5)
Age_of_issue (5) DEBITS
Gross_yearly_ premium description: All funds going out
WP_rider (5) of the agency.
Dividend_option (5) member attributes:
Primary_beneficiary (5) Date
‘Mode_of_premium_payment Amount
Premium_amount Description_of_ expenditure
Date_premium_due To_whom_charged

CLIENT_FOLLOW-UP

description: an event, required to
insure that all materials
necessary for the purchase of
insurance have been received by
the insurance company.

member attribute:
Name_of_agent (6)
Client_name (6)
Policy number (&)
Policy_type (6)
Company_name (6)
Time_of_call
Date of call
Next_action_required
Date_of next_action

118

EMPLOYEE
description: all people who work

for the enterprise.

member attributes:

Name

Home_address (1)
Social_security number (1)
Phone_number (1)

Date_of _birth (1)
Spouse's_name (2)
Spouse's_address (2)
Spouse! s_phone_number {2)
Spouse's_date_of birth (2)
Dependents_name (3)
Dependents_data_of birth (3)
Date_joined_company
Status_of

Pay

Seniority

class attributes:

Number_of_ employees

EVENT
description: a base class needed

in
order to define the various
events that must be scheduled.

member attributes:

Event_type

INSURANCE_APPLICATION_INFO_SUMMARY
description: That data stored in

the database that would be of
use when filling out an
insurance application form for
current client.

member attributes:

Client_name

Client_address

Spouse's_name

Spouse's_date_of birth

Dependent's_name

Dependent's_dates_of birth

Spouse's_amount_insurance

Client's_insurance_and_annuities
_in force

FORM_SUMMARIES
description: a base class needed in

order to define the various form
summaries as subclasses.

member attributes:

Form_number

MONTHLY_CASH_FLOW

description: A monthly report of
debits and credits.

member attributes:
Debits
Credits

OTHER_APPOINTMENTS

description: Appointments cther
then those that are normally
scheduled,
member attributes:
Name_of_agent
Client_name
Date_of_appointment
Time_of_appointment
Description_of_appointment

QUT_OQF_TOWN_FOLLOW-UP

description: The agent is required

to check with the insurance
company about the receipt of
initial premium payments by new
out of town clients.

member attributes:
Name_of_agent (6)
Client_name (6)
Policy_number (6)
Policy_type (6)
Company_name (6)
Date of call

POLICY_RECORD

119

description; a collection of
specifications about insurance
policies owned by each client.

member attributes:
Company (5)
Policy_number (5)
Face_amount (5)
Type (5)
Date_of issue (5)
Age_of issue (5)
Gross_yearly_premium
WP_rider (5)
Add_rider
Cpd_rider
Apl_rider
Dividend_option (5)
Loans
Loan_interest
Cash_value
Primary_beneficiary (5)
Contingent_beneficiary

PRO_FORMA_CASH_FLOW_STATEMENT
description: That data stored in
the database that would be of
use when filling out a client's
pro forma cash flow statement.
member attributes:
Client_name
Client_address
Client's_total_yearly_insurance
_premiums

PRODUCT_LICENSE
description: agents must be possess
a license for each product he
sells.
member attributes:
License_tLype

PRODUCTS
description: the products sold by
the enterprise.
member attributes:
Product_type

PROSPECT_FOLLOW-UP

description: 4 follow-up to the
prospect letter is scheduled 3
days after the prospect letter
is mailed.

member attributes:
Name_of agent
Name_of_ prospect
Address_of_prospect
Prospect_phone
Contact_made

PROSPECT_LETTER

description: Information concerning
contact with a prospective
elient.

member attributes:
Name_ of _agent
Name_of_prospect
Address_of_prospect
Type_of_product
Date_mailed

REINSTATEMENT_FOLLOW=UP
description: Calls to insurance
company to ascertain whether a
¢client has paid his premium.
member attributes:
Name_of agent (§)
Client_name (6)
Policy_number (6)
Policy_type (6)
Company_name (6)
Date_of_call
class attributes
Number-~of=-call

REPLACEMENT_FOLLOW=UP

description: In the event that a
policy must be replaced the
agent is to check with the
insurance company concerning
issuance of the new policy.

member attributes:
Name_of_agent (6)
Client_name (6)
Policy_number {6)
Policy_type (6)
Company_name (6)
Date_of_call

STATEMENT_OF_FINANCIAL_POSITION
description: That data stored in
the database that would be of
use when filling out a client's

statement of finmancial position.
member attributes:

Client_name

Client_address

Total_life insurance_cash_value

Address

120

1
PERSONAL_INFO
description: The personal
information relevant to each
person, both client and
employee.
member attributes:
Home_address
Soecial_security_number
Phone_number
Date_of_birth

2
SPOUSE_INFO
description: That information
relevant to a client's or
employees spouse.
member attributes:
Name
Home_address
Phone_number
Date_of_birth

3
DEPENDENT_INFO
description: That information
relevant to a client's or
employee's dependents.
member attributes:
Name
Date_of_ birth

121

CLIENT_BUSINESS_INFO

description: That inforamtiol
relevant to a client's job.
member attributes:
Occupation
Phone_number

POLICY_INFO
description: That information

reference mest as a group when
dealing with client insurance
policies.

member attributes:

Company
Policy_number

Type

Face_amount
Date_of_ issue
Age_of_issue
Primary_beneficiary
WP_rider
Dividend_option

POLICY_INFO_FOR_FOLLOW-UP

description: That information
referenced most as a group when
performing follow-ups.
member attributes:
Name_of_agent
Name_of_client
Policy_number
Policy_type
Company

Appendix D

SDM Schema of Insurance Agency

ADDRESS
description: Person's home address.
House# Apt#
value class: HOUSE_APT
Street_Route
value class: STREET_ ROUTE
State
value class: STATES
Zip_code
value class: ZIP_CODES

AGE
description: The values which may be used to describe a person's age.
member attributes:
Months
value class: MONTH_VALUES
Years
value class; YEAR_VALUES

AGENT
description: The owner and primary agent of the enterprise.
interclass connection: subeclass of EMPLOYEE where Status_of=MAgent"
member attributes:
Agent_particulars
value class: AGENT_INFO
Agent_commission
description: The agent receives a commission on all products scold by
the agency. The rate varies with type and age of policy. The
details of which are beyond the scope of this report.
value class: DOLLARS

AGENT_INFO
description: Attributes that the agent and subagents have in common. Used as
a value class for Agent_particulars of AGENT and Subagent_particulars of
SUBAGENT.
member attributes:
Clients_of
value class: CLIENT
inverse: Agent_of_record
multivalued
exhausts value class
no overlap in values
Licensed_with
value class: COMPANIES
multivalued
Number_of_clients
value class: INTEGERS
derivation: number of unique members in Client_of

122

ANNUAL_REVIEW_SCHEDULE
description: An annual review 1s conducted for each client once a year. The
next review is scheduled 1 year from the last review. A notice is posted
in the schedular one week prior to the review date. Some of the attribute
values may be derived from attributes of CLIENT (match on client name).
member attributes:
Name_of_agent
value class: PERSON_NAMES
match: Agent_of_record of CLIENT on Client_name
Client_name
value class: PERSON_NAMES
Date_to_schedule_review_appointment
value class;: DATES
derivation: Date_of last_review + 51 weeks
B8%8% Note: This is not part of the SDM syntax., #HE#
Date_of_ last_review
value class: DATES
derivation: Date e¢lient purchased first policy
if new client
or Date_of_ appointment
if client has already had at least 1 annual review
and SYSTEM_DATE » Date_of_appointment
#8#8% Note: This is not part of the SDM syntax., ##s
Date_of appointment
value class: DATES
Time_of_ appointment
value class: TIME
identifiers: Client name + Date_of_ appointment

ANNUAL_STATE_OF_BUSINESS
description: An annual report of all debits and credits. The "where
specified" clause would identify the subset of the members of
DEBITS_CREDITS that would belong to this class, e.g., those from the last
year.
interclass connection: grouping of DEBITS_CREDITS where specified
member attributes:
Last_year's_debits
value class: DOLLARS
derivation: sum of Debit_amount
Last_year's_credits
value class: DOLLARS
derivation: sum of Credit_amount
Annual_report_date
value class: DATES
identifiers: Annual_report_date

ANNUITIES,_REGISTRATION

description: The values an annulty identifier may have.
interclass connection: subclass of STRINGS where specified

123

ANNUITY_INFO
description: Information about the annuities owned by a client.
member attributes:
Company
value clasz: COMPANY_NAMES
Annuity_identification
value class: ANNUITY_REGISTRATION
Annuity_value
value class: DOLLARS
class attributes:
Total_value_of annuities
value class: DOLLARS
derivation: sum of Annuity_value

APPOINTMENT_DESCRIPTION
description: A description of an appointment that is not covered under
one the other appointment categories.
interclass connection: subclass of STRINGS where specified

APS_ACTIONS
description: The actions that may be taken when dealing with an APS
follow=up.
interclass connection: subclass of STRINGS where specified

124

APS_FOLLOW-UP

description: A follow-up to insure that a client's medical papers are
received by the appropriate insurance company when new policies are
purchased. Several attribute values may be derived from attribute

values of POLICY_RECORD (match on Client_name or Policy_number).
member attributes:
Name_of_agent
value class:; PERSON_NAMES
match: Agent_of record of CLIENT on Client_name
Client_name
value class: PERSON_NAMES
match: Client name of POLICY_RECORD on Policy_number
Poliecy_number
value class: NUMBERS
Policy_type
value class: POLICY_TYPES
match: Type of POLICY_RECORD on Policy_number
Company
value class: COMPANY_NAMES
match: Company of POLICY_RECORD on Policy_number
Name_of doctor
value class: PERSON_NAMES
Doctors_phone
value class: PHONE_NUMBERS
Date_of_next_action
value class: DATES
derivation: = Date of last_action + § working days
if Last_action="received APS" and APS_number < 2
or =z Date_of_last_action + 2 working days
if Last_action="called doctor's office”
or = Date_of last_action + 4§ working days
if Last_action="received APS and APS_number > 1
or = Date_of_last_action + 1
if Contact_completed of DAILY_ SCHEDULE="no"
Note: This is not part of the SDM syntax,.,
Date_of_last_action
value class: DATES
derivation: =Date_of_next_action
if Date_of_next_action >= SYSTEM_DATE
or =Date_of next_action
if APS_number = ™"
##8% Note: This is not part of the SDM syntax. ##&#
Last_action
description: The action taken on last date of contact.
value class: APS _ACTIONS
class attributes:
APS_number
description: the number of APS forms received by the agency.
value class: NUMBERS
identifiers: Client_name + Policy_number

BOOLEAN
description: The values "yes"™ or "no",

interclass connection: subeclass STRINGS where format is "yes"
or ™no"

125

CASH_FLOW
description: That data stored in the database that would be of use when
filling out a client's cash flow statement., Attribute values may be
derived from attribute values of CLIENT and POLICY RECORD, match on
client name.
member attributes:
Client_name
value class:; PERSON_NAMES
Client_address
value class: ADDRESSES
match: Client_personal_info,.Address of CLIENT on Client_name
Client's_total_yearly_insurance_premiums
value class: DOLLARS
mateh: Total_gross_vyearly premium of POLICY_RECORD on Client_pame
identifiers: Client name

CASH_VALUE_AT AGE
description: Cash value of policy at specified age.
member attributes:
Age
value class; YEAR VALUE
Guaranteed_value
value class: DOLLARS
Total_value
value class: DOLLARS

CASH_VALUE_FIRST _DATE
description: Cash value of policy at first specified date.
member attributes:
Date
value class: DATES
Guaranteed_value
value class: DOLLARS
Total_value
value class: DOLLARS

CASH_VALUE_SCHEDULE
description: A record of the cash value of a policy at specific times,
member attributes:
Yalue_first_date
value class: CASH _VALUE_FIRST_DATE
Value_second_date
value class: CASH_VALUE_SECOND_DATE
Value_at_specific_age
value class: CASH_VALUE_AT AGE

CASH_VALUE_SECOND_DATE
description: Cash value of policy a2t second specified date.
member attributes:
Date
value class: DATES
Guaranteed_value
value class: DOLLARS
Total_value
value class: DOLLARS

126

CLIENT
definition: Individuals who purchase products from the enterprise.
member attributes:
Client_name
value class: PERSON_NAMES
Client_personal_info
value class: PERSONAL_INFO
Client_spouse_info
value class: SPOUSE_INFO
Client_dependent_info
value class: DEPENDENT_INFO
multivalued
Client_business_info
value class: CLIENT_ BUSINESS_INFO
Miscellaneous_information
value class; MISC_INFO
Annuities_owned
value class: ANNUITIES_INFO
mulitvalued
IRA's_owned
value class: IRA_INFO
multivalued
Agent_of_ record
value class: AGENT_INFO
inverse: Client_of
identifiers: Client_name

127

CLIENT_ASSET_SHEET
description: That data stored in the database that would be of use when
filling out a client's asset sheet.
member attributes:
Client_name
value class: PERSON_NAMES
Client_address
value class: ADDRESSES
match: Client_personal_info.Address of CLIENT on Client_name
Spouse_name
value class: PERSON_NAMES
matech: Client_spouse_info.Spouse name of CLIENT Client_name
Client's_total_life_insurance
value class: DOLLARS
match: Insurance_owned,_dollar_value of CLIENT_FILE CARD
on Client_name
Spouse_total_life_insurance

value class: DOLLARS
matech: Totzl_insurance_owned of POLICY_RECORD on Spouse_name
#8848 Note: The intent was to derive the amount of insurance owned by
the spouse by matching her name (Spouse_name) on a Client_name of
POLICY_RECORD. This l1s assuming that the only knowledge of insurance
that the agency should be expected to have is that which they have
sold. If the spouse has any insurance with the agency, he/she should
also be considered a client and thus he/she would have a value for
Total_insuracne_owned It is not clear as to the values that are
actually being matched. The intent was to match Spouse_name with a
Client_name in the elass POLICY RECQRD, ##s#

identifiers: Client_name

CLIENT_BUSINESS_INFO
description: That information relevant to a client's job.
member attributes:
Occupation
value class: QOCCUPATIONS
Phone_number
value class: PHONE_NUMBERS
Address
value class: ADDRESSES

128

CLIENT_COURTESY_CARD
description: Courtesy cards are sent to clients on special
occasions, e.g., birthdays. Attribute values may be
derived from attribute values of CLIENT, match on client name.
member attributes:
Name_of_agent
value class: PERSON_NAMES
Clients_name
value class; PERSON_NAMES
Client_address
value class: ADDRESSES
matech: Client personal_info.Address of CLIENT on Client_name
Client_birthday
value class: DATES
match: Client_personal_info.Date of _birth of PERSONAL on
Client_name
Date_to_send_card
Value class: DATES
derivation: Client_birthday - 3 working days
identifiers; Client_name + Date_to_send_card

129

CLIENT_FILE CARD
description: A summary of the client attributes, history of client
contacts and a summary of POLICY_RECORD. Most attributes pertaining
to insurance will be derived from attributes of POLICY_RECORD based
on a match with Policy_number of CLIENT FILE CARD_POLICY_INFO. Those
attributes pertaining to the client will be derived from attributes
of CLIENT based on a match with Client_name,
member attributes:
Client_pame
value class: PERSON_NAMES
Client_personal info
value class: PERSONAL_INFO
match: Client_personal_info of CLIENT on Client_name
Client_spouse_info
value class: SPOUSE_INFO
match: Client_spouse_info of CLIENT on Client_name
Client_dependent_info
value class: DEPENDENT_INFO
mateh: Client dependent_info of CLIENT on Client_name
Client_business_info
value class: CLIENT_BUSINESS INFO
match: Client_business_info of CLIENT on Client_name
Referred_to_agency_by
value class: PERSON_NAMES
Reference_phone
value c¢lass: PHONE_NUMBERS
Miscellaneous_information
value class: MISC_INFO
Approximate_income
value class: DOLLARS
Insurance_owned,_dollar_value
value class:; DOLLARS
matech: Total_insurance_owned of POLICY_RECORD on Client_name
Best_time_to_contact_at_home
value class; TIMES
Best_time_to contact_at work
value class: TIMES
Client_policy_info
deseription: a summary of each policy owned by the client.
value class: CLIENT_FILE_CARD_POLICY INFO
multivalued
Contact_record
value class: APS FOLLOW=-UP, REINSTATEMENT_FOLLOW-UP,
PROSPECT_FOLLOW-UP, REPLACEMENT FCLLOW-UP, OTHER_APPOINTMENTS
OUT_OF_TOWN_FOLLOW-UP, ANNUAL_REVIEW, CLIENT COURTESY_CARD
match: Event of DAILY_SCHEDULE on Client_name (of appropriate
class)
R#%% Note: This is not part of the SDM syntax, ¥###e
identifiers; Client_name

130

CLIENT_FILE_CARD_POLICY_INFO
description: A summary of the policies a client owns. Attribute values
may be derived from attribute values of POLICY_RECORD, match on
Policy_number.
member attributes:

Policy_number
description: A client will have 1 instance of POLICY RECORD for

each policy owned. The policy numbers of the policies owned by
each client can be derived from POLICY_RECORD. A match on the
client's name will result in several policy numbers each of which
should be used in turn to provide multiple instances of
Client_policy_info, an attribute of CLIENT _FILE CARD whose value
class is CLIENT_FILE_CARD_POLICY_ INFOQ.
value class: POLICY _NUMBERS
match: Policy_number of POLICY_RECORD on Client_name
(of CLIENT FILE CARD)
Plan
value class: POLICY_TYPES
match: Type of POLICY_RECORD on Policy_number
Company
value class: COMPANY_NAMES
match: Company of POLICY _RECORD on Policy_number
Mode_of_premium_payment
value class: MODE_OF_PAYMENT
Premium_amount
value class: DOLLARS
match: Premium amount of POLICY_RECORD on Policy_number
Date_premium due
value class: DATES
match: Date_premium due of POLICY_RECORD on Policy_number
Face_amount
value class: DOLLARS
match: Face_amount of POLICY_RECORD on Policy_number
Date_of_issue
value class: DATES
match: Date_of_ issue of POLICY_RECORD on Poliey_number
Age_of_issue
value class: AGE
match: Age of_ issue of POLICY_RECORD on Policy_number
Primary_beneficiary
value class: PERSON_NAMES
match: Primary beneficiary of POLICY_RECORD on Policy_number
WP_rider
value class: BOOLEAN
match: WP_rider of POLICY_RECORD on Policy_number
Dividend_option
value class: BOOLEAN
match: Dividend_option of POLICY_ _RECORD on Policy_number

%

131

CLIENT'S_INSURANCE_IN_FORCE
description: A summary of all insurance and annuities that a client has
with the agency. This information is needed for item 15 of form 1459
(insurance application }.
member attributes:
Company_name
value clasa: COMPANY_NAMES
match: Company of POLICY_RECORD on Client_name (of
INSURANCE_APPLICATION_INFO_SUMMARY)
Amount
value class: DOLLARS
match: Face_amount of POLICY RECORD on Client_name (of
INSURANCE_APPLICATION_INFO_SUMMARY)
Date_issued
value class: DATES
match: Date_of_issue of POLICY_RECORD on Client_name (of
INSURANCE_APPLICATION_INFO_SUMMARY)
Accidental_death
description: If the policy has an accidental death rider then
Accidental_death = "yes"
value class: BOOLEAN
mateh: Add_rider of POLICY_RECORD on Client_name (of
INSURANCE_APPLICATION_INFO_SUMMARY)

COMPANIES
description: The companies whose products are sold by the enterprise.
member attributes:
Company_type
value class: COMPANY_TYPES
Company_name
value class: COMPANY_NAMES
Company_address
value class: ADDRESSES
Company_phone
value class:; PHONE_NUMBERS
Products_offered
value class: PRODUCT_TYPE
identifiers: Company_name

COMPANY_NAMES
description: The companies represented by the agency.
interclass connection: subelass of STRINGS where specifiled

COMPANY_TYPES
description: The companies whose products are sold by the agency.
interclass connection: subclass of STRINGS where specified
derivation: order by Debit_date

132

DAILY_SCHEDULE
description: A schedule of events (follow-ups, appointments, etc.) that

are to occur on the current day.
member attributes:

Event
value class:; APS_FOLLOW-UP, REINSTATEMENT_FOLLOW-UP,

PROSPECT_FOLLOW=-UP, REPLACEMENT FOLLOW-UP, OTHER_APPOINTMENTS
OUT_OF_TOWN_FOLLOW-UP, ANNUAL_REVIEW, CLIENT_COURTESY_CARD
derivation: where Date_of_next_action = Today's_date
###% Note: This is not part of the SDM syntax. ###s
Today's_date
value class: SYSTEM DATE

Contact_completed
description: After action has been completed Contact_completed =

"yes" otherwise Contact_completed="no"

value class: BOOLEAN
identifiers: Client_name (of appropriate value class) + Today's_date

DATES
description: calender dates in the range "1/1/50" to "12/31/99"
interclass connection: subclass of STRINGS where format is

month: number where > 1 and < 12

ll/i!

day: number where integer and > 1 and < 31

II/!I

year: number where integer and > 1950 and < 1999

where (if (month=k or =5 or =9 or =11) then day < 30
and (if month=2 then day < 29)

ordering by year, month, day

DEBITS
deseription: All funds going out of the agency.
interclass connection: subeclass of DEBITS_CREDITS where
Transaction_type = "debits"
member attributes:
Debit_date
value class: DATES
Debit_amount
value class: DOLLARS
Description of_expenditure
value class: EXPENDITURE_DESCRIPTION
To_whom_charged
value class: PERSON_NAMES
Order_of_debit
description: The chronoclogical order of the debits,
value class: INTEGERS

DEBITS_CREDITS
descripticn: A parent class needed in order to accumulate both debits

and credits for monthly, quarterly and annual cash flow reports.
member attributes:

Transaction_type
value class: TRANSACTION_TYPES

133

DEFENDENT_INFO
deseription: Information relevant to a client's or employee's dependents.
member attributes:
Nanme
value class:; PERSON_NAMES
Date_of_ birth
value class: DATES

DOLLARS
description: The form a reference to money may take.
interclass connection: subclass of STRINGS where format is
|'|$l'l
000 < number <= 999
L I
1
000 <= number <= 999
nn
?
000 <= number <= 999
nn
00 <= number <=9%9
where leading zeros are omitted

EMPLOYEE
description: all pecople who work for the enterprise.
member attributes:
Employee_name
value class: PERSON_NAMES
Employee_personal_info
value class: PERSONAL_INFO
Employee_spouse_info
value class; SPOUSE_INFO
Employee_dependent_info
value class: DEPENDENT_INFO
multivalued
Date_ joined_company
value class: DATES
Status_of
value class:; EMPLOYEE_TYPES
Pay
value class: PAY
Seniority
value class: INTEGERS
derivation: order by increasing Date_joined_company
class attributes:
Number_of._employees
value class: INTEGERS
derivation: number of members in this class.
identifiers: Employee_name

EMPLOYEE_TYPES
description: The types of employees at the agency, values may be "agent",
"gubagent” and "office staffm,
interclass connection: subelass of STRINGS where specified

134

EVENT_TYPES
description: Each event, i.e., appointments follow-ups, etc., is specifiled

as a specific event type.
interclass connection: subclass of STRINGS where specified.

EXPENDITURE_DESCRIPTION
description: A description of the type of expenditure list as a debit.
interclass connection: subclass of STRINGS where specifiled

FIRST_NAMES
description: The first name of a person.
interclass connection: subclass of STRINGS where specified

FORM_NUMBERS
description: Each summary form has a unique number that is used to

reference the form.
interclass connection: subclass of STRINGS where specified

HOUSE_APT
deseription: The house number, apartment number, suite number or office

number in an address.
interclass connection: subeclass of STRINGS where specified

135

INSURANCE_APPLICATION_INFO_SUMMARY
description: That data stored in the database that would be of use when
filling out an insurance application form for a current client.
Attribute values may be derived from attribute values of
CLIENT, SPOUSE_INFO, DEPENDENT_INFO, and CLIENT FILE_CARD, match on
Client_name.
member attributes:
Client name
value class: PERSON_NAMES
Client_address
value class: ADDRESSES
match: Client_personal_info.Home_address of CLIENT on Client_name
Spouse_name
value class: PERSON_NAMES
match: Name_of_spouse of SPOUSE_INFO on Client name (of CLIENT)
Spouse_date_of_birth
value class: DATES
match: Client_spouse_info,Date of birth of CLIENT on Client_name
Dependent's_name
value clasg: PERSON_NAMES
match: Name_of_ dependent of DEPENDENT _INFO on Client_name
(of CLIENT)
Dependent's_date_of_birth
value class; DATES
match: Client_dependent_info.Date of_birth of CLIENT on Client_name
Spouse_amount_insurance
description: If it is assumed that if the spouse is also a client
then a record of total insurance owned should als¢c be present
for the spouse. This value is derivable by matching Spouse_name
to Client_name in POLICY RECORD.
value class: DOLLARS
mateh: Total_insurance owned of POLICY_RECORD on
Spouse_name
Client's_ insurance
value class: CLIENT'S_INSURANCE_IN_FORCE
Client_annuities
value class: ANNUITY_INFO
match: Annuities_owned of CLIENT on Client_name (of CLIENT)
identifiers: Client_name

INTEREST
description: The value a interest reference may have.
interclass connection: subelass of STRINGS where format is
00<=number<=99
l'!_ll
00, =number<=99
HSII

136

IRA_INFO
description: Information about the IRA's owned by a client.
member attributes:
Company
value class: COMPANY_NAMES
IRA_identification
value class: IRA_REGISTRATION
IRA value
value class: DOLLARS
class attributes:
Total_value_of_ IRA's
value class: DOLLARS
derivation: sum of IRA_value

IRA_REGISTRATION
description: The values an IRA identifier may have.
interclass connection: subclass of STRINGS where specified

LAST_NAMES
descripticn: The last name of a person, it may be one or more names or
hyphenated.
interclass connection: subclass of STRINGS where specified

LOAN_INFO
description: Information about individual insurance loans a client has.
Loan_amount
value class: DOLLARS
Loan_interest
value class: INTEREST

MIDDLE_NAMES
description: The middle name identifiers a person may have. It may be one
or more initials or one or more names.
interclass connection: subelass of STRINGS where specified

MISC_INFO
description: Miscellaneous information.
interclass connecticn: subelass of STRINGS where specified

MODE_QOF_PAYMENT
description: The varicus payment schedules available,
interclass connection: subclass of STRINGS where specified

MONTH_VALUES
desceription: The values a month may have,
interclass connection: subclass of INTEGERS where format is

1<{znumber<=12

137

MONTHLY_CASH_FLOW
description: A monthly report of all debits and credits. The "where
specified™ clause would identify the subset of the members of
DEBITS_CREDITS that would belong to this class, e.g., those from the
last month.
interclass connection; grouping of DEBITS_CREDITS where specified
member attributes:
Last_month's_debits
value class: DOLLARS
derivation: sum of Debit_amount
Last_month's_credits
value class: DOLLARS
derivation: sum of Credit_amount
Monthly_report_date
value class: DATES
identifiers: Monthly report_date

NEXT_ACTION
description: The next action required for a follow=up.
interclass connection: subelass of STRINGS where specified

OCCASIONS
description: A description of the occasion for a client courtesy card.
interclass connection: subclass of STRINGS where specified

OCCUPATIONS
description: Occupations a client may have.
interclass connection: subeclass of STRINGS where specified

OFFICE_STAFF
description: The class that identifies the office staff and the office
manager.
interclass connection: subeclass of EMPLOYEE where
Status_of = "office worker"
member attributes:
Is_office_manager
description: "yes" if the instance is the office manager
"no" otherwise.
value class: BOOLEAN

138

OUT_OF_TOWN_FOLLOW-UP
description: The agent is required to check with the insurance company
about the receipt of initial premium payments by new out of town
clients.
member attributes:
Name_of_agent
value class: PERSON_NAMES
match: Agent_of_record of CLIENT on Client_name
Client_name
value class: PERSON_NAMES
match: Client_name of POLICY_RECORD on Policy_number
Policy_ number
value class: NUMBERS
Policy_type
value class: POLICY TYFES
match: Type of POLICY_RECORD on Policy_number
Company
value class: COMPANY_NAMES
mateh: Company of POLICY_ _RECORD on Policy_number
Date_of_ next_action
value class: DATES
derivation: = Date_policy_sold + 14 days
if this is the initial contact
or =Date_of next_action + 1
if the perscn was not contacted on the Date_of_ next_action
this is denoted by a "no" value of Contact_completed of class
DAILY SCHEDULE for this instance
###% Note: This is not part of the SDM syntax, ####
Date_policy_sold
value class: DATES
identifiers: Client_name + Date_policy_sold

OTHER_APPOINTMENTS
description: Appointments other than those that are normally
scheduled, i.e., the follow-ups and annual review.
member attributes:
Name_of_agent
value class: PERSON_NAMES
Client_name
value class: PERSON_NAMES
Date_of_appointment
value class: DATES
Time_of_appointment
value class: TIMES
Description_of_appointment
value class: APPOINTMENT_DESCRIPTION
Next_date_of_action
description: This attribute must be present if OTHER_APPOINTMENTS is
to be included in DAILY_ SCHEDULE. Membership in DAILY SCHEDULE is
based on a match with Next_date_of_action. Rather than change the
name of the attribute Date_of_appointment, which is familiar to all
employees, Next_date_of_action was coined as a synonym.
value class: DATES
derivation: same as Date_of_appointment
identifiers: Client_name + Date_of_appointment

139

PAY
description: The monthly pay for each employee. Pay is based on a base
salary plus a commission depending on the value Status_of. In general
office staff will receive only a base salary and the agent and
subagents will receive only a commission. The details of pay are
beyond the scope of this report.

PERSON_NAMES
description: The form a person's name may take.
member attributes:
Title
value class: TITLES
First
value class: FIRST_NAMES
Middle
value class: MIDDLE NAMES
Last
value class: LAST_NAMES

PERSONAL_INFO
description: The personal information relevant to each person, both
client and employee.
member attributes:
Home_address
value clasa: ADDRESSES
SSN
value class: SOCIAL_SECURITY_ NUMBER
Phone_number
value class: PHONE_NUMBERS
Date_of_birth
value class: DATES

PHONE_NUMBERS
description: The form a phone number may take, area code, prefix, number.
interclass connection: subelass of STRINGS where format is
000<number<=999
n_n
00<number<=999

n_n
0000<=number<=9999
POLICY_NUMBERS

description: The values a policy number may have.
interclass connection: subelass of STRINGS where specified

140

POLICY_RECORD
description: a collection of specifications about insurance policies owned
by each client. The POLICY_RECORD class will act as the master record
of each policy sold.
member attributes:
Client_name
value class: PERSON_NAMES
Policy_number
value class: POLICY_NUMBERS
Type
value class: POLICY_TYPES
Company
value class: COMPANY_ NAMES
Face_amount
value class: DOLLARS
Date_of_issue
value class: DATES
Age_of issue
value class: AGE
Primary_beneficiary
value class: PERSON_NAMES
WP_rider
value class: BOOLEAN
Dividend_option
value class: BOCLEAN
Gross_yearly_premium
value class: DOLLARS
Add_rider
value class: BOOLEAN
Cpd_rider
value class: BOQOLEAN
Apl_rider
value class: BOOLEAN
Loans
value class: LOAN_INFQ
Cash_value_record
value class: CASH _VALUE_SCHEDULE
Contingent_beneficiary
value class: PERSON_NAMES
Total_insurance_owned
value class: DOLLARS
derivatiocn: sum of Face_ amount
Total_gross_yearly premiums
value class: DOLLARS
derivation: sum of Gross_yearly_premiunm
identifiers: Client_name + Policy_number

POLICY_TYPES

description: The types of policies sold by the agency.
interclass connection: subclass of STRINGS where specified.

141

PRO_FORMA_CASH_FLOW_STATEMENT
description: That data stored in the database that would be of use when
filling out a client's pro forma cash flow statement. Attribute values
may be derived from attribute wvalues of POLICY_RECORD, match on
client_name.
member attributes:
Client_name
value class: PERSON_NAMES
Client_address
value class: ADDRESSES
Client's_total_yearly_insurance_premiums
value class: DOLLARS
match: Total_gross yearly premiums of POLICY_RECORD on Client name
identifiers; Client_name

PRODUCT_LICENSE
description: An agent must possess a license for each product he sells.
member attributes:
License_type
value class: PRODUCT TYPES

PRODUCT_TYPES
description: The product types sold by the agency.
interclass connection: subclass STRINGS where specified

PRODUCTS
description: the products sold by the enterprise.
member attributes:
Product_type
value class: PRODUCT_TYPES

142

PROSPECT_FOLLOW=-UP
deseription: A follow-up to the prospect letter is scheduled 3 days after
the prospect letter is mailed.
member attributes:

Name_cof_ agent

value class: PERSON_NAMES

match: Name_of_agent of PROSPECT_LETTER on Name_of_prospect
Name_of_ prospect

value c¢lass: PERSON_NAMES
Address_of_proapect

value class: ADDRESSES

match: Address of prospect of PROSPECT_LETTER on Name_of prospect
Prospect_phone

value class: PHONE_NUMBERS
Type_of_product

value class: PRODUCT_TYPES

match: Type_of_ product of PROSPECT_LETTER on Name_of_prospect
Contact_made

deseription: If contact was not made on the scheduled

date then value="no".
value class: BOOLEAN

Date_of_contact
description: An agent is to contact the prospect 3 working days

after the prospect letter has been mailed.
value class: DATES
derivation: = Date_leftter_mailed + 3 working days
if this is the initial contact
or = Date_of_contact + 1
if Contact_completed of DAILY_ SCHEDULE="no"
#%## Note: This is not part of the SDM syntax. #&¥#

identifiers: Name_of prospect

PROSPECT_LETTER
description: Information concerning contact with a prospective client,
member attributes:
Name_of_ agent
value ¢lass: PERSON_NAMES
Name_of_prospect
value class: PERSON_NAMES

Address_of_prospect
value class: ADDRESSES

Type_of_product
value class: PRODUCT_TYPES

Date _mailed
value class: DATES
identifiers: Name of_proaspect

143

QUARTERLY_REPORT
description: A 3 month report of all debits and credits. The "where

specified™ clause would identify the subset of the members of
DEBITS_CREDITS that would belong to this c¢lass e.g., those from the
last 3 months.
interclass connection: grouping of DEBITS_CREDITS where specified
member attributes:
Last_3_months_debits
value class: DOLLARS
derivation: sum of Debit_amount
Last_3_months_credits
value class: DOLLARS
derivation: sum of Credit_amocunt
Quarterly_report_date
value class: DATES
identifiers: Quarterly_report_date

REINSTATEMENT_FOLLOW=-UP
description: The agency is to call the insurance company to ascertain
whether a client has paid his premium.
member attributes:
Name_of_agent
value class: PERSON_NAMES
match: Agent_of record of CLIENT on Client name
Client_name
value class: PERSON_NAMES
match: Client_name of POLICY _RECORD on Policy number
Poliey number
value class: NUMBERS
Policy_ type
value class: POLICY_TYPES
match: Type of POLICY_RECORD on Policy_number
Company
value class: COMPANY_NAMES
match: Company of POLICY_RECORD on Policy_number
Date_of_ next_action
value class: DATES
derivation: = Date_notified_of_delinquency + 14
if this is the first attempt
or Date_of next_action + 1
if client was not notified on the initial date, denoted
by a "™no"™ value of Contact_completed of class DAILY_ SCHEDULE
for this instance
&#%#% Note: This is not part of the SDM syntax, ##s#
Date_notified_of_delinquency
value class: Datea
identifiers: Client_name

144

REPLACEMENT_ FOLLOW-UP
desceripticon; In the event that a peliey must be replaced, the agent is to
check with the insurance company concerning issuance of the new
pelicy.
member attributes:
Name_of_agent
value class: PERSON_NAMES
match: Agent_of_record of CLIENT on Client_name
Client_name
value class: PERSON_NAMES
mateh: Client_name of POLICY RECORD on Policy_ number
Policy_number
value class: NUMBERS
Policy_type
value class: POLICY_TYPES
match: Type of POLICY RECORD on Policy_number
Company
value c¢lass: COMPANY_NAMES
match: Company of POLICY_RECORD on Policy_number
Date_of_next_action
value class: DATES
derivation: =Date_replacement_policy_sold + 14
if this is the initial date scheduled
or Date_of_next_actiocn + 1
if action was not completed on date specified this is dencted
by a "no"™ value of Contact_completed of class DAILY SCHEDULE
for this instance
##%% Note: This is not part of the SDM syntax, ####
identifiers: Client_name

SOCIAL_SECURITY_NUMBER

interclass connection: subeclass of STRINGS where format is
000<=number<=999

n_n

00< =number<=99

0000<=znumber<=9999

SOURCE
description: A description of the source of a credit.
interclass connection: subelass of STRINGS where specified

SPOUSE_INFO
description: That information relevant to a client's or employee's spouse.
member attributes:
Name
value class: PERSON_NAMES
Home_address
value class: ADDRESSES
Fhone_number
value class: PHONE_NUMBERS
Date_of_ birth
value classa: DATES

145

STATEMENT_OF_FINANCIAL_POSITION
description: That data stored in the database that would be of use when
filling out a client's statement of financial position.
member attributes:
Client_name
value class: PERSON_NAMES
Client_address
value class: ADDRESSES
Total_life_insurance_cash_value
value class: DOLLARS
identifiers: Client_name

STATES
description: Postal service accepted state identifiers.
interclass connection: subclass of STRINGS where specified

STREET_ROUTE
description: The Street or route in an address.
interclass connection: subclass of STRINGS where specified

SUBAGENT
description: The persons who work for the agency and are supervised by
the Agent.
interclass connection: subclass of EMPLOYEE where Status_of=z="Subagent”
member attributes:
Subagent_particulars
value class: AGENT_INFO
Subagent_commission
description: Subagents receive an initial commission and residual
commission based on the type and age of the product and the
company that sells the product. The residual commission is based
on the client's payment. The model of this procedure is beyond
the =cope of this report.
value class: DOLLARS

SYSTEM_DATE
description: A new primative which refers to the current date.
#888% Note: This is not part of the SDM syntax. ####

TIME

description: The time record uaing A.M.-P.M. designators.
interclass connection: subclass STRINGS where format is
hour: number where » 1 and < 12
n.N

minutes: number where »= 00 and < 60
nn

"A.M." or "P.M."

TITLES

description: The title a person may have preceding his name, e.g., Dr.,
Mr., Ms,, Mrs.
interclass connection: subclass of STRINGS where specified

146

TRANSACTION_TYPES
description: Transaction types are debits or creditas.
interclass connection: subclass of STRINGS where specified

YEAR_VALUE
description: The value a year may have.
interclass connection: subclass of INTEGER where format is
1 <= number <= 130

ZIP_CODES

description: The accepted postal service zip codes.
interclass connection: subclass of STRINGS where specified

147

Appendix E

Insurance Company Business Forms

Client File Card

NAME . | BIRTHDAYS | INSURANCE
[Month | Day [Year| Owned
Residence |PHONE 3
OCCUPATION (WIFE'S NAME 4
FIRM ADDRESS PHONE CHILDREN $
REFERRED BY PHONE 3
Club, Church, Frat., Hobbies | Approx. Income
§ $
BEST TIME TO SEE: Day
At Work Daytime, L)
At Home Evening]
CALL CALL
DATE NEED RESULTS DATE NEED RESULTS
QOTHER INFORMATION
PRESENT LIFE INSURANCE
Date Banefits Pregmium
Company Issued Plan Amaunt | WP Inc.] DI Beneficiary Mode| Amt. |Due
The Lafayette Lifs Insurance Company Form 1144

148

Insurance Application

The Laiayette Life |:|
Insurance Company

O

Lafayete National Life
Assurance Company

This application |s made to the Company checked abowe. That Company is
hereinaiter called Lalayette Lifa Company. This is an application far life insurance

FOR HOME OFFICE USE ONLY
O CWA-ORD DATE/Initial

Pari 1 unless item 11 is checkad. O CWA-ULAMT.
'PROPOSED First Middle Last 8. Plan (See Rate Book B-5) 8a. Amount of Insurance
INSURED Policy -
1. PRINT Rider. $
FULL for Univeraal life policies, select plan and option below.
NAME Adj. Whole Lifs - Level Benafit
O Male O Married O Widowed O Separated D Key UL-83 C.V. - Inciuded
C Female O Single O Divorced Increasing Benefit
2. Siate and Stats Month | Day | Year AGE D Value Life - RX-83 C.V. - Excluded
Date of last birthday 9. ADDITIONAL BENEFITS (Chaeck sach benefit desired)
Birth: $___ Spouss Insurance (Complete 15, Page 2)
T Waiver of Premium O GPOS
3. Proposed Insured’s a Acf:identsl Deaths O Payor Benefit
Social Security No. O Chiidren’s Rider $ [mi

4, ADDRESS for Premium Notlces:
Street, Number.
City.
Zip.
¢lo (If neaded)

State.

BENEFITS AVAILABLE ONLY WITH UNIVERSAL LIFE

QO Waiver of C Cost of Living
Monthly Deductions Adjustment Rider
Os

0 Gios

9a. DIVIDEND OPTION 4

5. POLICYOWNER to be:
O Proposed Insured
3 Other

Name of Owner

Relationship to Proposed Insured
Social Security or Tax 1.D. No.
Cantingant Owner (if any)
(Name and Relationship to Proposed Insured)
O Qwnershlp: {Check if Proposed Insured under 18) Until the
Insured attains the age of 18, the owner shall be the Owner
named above, while living, otherwise the Contingent
Owner, while living, otherwise the Insured. Ownership shall

Age

Add to Cash Value (Un. Lite only)
O Paid-Up Additions O Accumulated at Interest
C Paid in Cash O Aeduce Premiums

10. PREMIUM PAYMENT
Cash with Application $
(The amount of CASH Must agree with Conditional Regeipt)
Planned Periodic Premium §
O Annual O Semi. C Quarterly T PAC [GA

Z SD

10a. Premium Loan provision wiil be in affect in all ordinary life
policies unless “No" is checked. No C

11. ANNUITIES:)
O Flex Prem Annuity at Retirement Age______
O Single Pramium Detarred

automatically transfer to the Insured on his 18th birthday. [m]
O Permanent in the Owner while living, then the Contingent =
QOwner, uniess changed. 12. LIFE INSURANCE & ANNUITIES IN FQRCE: .
Year Accidental
Each owner, during this period of ownership, shall have the Company Amount lssued Death
power to exercise ail the existing policy rights of an owner,
including the right to aiter the succession of owners and their
interests. A “contingent owner” is the person designated to
succeed to the rights of the owner should the owner die during
the Insured's lifetime. I there |3 no Contingent Owner, the
Owner's rights upon his death may be exercised by his | ' BENEFICIARY S
executors, administrator or assigns. Print full given names Age Relationghip
Primary:
8. WIll any existing life or annuity contract be lapsed,
surrendered, borrowed against, or changed if the proposed
policy is issued or have any of these transactions been
completed recently? (If "Yas" furnish name of company being
replaced) O Yeas O No Contingent
7. OCCUPATIONS: (include Spouse’s if benefit appiled for) -
7 T Lawtful children of the Insured (including any named
low long so above)
- E";""’y:;’:ms T Ghildren born of or legaily adopted ta the marriage of the
. ear Insured and primary bensficiary (including any named

Homa Otfice Corrections and Additions (Do not write in this space.)
“NOT for use in Pa., Md., or W.V,

above). Check only if spouse of Insured is named as
primary beneficiary,

14, Additional Information and Special Requests

Farm 1458 - A

{Continued on Reverse Side)

5/Ba

149

Insurance

PART A — AVIATION ACTIVITIES — COMPLETE IF NO. 16c, ANSWERED YES

Application

Page 2

1. Indicate your current, past or intended flying status:

8. Types of flying you do ar intend to do

O Pilot [StudentPilot [Crew member ar ohserver O Pleasure, personal business O Scheduled airline
] Qther [0 MNonscheduled carrler O Business planes

2. Do you fly in any military or military reserve capacity or O Charter O Flight Instruction O Test-production
intend to do so? O Yes O No O Test-experimental O Dusting, seeding, spraying
If 30, state capacity: O Other:)

3. Total hours flown as pilot? 9. Extent of past or anticipated flying by type of fiying
indicated in Question 8.
4. Date of last flight? Hours of Flying Tims
5T of certificates held and issue dates? Last 12 1to2 Yrs. Naxt 12
ypes TipaiatFiging Mo. Ago Mo.
8. Do you have an instrument Flying Rating?

O Yes O No

- Have you ever been in an aircralt accident or been grounded
for violation of regulations O Yes a No
If “Yas," explain.

Military Pliot or Crew

10. Principal types of aircraft Hown?

11. Should aviation coverage be issued for extra premium, if
required? O Yes C No

PART B — MILITARY STATUS — COMPLETE IF NO. 16e, ANSWERED YES

1. Are you in the Armed Forces, Natlonal Guard or any Reserve

Unit? Q Yes O No

If “Yes," compiete the following:

a. Branch O Active O Reserve
b. Pay Grade: ETS Date

c. Job classifications:

3. Have you volunteered for (or intend to), or received orders
for, or have reason to believe that you will be assigned to
hazardous overseas duty? O Yes 3 No
If “Yas," give details in Remarks.

4. REMARKS:

2. Current address if different from face of application.

OTHER PERSONS PROPOSED FOR INSURANCE

Reiationship to
Proposed
Insured

15. Names of Others to be
Insured (Spouse or Children)

Date of
Birth

Amount of Life

State
Ingurance in Force

Age | Height | Weight

QUESTIONS 16 - 22.

MUST BE COMPLETED IN ALL CASES

16. Has any person proposed for insurance: {Give DETAILS IN ¢. Disease or disorder of the stomach, in-
No. 25 to any “Yes" answer.) Yes No testines, bowel, rectum, liver or gall bladder? O =
a. ever been declined, postponed, excluded or d. Disease or disorder of the brain or nenvous
rated for Life or Heaith insurance or had _ sysiem, fainting spelis, epilepsy, convulsions
reinstatement refused? g O or paralysis? g C
; ; ’ e. Disease of the urinary system including
b. amp:'lllit:ds;orolher Life insurance within past six DO nephritis, kidney stone, disease aof the
kidneys, bladder, or prostate? o C
€. made or contemplate making any flight as a 1._Sugar, albumin, or bload in the urina? o C
22:: ?;::T ::;T;" of any Alfcrate? pr Yo o o g. Disease or disorder of bone, {oints, muscle,
B back, spiné; rheumatism, arthritis, gout, loss
d. engaged in, or contemplate engaging in, para- of limb or delormity? pad) =]
chuting, hang gliding, vehicle racing, skin or h. Any disease or disorder of the eyes, ears, nose
scuba diving? (Complets speciai questionnaire) 0 O or throat? z
&. joined any Armed Forces or Advanced ROTC? i Cancer, tumor, venereal diseasse, diabetes,
{if “Yea" complete B, above) o o leukemia, disarder of glands, blood, breast, or
i7. Dos reproductive argans? a =
. S any person pmpo.sed for Insurance now 18. In the past 5 years has any person proposed for
.have, or has he ever had:) insurance:
a Disease or disorder of lungs, asthma, emphy- a. Had or been advised to have a surgical
sema, bronchitis or tuberculosis? o O operation? g o
b. Disease or disorder of the heart or blood b. Had an slectrocardiogram, X-ray, biood study,
vassels, pain or discomfort In chest, high or other diagnastic study? i
blood pressure, shortness of breath or heart c. Been a patlent in any hospital, institution, ar
murmur? - O 0 sanitarium? C O

150

Insurance Application

Page 3

¥ ; i ’ ; 25, DETAILS OF "YES" answers. (List name and address of all
L &r:g’:te:nl:;:;ﬁ # Heighyand (S:igl::novg;qg’ﬁ;:ein 1 doctors or hospitals plus date of attacks and recoveries.

—ft inchas Ibs, past year)

20. Has any person proposed for insurance been under Yes No
treatment or taken medication in past 2years? O O

21. Has any person proposad for insurance smaked
one of more cigarsttes within the last 12
months? g d

22. How much time has the proposed insured lost
from work during the last two years because of
iliness or injurias?] None

Weaaks

23. Has any person proposed lor insurance ever;
a. Applied for, or received pansion or disability
benefits? o O

b. Been rejected for or received a meadical
discharge from Military Service? g 0

¢. Sought or recelved advice for, or treatment of,

or been arrested for the use of alcohol, mari-

juana, or drugs? 0 C
d. Used amphetamines, barbiturates, hallugino-

genics, narcotics, or marijuana uniess ad-

ministerad on the advice of a physician? a O
e. Had any parents, brothers or sisters who had

heart disease, diabetes, stroke or high blood

pressure? o a

FAMILY RECORD - of P |
24. Driving Record 26. roposed Insured

Within the pasi 3 years has any person 10 be Age If | Heaith - Reason | Age at Cause of
covered been convicted of or pleaded guilly to: Living if Not Good Death Death
a. Three or more moving traffic violations? S| Father
b. Driving under the influence of alcohal andfor Mother
drugs? g O
¢, Or had a driver's license revoked or Brothers
suspended? (If yes, give license number and and
state where license was revoked) o QO Sisters

| {we) represent that all statements and answers in this application, any supplemeants, additional forms or medical examina-
tions required by the Company are to the best of our knowledge and belief true, complete and correctly recorded, and it is
agreed (1) Such statements and answers are a part of the appiication and constitute the sole basis for issuance of any
Insurance hersunder; (2) No information known to any agent or employee of the Company shall be binding upon the Company
uniess writtan on and made a part of this Application; (3) EXCEPT AS STATED IN A DULY EXECUTED CONDITIONAL RECEIPT
BEARING THE SAME PRINTED NUMBER AS THIS APPLICATION, A DULY EXECUTED GOVERNMENT ALLOTMENT CONDI-
TIONAL INSURANCE CERTIFICATE BEARING THE SAME PRINTED NUMBER AS THIS APPLICATION, OR A CONDITIONAL
SALARY DEDUCTION AGREEMENT RELATING TO THE PROPOSED INSURANCE AND DELIVERED TO THE APPLICANT, THE
COMPANY GRANTS NO INSURANCE UNDER THIS APPLICATION UNLESS AND UNTIL, DURING THE CONTINUED
INSURABILITY OF THE PROPOSED INSURED, AND ALL OTHERS PROPOSED FOR INSURANCE HEREIN, A POLICY ISSUED
ON THIS APPLICATION IS DELIVERED TO THE APPLICANT, AND THE FULL FIRST PREMIUM IS PAID; and (4) Acceptance of
the issued policy will constltute ratification of changes mads by the Company as Home Otfice Corrections or Additions except
where written acceptance of non-administrative changes is required by law.

has been paid to the agent named beiow. This payment can in no way obligate

S i ;
{(Must Always Be Answered) Lata):e'tte Life Cprnpany unless and until all terms and conditians of the correspanding
conditional receipt below are met.

Signed at __ State of this. day of 19

Ne 28322 | HAVE READ THE COMPLETED APPLICATION
BEFORE SIGNING

5 Signature of Proposed Insured (if over age 14)

Signature of Pollcyownar named in No. §, if other than Signature of Proposed Insured Spouse
Proposed Insured

Witness

Signature of Agent Signature of Parent {Juvenile Poiicy Only)

151

Insurance Application

AGENT'S REPORT

1. Was Inspection or Telecom ordered?. Date
2 Residence Address of Proposed insurea: Street and No.

Attach Carbon Copies of Tickets

(This information must be complated with EVERY application)

How lang

Yra. | Mos.

TELEPHONE NUMBER
HOME: Area Code. Number. 1
3. Former Address (last 3yaars}

BUSINESS: AreaCode

Numbger,

4. Employer and Address

5. Maiden name of any woman {0 be insyred if marriage octurred within five years.

6. How much insurance does sp have? §

(8] exAMINATION ARRANGEMENTS BY: Yes No
1. I8 a medicai axamination being arranged lar? D D
2. ON

Oate)
3. Name of Doctar,
or Parameq®

4. I3 he one of our approved examiners? g 0
B Ganond ey eoamy T oC
EKG? Ooa
Chest X.ray? O a
Sending specimen to Home Ollice Reference Lab? C g
SMA-12 Biood Test? i
[mg|

@ Wil any existing life or annuity contracts be lapsed, surrendered,
borrawed againsi, or changed if the proposed policy is issued?
O Mo
O Yes - Complete comparison/di (]
state of application.

1t if reguired by

(@ 1. How long have you known Propased Insured (Applicant if Proposed
Insured is under age 15)?
Are you related?

2. Arg you aware of anything about the heaith, habits, hobbies, environ-
ment, or mode of life which might affect insurability of Proposed
Insured?

C Yes Z No

3. What is the source ot income (other than income from occupation)?

4. Wil premiums be paid from personal funda? C Yes C Ne

5. ‘rm;r estimate of Propased Insured's annual income

E IF PROPOSED INSURED IS UNDER AGE 15:

1. Did you see the child proposed for insurance? O Yes C No

2. Does the child appear in good health? O Yes 0 Ne

3. How long have you kaown the child?

4. How many brothers and sisters has ihe child?

Brothers. Sisters,
§. Are all brothers and sisters insured? O Yes C Neo

It "No" give reasons.
. Amount of insurance in force on supporting

parents? $
7. Remarks:

— Business insurance {Include copy of Business Financial Report

%
Bonus $

1, Value of Business §. Proposed Insured's Interest
2. Proposed Insured’s Compansation: Salary $.

TO BE COMPLETED IF INSURANCE 1S FOR BUSINESS PURPOSES OR FOR ESTATE CONSERVATION

Estate Conservation
5. Approximate Value of Gross Estate S,
Qther §. (Include Copy of Estate or

1. Purpose of insurance.
O Key Person
21 Fund Buy and Seil
] Delerred Compensation

C Sptit Dotiar
C Executive Bonus
0 Estate Liquidity

8. Type of Businass. Capital Need Analysis)
C $Sole Propristorship T Partnarship
C Corporation State of Incorporation
7. Name of Qfficer Signing for Carporaticn

4. Namas of Other Stockhoiders, Officers and Partners and Amount of Business Insurance Carried on Thair Lives.

Name and Titie Vatue of Percent Amount Now Carried Amount now applied for
busingas intarest owned
(f any not insured, give expl |E ANNUAL PREMIUM CALCULATION

’ Pramium Urits Taotai

@ Detaiis to any of above questions (state question number) Basic Ing, s X =3

WP gn Basic § X =3

Term Riders $ X =5

WP on Riders § X =%

ADB 1 X =5

GPOIGIO $. X =3

SOURCE OF - 1Policyawner T 3 Cold Canvass(J 5 Policyowner Service lead g:: : : = :

PROSPECT _° 2 Referred lead T 4 Direct Mail [6 Other Subtotal M X =3

c licati % codeN WP% of Prem. {Un. Life) = :

redit this application to e No Q.0.F, (Not Un. Life} —
‘ Plasie Pt i Total Annual Premium s
(If- splir-credit) Code No. Times (X)___ Mode Factor (Not Un, Life) $.

THIS REPORT

| CONFIRM THAT | HAVE DELIVERED TO THE PROPOSED
INSURED The Fair Credit Reporting Act and Medical Infor.

MUST BE SIGNED

Signature ol Writing Agant

mation Bureau Notices, Form 1453,

152

Client Asset Sheet

Name: Date of Bixth: / /
Name: Date of Birth: / /
Children: Date of Birth: / /

Date of Birth: / /

Date of Birth: / /

ASSETS
His Hers Jaint Indebt,
Market Value of Home $ $ $
Other Real Estate
Personal Property _
Checking Accounts
Savings Accounts %
%
C.D.'s, Money Market LY
Stock, Securities
Life Insurance
Retirement Plan Death Benefit
IRA LY
OTHER INFORMATION

His Salary Her Salary
Qther Income Rental Income

Consulting Inccme

Disability Insurance:

Self Employ. Income

Health Insurance:

Income need in the event of a premature death:

Do you have a Will:

Inheritance potantial:

OBJECTIVES

153

Estate Settlement Worksheet

Estimats of Cash Newded o Settie Your Estate

Witheut
Marrad Qeduetion

Estate Setilement
Worksheet

1. Groas Estate

2 Less Deos, Quustanding Taxes, ste.

3. Lass Probate and Administration Costs
4. Adjusted Grois Estate

5. Len Mariai Qeduction (b}

8. Lens Charitable Contributiens (e)

7

8.

9

Wit Bl
Marrtyl Qagustion (a)

Taxable Eszate

Tentative Federal Estate Tax)

Lesy Federai Tax Credit (d)
10. Approximate Federal Sszate Tax (o) '
11. Tomi Cagh Required (f)

lal The maritai deduction does not apply if there is ne surviving spouse,)

(i This amount can be sithar (1] the amount from line 4; [the aMOUNT NeCesIary 0 Dring ¢1t3te taxed 10 28r0 — Line 4
less $325.000 for 1982 SI75.000 for 1983; $325,000 for 1984; $400,000 tor 1988; $500.000 tor 1986 ind
$800.000 for 1987 and later yesrs or (3) any other ameunt.

(e} The estats must have suificient funds to maks the bequest

ld] Use $82,800 for 1982 $7%,200 for 1983: $96,300 for 1984; $121,800 for 198S; $155,300 for 1988 and $152.300
for 1987 andg lawmr vears.

(s} Inciuding maximum credit for sam inheritance taxes. The state taxes May exceed this credit so e total fvaersi and
Mate taxes may excaed this estimats.

) Sumaflines 2, 3 and 10,

Federsl Emmis Tax Aversge Probate and Administration Casts
(an progerty passing unaer the wil or Jv the (sws of intestacy)
amsale e % Tax i
T_. Tax nmmt ln-“ .- ml-ll m““"‘c‘::
$ 10,000 s 1,800 Fie § =.000 3 2300
8,000 34800 =2 $0.0c00 31500
40,000 4200 4 100,000 1,500
60,000 13.000 .] 200,000 9.7%0
80,000 14,200 3 300,000 14,500
100,000 3800 X 400,000 19,500
150,000 1.300 k-4 500,000 2% .¢00
250.000 70.800 34 600,000 30,000
500,000 154,800 7 700,000 38,000
730,000 148,300 k) 800.000 40,000
4,000,000 148 800 41 900.000 48,000
1,252,000 448 200 43 1.000.000 %0.000
1,200,000 $55.300 &
2.000.000 780,800 @ Nor soaicssie to groperty aasung Ov
1988 2.500.000 1,025 500 13 /s Iurvivarmig nor 0 roperty Jesing
1984 3.000.000 1.290.8300 57 (58] a¥ COAITEET (0 4 Named JaneNciary,
1983 3.500.000 1,575,200 81 (80] AOr [0 orogerty AN 1N PUSE 38Eming
1882 4,000,000 1.380.800 - ov carms af :me rruse.

Uooer limits of ertate tax Brackats will be reduced in vears 1982-1985. Oo Aot refer 10 tax Brackats below the current vear.
Tha tax Sracxets : parentheses wiil become sffective when the vear indexed is resched. For examaie. 0 1982 a taxaoie
estate of 53,500,000 will be in a §1% marginal tax Sracxet. 'n 1983, me same sze taxaole estate wiil Se in 2 60% marginal
Dracxet. In 1985, 4 taxapie estate of this size or anv taxabie estate excess of 52,500,000 wiil e 11 2 maximum tax
racxaet of S0%.

_ Comeiers tne feverse nge 1@ snow Estare Settiement =1m1f the oroer of Seath i reverted.

7

154

Cash Flow Statement

Cash Flow Statement
For the Year Ending

Cash Balance at Beginning of the Year
INFLOWS

Salaries after taxes

Dividends in cash

Interest received

TOTAL INFLOWS

QUTFLOWS
Savings and Investment

Fixed Outflows
Mortgage note payments

Autcmobile note payments
Insurance premiums

Total Pixed Outflows

Variable Outflows

Food
Transportation
Utilities/household exp.
Clothes and personal care
Recreation and vacations
Medical and dental care
Taxes ;
Miscellaneous

Total Variable Cutflows

I

TOTAL OUTFLOWS

Cash Balance at End of the Year

155

Prc Forma Cash Flow Statement

Pro Forma Cash Flow Statement
For the Quarter Ending

Cash balance at beginning of month $ $

INFLOWS
Salaries after taxes

Dividends in cash

Interest income

Borrowed Funds

TOTAL INFLOWS $ $

QUTFLOWS
Savings and Investments

Fixed Outflows
Mortgage ncte payment

Automobile note payment

Insurance premiums

Variable Cutflows
Food

Transportation

Household Expenses (inc. util.)

Clothes/perscnal care

Recreation and vacations

Medical and dental care

Credit card payments

Miscellaneous
TOTAL OUTFLOWS $ $
NET CASH POSITION $ $

Additional funds needed

Cash Balance at End of Month $ $ ‘

156

Statement of Financial Position

Statement of Financial Position

As of
ASSETS LIABILfTIES AND NET WORTH
Cash and Cash Eguivalents Liabilities

Cash and checking account Credit card balance
All-savers Certificate Automobile note bal.
Money Market Fund Mortgage note bal.

Total Cash/Cash Egquiv. Total Liabilities

Invested Assets Net Worth

Stocks and bonds
Life insurance cash value
Vested portion of pension

Total Invested Assets

Use Assets

Residence

Automobiles

Household furnishings
Clothing, jewelry, etc.

Total Use Assets

TOTAL ASSETS TOTAL LIABILITIES
- AND NET WORTH

157

Policy Record

WU ABYWINOS ADTI0S 375 NOIHLD LN IRTTIE IS NO O vy iN7 07 1w i 1 Hr s, oR/IT wenst

—_ —_— ——— _— —— - —Y — ——— — —— — - - — —_—
[[r— L] ‘ngy ey g LY] NN | ey u ¥ n d " ..\ g oy — - - T -
ey 3 - ——t——} = - .y] Sio|w]™ Wnoury oy b
_m - Y sby 1y " " -4 . Taw LT Ao) " L] LU Murrduion
X PRl T SR g =y Amyag . psanny
Awmmpeer [— weop _| L) oy by meg 7,
== R _— 1 Sevmamu I Yo B - T ERETERE iz i SR R — SEE D—

auoJ3y AMI0d

158

References

Chen, P.P.-S. "The entity-relationship model -- Toward a more unified view
of data.,® ACM Trans Database Syst. 1:1.1976

Hammer, M. and D. McLeod. "The semantic data model: A modelling mechanism
for data base applications.,” SIGMOD (ACM) Int. Conf. on Management of
Data. Austin, TX. May 31, June 1-2, 1978

Hammer, M. and D. McLeod. "The semantic data model: A conceptual data

modelling mechanism." In Advances ip data base management. Ed. T. Rullo.
Heyden. Philadelphia, PN. 1980

Hammer, M. and D. MclLeod. "Database description with SDM: A Semantic
Database Model." ACM Trans Database Syst. 6:3. 1981

Hsu, J. and N. Roussopoulas, "Database conceptual modelling." In Proc, Int.

Conf, Entitv-Relationship Approach to Systems Analysis and Design, (Los

10.

11.

12.

13.

14,

15.

Angeles, Calif., Dec.). Elsevier-North Holland, New York. 1979.

Hull, R. and C. Yap. "The format model: A theory of database
organization.” J. Assoc. Comput. Machinery. 31:3. 1984

Kreps, P. "Relativism and views in a conceptual data base model." Proec.
Workshop on Data Abstraction; Databases and Conceptual Models ACM Pingree
Park, CO, June 23-26, 1980

Kroenke, D, Database Processing: Fundamentals, Design, Implementation,
Second Edition. Science Research Associates, Inec. Chicago, IL. 1983

McLeod, D. "High level definition of abstract domains in a relational
database system." J. Comput. Languages. 2:3. 1977

McLeod, D. "A semantic database model and its associated structured user
interface." Tech. Rep., M.I.T. Lab. Computer Science. Cambridge, Mass.
1979

McLeod, D, and R. King. "Applying a semantic database model." In Progc,
Ant, Conf, Entitv-Relationship Approach to Systems Analvsis and Design,

(Los Angeles, Calif,, Dec.). Elsevier-North Holland, New York. 1979.
Sowa, J. Conceptual Structures. Addison-Wesley. Reading, Mass. 1984

Teorey, T. and J. Fry. "The logical record access approach to database
design." Comput. Surveys. 12:2. 1980

Unger, B. and P. Fisher. Personal communication., 1983
Warnier, D, and K. Orr. "PFart 1: Design methodology." In Structured

brogramming with Warnier-Opr diagrams. Byte Publications, Ine.,
Peterborough, NH. 1978

159

The Design of a Small Business Database using the
Semantic Database Model.

by

Jac F. Morgan

B.S., Kansas State University, 1975
M.S., Kansas State University, 1978

AN ABSTRACT OF A MASTER'S REPORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Scilence

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

The implementation of a database management system requires a
comprehensive understanding of the data used by an enterprise and of how the
data is used. The first step in database design is to gather information about
the data. The second step is to arrange this information into some kind of
meaningful representation of the enterprise which will guide the logical and
physical de=sign of the database.

This report describes the Semantic Database Model (SDM), a tool for
creating a conceptual model (meaningful representation) of the application
environment, The SDM will model the information requirements of a small
business, an insurance agency. The authors of the SDM have provided a
database definition language (DbDL) which is to be used to describe the
application environment. This report is written with the specific intent of
providing a tool to teach undergraduate and graduate students how to use the
SDM. Thus the DbDL is presented in the form of a user's manual. Suggested
steps in the application of the SDM are provided and the use of these steps is
demonstrated. The result of the application of these steps is an SDM schema
which describes most of the insurance agency. A brief section will describe a
method for converting the SDM model into a relation model of the enterprise. A

discussion of the problems encountered when applying the SDM is provided.

