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CHAPTER 1

INTRODUCTION

THE MASTER EQUATION IN THE DESCRIPTION OF PARTICULATE PROCESSES

M. E. Harr (1977) states:

"At first glance, the probabilistic approach will seem like a poor,

even overly sophisticated substitute for Newtonian determinism, but

subsequent development will reveal the striking fact that deterministic

solutions are nothing but special approximations of probabilistic

models"

A process or system has been traditionally analyzed based on a

continuum approach disregarding the existence of discrete elements in

the material system, e.g., particles, bubbles, droplets, or molecules.

In this approach the bulk properties of the system are obtained by

simply averaging over a large number of these elements. In a

particulate system or process, the particulate phase consists of

definitely distinct discrete elements neither macroscopic nor

microscopic in size; in other words, these elements are mesoscopic in

size. The system contains a finite and often a relatively smal 1 number

of particles, and the size and shape of the particles often vary

extensively. These characteristics negate any justification for

analyzing and modeling the system by resorting to the continuum

approach . More often than not a particulate system or process has been

observed to exhibit fluctuations in its behavior around that

corresponding to its bulk properties (see, e.g., Kapur et al. , 1977).



tn the light of an increasingly important role played by particulate

processes in the industry, a systematic or unified approach to analyze

and describe them is urgently needed; such an approach has not been

available hitherto.

The complete description of a physical or chemical process would

require a knowledge of its microscopic state and behavior as governed by

the fundamental laws of mechanics (see, e.g., Van Kampen , 1962). For a

particulate process or system, this is tantamount to a description of

the physical characteristics of an individual particle and its location

coordinates in the system, its motion utilizing the familiar

differential equations of mechanics based on Newton's laws, and the most

formidable, the changes in the physical characteristics of the particle

(for e.g., in grinding, the deformation of a particle brought about by

the interplay of various stress distributions within the particle).

Obviously, models of a particulate process based on the microscopic

equations are by no means simple to formulate and solve. On the other

hand, the process can be described in an approximate and incomplete

fashion by a relatively few "macroscopic variables". These variables

are self contained in the sense that they obey the phenomenological

equations, which are differential equations of a deterministic type,

i.e., the future values are determined from the initial ones; the

changes in the state take place according to a specific rate mechanism

(van Kampen, 1962)

.

Given the description of the microscopic, classical statistical

mechanics determines the macroscopic behavior that can be expected using

elements of probability theory. The employment of the tools of
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classical statistical mechanics has yielded useful results only in the

study of systems at equilibrium and comprising a very large number of

23
entities (-10 ) (see, e.g., Mayer and Mayer, 1940 and Huang, 1963).

For systems far from equilibrium or in which finite numbers of entities

exist, an alternate approach is therefore required.

"Dynamic" stochastic theory provides probabilistic techniques for

calculations based on a mesoscopic approach that resides in between the

macroscopic and microscopic descriptions - the mesoscopic approach is

more detailed than the macroscopic description, as it includes

fluctuations but is withdrawn from the rigor of the formulation and

solution of microscopic equations by means of the repeated randomness

assumption - a manifestation of the Markov assumption. One such

technique at an intermediate level between the microscopic and

macroscopic equations is the master equat ion , an equation for the

probability distribution of the various possible states of the system,

where its evolution is described as a stochastic process

.

The master equation describes the time dependence of the

probability distribution of a set of dynamic variables of the system in

continuous and discrete state space in an extremely simple form, in

contrast to the microscopic equations. In the case of a multivariate

master equation, in addition to the variances and covariances which

allow for an extended description of the system beyond the deterministic

mean value equations, the derivation of correlation functions for the

variables involved enables the determination of rate constants from

steady state data. Multivariate processes are encounted frequently in
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chemical engineering, for instance, chemical reaction involving more

than one species
, particulate processes involving particle size

distributions and in general , transport processes in phase space , such

as absorption-desorption problems. In simple cases, explicit analytical

solutions to the master equations exist. In general, however, such

solutions are extremely difficult, if not impossible. This is

expecially so when the behavior of non-linear systems is described. For

such systems, a systematic or rational approximation procedure can be

adopted to obtain the desired results. One such procedure is the so-

called system size expansion (see, e.g. , Van Kampen , 1976) . This

procedure also provides the answer to the question of how the

deterministic macroscopic equation emerges from the stochastic

description in terms of a master equation and al lows for the expression

of the changes in the system behavior in terms of intensive variables,

ameliorating scale-up and applicability. Such an approximation

procedure still yields a greater depth of insight into the system

behavior and is a simpler than the formulation and solution of the

microscopic equations

.

There are essentially two conceptual approaches to a stochastic

formulation of the system behavior and the establishment of a

corresponding master equation. In one approach, we pose, in an adhoc

manner, rate problems in terms of probability theory (stochastic theory

of birth and death processes , for instance ) on the basi s of intuitive

perception about the nature and mechanisms of the rate process without

reference to deterministic dynamics. The results are validated by

experimental observations. Examples of such a formulation can be found

1-4



in numerous works in chemistry, genetics, epidemology and ecology. In

the other approach, we consider the stochastic formulation as an

improvement over a deterministic formulation. For example, in analyzing

a chemical reactor, the stochastic theory presumably takes into account

the concentration fluctuations of reactants and products in small

subvolumes of the overall reactor volume and thus yields information on

the deviations of the reacting species about their deterministic mean

(Oppenheim et al . . 1977).

A particulate process or system lends itself to a stochastic

analysis due to the finite number of mesoscopic entities present in

volume el ements , random behavi or of the individual particles and the

complexities encountered in attempts to analyze on a particle scale

(particle motion and changes in physical characteristics). In this

study the first approach for formulating stochastic models described

above is employed to study the different particulate processes, chemical

attrition in fluidized beds, sieving operations, and comminution. The

master equation is formulated fdor the sieving and grinding processes.

The system size expansion method, one of the approximation procedures is

used to obtain a solution to the master equations that are otherwise not

amenable to explicit solutions. A model based on the well known

Migration and Illness-Death stochastic processes has been derived for

describing chemical attrition in fluidized beds and grinding by

abrasion. The applications of these models are illustrated through

numerical simulations. The fluctuations which can be expected in such

processes are also described. These yield valuable process
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characteristics important to the study and progress of process

development

.
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CHAPTER 2

STOCHASTIC ANALYSIS OF ATTRITION - A GENERAL CELL MODEL

INTRODUCTION

Attrition is frequently encountered in various process operations

such as f luidization, comminution and solids transport, either as a

desired feature or as an undesired behavior. In all such processes the

changes in the particle size distributions are random in nature (see,

e.g., Wei et al. , 1977, and Fan and Srivatsava, 1981); thus a stochastic

treatment yields valuable information on the fluctuations arising

thereof.

Attrition here denotes the size reduction of particles through

surface removal or abrasion leaving the particles in adjacent smaller

size intervals, where the particle size distribution is approximated as

a series of particle size intervals, as in practice. The particle

behavior, especially the transient evolution of the particle size dis-

tribution (e.g., bed loss during start up in a fluidized bed process),

influences significantly the product characteristics, operability,

economics, etc.

In this work a general attrition model is derived, which is suffi-

ciently flexible and applicable to various processes. The application

of the model to attrition in fluidized beds in the presence of chemical

reaction, namely, chemical attrition, and to size reduction by abrasion

is described. A numerical example of chemical attrition in a fluidized

bed is provided to illustrate the application.



MODEL DESCRIPTION AND DERIVATION

The system modeled here comprises a cell coupled to multiple inlets

and outlets (see Figure 1). The particle sizes are distributed through

s+1 size ranges or intervals, or simply s+1 sizes, beginning with the

largest size (based on particle diameter or equivalent) and ending with

the (s+l)-th sink interval or fines consisting of all particles below a

certain size. Particle disintegration is assumed to occur only in the

cell, and particles undergo attrition in the mode as shown in Figure 2.

A particle in the i-th size range is reduced to the (i+l)-th size range

at any instant and simultaneously generates a number of fines or par-

ticles belonging to the sink interval; the number produced is related to

the mass difference between the sizes involved.

System Description in the Absence of Solids Inflow

Consider a particle population existing in s + 1 states or size

ranges in the cell; the inflow of particles to the cell is disregarded

here. A particle in the size range i is reduced through attrition into

that in size range j where j 1+1, i+2 ( ,.,a+l, remains in the same size

range, or exits from the cell into any of the r outlet streams.

Transitions between consecutive size interva Is are governed by inten-

sities of transition defined as follows:

u. At + o(At) = probability that a particle in size interval

i, or of size i, at time t will be of size j

at time t+At for j=i+l for all i=l,2,...,s

within the cell,
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|l,,At -i- o(At} = probability that a particle of size i within

the cell at time t will exit into the k-th

outlet stream at time t+At for all

i=l,2, . . . ,s + l and k»l,2, . .
. ,r

o(At) is a function of At such that lim '
. .

'

, the inclusion of this
At-*0

At

term implies that the probability of more than a single transition or

other events occurring in the time interval At is o{At). Although the

derivation can be modified to accomodate a time-dependency of the tran-

sition intensities (i.e., u.. and u ,, as functions of time t), they areU jk

assumed to be independent of time t. i.e., the process is assumed to be

time homogeneous. Also, the probability that a particle in size inter-

val i at time t will remain in the same size interval within the cell at

time t+At for all i=l ,2 , . .
. , s+1 , is 1+u . , At+o(At ) , where u., is defined

, for all 1=4,2,
1,1+1

k-1
lk

satisfying the condition that the sum of the probabilities of transition

from state i to all other states including itself is unity, and

r

"s+1, s+1
=

"
,
^s+l.k

k=l

Note that subscripts i or j refers to any of states 1,2 s + 1 within

the cell and subscript k refers to any of outlet streams 1,2 r. The

intensity u.. < for all 1-1,2 s + 1; in the case of a batch process.

for which the outflow is also absent, we have u., =0 for all k=l,2 r,
lk
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and u since the sink interval is an absorbing state (see,
s+1, s+1 & l

e.g., Chiang, 1980). The transition probabilities are defined in the

following manner.

p..(T,t) = probability that a particle of size i at time T

will be that of size j at time t(t>T) within the

cell for all 1, j-1,2 s+1,

q, .. (T,t) = probability that a particle of size i at time T
1JK

within the cell will be that of size j when exit-

ing from the cell through outlet stream k by time

t for all i,j = l,2 s+1 and k-1,2 r

The initial conditions satisfied by these probabilities are:

PU (T,T> - 1

and

p. .(T,r) = 0, i,j = 1,2 s + 1; i*j

q. .. (t,t) = 0, i,j = 1,2 s + 1; k-1,2 r.
1 JK

In the case of attrition, the following conditions hold;

p, .(T,t) =
lj

and

q. .. (T,t) - 0, for all i>j and t
1 JK

Assuming that the process under consideration possesses a Markovian

nature, explicit formulae for the transition probabilities can be

derived based on the transition intensities (see APPENDIX A). Being
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Markovian and time homogeneous, the transition probabilities of the

process depend only on the time difference t-r and not on t or r

separately; hence letting T=0 and t represent the time interval length,

s + 1 A! .(p ) p t

11 Pm "P„m n
n=l
n*m

S + 1 A
ni <PJ T iJP> P.*

and

1-1,2 s + 1 and j=i,i+l s + 1

Pjj(O.t) = 0, j<i

p , m • 1,2 s+1 are the eigenvalues obtained as the roots of the

characteristic equation I pi -VI =0, in which V is the transpose of

the matrix whose elements are the transition intensities u..; A! .(p ) is
ij U m'

the (i.j)th cofactor of A' (p ) = |pl -VI. The matrix T(p) is formed

from the eigen vectors T (p) ,T (p) T
+
.(p); each eigenvector con-

tains elements of the corresponding columns of the adjoint matrix A(p )

m

" If I - V). The exit transition probabilities q.. (O.t) are obtained
m i jk

from p (o.t) (see, e.g., r.hiang, 1980). A particle of size i at time
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t=0 may enter outlet stream k either directly from size i or after being

reduced to a smaller size j at any time T prior to t. Thus,

t

qljk
(0,t) -

J p. .(0,T)M
jk

dT (2)

This expression is integrated to yield

s+1 A' . ,(p )
p
m
t

,

n=l
arm

3 + 1 T. (p) V .

q. (0,t) = 2 A .(p )
J" - 2 i u

, (3b)
ijk

m=1
pi nt lT(p)l p_ jk'

i"l,2 s+1, j = i,i + l s + 1 and k=l,2,.

and

q. (0,t) = 0, for all j<i
1 JK

A particle may exist in any of the size ranges within the cell at any

time t, or it may exit through any of the outlet streams by time t. For

a particle of size i initially, therefore,

s+1 r s+l

S p. ,(0,t) + Z Z q (0,t) = 1 (4)
j=i 1J

k=l j = i
1Jk

To obtain the particle size distribution in the system, it is

necessary to define the following quantities.
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X (t) random variable representing the number of particles of

size j in the cell at time t, which were of size i

initially in the cell at time t=0

Y (t) » random variable representing the number of particles of
I JK

size j exited from the cell through outlet stream k by

time t, which were of size i initially in the cell at

time t=0

X.(t) = random variable representing the number of particles of

size j in the cell at time t arising from the initial

particle population

Y. (t) • random variable representing the number of particles of
J K

size j exited from the cell through outlet stream k by

time t.

Consider an initial particle size distribution m(0), i.e., m(0)

[m.(0), i e (1,2,. . .,3+1)] where m (0) is the number of size i particles

existing within the cell at time t=0. At any time t, these particles

appear in any of the j size intervals within the cell or they exit

through any of the k outlet streams by time t. Hence,

s + 1 r s + 1

m.(0) = Z X (t) + Z Z Y (t) (5)

j = l k=l j=i

Assuming that each transition or outcome is independent of the other,

i.e., the particles behave in a stochastically independent manner, we

obtain a multinomial distribution given by

Prob [X. .=x. ., X. . =x.
, ,,...X. =x. ; Y. . =y. .i,i l.i i,i+l 1,1+1 i,s+l i.s+1 i.i.l y i,i,l

Y =v Y =v • Y =v
l.i+l.l "1,1+1,1' i,s+l,l '1,8+1,1 i,i,2 i,i,2'
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Y =y ,...;...; Y =v
1,1+1,2 l,i+l,2 1,8+1,2 1,8+1,2

...:.. .Y. . =y. . ;Y . =y , Y =v 1

i,i, r i,i, r i,i+l i,i+l,r i,s+l,r i,s+l,r

m
. (0 ) ! s+1 x. . r s+1 y

.

n (p..(0,t)) 1J
IT IT (q...(0,t))

ljk
(6)s + 1 r s + 1 «»ir -.*#. - - miJk

n x. . n n y. .,

J K * J_1

j-i
1j

k=i j=i
ljk

where the lower case letters of the random variables refer to the values

they assume such that

s+1 r s+1
m (0) = £ x + Z S y (7)

j=i 1J k=l j=i
1Jk

Here any symbol with a subscript 's + 1' refers to the fines produced from

the particles in a respective size range through successive "core'

attrition and not to the fines generated by attrition between consecu-

tive size ranges.

The expected values and variances of various quantities and the

covariances of pairs of these quantities can be obtained through bino-

mial consideration (see, e.g., Mood et al. , 1974):

E[X...(t)] = m.(0)
PlJ

(0,t) (8)

Var[X. .(t)] = i.(0)p..(O,t)(l-p..(0,t)) (9)

E[Y.
jk

(t)] = m.(0)q.
jk

(0,t) (10)

Var[Y.
jk

(t)] = m.(0)q.
jk

(0,t)(l-q.
jk

(0,t)) (11)

Cov[X...(t),X.
d
(t)] = - m.(0)

PiJ
(0,t)p.

d
(0,t) (12)

Cov[Y
ijk

(t)
'

Y
idf

(t)] - -V°> OiW'^idf 10 ' 1
'

(13)

Cov[Y.
Jk

(t), Y.
jf

(t)] = -m.(0)q.
jk

(0,t)q (0,t), k*f (14)
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and

cov[x..(t). y.
dk

(t)] . - m .(o) P . .(o,t, q .

dk
(o.t)

i = l,2, . j ,d=i , i + 1 s+l,j*d; k=l,2,

(15)

E[X.(t)] - Z m.(0)p. ,(0,t)
J i=l

1 1J
(16)

VartXjft)] E..(0|p..(0,t|(l-Pij |O,t)| (17)

E[Y (t)] = Z m (0)q (0,t)
JK . oj 1 1JK

(18)

Var[Y..(t)] = Z m.(0)q. .. (0,t)(l-q. .. (0,t)),
jk ijk

v

'ijk'
(19)

i = l

j = l,2 s

The fines present at any time t, arise from successive 'core'

attrition of larger particles, initial amount of fines present in the

cell or when particles of a certain size are reduced to the next size

range. The amount of fines generated either from core attrition or as

'by product 1 by any time t is represented as Xg (t) which is obtained

through T-ass balance:

*!>> - Z m.(0)w.- Z X.(t)w. - Z Z Y ., (t)w.
i = l

(20)

where it is assumed that the particles in size range i have a mean

weight of w. . The accumulation of fines is cumulative. The amount of

fines produced is retained as a quantity here and not a number. The

number of fines can be obtained as the ratio of the amount to a
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prescribed mean weight, w . It is possible to obtain the probability

distribution of the fines conditional on the values of other quantities,

but it is more useful to deduce the moments. The expected value and the

variance of the amount of fines generated by time t are given by the

following relations:

E[X^(t)] Z m. (0)w. - E E[X.(t)]w.
1

j=l J J
i = l

- Z EE[Y (t)]w
k-1 j = i

JK J
(21)

Var[X^(t>]

Z Var[X.(t)lw
lj-1 J J

s s s

E Z E Cov[X. .(t),X. ,(t)]w.w.
.

,
. ij id ' j d

1=1 j = i d = i
J J

s s s r

E E E E Cov[X..(t). Y... (t)]w.w.
1-1 J-i d=i k-1 1J ldk J d

E E E E Z Cov[Y (t), Y..
f
(t)]w.w,

1-1 j=i d=i k-1 f = l
ljk ldf J d

j-ri

s s r r

E E E E Cov[Y (t), Y (t)Jw'
1=1 J-I k-1 f-1

1JK 1Jt J

k-f

E E Var[Y (t)]w
k=l j=l

Jk J
(22)
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The quantities E[X .(t)] and Var[X ,(t)] are obtained as continuous

functions of t and are cumulative; the time derivatives of these quan-

tities yield the mean and variance of the rate of fines generated at any

instant t. Thus, a random amount of fines is generated at each instant

t which either remains within the cell or exits through any of the

outlet streams.

A portion of the fines present initially in the cell may remain

within at time t depending on the value of p (0,t). This amount,
s+1 , s+1

together with the generated fines that remain in the cell, constitutes

the total amount of fines present at time t, represented by X (t).
s + 1

The contribution from the initial population of fines can be obtained

from equations (8) and (9). The amount of generated fines remaining in

the cell is obtained from the random number of fines generated at each

instant and the transition probability. For instance, the expected

value of the amount of fines remaining in the cell at time t, originat-

ing from a random quantity of fines generated in the interval (T,T+dT)

between and t, is

[dT< E r xs>»i>l
t=T

dT
] "s+i.s+i

1^'

Hence, the expected value of the total amount of generated fines is

obtained by integrating the preceding expression between the limits

and t. The expression for the corresponding variance will include both

the mean and variance of the random quantity of fines generated, X (t)
s+1
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(see, APPENDIX B) . For the total amount of fines in the cell at any

time t, X ,(t), we therefore, obtain
s+1

E[X It)] = m ,(0)p ,
,(0,t)w

,s + 1 s + 1 s + 1, s+1 s+1

!js E[C ,T| il'stl
,
st ,'

r '" dT < 23 »

Var[X
s+1

(t)]

m ,(0)p ,
,(0.t)(l - p ,

,(0,t))w
2

,
s+1 s+1, s+1 s+1, s+1 s+1

/ Br«»JStT>j]Vl..+J«T ' t)(1-».*1 ..+l<
T ' t»*

,t

1 la9
Var t Xs!l<

T)^Ps + l,s + l
(T ' t))2dT (24 >

For the amount of fines leaving the cell through outlet stream k by time

t, Y (t), we obtain in a similar fashion:
s+l,k

E[Y
s + l,k

(t,] = m
s + l

|0)Vl.s + l.k
(0 - t,W

s + l

+ J^ E [ xs+>>]k+i,s+i.k (T
'
t)dT

<

25 >

Var[Ys+lk (t)]

m
s+l

(0)<
's + l.s + l,k

(0 ' t,(1 -
<3

s + l,s + l,k
(0 ' t))w

s + l

! L7<;' r| i]v 1 , s.i. k
,T ' t ' (i -«stl , stl , k

(^)idT

f& Var[Xf+> , ]K+l,s+l.k (T ' t >> 2dT < 26 >
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Hence, from a known initial particle size distribution within the cell,

the evolution of the particle size distribution can be obtained from

these quantities. Similarly, the size distribution of the particles

exiting through each outlet stream by time t can be obtained from the

above quantities.

Inclusion of Solids Inflow in System Description

The inflow to the cell is considered here as random with a known

distribution or moments which may vary among the i inlets. B,.(t) is

defined as a random variable representing the rate of particles of size

i entering the cell through inlet stream i at time t. To analyze the

effects of the inflow, the following random variables are defined.

B (0,t) = random variable representing the total number of par-

ticles of size i that have entered the cell through

inlet stream 1 by time t.

B . . (t) = random variable representing the total number of par-

ticles of size i entering the cell through inlet stream

i at time t=0, that have resulted in particles of size j

and exited through outlet stream k by time t,

B,. .(t) • random variable representing the number of particles of

size i entering the cell through inlet stream i at time

t=0, that have resulted in particles of size j within

the cell at time t,

B (t) = random variable representing the total number of par-

ticles entering through inlet stream 1 at time t=0 , that

2-13



have resulted in particles of size j within the cell at

time t.

B
iik'

t '
= random variable representing the total number of par-

ticles entering the cell through inlet stream i at time

t=o, that have resulted in particles of size j and

exited through outlet stream k by time t.

It can be seen that

j

B
li

(t) = Z B
.ii

(t) (27)
* J

i = i
* 1J

B
ljk

(t
» " £ B

iijk
(t) (28 >

Any particle entering the cell can undergo a reduction in size,

exit from the cell or remain within it during time t. Assuming these

events to occur independently, the various statistical quantities for

the inflow are derived in a fashion similar to the derivation of equa-

tions (23) through (26) (see APPENDIX B)

.

/

/
X

EtB
lij

(t)] =
I

E[B^(T)]p...(T,t)dT (29)

Var[B (t)] = [ E|y"(T)]p (r,t)(l-p (r,t))dr
»-l J _ J XI 1 J 1

J

+ | Var[B^(T)](p. .(r,t))
2
dT) ) (30)

t
Cov[Bj

i
(0,t),B

llj
(t)] =

J
Var[BJJ(T)]p .(T,t)dT (31)
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f
Cov[Bnj (t),B

Jld
(t)] = -J E[B^(T)] Pij (T,t)p

ld
(T.t)dT

+ { Var[BJ"(r) Plj (T,t)p.
d
(T,t)dT (32)

EtB
lijK

(t)1 •

o
J

t

B[B)5(T)]q
1Jk

(r,t)dr

VartB
lljk

(t>] .

o
J

t

E[B^(r) ]q ..
k
(r,t)(l-q .

jk
(r,t))dr

+
J

Var [BJ"(T)](q. jk
(T.t))

2
dT

Cov[B
11Jk

(t),B
lidf

(t)]

-jEtB^(T) ]q k
(r,t )q .

df
(T,t)dT

Cov[B
iiJk

(t).B
lljf

(t)]

,t

(33)

(34)

r
Cov[B^(0,t),B

lljk
(t)] =

J
Var[B™(T)]q (T,t)dT (35)

J
Var[B^(T)q.

Jf
(r,t)q.

df
(T,t)dT (36)

^ B[BjJ(T)],
1Jk

(T.t),
1Jf

(T.t)dr

t

+
J
Var[B*"(T)q (T,t)q (T.t)dT, k*f

(37)

Cov[B
J
..(t),B

i
.

dk
(t)]
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jE[B^(T)]p (T.t)q
Idk

(T,t)dT

J
Var[B™(T)p.

j

<T.t)q
ldk

(T,t)dT, (38)f
i = 1.2 s; j ,d=i .i + 1 s+l;j*d; 1-1,2 b; k=l,2 r

In the case of fines, the results similar to equations (21) through (26)

are obtained as

:

![B
i

e

s + l
(t)1 = Z w

i I
E [ B

ji<
T )]dT - S w. «[»

JJ
(t)]

s r
- E E w.E[B (t)J (39)

j=l k=l J 1 J k

Var[B
!

e

s + i
(tn

s
2 r •

s

Z w.
j Var[Bj"(T)]dT + E Var[B (t)]w

2

i = l j = i
J J

s s

+ E E Cov[B*
n
(0,t), B,. ,(t)]w.w.

i=l j=i
J1 ilJ x J

s s s

^ E E E Cov[B (t), B (t)]w w
l-l J-i d-i 11J ,ld

•>
d

j-d

s s r

+ S E E Cov[B™(t). B (t)]w.w.
1=1 J-i k=l " ilJk 2 J

s s r r

* E E E E Cov[B*"(t), B.. .„(t)]w
2

l=i j-i k-1 j-i
J1 ,1Jt J

k*f
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> Z Z Z 2 c °v lB
111k

(t), B (t)]w w
1-1 j = i d-1 k=l " JK ildk J d

s s s r

hZ Z Z Z Cov[B (t). B (t)Jw w
1=1 J-l d-1 k=l

ilJ lldk J d

j«"d

+ Z Z Var[B (t)]w
j=l k=l

,JK J
(40)

E[B
l, S + 1

(t)1 * Vl J
E t B

i

n

s.l
(T)]Vl,s + l

(^ t)dT

) (41)

»t[B
+1

<t)]

Vl J
E [ B

i

n

s +1
,r »]Ps + 1 ,s + l

(T ' t »< 1 -P
s + l,s + l

(T ' t " dT

+ Vl I
tvar[B

i

n

s + 1
(T,1(p

s + l.s.l
lT '

t),2dT

+

J |E[C l4st l l8t ,
,r ' t|,1-^, !t l

l"»*

+ J
t

(l?
vartC+i

(T>
3
(ps+i, s+i

(T ' t))2dT 42)

where B (t) represents the rate of inflow of fines through inlet

stream i. Similarly, inclusion of the inflow of fines yields

E[B
i, s+ i.k

(t)1 / ElC. |r|lVu*./' t|dT

2-17



, f ,

r
4-E[B?

en
.(T'

1

J tdT~
tB

I ) a+l
(T)JVl.s+1 .k

(T ' t)dr (43 »

VartB
l.s + i.k

(t)]

w
s + l J

8'Cl (T)1Vl,8«,k(T ' t » (1^+l, !+l,k
(T ' t"dr

+ Vl „f'*pI»i?^l«T»t«t+l.l+l.Ii«T " t»"*

/[sE[B
!?s + l

(T)
]

(V 1 ,s+1 ,k
(T ' t)(1-Vl,s + l, 1<

(T
'
t, » dT

J Bf^[»K*i<T)](vi..*i.ktT ' t »>
,
*r (44 »

/
-

/•

Thus, for the system with inflow, attrition in the cell and outflow, the

equations for the total number of particles of various sizes and the

amount of fines are obtained as:

E[X.
t0t

(t)] = E[X (t)] + Z E[B (t)] (45)
J J

i=l J

b

Var[X ° (t)] = Var[X.(t)] + Z Var[B (t)] (46)

E[Y
Jk

t0t
(t)] = B[Y

jk
(t)] S E[B

Jjk
(t)] (47)

b

Var[Y
Jk

° (t)] = Var[Y
jk

(t)] + Z Var[B (t)], (48)

j = 1,2 s + 1; k=l,2 r

The superscript "tot" refers to the entire system.
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APPLICATIONS

The mechanics of size reduction by abrasion or attrition are ob-

served frequently in many particulate processes. In the following,

applications of the general model to two specific areas are outlined.

Chemical Attrition in Fluidization

Attrition in fluidized beds can be classified into two modes,

mechanical attrition, arising from the physical impact of collisions

between particles or with the bed walls, and chemical attrition, occur-

ring due to combustion or reaction that tends to corrode the surface of

the particulate material (see, e.g., Chirone et al. , 1985). It has been

observed (see, e.g., Doheim et §_1 . , 1976) that depending on the

properties of the material undergoing combustion, chemical attrition may

be even an order of magnitude higher than purely mechanical attrition,

i.e., chemical attrition predominates when a reaction occurs in the bed.

The present general cell model is applicable to such systems where

chemical attrition predominates. An alternative treatment is required

when studying mechanical attrition dealing with interparticle and

particle-wall collisions.

By considering that the particles undergo abrasion as chemical

reaction proceeds, akin to the shrinking particle model, the transition

intensities pertaining to the size degradation assume the general form

(see, e.g.. Lin et al. . 1980. and Merrick and Highley, 1974)

U
i, i+ i =VW < 49 >
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where U is the superficial gas velocity, U ., the minimum f luidization
r mi

velocity and /3. , a parameter which is specific to the particle size and

includes the material and bed properties. The exit transition

intensities y depend on the flow pattern. Considering the bed as a

continuous stirred tank reactor (CSTR), it may be assumed that the

particles have equal probabilities of leaving the bed. The exit transi-

tion intensities, u .. , may then be evaluated as w/W, where w is the

outflow and W, the total particle bed weight. Entrainment streams

rarely contain large sized particles and any empirical correlation,

yielding the entrainment rate as a function of particle size, can be

utilized in determining the form of the exit transition intensity.

The distribution of particle inflow rates for each size is

required. If particles are fed from a hopper, this distribution may be

regarded as Poisson. The distribution of the inflow rate from a recycle

stream or from another bed can be evaluated by applying the general

model to that particular bed. The rate of particles of each size enter-

ing the bed through a feed stream (from a continuous classifier, for

instance) may be described by an appropriate normal distribution.

Particle Size Reduction by Abrasion

Three distinct breakage mechanisms can be considered to prevail

during the size reduction operations in mineral processing. Particles

in a ball mill, for instance, may undergo abrasion, i.e., the surface of

the particle is constantly abraded generating fines; particles may

undergo chipping, especially if irregular in shape or the particles may
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break into two or more fragments (see, e.g., Austin and Barahona , 1986).

The size reduction processes are known to display a stochastic nature

and numerous attempts have been made to study the random disintegration

of particles during the size reduction operation (see, e.g., Rose, 1957,

and Auer, 1978). The present model can be applied to systems where the

mode of particle disintegration is predominantly abrasion.

By assuming that each particle has a certain probability of under-

going abrasion in a small time interval, independent of the other

particles, the transition intensities for the change in state (size) of

particles from one size to the next smaller size can be obtained in a

general form as

u. . , * k.S. (50)1,1+1 l l
l '

where S. is the rate of selection for abrasion and c is a constant
l l

dependent on material and mill properties (see, e.g., Kl Impel and

Austin, 1984). It has been observed that larger particles tend to

abrade more than smaller ones; this can be stated as u > It ... In

considering a continuous flow system, the residence time of the solids

needs to be included. Different flow models have been applied to

describe the effect of material flow on the product size distribution

(see, e.g., Austin et a_l., 1983). The finite stage transport model has

been found adequate in describing the flow of solids in a mill (see,

e.g., Rogers and Gardner, 1979). The exit transition intensities, u ., ,

Jk

can be derived easily based on the model utilized to describe the solids

flow.
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NUMERICAL SIMULATION

Multistage fluidized bed operations involving reactions are com-

monly encountered in the chemical process industry (see, e.g., Kunii and

Levenspiel, 1969). The application of the model is illustrated with an

example of a two-stage f luidized-bed combustion operation as shown in

Figure 3. Particles of two size ranges denoted by 1 and 2 with the mean

weights of 500 and 250 mg, respectively, are present in the two beds

initially in the absence of fines, denoted by size range 3. The beds

are allowed to attain the incipient fluidization state until which time

no attrition is assumed to occur. Solids of the two sizes enter the

first bed at a Poisson rate from a hopper. The outflow of the first bed

serves as the feed to the second. Complete mixing of the solids in each

bed and independence of particle size are assumed in deriving values for

the exit transition intensities. Entrainment of the fines is assumed to

occur in both beds. The transition intensities for the first bed as-

sumes the following values:

. j 1 2 3

1 -0.07 0.05
2 -0.05 0.03
3 -0.06

k l

Vjk

0.02
0.02
0.02 0.04

The second bed is assumed to be operated under such conditions that the

transition intensities are the same as bed 1 for size 1 and size 2

particles while all fines are entrained immediately. Thus, the transi-

tion intensities for the second bed assume the following values:
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1 -0.07 0.05

ij
= 2

3

-0.05 0.03
-1.0

J
jk

1 0.02
- 2 0.02

3 1.0

The initial population sizes and inflow rates are given by

mj(0) - 1000; m
2
(0) = 1000: ra

3
(0) * 0;

m (0) - 2000; m
2

( ' " 200°; «>~(0) » 0;

E[Bjj
n
(T)] = 100 time"

1
; Var[Bj*

n
(T)] = 100 time"

1
.

where the superscript indicates bed number. The transition probabil-

ities, p..(0,t) and q., (0,t), are derived from the transition

intensities as detailed previously. These are listed in Tables 1 and 2.

The feed to the second bed is calculated from the evolution of the

particle size distribution in the first bed. The fines generated from

attrition are obtained in terms of mass; the corresponding number can be

obtained from the ratio of the mass to the mean weight. The number of

particles exiting a bed is cumulative; it is the number of particles

leaving the bed by time t. These values and the temporal changes in the

particle populations of the different sizes in the beds are plotted in

Figures 4 through 27. The values of the various quantities involving

fines, i.e., E[Xg(t)], Var[X
3
(t)]. E[Y

31
(t)], E[B

lg
(t)], etc. are
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plotted in units of mass. The amount of fines in the second bed result-

ing from inflow and attrition is presented in Figures 22 and 27 as the

cumulative amount entrained by time t.

CONCLUSIONS

The general cell model describes the stochastic nature of attri-

tion, providing estimates of the fluctuations arising thereof. The

modularity of the model enhances its application to continuous and

multiple flow systems. The numerical example indicates that larger

fluctuations can be expected in the population of the smaller particles

into which the larger or coarser particles abrade. Fluctuations in the

inflow are magnified to a considerable extent; it may be as high as 10

to 15 percent by weight in the case of fines. This has a great impact

on elutriation studies.

The probabilistic considerations involved in deriving the model

also indicate that the fluctuations in the populations of various sizes

decrease as the intensity of attrition for a given size tends to unity;

this corresponds to the deterministic limit. The probabilities of

transition of particles between states have been derived from binomial

consideration; this also indicates that the probability distribution of

the size of the particle population approaches the Poisson distribution

assymptotically as the distribution evolves. That is, the mean and the

variance of the number of particles coincide, implying that the standard

deviation is of the order of the square root of the particle population

size. This may or may not be significant depending on the system under

study. For instance, the fluctuations in the amount of fines produced

within the bed in fluidlzation may not be significant with respect to
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the bed size. This may not greatly affect the bed characteristics but

is important when controlling the emission of fines from the bed under

environmental consideration.
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NOTATION

B random variable representing the rate of particles entering the
cell

b number of inlet streams

d subscript referring to size ranges within the cell

f subscript referring to outlet streams

1 subscript referring to size ranges within the cell

j subscript referring to size ranges within the cell or in outlet
streams

k subscript referring to outlet streams

1 subscript referring to inlet streams

p probability referring to transitions between size ranges within
the cell

q probability referring to transitions between size ranges within
the cell

r number of outlet streams

S intensity of selection for abrasion, time

s number of size ranges excluding fines

s+1 the size range of fines

t time

w mean weight of a size range

X random variable referring to particle population size within the
cell

Y random variable referring to particle population size in the
outlet streams

Greek Letters

£ size specific constant in the transition intensity of attrition in

fluidized beds, length

* size specific constant in the transition intensity of abrasion
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fi transition intensity of exit from the nell, time

intensity of transition between size ranges within the cell,

time
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APPENDIX A. DERIVATION OF TRANSITION PROBABILITIES

Consider a time interval (T,t) and a fixed time § between T and t. The

Markovian assumption implies that the future transitions of the particle are

independent of the past transitions. It follows, then, that the probability

that a particle of size i will be of size c at time £ and is of size j at

time t is

P- (T,?)p .(?,t), 1-1,

a

s;
ic CJ

c, j = i , i + 1 s+1

Since the events corresponding to that described above are mutually ex-

clusive, for different c, we have

s + 1

p (T.t) = £ p . (r,?)p ,(?,t) (Al)
ij

c=1
ic cj

for all 1=1,2 s and j=i , i+1, . .
.
,s+l

The above equation is a form of the Chapman-Kolmogorov equation describing a

Markov process. The differential equations for p..(r,t) are obtained by

considering two contiguous time intervals (T,t) and (t,t+At), and

p.,(T,t+At). Using the definitions of the transition intensities, we

obtain:

p..(T,t+At) = p..(T,t)(l+U..At) + o(At) (A2)

p.jfr.t+At) = P1J
tT,t)0

i
.At

+ p (T,t)(l+U. At) + o(At) (A3)

where any other kind of transitions (more than one transition during the

interval (t.t+At) occurs with a probability of the order of o(At).

Rearranging the above equations to form difference quotients and taking the

limit At -* 0, we obtain a system of linear first order differential equa-

tion for the probability balance,
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K PU (T,t) '
c! x

P
ic

(T ' t)U
cj

for all i=] ,2, . . . ,s+l ;
j=c.c+l , . . . ,s+l

The transition intensities can be represented in matrix form as

U
ll °12 ° ° ° °

22 23

(A-4)

u u
s ,s s.s+1

u ,
S+1, S+1 J

The solution can be obtained in terms of the eigenvalues p ,p , . . . ,p , p ^ ,

which are the roots of the characteristic equation I pi - V* I =0, assuming a

non-trivial solution to exist for the given problem.

The solution for the case of distinct eignenvalues is (see, e.g.

Chiang, 1980):

p(t-r)
s + 1 A! .(P )e
r- l j m

Py(T.t) -
g+1

m=l
(A5a)

11 {P.-PJm n
n=l
n*m

p_(t-T)
s + 1 A .(pJT. (p)e

Pj.(T.t) = Z
J

m=l

pi n j

IT(p)l
(A5b)
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where V is the transpose of V, A'..(p ) is the (j,i)th cofactor of the
lj m

characteristic matrix of V, for p=p , A(p ) = (p I-V) , and T. (p) is the
m mm jm

cofactor of the non-singular matrixw
T(P) -

A (p )

V+l'V Vi (/W
The second equation can be compactly represented in matrix notation as

-1,
P(T,t) = T(p)E(t-r)T (p)

where E(t-T) is a diagonal matrix

e ^ (t -T)

(A6)

E(t-T)
P
2
(t-T)

P
s + l

(t -T)
. e

Solutions exist for the case of mulitiple eigenvalues, which are discussed

elsewhere (see, e.g., Chiang, 1980).
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APPENDIX B. DERIVATION OF RELATIONS TO HANDLE RANDOM INITIAL DISTRIBUTION

AND RANDOM INFLOW OF PARTICLES

Considering ra.(O) particles of size i initially in the cell leads to

the expressions for the mean and variance of the various (X..(t)} and

{Yj.^ft)} [see equations (8) through (11) in the text]. Let us denote the

random number of particles of size i present in the cell initially by M.(0).

Moreover, the probability distribution of M.(0) or its moments are assumed

to be known. Then, the expressions for the expected value and variance for

{X (t)} or {Y (t)> are obtained as follows:

Consider a random number of particles of a single size present ini-

tially with known mean and variance, E[M.(0)] and Var[M, (0)], respectively.

These particles distribute themselves among the i,i+l s+1 ; k=l,2,...,r

states at any time t. Let X and Y be random variables. Furthermore let

E[X1Y] be a function of the random variable X whose value at Y=y is

E[XIY=y]. Note that E[XIY] is itself a random variable and from the

property of conditional expectation

E[X] - E[E[XIY]] (Bl)

Applying the above relationship to X..(t), Y.. (t), and M.(0)
1 J i Jk i

E[X..(t)] = E[E[X...(t)IM.(0)]] (B2)

E[Y
ljk

U)J = E[E[Y.
jk

(t)IM.(0)]] (B3)

The derivation remains essentially the same with respect to (X..(t)) or

(Y.^Ct)}. Hence, in the following, only <X..(t)> is considered but the

final expressions for both {X..(t)> and (Y. (t)} are provided.
i J i Jk

EtX.ytJIM.IO)] - MjIOJp (0,t) (B4)
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Thus,

E[E[X (tJIM^O)]] = E[M
1
(0)]p..(0.t) (85)

E[X.j(t)] = E[M.(0)] Pij (0,t) (B6)

By definition, the expression for the variance is obtained as:

VartX.jft)] = E[(X..(t))
2
]-(E[X..(t)])

2
(B7)

where each of the R.H.S. terms is conditional on M.(0). Using equation

(Bl)

E[(X.j(t))
2

] = B[E[<X
J
(t))

2
1M

1
(0)]] (B8)

From the definition of moments of a random variable, Var[Y] E[Y ]
-

2
(E[Y])

,
where Y is any random variable. Applying this relation to the

R.H.S. term in equation (B8) yields

EKX.jft))
2

] = E[M.(O)]p..(0,t)(l-Pi .(0,t)>

+ E[(M.(0))
2
](p...(0,t))

2
(B9)

On substitution into equation (B7) and further reduction, the expression for

Var[X..(t)] is obtained as

VarlX^ft)] = E[M
1
(0)]p

1
(O.tXl-PjJO.t))

+ Var[M.(0)]( Plj (0,t))
2

(BIO)

The covariance of two random variables X and Y can be expressed as

Cov[X,Y] = E[XY] - E[X]E[Y] (Bll)

The covariance of X and Y is a measure of a linear relationship of X and Y

in the sense that it will be positive when (X-E[X]) and (Y-E[Y] ) assume the
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same sign with high probability. It will be negative when (X-E[X]) and (Y-

E[X]) assume opposite signs with high probability. In the physical sense,

the covariance of M.(0) and X..(t) is positive as an increase in M (0)

results in a corresponding increase in X. (t). The covariance of X. (t) and

X (t), however, is negative as a positive deviation in X (t) results in a

negative deviation in X.,(t). This arises from the condition
id

s+1
M.(0) = £ X. .(t)

The covariance of M. (0) and X. .(t) is derived in the following manner.

Cov[M.(0).X (t)] = E[M.(0)X. .(t)] - E[M.(0)]E[X. .(t)] (B12)

The two terms on the R.H.S. are conditional on M. (0) . The first term is

expressed as

EfH.IOlX.jft)] = EtEtM.IOJX.jltniM.IO)]

- E[H
i
(0)B[X

i
.(t)]IM

i
(0)]

= E[H.(0)
2
]p.

j
(0,t) (B13)

Substituting the expression given by equation (B4) for E[X. .(t)] on the

R.H.S. yields

Cov[M.(0).X (t)] = E[M.(0)
2
Jp. .(0,t)-E[M.(0)]

2
p. .(0,t)

= VarfMjfOJlp (0,t) (B14)

In the case of the random variables X..(t) and X. (t), the covariance

assumes the form
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On

CovtX.jUJ.X.^t)] = l£X (t)X
id

(t)] - E[X. .(t)]E[X.
d
(t)] (B15)

The first term on the R.H.S. conditional on a random initial distribution

M.(0) is expressed as

E[X
ij

(t,X
id

(t)1 = B[EtX
1
.(t)X

ld
(t)IM

i
(0)]] (B16)

Equations (Bll) and (B6) are utilized to express the R.H.S. as

E[E[X...(t)X.
d
(t)IM.(0)]]

= E[{C0V[X
lj

(t)X
ld

(t)] E[X.j(t)] E[X.
d
(t)]}IM

1
(0)]

= -E[H
i
(0)]p

ij
(0,t)p

id
(0,t) t E[M.(0)

2
]p.

j
(0,t)p

ld
(0,t) (B17)

substituting equation (B17) into equation (B16) and simplifying equation

(B15) we obtain an expression for the covariance of X. ,(t) and X (t) as
ij id

CovfX.jftKX.^t)] = -E[(«.(0)]p..(0
1 t)p.

d
(0,t)

+ Var[M
J
(0)Jp

1
(0,t)p.

d
(0.t) (B18)

Equations (B6), (BIO), and (B18) are the required expressions with regard to

{X (t)}. The corresponding equations with respect to (Y.., (t)> are ob-

tained in a similar fashion as

E[Y.
Jk

(t)] = E[M.(0)]q.
jk

(0,t) (B19)

Var[Y.
jk

(t)] = E[M.(0)]q.
jk

(0,t)(l-q.
Jk

(0,t))

+ Var[M.(0)] (q.
jk

(0,t))
2

(B20)

Similar equations result for the covariances of Y. ,(t) and Y (t), and
ljk idk

X (t) and Y
ldk

(t). which can be written as

Cov[Y.
Jk

(t),Y.
dk

(t)] . -E[M.(0)]q.
jk

(0,t)q.
dk

(0.t)
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+ Var[M.(0)]q (0,t)q
ldk

(0,t) (B21)

Cov[Y.
jf

(t),Y.
Jf

{t)] . -E[M.(0)]q.
jk

(0,t)q.
jf

(0,t)

+ Var[M
1
(O)]q

ijk
(0.t)q

1
(0,t) (B22)

CovfX.ytJ.Y.^It)] = -E[M
1
(0)]p

I
(0,t)q

ldk
(0,t)

+ Var[M.(0)lp._.(0,t)q.
dk

(0,t) (B23)

It must be noted that the covariances exist only for jxd; they are otherwise

termed as variances.

The above derivation can be extended to the case of an inflow of par-

ticles whose distribution may change at each instant t. The groups of

particles arriving at each instant distribute themselves among the various

sizes and exit streams; hence, for an inflow denoted by B (T) , a random

variable representing the number of particles of size i arriving at the cell

at time T, with E[B ,,(t)] and Var[B*"(T)] known from the inlet stream 1 as

defined in the text, the required expressions are obtained as:

,t

ErB
in
(rnD.

.

ij
E[B

iij
(t)1 =

I
E[B™(T)]p (T.t)dT (B24)

Var[B (t)] - f E[B*"(T)]p (T,t)(l-p <T,t))dT

{ Var[BJJ(r)](p..(T,t))
2
<iT (B25)

Cov[B^(0,t),B
ilj

(t)] =
J

var[B^(T)] Plj <T,t)dT (B26)

Cov[B
1
..(t),B

ild
(t),

0'

f

j E[BJ"(T)]p (T.t) P .

d
(T,t)dT

2-37



J
Var[B]"(T) Plj (T,t)p

id
(T,t)dT

«B
11Jk

(t)]

-J
B[B*J(T)],

ljk
(T.t)dr

Var [Bi ..
k
(t)] -

o

JE[B^(r,]cJ ..
k
(r,t)(l^..

k
,r,t))dT

+
J
Var[B^(r)](q.

Jk
(T,t))

2
dT

Ca»[B
J1Jk

(t).BJMf(t)]

J
E[Bj»(T)]

Qljk
(T,t)q

ldf
(r.t)dT

Jvuwglr)], (T.t),
ldf

(T.t), j-d

<*v[B
1IJlt

(t>.B
iljf

(t,]

CovrB
llj

(t),B
lldk

(t)]

o

JE[B^( T ,] P ..(r.t )q .

dk
,r,t)dr

Jvar[BjjtT)p (T.t)q
ldk

(T.t,dT

(B27)

(B28)

(B29)

r
Cov[Bj"(0,t),B

Jljk
(t)] =

J
Var[BJ"(T)]q.

jk
(T,t)dT (B30)

(B31)

o

JE[B^(T) ]q ..
k
(r.t, q ..

f
,T.t)dr

+ [ Var[B"?(T)]q (T,t)<j (T,t)dT, k»f (B32)

(B33)
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representing the total inflow of particles of size i from inlet stream 1 by

time t.

The above derivation can be applied to obtain the total amount of fines

generated by substituting ^-E[X
ge

"(t) ] for E[b'°(t|] and ^rVar[
ge

"( t) ] for

Var[B (T)], in the corresponding equations. Together with the expressions

for an initial number of fines present , the results are

:

+
J [d?

E[x
s!i

(Tnk + i, s+ i
(T ' t)dT < B34 >

Var[X
g+1

(t)]

= "W 0)P
s + l,s + 1

(0 ' t)(1 -Ps.l.s.l* ' 1 "

+ \Jk Var [ Xs!l
(T)]

]
( Ps + l.s + l

(T
'
t))2dT

< B35 >

o

varCY^It)]

Vl (0)Vl,s + l,k
(0 ' t)(1 -q

s + 1 ,s + l,k
,0 ' t,)

I L5?
E[x

s!i
(T)]]Vi,s +1 ,k

(T
' t)dT (B36 »

!lT E[C' r ')]'„, stl , k
i" l"-v 1 , tu'"' idr
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I [5i
varO T)]K + i, s+ i,k

(T ' t))2dT (B37)

which are equations (23) through (26) in the text.
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Table 1, Transition probabilities obtained for bed 1 in numerical

simulation.

i i 2 3

i

1
r -o,07t

e 2.5<l-e-°-
07t

) 7 .5 (1 -e-
007t

)- 15e-
006t '

ij(
o,t) = 2

-0.05t
e 3(l-e-°-

05t
)

3
-0.06t

e

Q^IO.t, -2

0. 2857(l-e-°°
7t

) 0.2857 + 0. 7143e-°°
7t

. 1429- 2 . ^Oe" '

°7t
'

-0.05t

0.4(l-e-°-
05t

)

„ -0.05t . -0.06t
-3e +Se

0.2-1.26
-0.06t

0.3333(l-e"°-°
6t

)

q
1J2

(0.t) = 2

0. 2858-4. 2858e
. -0.05t ,„ -0.06t

-6e +10e

„ „ , a
-0.05t -0.06t

0.4-2.4e +2e

0.6667(l-e-°°
6t

)

2-42



Table 2. Transition probabilities obtained for bed 2 in numerical
simulation.
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CHAPTER 3

STOCHASTIC MODELING OF NON-LINEAR SIEVING KINETICS

INTRODUCTION

Sieving plays a predominant role in process engineering involving

particulate systems as a means for particle size analysis or separation

(see, e.g., Gupta et al., 1975). Sieving usually refers to batch opera-

tions, while screening refers to continuous operations in practice,

although the principles of size separation in both modes of operation

remain essentially identical.

The accuracy of the standard specifications for sieve analysis

depends on the available information on sieving. Despite its popularity

and prominence, the kinetics of the sieving process have received rela-

tively little attention, much of the investigations having been

conducted in recent years (see, e.g., Miwa, 1974).

Simply stated, the sieving process involves repeated encounters

between particles and the sieve surface which may result in passage

through, blinding (also referred to as clogging) or retention on the

surface of the sieve. It is often stated that the process is indeed

random, and attempts have been made at describing its kinetics in the

terminal stages of sieving through a simple stochastic model (see, e.g.,

Kapur et al.
, 1977). The model is based on the first-order kinetics

law, obtained from simple probabilistic considerations.

According to Kaye (1962), the probability that any of the particles

on the sieve will pass through a sieve mesh depends on:



1. the physical characteristics of the particles,

2. the number density of the particles,

3. the size distribution of the particles,

4. the characteristic motion of the sieve, and

5. the geometry of the sieve mesh, and the size distribution of

the mesh apertures.

A complete mathematical description of the process is evasive due to the

complexity arising from the blending of these factors.

The feed to the sieve can be broadly classified as oversize par-

ticles, incapable of passing through the sieve, undersize particles,

capable of readily passing through the sieve, and near mesh size par-

ticles whose sizes vary around the aperture size: these near mesh size

particles can blind apertures. When particulate mixtures are classified

by size or separated by sieving, proper classification or separation is

ensured by the passage of the near mesh size particles. Hence, it is

essential that the kinetics of the passage of these particles through

the sieve be studied.

In the present work, a general rate equation or model for the

passage of near mesh size particles through the apertures of a sieve in

the presence of blinding and in the presence of oversize particles on

the sieve is derived based on stochastic theory. The resultant equation

describes the entire sieving operation. The model provides a measure of

the inherent significant fluctuations with respect to the particle size

distributions and determines the manner in which the near mesh size

particles affect the weight fraction passing through the sieve.
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Various expressions have been proposed to identify the near mesh

size particles with respect to a given aperture or sieve opening size

(see, e.g., Whitby, 1958). Whitby (1958) has confirmed that the passage

of these particles is clearly stochastic rather than deterministic; it

does not depend strictly on the ratio of the particle size to the aper-

ture opening size. Nevertheless, Rendell (1964) has proposed a

deterministic relationship for the rate of flow of particles through the

sieve based on the ratio of the particle size, d , to the aperture

opening size, D : it is expressed as

R« (£- k)
m

(l)

P

where k is a constant ranging from 0.8 to 1.7, and m a constant ranging

from 1.5 to 2.0.

Clogging of the apertures or sieve blinding occurs almost univer-

sally in sieving operations with near mesh size particles; it limits the

passage of particles. The present model considers clogging as a birth-

death process and includes its effect on the flow of particles through

the sieve mesh in the presence of oversize particles. By considering

the particle population on the sieve to possess the Markov property, a

bivariate master equation is formulated to obtain the rate of passage of

the near mesh size particles through the sieve and the rate of the

concomitant sieve blinding. The master equation does not yield an

explicit analytical solution and hence a rational approximation tech-

nique, the system size expansion is utilized to solve the master

equation. Analytical solutions are obtained for the master equation
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describing the sieving operation in the case of no oversize particles

being present on the sieve.
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DERIVATION OF THE BIVARIATE MASTER EQUATION

Let the random variable N denote the number of near mesh size

particles actively present (not lodged in the apertures) on the sieve

surface, A the number of clogged apertures, and n the number
c OS

(specified) of oversize particles present on the sieve. Unless ex-

plicitly stated otherwise, any reference to particles henceforth implies

the near mesh size particles. The joint probability of the two random

variables, N and A , will be denoted as P(n,a ;t). The state space of N

consists of the domain of integers, (n 6 (0,1,2 n )), with n cor-
o o

responding to the initial number of near mesh size particles on the

sieve. The state space of A also consists of the domain of integers,

(a e (0,1,2, ... ,a)} , with a corresponding to the total number of

sieve openings. P(n,a ;t) is interpreted as P(N=n, A =a ;t) or the

joint probability that the random variable N has a value of n and the

random variable A has a value of a at time t. The conditional prob-
c c

ability P(n,a ;tjn'a' ;T) is the probability that the random variables N

and A assume the values of n and a , respectively, at time t, given

that they had values of n' and a' , respectively, at time T.

Probability Balance

Assuming that the states of the two populations possess the Markov

property, P(n,a ;t) is expressed as (see, e.g., Kapur et aj.. , 1977)

P(n
t
,a

c t
:t) = £ p(n ' a itjn'.a' ;T)P(n',a' ;T) (2)

n ' ,a

'

c
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For the system under consideration, the following conditional probabil-

ities are defined:

P(n-l,a :t+At|n,a ;t) = K At + o(At) (3)
c I c n , a

c

P(n,a -l;t+At|n,a ;t) » ju At + o(At) (4)

c

P(n-l,a +l;t+At|n.a ;t) - X At + o(At) (5)
c I c n,a ' '

c

P(n.a ;t+At|n,a jt) » 1- * At - a At - X At + o(At) (6)
c I o n,a a n,a ' '

c c c

The probability of more than one event, either a passage, clogging

or unclogging, occurring in the time interval (t,t+At), is given by

o(At), where o(At) is an arbitrary function of At such that

lim
'

=

At-M At

Equation (3) states that the transition probability of a near mesh

size particle passing through the sieve in the time interval (t,t+At) is

K At <- o(At) where k is a function of n as well as a , as will be
n , a n ,a c

c c

elaborated later. Equation (4) relates to the loss or death of a

clogged aperture, i.e., the transition probability of a clogged aperture

freeing itself (by the passage of the near mesh size particle blinding

that aperture, through the sieve mesh) in the time interval (t,t+At) is

It At + o(At) where ^ is a function of a . The particle blinding an
c

a
c

c

aperture is assumed to pass through the sieve, forced by the other

particles on the sieve. Equation (5) states that the transition prob-

ability of the appearance or birth of a clogged aperture, i.e.. an

aperture being clogged in the time interval (t,t+At), concomitant with a
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decrease in the population size n by 1 , is X At + o(At) where \
n,a n,a

c c

is a function of a and n. Equation (6) relates to the probability of

status quo, stating that the probability of no change in the system in

the time interval (t.t-t-At) is

1 - K it - U At - X At - o(At)
n,a 'a n,a

c c c

A probability balance is obtained by considering the various events

that can occur in a small time interval At. It is assumed that any one

of the above events occurs in this time interval At. The probability of

n particles remaining on the sieve and a clogged apertures being

present at time t+At is the sum of the following:

1. the probability of n+1 particles on the sieve and a^ clogged

apertures present at time t. multiplied by the probability of a

particle passing through the sieve during the time interval At,

2. the probability of n particles on the sieve and a + 1 clogged

apertures present at time t, multiplied by the probability of a

clogged aperture freeing itself by the passage of the clogging

particle through the sieve during the time interval At,

3. the probability of n + 1 particles on the sieve and a - 1
c

clogged apertures present at time t, multiplied by the prob-

ability of a particle on the sieve clogging on aperture during

the time interval At, and
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4. the probability of n particles on the sieve and a clogged
c

apertures present at time t, multiplied by the probability of

no change in states of n and a during the time interval At.

This gives rise to

P(n,.,a t ;t+At)
t c , t

= P(n+l,a ;t)[*
n+1

At * o(At)]
' c

+ P(n,a + l;t)[/i At + o(At)]
c a +1

c

+ P(n+l.a -l;t)[X , At * o(At)]
c n+l,a -1

c

P(n,a ;t)[l - k
n

At - u At - X
n

At - o(At)] (7)
c c c

Rearranging this expression, dividing throughout by At and taking the

limit as At-M) give rise to the bivariate master equation

dP(n,a ;t)

= (E -1) k P(n,a ;t)
dt n n,a

c

(E
a

-1) A<
a

P(n,a ;t)

c c

c c

where E is the one-step operator, defined by its effect on an arbitrary

function f(n) as (see, e.g., van Kampen, 1958)

Ef(n) f(n+l) and E
_1

f(n) = f(n-l)

The expressions for the transition intensities for the system under

study are derived as follows:

The particulate system comprises n near mesh size particles out of

a total of (n
os

- n) particles on the sieve; all these particles are
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assumed to have equal access to the (a - a ) open apertures. To pass

through or blind an aperture, a particle first has to gain access to a

sieve opening. This problem is akin to that of picking a ball from a

box of black and white balls and deriving the probability of this event

resulting in an outcome of a white ball. Hence, the probability of

passage of a particle through an aperture can be envisioned as the

probability of a particle, from a total of n + n particles actively

present on the sieve, gaining access to a sieve opening, multiplied by

the probability of passage for this particle (assumed to be identical

for all of the near mesh size particles) through the opening. The

transition intensity then includes the number of near mesh size par-

ticles, oversize particles and the fraction of apertures that are open:

it is expressed as

K n
(Va

c'

n,a (n + n) a
c os o

The value of * will depend on the physical properties of the material

being sieved, characteristics of the sieve motion and sieve characteris-

tics such as the shape of the apertures. Some effects of these factors

have been studied (see e.g., Whitby, 1958). The apertures are assumed

to be similar in size such that the probability of passage of a particle

through an aperture is the same for all apertures. It is further as-

sumed that K does not depend on the number of undersize particles

present on the sieve, i.e., the probability of passage of a near mesh

size particle at any instant is not affected by an undersize particle

either being present or passing through an aperture. The size of the
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system considered will correspond to a normal loading of several layers.

It is assumed that the sieve motion accomplishes the free movement of

the particles in all directions. The intensity of an aperture being

clogged X is derived by the same token as k ; it is expressed asn.a n,a
c c

. (a -a )
. Xn o c

n,a (n +n) a
c os o

Its validity is conditional on the number of particles being larger than

(a
Q
-a ) (with, initially, more than a single layer of particles

present). This is because a different mechanism prevails when

(n +n) < (a -a )OS o c

Also, each aperture has a certain probability of being unclogged; it is

assumed that a particle frees itself by passing through the sieve. The

intensity of unclogging is then expressed as

On substituting the corresponding expressions for the intensities of

transition, the master equation assumes the form

dP(n,a ;t) (a -a )c_ ,_ ., Kn o c „, .,
71 = E - 1) P(n,a ;t)
dt n (n

Qs+
n) a

Q
c

+ (E_ - 1) —- P(n.a ;t)

_ 1
\n (a -a )

r, os o
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System Size Expansion

The bivariate master equation, as expressed by equation (9), is not

amenable to an explicit analytical solution for the probability joint

distribution: hence, an approximation procedure is developed to solve

the above equation. The system size expansion technique (see, e.g., van

Kampen, 1958) can be employed here, since the changes in the magnitudes

of random variables, N and A , in the time interval considered are
c

sufficiently small compared to the value of the random variables

themselves. In adopting the system size expansion, the joint probabil-

ity distribution P(n,a ;t) is expected to have a sharp peak at some

position of order £2, the system size parameter, corresponding to the

macroscopic value while its width will be of the order of ST repre-

senting the fluctuation (see, e.g., van Kampen, 1981). The expansion

parameter !2 governs the extent of fluctuations. Often, J2 can simply be

the size of the system. Here, a is chosen as the system size parameter

£2; n is considered to be of the same order of magnitude as a , and
o o

therefore, it is expressed in terms of a as n = Z a .oo o

The random variables N and A are transformed into new random
c

variables H and H and deterministic variables <J>(t) and vjf(t) such that

N - (£K)$(t) * (nzj^H (10)

and

where

n+(t) + £TH (11)
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£2 = a

Consequently n and a are expressed as

n = nz<J.(t) (QZ)*
1

? (12)

and

a
c

= 0(f(t) + S^n (13)

It can be seen that

g= (QZ) (14)

and

3A
c „*W'^ (15)

The joint probability distribution of N and A is now transformed to
c

that of H and H expressed as IT(n,a it) also denoted simply as H. These

are related by

m&mil -
3P(n,a

c
;t)

t (tw ,H d* an(g,>i;t)
at "at (i"' dt at

a d* an (g,n;t)+ n
dTai < 16 »

The time derivatives of the quantities f and n are taken with constant n

and a^, i.e., in the direction given by (see, e.g., van Kampen , 1981)

8? ,-_,« d*(t)
at

=
" (QZ) dT

-
< 17 )

and

at " " n dF~ (is)
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The step operator E changes n into n+1 , and E , a into a +1

:

n ace
c

consequently, these two operators transform £ and n into £ + (QZ) and

—\i
T[ + Q respectively. These operators can be expressed as (see

APPENDIX A)

2

En- l+^ )

'ii

h +
2
m)

'
1 h + --- (19)

These expressions for the step operators are substituted in the master

equation, equation (9). Further, n and a are replaced by expressions

from equations (12) and (13) respectively. The terms containing P(n.a
c

;t) are transformed utilizing equation (16). The master equation then

assumes the following form;

an _ a to an j* d* an
at " l "z

> at if " B
dt arj

K ~9i 3 I —13
=

Q(nz)(e+<(,)

( m)
a? * 2

(nz) ^2 + ---'
a?

•
( (az)$ + (qz)*

4

5 )( a - a* - a*S ) n

3n
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+
n(nz)(9+*)

{( *
- a

§^
+
5

n r^
+ •• >

2

( i + (nz)"
H

|| f(nz)"
1 !_...)-!,

•
( (az)<f> + (nz)

4
? ) ( a - at - a% in) (22)

In this expression, 9 is the ratio of the number of oversize particles

to the initial number of near mesh size particles. The quantity (QZ) f

is negligible compared to
<f>, and hence omitted in deriving the

denominator of the first term on the right-hand side. The right-hand

side of equation (22) is expanded by performing the multiplication

throughout. To simplify further, the equation is multiplied throughout

by Q, and the variable t is transformed into T defined as r = t/Q. The

terms containing Q and H are then collected to yield the required

macroscopic equations and equations for the fluctuating components f and

n, respectively (see APPENDIX B) . The resultant non-linear macroscopic

equation

d$
= _ (*+\ )»(!-»)

dt QZ(6+<j>) I 23 '

describes the decrease in the near mesh size particle population on the

sieve. The corresponding macroscopic equation of sieve blinding is

Q> _ X.<fr(l-\(0 _ ^
dt "

Q(8-Hj>) a l 24 >

The initial conditions for these two macroscopic equations are deter-

mined by the choice of
<t> and i)i. Specifically, by assuming that a fixed

number of near mesh size particles and open apertures exist initially,

the required conditions can be stated as <j> - ^r - 1 at t = 0.
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A bivarlate linear Fokker-Planck equation governs the probability

distribution of the fluctuating components H and H, namely TT(i;,n;t),

expressed as

an _ an? u+xhi-^) aiin x<t>

at a? ' nz(e+*) '

+
an l *•

+
a<e+$) '

_ ajTrj
(

jK+\)<t>
j

_ 3J2
(

X<l-»)
8?

az*(e+*)
3r

> az*(e+«>)

,
iaV 4>(<r+x.)(i-y>) , l a

2
B . m* x<j»(i-i»)

2 2
l

QZ(9+<j>) ' 2 , 2
l Q

+
Q(e+d>) '

Our primary interest lies in obtaining the expressions for the moments

of 5 and H rather than an explicit solution for TT(?,r);t), a bivariate,

normal distribution. Hence, through further manipulation, the equations

for the statistical parameters describing the joint probability dis-

tribution, IT(?,n;t), are obtained as (see APPENDIX C)

d<=> _ _ (g+\)(l-\fr) _^ 1«^|

QZ*(6+4>)
dt QZ(e+<f»

<=> + -*, <H>
< 26 >

d<H> _ \(1-i)i) u \<p

dt " ?W <H>
"

' "
+^ '

<H> <27)

d^ . XU^i)
<<h2>> + ^X)i_ <<h2>>

nz (e+$) qz (e++)

, (*r-X)(l-v)i) ^j \<)> X<t>(i-d<)
" ( az(e^)

+
I

+
oTS^T '

<<HH>> " -^77; <

28 >

UZ ( 9+9

)

d<<;2>>
. ii*±Vj£ <<5H>> _ 2(^X)(1-») 2 [KAI^l-t)

dt azV*) "«*) nz^> ' 29)
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2
d<<H >> 2X(1-<M , u X4> ( 1 -\J/ ) , 2

"Si— = u
y «=H» -2(5 + oTo^T ) «H »

dt
nzV+4>)

Q n(e+<(>1

(30)

The initial conditions for these equations at t = are

<H> = <H> = «EH» - <<H >> = <<H
2» = (31)

2
where <•> represents the mean of the random variable (•) and << >> the

variance; <<•*>> is the covariance of the random variables (•) and (*).

The initial conditions indicated by equation (31) are deduced from the

fact (or, in some cases, an assumption) that a fixed number of particles

are known to exist initially. By the choice of
(f>

and >|/. the means of

the fluctuating components are zero, i.e.,

<H> = <H> =

Absence of Oversize Material

The modeling of the passage of particles in the absence of oversize

particles provides points of interest or reference in the sense that the

master equation formulated for this case can be solved without resorting

to an approximation procedure. The results obtained approximately

through the system size expansion should be comparable with those ob-

tained by solving the master equation directly.

The particles are assumed to reach the apertures at a Poisson rate.

Clogging is assumed to occur as detailed previously. The transition

intensity of passage of near mesh particles through the sieve is then
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independent of the number of near mesh size particles but still depend-

ent on the number of clogged apertures. The master equation can be

formulated in a similar fashion as equation (9) and assumes the form

dP(n,a ;t) «(a -a )

dt

c

'V1'—H~ p(n ' a
c
;t '

o

+ (E -1) —- P(n,a ;t)
a a c
c o

Ma -a )

* («C E -1) 2_£_ p(n,a :t) (32)CO
The governing differential equations for the moments of the random

variables N and A^ are derived from this expression. The equations for

the means and variances of N and A and their covariance are obtained by

multiplying both sides of the master equation by the respective

parameters, summing over all possible values, and utilizing the property

of the step operator,

Z Z g(n,a
c
)E

n
E^

1
f(n,a )

= Z I f(n,a )<E^\ g(n,a ) (33)
n a c n a c

c c

For instance, an equation for the average value of N is obtained by

multiplying throughout by n and summing over all possible values of n

and a . This procedure yields the following expressions (see APPENDIX

D):

d<N>
(«+M(a -<A >)—

a (34)
o

d<A > X(a -<A >) U<A >
c o c c

"dt-
= —

I a" (35 »

o o
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d«N 2» 2<**M«HA» <A>

-5T— "

—

i
iM+mi--£~) (36)

2
2(\+A0«A >> <A > ^<A >

dt
- X(l - —H-) * —-*- (37)

d<<NA » (K+\)<<A >> (\+£l)«NA >> <A >

-dF^-'^ 5 --M'-T") <

38 >

o

with the initial conditions

<N> = n , <A > = «N» • <<A » = «NA » = at t = (39)
o c c c

Equations (34) and (35) are solved to yield the following analytical

expressions for the mean number of near mesh size particles on the sieve

and mean number of clogged apertures, respectively.

(X+H) o

NUMERICAL SIMULATION

The non-linear macroscopic equations, equations (23) and (24), and

the equations for the moments of the probability distribution H(?,n;t),

equations (28) through (30), do not yield explicit analytical solutions.

A fourth order Runge Kutta algorithm, therefore, has been employed to

solve these equations simultaneously to simulate the sieving operation

numerically. The variation in the behavior of the system with respect

to the number of particles passing through the sieve and the number of
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apertures blinded has been investigated for various values of the siev-

ing rate parameters, i.e., the transition rate constants K, X and ji.

This is repeated for different values of the system parameters a n
o o

and n
os'

The rate of decrease ln tne near mesh size particles present

on the sieve, represented by the macroscopic equation (23) is also

studied for special cases, e.g., the case with a high initial proportion

of near mesh size particles {n >>n ).
o OS

Another situation analyzed is that representing the terminal stages

of sieving, i.e., passage of near mesh size particles in the presence of

a comparatively large number of oversize particles (n <<n ). The
o os

equations derived so far are assumed to be valid until the number of

active particles present on the sieve surface becomes less than or equal

to the number of open apertures.

RESULTS AND DISCUSSION

The results of the numerical simulation resorting to the system

size expansion, and those by the direct solutions for the case without

oversize particles are plotted in Figures 1 to 12. The covariance,

<<£r)>>, has been plotted along with the correlation coefficient p, where

p is defined as

<<gn»
P = (42)

2 2
•<<? >><<n >>

for the solution of the master equation using the system size expansion

in Figures 4 and 8, and as
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P ' (43)
2 2/«N >><<A >>

C

for the case without oversize particles in Figure 12.

The mean and variance of the number of particles passing through

2
the sieve denoted by <X> and «X >>, respectively, are related to the

mean and variance of N and A in the following manner

<X> = n - d>n - J»a (44)DO T l '

2 _2 2«X » = <<= »n + <<H »a (45)oo
for the case of the system size expansion and

<X> 1 - <N> - <A > (46)

2 2 2
<<X » = <<N » + <<A» (47)

c y
'

for the case without oversize particles. These quantities are plotted

as fractions of the initial near mesh size particle population along

with the other variables as functions of time.

The application of the present model requires the knowledge of the

number of oversize particles, sieve openings, and the initial number of

near mesh size particles. Data on sieving operations in the literature

lacks this information. However, the results of many studies are

predicted, at least qualitatively, by this model.

The passage of particles through a 48 mesh sieve in the presence of

clogging and oversize material has been studied by Kapur et a\. (1977).

using a Rotap device and sonic sifter. The model and the corresponding

numerical simulation deal with the terminal stages of sieving. The
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exponential decay of the near mesh size particle population presented in

their results is predicted by the present model. This situation is

described in Figures 1 and 2. The authors have assumed the choking

phenomenon to be a poisson process in presenting a simplified stochastic

model. However, the transition intensities concerning the choking

phenomenon are derived here from probabilistic considerations of par-

ticle behavior. The description of the variation of the number of

clogged apertures with time is presented in Figure 3. It matches

qualitatively with that of Standish (1985) up to a point in time after

which the number of particles on the sieve are equal to or less than the

number of open apertures. This indicates the validity of the transition

intensities. The situation with a high proportion of near mesh size

particles is described in Figures 5 through 8. The passage of particles

in the absence of oversize material is described in Figures 9 through

12.

Standish (1985) has pointed out that oversize material actually

could be benificial to the passage of near mesh size particles, contrary

to previous observations and the present model. Nevertheless, as can be

inferred from the description and photographs presented in his paper,

this situation occurs when very few particles are left on the sieve

surface; however, it is not significant in practice. The 'nudging

effect 1 of the oversize material at this stage of the sieving operation

cannot be considered to prevail during the major portion of the sieving

operation

.

CONCLUDING REMARKS

3-21



Several significant observations can be made based on the results

obtained. The presence of oversize particles decreases the sieving rate

of near mesh size particles. For a population with a high proportion of

near mesh size particles, the flow rate is almost constant. During the

terminal stages of sieving, exponential decay is observed for the par-

ticle population retained on the sieve. When the particle population

reaches a size equal to or below that of the open apertures, different

conditions exist; they are characterized by a stochastically independent

behavior of the particles with a dependence only on the number of par-

ticles retained on the seive for both passage and sieve blinding. The

number of particles retained then may follow an exponential decay.

An examination of the fluctuations indicates that as expected, the

fluctuations are larger for a smaller particle population. In the

presence of oversize particles, the distribution of the number of par-

ticles evolves into approximately a Poisson distribution when the flow

rate is dependent on the number of particles. With no explicit depend-

ence of the flow rate on the number of particles present, as in the case

without oversize particles, the variance increases beyond the mean value

with time. This is expected as small deviations in the number of

clogged apertures give rise to large fluctuations in the distribution of

the number of particles remaining on the sieve. The description of the

fluctuations provides means to determine an optimal sieving time and

information for improved sieving specifications. The present stochastic

model is thus a valuable tool for describing the inherent random

processes that prevail during the sieving operation. Future research in
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sieving would prove beneficial only If the refined methodology of par-

ticle size classification and inclusion of the inherent fluctuations is

followed as indicated in the present study.
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A
c

- a
r

= random variable representing the number of blinded

apertures

a * value assumed by random variable A
c c

N = random variable representing the number of near mesh size

particles on the sieve

n,n' = values assumed by N

n = initial number of near mesh size particles

n = number of oversize particles

P(n,a ;t) = joint probability distribution of N and A
C c

Greek Letters

Z = n /a
o o

H = fluctuating component of A
c

T) = value assumed by H

e = n /n
os o

*
n

intensity of transition of passage of a near mesh size
c

particle through the sieve, time

K = proportionality constant in the intensity of transition, k
n

, time
.a

c

= intensity of transition of blinding of a sieve opening,

time

= proportionality constant in the intensity of transition X
n.

\
n.a
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Ma
intensity of transition of a trapped particle passing

c

through a a sieve opening, time

\i = proportionality constant in the intensity of transition u ,

a
c

time

H fluctuating component of N

? = value assumed by H

n(?,J};t) " probability density function of f and n

p = correlation coefficient

<f> macroscopic component of N

^ = macroscopic component of A
c

£2 = system size parameter

<> = expected value or mean of random variable

2
<<• >> = variance of random variable

<<•*>> a covariance between two random variables

E = step operator
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APPENDIX A. EXPANSION OF THE STEP OPERATOR

The probability distribution P(n,a ;t) is transformed into TT(£,n;t)

by expressing n and a as
c

n = B
Q
# + nJS (A1)

a
c

= V + V < A2 >

respectively. This yields

P(n,a
c
;t)An = H($,IJ;t)4? (A3)

P(n,a
c
;t)&a

c
= Tt(?,n;t)Ar) (A4)

For instance, a unit increase in n can be seen to be equivalent to the

-51 -hiincrease in ? of n . Expanding H(^+n ,n;t) with respect to f in a

Taylor's series yields

TT(?-n
o% ; t) = TT(?.n;t) + n^ ^| TT(?,n;t)

i i a
2

2 % 2 W.n-.t) + . . .

P(n + l.a
c
;t) = (1 + „"* J i n"

1 5_ +
. . . )p( n ,a

c
i t

)

(A6)

Since

E
n
P(n, a ;t) = P(n+l.a ;t),

we have
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E - 1 + n
-a _§ i -l 3

o 3? ^
2 % 8?2

(A7)

Similarly, we obtain the following:

,2

E = 1 + a
-H 3_ 1 -1 3

o 3n
+

2
a
o

3r)
2

(A8)

_-l , -X 3 1-13% " ' " *o 3*
+

2 % ^2
(A9)
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APPENDIX B. EXPANSION OF EQUATION (22) IN THE TEXT

Equation (22) in the text is multiplied throughout by the system

size parameter Q with the variable t transformed into T defined as

r=t/Q. The resultant equation assumes the form

an _ a d<j> an na s^ an
ar " <"Z)

dr a? " n
ar aTj

2

=
zll^y ( (S2Z) ~*

If
+
1 i 02

'" 1

Sf + • " Qz* + (QZ >*?
)

a?

{ l - * - q"% in

2

f ^ ( a""* |- | a'
1 2__

) | aj, + a\ )n

!) "s + |(°Z)"
1 ^5

(Bl)

Z(9+<J>)
lv '""'

3f 2
V "" ..2

• ( J2Z4> + (nz)
5^ )( i-^-q"^ )ti

Expansion of the right-hand side by multiplying the corresponding quan-

tities yields

ar " luz)
dr " B

ar 3n

a?

( (CZ)+(l-i(() - Q*Z<f>n * (QZ)*(l-^)f - Z*?n )TT

an a, 2 *
3r)2

a
3r)2

• • '
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z(e+<#,)
( a

an
+

2
a

8r)
2

<S2Z)
a?

n z
3^1?

a?3i a?
2

a?
2
3n

+ I B
-2

Z
-1 _|_^

4 ~_2„ 2
... )

3? 3>I

•
( (OZ<()(l-i)i) - Q

H
Z<f»7 (OZ)

M
U-*)$- - Z% )TT

Further manipulation yields

3t
(ui)

dr
U

3r 3r)

(B2)

^^a^J-rtgUu-My-B-sji

i «i-*) 5-n - i a-% lb + i (az)-v*) M2

3?
2 2

3?" ar

3?
2

.. )

* 3 " 8" 2
3„

2 2
3„

2

z(e+<f>) (-A»(w)g*»p-Aw)ff + «^«S(i

^i -mi-«) H - 1
bH^ rF

an* a»j

3r? 3r)

313?
-zV-*) 5i t0^Q5. a

-
(H|in

3f)3?

3
2
n^

3p3?
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a»?a? a?3>i
2

3i;3r,
2

i -*
(1-„ §!ibl _ i a

-3/2 a!^
+ i, (1 _„ £

3i;3>7 3?3rf
2 3?"

a?
2 2

a?
2 2

a?
2

a^ai? a? sr;
2

3? 3n 3? 3*J

a^ an a? 3»

(B3)

Now. the terms on the left-hand side and those on the right-hand side

containing ST are collected: equating these terms results in

_,„,)« d* an h d$ an"
( "Z)

dr H " S
dr 3^

(nz)
z ( e++) a?

(S2Z
> -iTi^T if

Q " *a^
"n

Z (e+»? a7?

(B4)

Note that all terms in this expression are either proportional to 3u73f

or to an/an. The coefficient of the former vanishes if
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AS _ (y^)j>(l-i)f)

dt DZ(e-Kfr)
(B5)

and that of the latter vanishes if

4k . . at + M-d-*) .„,
dt a q(o+<()) (B6)

which are the macroscopic equations, equations (23) and (24), respec-

tively, in the text. In a similar fashion, equation (25) in the text is

obtained by collecting the terms of the order of 2 and regrouping.
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APPENDIX C. LINEAR FOKKER-PLANCK EQUATION AND DERIVATION OF THE MOMENTS

OF THE PROBABILITY DISTRIBUTION

The generalized linear multivariate Fokker Plank equation has the

form

ij« 3
*i

2
i j

"« *1*I
(C1)

where A and B are the coefficient matrices and P(£;t) (or P) is the

general probability distribution of the vector 5 with components ?.

(see, e.g., van Kampen, 1981). The linear bivariate Fokker Plank equa-

tion obtained in the text, equation (25), is written in terms of £,n and

H(?,i};t) (or II) as

s. _
(

A

§sn + A as «. A §si! + A as

,

at l rt

?? 3?
fl

?n a? V 3n %r, an '

2
I B« 3?

2 % 3?an V an3?
+ % ^2 »

(C2)

Note that the coefficients are time dependent. The expressions for the

first and second moments are derived as follows:

Let f(f,n) and g(?,nj be two functions of f and 17. The sum of

g
g(f '''gTf (f •") over all possible values of 5 can be expressed in terms

of the central difference approximation as

^r (.£ g(f.n)f(?+A?,n) - s g(?,n)f(?,^)] (C3)
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The quantity Ig(f, n)f (f-'-A? , 17) can be transformed utilizing the step

operator properties such as (also see APPENDIX D)

£ g(f.1)f(f+A?,n) = Z f(?,n)g(5-A?.r)) (C4)

which, in conjunction with equation (C3)
,
yields

£ g(?.1) f^
f(?.>7) - - Z f(?.>7) |^ (!f,n) (C5)

A similar treatment with respect to the variable r), and the second order

partial derivative of f(?,n) yields

2 g(?.l) |j f(?.1) = - 2 f(M7) |j g(?.H) (C6)

a
2

a
2

£ g(?,n) —x f(?,i) - £ f(?,/i) ^ g(?.n) <C7)

3? 3?
2

2 2

2 g(?,1) 2-T f(?,T) = £ f(?,)7) ^ g(?,^) (C8)
3rj arj

To obtain the equations for the means and variances of £ and n, and

their covariance, equation (C2) is multiplied by the respective

parameters and summed over all possible values, and equations (C5)

through (C8) are utilized to obtain the required relationship. For

illustration, the equation for £ is derived as follows: Multipling

equation (C2) by f and summing the resultant expression over all values

of £ and n, we have

^ = _ A Ese ?lI!_ A rrtM
dt

A
lf?

= ^ 8?
A
?7)

EI ? a?

_ A rz? |sn. A zstm
*,? 3" W

q ?
3f>

2 «"V 2 %^ ?
3?3,
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Employing equations (C5) through (C8), equation (C9) transforms into

d<?>
dt

=
< *&<*> + A^<1> )

(CIO)

which has the initial condition at t , <?> = 0. In terms of the

various quantities represented by the coefficients, equation (CIO) can

be rewritten as

U+X)(l-i|r) „ (K+X)
dt lizT^ <*> *^^ <*> <«!,

A similar expression can be derived for the mean value of the fluctuat-

ing component of A , i.e.,

d_0)>
m

X(l-i)r) jx X4>

dt 07>J (a^, n n < e^» )<1> (C12)
S2Z (9+$)

with an initial condition of <n> - 0. Through the choice of $ and \|< and

the knowledge of their fixed values at time t=0, it can be easily seen

that the mean of the fluctuating components is zero, i.e.,

<£> = <n> =

To obtain the variances of f and n and their covariance, equation

2
(C9) is multiplied by ? , and the resultant expression is summed over

all possible values of f and n and transformed by utilizing equations

(CS) through (C8).This results in the following equation for the

variance of f.

d<<^2>> = -2(*"X)(1-H» 3 2(g+X)<» [g+XJWl^J
dt nzie+^j •

>>
~ji «?i» one**)

—
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(C13)

To obtain the covariance of f and n, equation (C9) is multiplied by £r)

and the resultant expression is summed over all possible values of f and

n. By resorting to equations (C5) through (C8). we eventually obtain

d«gn» ^ X(l-V) ,„.8_ , (y+\)(l-») U \<f, ,

+ _i£X}±-
<<n2» _ MUaU-

( ci4)
nz (e+$) az (e+«f>)

Finally, the governing differential equation for the variance of n is

obtained similarly as

2
d<<n >> 2\(l-\Ji) „ „, a Xd> 2-*~ =

;^w
<<?r,>> a(

°
+ tot J <<n "

2 2
The initial conditions for these three equations are <<£ >> = «r\ » =

<<%r)» = at t = 0.
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APPENDIX D. DIRECT SOLUTION TO THE MASTER EQUATION

The master equation, for the case of absence of oversize particles,

as given by equation (29) in the text, is

dP(n,a ;t) *r(a -a )

dt ' 'V 1'—t^ P,n 'V t >

o

^a
c

+ (E -1) —- P(n,a jt)
a a c
c o

_, Ma "a
>

* (E E -1) — P(n,a ;t) (Dl)n a a cco
To obtain the equation for the average value of the number of near mesh

size particles retained on the sieve surface, for instance, equation

(Dl) is multiplied by n, and each term in the resultant expression is

summed over all possible values of n and a ; this yields

dP(n.a^;t)
( a„"a

dt
Z Z n = Z Z n (E-l) K ° C

P(n,a ;t)

^c
+ Z Z n (E -1) —S P(n,a ;t)

n a c o

Ma -a )

+ Z Z n [El -1] 2_c_ p(na ;t) (D2)
n a a cn a_ c o

The summation being over the state space variables n and a and not
c

with respect to t
,

it can be moved within the derivative with regard to

the terms on the left-hand side of the equation. The terms on the right

hand side can be manipulated using the property of the step operator,

specif ical ly

,
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Z Z g(n,a )E E

,

1
f(n,a ) - Z Z f (n.a VE^E. g(n,a ) (03)

n a
c

c n a
c

c
n a

c n a
c

c

for any pair of functions f(n,a ) and g(n,a ). This results in

dZ Z n P(n,a ;t)
c

n a

dt

5- S Z (a
o
-a
c
)P(n,a ;t|(E^-l)n

o n a

£- Z Z a
c

P(n,a ;t)(E '-i|n
o n a

c
c

^ZZE^Ia -a )P(n,a itJE^n
o n a c

— Z Z (a -a )P(n,a ;t)n (D4)
c

o n a
c

Equation (D3) is derived as follows:

{n <• (0,1,2 N )} and {A 6 (0.1,2 ,a )}

The left-hand side of equation (D3) is

n a
o o

Z Z g(n,a )E E
_1

f(n,a )

„ n n c n a cn=0 a=0 c
c

Z Z g(n-l,a +l)f(n,a
)

n-1 a =1 c c

c

Z Z f(n,a )E
n

1
E g(n,a ) (D5)

n=l a =1
c " a

c
c

c
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If the two functions f(n,a ) and g(n,aj are defined such that the

expression being summed up equals zero for

n = and n + 1
o

a =0 and a - 1
c o

then equation (D5) is

n
n

a
n n a

o o oo
£ £ g(n,a )E E f(n,a ) = Z £ f(n,a )E

_1
E g(n,a )

n=0 a =0
c n a

c
c

n=0 a >0 C n a
c

c
c c

(D6)

In the case under consideration

f(n,a
c

) = (a
o
-a

c
)P(n,a

c
;t),

and g(n,a ) assumes the forms n, n
2

, a , a
2

, or na . In all theseu c c c

instances, the condition stated above holds and hence gives rise to

equation (D3)

.

Equation (D2) is now transformed as

d<N> k -1
—rr- — £ Z (a -a )P(n,a ,t)(E -l)n
Qt a o c en

7^3 P(n,a :t)(E, -l)n

+ ~ ZZ (a
o"

a
c
,P(n

'
a
c
,t)(E

n
lE

a " 1)n (D7)
a
c

c

which yields the expression for the first moment or expected (mean)

value of the random variable N, denoted by <N>, as

d<N> (* X)(a
o
-<A

c»
dt

"
a (D8)
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This is equation (34) in the text.

By resorting to similar procedures, the following expressions are

obtained for the mean of A and the second moments of N and A (The
c c

second moments of the random variables are denoted by <N > and <A
2
> and

c

the crossmoment by <NA >).
c

d<A > X(a -<A >) u<A >
c o c c

Tt" =
S

—
< D9 »

O

2 2(K+X)(a <N> - <NA >) (#+X)(a - <A >)

(D10)

2
d<A > X(a - <A >) u<A >

c o c c

dt a a

2X(a <A > - <A
2
>) 2a«A

2
>

o c c
r

c

2
d<NA > *r(a <A > - <A >) tKNA >

c o c C c

(Dll)

X(a - <A >) X(a <A > - <A >)
o c_l o c c

X(a <N> - <NA >)

+ (D12)
o

Equation (D9) is equation (35) in the text.

The variances of N and A and their covariance are obtained from
c

the above equations based on the following definitions;

<<X>> = <X > - <X>
2

(D13)
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«XY>> = <XY> - <XXY> (D14)

where X and Y are any random variables and <<X» is interpreted as the

variance of X, and «XY>> as the covariance of X and Y. The equations

for the variances and covariance of N and A then are:
c

d«N 2» <<
"*c

>> <V—ft = 2<*+\)
a

+ («f+X){l - -j£-) (D15)

2
d<<A » .

rt <A > <A >_c_ . -a^x^ + X(1 . _e_, + „ _£_
O c

(D16)

d«NA >> «A >> <A >
__JL_ « (e+x)_£_ -

l
*±JL)<<IA>> . x(1 . _£_, (D17)

o o o

The initial conditions in this case are expressed as

<<N» = <<A >> = <<NA >> = (D18)
o co co l

'

where the subscript o indicates the reference to time t=0.

3-41



LIST OF FIGURES

Fig. I. System size expansion: Transient evolution of $ and <<H
2» for

K = 2000/time, X • 100/time, /J = 10/time, n » 6000, a » 20000
OR

and a » 5000.
o

Fig. 2. System size expansion: Transient evolution of <X>/n and
o

2«X >>/n for K » 2000/time, X - 100/time. u » 10/time, n 6000,
o

n » 20000, and a = 5000.
os o

Fig. 3. System size expansion: Transient evolution of \Ji and «H» for
K - 2000/time, X « 100/time, u 10/time, n • 6000, n = 20000

o os
and a » 5000.

o

Fig. 4. System size expansion: Transient evolution of «HH>> and p for
* 2000/time, X = 100/time, 11 = 10/time. n = 6000, n » 20000

o os
and a = 5000.

Fig. 5. System size expansion: Transient evolution of cj> and <<H» for
K « 2000/time, X - 100/time, u = 10/time. n » 20000, n - 5000

o os
and a = 5000.

o

Fig. 6. System size expansion: Transient evolution of <X>/n and <<X
2»/n

o o
for K = 2000/time, X = 100/time, fi = 10/time, n = 20000,

n - 5000, and a = 5000.
os o

Fig. 7. System size expansion: Transient evolution of \p and <<H» for
K « 2000/time, X - 100/time, [I - 10/time, n - 20000, n • 5000

O OS
and a 5000.

o

Fig. 8. System size expansion: Transient evolution of <<HH» and p:
K - 2000/time. X • 100/time, u > 10/time, n - 20000, n • 5000

o os
and a = 5000.

o

Fig. 9. Absence of oversize particles: Transient evolution of <N> and
2«N >> for K = 2000/time. X = 100/time, a = 10/time, n - 20000

o
and a = 5000.

3-42



Fig. 10. Absence of oversize particles: Transient evolution of <X>/n and
o

2
<<X »/n

o
for K = 2000/time, X = 100/time, [1 - 10/time,

n = 20000, and a = 5000.
o o

Fig. 11, Absence of oversize particles: Transient evolution of <A > and
c

2
<<A » for K = 2000/tlme, X = 100/time, u = 10/time, n = 20000,c o
and a = 5000

.

Fig. 12. Absence of oversize particles: Transient evolution of
«NA >> and p for K => 2000/time, X » 100/time,

H 10/tlme, n = 20000. and a = 5000.

3-A3



1 .0-

0.9-

0.8-

0.7-

0.6-

0-5-

g 0.4-

0.3-

0.2-

0.1-

a a. a

A 4 A °

gSS

0.0-4
I I

'

6 12 18 24 30 36

Time, t

42 48 54 60

Fig. 1. System size expansion: Transient evolution of + and

«= » for k = 2000/time, X = 100/ti«e. p = 10/ti»e.

n
Q

- 6000, n - 20000, and a . 5000.



1.0-

0.9-
*f*DO

ao°DI
aoaDDODoaacnoDDCca

0.8

0.7

0.6-

0.5-

0.4

0.3-

0.2-

l4»i«

O.O^k

Siii444aiaiaaaaa

'
" ' ' ' ' l I I I .

i

6 12 18 24 30 36 42 48 54 60

Time , t

Fig. 2. Systen size expansion: Transient evolution of <X>/n and

2«X »/n
Q
for k = 2000/time; X • luu/tinie,

11 = 10/tine. n - 6000. n » 20000, and a = 5000.



Fig. 3. Systen size expansion: Transient evolution of + and
2«H » for K - 2000/time , X » 100/time. n - 10/time,

n » 6000, n - 20000, and a - 5000.



1

-0

-0,

-0.

-o.

-0.

-0.

-0.

-0.

-0.

-I

.

•9-

8

7

6 J

5-

4

3

2-

1
-

- aaaaacnnaaDDDggonfi^OoaoanmananoanaaaaaaaaaDnaaooaaoaaa

12 24 30 36 42 48 54 60

Fig. 4. System size expansion: Transient evolution of «=H» and

p for k = 2000/time, X - l»0/ti«e, fl = 10/time,

n
o

- 6000, n
os

- 20000, and a = 5000.



1 .o-fe-

0.9-

0.8-

0.7-

0.6-

0.5-

0.3-

0.2-

,44&i 4 4

4 D

"' I"

8 10 12 14 16 18 20

Time, t

Fig. 5. Syste» size expansion: Transient evolution of $ and

«£ » for k = 2000/tine, X = XOO/time, u « 10/time,

n - 20000. a - 5000. and a = 5000.



1 .0-

0.9-

0.8-

0.7-

0.6-

S 0.5-

v* 0.4-

0.3-

0.2-

a 44 4i<iii i4
a &

&
a 4

0.0-
1 ' '

' i i i ,-

2 < 6 8 10 12 14 16

Time, c

18 20

Fig. 6. System si ze expansion: Transient evolution of <X>/n and
2

°
«X »/n

o
for k - 2000/tUe, X = 100/time, u « lo/ti«e.

n
Q

» 20000. n = 5000. and a . 5000.



1.0-

0.9-

0.8-

0.7

0.6

0.5-

0.4-

0.3-

0.2-

0. 1

0.0-

IBS S h8 S

^^"""

10

Time, c

12 14 16 18 20

Fig. 7. system size expansion: Transient evolution of * and
«H » for K - 2000/ti»e. X . ,100/ti»e. n = io/ti»e,

n
Q

- 20000. n = 5000. and a , - 5000.



Fig. 8. Systen size expansion: Transient evolution of «HH» and

p: K - 2000/ti»e, \ = 100/tine. ^ = lu/time,

n - 20000, n - 5000, and a! - 5000.



1.0-

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

O-O-U
i p

I 2^456
Time, t

'

I '

8 9 10

Fig. 9. Absence of oversize particles: Transient evolution of
<N> and «1T» for .*. = zouo/tl»e, a =. 100/time,

V - 10/tjne, n = 20000. and a 5000.



0.0-3

9 10

Fig. 10. Absence of oversize particles: Transient evolution of

<X>/n
Q

and «X »/n
o

for k => 2000/tine, X • 100/tine,

U = 10/time. n = 20000, and a 5000.



0.9-

O.f

0.7-

0.6-

0.5-

0.4-

" 0.3-

0.2-

0.1-

0.0-a a

a a B 8

Fig. 11. Absence of ^oversize particles: Transient evolution of
<A

C>
and «A

C
» for K , 2006/tlme, X = 100/tlme.

*l = 10/tlme, n - 20000, and a 5000.



Fig. 12. Absence of oversize particles: Transient evolutio

«NA
c
» and p for k . 20<Wtime, X » 100/tiue.

M • 10/time, n - 20000, and a - 5000.



STOCHASTIC ANALYSIS OF COMMINUTION - THE MASTER

EQUATION FOR THE GRINDING PROCESS

INTRODUCTION

Comminution or size reduction is one of the most commonly used

industrial unit operations. The range of applications includes the

chemical and mineral processing sectors. Comminution refers simply to

the breaking of larger particles into smaller ones. The purpose of

comminution may vary depending on the application. For instance, in the

mineral processing industry, size reduction is employed to expose the

various constituents of rock, thereby facilitating the extraction of

valuable minerals through subsequent operations. In chemical processing

industry, specifically in solid-liquid extraction or leaching, the

particulate material is pulverized to increase the surface area, thereby

enhancing the dissolution rate.

Size reduction is commonly achieved by stressing particles to an

extent exceeding the tensile strength of the particulate material. The

extent and efficiency of the size reduction of solids form the core of

industrial mill design. The extent of size reduction depends on the

capacity of the mill and has an important bearing on the energy

consumption. The relationship between energy input and size reduction

can be expressed in a general form as (see, e.g., Weismantel and Sresty,

1985)



dE -o ^ (1)
x

where E is the work done, x is the particle size, and C and n are

constants. The familiar Kick's law and Bond's law results from equation

(1) for n=l and n=2 respectively. However, it has been found that,

these laws do not yield satisfactory results in practice (see, e.g.,

Austin and Rogers, 1985).

The extent of size reduction and its efficiency are affected by

various factors including the geometry of the mill, the grinding medium,

the type of forces acting on the particulate material, and the

mechanical properties of the solids. More specifically, the rate of

breakage in a size reduction device can be evaluated from the details of

(Rogers and Austin, 1985)

1. the stresses on each particle produced by the forces applied

during operation,

2. the rate of selection of stressing,

3. the tensile regions in each particle,

4. the fraction of tensile stresses produced that exceed the

failure point for the particular flaws in the solids, and

5. crack propagation within a particle.

The complexity involved in describing the particulate system or the size

reduction operation on such a microscopic scale demands an alternative

means of predicting the results of the operation.

At any instant within the mill, a particle is selected and stressed

randomly at various points on its surface and to a degree depending on

the magnitude of the forces prevailing in the mill. This may or may not
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result in its disintegration. Thus, the cumulative effect of various

factors gives rise to a probability that a particle fractures at any

given instant.

Attempts have been made in this direction of applying probability

theory to explain the internal dynamics of the comminution operation

(see, e.g., Horl and Uchida, 1967). Some of these attempts basically

recognize the importance of the probabilistic interactions among the

particles and between the particles and the grinding media (see, e.g.,

Rose, 1957). A few probabilistic models have been proposed; which are

sketchy and unsatisfactory as they fail to detail the mode of breakage

and interactions at the particle level, simultaneously relating to the

macroscopic observations. This is important in providing a realistic

process description. The macroscopic observations are those that

correspond to the results of the well known grinding equation (see,

e.g., Rogers and Austin, 1985).

In the present work a description of the grinding process on a

mesoscopic level is provided through the formulation of the master

equation. Based on a probabilistic consideration of the breakage of an

individual particle, this approach gives rise to the macroscopic

observations, i.e., the average values of a various particle population

sizes, concomitant with certain assumptions. In addition, it yields

information on the fluctuations occuring about these mean values. These

fluctuations arise from the stochastic nature of the breakage process.

The present mesoscopic description of grinding is more fundamental than

the conventional grinding equation of the macroscopic type; yet it is

not complicated by the details of the microscopic phenomena.
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DERIVATION OF THE MASTER EQUATION

A particulate process is characterized by the evolution of a

population of particles of different characteristics, such as size and

shape. The evolution of this population occurs through the events of

transformations accomplished by certain external entities, such as the

grinding media in ball milling, or interactions between these particles.

A stochastic model for the evolution of the particle population can be

derived from the concepts of probability theory. The resultant

expression for the joint probability of the random variables,

representing the distinct groups of particles of the same

characteristics, is known as the master equation (see, e.g., van Kampen,

1981 and Gardiner, 1983). An assumption that the events occurring in

this population possess the Markov property is essential in formulating

the master equation. The Markov property implies that the future events

of interactions among particles or their transformations depend solely

on the present state of the population and not on its past states.

Let the random variable N. represent the number of particles

possessing a distinct feature. These groups are distinquished by

subscript i. Let s represent the total number of such distinct groups

existing in the particulate population. The joint probability of the

random variables <N) or (N.;i = l,2 s) at time t is denoted as

P({n},t) or simply P, where [{n> ; n e (0,1,2,3 )], i.e., the state

space of N consists of the positive integers. It may be required to

approximate n as a positive real number, i.e., [{n} ; n 6 (0,+«)] for

the convenience of mathematical manipulation while approximating the

4-4



master equation with a Fokker-Planck equation as elaborated later. In

such a case, the joint probability P is the joint probability density

function denoted by p({n},t), or simply p. P({n),t) is interpreted as

P({Nj* n
i'

N
2
= n

2
. ••)•*) which is the joint probability that the random

variable Nj has a value n , the random variable N a value of n , and so

on, at time t. The conditional probability, P( {n> , t I (n) ,t_) is the

probability that the random variable N has a value of n the random

variable N
2

a value of n
2

, and so on. at time t , given that the random

variable N
J

has a value of n , the random variable N has a value of

n , and so on, at time t .

The quantity »
t
({n) .{nk) is the transition probability per unit

time, transition intensity or transition rate of a change in the state

of the population from {n}
Q

to (n) in the time interval between t and

t+T. Then TW
t
({ n >

Q
. (n) ) is the transition probability from state {n>

to {n} during a small time interval r approaching zero. Also

[1 -TI W
t
(<n) ,(n>

k )]

<n)
k

is the probability that no transition occurs during the time interval T.

Assuming that the various events possess the Markov property,

P({n> ,t+T) is expressed as

PUn^.t+r) = E P({n}r t+T|{n}
k
,t) P({n>

k
,t) (2)

<">k
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where the subscript k refers to a particular state of the particle

population. The term P({n} ,t+T|{n) ,t) is expanded in a Taylor series,

and taking the limit as T-+0 yields a generalized form of the master

equation (see Fox and Fan, 1985)

dP({n> , t)

dt ° A <"t» n
>k-«

n
>i"'<{

n >
k

-
t )

{n>
k

- W
t
({n>

1
,{n)

k
)P({n}

1
,t)} (3)

This expression is a gain-loss equation for the probability of each

state {n}. . The inclusion of the various events and their transit!
'k

ion

intensities yields the specific master equation for the grinding

process.

Determination of Transition Intensities for the Grinding Process

Particle disintegration in a mill can occur through three distinct

breakage mechanisms (Austin et al. , 1986). These are abrasion,

breakage, and chipping (the a-b-c of grinding), the first and the last

sometimes collectively regarded as attrition. Abrasion is the removal

of material from the surface of a particle and can be caused by shear

forces acting on the particle. Breakage is the regular fracture of a

particle into smaller pieces. It is caused by the specific action of

the grinding media on the particulate material, e.g., the crushing of

particles by balls in a tumbling mill. Chipping is the conversion of

particles which may be highly irregular in shape into rounded particles.

This mechanism is usually predominant in the initial stages of the

milling operation. The effect of chipping and abrasion is the same in
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the sense that both modes of breakage produce a particle of a size close

to the original, simultaneously generating fines.

To improve the physical description of the grinding process along

with the mathematical procedure, a set of random variables

{N, :i E {1,2}, j 6 {1,2 s>>

are defined such that N . represents the number of particles of shape i

and of volume jAV or size j. Note that these random variables with

double subscripts, {Nj ) can be identified with those possessing single

subscripts defined earlier, {N.}, through a transformation from double

subscript to single subscript expressed by

N
i + 2(j-l)

=N
i,j <*>

A particle of shape 1 is "stable; it is rounded but can undergo

abrasion or breakage. A particle of shape 2 is irregular or in an

"excited" state; it can undergo chipping or breakage. Particles from

the raw feed or that are freshly broken are considered to be irregular.

AV is the volume of the largest particle classified as a fine particle.

The choice of AV depends on the range of particle sizes being

considered. A particle may break into two or more fragments. In this

model, however, binary breakage is assumed to predominate. This implies

that the probability of more than two particles resulting from a

breakage event is low and hence negligible. This is not a serious

handicap as it may be possible to include tertiary or higher order

breakage by considering an appropriate time interval for the occurrence

4-7



of such an event. Multiple breakage can then be represented by a

suitable combination of the a-b-c events.

The system considered here is a compartment and the derivation is

restricted to a single compartment. The model can be extended to

include multi-compartment continuous flow and multiple fragmentation

that cannot be represented as mentioned previously.

The a-b-c events are denoted in the following manner:

Abrasion: particle .
-*• particle + particle

J > 1

Breakage: particle. .
-* particle + particle,,

, ,

i = 1,2; j > 3; 1 < k < (j/2)

Chipping: particle .
-• particle . + particle

* i J 1 , J 1 1,1

j > 1

The subscripts have a similar representation as those of the random

variables defined. These events are highly representative of those

occurring in a mill and are in accordance with recent investigations

(see, e.g., Austin et al.
, 1986). It is, however, highly improbable

that during an abrasion or chipping event, only a single fine is

generated. A more realistic description is the generation of fines of a

total volume of AV. Consequently, the random variable N represents

the number of clusters of fines, each cluster having a volume AV. The

assumption that a single stable particle of volume AV is generated

during attrition or chipping, as included in the description of the a-b-

c events, does not affect the mean value of fines. However, then, the
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variance of N . or the covariances involving N do not truly

characterize the number of fines. Therefore, letting N represent the

number of clusters of fines is appropriate when considering that the

fines do not undergo any of the a-b-c events, and assuming that each

clusters of volume AV behaves as a single entity.

Letting or. represent the specific rate of abrasion of size j

particles into size j-1 particles, the transition rate of abrasion can

be written as

Vi.j' J
= 2,a s (5)

The specific rate of breakage depends on the size being broken as well

as the sizes of the daughter fragments. This is represented by the

specific rate function for breakage 0. (k) , Consequently the

transition intensity of breakage is expressed as

V (n
i,r

n
2,j-k'

n
2,k>' ("i.j-

1
'

n
2,j-k

+ 1
'

n
2,k

+1 >»

" ^i.j"
5

' B
j (

j' i " 1 - 2 '- i m 4 . 5 s, j * 2k; l<k<(|) (6)

W
t
<(n

i,j'
n
2,k>' ("i.j"

1
' "2,k

+2 >»

"
£{jUO »j ., i - 1,2; j=4,5 s; j = 2k (7)

Similarily, letting u represent the specific rate of chipping, the

transition rate of chipping is written as

V (n
2.r "u-r "!.!> (»a fj

-i. Yj-i*1
' "j.,+1))
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" U
j
n
2,j' j

= 2 ' 3 S
< 8 )

For simplicity, all random variables remaining constant during a

transition have not been included in the notation for (n) in equations

(5) through (8). It can be seen from these equations that the

transition intensities of the a-b-c events are proportional to the

number of particles. In general the intensities of abrasion and

chipping given by equations (5) and (8), respectively are functions of

initial sizes. The intensity of breakage given by equations (6) and (7)

is a function of the daughter particle size in addition to the initial

size. Note that the linear dependence on the number may not be valid

for all modes of grinding. For instance, interparticle collisions

largely effect size reduction through breakage, in autogeneous grinding.

In this case, a nonlinear dependence of the transition intensity of

breakage may be encountered. Furthermore, the presence of fines may

reduce the rates of abrasion, breakage and chipping. This would

necessitate the inclusion of the number of fines in the expressions for

the transition intensities. This difficulty can be circumvented by

rendering the parameters a., £. ., and u. in equations (5) through (8)

as some functions of time.

Letting X^ represent the rate of inflow of particles of shape i

and size j to the compartment. Then, it is reasonable to assume that

the transition intensity for the entrance of particles is

»
t
({n

±tJ
>. <n

ii;j
+l>) • ^jj. i = 1.2; j = 1.2 s (9)
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The rate at which particles exit is represented as u . The
i.j

corresponding exit transition intensity can be assumed to have the form

W
t
({n. .}. {n. -1)) = v

i
.n

{
, i = 1,2; j = 1,2 s (10)

The transition intensities can be written given by eqs. (5) through (10)

in terms of the values assumed by the random variables with single

subscript i.e., {N. ). Their subsequent inclusion in equation (3) yields

the master equation for the grinding process.

It is often difficult to write the master equation explicitly by

specifying the events and their transition intensities. Besides it is

extremely difficult, if not impossible to solve exactly for the joint

probability distribution. This holds for the moments of the

distribution except for a few simple instances, albeit to a much lesser

degree. In fact it is often more useful to know the moments of the

probability distribution rather than the distribution itself. Methods

are available to solve the master equation depending on its complexity.

When the transition intensities are simple linear functions of the

random variables and the number of variables small, the probability

generating functions technique can be employed to arrive at a set of

differential equations for the moments and in some cases, a form of the

probability distribution itself (see, e.g., Oppenheim et al. , 1977). A

direct solution can also be obtained by using the definition of the

expected value of a function of a random variable. If X is a random

variable and g(X) a function of the random variable, the expected value

of g(X) denoted by E[g(X)], is defined as
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E[g(X)] = Z gfx^fjjtx ) (11)

where X is discrete with possible values x , x x12 j

Statistical quantities such as the means and variances can be derived by

a suitable selection of g(X) . If the number of variables are large and

the transition intensities, non-linear functions of the random

variables, then a rational approximation procedure such as the system

size expansion is required to solve the master equation (see, e.g.. van

Kampen, 1981, and Fox and Fan, 1985).

APPROXIMATION OF THE MASTER EQUATION

In the present work the generalized master equation, equation (3)

is approximated by a Fokker-Planck equation. In doing so. it is assumed

that the transition intensities are smooth functions of the random

variables and that the probability distribution P({n),t) can be

represented by a smooth function p((n),t), the probability density

function. Also, the individual step changes in the random variables are

assumed to be small in comparison with the magnitude of the random

variables themselves. Hence, such an approximation is reasonable. In

fact this procedure yields exact macroscopic equations and equations for

the second moments in such cases involving simple linear functions for

the transition intensities. However, the corresponding equations for

the higher moments of the probability distribution may not be correctly

reproduced by the Fokker-Planck equation (see, e.g., van Kampen, 1981).

This is of minor importance as these moments are usually physically

insignificant.
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The transition intensities to be included in the master equation.

equation (3) are now rewritten in terms of the reference vector, {n} ,

k

and the magnitude of the change in the random vector, (n) - {n} . This

facilitates the expansion of the master equation to form the Fokker-

Planck equation. Letting {£) = (n) - ("),,• tne transition intensities

are expressed as

W
t
({n)

k ; Wj) W
t
({n)

]
- {?> k ; <?) k ) (12)

where {£} is the vector whose components are
(f . , i.e.,

<?
>k = «lk '

?2k *lk'
">

The subscript k indicates the state of the population. Consequently the

master equation assumes the form

dP({n) t)—at— " = ft({»>r«)k ; ftv^n), - <?> k
.t>

(?
'k

- W
t
((n)

i;
{?)

k
)P((n)

1
,t)] (13)

The transition intensities for the grinding process are written in terms

of {?} as

V (n
l.j'

n
l,j + l'

n
l,l>' l"1 -

+1
'
+1 >>

= a
j »l.j.

i - 2.3 s (14)

W
t
(in

i,j'
n
2,j-k'

n
2 ,k>'

<-l. + l. + l>> -^jW \ ty

i = 1,2; j - 4,5 s; j * 2k (15)

V (n
i,r

n
2.k>-

(
"
1 ' +2>) =

*i,j
,k)n

i.j'

1 = 1,2; J - 2k (16)

V (n
2.j

B
i.j-r"i.i>-

«-*.+i.*i» = Ya.j-
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J = 2,3 s (17)

W
t
(!n

i,j>' <+1>) " X
i,j'

i - 1.2; J - 1,2 s (18)

i = 1,2; j = 1,2 S (19)

The Taylor expansion of the first term on the right hand side of

equation (13) around (n> yields (see, e.g., Fox and Fan, 1985)

3p({n)r t)

it

£ [W
t
({n)

1
;(?)

k
)p((n)

1
,t) - W^OOjS {Ok)p({n) 1

,t)]M k

{

*

}

=*ik S^V<»V«>k)P«»)r t)

5 * z s ? ik?Jk STTErlVWi'WkWWi'*)] + 0( ? 3)

is /i_ 1 J 11 Jl

k

+
a \* 3n.

1
3n.

1

[

{

^ik^jkWt ({n> r^'k )p((n>r t '] +0^ > < 20 >

where f^ and f are the components of {?>
k

, i.e., the changes in the

magnitudes of the variables N. and N. corresponding to state k of the

particle population, i.e., (n)
k

. Equation (20) is equally valid for any

other state as it is for {n} . Hence, it is written in a general form
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ap«-).t) .. yyw.tipiw.tp

3
2
{B ({n},t)p(<n),t)>

+
5
ZS ^3i^T < 21 >

J 1 i J

This is a multivariate Fokker-Planck equation with coefficients

*i i,(W.t) and B. ,({n},t) defined as
1 >K 1 , J

Alk ({n},t) - (n.
k
-n.)W

t
({n}.{n)

k )

- ? ik
W
t
({">. (?> k ) (22)

B. .((n.t)) -I (n.
k
-n.)(n.

k
-n.)W

t
({n>, {n}

k
)

= ;^ikVV< n>^j k
> < 23 >

The moments of p({n},t) can be obtained through familiar methods (see,

e.g., van Kampen, 1981). Letting <*> denote the first moment of random

variable * and <*+> the cross moment of random variables * and +, the

expressions for the moments are written as

d<N.>

~dT~
=

f
<A

i k
(("}. t >> (24)

k

d<N.N >

dt
J

"

I
<<A

i,k
N
j
> + <A

j,k
H
l
>) + <»i,j«n).t)> (25)

The master equation for the grinding process, given in terms of (N >
i.j

is solved by this procedure of approximation with the Fokker Planck

equation, except that the variables {N.} are now identified with (N }
1 i.j

through the subscript transformation indicated by equation (4).
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NUMERICAL EXAMPLE

Consider a compartment representing a section of a ball mill. The

particles in the compartment are assumed to be classified into four size

ranges denoted 1 through 4 in ascending order of size with the feed

consisting of irregular particles of size 4. Initially a certain number

of irregular particles of size 4 exist in the compartment.

Corresponding to this description, eight random variables

N
2,4'

N
1 4

,N
2 3

,N
1 3

,N
2 2' N 1 2

,N
2 1

and N
l 1

rePresent tne numbers of

particles of the different shapes and sizes present in the mill

compartment.

It can be seen that no contributions to or from sizes N ,N

and N
2 j

result from the occurence of the a-b-c events. The unification

of the double subscript is then performed simply as

N
2,4 ' \> N

l,3 * V N
2,2 " V N

1.2 " V N
1.3 ' N

5

ignoring R^ 4§ N
g g

and N
g

. In doing so the scheme provided in

earlier sections is disregarded.

The events and their transition intensities are described in Table

1. These are in accordance with the grinding mechanism detailed

earlier. The calculation of the coefficients of the Fokker-Planck

equation is illustrated (APPENDIX A). They are presented in terms of

the transition intensities in Table 2. The following are the first

moments or the macroscopic equations in terms of (N >•
i.j

d<N
2,4

>

\>4 " (/S2.4< 2) + V ^ 4> <N , A> (26)dt 2,4 v ^2,4
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d<N
l,3

>

St—' "4 <"«,«>- (a
3

+
"l,3

,<H
l,3

>
< 27)

d<N >

-dt
1- = 2

^2,4 (2)<N
2,4

> - (U
2

+
'J
2 ,2»

<N
2,2

>
< 28 >

d<N
l,2

>

"dT- =
Vi.s* " <a

2
+
"l.a^i.a* (29)

d<N
i,i>

-dT— " VN
Z.4

> + Vl.S* + 2U
2
<N

2.2
>

+ 2a
2 ^1,2* " "l,l

<N
l.l

>
>

(30)

The initial conditions at t = are

<N
2.4

>
* V <N

1(3
> = <N

2 ,2
> " <

"l,a
> " <"

lt J>
" °

Instead of arriving at the equations for the cross moments, the

covariances can be directly calculated using the definition of the

covariance of two random variables X and Y given as

<<XY» <XY> - <XXY>

This gives rise to the following equations result for the covariances:

d«N 2
>>

3t
= - 2( ^2,4 (2) + U

4
+
^,4 ,<<N

2,4
2>>

+ X
2,4

+ <£
2 ,4

(2) + U
4

+
'J2,4

)<N
2,4

>
< 31 >

St
= "<^,4 (2) f u

4
+ "a^X^a.A.s**

+ U
4

<<N
2,4

2>>
- < a

3
+
"l.3 ,<<N

2.

4

N
1,3

>:>

" U
4
<N

2.4
> (32)

d<<N N >>

dt"
1— = -

( ^2,4 (2
»

+ U
4

+ ^2,4^^2,4^2,2^
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+ 2
*2, 4

(2) <<N
2 ,4
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Table 3 lists the parameter values used In the example calculation.

This system of coupled linear ordinary differential equations is solved

by resorting to a fourth order Runge-Kutta algorithm.

DISCUSSION

The mean values and the variances of the numbers of particles of

various sizes and shapes are presented in Figures 1 through 5. The

variance of N is high as expected due to the cumulative effect of the

generation of fines from the different sources. The covariances of N

and the other variables are presented as correlation coefficients in

Figure 6. The correlation coefficient of two random variables X and Y,

denoted as p(x,y) is the ratio of their covariance to the product of

their standard deviations. The standard deviation is defined as the

square root of the variance. Thus.

„, v v , «XY»
P(X.Y) - (46)

y«x >><<y2»
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Both the covariance and correlation coefficient of two random

variable X and Y are measures of a linear relationship in the sense that

the covariance, «XY» and the correlation coefficient (X,Y) will be

positive when X - <X> and Y - <Y> tend to have the same sign with high

probability. The covariance is negative when X - <X> and Y - <Y> tend

to have opposite signs with high probability. The actual value of the

covariance is not physically significant as it depends on the individual

variability of X and Y. The correlation coefficient removes this

individual variability and is hence a better measure of the linear

relationship of X and Y. The value of the correlation coefficient must

lie between -1 and +1 (Mood et al. , 1974).

The correlation coefficients presented in Figure 6 all assume

values equal to or below zero. This is because an increased value of

N
2 4

over lts mean indicates that less number of size 4, irregular

particles have undergone size reduction. Consequently the values of the

other variables will fall below their mean. This holds also for

variables indirectly related such as N and N , related through N
a > 4 1 , 2 1.3

and N2,2' The correlation coefficients of other pairs of random

variables are presented in Figures 7 through 9. Note that p(N ,N )

in Figure 8 is positive. This is because an increased value of N
1,3

above its mean would mean less number of fines clusters generated but it

also implies that more size 4, regular particles undergo chipping. The

chipping rate of size 4 particles is higher than the abrasion rate of

size 3 particles as listed in Table 3. implying a net increase in the
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vlaue of N above its mean. In general, the covariance and the

correlation coefficient depend on the transition intensitites. Thus,

they reflect the different size reduction mechanisms and their rates and

are therefore usefule in obtaining a qualitative picture of the

evolution of the particle population.

4-22



CONCLUDING REMARKS

The analysis of the grinding process on a mesoscopic level, based

on probabilistic considerations and the a-b-c grinding mechanisms,

definitely provides a more detailed picture than conventional

approaches. Efforts have been made in recent years to study single

particle breakage and the progeny fragment distribution (see, e.g.,

Schallnus and Schwedes , 1986). However the results are presented in

terms of cumulative weight percentages, such as the B. . values (see,

e.g., Klimpel and Austin, 1984). Such results do not shed light on the

manner in which a particle breaks, i.e., into the number of fragments

and their sizes. It is proposed that particles, all formed in a similar

manner will have similar fracture resistance, which has been confirmed

(see, e.g., Schallnus and Schwedes, 1986). Then, by the application of

similar kinds of stresses, these particles may break into similar number

of fragments. Observations on the number of the daughter fragments of

different sizes produced from the breakage of a single particle will

yield these breakage probabilities. The p. ,(k) values can be

calculated from such measurements and knowledge of the rate of selection

of particles for breakage, corresponding to S. values reported in the

literature (see, e.g., Shoji e_t al. , 1980).

Attempts have been made to study the rate of size reduction for the

three mechanisms in autogenous and semi-autogenous grinding by Austin et

al. (1986), which is an important step towards understanding the

internal dynamics of comminution operations. Similar studies can yield

values for the abrasion and chipping rates, cr . and u.. The inclusion of
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these mechanisms into the analysis offers a scope for scale-up as it is

possible to predict the results of a larger operation if some measure of

the kinds of stresses acting on individual particles together with a

description of the internal mechanisms is known.

The numerical example describes the fluctuations that can be

expected about the mean values of the sizes of the different particle

groups. The covariances are useful in providing a qualitative picture

of the evolution of the particle population. The standard deviation,

which is the square root of the variance is roughly the order of the

square root of the group size. Thus, stochastic modeling is a valuable

tool to describe the inherent random processes prevailing in a

comminution operation.
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NOTATION

A = first coefficient of the Fokker-Planck equation

B.
. = second coefficient of the Fokker-Planck equation

k = state of the particle population

N, " random variable representing the number of particles of a

distinct feature in a particle population

N. . = random variable representing the number of particles of shape

i and volume jAV (or size j ) in a particle population

P({n},t) • joint probability distribution of random variables {N>

P({n},t) = joint probability density function of random variables {N}

s = number of distinct size ranges into which the particle
population is classified

t = time

AV = volume of the smallest size; i.e., volume of the largest
particle classified as a fine particle.

W
t
({n)

Q
,
{n}j = transition intensity, transition rate or transition

probability per unit time from state {n} to {n>

Greek Letters

a
j

= specific rate of abrasion of particles of size j into those of

size j-1, time

^
i

j(k) - specific rate of breakage of size i particles into two

particles of sizes j and j-k, time

i j
" rate of in-flow of particles of shape i and size j to the

compartment , time

A'j " rate of exit of size j particles from the compartment, time
_1

(?) " ( n >j " < n > : vector denoting the magnitude of the change in

magnitude of random variables {N> with elements £ or £M s i,j
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time interval tending to zero

specific rate of chipping of particles of size j into those of

size j-1, time
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APPENDIX A: CALCULATION OF COEFFICIENTS OF EQUATION (21)

The transition intensities are denoted by functions expressed as

W
t
({n);{?)

k
) = f

k
({B>)

W
t
({n};a

k
) = f

k
({n})

where a is a vector in the space spanned by e, , e, e ; r = number of

random variables,

f

L
the elements of a are equal to those of {?), , e.g., if

(?)
k

- { 0,-l,0.+l,+l},

-1

+1

+1

Let F be an n x n matrix with off diagonal elements equal to zero and the

diagonal element in column k equal to f.({n>) for all k, i.e.,

' ' [ p (f
kk

= f
k ({">))l

where n equals the number of vectors, a,, a„ a , i.e., the number of
-i -2 -n

possible events.

Let W be a rxn matrix with columns equal to the vectors a , a , . . . ,a
-1 -2 -n'

4-28



w = [a, a„
•?n

]-1' -2' =3

Then, the matrix A of coefficients A
i.k ( {n} , t ) is given by

A = WF

and the matrix B of coefficients B. .({n),t) is given by

B - WFW

where W is the transpose of W.

For instance, considering 3 random variables and 2 events, we have

w
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f
i
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J
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f
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J
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f
2
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2213 1 12

These are the desired results. (Fox and Fan, 1986)

'llVlS a
21

f
2
a
23

'l2
f
i
a
i3

+ a
22

f
2
a
23

'l3
f

i
a
i3 *23 f 2

a
23
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Table 1
. Events . corresponding changes in magnitudes of the random

variables, and associated transition intensities for the
numerical example.

Random variables representing
particle populations of various
shapes and sizes.

Corresponding random variables with
1 i near i zed subscr ipts
N N N, N, N c

Event fk- W
t
({n);{f))

Abrasion («, - { o, -l. 0. +1. 1 ) f
l °3 n

l,3

<?>
2

- ( o. 0, 0, -1, *2 ) l2' °2 "l.3

Breakage <e>3
" (-1. 0, 2. 0. ( '3

-
*2.4< 2 ">2,4

Chipping «>
4

- <-l. +1, 0, 0. *1 > f =
4 "4 "2,4

<«>S
-

( 0, 0. -1. 0. 2 > f
5

=
°2 "2.2

Inflow
«»a

= M. 0, 0. 0, ) f„

"

X
2.4

Outflow <e>, - (-1. 0, 0, 0, u ) r, - (J 2.4n 2.4

(? >«
-

( o. -1, 0, 0. o ) f
8

=
"l.3"l.

3

«>» -
( o. 0, -1. 0. ) f

9
=
"a,z"2 .a

< ?,
.o

- ( o. 0. 0. -1,
( f

io= "1.2V2

«>u
- ( o, 0, a. 0, -1 ) f -

11 "1.1V1
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Table 3. Parameter values used in the numerical example.

a, = 0.04 time

u = 0.05 tim

n = 1000
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

This study has yielded the following conclusions:

1. The probabalistic mesoscopic approach for describing a particulate

system is based on stronger foundations than conventional macro-

scopic approaches, yielding hitherto unrecognized significant process

characteristics. The stochastic formulations of system behavior and

the establishment of the specific master equation in the present work

provides an insight into the nature and mechanisms of a rate process

without reference to deterministic dynamics, obtained as approxima-

tions to the probabilistic model. We can resort to such results to

predict the results from operations at different scales.

2. The general cell model describing attrition behavior is modular and

hence flexible. It can be applied to sections of a fluidized bed

where different conditions exist such as the bed proper and

freeboard zone.

3. The application of the general cell model to a fluidized bed

predicts large fluctuations in the amount of fines entrained. This

has an impact on elutriation studies as these fluctuations must be

recognized and accounted for while obtaining data from experimental

observat i ons

.

4. The master equation formulation has been demonstrated to be an

effective mesoscopic approach in describing the particulate

processes of sieving and grinding. An approximate solution has been



obtained in the case of non-linear sieving kinetics by using the

system size expansion. Exact analytical solutions to the master

equation have been obtained for the case of sieving without

oversize particles. The master equation for the grinding process

has been successfully approximated with a Fokker-Planck equation

to yield the desired results.

5. It is necessary to distinguish between fluctuations from an in-

herently random process and those arising from the measurement

techniques employed. Sieving, a widely employed particle clas-

sification method for particulate matter, is itself a random

process as revealed through the study on sieving kinetics. Thus,

the measured values of the product of attrition or grinding after

sieving reflect fluctuations from two sources .namely, attrition or

grinding and sieving.
. This fact has not been recognized pre-

viously.

6. The results of the study on non-linear sieving kinetics indicate

that the rate controlling step is the passage of the near mesh size

particles. However, the definition of the near mesh size varies

from material to material. This problem can be circumvented by

introducing a probability associated with the initial near mesh

size population on the sieve.

7. The stochastic analysis of comminution, based on the mesoscopic

approach at the particle level with the inclusion of the different

grinding mechanisms has yielded an improved treatment of the

internal dynamics of the comminution operation over existing
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process descriptions. Experimental techniques to measure the

various rates are also proposed.

8. The concept of clusters of fines has been introduced in this work.

The effect of fines on the system behavior is caused by these

clusters, which can be measured more easily than individual fine

particles. This is true in many cases such as particle entrainment

from the fluidized bed.

Recommendations for future work are listed below.

1. Mechanical attrition in fluidized beds . In the absence of chemical

attrition, inter-particle and particle-wall collisions cause attri-

tion of the bed material. A master equation can be formulated for

this problem. The transition intensities for inter-particle colli-

sions will be non-linear and of second order. It is expected that

inter-particle collisions predominate in wide beds and

particle-wall collisions predominate in narrow beds. The relative

values of these rates will determine the nature of the end product.

At present no experimental evidence exists. indicating the second

order breakage kinetics .This may be due to the fact that a large

number of these experiments are conducted in narrow laboratory

size fluidized beds.

2. Experimental s tudies on sieving operations . In the light of the

theoretical studies on sieving kinetics, experimental observations

providing the information required for the model's application
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are necessary to determine the transition intensities and verify the

model systematically.

3. Study of semi-batch and continuous sieving operations . The study of

sieving kinetics can be extended to include semi-batch or

continuous flow conditions. An interesting problem is that of

studying the sieving kinetics in the case of a system of sieves

placed one above the other in order of larger mesh size. Such

systems are commonly used.

4. Presence of chipping during sieving operations . It has been ob-

served that the material being sieved undergoes chipping randomly,

i.e., the irregular feed which may be slightly oversize becomes

near mesh size or near mesh size becomes slightly undersize and

passes through the sieve. A stochastic analysis will provide

information on the optimal sieving time or 'end point' of the sieving

operation.

5. Experimental investigations on breakage probabilities of single

particles . The theoretical work has indicated that the complex

internal fracture mechanisms can be studied on a more feasible,

particle level in terms of probabilities of breakage. It is neces-

sary to know the number-size distribution of the progeny

particles to determine the mode of breakage and form of the tran-

sition intensities. Existing experimental results indicate the the

cumulative size distributions of progeny particles which is inade-

quate for stochastic modeling. A slight modification in the design

of such experiments would yield desired results.
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6. Monte-Carlo simulation of particle size reduction . In order to

obtain a deeper insight into the rate of selection for breakage and

the subsequent mode of breakage, it may be necessary to simulate the

grinding operation using techniques such as the Monte-Carlo

method. This numerical technique is also useful in solving problems

for which the system size expansion is invalid.

7. Experimental study on grinding mechanisms . Tracer methods can be

utilized to determine the transition intensities of abrasion,

breakage and chipping grinding mechanisms. Further study is required

to design these experiments.

8. Stochastic analysis of autogeneous grinding. In autogeneous grind-

ing, particle breakage occurs through inter-particle collisions,

where the raw feed itself serves as the grinding media. It is ex-

pected that breakage is more likely to occur when large particles

of similar sizes collide in which case the transition rate of

breakage will depend on the number of particles in the two groups

to which these colliding particles belong. This is essentially non-

linear grinding kinetics. Nevertheless, this may not be evident if

the abrasion and chipping rates are much higher . Further theoretical

and experimental studies are required to shed light on such

processes

.
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ABSTRACT

Particulate processes or systems lend themselves to a stochastic

analysis due to the finite number of entities present in volume elements,

random behavior of the individual particles and the complexities encountered

in attempts to analyze the process on a microscopic scale. In this study, a

mesoscopic approach is adopted to study attrition, and sieving and grinding

operations. The attrition behavior in a continuous flow particulate system

is described by a model based on the well-known Migration and Illness-Death

stochastic processes. The master equation resulting from a stochastic

population balance is formulated for the sieving and grinding processes. A

rational approximation procedure, the system size expansion, is employed to

solve the master equation when it is not amenable to an explicit analytical

solution. The application of the model is illustrated with a numerical

simulation in all three cases. The stochastic description is highly useful

in understanding and predicting the results of processes involving finite

entities and characterized by complex, obscure behavior on the microscopic

scale, and providing a measure of the inherent fluctuations. This yields In-

formation on process characteristics, essential for understanding and

developing the process under consideration.


