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Abstract. This review describes and demonstrates the Q-space analysis of light scattering by 
particles. This analysis involves plotting the scattered intensity versus the scattering wave vector 
q = (4π/λ) sin(θ/2) on a double log plot. The analysis uncovers power law descriptions of the 
scattering with length scale dependent crossovers between the power laws. It also systematically 
describes the magnitude of the scattering and the interference ripple structure that often underlies 
the power laws. It applies to scattering from dielectric spheres of arbitrary size and refractive 
index (Mie scattering), fractal aggregates and irregularly shaped particles such as dusts. The 
benefits of Q-space analysis are that it provides a simple and comprehensive description of 
scattering in terms of power laws with quantifiable exponents; it can be used to differentiate 
scattering by particles of different shapes, and it yields a physical understanding of scattering 
based on diffraction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



1. Introduction 
 

The scattering of light from particles is an important method for in situ, non-invasive, real 
time characterization of the scattering particles. Particle size, morphology, refractive index and 
concentration can be determined under the ideal situation in which the scattering magnitude and 
angular distribution are fully characterized and the inverse problem of using such data to 
determine these properties can be solved. However, whereas the task of calculating the scattering 
patterns from particles of known size, shape and refractive index has seen impressive advances, 
the inverse problem of going from the scattering back to the particle remains formidable. 

Another very important application for light scattering is to understand the effects of 
particulate scattering and absorption in the Earth’s atmosphere on the global environment. For 
this application the impressive advances for calculating scattering from a wide variety of 
particles mentioned above can be very useful. However, increasing particle complexity requires 
increasingly complex calculations which hamper their facile application to the point where 
approximations are often applied. Moreover, these complex solutions yield little or no physical 
insight into the scattering process. 

Thus it seems that the field of light scattering could use a new perspective that could 
quantitatively describe and differentiate the scatterings from different types of particles. It could 
also use a description that would yield a physical picture of the scattering process, a desire 
spurred both by the practical need to predict simply scattering as new types of particles are 
encountered, and the more general motive to understand fundamentally this aspect of nature. 

In this paper I review a method which provides a new perspective on light scattering. The 
method is a simple change in the manner by which to view the angular scattering patterns. 
Instead of plotting the scattered intensity versus the scattering angle, the new perspective plots 
the scattered intensity versus the magnitude of the scattering wave vector, and the plots are made 
log-log. This method is not all together new. It has a long history of application to small angle X-
ray and neutron scattering, however, it was not applied to light scattering until we first applied it 
to Mie scattering from spheres more than a decade ago [1]. When we did, we discovered patterns 
in the scattering that involved power laws that had never been described before. More work 
followed both from our lab [2-6] and others [7-12]. Recent application to random nonspherical 
particle geometries [13-15] indicates that the usefulness of the new perspective might be wide 
spread. We call this new perspective “Q-space analysis”. 

 
2. The Scattering Wave Vector 

As the name implies, the fundamental variable in the Q-space analysis is the scattering 
wave vector q. Thus it is very appropriate that our description of Q-space analysis starts with a 
description of the origin of q in scattering theory. We follow the description given in [16]. 
Consider a scalar wave incident upon a point-like scattering element, or scatterer, at r


 as drawn 

in Fig. 1. Since the scatterer is point-like, it scatters isotropically throughout space. The incident 
field at a position r


 is 

 

     0 iE(r) E exp ik r 
 

      (1) 

 
 

 
 



Figure 1. Diagram of light 
with an incident wave vector 

ik


scattering from a point 
scatterer at r


 into the 

scattering wave vector sk


 at 
an angle θ directed to a 
distant detector. 

 
 

where i = √-1 and ik


 is the incident wave vector, with magnitude | ik


 | = 2π/λ. The wave scatters 

in the direction of sk


toward the detector at R >> r.  Then the field at the detector is a plane wave 

described by 
 

          sE R,r  ~ E r exp ik R r , 
   

    (2) 

 
which with Eq. (1) yields 
 

          0 s i sE R, r ~ E exp ik R exp i k k r  
    

   (3) 

 

We have dropped the equality for the proportionality because we don’t know and don’t need to 
know the strength of the scattering element at r


. The second term of Eq. (3) shows that the 

phase at the detector is a function of the position of the scattering element and the vector 
 

      i sq=k -k
 

     (4) 

 
Equation (4) defines the scattering wave vector q


. Its direction is in the scattering plane from sk


 

to ik


, and if the scattering is elastic, i.e. i sk k
 

, the magnitude of q is 

 
    q = 2k sin(θ/2)       (5a) 
 
       = (4π/λ) sin(θ/2)      (5b) 
 
where θ is the scattering angle. Finally, we strip Eq.(3) to is essentials and write for the 
amplitude of the scattered wave 
 
    Esca( q, r

 
) ~  E0exp(i q r

 
)     (6) 

 



The importance of q


 is that it describes how the phase at the detector depends on the 
position of the scatterer and the scattering angle. Any finite size object can be thought of as 
composed of a great many sub-volumes that act as point-like scatterers at various r


, a system of 

scatterers [16, 17]. Hence the total scattered wave is the sum of all the waves from the scatterers 
that make up the object. In taking this sum a baseline and very useful approximation can be made 
that the scattering from each individual scatterer of the object is so weak that it does not affect 
the other scatterers. Then each scatterer only sees the incident field and the interior of the 
scattering object is uniformly illuminated. This is the so-called Rayleigh-Gans or Rayleigh-
Debye-Gans (RDG) [18- 21] approximation which leads to the total scattered field at the detector 
to be 

 
        sca 0 iE q ~ E exp iq r . 

  
    (7) 

 
 To convert the sum in Eq. (7) to an integral write the density function of the system of 
scatterers as 
 
     n( r


) = ∑δ( ir r

 
)     (8) 

 
where δ( r


) is the Dirac delta function.  Then 

 
    ∑ exp(i q r

 
) = ∫ exp(i q r

 
) n( r


) d r


 .   (9) 

Thus 
 
    Esca(q) ~ E0 ∫ exp(i q r

 
) n( r


) d r


.    (10) 

 
 In Eq. (10) we have anticipated the experimental situation where scattering will take place 
from an ensemble of particles of random orientations; thus the vector nature of q is eliminated. 
Equation (10) brings the realization that the functionality of the scattered wave under the RDG 
approximation is the Fourier transform of the real space structure of the scattering object. Given 
the reciprocity of the Fourier transform, it also implies that the Fourier transform of the wave 
scattered from the object is the real space structure functionality of the object. Indeed, the real 
space (r-space) and q-space (reciprocal space) descriptions of the object carry the same information 
only in different units. 
 One may also recognize that Eq. (10) describes diffraction from the scattering object, so it 
also brings the important realization that scattering under the RDG approximation is simply 
diffraction [22]. In this context it depends neither on the electromagnetic character of the light 
wave nor the electric properties of the scattering object as specified by its complex index of 
refraction. 

The intensity of the scattered wave is the square of the complex scattering amplitude; 
hence the q-space functionality of the scattered intensity is the square of the Fourier transform of 
the real space structure. Intensity is what one usually detects in an experiment unless one “beats” 
the scattered wave against a “local oscillator”, i.e. one does holographic detection of scattering 
[23]. 

To identify specifically the q-space functionality of the scattered intensity it is very useful 
to define a structure factor, S(q), as the Fourier transform of the real space structure of the object 



normalized by the number of scatterers in the object, quantity squared. In integral notation the 
number of scatterers becomes the volume, V, of the object thus 

 
S(q) = |V-1 ∫ exp(i q r

 
) n( r


) d r


|2    (11) 

 
 

3. Scattering from Spheres. 
3.1 The Rayleigh-Debye-Gans Limit.  

 The structure factor for a sphere of radius R can be calculated in spherical polar 
coordinates using Eq. (11) to find [18-21] 
 
    S(q) = [3(sinu – ucosu)/u3)]2     (12) 
 
where u = qR. This structure factor is directly proportional to the scattered intensity from a 
sphere of arbitrary radius and relative refractive index m when 
 
    ρ = 2kR|m - 1|  < 1      (13a) 
and 
     |m – 1| << 1.      (13b) 
 
Equation (13a) ensures that the phase across the particle volume is nearly that of the incident 
wave and Eq. (13b) ensures that the reflection at the sphere is surface is minimal. These 
conditions define a weakly scattering sphere. The parameter ρ is called the phase shift parameter. 

Figure 2 shows a plot of Eq. (12) as a function of the dimensionless parameter u = qR. 
Recall that q is a function of the scattering angle θ, Eq. (5). Figure 2 illustrates four major 
regimes/features for the scattering. These are: 

1. The forward scattering lobe. When qR < 1, The scattering is q-independent, hence θ-
independent. In this regime, under the conditions of Eqs. (13), the differential 
scattering cross section is given by the Rayleigh formula for small spheres of 
arbitrary refractive index 

 
   dσ/dΩ = R6k4F(m)      (14) 
      where  

 
    F(m) = |(m2 -1)/(m2 + 2)|2     (15) 
 

Given these functionalities, this qR < 1 regime, forward scattering lobe can also be 
called the “Rayleigh regime”. 

2. The Guinier regime. When qR ≈ 1, 
 
    S(q) = 1 – (qRg)

2/3 = 1 – (qR)2/5    (16) 
 

where Rg is the radius of gyration of the scattering object. Equation (16) is derived 
from Eq. (11) by expanding the exponential term to second order [24, 25]. For a 
sphere, Rg

2 = (3/5)R2, hence the second equality. 
3. The power law regime. When qR > 1, Fig. 2 shows an envelope for the scattering 



Figure 2. Plot of the structure factor for scattering from a sphere in the Rayleigh-
Debye-Gans limit.  

having a power law functionality with an exponent of -4. This is often called the 
Porod regime [25, 26]. It can be shown that in this RDG, diffraction limit, the Porod 
exponent is equal to – (d + 1) where d is the spatial dimension of the diffracting 
object [17]. The Porod envelop itself is described by 
 

S(q) = 9(qR)-4 , qR > 1     (17) 
. 

4. The ripples. A major feature for the scattering curve is the interference ripples. For 
the RDG limit these ripples have a spacing of 
 

δ(qR) = π.       (18) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

3.2 Mie Scattering.  
 The Mie solution for describing scattering from a sphere of arbitrary size and refractive 
index has been existent since 1908 [27], and the advent of modern computers in the 1960’s and 
70’s allowed quick and accurate calculation of the solution (see e.g. [28]). Moreover, the RDG 
solution for soft spheres has been known since the early 20th century and its description is often 
juxtaposed closely with the Mie solution in various monographs on the subject of light scattering 
[18-21]. Thus it is rather curious that historically the Mie solution, to this author’s knowledge, is 
always plotted as scattered intensity versus the scattering angle θ and apparently never plotted, as 
for the RDG case, using the dimensionless qR, nor not even plotted versus q as diffraction theory 
would suggest. 

In 2000 we [1] began the exploration of plotting Mie scattering in the same manner as 
shown in Fig. 2, above, viz. I vs. qR log-log, a method we have come to call “Q-space analysis”. 



When this was done, unforeseen patterns in the scattering were discovered that provide useful 
new descriptions of the scattering. Perhaps the most startling patterns occur at large qR, and it is 
there the following description starts. 

3.2.1 The power law regime, qR > 1. Figure 3a shows an example of Mie scattering (IVV, 
incident and detected polarization vertical) for a sphere with an index of refraction m = 1.05 and 
a variety of sizes expressed as the size parameter kR.  The intensity normalized by its value at 
zero scattering angle I(θ)/I(0) is plotted versus the scattering angle θ. A series of bumps and 
wiggles are seen with some periodicities, but with no particular coherent pattern. The scattering 
angle θ, although conveniently measured in the laboratory, uncovers no patterns. 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 3b shows the same data but plotted versus the dimensionless qR logarithmically. 
Now the plots for the different size parameters appear to be related in a coherent manner, and 
power laws describing the envelopes of the plots at large qR are apparent. 
  
 
 
 
 
 
 
 
 
 

Figure 3. (a) Normalized Mie 
scattering curves as a function of 
scattering angle for spheres of 
refractive index m = 1.05 and a 
variety of size parameters; and (b) 
same as (a) but plotted 
logarithmically vs. qR. Lines with 
slope -2 and -4 are shown [1]. 



Figure 4. (a) Normalized Mie scattering 
curves as a function of scattering angle for 
spheres of refractive index m = 1.50 and a 
variety of size parameters; and (b) same as (a) 
but plotted logarithmically vs. qR. Lines with 
slope -2 and -4 are shown [1]. 
 

 
 
 

Figure 4 shows the same comparison as seen in Fig. 3 only for an index of refraction of 
1.5. Figure 4a shows the conventional plot versus scattering angle and again chaos reigns. Figure 
4b shows the same data plotted in q-space and again power laws appear. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figures 3b and 4b are examples of Q-space analysis; the double logarithmic plotting of 

the scattered intensity versus either q or qR. Q-space analysis uncovers quantitative patterns 
unseen or unemphasized before. At small qR a universal “forward scattering lobe” is seen. Near 
qR ≈ 1, a Guinier regime appears. At larger qR power law envelopes for the scattering curves 
appear with -2 and -4 exponents. There is a crossover between these power laws to imply a 
length scale relevant to the scattering. Finally, the enhanced backscattering, the “glory,” shows 
no particular pattern (none found so far) but is compressed into spikes in the large qR part for 
each size parameter kR.  

A second useful normalization for the scattered intensity is to normalize by the 
differential Rayleigh scattering cross section of the particle assuming it is a Rayleigh scatterer [4] 
(which it typically is not). The differential Rayleigh scattering cross section is given by Eqs. (14) 
and (15) above.  

Figure 5 shows the Rayleigh-normalized Mie scattering intensity i.e., Ivv /R6k4F(m).  
These plots include a small degree of size polydispersity to wash out the ripple structure and 
hence leave only the envelopes.  This figure demonstrates a quasi-universality of Mie scattering 



on the phase-shift parameter Eq. (13a), above. For each phase-shift parameter value shown the 
values of m and kR vary widely.  Despite this variation, the curves for the same ρ lie with each 
other, hence the curves are universal with ρ.  This universality is not perfect, however, with 
variations of approximately a factor of 3 for the same ρ. 

Figure 5 also shows that the ρ-crossover between the -2 and -4 power laws is at qR values 
near 1.2ρ. 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

3.2.2 The forward scattering lobe, qR < 1. The behavior of the forward scattering lobe 
(the Rayleigh regime) where qR < 1 is shown as a function of ρ in Fig. 6 for a variety of 
refractive indices m. For ρ < 1, the Rayleigh formula, Eqs. (14) and (15), accurately describes the 
forward scattering. On the other hand, for ρ >> 1 the forward lobe scattering is less than that 
predicted by the Rayleigh formula by a factor of ca. 3/ρ2. The crossover between these two 

regimes is near ρ ≈ 2. While these results 
are roughly independent of the particle’s 
refractive index a strong ripple structure 
appears near ρ ≈ 2 to 20 with increasing 
refractive index.  

 
 
 
 
 

The  3/ρ2 factor causes the forward scattering size functionality to fall from R6 to R4 and 
the refractive index functionality to decrease. This combined with the narrowing of the forward 
lobe, q ~ angle ~ R-1 hence solid angle ~ R-2, qualitatively explains the crossover of the total 

Figure 6.  Rayleigh normalized forward 
scattering intensity, I(0)/ R6k4F(m), 
versus the phase shift parameter ρ [4]. 
 

Figure 5.  Two sets of Rayleigh-
normalized Mie intensity curves 
for spheres.  The three curves in 
each set have the same value of ρ 
but different values of kR and m.  
The bounding envelopes are shown 
for both sets of curves and 
illustrate how the envelopes only 
depend on ρ [4]. 



scattering from the Rayleigh R6 to the geometric R2 functionality, independent of the refractive 
index. 

3.2.3 The Guinier regime, qR ≈ 1. Careful inspection of Fig. 4b shows that not all the 
plots for the different size parameter values lie together in the Guinier regime despite the fact 
that the plots are made with the dimensionless variable qR. To explore this further we generated 
Mie scattering curves for known values of the sphere radius hence known radius of gyration 

through Rg
2 = (3/5)R2 [2]. These where then 

fit to the Guinier equation, Eq. (16), using the 
restriction qR ≤ 1. This generated a fit value 

for the radius of gyration that we called the 
“Guinier inferred radius of gyration, Rg,G”. 
This was then compared to the actual Rg. 

Such a comparison is shown in Fig. 7. The ratio Rg,G/Rg starts at unity, as it should, for 
small ρ and then increases and oscillates. The oscillations damp with increasing ρ and in the limit 
ρ → ∞, Rg,G/Rg → 1.12. This value is expected in the geometric limit where the sphere acts like a 
circular obstacle and Fraunhofer diffraction around the obstacle determines the forward 
scattering lobe and its Guinier edge. Thus plots such as Fig. 6 describe how the edge of the 
forward scattering lobe behaves as the scattering evolves from a three dimensional sphere to 
effectively a two dimensional obstruction. Figure 7 also provides a recipe for spherical particle 
sizing with at modest knowledge of the refractive index. Finally, the oscillation was shown to be 
180° out of phase with similar oscillations in the total scattering efficiency for reasons yet to be 
determined [2]. 

3.2.4 The ripples.The interference ripples in the ρ = 0, RDG limit are equally spaced in 
qR-space the spacing being δ(qR) = π. As ρ increases the ripple spacing evolves with some small 
chaos until for ρ ≥ 5, the spacing is uniform in θ-space with the spacing being δθ = π/kR = λ/2R 
[3]. This latter result, the angle between diffraction or interference minima being the wave length 
divided by the full dimension of the object, is the classic Fraunhofer result for one dimensional 
objects, e.g. single and double slits. Ripple spacing can be used for particle sizing [29-31]. 

3.2.5 The enhanced backscattering. The enhanced backscattering has so far defied our 
attempts to find a pattern. 

 
3.3 Summary. 

All these results can be distilled into a new general description of light scattering from a 
sphere of arbitrary size and real refractive index. There are five major regimes/features for the 
scattering. These are: 

 
1. The forward scattering lobe. The description starts with the magnitude of the 

scattering which uses the forward scattering lobe as its basis. The forward 
scattering lobe (the Rayleigh regime) lies in the region qR < 1 and is described 

Figure 7. The ratio of the Guinier inferred 
to real radius of gyration Rg,G/Rg as a 
function of the phase shift parameter ρ for 
spheres with three different refractive 
indices. The size parameter kR was varied 
to vary ρ [2]. 



by 
 
    I(0) = R6k4F(m)  when ρ < 1   (19a) 
 
    I(0) ≈ (3/ρ2)R6k4F(m)   when ρ > 5   (19b) 
 
2. The Guinier regime. When qR ≈ 1, 
 
    S(q) = 1 – (qRg,G)2/3     (20) 
 
 where Rg,G is related to the actual radius of gyration of the scattering object via 

curves such as shown in Fig. 7. 
3. The power law regime. With the normalization of Eqs. (19), there are three 

power law regimes (including the rather trivial forward scattering lobe) that are 
quasi-universal with ρ 

     I ~ (qR)0  when qR < 1    (21a) 
 
     I ~ (qR)-2  when 1 < qR < 1.2ρ   (21b) 

      
     I ~ (qR)-4  when qR > 1.2ρ   (21c) 
 

4. The ripples. Ripples appear in the non-trivial power law regimes with qR > 1. 
The ripple spacing is 

Δθ = π  when ρ < 5    (22a) 
δ(qR) = π/kR when ρ > 5    (22b) 
 

5. The Glory. Enhanced backscattering, the Glory, appears when ρ >5. No patterns 
have yet been discerned to describe the Glory. 
 

This general description is portrayed graphically in Fig. 8 which shows the envelops of 
the scattering curves, ignoring the ripples and backscattering, plotted versus q (not qR).  Two 
points of view are given: Fig. 8a where the scattering is normalized by the Rayleigh scattering, 
and Fig. 8b where the scattering is normalized by the forward scattering. 

More than a summary, Fig. 8 shows how Mie scattering patterns evolve with increasing 
ρ. The story of scattering from a dielectric sphere starts at  = 0 with the Rayleigh-Debye-Gans 
limit.  This is the diffraction limit for which each sub-volume of the scattering object sees only 
the incident wave. For qR < 1 the forward scattering lobe of the RDG curve is flat, i.e., (qR)0, 
and the magnitude of the scattering is equivalent to the Rayleigh scattering prediction, Eqs. (14) 
and (15).  There is a change in slope near q ≈ R-1, the Guinier regime, indicating the length scale 
of the sphere, its radius. For qR > 1 the envelop functionality falls off with a negative four power 
law, the Porod limit, with magnitude 9(qR)-4 times the Rayleigh scattering cross section.  This 
description includes Rayleigh scattering in the limit λ >> R because then qR < 1 and only the flat 
part of the scattering function is obtained.  
 When ρ > 1, scattering in the forward lobe regime decreases relative to the Rayleigh 
scattering value. The relative decrease (remember, the unnormalized scattering increases with ρ) 
is proportional to a factor of ρ2/3 as depicted in Fig. 8a.  Again near qR ≈ 1, a Guinier regime 



Figure 8.  Diagrams of the general description of Mie scattering, the Mie scattering patterns, 
for uniform spheres of arbitrary size and real refractive index.  

indicates the particle size. For qR >1 the scattering now falls off roughly as (qR)-2 until this 
functionality crosses the RDG curve near qR ≈ 1.2ρ.  For qR > 1.2ρ the scattering is identical to 

RDG scattering, falling off as 9(qR)-4 times the Rayleigh cross section for all R and m as long as 
qR > 1.2ρ.  The (qR)-2 functionality between qR = 1 and ca. 1.2ρ is exact only at those limits; the 
average Mie curves dip below the (qR)-2 line.  This dip is the first interference minimum present 
in all Mie curves and is the strongest of all the minima.  Its position is near qR ~3.5. 

4. Explanations of the patterns. 
4.1 The shell model. The general features for the envelopes of the scattering depicted in Fig. 

8 can be replicated by assuming that when ρ > 5, the interior of the sphere is dark and the 
scattering comes from a shell just inside the outer surface, illuminated by the incident wave [1]. 
Then the scattering profile is simply the square of the Fourier transform of the shell, which 
would be RDG scattering from the shell. The result is 
 
    S(q) = [3(sinu – ucosu – sinv + vcosv)/(u3 – v3)]2.  (23) 
 
In (23) u = qRo and v = qRi where Ro and Ri are the inner and outer radii of the shell, 
respectively. Equation (23) yields a forward scattering lobe limited by a Guinier region near qRo 
≈ 1, followed by a power law envelope described by ca. 2u-2, then a crossover to another power 
law of u-4. These are all in quantitative agreement with the Mie features shown in Fig.8b.  The 
crossover is at 2Ro/(Ro – Ri). If this is set equal to ρ, one finds a shell thickness of Ro – Ri = 
λ/[2π(m – 1)]. Given this shell thickness, one can calculate the volume of the shell in terms of 
this ρ value. For a thin shell, the Rayleigh differential scattering cross section can be calculated 
for the forward scattering lobe to be (12/ρ2)Ro

6k4F(m). This has the same functionality as the Mie 
result, Eq. (19b). 



Figure 9. Scattered intensity for strongly refractive prolate spheroids with an aspect ratio 
of 0.8 and size parameters ka, where a is the major axis of the spheroid, ranging from 
1.94 to 62.2. The incident illumination is parallel to the major axis. On the left the 
normalized intensity is plotted versus the scattering angle, on the right plotted versus the 
log of qa. 

 The only problem with the shell model is that it is wrong. It is based on the erroneous 
assumption that the interior field is a shell. Calculations readily show that the interior field is 
quite complex for large ρ and bears no resemblance to a shell. Thus one is left to wonder why the 
model works so well and frustrated that it can’t be right. 
 4.2 Phasor analysis. Berg and coworkers [6] have developed a microphysical model 
based on the Maxwell volume integral representation of the scattering process. The scattered 
wavelets from sub-volumes of the sphere’s interior are represented by phasors. With these one 
can visualize how the total scattered field, the sum of the phasors, evolves with changing ρ and q. 
The analysis for ρ < 1 shows that the forward scattering lobe occurs at small q because then all 
the phasors add together constructively. The Guinier crossover occurs as the phasors begin to fall 
out of phase as indicated by a spread in their pointing directions. The (qR)-4 Porod regime is a 
consequence of destructive interference of wavelets from the entire body of the sphere except 
those from the tips or end caps of the sphere along the ±q-direction. Finally, the ρ-crossover is a 
result of wavelets from the sphere’s interior field hot spots destructively interfering. Importantly 
it was shown that the length scale implied by the ρ-crossover correlates well with the size of the 
hot spots. 
 

5. Scattering from non-spheres. 
The obvious questions to address now are: What does scattering from other particle 

shapes or configurations show when subjected to Q-space analysis (I vs. q, log-log)? Do power 
laws appear; with what exponents? Is it true that scattering from other particle shapes and 
assemblies also starts at the Fourier limit?  If so, how do the power laws evolve with increasing 
ρ? In what follows we will begin to answer these questions by considering a number of different 
non-spherical particles. Remarkably, when we do, we will again find power laws. 

5.1 Spheroids. Recently Berg has studied scattering from dielectric spheroids using the T-
Matrix method [21] to calculate scattering curves for a variety of particles [15]. He found power 
laws very similar to those found for spheres: a forward scattering lobe followed by a Guinier 
regime, then a (qa)-2 regime (a is the major axis), a ρ-crossover to a Porod regime. Differences 
from spheres appeared, however, with increasing difference of the aspect ratio from unity. An 
example is shown in Fig. 9 which displays a (qa)-5.5 power law beyond the ρ-crossover. 

 
 
 
 
 
 
 



5.2 Fractal aggregates. Figure 10 shows a scattering curve for an ensemble of fractal 
aggregates formed via diffusion limited cluster aggregation (DLCA), plotted I vs. q log-log. 
Much like for spheres, and now spheroids, the plot displays a flat Rayleigh regime at small q that 
curves over near qRg ≈ 1 to a power law at large q. For fractal aggregates the power law 
exponent is the negative of the non-integer aggregate fractal dimension of the aggregate [16, 17, 
32]. The data in Fig. 10 are for a polydisperse ensemble of aggregates that very likely have 
random orientations. They are typical of a large number of fractal aggregate situations. 
 Visible inspection of a typical colloidal or aerocolloidal DLCA fractal aggregate shows 
an assembly of roughly spherical primary particles less than 50 nm in diameter stuck together in 
an open, branched chains. This open, aggregate morphology is very different than the 
compactness of spheres and spheroids. 
 The RDG theory successfully explains data such as those in Fig. 10 [16]. That is, the 
square of the Fourier transform of the aggregate structure, the structure factor, describes the 
shape of the plot. The differential scattering cross section is the structure factor multiplied by the 
square of the number of monomers in the aggregate and the Rayleigh scattering cross section for 
an individual monomer. This is equivalent to Eq. (19a) for spheres. A semi-quantitative 
argument that the RDG description applies to aggregates with a fractal dimension less than 2 in 
the limit of large aggregates exists [16]. 

 The structure factor of a 
single aggregate is rarely described 
by a nice smooth power law plot as 
shown in Fig. 10, but this is true of 
the real space power laws too [33]. 
Hence Fig.10 must be viewed as a 
statistical average. 

 
5.3 Dusts. Very recently I have applied the Q-space analysis [13] to a well-known data 

set [34, 35] for scattering from desert dusts. An example is given in Fig. 11. Figure 11a shows 
the data plotted in the conventional way, log(I) versus θ. A non-descript curve is seen. Figure 
11b shows the same data plotted log(I) versus log(q), i.e. Q-space analysis, now a quantifiable 
power law is uncovered. Similar results were found for volcanic ashes and Martian surrogate 
particles [13]. Unfortunately, no data were obtained in the Guinier and Rayleigh regimes (qR ≤ 
1). Regardless, we find yet more power laws this time associated with a variety of dusts with 
associated exponents of ca. 1.7 to 1.8 that beg for explanation. 

Figure 10.  Scattered intensity as a 
function of the wave vector q for a 
TiO2 aerosol.  The slope in the 
large q regime for this log-log plot 
is the fractal dimension Df =1.75.  
Five sets of data represent five 
consecutive runs as aggregation 
ensued. 



Figure 11. The scattered intensity (scattering matrix element F11) for Saharan (JGR 112 
[34]) dusts versus (a) scattering angle θ, and (b) The scattering wave vector q.  

Figure 12. Normalized scattering 
intensity calculated for pocked spheres 
of various size parameters, x = kR. 

In an effort to replicate theoretically the scattering from dusts Zubko has used DDA to 
calculate the scattering by four types of irregularly shaped particles which he calls pocked 
spheres, rough surface spheres, strongly damaged spheres and agglomerated debris at three 
different relevant refractive indices [35]. In collaboration with Zubko we have found once again 
that Q-space analysis of all nearly all these situations shows power laws [14]. An example is 
given in Fig. 12. 

 

 
 
 
 
 
 
 
 
 
 

 
6. Significance of the Q-space analysis and the resulting patterns 

 
The Q-space analysis uncovers a physical description of Mie scattering by dielectric 

spheres. Mie scattering starts as simple diffraction at the ρ = 0 limit and then systematically 
evolves with increasing ρ. This diffraction or RDG limit at ρ = 0 is simply the square of the 
Fourier transform of the particle’s physical structure. This limit holds when the interior of the 



particle is uniformly illuminated by the incident field. The parameter ρ is a measure of the extent 
of interaction between the infinitesimal sub-volumes of the particle. With increasing ρ, these 
sub-volumes experience not only the incident field, but also begin to experience the scattered 
fields of their neighbors, a condition expressed by the term “internal multiple scattering”. The 
interior multiple scattering darkens the interior by a combination of a decrease of the wave 
amplitude and randomization of the phases. This darkening causes the forward scattering to 
decrease relative to the Rayleigh scattering, incident field illuminated situation at ρ = 0. The 
quantitative aspects of this decrease are a crossover from R6 to R4 size functionality and a severe 
decrease in the refractive index functionality (perhaps a complete loss). When q is large enough, 
so that inverse q is comparable to the size of the interior hot spots, the hot spots dominate the 
scattering. Remarkably, this causes the total scattering to regain its ρ = 0 value in the region qR > 
1.2ρ. The combination of the relative decrease in forward scattering intensity ending at qR ≈ 1 
and the ρ = 0 value intensity beginning at qR > 1.2ρ leads to the appearance of a (qR)-2 regime in 
between. 

From an empirical point of view, it is very important to stress that the differences and 
similarities between spheres, spheroids, fractal aggregates and dusts are readily discerned and 
quantitatively differentiated with Q-space analysis, but unresolvable when plotted conventionally 
versus theta. With log(q) one gets distinguishable lines and quantifiable exponents, with θ one 
just gets a bunch of indistinguishable curves (e.g. Fig.11). Q-space analysis could well be a 
comprehensive and discriminating analysis method of scattering that encompasses all shapes. 

For any particle shape the evolution of the scattering with increasing ρ reminds us that 
the scattering of light is foremost the scattering of waves. Thus scattering is fundamentally 
diffraction, the mathematical embodiment of which is the Fourier transform, which is both 
powerful and well understood. At ρ = 0, the interior field of any object is simply the uniform 
incident field hence diffraction from this situation yields the Fourier transform of the object’s 
structure. With increasing ρ, which is a measure of the overall refractivity of the particle, internal 
multiple scattering changes the internal field, but diffraction from this field still determines the 
far field scattered wave. 
 

7. Conclusions. 
 

The Q-space analysis of light scattering by particles yields a new perspective from which to 
describe and understand scattering. It uncovers power law functionalities on the wave vector q 
for the angular scattering dependence and length scale dependent crossovers between the power 
laws; it systematically describes the magnitude of the scattering and the interference ripple 
structure that often underlies the power laws. The analysis has been applied to scattering from 
dielectric spheres of arbitrary size and refractive index (Mie scattering), fractal aggregates and 
irregularly shaped particles such as dusts. The simple and comprehensive description of 
scattering in terms of quantifiable power laws can be used to differentiate scattering by particles 
of different shapes. The analysis yields a physical understanding of scattering based on 
diffraction. 
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