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Abstract

In physics, datasets are often assumed to follow a Gaussian distribution. However,

this may not always be justified. By constructing error distributions, or histograms of the

number of standard deviations that a measurement deviates from a central estimate, the

Gaussianity of datasets can be explored. This thesis applies statistical techniques used to

test the Gaussianity of two datasets.

These techniques are first applied to a 7Li abundance dataset, where error distributions

are constructed for 66 measurements (with error bars) used by [1] that give A(Li) = 2.21±

0.065 dex (median and 1σ symmetrized error). This error distribution is somewhat non-

Gaussian, with large probability in the tails. Assuming Gaussianity, the observed A(Li) is

6.5σ away from that expected from standard Big Bang nucleosynthesis given by Planck

observations. Accounting for the non-Gaussianity of the observed A(Li) error distribution

reduces the discrepancy to 4.9σ, which is still significant.

Similar error distributions are constructed for a compilation of 232 Large Magellanic

Cloud (LMC) distance moduli values from [2] that give an LMC distance modulus of (m−

M)0 = 18.49 ± 0.13 mag (median and 1σ symmetrized error). When using a weighted

mean (median) central estimate, the error distribution has large (small) probability in the

tails than what is expected for a Gaussian distribution. This may be the consequence of

publication bias and/or correlations between measurements.
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Chapter 1

Introduction

It is common practice to assume astrophysical datasets to be Gaussian. However, this

may not always be justified. By constructing and performing Gaussianity tests on error

distributions of measurements, several insights can be gained. These include the possible

reduced significance of discrepancies between expected and measured values, the indication

that quoted errors might be too optimistic, possible publication biases, or an indication that

correlations between measurements may not be as negligible as thought. This thesis explores

the statistics needed for this type of analysis in Chapter 1. These techniques are applied to

a compilation of 7Li abundance measurements in Chapter 2 and LMC/SMC distance moduli

measurements in Chapter 3. Conclusions are presented in Chapter 4.

1.1 Weighted Mean and Median Statistics

Before performing Gaussianity tests on a constructed error distribution, a central estimate

must be found. It is popular to do this using either weighted mean or median statistics, and

both have different advantages.

Weighted mean statistics makes use of a dataset’s quoted errors, and it is conventional

when errors are known to be reliably estimated. This method has the advantage in that
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a goodness of fit criterion can be used as a diagnostic tool. The standard weighted mean

formula for parameter q, as given in [3], is

qwm =

∑N
i=1 qi/σ

2
i∑N

i=1 1/σ2
i

. (1.1)

Here, qi and σi are the estimates and one standard deviation errors of i = 1, 2, ..., N mea-

surements, respectively. One can also find the weighted standard deviation given by

σwm =

(
N∑
i=1

1/σ2
i

)−1/2

. (1.2)

The goodness of fit, reduced χ2, is

χ2
ν =

1

N − 1

N∑
i=1

(qi − qwm)2

σ2
i

. (1.3)

The number of standard deviations that χν deviates from unity, which is also a goodness of

fit indicator, is given by

Nσ = |χν − 1|
√

2(N − 1). (1.4)

Large Nσ can be used as an indicator of non-Gaussianity, possibly a consequence of corre-

lations between measurements or unaccounted-for systematic errors.

Median statistics also has advantages. Since this method does not make use of an

individual measurement’s error, it is a useful tool when using datasets with unknown or

poorly estimated errors. Although it has the disadvantage that the error associated with

the median will be larger than in the weighted mean case. This method makes fewer

assumptions than the weighted mean technique. If one assumes that measurements are

statistically independent, and that there is no systematic error for the data as a whole, then

as the number of measurements, N , goes to infinity, the median will be revealed as a true

value. In this case, the median and weighted mean values should converge. The median is

2



defined as the value with 50% of the measurements being above it and 50% below. σmed

is then defined such that the range qmed ± σmed includes 68.3% of the probability. For a

detailed description of median statistics, see [4].1

1.2 Gaussian Distribution

It is conventional within the sciences to assume Gaussianity of a dataset.2 That is, that

data errors have a Gaussian distribution. A Gaussian distribution of data is often described

by a bell-shaped curve (see Figure 1.1), and has a probability distribution function of

P (x) =
1√
2π
e−|x|

2/2. (1.5)

The probabilities of finding a measurement within 1σ, 2σ, and 3σ are 68.3%, 95.4%, and

99.7% respectively (see Figure 1.2).

1.3 Non-Gaussian Distributions

Non-Gaussian distributions are also often used to fit data within physics. Three well-

known distributions are described below: the Lorentzian, the Student’s t, and the double

exponential.

The Lorentzian, or Cauchy, distribution has an extended tail. That is, the tails have

greater probability in them than those of a Gaussian. A Lorentzian is thus a popular

choice for describing widened distributions. This distribution is described by the probability

function

P (x) =
1

π

1

1 + |x|2
. (1.6)

1For other applications and discussions see [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
and [18].

2For examples within cosmology see [19, 20, 21, 22]. Here Gaussianity is assumed to constrain data from
cosmic microwave background (CMB) anisotropy data. For examples of CMB Gaussianity tests see [23, 24].
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Figure 1.1: Bell-shaped curved from a Gaussian probability distribution function. The
shaded area is the probability of finding a measurement between X − σ and X + σ, where
X is the central estimate and n (n = 1 here) is the number of standard deviations. In this
case, 68.3% is shaded corresponding to 1σ.

A plot of this distribution can be seen in Figure 1.3. For this distribution, the probabilities

of finding a measurement within 1σ and 2σ are 50.0% and 71.0% respectively. Alternatively,

68.3% and 95.4% of measurements fall within 1.8σ and 14.0σ.

The Student’s t distribution also has extended tails, but less so than that of a Lorentzian

distribution. It is described by the probability distribution function

P (x) =
Γ[(n+ 1)/2]√
πnΓ(n/2)

1

(1 + |x|2/n)(n+1)/2
. (1.7)

Here n is a positive, integer parameter and Γ is the gamma function. As n → ∞, the

distribution becomes Gaussian, and when n = 1 it is a Lorentzian distribution. Varying n

will change the expected probabilities for this function. For example, the probabilities of

finding a measurement within 1σ and 2σ for an n = 8 Student’s t distribution are 65.0%

and 92.0% respectively. Alternatively, 68.3% and 95.4% of measurements fall within 1.1σ

and 2.4σ in this case. This distribution is illustrated in Figure 1.4.
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Figure 1.2: Plot of probabilities given by Gaussian probability distribution function (see
Equation 1.5).

Finally, the Double Exponential (or Laplace) distribution is described by the function

P (x) =
1

2
e−|x|. (1.8)

This distribution falls off more rapidly than a Lorentzian, but not as quickly as a Gaussian.

For this distribution, the probabilities of finding a measurement within 1σ and 2σ are 63.0%

and 87.0% respectively. Alternatively, 68.3% and 95.4% of measurements fall within 1.2σ

and 3.1σ. A plot of this distribution can be seen in Figure 1.5.

1.4 Nσ

Determining the Gaussianity of a dataset is an important exercise used to understand the

nature of the measurements. Creating an error distribution is one technique used to check

how Gaussian a dataset is. Once a central estimate is found, e.g. the median or weighted

mean, then an error distribution can be created from Nσ, defined by

Nσi =
xi − xCE

(σ2
i + σ2

CE)1/2
. (1.9)
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Figure 1.3: Curve described by a Lorentzian probability distribution function with extended
tails. The shaded area is the probability of finding a measurement between X − 1.8σ and
X + 1.8σ, where X is the central estimate and n (n = 1.8 here) is the number of standard
deviations. In this case, 68.3% is shaded, corresponding to 1.8σ.

Here, xCE is the central estimate with corresponding σCE, and σi is the error associated with

each value xi. The error associated with the central estimate does not necessarily have to

be incorporated. There may also be a case where a dataset has non-symmetrical errors. In

this case, if xi < xCE, then

Nσi =
xi − xCE

σli
. (1.10)

If xi > xCE then

Nσi =
xi − xCE

σui
. (1.11)

Here, σli and σui are the lower and upper limit associated errors respectively.

1.5 Methods of Determining Gaussianity

There are several methods used to examine the Gaussianity of a dataset. Two quantifying

methods will be outlined in this section.

A goodness of fit test popularly used is the χ2 analysis. Once Nσi for each measurement

of a dataset is determined, the data is binned. One choice for binning is to follow [25] and
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Figure 1.4: Curve described by an n = 8 (n here should not be confused with the n of
the standard deviation) Student’s t probability distribution function. This distribution has
extended tails, but less so than that of a Lorentzian. The shaded area is the probability of
finding a measurement between X − 1.1σ and X + 1.1σ, where X is the central estimate
and n (n = 1.1 here) is the integer number of standard deviations. In this case, the n = 8
Student’s t distribution has 68.3% shaded, corresponding to 1.1σ.

bin by the square root of the total number of measurements. This is done in order to both

maximize the number of bins and the number of measurements per bin. Bins can be of

varying width to ensure equal probability in each bin for an assumed distribution function

P (|Nσ|).3 Then using the average |Nσ| of each bin to represent the bin as a whole,

χ2 =
T∑
j=1

[M(|Nσ|j)−NP (|Nσ|j)]2

NP (|Nσ|i)
. (1.12)

Here M(|Nσ|) is the number of measurements in each bin, N is the total number of mea-

surements in the dataset, and T is the number of bins. The assumed distribution function

can be one of the four mentioned in Sections 1.2 and 1.3: Gaussian, Lorentzian, Student’s

t, or Double Exponential.

The goodness of fit for each assumed probability distribution is determined by χ2. That

is, a small χ2 represents a good fit. Furthermore, χ2 can be minimized by introducing a

3For this analysis the absolute Nσ, |Nσ| which represents a symmetrical distribution, is used.
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Figure 1.5: Curve described by a Double Exponential probability distribution function. falls
off more rapidly than a Lorentzian, but not as quickly as a Gaussian. The shaded area is
the probability of finding a measurement between X − 1.2σ and X + 1.2σ, where X is the
central estimate and n (n = 1.2 here) is the number of standard deviations. In this case,
68.3% is shaded, corresponding to 1.2σ.

scale factor S. Thus, |Nσ|/S is used to vary the width of a distribution. The reduced

χ2, χ2
ν = χ2/ν, is also calculated. Here ν is the number of degrees of freedom that is

equal to the number of bins minus one (T − 1). It should be noted that in the case of an

assumed Student’s t distribution the number of degrees of freedom decreases by one due

to the additional parameter n. The scale factor S also introduces another parameter and

thus reduces ν by one. Next, one can find the probability that a random sample of data

points drawn from the assumed distribution gives a value of χ2
ν greater than or equal to the

observed value.4 This can be done either numerically or can be found in a Table [see Table

26.7 of 26]. From χ2
ν and the probability, one is able to quantitatively describe the spread

of measurements of a given dataset, and hence makes conclusions about the Gaussianity of

said set.

It may also be beneficial to quantify the Gaussianity of a given dataset by using a

non-parametric analysis. One method for doing so is to perform a Kolmogorov-Smirnov

4For this analysis it is assumed that the bins are uncorrelated, which may not necessarily be true.
Therefore, it is more valuable to put more quantitative emphasis on χ2

ν rather than the probability.

8



(KS) test. The output (p-value) of this test gives the probability that a given distribution

is compatible with a reference distribution. This test can be done using either binned or

un-binned data, although it is often argued that un-binned data is more appropriate (see

Section 5.3.1 of [27]).
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Chapter 2

Non-Gaussian Error Distribution of

7Lithium Abundance Measurements

This chapter explores the discrepancy between expected and observed 7Li abundance mea-

surements found in stars formed from primordial clouds. This discrepancy is known as the

“lithium problem.” Here, non-Gaussianity of the error distribution from these measurements

will be analyzed. This chapter is based on [28].

2.1 Introduction to the 7Li Abundance Problem

The production of the light elements D, 3He, 4He, and 7Li within the first 20 minutes

after the Big Bang can be predicted from the standard Big Bang Nucleosynthesis (BBN)

model. This is done by determining the cosmic baryon density of the Universe, Ωb, which

has recently been constrained by WMAP and Planck cosmic microwave background (CMB)

data (see [29] and [30]). The prediction of D, 3He and 4He abundances are in good accordance

with observations. However, the observed 7Li abundance appears to be depleted by a factor

of about three compared to predictions, and so has an obvious discrepancy.1

1For reviews on the matter, see [31], [32], [33], [34], [35], [1], and [36]
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Old main-sequence and subgiant stars that are formed from the primordial clouds are

believed to preserve their lithium abundance, and thus it is best to observe 7Li in the

atmosphere of these stars. It is not beneficial to sample very metal-poor stars as they

may not represent a lithium-rich star. Because of the fragility of this isotope, stars with

deep convections (for example, very hot stars) should also not be sampled. The convection

in these stars will mix the atmosphere with deeper layers of the star thus destroying the

7Li. Warm, metal-poor dwarf stars (like turn-off stars) then have good representations of

this elemental abundance, as it is thought to be best preserved here (see [1]). However,

observations show that the 7Li abundance, A(Li), is measured lower than what is expected

by the BBN model. This is illustrated in Figure 2.1 where the majority of measurements

lie on the so-called “Spite Plateau.” There is a factor of about three discrepancy between

the Spite Plateau measurements and those predicted by baryon density from WMAP.

Figure 2.1: Plot from [1] that shows the factor of three discrepancy between observed 7Li
abundance measurements and those predicted by the baryon density from WMAP. Note that
the abundances are measured in dex which is a log based scale. For individual measurements,
see reference therein.

Some have argued for higher observed primordial A(Li) that is consistent with that

expected from baryon density determined by CMB anisotropy data (See [37], [38], and

[39]). It is of interest, however, to follow the popular belief that the standard BBN model

11



has a 7Li problem. The attempt to quantify this discrepancy by use of non-Gaussian error

distributions is done in this chapter.2

2.2 Data Selection of 7Li Measurements

In this work, 66 A(Li) measurements are selected from [1]. Following [1], only stars within

the metallicity range -2.8≤ [Fe/H] ≤-2.0 are considered in order to ensure that the abun-

dances are representative of stars formed from primordial clouds.3 A larger metallicity

would represent a star that is too young to be considered, while a smaller metallicity star

fails to lie on the “Spite Plateau” seen in Figure 2.1. As mentioned in Section 2.1, warm

metal-poor stars with an effective temperature Teff ≥ 5900 K should be considered such

that the A(Li) in the atmosphere has not been depleted due to deep convection. With these

constraints, [1] quote 77 A(Li) measurements. This work does not consider two of them as

they are upper bounds. Of the remaining 75 measurements that give a mean and 1σ error

of A(Li)= 2.20± 0.064, nine do not quote error bars.4 These 66 A(Li) measurements listed

in Table 2.15 give a median and 1σ symmetrized error of A(Li)= 2.21± 0.065.

2See [40], [41], [42], [34], [43], [44], [45], and [46] for discussions on possible mechanisms explaining this
discrepancy.

3For an illustration, see Figure 2 of [1]. This figure includes stars with a metallicity of -5.0≤ [Fe/H] ≤-2.0,
and the scatter of stars below the Spite Plateau is obvious.

4These nine measurements do quote an error of σ = 0.01, but this only account for the signal to noise
(S/N) ratio. As such, they are not included in this analysis.

5The errors given in this table from corresponding references are found by adding in quadrature errors
from stellar parameters and from equivalent widths. However, [47] argue that the the stellar effective
temperature error dominates all others and so the total error should be dominated and given by the effective
temperature, and will therefore be constant. Given that the A(Li) error distribution is found to be non-
Gaussian, possibly due to the result of unaccounted-for systematic error, this analysis is repeated for a
constant error of σ = 0.006 in Appendix A.
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Table 2.1: 66 Lithium Abundance Measurements

Star Number/Name A(Li)a σlb σub Reference
47480 2.17 0.061 0.061

[48]

23344 2.13 0.026 0.026
36513 2.15 0.094 0.078
61361 2.25 0.063 0.027
106468 2.24 0.025 0.024
65206 2.07 0.057 0.048
87467 2.25 0.067 0.057
34630 2.12 0.052 0.049
72461 2.22 0.066 0.059
8572 2.24 0.027 0.026
96115 2.22 0.028 0.021
88827 2.31 0.052 0.048
68321 2.15 0.033 0.031
48152 2.25 0.029 0.027
12529 2.22 0.024 0.046
61545 2.15 0.075 0.062
59109 2.27 0.057 0.059
59376 2.11 0.019 0.020
36430 2.35 0.042 0.040
87693 2.20 0.041 0.045
111372 2.28 0.086 0.096
102337 2.30 0.062 0.053
115704 2.15 0.038 0.041
LP0815-0043 2.20 0.035 0.035

[38]

BD-13 3442 2.18 0.035 0.035
BD+03 0740 2.17 0.035 0.035
BD+09 2190 2.13 0.035 0.035
BD+24 1676 2.21 0.035 0.035
LP0635-0014 2.28 0.035 0.035
CD-35 14849 2.29 0.035 0.035
BD-10 0388 2.21 0.035 0.035
BD-04 3208 2.30 0.035 0.035
HD 338529 2.23 0.035 0.035
BD+02 3375 2.21 0.035 0.035
HD 084937 2.26 0.035 0.035
G011-044 2.30 0.035 0.035
HD 24289 2.24 0.035 0.035
BD+34 2476 2.23 0.035 0.035
BD+42 3607 2.22 0.035 0.035
BD+09 0352 2.21 0.035 0.035
HD 19445 2.22 0.035 0.035
HD 74000 2.20 0.035 0.035
+26 3578 2.28 0.070 0.070

[49]
042-003 2.26 0.070 0.070
BD+03◦ 740 2.13 0.074 0.074

[50]

BD+09◦ 2190 2.10 0.084 0.084
BD-13◦ 3442 2.15 0.057 0.057
BD+26◦ 2621 2.17 0.070 0.070
BD+20◦ 2030 2.07 0.068 0.068
LP815-43 2.17 0.070 0.070
BD+24◦ 1676 2.16 0.009 0.009
LP635-14 2.12 0.074 0.074
CD-71◦ 1234 2.20 0.035 0.035
BD+26◦ 3578 2.15 0.053 0.053
CD-35◦ 14849 2.24 0.025 0.025
HD84937 2.17 0.066 0.066
HD74000 2.05 0.083 0.083
CS29518-020 2.13 0.090 0.090

[47]
CS30301-024 2.10 0.090 0.090
CS29499-060 2.16 0.090 0.090
CS31061-032 2.22 0.090 0.090
BS17572-100 2.17 0.090 0.090

[51]CS22950-173 2.23 0.090 0.090
CS29514-007 2.24 0.090 0.090
G37-37 2.24 0.120 0.120

[52]
G130-65 2.30 0.120 0.120
a Following the advice of M. Spite, for stars with both a main
sequence and a sub-giant branch lithium abundance measure-
ment, we list the average of the two values.

b σl and σu are the Lower 1σ and Upper 1σ errors respectively.
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2.3 Error Distributions and Gaussian Tests of 7Li Mea-

surements

In order to test the Gaussianity of the remaining 66 A(Li) measurements, a central estimate

must first be found. This is done by using both median and weighted mean statistics

following Section 1.1. By Equation 1.1 the weighted mean estimate is given by

A(Li)wm =

∑N
i=1 A(Li)i/σ

2
i∑N

i=1 1/σ2
i

, (2.1)

and the weighted error6 by

σwm =

(
N∑
i=1

1/σ2
i

)−1/2

(2.2)

from Equation 1.2. The goodness of fit is then given by

χ2
ν =

1

N − 1

N∑
i=1

(A(Li)i − A(Li)wm)2

σ2
i

(2.3)

from Equation 1.3. Weighted mean statistics gives a central estimate of A(Li)wm = 2.20

with a weighted error of σwm = 4.43 × 10−3. The goodness of fit analysis gives χ2
ν = 2.41

and Nσ = 6.28 (a fairly large number and a possible indication of non-Gaussianity).

The median statistics central estimate is found by the methods described in the same

section. Using this method, a central estimate is found to be A(Li)med = 2.21 with a 1σ

range of 2.13 ≤ A(Li)med ≤ 2.26 and a 2σ range of 2.05 ≤ A(Li)med ≤ 2.31.7

These estimates are in good accordance with [1] who use a (non-weighted) mean to find

an estimate of A(Li)= 2.20± 0.064 for the 75 original abundance measurements.

6For measurements with non-symmetric quoted errors, the average of the upper and lower errors are
used for the weighted mean.

7Because median statistics does not make use of an individual measurement’s associated error, a central
estimate can be found for the 75 measurements (77 original measurements from [1] minus the two upper
bound measurements). This yields an estimate of A(Li)med = 2.21 with a 1σ and 2σ range of 2.13≤
A(Li)med ≤2.26 and 2.07≤ A(Li)med ≤2.31 respectively.
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Following [25] an error distribution can now be constructed using the weighted mean

and median central estimates. By Equation 1.10 and 1.11, where xCE is either A(Li)wm or

A(Li)med, an Nσ for each value is found. As described in Section 1.4, Nσ is the number of

standard deviations that a value deviates from the central estimate. Figure 2.2 shows the

distribution of the signed and absolute Nσ using both central estimates.
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Figure 2.2: Histogram of the error distribution of 66 A(Li) measurements in half standard
deviation bins. The top (bottom) plot uses the weighted mean (median) central estimate
for Nσ. The left and right plots are the signed and absolute, or symmetric, distributions
respectively.

Quantitatively, by using the weighted mean statistics, 68.3% of the signed error distribu-

tion falls within -1.88≤ Nσ ≤ 1.15 and 95.4% falls within -4.53≤ Nσ ≤ 2.03. The absolute

magnitude of the error distribution has corresponding limits of |Nσ| ≤ 1.41 and |Nσ| ≤ 3.0

(see the second to last line of Table 2.3). Alternatively, the fraction of the data that falls

within the |Nσ| = 1 and |Nσ| = 2 ranges are 54.5% and 81.8%, respectively. For the median

statistics case, 68.3% of the signed error distribution falls within -1.75≤ Nσ ≤ 1.15 and
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95.4% falls within -5.56≤ Nσ ≤ 2.25. The absolute magnitude of the error distribution

have corresponding limits of |Nσ| ≤ 1.31 and |Nσ| ≤ 3.10 (see the last line of Table 2.3).

The fraction of the data that falls within the |Nσ| = 1 and 2 ranges are 51.5% and 81.8%,

respectively. For a Gaussian distribution, 68.3% of the signed error distribution falls within

-1.00≤ Nσ ≤ 1.00 and 95.4% falls within -2.00≤ Nσ ≤ 2.00, and so the A(Li) measurement

error distribution appears to be non-Gaussian.

It is now of interest to fit other well-known non-Gaussian distributions to the mea-

surements. In this analysis, a parametric χ2 test following Section 1.5 is used.8 The 66

measurements are binned to 8 bins (T = 8) labeled by integer j = 1, 2, ..., 8 with varying

bin widths to allow about 8 measurements per bin. Therefore, for any assumed distribution

P (|Nσ|), each bin should be expected to contain 8.25 measurements.

Using Equation 1.12 a goodness of fit can be found. Reduced χ2, χ2
ν = χ2/ν, is also

found. In this case, ν is 8 minus the number of fitting parameters and constraints. Without

any other free parameters, ν = 7. The symmetric |Nσ| distribution is now fit to four

well-know probability distribution functions: the Gaussian, described in Section 1.2, and

the Lorentzian, Student’s t, & double exponential described in Section 1.3. The error

distribution will also be scaled by factor S, that is |Nσ|/S, to minimize χ2. S will vary

over 0.1-3.0 in steps of 0.1. When S 6= 1, the number of degrees of freedom reduces by one

(ν = 6). Although the possible non-Gaussianity of the A(Li) measurements has already been

noted, the Gaussian probability distribution function will still be used to fit the distribution.

Table 2.2 shows the reduced χ2
ν and probabilities for the S = 1 and S corresponding to the

minimized χ2
ν cases for each of the four distributions.

Figure 2.3 shows the fitting of the distribution to the Gaussian probability distribution

function (Equation 1.5) after normalization to unity. In allowing a scale factor, χ2 is min-

imized by S = 1.7 (S = 1.8) for the weighted mean (median) case with a probability of

< 0.1%. Then 68.3% and 95.4% of the measurements fall within |Nσ| = 1.7 and |Nσ| = 3.4

8Moving forward, this analysis will make use of only the symmetric |Nσ|.
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Table 2.2: Goodness-of-Fit for Lithium Abundance Error Distribution

Weighted Mean Median
Function Scalea χ2b

ν νb Probability(%)c Scalea χ2b
ν νb Probability(%)c

Gaussian............................ 1 65.8 7 < 0.1 1 101 7 < 0.1

Gaussian............................ 1.7 10.9 6 < 0.1 1.8 11.5 6 < 0.1

Cauchy............................... 1 6.70 7 < 0.1 1 7.31 7 < 0.1

Cauchy............................... 1.6 5.54 6 < 0.1 1.6 6.00 6 < 0.1

n = 8 Student’s td............... 1 25.3 6 < 0.1 1 30.4 6 < 0.1

n = 8 Student’s t............... 2.6 2.04 5 6.9 2.8 2.16 5 5.5

Double Exponential........... 1 10.5 7 < 0.1 1 12.4 7 < 0.1

Double Exponential........... 1.4 8.76 6 < 0.1 1.5 9.94 6 < 0.1
a For a Gaussian distribution, Nσ = 1 corresponds to 1 standard deviation when the scale factor S = 1.

For the other cases, the scale factor varies with the width of the distribution to allow χ2 to be minimized.
b χ2

ν is the χ2 divided by the number of degrees of freedom ν.
c The probability that a random sample of data points drawn from the assumed distribution yields a value

of χ2
ν greater than or equal to the observed value for ν degrees of freedom. This probability assumes

that the bins are uncorrelated, which is not necessarily true. Therefore, the probabilities should only be
viewed as qualitative indicators of goodness of fit.

d We find that for the Student’s t distribution, the n = 2 and S = 1 case gives a smaller reduced χ2
ν = 8.25

(8.89) with a probability of < 0.1 (< 0.1) for the weighted mean (median) case. However, when allowing
the scale factor S to vary, the n = 8 case has a lower reduced χ2

ν than the n = 2 case.
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Figure 2.3: Best fit Gaussian probability distribution function. The top plots show the fit
to the |Nσwm | distribution with the left (right) showing a S = 1 (S = 1.7) scale factor. The
bottom plots show the fit to the |Nσmed

| distribution with the left (right) showing a S = 1
(S = 1.8) scale factor. The dotted lines represent the expected probability of the last bins
brought in from |Nσ| = inf to Nσ| = 6 with their heights adjusted to maintain the same
probability.
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respectively for the weighted mean case, and |Nσ| = 1.8 and |Nσ| = 3.6 for the median case

(see Table 2.3). Alternatively, for weighted mean statistics, 44% and 76% of the measure-

ments fall within |Nσwm| ≤ 1 and |Nσwm| ≤ 2 respectively, while for median statistics, 42%

and 73% fall within |Nσwm| ≤ 1 and |Nσwm | ≤ 2 (see Table 2.4). These values give evidence

that the error distribution of the A(Li) measurements is non-Gaussian.9
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Figure 2.4: Best fit Lorentzian probability distribution function. The top plots show the fit
to the |Nσwm | distribution with the left (right) showing a S = 1 (S = 1.6) scale factor. The
bottom plots show the fit to the |Nσmed

| distribution with the left (right) showing a S = 1
(S = 1.6) scale factor. The dotted lines represent the expected probability of the last bins
brought in from |Nσ| = inf to Nσ| = 6 with their heights adjusted to maintain the same
probability.

It is then natural to fit to the first non-Gaussian probability distribution function: the

Lorentzian given by Equation 1.6. Figure 2.4 shows the best fits, which favor an S = 1.6

scale factor for both the weighted mean and median cases. A scale factor of S = 1 has

9Although the error distributions of the lithium abundance measurements are non-Gaussian, this does
not necessarily imply that the measurement errors themselves are non-Gaussian. Instead, it perhaps tells
us something about the observers’ ability to correctly estimate systematic and statistical uncertainties.
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a probability of < 0.1%. While the probability for S = 1.6 has the same probability, the

χ2
ν does decrease by a factor of two as compared to the Gaussian. There is an apparent

increase in probability in the tails, as 68.3% and 95.4% fall within |Nσ| ≤ 2.9 and |Nσ| ≤ 22

respectively (see Table 2.3).

The observed error distribution has limits |Nσ| ≤ 1.4 and |Nσ| ≤ 3.0, and so a better fit

may be one with wider tails than the Gaussian, but less so than the Lorentzian. A Student’s

t probability distribution function fits this description and is given by Equation 1.7.10 The

best fit, represented by an S = 2.6 and n = 8 (S = 2.8 and n = 8) for the weighted mean

(median) case, for this function is seen in Figure 2.5. Here, n was allowed to vary between

2 and 30.11 These best fits result in the highest probabilities of 6.9% and 5.5% for the

weighted mean and median cases (Table 2.2). With the weighted mean (median) Student’s

t fit, only 29% (27%) of the data falls within |Nσ| < 1, and 68.3% of the data falls within

|Nσ| < 2.8 (|Nσ| < 3.0) as expressed in Table 2.3 and Table 2.4.

Finally, the distribution is fit to a Double Exponential probability distribution function

described by Equation 1.8. Figure 2.6 shows the best fit with scale factors S = 1.4 and

S = 1.5 for the weighted mean and median cases. This scaling results in 68.3% of the

measurements within |Nσ| = 1.6 (|Nσ| = 1.7) and 95.4% within |Nσ| = 4.3 (|Nσ| = 4.6)

for the weighted mean (median) case (see Table 2.3). The probabilities for both central

estimates are < 0.1% (Table 2.2).

2.4 Conclusions

Using 66 7Li abundance measurements from [1], an attempt has been made to try to quantify

the discrepancy between expected and observed lithium. Confirming [32], the A(Li) error

10Note that this function reduces the number of degrees of freedom, ν, by one.
11When allowing n to vary, a pattern begins to form that results in a progressively better fit for every

even value of n. For the smallest χ2
ν for each value of n, S will rise (exceeding the upper bound of 3 on S).

For n = 10 and S = 3.1 there is a reduced χ2 probability of ∼ 29%, for n = 12 and S = 3.8 the probability
is ∼ 61%, for n = 14 and S = 4.7 the probability is ∼ 86%. For n = 20, for S > 1000, χ2

ν shows very
gradual change, while still minimizing, resulting in a probability of ∼ 99.9%.
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Figure 2.5: Best fit Student’s t probability distribution function. The top plots show the
fit to the |Nσwm| distribution with the left (right) showing a S = 1 (S = 2.6) scale factor
and n = 8. The bottom plots show the fit to the |Nσmed

| distribution with the left (right)
showing a S = 1 (S = 2.8) scale factor and n = 8. The dotted lines represent the expected
probability of the last bins brought in from |Nσ| = inf to Nσ| = 6 with their heights adjusted
to maintain the same probability.
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Figure 2.6: Best fit double exponential probability distribution function. The top plots show
the fit to the |Nσwm| distribution with the left (right) showing a S = 1 (S = 1.4) scale factor.
The bottom plots show the fit to the |Nσmed

| distribution with the left (right) showing a S = 1
(S = 1.5) scale factor. The dotted lines represent the expected probability of the last bins
brought in from |Nσ| = inf to Nσ| = 6 with their heights adjusted to maintain the same
probability.
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Table 2.3: |Nσ| Limitsa for Lithium Abundance Measurements

Function Scaleb 68.3%c 95.4%c

Gaussian................................................ 1 1.0 2.0
Gaussian................................................ 1.7 1.7 3.4
Gaussian................................................ 1.8 1.8 3.6
Cauchy................................................... 1 1.8 14
Cauchy................................................... 1.6 2.9 22
Cauchy................................................... 1.6 2.9 22
n = 8 Student’s t................................... 1 1.1 2.4
n = 8 Student’s t................................... 2.6 2.8 6.1
n = 8 Student’s t................................... 2.8 3.0 6.6
Double Exponential............................... 1 1.2 3.1
Double Exponential............................... 1.4 1.6 4.3
Double Exponential............................... 1.5 1.7 4.6
Observed Weighted Mean...................... 1.4 3.0
Observed Median................................... 1.3 3.1
a For each set of named distribution functions, the first line is for the standard distribution and the second

and third lines are for the distributions that best fit the error distribution constructed using the weighted
mean and median central estimate respectively.

b For a Gaussian distribution, Nσ = 1 corresponds to 1 standard deviation when the scale factor is S = 1.
For the other functions, unless S = 1, the scale factor varies with the width of the distribution to allow
χ2 to be minimized.

c The |Nσ| limits that contain 68.3% and 95.4% of the probability.
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Table 2.4: Expected Fractionsa for Lithium Abundance Measurements

Function Scaleb |Nσ| ≤ 1c |Nσ| ≤ 2c

Gaussian................................................ 1 0.68 0.95
Gaussian................................................ 1.7 0.44 0.76
Gaussian................................................ 1.8 0.42 0.73
Cauchy................................................... 1 0.50 0.71
Cauchy................................................... 1.6 0.36 0.57
Cauchy................................................... 1.6 0.36 0.57
n = 8 Student’s t................................... 1 0.65 0.92
n = 8 Student’s t................................... 2.6 0.29 0.54
n = 8 Student’s t................................... 2.8 0.27 0.50
Double Exponential............................... 1 0.63 0.87
Double Exponential............................... 1.4 0.51 0.76
Double Exponential............................... 1.5 0.49 0.74
Observed Weighted Mean...................... 0.55 0.82
Observed Median................................... 0.52 0.82
a For each set of named distribution functions, the first line is for the standard distribution and the second

and third lines are for the distributions that best fit the error distribution constructed using the weighted
mean and median central estimate respectively.

b For a Gaussian distribution, Nσ = 1 corresponds to 1 standard deviation when the scale factor is S = 1.
For the other functions, unless S = 1, the scale factor varies with the width of the distribution to allow
χ2 to be minimized.

c The fraction of the area that lies within |Nσ| = 1 and |Nσ| = 2.
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distribution is non-Gaussian. This may be a result of the observers’ estimates of systematic

and statistical uncertainties.12 It may also be the case that higher-quality data is required.

It is then of interest to explore the statistical significance of the discrepancy. First,

Gaussianity is assumed, and the difference between the PLANCK expected value, A(Li)=

2.69 (See [36]), and the median value from this analysis, A(Li)= 2.21, is found. Then

dividing by the quadrature sum of this analysis’ symmetrized error (σ = 0.065) and that from

[36], (σ = 0.034), a discrepancy of 6.5σ is found. Now accounting for the non-Gaussianity,

σ = 0.065 is multiplied by 1.4 (Table 2.3, second to last line)13 in the quadrature sum. This

reduces the discrepancy to 4.9σ.

In an attempt the characterize the A(Li) error distribution that has larger probability

in the tails than a Gaussian distribution, it is fit to four well-known probability distribution

functions. Allowing a scale factor to vary from 0.1≤ S ≤ 3.0, the error distribution is best

fit by an n = 8 Student’s t distribution. However, this is unlikely to be of much physical

significance.

While it would be beneficial to have more higher-quality measurements that would result

in a Gaussian error distribution to be able to draw definite conclusions, it can be concluded

that the non-Gaussianity of the current measurements cannot fully resolve the Li problem.

However, the discrepancy is slightly reduced.

12See Appendix A.
13This is the observed weighted mean |Nσ| limit.
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Chapter 3

Non-Gaussian Error Distribution of

LMC/SMC Distance Moduli

Measurements

The nearby Large Magellanic Cloud galaxy gives rise to a well studied and documented

number of distance moduli measurements. It is then of interest to examine these measure-

ments, as the distance to this galaxy plays an important role in determining cosmological

distances. Gaussian tests of the error distributions constructed from these measurements

are used to possibly support publication bias and/or correlations between measurements as

suggested by [2]. This chapter is based on [53].

3.1 Introduction to LMC Distance Moduli Measure-

ments

The Large Magellanic Cloud (LMC) is a nearby galaxy within the Local Group with a

plethora of stellar tracers. Because of the closeness and the abundance of tracers, it is
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well studied and a large number of distance measurements to the LMC are available. The

distance to this galaxy provides an important low rung in the cosmological distance ladder,

and as such is important to analyze the available measurements. [2] has compiled (following

[54]) 237 LMC distance moduli measurements published within the years 1990-2014. They

used the compilation to examine the effects of publication bias, which they concluded to

not be strong. However, correlations between measurements did have effects (especially in

some individual tracer subsamples).

In this chapter, Gaussian tests of constructed error distributions are used to complement

the analysis of [2]. This is done to the full 232 distance moduli measurement set1 and two

individual tracer subsamples (Cepheids and RR Lyrae).

3.2 Error Distribution and Gaussian Tests of Full LMC

Distance Moduli Dataset

To analyze the full LMC distance moduli measurement dataset, an error distribution is

constructed following [25] and [28]. This is a histogram of the number of standard deviations

that a measurement deviates from a central estimate, Nσ (see Equation 1.9). Here,

Nσi =
Di −DCE

(σ2
i + σ2

CE)1/2
(3.1)

where Di and DCE are the individual distance moduli measurement and central distance

moduli measurement respectively. This is similar to the z score analysis of [2], however,

they use two published values2 assumed to well represent the measurements3, whereas this

analysis uses weighted mean and median statistics to find a central estimate.

The central estimates are found by the techniques described in Section 1.1. Here, the

1This analysis does not make use of five of the measurements from [2], as they do not have error bars.
2[55] and [56]
3Thus their analysis assumes Gaussianity.
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weighted mean is

Dwm =

∑N
i=1Di/σ

2
i∑N

i=1 1/σ2
i

. (3.2)

This analysis uses the quadrature sum of quoted statistical and systematic (if quoted) errors

for σi. Many of the measurements do not have an associated systematic error, and if it is

quoted it is small, thus it does not contribute much to the overall error.4 The goodness of

fit, χ2
ν , is then

χ2
ν =

1

N − 1

N∑
i=1

(Di −Dwm)2

σ2
i

. (3.3)

The median central estimate is found as described in Section 1.1.

The distance moduli central estimate, when using weighted mean statistics, is (m −

M)0 = 18.49 ± 3.11 × 10−3 mag. The goodness of fit yields χ2
ν = 3.00, and the number

of standard deviations that χν deviates from unity is N = 15.75. When using median

statistics, the central estimate is (m −M)0 = 18.49 mag with a 1σ range of 18.32 mag≤

(m−M)0 ≤18.59 mag. [2] quote (m−M)0 = 18.49±0.09 mag6, and so the central estimates

found in this analysis are in good accord.

An error distribution is now constructed using the two central estimates, seen in Figure

3.1. Both the signed Nσ and absolute, symmetrized (|Nσ|) are plotted. A more detailed

distribution of |Nσ| = 0.1 bin size is shown in Figure 3.2

Qualitatively, one can see the extended tails present in the weighted mean error distri-

bution. That is, there appears to be more probability in the tails as compared to a Gaussian

distribution. Quantitatively, for a set of 232 values, a Gaussian distribution should yield

11 values within |Nσ| ≤ 2, one within |Nσ| ≤ 3, and none within |Nσ| ≤ 4. The dis-

tribution from this analysis finds 42 values within |Nσ| ≤ 2, 23 within |Nσ| ≤ 3, and

nine within |Nσ| ≤ 4 (see Table 3.1). It can also be noted that 68.3% of the observed

4Of the 232 measurements under consideration, only 49 quote a non-zero systematic error. This is further
discussed in the conclusion of this chapter (Section 3.6).

5A large number that may hint at non-Gaussianity.
6[2] use 233 distance moduli measurements published in years 1990 to 2013. We have used the updated

2014 measurements in addition to those previously published.
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Figure 3.1: Histogram of the error distribution of 232 LMC measurements in half standard
deviation bins. The top (bottom) plots use the weighted mean (median) central estimate
for Nσ. The left and right plots are the signed and absolute, or symmetric, distributions
respectively. The smooth curve in each panel is the best-fit Gaussian.

weighted mean Nσ error distribution falls within −1.37 ≤ Nσ ≤ 1.26, while 95.4% lies

within −3.37 ≤ Nσ ≤ 4.57. The observed weighted mean |Nσ| error distribution has limits

of |Nσ| ≤ 1.33 and |Nσ| ≤ 3.63 respectively, and 56.5% and 81.9% of the values fall within

|Nσ| ≤ 1 and |Nσ| ≤ 2 respectively. This distribution indicates that the weighted mean case

is non-Gaussian, and so this technique is not appropriate for analyzing the LMC distance

moduli measurements.

In the case of the median central estimate, the distribution is narrower than expected

for a Gaussian. Note that the larger σmed results in this.7 There are seven values within

|Nσ| ≤ 2 and none within |Nσ| ≤ 3. 68.3% of the data falls within −0.86 ≤ Nσ ≤ 0.63,

while 95.4% lies within −1.97 ≤ Nσ ≤ 1.27. The |Nσ| error distribution has limits of

7See Equation 3.1.
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Figure 3.2: Histogram of the error distribution of 232 LMC measurements in |Nσ| = 0.1
bins (with the exception of the last, truncated, bin with 5 ≤ |Nσ| ≤ 6 that contains the
number of measurements to |Nσ| = 8). The solid black line represents the expected Gaussian
probabilities for a set of 232 measurements. The dotted blue (dashed red) line is the number
of |Nσ| values in each bin for the weighted mean (median) case.

|Nσ| ≤ 0.72 and |Nσ| ≤ 1.66 respectively, and 80.6% and 97.0% of the values fall within

|Nσ| ≤ 1 and |Nσ| ≤ 2 respectively. The median technique is more appropriate because of the

apparent non-Gaussianity of the distributions. The narrowness of the median distribution

is consistent with the presences of correlations between measurements, as suggested by [2].

The correlations would suggest that the measurements are not statistically independent,

and the errors associated with the median will need to be slightly adjusted to account for

this.

Because of the apparent non-Gaussianity of the error distribution, it is of interest to

fit them to well-known probability distribution functions. This analysis will use a non-

parametric test, the KS test, which is described in the last paragraph of Section 1.5. This

test finds the compatibility of the distribution of measurements to a reference distribution,

and will be done with both binned and un-binned measurements for this analysis.

To set conventions, even though the error distribution is non-Gaussian, it will be fit to

a Gaussian probability distribution function (see Equation 1.5) where 68% of the values fall
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Table 3.1: Expected Gaussian and Observed Numbers of |Nσ| for LMC Distance Moduli
Measurements

Tracer Valuesa |Nσ| Expectedb Observed (WM)c Observed (Med)c

All Types 232 ≥ 0.5 143 151 96
≥ 1 74 101 45
≥ 1.5 31 65 15
≥ 2 11 42 7
≥ 2.5 3 31 1
≥ 3 1 23 0
≥ 4 0 9 0

Cepheids 81 ≥ 0.5 50 48 34
≥ 1 26 35 17
≥ 1.5 11 20 4
≥ 2 4 10 2
≥ 2.5 1 7 1
≥ 3 0 6 0

RR Lyrae 63 ≥ 0.5 39 31 20
≥ 1 20 20 11
≥ 1.5 8 12 4
≥ 2 3 7 1
≥ 2.5 0 5 0
≥ 3 0 3 0

a The number of distance moduli measurements used in this analysis.
b The number of values expected to fall outside of the corresponding |Nσ| for a Gaussian distribution of

total number listed in Col (2).s
c The observed number of values outside of the corresponding |Nσ|.
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within |Nσ| ≤ 1.8 The compatibility given from this test yields a probability of < 0.1% for

the Gaussian function (Table 3.2).

Next, three non-Gaussian probability distribution functions are used to fit the distribu-

tion. The Lorentzian distribution (see Equation 1.6), with 68% of the values falling within

|Nσ| ≤ 1.8, also gives probabilities of < 0.1% for both the binned and unbinned KS test.

Fitting to the Student’s t function (Equation 1.7) gives probabilities of < 0.1%. Finally,

the distribution is fit to a double exponential distribution (see Equation 1.8) where 68.3%

of the values fall within |Nσ| ≤ 1.2. Again, the probabilities are < 0.1%.

Table 3.2: K-S Test Probabilities for LMC Distance Moduli Measurements

Un-binned Binned
Functiona Data Set Probability(%)b Probability(%)b

Gaussian Whole (232) < 0.1 < 0.1
Truncated (223) < 0.1 < 0.1
Cepheids (81) 1.5 < 0.1
Truncated Cepheids (75) 2.8 0.10
RR Lyrae (63) 1.5 < 0.1
Truncated RR Lyrae (58) 0.8 < 0.1

Cauchy Whole (232) < 0.1 < 0.1
Truncated (223) < 0.1 < 0.1
Cepheids (81) 1.0 < 0.1
Truncated Cepheids (75) 2.9 < 0.1
RR Lyrae (63) 1.6 < 0.1
Truncated RR Lyrae (58) 0.7 < 0.1

Double Exponential Whole (232) < 0.1 < 0.1
Truncated (223) < 0.1 < 0.1
Cepheids (81) 1.5 < 0.1
Truncated Cepheids (75) 3.7 < 0.1
RR Lyrae (63) 1.3 < 0.1
Truncated RR Lyrae (58) 0.6 < 0.1

n = 39 Student’s t Whole (232) < 0.1 < 0.1
n = 13 Student’s t Truncated (223) < 0.1 < 0.1
n = 13 Student’s t Cepheids (81) 1.1 < 0.1
n = 60 Student’s t Truncated Cepheids (75) 3.1 < 0.1
n = 87 Student’s t RR Lyrae (63) 1.9 < 0.1
n = 93 Student’s t Truncated RR Lyrae (58) 0.9 < 0.1
a For the Student’s t case, the n corresponding with the best probability is displayed.
b The probability that the data set is compatible with the assumed distribution.

From Figures 3.1 and 3.2 and Tables 3.1 and 3.2, it is clear that the weighted mean case

8The symmetric error distribution will be used moving forward.
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has a distribution closer to a Gaussian near the peak, but also has an extended tail. This

suggests the existence of unaccounted-for systematic errors, as the weighted mean makes use

of an individual measurement’s quoted error. For the median case, the peak is greater than

a Gaussian and falls off more rapidly with increasing |Nσ|. This may point to correlations

between measurements or possible publication bias.

It is then of interest to truncate the error distributions by removing all values with

|Nσ| ≥ 4.9 Doing so gives 223 measurements with an unchanged, weighted mean central

estimate of (m−M)0 = 18.49±3.38×10−3. The goodness of fit gives χ2
ν = 1.90 andN = 8.01.

10 Figure 3.3 shows the truncated weighted mean error distribution. Quantitatively, 68.3%

of the values fall within −1.55 ≤ Nσ ≤ 1.05 and 95.4% fall within −3.66 ≤ Nσ ≤ 2.06.

For the absolute case, |Nσ| ≤ 1.23 and |Nσ| ≤ 3.03 for 68.3% and 95.4% of the values

,respectively. In terms of percentages, 61.0% and 85.2% of the measurements fall within

|Nσ| ≤ 1 and |Nσ| ≤ 2 respectively.11

Next, the truncated distribution is fit to the four probability distribution functions.

All four distributions still yield a probability of < 0.1%. There is still indication of non-

Gaussianity because of the larger than expected |Nσ| > 2 and 3 tail.

3.3 Error Distributions and Gaussian Tests of 81 Cepheid

Tracer Type Measurements

[2] note the possible correlations between measurements, especially within individual tracer

types. It is then of interest to also investigate the error distributions of these measurements.

9For a Gaussian distribution with 232 measurements, there should be zero with |Nσ| ≥ 4 (see Table 3.1.
10The truncated analysis was repeated for the median case (by removing nine values), but probabilities

did not increase. This exemplifies the robustness of median statistics.
11It should be noted that when truncated, the normal standard deviation becomes σ = 0.125 while the

symmetrized error for the median case is σ = 0.126. It would appear that after eliminating |Nσ| > 4,
the median and weighted mean cases converge. However, we do utilize a weighted mean rather than the
standard mean, as the errors for the measurements are not the same, and the weighted mean and median
statistics error still do not converge even in the truncated case.
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Figure 3.3: Histogram of the error distribution of 223 LMC measurements in half standard
deviation bins for truncated weighted mean distribution (|Nσ| ≥ 4). The left and right plots
are the signed and absolute, or symmetric, distributions respectively. The smooth curve in
each panel is the best-fit Gaussian.

First, 81 Cepheid distance moduli values from [2] are used. Weighted mean statistics gives

a central estimate of (m − M)0 = 18.52 ± 6.52 × 10−3 mag.12 For signed Nσ, 68.3% of

the values fall within −1.04 ≤ Nσ ≤ 1.73 and 95.4% fall within −1.78 ≤ Nσ ≤ 5.68. For

absolute Nσ, 68.3% and 95.4% of the values fall within corresponding limits |Nσ| ≤ 1.31

and |Nσ| ≤ 4.13. 56.8% of the values fall within |Nσ| ≤ 1 and 87.7% fall within |Nσ| ≤ 2.

The median case central estimate is (m−M)0 = 18.50 mag with a 1σ range of 18.37 mag

≤ (m−M)0 ≤ 18.60 mag. For signed Nσ, 68.3% of the values fall within −0.67 ≤ Nσ ≤ 0.73

and 95.4% fall within −1.28 ≤ Nσ ≤ 1.76. For absolute Nσ, 68.3% and 95.4% of the values

fall within corresponding limits |Nσ| ≤ 0.71 and |Nσ| ≤ 1.63. 79.0% of the values fall within

|Nσ| ≤ 1 and 97.5% fall within |Nσ| ≤ 2. This distribution is tighter as compared to that

of 232 measurements.

Figure 3.4 shows the error distributions for the signed and absolute weighted mean and

median cases. A more detailed plot with |Nσ| in bins of 0.1 is shown in Figure 3.5. As with

the full dataset, one can note the widened (narrowed) distribution for the weighted mean

(median) case. The distribution of Cepheid tracer type measurements are also fit to the

four well-known distributions. It is best fit equally by the Gaussian and double exponential

12The goodness of fit gives a χ2 = 2.66 and N = 7.96 which is the number of standard deviations that χ
deviates from unity.
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distributions with a corresponding probability of < 1.5% (Table 3.2).
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Figure 3.4: Histogram of the error distribution of 81 LMC Cepheid tracer type measure-
ments in half standard deviation bins. The top (bottom) plots use the weighted mean (me-
dian) central estimate for Nσ. The left and right plots are the signed and absolute, or
symmetric, distributions respectively. The smooth curve in each panel is the best-fit Gaus-
sian.

The Cepheid sub-sample is also truncated by removing all values with |Nσ| > 3, as there

should be none for a Gaussian distribution set of 81 measurements (see Table 3.1). This left

75 measurements. The median case remained unaffected (due to the robustness of median

statistics), but the weighted mean case slightly tightened with a new central estimate of

(m − M)0 = 18.51 ± 7.27 × 10−3 mag. For signed Nσ, 68.3% of the values fall within

−0.931 ≤ Nσ ≤ 1.48 and 95.4% fall within −2.43 ≤ Nσ ≤ 2.38. For absolute Nσ, 68.3%

and 95.4% of the values fall within |Nσ| ≤ 1.11 and |Nσ| ≤ 2.23, respectively. 65.3% of

the values fall within |Nσ| ≤ 1 and 94.7% fall within |Nσ| ≤ 2. The un-binned KS test

for the truncated Cepheid set gave a slight increase in probability of 3.7% for the double
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Figure 3.5: Histogram of the error distribution of 81 LMC Cepheid tracer type measure-
ments in |Nσ| = 0.1 bins (with the exception of the last, truncated, bin with 5 ≤ |Nσ| ≤ 6).
The solid black line represents the expected Gaussian probabilities for a set of 81 measure-
ments. The dotted blue (dashed red) line is the number of |Nσ| values in each bin for the
weighted mean (median) case.

exponential case (Table 3.2).

3.4 Error Distributions and Gaussian Tests of 63 RR

Lyrae Tracer Type Measurements

When using 63 RR Lyrae distance moduli measurements13 from [2], weighted mean statistics

gave a central estimate of (m −M)0 = 18.48 ± 1.03 × 10−2 mag. For signed Nσ, 68.3% of

the values fall within −0.83 ≤ Nσ ≤ 1.15 and 95.4% fall within −1.75 ≤ Nσ ≤ 3.11.

For absolute Nσ, 68.3% and 95.4% of the values fall within |Nσ| ≤ 1.00 and |Nσ| ≤ 3.11,

respectively. 68.3% of the values fall within |Nσ| ≤ 1 and 88.9% fall within |Nσ| ≤ 2.

For the median case we find a central estimate of (m −M)0 = 18.47 mag with a 1σ

range of 18.29 mag ≤ (m−M)0 ≤ 18.55 mag. For signed Nσ, 68.3% of the values fall within

−0.65 ≤ Nσ ≤ 0.48 and 95.4% fall within −1.50 ≤ Nσ ≤ 1.03. For absolute Nσ, 68.3%

and 95.4% of the values fall within |Nσ| ≤ 0.50 and |Nσ| ≤ 1.56, respectively. 82.5% of the

13Three RR Lyrae values from [2] quote a zero error and were not used in this analysis.
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values fall within |Nσ| ≤ 1 and 98.4% fall within |Nσ| ≤ 2.

There error distributions for this sub-sample can be seen in Figure 3.6, with a more

detailed plot shown in Figure 3.7. It is difficult to observe non-Gaussianity visually from

these plots. The RR Lyrae measurements are then fit to the four distributions, and the

largest probability of 1.9% comes from an n = 87 Student’s t distribution (Table 3.2). This

is only slightly greater than 1.5% given by the Gaussian fit.
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Figure 3.6: Histogram of the error distribution of 63 LMC RR Lyrae tracer type mea-
surements in half standard deviation bins. The top (bottom) plots use the weighted mean
(median) central estimate for Nσ. The left and right plots are the signed and absolute, or
symmetric, distributions respectively. The smooth curve in each panel is the best-fit Gaus-
sian.

This sub-sample is also truncated by removing all values |Nσ| > 2.5, as there should

be none above this for a normally distributed set of 63 measurements (Table 3.1). The

weighted mean error distribution is tightened by this truncation14. A central estimate is

14The median error distribution did not significantly change.
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Figure 3.7: Histogram of the error distribution of 63 LMC RR Lyrae tracer type measure-
ments in |Nσ| = 0.1 bins). The solid black line represents the expected Gaussian probabilities
for a set of 63 measurements. The dotted blue (dashed red) line is the number of |Nσ| values
in each bin for the weighted mean (median) case.

found to be (m−M)0 = 18.49± 1.10× 10−2 mag. For signed Nσ, 68.3% of the values fall

within −0.68 ≤ Nσ ≤ 0.79 and 95.4% fall within −2.49 ≤ Nσ ≤ 1.81. For absolute Nσ,

68.3% and 95.4% of the values fall within |Nσ| ≤ 0.75 and |Nσ| ≤ 1.87 respectively, while

75.9% of the values fall within |Nσ| ≤ 1 and 98.3% fall within |Nσ| ≤ 2. This sub-sample is

fit to the four distributions and all fits are decreased.15

3.5 Error Distributions and Gaussian Tests of SMC

Distance Moduli Measurements

This analysis is repeated for 247 Small Magellanic Cloud (SMC) distance moduli measure-

ments compiled by [57].16 Weighted mean statistics gives a central estimate of (m−M)0 =

18.93± 2.38× 10−2 mag. For signed Nσ, 68.3% and 95.4% of the measurements fall within

−2.01 ≤ Nσ ≤ 1.91 and −6.59 ≤ Nσ ≤ 4.76, respectively. For the unsigned Nσ 68.3%

15Possibly due to the the small amount of measurements (58).
16[57] compiled a list of 304 measurements, but only those with non-zero quoted error were used in this

analysis.
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and 95.4% of the measurements have corresponding limits |Nσ| ≤ 1.91 and |Nσ| ≤ 5.26.

Conversely, 45.8% of the measurements fall within |Nσ| ≤ 1 and 70.5% fall within |Nσ| ≤ 2.

The extended tails in this distribution is non-Gaussian and may suggest unaccounted-for

systematic errors.

For the median case, a central estimate of (m −M)0 = 18.94 mag with a 1σ range of

18.81 mag ≤ (m − M)0 ≤ 19.08 mag is found. For signed Nσ, 68.3% and 95.4% of the

measurements fall within −0.80 ≤ Nσ ≤ 0.78 and −1.60 ≤ Nσ ≤ 2.91 respectively. For the

unsigned Nσ 68.3% and 95.4% of the measurements have corresponding limits |Nσ| ≤ 0.79

and |Nσ| ≤ 1.68. Conversely, 78.5% of the measurements fall within |Nσ| ≤ 1 and 96.8% fall

within |Nσ| ≤ 2. This distribution is narrower than expected for a Gaussian and indicates

possible correlations between measurements. [57] also suggest this, especially within sub-

samples of individual tracer types.

In examining the Cepheid tracer type sub-sample, with 101 measurements, a central

estimate of (m−M)0 = 18.98±4.17×10−3 mag is found for the weighted mean case. 68.3%

and 95.4% of the measurements are within −1.55 ≤ Nσ ≤ 0.98 and −6.36 ≤ Nσ ≤ 1.76

for signed Nσ. For the absolute case, |Nσ| ≤ 1.26 and |Nσ| ≤ 4.02 for 68.3% and 95.4% of

the measurements, with 56.5% and 86.1% of the measurements falling within Nσ ≤ 1 and

Nσ ≤ 2 respectively. Median statistics gives a central estimate of (m −M)0 = 18.98 mag

with a 1σ range of 18.83 mag ≤ (m−M)0 ≤ 19.13 mag. The distribution shows that 68.3%

and 95.4% of the measurements are within −0.83 ≤ Nσ ≤ 0.68 and −1.91 ≤ Nσ ≤ 1.46 for

signed Nσ. For the absolute case |Nσ| ≤ 0.81 and |Nσ| ≤ 1.54 for 68.3% and 95.4% of the

measurements respectively. Alternatively, 82.2% and 98.0% of the measurements fall within

Nσ ≤ 1 and Nσ ≤ 2, respectively. The widened tails (narrowness) of the weighted mean

(median) distribution is still present.

Similar distributions are found for the RR Lyrae tracer type sub-sample. For weighted

mean statistics a central estimate of (m−M)0 = 18.86± 5.20× 10−3 mag is found. 68.3%

and 95.4% of the measurements are within −2.40 ≤ Nσ ≤ 0.88 and −2.40 ≤ Nσ ≤ 1.47 for
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signed Nσ.17 For the absolute case, |Nσ| ≤ 1.49 and |Nσ| ≤ 3.26 for 68.3% and 95.4% of

the measurements respectively. 50.0% and 80.0% of the measurements fall within Nσ ≤ 1

and Nσ ≤ 2, respectively. For the median case a central estimate of (m −M)0 = 18.90

mag with a 1σ range of 18.74 mag ≤ (m −M)0 ≤ 19.06 mag is found. The distribution

shows that 68.3% and 95.4% of the measurements are within −0.51 ≤ Nσ ≤ 0.86 and

−1.13 ≤ Nσ ≤ 1.24 for signed Nσ. For the absolute case |Nσ| ≤ 0.65 and |Nσ| ≤ 1.28 for

68.3% and 95.4% of the measurements respectively. Alternatively, 83.3% and 100% of the

measurements fall within Nσ ≤ 1 and Nσ ≤ 2, respectively.

The distributions are also fit to the four well-known distributions using the KS test.

All measurement sets are best fit by a Student’s t distribution. The full dataset of 247

measurements is poorly fit by all distributions with a probabilities < 0.1%. However, the

RR Lyrae sub-sample is best fit by the double exponential distribution with a probability

of 36%. All of the probabilities are listed in Table 3.3.

Table 3.3: K-S Test Probabilities for SMC Distance Moduli Measurements

Un-binned Binned
Functiona Data Set Probability(%)b Probability(%)b

Gaussian Whole (247) < 0.1 < 0.1
Cepheids (101) < 0.1 < 0.1
RR Lyrae (30) 8.4 20

Cauchy Whole (247) < 0.1 < 0.1
Cepheids (101) < 0.1 < 0.1
RR Lyrae (30) 33 15

Double Exponential Whole(247) < 0.1 < 0.1
Cepheids (101) < 0.1 < 0.1
RR Lyrae (30) 36 20

n = 1 Student’s t Whole (247) < 0.1 < 0.1
n = 1 Student’s t Cepheids (101) < 0.1 < 0.1
n = 57 Student’s t RR Lyrae (30) 34 17
a For the Student’s t case, the n corresponding with the best probability is displayed.
b The probability that the data set is compatible with the assumed distribution.

17The two lower bounds are the same due to the distribution being weighted towards the positive Nσ side
(there are more values with Nσ > 0). Symmetrizing this distribution gives a clearer understanding of the
error.
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3.6 Conclusions

Using 232 LMC distance moduli measurements from [2], error distributions are constructed

in order to examine the possible publication bias and/or correlations between measurements

suggested by [2]. The error distributions are found to have wider tails than expected for a

Gaussian distribution when using a weighted mean central estimate. Because the weighted

mean makes use of an individual measurement’s quoted error, this could possibly be a

consequence of unaccounted-for systematic errors. In fact, 53 of the 237 measurements

compiled by [2] quote a non-zero systematic error. Due to the non-Gaussianity of this error

distribution, it is more appropriate to use the median statistics error distribution.

The median statistics error distributions are narrower than expected for a Gaussian

distribution. This supports the suggestion of correlations between some measurements,

with publication bias possibly contributing mildly.
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Chapter 4

Conclusion

As datasets may not always be assumed Gaussian, it is useful to perform statistical tests

on measurements to justify such a claim. This can be done by constructing and performing

Gaussianity tests on error distributions of measurements. In this thesis, these distributions

are constructed by the finding the number of standard deviations that a measurement de-

viates from a central estimate, either weighted mean or median. Gaussian tests are then

done using either a χ2 analysis or a non-parametric Kolmogorov-Smirnov test to fit the mea-

surements to four well-known distributions: Gaussian, Lorentzian, Student’s t, and double

exponential.

This thesis first implements this analysis to a 7Li abundance measurement compilation

from [1]. The error distribution constructed from these measurements is non-Gaussian

with large probability in the tails, and is best fit by an n = 8 Student’s t distribution.1

When non-Gaussianity is accounted for, there is a 4.9σ discrepancy between the median

A(Li)= 2.21 found from this analysis and the predicted value from Planck, A(Li)= 2.69.

While this is smaller than the discrepancy of 6.5σ found from assuming Gaussianity, it does

not fully resolve the Li problem. However, with more higher-quality measurements, better

conclusions may be drawn.

1However, this may not hold much physical significance.
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Gaussianity tests are also performed on a set of LMC distance moduli measurements.

When using the weighted mean as a central estimate, the constructed error distributions

are wide as compared to a Gaussian (with large probabilities in the tails). This may be due

to unaccounted-for systematic errors, as only 53 of the 237 values from [2] quote a non-zero

systematic error. For the median case, the error distributions are narrower than a Gaussian,

which may be the consequence of correlations between measurements and/or possible mild

publication bias suggested by [2].
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Appendix A

A(Li) Error Distribution With an

Optimistic σ = 0.06

[47] argue that the error given by the effective temperature, Teff , is larger than previously

thought, and can dominate the overall error of A(Li) measurements. This would result

in a constant error for all measurements. An attempt is made to illustrate this effect by

repeating the analysis done in Chapter 2 with an optimistic error of σ = 0.06.1 Histograms

of these error distributions are given in A.1 for both the weighted mean and median cases.

For the weighted mean case, 68.3% of the signed error distribution falls within −1.48 ≤

Nσ ≤ 0.80, while 95.4% lies in the range of −2.47 ≤ Nσ ≤ 1.39. The absolute magnitude

of the error distribution have corresponding limits of |Nσ| ≤ 1.15 and |Nσ| ≤ 2.13. For

the median statistics central estimate, 68.3% of the signed error distribution falls within

−1.37 ≤ Nσ ≤ 0.83, while 95.4% lies within −2.39 ≤ Nσ ≤ 1.60. The corresponding

absolute magnitude limits are |Nσ| ≤ 1.16 and |Nσ| ≤ 2.32. Alternatively, 62.7% & 94.7%

and 65.3% & 95.4% of the data falls within the |Nσ| = 1 and 2 ranges for the weighted mean

and median cases respectively. These values hint at a slightly more Gaussian distribution

1The same analysis was done with a larger error of σ = 0.09 given from [47], and similar conclusions
were reached.
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Figure A.1: Histograms of the error distribution with σ = 0.06 A(Li) values in half standard
deviation bins. The top (bottom) plot uses the weighted mean (median) central estimate
for Nσ. The left and right plots are the signed and absolute, or symmetric, distributions
respectively.

than that from Chapter 2.
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