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INTRODUCTION

The primary objective of the present study was to develop an effective

quantitative sampling method for estimating densities and studying distri-

butions of benthic macroinvertebrates in King's Creek, an intermittent tall-

grass prairie stream. To evaluate the method results were compared to those

obtained by sampling the same area with a widely used sampler. The compar-

ison was made within a small uniform riffle to minimize sources of variation

other than between sampling methods. The resultant extensive sampling of a

single habitat allowed examination of microdistributional patterns and spe-

cies associations at one point in time.

The validity of conclusions drawn from an ecological study depends in

part on how well the data represent nature, thus, selection of methods de-

serves careful attention. Stream ecologists dealing with bentliic inverte-

brates are confronted with a wide variety of sampling methods (Welch. 19k8j

Macan, 19^8; Cummins, 1962
7

; Southwood, 1966 j Rynes, 1970; Edmonds on and

Winberg, 1971). The characteristics a sampler should have for a particular

study depend on the objectives, the characteristics of the stream, the char-

acteristics of the invertebrates under study, and the time and number of

investigators available for sampling. Since no sampler is ideal for every

purpose knowledge of the applicability of each method is essential for a

wise choice, The strengths and limitations of the sampling methods commonly

used in small, swift streams are discussed in Appendix A,

For estimating densities and studying distributions a sampler should

ideally remove all benthic invertebrates witliin a specified volume of the

stream bottom. The stovepipe sampler (Merritt, Cummins, and Resh, 1978),

consisting of an open, toothed, cylinder, was chosen as having the greatest

potential for accomplishing this with the coarse substrates and seasonally
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variable current velocities of King's Creek. It can be used to remove en-

tire units of substrate from the stream along with the associated fauna.

After removal efficient means of separation can be utilized and analysis of

the substrate for factors related to invertebrate distributions is possible.

These advantages were felt to outweigh the relatively large amount of labor

required per sample.

The best way to evaluate the relative effectiveness of two samplers is

to directly compare the results obtained by sampling the same area with

both. Despite this, few of the many samplers that have been developed have

been carefully compared (Hynes, 1970). Comparisons that have been made

have revealed differences in efficiency, variability, and selectivity a-

mong samplers (Macan, 1958; Albrecht, 1961; Hynes, 1961; Coleman and Hynes,

1970; Radford and Hartland-Row, 1971; Mason et al., 1973; Grossman and

Caims, 1971*5 O'Ccnner, 1971*3 Roby et al., 1978) „ A sampler comparison was

considered an important preliminary step to further study, because no com-

parison of the stovepipe sampler with other methods has appeared in the li-

terature and no quantitative sampling has been conducted previously on

King's Creek or similar streams in the Kansas Flint Hills. The Surber samp-

ler (Surber, 1937) was chosen as the standard for comparison because of its

widespread use in other comparative studies (Albrecht, 1961; Radford and

Hartland-Row, 1971 5 Kroeger, 1972; Grossman and Cairns, 197k; O'Conner,

197k; Roby et al., 1978) and statistical evaluations of sampling methods

(Needham and Usinger, 1956; Gaufin et al., 1956; Karris, 1957; Chutter and

Noble, 1966; Chuttor, 1972).

• High variabilities in the numbers and weights of individual taxa and

the fauna as a whole have been noted since early quantitative studies of

benthic invertebrates in streams (Needham, 193h; Mottley et al., 1939;
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Leonard, 1939)* For randomly distributed populations (i.e., each organism

is equally likely to occur at every point in the environment) frequency dis-

tributions of counts follow a Poisson series, in which the variance is equal

to the mean (Elliott, 1971). Departures from randomness can occur either

towards uniformity (variance less than the mean) or aggregation (variance

greater than the mean). Variances in benthic sampling data are often many

times greater than the mean, even within quite uniform habitats (Needham and

Usinger, 1956; Allen, 1959; Chutter and Noble, 1966), indicating that popu-

lations have aggregated distributions on a small scale. Aggregated distri-

butions may be caused by environmental factors or behavioral interactions

within or between species (Allen, 1959). If a physical factor is related

to the observed aggregation it must be heterogeneous within the area sampled

on a scale such that differences occur among sampling units. The animal

may actively respond to these differences or be passively distributed by

them.

The nature and degree of environmental heterogeneity depends on the

scale of observation. Many physical and chemical factors (e.g., tempera-

ture and concentrations of ions) vary from stream to stream and along the

stream continuum from headwaters to large river, but are nearly unifoaa in

a small stretch of stream at one point in time. These may be important in

determining the geographical range and longitudinal zonation of a species,

but can have little effect on its small scale distribution. In riffles of

swift streams oxygen concentration is high and nearly uniform within the

upper few centimeters of the substratum. It is likely to affect only ver-

tical distribution into the deep interstitial environment. Other factors,

especially water depth, current velocity, substrate characteristics, and

food densities, vary within small sections of streams as well as between
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strearas. They obviously vary between major habitat types, such as riffles

and pools, but even within such superficially uniform habitats they are

heterogeneous on the scale that stream bottoms are normally sampled. Ben-

thic invertebrates are small enough to experience differences at this level

of heterogeneity. JEty sampling a habitat at points visually selected to be

as similar as possible rather than at points selected randomly or systema-

tically Allen (1959) found that the coefficient of variation for total

numbers of invertebrates was cut in half, but the variance was still sig-

nificantly greater than expected for a random distribution. This suggests

that unless behavioral interactions are causing aggregation, invertebrates

are responding to environmental differences that are undetectable on the

scale of human observation. Distributions on this scale are usually termed

microdistributions

.

Overwhelming evidence has accumulated that benthic invertebrates select

favorable microhabitats . Current flow, nature of the sediments, and avail-

ability of food constitute the most likely variables influencing microdis-

tribution (Ulfstrand, 1967; Reice, 191h; Cummins, 1975). The distributions

of many species are related to current velocity (Allen, 1959; Chutter, 1969),

especially those adapted to filter food particles from flowing water, such

as the Simuliidae (Phillipson, 1956) and the net-spinning Trichoptera

(Scott, 1958; Edington, 1968j Wallace, 1975). Even to species not directly

dependent on it current flow has great indirect importance, because sub-

strate characteristics and food distributions are determined by the trans-

porting, sorting, and depositing of materials by the current. Thus, the

density of a species may be correlated with current velocity at the surface

even though this has little relationship to the flows of water experienced

by individuals at different points within the substratum.
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Cummins (1962, 1966) felt that substrate particle size could serve as

a common denominator in the benthic ecology of streams. Studies involving

qualitative substrate descriptions (Percival and Whitehead, 1929; Linduska,

19lj2; Pennak and Van Gerpen, 191+7} Mackay, 1969), quantitative substrate

particle size analysis (Cummins, I96I1; Ericksen, 1961*; Barber and Kevem,

1973j de March, 1976), laboratory substrate selection experiments (Cummins

and Lauff, 1969), and in situ substrate colonization experiments (Vfene and

Wickliff, 19h0; Minshall and Minshall, 1977) have all shown the relationship

of substrate particle size to benthic invertebrate abundance, species com-

position, and diversity. Cordone and Kelley (1961) stress the detrimental

effects of large deposits of erosional silt on benthic invertebrate popula-

tions. A light coating of silt has a positive effect on some species and a

negative effect on others (Ellis, 1936; Cummins and Lauff, 1969; Rabeni and

Minshall, 1977). Scott (1966) presents evidence that the size and distance

apart of stones on the surface of a stream bed may be important in deter-

mining the density of some species. In addition to the inorganic substrate

aquatic plants (Nelson and Scott, 1962; Minckley, 1963) and submerged wood

(Hynes, 1970) can serve as substrates for stream invertebrates and have

heterogenoous destributions.

Ulfstrand (1967) found that habitat types supporting an abundance of a

particular species contained available foods that corresponded well with

known food preferences and concluded that food supply is the factor most

directly related to microhabitat selection „ In samples from the natural

stream bottom and substrate colonization experiments Egglishaw (1961;, 1969)

found the density of many species to be positively correlated with amounts

of fine detritus, which is an important food source for many benthic inver-

tebrates (Chapnan and Uemory, 1963; Cummins et al., 1966; Minshall, 1967;
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Cofilnan et al., 1971 } Cummins, 19735 Cummins et al., 1973 5 Fisher and

likens, 1973). Rabeni and Minshall (1977) explored the effects of various

combinations of current velocity, substrate particle size, and amounts of

detritus on the colonization of substratum-filled trays to determine whether

a hierarchical pattern of factors affecting microdistribution exists. More

organisms colonized a given substrate particle size in a riffle than in a

pool and some species showed definite current preferences, but the overall

effect of current velocity was minor in comparison to substrate particle

size. The particle size that resulted in maximum colonization by most spe-

cies was the size that collected the most fine detritus. When the amounts

of detritus were experimentally equalized thare was no longer a substrate

particle size preference. Thus, detritus-feeding invertebrates may colonize

substrates on the basis of their capability to collect and store detritus

Benthic invertebrates therefore appear to aggregate by selecting favor-

able microhabitats from a mosaic of interrelated environmental factors, food

supply possibly being most directly important. Microhabitat preferences no

doubt vary from species to species. The fact that distributional patterns

of different species do not coincide is reflected by greater variabilities

in numbers of each species than in total numbers of invertebrates (Leonard,

1939; Longhurst, 1959- Hynes, 1970). Although most benthic invertebrates

are nonselective feeders (Cummins, 1973), ingesting a wide range of foods

of appropriate dimensions, they fall into somewhat distinct categories of

habit (adaptations for movement and maintenance of position) and feeding

mechanism (Cummins, 1978), Habit categories are: swimmers, dingers, sprawl

-

ers, climbers, and burrowers; and feeding categories are: shredders (large

particulate detritivores), collectors (small particulate detritus filterers

and gatherers), scrapers' (periphyton grazers), piercers (herbivores and car-
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nivores), engulfers (carnivores), and parasites. Although each species

probably has a different optimum microhabitat, species in the same habit

and feeding functional groups might be expected to select similar microhabi-

tats. If this is true their numbers in a set of sampling units should be

positively correlated and cluster analysis should reveal distinct distribu-

tional groups corresponding to the functional groups. Extensive sampling

of a single habitat, as in this study, allows a test of this prediction
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STUDY AREA

King's Creek is on the Konza Praiiie Research Natural Area (KFRNA), a

native tallgrass prairie located about 7 km south of Manhattan (Riley

County) in the Flint Hills of Kansas. KFRNA was purchased by the Nature

Conservancy in 1971 and 1977 and provided to Kansas State University for

ecological research. The area encompasses 31*87 hectares, 1637 of which are

included in the King's Creek watershed (Fig. 1)o A small portion of this

area is riparian forest which extends upstream from the Kansas River along

the stream margins . There are very few trees along most of the first and

second order channels. Traveling downstream, the vegetation in the immediate

watershed gradually changes from prairie dominated by big bluestem

(Andropogon gerardi ), Indian grass ( Sorgastrum nutans ), and prairie cord-

grass ( Spartina pectinata ) to forest dominated by hackberry ( Celtis

occidentalis ), bur oak ( Quercus macrocarpa ), and chinquapin oak ( Quereus

muhlenbergia ).

The area is characterized by shallow soils over sedimentary bedrock

consisting of alternating strata of limestone and shale. Limestone oufe-

croppings occur along the channel where the stream has cut through the bed-

rock strata. The streambed consists primarily of angular pieces of lime-

stone and flint ranging in size from very fine sand (0.0625 mm) to large

boulders ( >256 mm) . Silt and clay constitute a small percentage of the

sediments, even in pools. A longitudinal profile of the stream beginning

at the point marked with an asterisk in Fig. 1 is depicted in Fig. 2. The

average gradient is 12.7 m km
--

', but there is a considerable decrease from

the headwaters to the point where the stream leaves KPRNA. The stream has

a typical riffle-pool arrangement with the frequency of pools increasing

as gradient decreases.



Figure 1

.

King's Creek watershed on the Konza Prairie

Research Natural Area.
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The portion of King's Creek within KPHNA is intermittant and although

the period of record is short discharge has been extrenely variable both

seasonally and from year to year. The stream is spring fed and receives

little surface runoff „ Heavy rains, however, result in flash floods that

scour the channel and cause major changes in the stream bed. The last

major flood occurred in the summer of 1977 when the depth of water exceeded

5 meters in the lower part of the drainage. Piles of woody debris and sedi-

ments transported by the swift currents of the flood waters are evident far

above the normally flowing channel. The stream flowed continuously below

the second order channels from spring 1977 to summer 1978. The dry summer

and fall of 1978 caused flow to cease in all but the lower kilometer of the

main channel and a few small stretches below major springs or where the

channel was impeimeable The stream remained in this condition from late

August to the end of the year. Discharge during 1978 at the point where

the stream leaves KPENA varied from a high of approximately 200 liters sec"1

in spring to less than 5 liters sec"1 in fall.

The locations of the study sites are indicated in Figs e 1 and 2. Site

1 is a straight riffle about 1*0 meters long with quite uniform width, depth,

and substrate. The canopy is closed over the stream at this pointo At the

time of sampling (15 June 1978) discharge was approximately 60 liters sec"1

and width, depth, and current velocity at the surface averaged 1,5 m, 10 cm,

and 0.5 m sec"1
, respectively. Site 2 is a short riffle located U.O km

upstream from site 1 . Here the canopy is quite open. A spring enters a

large pool immediately upstream. When site 2 was sampled (22 October 1978)

flow at site 1 had ceased. Discharge, width, depth, and current velocity

at site 2 were 0,6 liters sec"1
, 30 cm, 5 cm, and 5 cm sec", respectively.



12

METHODS

Eenthic invertebrate sampling

Both practical and theoretical considerations are involved in selecting

the size of a sampler. For studying microdistribution a small sampler size

is most suitable. The size should be related to the normal area of movement

and the pattern of aggregation of the invertebrates under study (Cummins,

1975). It should be large enough so that the number of zero counts is small.

Thus, the best size for studying distribution varies from species to species.

For estimating density from a random distribution all sampler sizes are

equally efficient (i.e., the relative amounts of sampling required for a

given level of precision are equal). For aggregated distributions a small

size is more efficient than a large one (Elliott, 1971). Less labor is

required per sampling unit with a small sampler, so more units can be dealt

with in the same amount of time. Small samplers, however, have greater peri-

meter error per unit area than large ones. The smallest size that can be

used depends on how coarse the substrate is. In stony streams the sampler

must be larger than most of the stones. The optimum size for this study

was not obvious, so two sizes were compared . The area of the large stove-

pipe was 0.10 m2, very close to that of the square foot Surber sampler

(0.093 m2 ). The small stovepipe was half this size (0.0£ m2 ).

The two stovepipe samplers were constructed of twelve-gauge steel

rolled into cylinders and welded at the seams (all sampling equipment shown

in Fig. 3). Both were 61 cm high. Teeth (1 .3 cm long and spaced $ cm

apart) were cut into the bottom edge of each cylinder and bent alternately

inward and outward at a slight angle to aid penetrating the substrate. Two

holes were drilled opposite each other near the top edge so that an iron

rod could be used to rotate the cylinders.
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Figure 3. Fhotograph of stovepipe samplers, hand-operated pump, sorting

tub, and Surber sampler.
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The pump method was felt to be the most effective way to remove all

invertebrates and fine material from the stovepipe samplers „ A hand-oper-

ated bilge pump (Guzzler 600, Dart Union Co.) with a 2 inch hose was used

for this purpose. A cloth tube filled with sand was packed around the out-

side of the stovepipe to restrict the flow of water under the sampler. In

preliminary tests the pump frequently clogged with stones drawn through the

hose . To alleviate this problem a h inch mesh screen was placed in the

bottom of the sampler after scooping out the coarse substrate by hand. This

allowed removal of the remaining fine material without drawing in particles

so large as to clog the pump. Fifty strokes of the pump handle were found

adequate to remove most silt and detritus, and presumably most of the inver-

tebrates, from the small stovepipe. One hundred strokes were used with the

large stovepipe.

After sampling in this manner the benthic invertebrates were contained

within a large volume of substrate and water. To avoid transporting this

large quantity of unsorted material back to the laboratory a sorting tub was

devised for use in the field. The rectangular tub (1*6 cm x 61 cm) of gal-

vanised sheet metal was constructed with a slanting bottom and an opening

in the deep end (30 cm) leading to a 3.5 inch PVC pipe coupler. The coupler

accepts a tube-shaped net with a short piece of PVC pipe attached at one

end and the ring from a pint canning jar at the other. A removable \ inch

mesh screen in front of the opening prevents particles larger than this

from entering the net. The net is removable so the mesh size can be adjus-

ted to suit the needs of the study. The jar is replaced for every sample.

The first step of the sorting procedure is scooping the substrate from the

stovepipe into a \ inch mesh wire basket fitted in the sorting tub. The

slurry of fine material and water is the- .pumped into the tub. The stones
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in the wire basket are agitated and rinsed until clean and then removed

from the tube The remaining substrate is rinsed with stream water pumped

through a 250^ m mesh filter until the water is clear. Invertebrates,

detritus, and fine inorganic particles are filtered from the water by the

net and rinsed into the pint jar. The invertebrates in the jars may be

hand-picked while alive or the contents may be preserved before picking.

Thorough searching through the substrates from several samples taken with

the small stovepipe revealed that the rinsing procedure was nearly 100$

efficient for removing large invertebrates and greater than 90% efficient

for removing Chironomidae larvae.

The sampler comparison was conducted in the riffle at site 1 on

15> June 1978. It was designed to maximize the probability of detecting

differences in collection efficiency between samplers. A sample of twelve

sampling units was collected with each stovepipe sampler and the Surber

sampler. Although the riffle was quite uniform, the sampling units were

grouped because high sampling variability was anticipated. Twelve points

were selected randomly by means of a random numbers table and a group of

three sampling units, one with each sampler, was collected starting at each

point and moving in a line upstream. A space of 15 cm was left between the

sampling units within the groups and one of the six possible orders in which

the three samplers could be used was selected for each group by means of a

random numbers table. Variability within the groups was expected to be less

than that in the riffle as a whole, which would decrease the probability

that differences among the density estimates of the samplers occurred by

chance.

The Surber sampler used was equipped with a 1 mm mesh net. Large stones

within the Surber frame were brushed to dislodge attached organisms. The
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remaining substrate was thoroughly stirred to a depth of 10 cm with a gar-

den trowel. The stovepipe samplers were bored into the substrate 10 cm and

a 355 yqm mesh net was used on the sorting tub. The Surber samples were also

transferred to pint jars and all jars were filled with water, capped, and

stored in the stream during sampling. They were then transported to the

laboratory and refrigerated. The next day invertebrates were hand-picked

from all samples and preserved for subsequent identification and enumeration

„

Particulate organic matter sampling

A single sampling unit was collected with the small stovepipe sampler

at site 2 on 22 October 1978 to evaluate the method's feasibility for esti-

mating the quantity of organic matter in storage within the streambed. The

stovepipe was bored into the substrate 10 cm and a 250#m mesh net was used

on the sorting tub. To collect particulate organic matter finer than this

all water passing through the net in the rinsing procedure was collected in

a large drum and the volume was brought up to Mb liters. A subsample of

1 liter was taken from this. After the invertebrates were hand-picked from

the material in the jar the detritus was fractionated into the following

size classes: greater than 2000 /^m, 1000 - 2000*m, 500 - 1000*m, and 250 -

500 ^m. The detritus less than 250 ^m in the 1 liter subsample was fraction-

ated into these size classes: 125 - 250/<m, $3 - 125*m, and Q.k$ - 53 ^m.

All detritus size fractions were dried in crucibles at 90°C, weighed, ashed

at 550°C, for one hour and reweighed to determine ash-free dry weights.

The small size classes were corrected for the concentrations of particulate

organic matter in the rinse water

«

Benthic invertebrate data analysis

Only the common taxa were included in the data analysis (except in
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determining the number of taxa collected per sampling unit), because the

precisions of estimates for the rare taxa were very low. The common taxa

were arbitrarily defined as those with a mean of at least one per sampling

unit for all three samplers. This eliminated all taxa with large numbers

of zero counts . Before applying statistical methods the log (x+1 ) transfor-

mation was applied to the counts of the common taxa to fulfill assumptions

of normality. The adequacy of this transformation for the data from this

study is examined in Appendix B„

Two-way analyses of variance (Sokal and Rohlf, 1969), classified by

sampler and group, followed by least significant difference (LSD) tests,

were performed to determine if there were significant differences among

samplers in the mean number of taxa per sampling unit and the mean density

of each common taxon. The data for number of taxa were not transformed
'

because they were approximately normally distributed. The counts of each

common taxon for the small stovepipe and Surber samplers were adjusted to

numbers per 0.10 m2 before transformation so that the data for all samplers

represented the same area of the stream bottom. Two-way analyses of vari-

ance were also performed classifying the data by sampler and order of the

sampling unit within the group and by sampler and position across the

stream.' s width (central $0% or either margin) to determine whether these

two factors affected the numbers of any taxon collected. To examine the

possibility of differences in selectivity between samplers the total num-

bers of each taxon were expressed as a percentage of the total fauna for

each sampler

o

Morisita's index of dispersion (Ig - nfe(x2 )- x)/((2x) - x)) was used

as a comparative measure of aggregation in the invertebrate distributions.

It is a function of the number of sampling units, but if each sample con-
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tains the same number of sampling units it is a good comparative index,

because it is independent of the sample mean and total numbers (Elliott,

1971). The value of Morisita's index is one for a random distribution, less

than one for a distribution more uniform than random, and greater than one

for a distribution more aggregated than random. The maximum value, obtained

when all individuals of a species are in the same sampling unit, is equal to

the sample size (n=12 in this case). The significance of departure from

randomness was assessed from the variance to mean ratio multiplied by (n-1 ),

which is distributed approximately as Chi-square with n-1 degrees of free-

dom for a random distribution.

Correlation coefficients for all possible pairs of the common taxa were

computed from the transformed data for each sampler to determine significant

associations between taxa. The numerical taxonomy system of multivariate

statistical programs (NT-SIS ) (Rohlf et al., 197M was used to perform clus-

ter analyses on the correlation matrices by the unweighted pair-group method

with arithmetic averages. The taxa are grouped in a hierarchical fashion

with the level at which two groups connect determined by the mean of the

correlation coefficients for all possible intergroup pairs of taxa. The

first grouping in the analysis is between the two taxa with the highest

correlation coefficient. Each subsequent grouping is determined by the

highest correlation between any two remaining ungrouped taxa, any two groups

already determined in the analysis, or any ungrouped taxon with any deter-

mined group. Cophenetic correlation coefficients (Sokal and Rohlf, 1962),

the correlation coefficients between the elements of the correlation matri-

ces and the corresponding cophenetic matrices, were computed to test for

amounts of distortion in the cluster analyses. The cophenetic value for

each pair of taxa is the level at which they are connected in the cluster



19

analysis. High cophenetic correlations indicate low distortion. The most

distinct groups in each cluster analysis were found by subsets analysis. To

be distinct by subsets analysis the lowest correlation coefficient between

any tiro taxa within a group must be higher than the highest correlation

coefficient between any taxon within the group and any taxon outside the

group.
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RESULTS

Eenthic invertebrate fauna

The numbers of invertebrates found in the twelve sampling units taken

with each sampler at site 1 are given in Tables 1 to 3. Counts of zero are

left blank for clarity. Table h summarizes the data for all three samplers

by giving density estimates (numbers/ m ) for each taxon and the total

fauna, and the mean number of taxa per sampling unit 'with each sampler.

Standard deviations are given for all the means. The fauna is divided into

thirty groups that do not necessarily correspond to species. These id.ll be

referred to as taxa for simplicity. The abbreviation sp. is used following

a genus if it could not be identified further and there was no reason to

suspect that more than one species was present.

The fauna was dominated by immature insects of which there were seven-

teen families representing seven orders. Odonata was represented by one

individual of the family Coenagrionidae that was too small to identify fur-

ther. Perlesta palida, the only species of Plecoptera, was present in low

numbers. In the Ephemeroptera there were high densities of Stenonema

tripunctatum and Choroterpes sp., moderate densities of Baetis sp«, and two

individuals of Caenis sp. Small larvae of Cheumatopsyche sp. were present

in very high densities, dominating the Trichoptera Polycentropus sp. and

Chimarra sp. were present in low numbers. There were small numbers of lar-

vae and adults of two genera of Dytiscidae (Agabus sp. and ELdessus sp.)

and one genus of Elmidae ( Stenelms sp.) in the Coleoptera. The larvae and

adults, although likely of the same species, were considered as separate

taxa because of differences in morphology and ecology. Chironomidae domi-

nated the Diptera and was the most numerous taxon collected. There were no

doubt more than one species, but no attempt was made to separate them. The
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Table 1 . List of benthic invertebrates collected with the 0.05 m stove-

pipe sampler at site 1

•

Sampling unit number 1 2 3 1* 5 6 7 8 9101112
Coenagrionidae __-___-___--
Perlesta palida - - _ _ It 2 1 - - - - 3

Stenonema tripunctatum 8 122 1 6 7 20 8 I* 11 17 9
Choroterpes sp. 2 7 3k 5 22 30 11* k 3 7 U 18
Baetis sp. 7 1 1 3 10 28 - 2 1 - 1 10
Caenis sp. _1____-_1_--
Cheumatopsyche sp. 30 - 1*1 5 185 209 1 23 - 1 - 10b
Chimarra sp. -1 --105-----2
Polycentropus sp. _-___l-___2-
Agabus sp. (larvae) ____--___---
Agabus sp. (adults) _-.-_--______
Bidessus sp c (larvae) - 1* 1 - - - - - 1 231
Bidessus sp. (adults) -.--_---__-_-
SteneHmis sp. (larvae) ...... - 1 2 2 - - 1 -2
Stenelruis sp. (adults) 31 ---1 ------
Chironomidae (larvae) 62 117 h3 75 1*1 120 32 20 71 26 18 62
Chironomidae (pupae) 10669^ 63321 11
Ceratopogonidae 2l*-3-1l*52--|*
Limnophora sp. 2 7 1 k 1 h - 12 8 6 12 1*

Hexatoma sp, _____-1 1 _---j
Simulium sp. - - 1 3------
Sialis sp. - - 1 ----__-__
Asellus tridentata 3 - - 1 7 3-2-12-
Bactrurus hubrichti 2-1*----- ---1
Astascidae 1--1---1211*-
Atractides sp. 10115-91271*210
2222. SP« 661*9-2117252
Dagesia sp. __1 ____1 ---_
Nais sp. 6 13 It 33 1 16 1 - 1* 1 1 1lj

Nematomorpha --_-___-__-I
Total 151* 170 161* 151* 293 bh9 81 85 113 6h 73 2l*8

Number of taxa. 15 11* 11* 13 13 18 12 11* 13 13 11* 17
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Table 2. list of benthic invertebrates collected with the 0.10 in stove-

pipe sampler at site 1 .

Sampling unit number 1 2 3 It 5 6 7 8 9 10 11 12

Coenagrionidae
Perlesta palida - - - - 1 •- 2 - - - - -

Stenonema tripunetaturn 28 5 29 6 18 18 63 7 5 20 86 22

Choroterpes sp. 18 7 32 11* 2 he 20 15 10 6 16 11

Baetis sp. 8 2 5 - 15 2U 1 2 2 1 1 6

Caenis sp.

Cheunatopsyche sp. 82 53 12 198 123 9 1 - 2 1 I16

Chimarra sp. - - - 5 1

Polycentropus sp. - - - - 3 - - - 1 1 — —

Aeabus sp. (larvae) - - - - - -
!

-• — 2 m

Aeabus sp. (adults) - 1

Bidessus sp. (larvae) - 2 - ~ - 1 5 - 3 1 -

Bidessus sp. (adults)
SteneJMs sp. (larvae) - 3 - 3 2 - 2 - m 1 2

Stenelmis sp. (adults)
Chironomidae (larvae) 170 87 hh 61 15 38 70 105 37 16 ht 12

Chironomidae (pupae) 11 3 2 a 1 3 h 6 - 2 1
-

Ceratopogonidae 5 h - - - 3 1 2 2 - 1 -

Limnophora sp. 5 5 6 3 2 17 2 23 11 6 18 6

Hexatoma sp. 1 1 - - - - 3

Simulium sp. - - - - 3 - - - - - - -

Sialia sp. -

Assellus tridentata - 1 - - 10 1 1 - - - 1 -

Bactrurus hubrichti 1 - - - 18 - - - - 1 - 3

Astascidae - ~ - 1 - - 2 1 3 h 6 -

Atractides sp. k - - 1 - 1 1 1 2 1 - -

Physa sp. $ 13 - 16 - 1 h 5 - 6 - 7

Dugesia sp. I

Nais sp. k 1 3 1 6 19 17 1 2 2 2

Nematomorpha 1 -

Total

Number of taxa

3U0 190 161 118 295 286 201 193 75 72 181* 120

12 1lj 8 1h 15 16 16 15 11 15 15 11
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Table 3. list of benthic invertebrates collected with the Surber sampler

at site 1

.

Sampling unit number 1 2 3 h 5 6 7 8 9 10 11 12

Coenagrionidae
"

Perlesta palida " " 1 ~ ~7 -i^ <->« c? o o £ <
St^n^a trinunctatm 13 3 18 - 21 9 28 5 9 2 5 5

Ch^ote^Fs?: 6 7 32 2 16 U0 2 12 9 - U 2

Baetis s£ « - - 1 6 ? " |» * - 1 2

IgtSichesp. 30 3 LI
3" 35 20 3 119 I - 1 73

Chlmarra sp. ""*?""
Polvcentropus sp. 1

Agabus sp. (larvae) 2

Agabus sp. (adults) " " " ~

RLdessus sp. (larvae) 2
_ I I

RLdessus sp. (adults) ~"o 7 1 - - -
Stenelmis sp. (larvae) 2 - 1 - ~

Stenelnis sp. (adults) 3 J 2 2 - 1 - - - - - "

Chironomidae (larvae) 19 57 Wi 8 7 31 10 16 16 2 6 k

Chironomidae (pupae) 2 7
4-1 * _

2 - - -
Ceratopogonidae - " }

"
I o -i7 o 7 11

Limnophora sp. * 5 U 2 - 6 2 11 9 3 - 11

Hexatona sp. -
7 2 - - l"

Simulium sp. "

Sialis sp.
1

Asellus tridentata ------
Bactrurus_ hubrichti - _ 1 - -

7
Astascidae ----- ~~?

1 -
Atractides sp. - " " " " ~ " T " ^

R^TipT" 28 29 10 k h 23 3 6 - 1^ - 8

Dugesia sp. - 7 3 " T T 1 7 ^7
K5iT5p. 7 3 16 5 - 3 3 ii 1 - 5 1

Nematomorpha - _ - - 1

Totai 126 115 181 27 92 158 55 187 ^ 9 21* 113

Number of taxa 11 9 16 8 9 12 10 11 10 5 8 11
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Table 1*. Mean density (numbers/ m2 ) and standard deviation of each taxon

with each sampler and mean number of taxa per sampling unit.

0.05 m2
Stovepipe

I S.D.

0.10 m2
Stovepipe Surber

S.D. X o JD t

Arthropoda
Insecta
Odonata

Coenagrionidae

ELecoptera
Perlidae Perlesta palida

Ephemeroptera
Heptageniidae Stenonema

tripunctatum
Leptophlebiidae Choroterpes sp.

Baetidae Baetis sp.

Caenidae Caenis sp.

Trichoptera
Hydropsychidae Cheumatopsyche sp.

Philopotamidae Chimarra sp.

Folycentropodidae Polycentropus
sp.

Coleoptera
Dytiscidae

iJytiscinae Agabus sp. (larvae)

Agabus sp. (adults)

Ilydroporinae Bidessus sp.
(larvae)

Bidessus sp e

(adults)

Elmidae Stenelmis sp. (larvae)

Sbenelmis sp. (adults)

Diptera
Chironomidae (larvae)

Chironcmidae (pupae)
Ceratopogonidae
Anthomyiidae limnophora sp.

Tipulidae Hematoma sp.

Simuliidae Simulium sp.

Neuroptera
Sialidae Sialis sp a

17 28

-

190 139 256 21*8 115 96

250 223

107 160

3 8

161; 122

$6 72
-

118 136
30 38

-

998 11*97

30 61

5 12

1*65 618
6 Mi

k 9

291; 39k
2 6

1 3

20 27

3 6
1 3

11 16

2 6
-

k 11

- 1 3 -

13

8

18
18

12 12
-

h 7
8 11

111*5

87
1*2

102

5
7

687
62

38
81

9
18

581* k^S

3k 3k
15 17

87 70

k 9
2 9

197 185

23 25
k 7

52 1*1

1 3

1* 7

-
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Table 1*. (continued)

Crustacea
Isopoda
Asellidae Asellus tridentata

Amphipoda
Gammaridae Bactrurus hubrichti

0.05m 0.10 m*
Stovepipe Stovepipe Surber

X S.D X S.D. X S.D.

32 fc1 12 28 9 3

12. 25 19 51 5 16

Decapoda
Astascidae

Arachnida
Hydracarina

Hygrobatidae Atractides sp.

Mollusca
Gastropoda
Pulmonata
Physidae Physa sp.

Platyhelminthes
Turbellaria

Tricladida
Planariidae Dugesia sp.

Annelida
Oligochaeta
Plesiopora
Naididae Naia sp.

Namatomorpha

17 21* 11* 20 13

87 75 9 12 3 7

75 57 1*8 53 101* 115

3 8 1 3 6 22

157 19U 51 62 1*3 1*7

2 6 13 13

Total 31*13 2253 1862 856 1022* 666

Nunber of taxa 11* .2 1.7 13.5 2.1* 10.0 2.7
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larvae and pupae were placed in separate taxa. The Ceratopogonidae may

also have been represented by more than one species. Other Dipterans were

Limnophora sp., present in moderate densities, and Hexatoma sp. and Simulium

sp., present in low densities „ Neuroptera, the final order of insects, was

represented by a single individual of the genus Sialis Three orders of

Crustacea were present in Iotj densities Only very young crayfish

(Astascidae) were collected that could not be identified to genus. Adults

in qualitative collections from King's Creek are of the genus Orconectes .

Blind subterranean isopods (Asellus tridentata ) and amphipods (Bactauru3

hubrichti ), usually found in caves, wells, and springs, were a surprising

find in the riffle and possibly indicate the presence of a well-developed

hyporheic fauna in the deep interstitial environment beneath the stream.

Arachnids of the genus Attractides were in low abundance . Mollusca was

represented only by snails of genus Physa . There were small numbers of

planarians (jjugesia sp.) and moderate numbers of the small oligochaete Hais.

Three horsehair worms (Phylum Nematomorpha ) were collected,,

Most sampling units contained less than half the total number of taxa

Eight taxa were present in fewer than five of the thirty-six sampling units a

Only Chironomidae was present in all the sampling units. Stenonema

tripunctatum and Choroterpes sp. were present in thirty-five units. Nine of

the thirty taxa have means of at least one per sampling unit for all samp-

lers and are included in the data analysis. These are Stenonema

tripunctatum, Choroterpes sp., Eaetis sp., Cheumatopsyche sp., Chironomidae

larvae, Chironomidae pupae, Limnophora sp., Physa sp., and Hais sp» The

standard deviations of the rare taxa are much larger in relation to the

means than those of the common taxa (Table h)»

The numbers of the benthic invertebrates collected in the sample at
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site 2 are given in Table 5. Seventeen taxa were collected, all of which

were present in the samples at site 1 . Density estimates based on one

sampling unit are very imprecise but one very striking difference from the

earlier samples was evident. Caenis sp. was the second most abundant taxon

at site 2, whereas in all the samples at site 1 only two individuals were

collected

.

Sampler comparison

The results of the two-way analyses of variance performed on the trans-

formed densities of the common taxa are given in Table 6. Differences among

group means are significant (P<.0£) for all taxa except Physa (P=.11) and

Uais (P=.l£). Thus, grouping the samples aided in detecting differences in

efficiency among samplers because the within groups variance was small com-

pared to the between groups variance for most taxa. The means for the first,

second, and third sampling units within the groups are not significantly

different (P=.20 to .90) for any taxon after removing the effects of sampler

differences. 3y leaving 15 cm betxreen the units within each group and mov-

ing upstream there appears to have been no interference of one sampling

unit on the next.

The density estimates obtained with the Surber sampler are signifi-

cantly (P<.10) less than those obtained with the small and large stovepipe

samplers for seven and five taxa, respectively, and for total numbers. The

small stovepipe yielded a significantly (P<J0) greater density than the

large stovepipe for total numbers and two of the nine taxa. All other dif-

ferences between sampler density estimates are nonsignificant (P>.10).

For Chironcnidae larvae and total numbers differences among all sampler

means are significant (P<.05). For all three genera of mayflies ( Sten enema,

Choroterpes, and Baetis ) and Limnophora the Surber sampler yielded signifi-
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Table 5. List of benthic invertebrates collected with the 0.05 m2

stovepipe sampler at site 2.

Coenagrionidae 6

Ferlesta palida 1

Stenoneiria tripunctatum 2

Choroterpes sp. 18

Caenis sp. 91

Polycentroptis sp. 12

Etytiscidae 1

Stenelmis sp. (larvae) 1h

Stenelmis sp. (adults) 3

Chironomidae (larvae) 99

Ceratopogonidae 6

Limnophora sp 5

Hexatoma sp. 11

Sialis sp. 1

Astascidae 1

Atractides sp. 7

Dugesia sp. 3

Nais sp. 1
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Table 6. Significance levels for the two-way analyses of variance on
transformed densities. (For the LSD tests ***# indicates
P<.001, *** indicates P=.001 to .01, ** indicates P=,01 to .05,
* indicates P=.05 to .10, and NS indicates P>.10.)

P for group P for sampler LSD tests for sampler
differences differences means
in two-way in two-way ~ ~
analyses of analyses of 0.05 m 0„10 n

Taxon variance variance Stovepipe Stovepipe Surber

Stenonema tripunctatum 0.0002 0.0099 20.67 NS 25.58 ** 11.1*8

L /
lowr

Choroterpes sp. 0.01*5 0.032 26.67 NS 1 6.1*2 * 11,8b

L /
#*

Eaetis sp, 0.0001 0.013 10.67 NS 5.58 * 3.05

L /
#K*

Cheumatopsyche sp. 0.0001 0.58 99.83 NS 1*6.50 NS 29.1*2

L
hs

'

Chironomidae larvae 0.013 0.0001 116.17 *** 58.1*2 4BHHfr19,73

L /

Chironomidae pupae 0.0069 0.0002 8.67 *** 3.1*2 NS 2.33

L /

Limnophora sp. 0o0091 0.10 10.83 NS 8.67 * 5.20

L /

Physa sp 0.11 0,23 7.50 NS l*o75 NS 10.1*1

L /
NS

Nais sp. 0.1*2 0.13 15.67 NS 5.08 NS 1*.60

L /

Total numbers 0.0028 . 0001 31*1 .33 ** 1 86 .33 **** 1 02 .1*0

L —J
H-MXX
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cantly (P=.001 to .10) lower densities than the stovepipe samplers, but the

stovepipe estimates are not significantly different. The small stovepipe

revealed a significantly (P<.01) higher density of Chironomidae pupae than

the other two samplers, for which the difference is not significant. Only

the difference between the small stovepipe and Surber sampler estimates is

significant (P= o066) for Nais . No differences are significant for

Cheumatopsyche and Physa c The mean members of taxa collected per sampling

unit by the two stovepipe samplers are not significantly (?>,k0) different,

but the Surber sampler collected significantly (P<,01) fewer taxa than both

stovepipes

.

All of the common taxa except Stenonema and Physa exhibit a pattern in

which the small stovepipe sampler yielded the highest density and the Surber

sampler yielded the lowest density, although some of the differences were

not significant. The precisions of density estimates for the rare taxa are

low, but most follow the same pattern. Of the twenty-three taxa collected

by every sampler seventeen show this pattern. If there were no differences

in efficiency among the samplers an equal distribution of taxa among the

six possible orders of means would be expected. Tested by Chi-square the

observed pattern is highly significant (P<„001), Thus, overall, the small

stovepipe removed the greatest number of benthic invertebrates per unit area

and the Surber sampler removed the least

The numbers of each taxon are expressed as a percentage of the total

numbers for each sampler in Table 7. For all samplers the common taxa

accomb for greater than 90% of the total numbers. The two stovepipe samp-

lers yielded similar relative abundances for all taxa but Stenonema, which

constitutes a considerably lower percentage with the small stovepipe. The

Surber sampler exhibits two notable differences from the stovepipe samplers,
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Table 7. The relative abundance (,%) of each common taxon with each sampler.

Taxon

0.05 m2

Stovepipe

0.10 m2

Stovepipe Surber

Chironomidae larvae .33.5 31 .h 19.3

Cheumatopsyche sp. 29.2 25.0 28.7

Choroterpes sp. 7.3 8.8 11.6

Stenonema tripunctatum 5.6 13.7 11.2

Mais sp. k.6 2.7 U.2

Baetis sp. 3.1 3.0 3.0

Limnophora sp. 3.0 U.7 5.1

Chironomidae pupae 2.5 .

1.8 2.3

Physa sp. 2.2 2.6 10.2

All other taxa 8.0 6.3 k.h

Total 100 100 100
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a much loxrer Chironomidae larvae percentage and a much higher Physa per-

centage .

Table 8 gives an estimate of the amount of each size fraction of par-

ticulate organic matter stored within the streambed at site 2. The esti-

mates represent the upper 10 cm of one square meter of the streambed • The

total for all size classes is 1119 grams. The quantity of organic matter

increases -with each decreasing size class. The smallest class (0.1*5 - 53 //m)

contains 71$ of the total. The 53 - 125/fm and 125 - 250^m classes contain

Sk% of the remainder.

Microdistributions and faunal associations

The values of Morisita's index are given in Table 9. The distributions

of all taxa are significantly aggregated for all samplers (P^.01)„ Some

taxa are clearly more aggregated than others. Eaetis and Cheumatopsyche

have consistently high values for all three samplers, whereas the values for

Chironomidae larvae, Chironomidae pupae, and Limnophora are consistently low.

The values for total numbers of invertebrates are generally lower than for

most individual taxa. The index is quite constant among the samplers for

limnophora and total numbers. For other taxa there are considerable differ-

ences among samplers, but no consistent trend. For Baetis and Cheumatopsyche

the index is similar for the large stovepipe and Surber samplers but higher

for the small stovepipe, however, for Chironomidae larvae., Chironomidae

pupae, and Physa the small stovepipe has lower values than the large stove-.

pipe and Surber. Stenonema vas most highly aggregated with the large stove-

pipe and ChoroterPes was most highly aggregated with the Surber sampler.

Correlation coefficients are consistently greater than 0.20 with all

samplers for nine of the thirty-six possible pairs of common taxa. These

are given in Table 10 with their levels of significance of difference from
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Table 8. Estimates of particulate organic matter in storage at site 2.

Size Fraction Ash-free dry weight Percent

(rtm) (g/m2 x 10 cm deep)

2000 6.£ 0.6

1000 - 2000 10.1 0.9

500 - 1000 1li.it 1.3

2^0 - 500 21 .7 1 .9

125 - 250 73.7 6.6

53-125 -202.8 18.1

0.1*5 - S3 790 70.6

Total 1119 100
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Table 9. Morisita's index of dispersion for the common taxa with each

sampler.

Taxon
0.05 m2

Stovepipe
0.10 m2

Stovepipe Surber

Stenonena tripunctatum 1.39 1.83 1.56

Choroterpes sp. 1.65 1.2*5 2.11;

Baetis sp. 2.93 2.37 2.12

Cheunatopsyche sp. 3.05 2.60 2.62

Chircnomidae larvae 1.31 1.1*2 1.76

Chironomidae pupae 1.26 1.63 1.66

Limnophora sp. 1.1*1 1.U9 1.39

Phvsa sp. 1.23 1.95 2.15

Nais sp. 2.32 2.21 1.87

Total 1.39 1.19 1.38
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Table 10. Correlation coefficients for pairs of taxa that were consistently
associated (Numbers in parentheses are significance levels).

0.05 m2 0.10 m2 All Stovepipe

Taxon pairs Stovepipe Stovepipe Surber samplers samplers
combined combined

Baetis - Cheumatopsyche 0.83 0.82 0.52 0.7l* 0.83

(0.0005) (0.0012) (0.086) (0.0001) (0.0001)

Ghironomidae larvae - 0.56 0.77 0.82 0.73 0.68

Chironomidae pupae (0.061) (0.001*1) (0 o0012) (0 0001) (0.0001)

Chironomidae larvae - Nais 0.86 0.52 0.61 0.58 0.67

(0.0001) (0.086) (0.037) (0.0001) (0.0001)

Chironomidae larvae - Fhysa 0.38 0.28 0.62 0.20 0.31

(0.23) (0.38) (0.033) (0.25) (0.1$)

Chironomidae pupae - Nais 0.18 0,51* 0.22 0.1*3 0J|9
(0.12) (0.0710 (0.1*9) (0.0091) (C.017)

Chironomidae pupae - Physa 0.28 0.51 0.57 0.38 0,1*3

(0.38) (0.093) (0.05h) (0.023) (0.038)

Nais - Physa 0.57 0,1*1 0.36 0.37 0.1*5~"^
(0.051*) (0.19) (0.26) (0.027) (0.028)

Stenonema - Choroterpes 0.32 0.28 0.56 0.1*7 0.36^28 ^ (0.38) ( 0#061 ) (0.001*3) (0.087)
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zero. Other pairs are significantly correlated with one sampler but far

from significance for the other two. The coefficients for the two stovepipe

samplers generally compare more closely to each other than to those for the

Surber sampler. The only significant negative correlations are for the

pairs Stenonema - Chironomidae larvae (r=-0.61±5) and Stenonema - Nais

(r=-0.60li) with the small stovepipe sampler. Limnophora shewed no signifi-

cant correlation with any taxon for any sampler.

With a small sample size correlation coefficients must be high to be

significantly different from zero. To increase sample size the data for all

samplers were combined. The data for the two stovepipe samplers were also

combined because their correlation coefficients are similar. The level of

correlation necessary to meet the 5% level of significance is lowered from

0.£76 for n=12 to O.hOh for n=2li and 0.330 for n=36. Table 10 also includes

the correlation coefficients and levels of significance for the sampler cojii~

binations. The highest correlation coefficients for the combined data are

for those pairs that are consistently high for all samplers. The most

strongly correlated pairs are Baetis - Cheumatopsyche, Chironomidae larvae -

Chironomidae pupae, and Chironomidae larvae - Nais „

The results of the cluster analyses based on the correlation matrices

for each sampler separately, all samplers combined, and the stovepipe samp-

lers combined are presented as dendrograms in Fig. lio The lower scales give

the levels of correlation for the connections in the dendrograms. The upper

scales give the significance levels corresponding to the correlation coef-

ficients on the lower scales for the sample size of each dendrogramo These

levels give some indication of the portion of each dendrogram that is

unlikely to have resulted frcn chance associations. The connections made

by bold lines signify these groups obtained by subsets analysis. Each of
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Figure h. Dendrograms for the cluster analyses on the correlation matrices

for (a) the small stovepipe sampler, (b) the large stovepipe

sampler, (c) the Surber sampler, (d) all samplers combined, and,

(e) the stovepipe samplers combined.
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these groups is very distinct from the rest of the fauna, suggesting that

all of its members are distributed by the same causal mechanism. The

cophenetic correlations are given for each dendrogram. The large stovepipe

sampler has the highest cophenetic correlation (r=0.8l|1 ), followed closely

by the stovepipe samplers combined (r=0.839) and all samplers combined

(rO.811). For the small stovepipe and Surber samplers they are lower

(r=0.696 and r=0.65l, respectively), indicating greater distortion of the

correlation matrices in the cluster analyses.

The dendrograms for the two stovepipe samplers compare closely. In

both cases Chironomidae larvae, Chironomidae pupae, Naisa and Physa are

grouped together although the order in the hierarchy differs. Within this

group Chironomidae larvae, Chironomidae pupae, and Nais form a distinct

grouping by subsets analysis with the large stovepipe, but only the first-

order Chironomidae larvae - Nais grouping is distinct with the small stove-

pipe. Baetis and Cheumatopsyche form a distinct group with both samplers.

The two stovepipe dendrograms differ mainly in the grouping of Choroterpes

and Limnophora .

The Surber sampler dendrogram differs considerably from those of the

stovepipe samplers. The only distinct group by subsets analysis is

Chironomidae larvae - Chironomidae pupae Nais and Physa are not associated

with the Chironomidae larvae - Chironomidae pupae group and the first-order

Baetis - Cheumatopsyche group is lacking. The major differences between

the Surber and stovepipe dendrograms are caused by the high correlations

between Cheumatopsyche and Physa (rO.602) and Choroterpes and Chironomidae

larvae (r=0.7it0), which are very low or slightly negative with the stovepipe

samplers. The high Cheumatopsyche - Physa correlation causes Physa to group

with Cheumatopsyche rather than the Chironomidae larvae- Chironomidae pupae



group and causes Baetis to group with Cheumatopsyche at a lower level. The

high Choroterpes - Chironomidae larvae correlation causes Nais to group

with the Chironomidae larvae - Chironomidae pupae group at a lower level

than Choroterpes and Stenonema .

Although the levels differ slightly, the network of groupings in iden-

tical in the dendrograms for all samplers combined and the stovepipe samp-

lers combined. They compare closely to those for the large and small

stovepipes separately. The portion of the dendrogram unlikely to have

resulted from chance associations is greatest with all samplers combined,

but by excluding the Surber sampler more groups are distinct by subsets

analysis. With the all sampler combination the Baetis - Cheumatopsyche

and Chironomidae larvae - Chironomidae pupae groups are distinct. With the

stovepipe sampler combination the Stenonema - Choroterpes group and the

entire Chroonomidae larvae - Chironomidae pupae - Nais - Physa group are

distinct along with the Eaetis - Cheumatopsyche group. Limnophora can be

considered to be a distinct group with one member. All the distinct groups

of the stovepipe sampler combination but Stenonema - Choroterpes have with~

in group connections below the 5% level of significance. The Stenonema -

Choroterpes group with the all sampler combination, although not distinct,

is connected below the 1£ level of significance.

The cluster analysis on the stovepipe data therefore indicates that at

the time the riffle at site 1 was sampled the common taxa were associated

in four quite distinct groups: the Stenonema - Choroterpes group, the

Baetis - Cheumatopsyche group, the Chironomidae larvae - Chironomidae pupae

Nais - Physa group, and the Limnophora group. The patterns of aggregation

support these groups. Baetis and Cheumatopsyche are both very highly aggre-

gated and more variable with small sampler size Chironomidae larvae,



Chironomidae pupae, and Fhysa are all less highly aggregated and more vari-

able with large sampler size. Stenonema and Choreterpes had similar inter-

mediate levels of aggregation . Limnophora was the only taxon whose distri-

bution was affected by position across the stream's width.

Various sources were used to place the taxa of each group in the habit

and feeding mechanism categories of Cummins (1978) (Table 11). The cluster

analysis groups correspond quite well to these categories. Both Stenonema

and Choroterpes have flattened morphologies and cling to the under surfaces

of rocks. They feed by sweeping and scraping algae and detritus from sur-

faces. Most lotic Chironomidae burrow in the substrate and construct dis-

crete tubes, feeding primarily on fine detritus. They generally pupate

within their burrows, the pupal stage lasting only a few days (Oliver, 1971).

Nais is also a burrower and detritus feeder. Of the common taxa Limnophora

is the only predator and it is in a group by itself. The associations that

do not fit well with the functional group categories are the association of

Physa with Chironomidae larvae, Chironomidae pupae, and Mais and the associ-

ation of Baetis with Cheumatopsyche .



U6

Table 11. Habit and feeding mechanism categories for the taxa of each

group determined by cluster analysis.

Cluster
analysis
groups Taxon

Feeding
Habit mechanism

category category

Group 1 Stenonema

Choroterpes

dingers (flattened)

dingers (flattened)

Collectors (gatherers),
scrapers

Scrapers,
collectors (gatherers)

Group 2 Baetis

Cheumatopsyche

Swimmers, dingers

dingers
(fixed retreat)

Collectors (gatherers),

scrapers

Collectors (filterers)

Group 3 Chironomidae larvae Generally burrowers
(tube dwellers)

Chironomidae pupae

Nais

Fhysa

Inactive

Burrowers

dingers, climbers

Generally collectors
(gatherers)

Nonfeeding

Collectors (gatherers)

Scrapers
collectors (gatherers)

Group h Limnophora Burrowers Engulfers (predators)
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DISCUSSION

Sampler comparison

The conditions of depth, current, and substrate at site 1 were nearly

ideal for proper functioning of the Surber sampler. Invertebrates were

carried into the net well with minimal backwash, little inorganic material

entered the net, and there was no erosion around the frame. Thus the stove-

pips samplers were clearly superior in collection efficiency under condi-

tions in which the Surber sampler efficiency was maximal. The stovepipe

samplers are efficient under a wide range of conditions. The Surber samp-

ler is completely ineffective at low current velocities as at site 2, where

the small stovepipe sampler functioned very well. The Surber cannot be

used to collect the substrate for analysis and only rough estimates of par-

ticulate organic matter larger than the mesh of the net are possible o The-

method for collection of particulate organic matter with the stovepipe samp-

lers added a few minutes per sampling unit but seemed to be very effective

.

The results indicate that a very large proportion of the organic matter

stored within the streambed is of very small particle sizes, which have

been neglected by many studies that have examined detritus concentrations

in the substrate.

The major advantages of the Surber sampler were its compactness and

speed and ease of operation. The stovepipe method involves several pieces

of heavy equipment, which is definitely a disadvantage if it is necessary

to walk long distances. Only one operator was required for the Surber and

each sampling unit was collected in five to ten minutes. The stovepipe

method worked best with three to four operators and required fifteen to

twenty minutes per sampling unit. The Surber sampler is of value in pre-

liminary sampling to get a quick picture of densities and relative abundan-
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ces of the common taxa, but for quantitative estimates of density, bicmass,

and production and for studying distribution the advantages of the stovepipe

sampler clearly outweigh the disadvantages

„

The overall underestimation of density by the Surber sampler was prob-

ably due mainly to incomplete removal of the fauna from the substrate. Care

was taken to sample to .the same depth with all samplers, but rinsing the

substrate within the sorting tub was much more efficient for removing inver-

tebrates and detritus than stirring it within the stream o This source of

error probably affected all taxa about equally except for perhaps Physa .

The much higher relative abundance of Physa with the Surber sampler may

indicate a shortcoming of the sorting tub. It was designed to separate low

density organic material from the dense substrate. Dense invertebrates

like Physa may be more efficiently separated by the swift current of the

stream. The lower relative abundance of Chironomidae with the Surber samp-

ler is probably the result of many of the small larvae passing through the

larger mesh size of the Surber net.. Decreasing the mesh size results in

greater backwash with the Surber sampler, but has no effect on the sorting

tub except for slightly increasing the time required for the sorting pro-

cedure.

Although for many taxa the differences between the density estimates

of small and large stovepipes were not significant, the small stovepipe was

more efficient overall. Since the samples were collected in exactly the

same way the most likely explanation is that the sorting procedure was less

efficient with the large stovepipe. The volume of substrate collected with

the small stovepipe was more manageable in the sorting tub and easier to

rinse free of silt and detritus. A larger sorting tub would probably

increase sorting efficiency for the large stovepipe sampler . The greater
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relative abundance of 3tenonema with the large stovepipe is difficult to

explain since the other taxa, including the mayflies, were collected in sim-

lar percentages. Two of the large stovepipe sampling units contained more

than twice as many Stenonema as all other sampling units with all samplers

(Tables 1 to 3). These abnormally high concentraticns resulted in both the

high relative abundance- and high index of dispersion of Stenonema with the

large stovepipe. Besides being more efficient the small stovepipe collected

as many taxa per sampling unit, required less time to collect and sort each

sample, and gave density estimates as precise as those for the large stove-

pipe. The large stovepipe was easier to bore into the substrate because of

its greater weight and larger basal area. No stones were encountered larger

in area than the small stovepipe in sampling the riffle at site 1
.

In

areas like this the small sampler size appears superior but for sampling

areas with coarser substrates the larger size would be preferable.

The stovepipe samplers were clearly more efficient than the Surber

sampler, but the proportion of the total fauna collected by the stovepipes

is unknown. Although there is no way to be sure how the counts obtained

compared with the actual numbers present, the rinsing procedure with the

small stovepipe appeared to be at least 90% efficient and it would seem that

few invertebrates within the area of the cylinders could escape transfer

into the sorting tub. The total invertebrate densities and number of taxa

in this study were quite low compared to most published studies, but this

does not necessarily indicate that the sampling methods were inefficient

relative to other studies, because invertebrate faunas vary greatly from

stream to stream and spatially and temporally within a single stream. The

low densities obtained represent only a single riffle of a particular inter-

mittent prairie stream at one' point in tame and could be due to many causes
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other than sampler inefficiency. The efficiencies of the stovepipe samp-

lers can perhaps be best judged by comparing the densities collected by

them to that collected by the Surber sampler, for which the efficiency rela-

tive to total numbers has been estimated. Kroeger (1972) found that 10 cm

deep substrate samples collected from a riverbed below a reservoir immedi-

ately after the flow of water had been stopped contained 3.6 times the

density of invertebrates collected with a Surber sampler in the same area

when the water was flowing. A drift net and migration trap showed no move-

ment of the fauna with the receding water and the substrate samples were

searched very carefully, so they likely represented the actual densities

very closely. In this study the small and large stovepipe samplers, respec-

tively, collected 3 .3 and 1 .8 times the number of invertebrates collected

per unit area by the Surber sampler. This suggests that the small stove-

pipe estimates closely approached the actual densities in the stream.

Microdi stributi on s and faunal associations

When studying the distribution of organisms with a quadrat-type sampler

the results are influenced by the size of the sampler. The quadrat is

merely an arbitrary area of the habitat rather than a discrete natural unit

with some biological significance. For aggregated populations the variance

is greatest when sampler size corresponds to the average size of clumps of

organisms (Elliott, 1971). If sampler size is very small or large in rela-

tion to the scale of aggregation the distribution will appear random or uni-

form depending on whether the clump size is constant or variable and how

the organisms within the clumps and the clumps themselves are distributed.

Aggregation was detected by both sampler sizes for all the common taxa in

this study, suggesting that the scale of clumping was not very small or

large in relation to the range of sampler sizes used. Examination of the
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data shows that the high and low counts appear to be quite randomly distrib-

uted among the sampling units for each sampler; thus the variation in the

results do not reflect a distinct large scale habitat difference. The fact

that differences among group means are significant for most taxa shows that

aggregation can also be detected on a scale large enough to include three

sampling units, but since variation within these groups is also high the

sampler sizes are probably nearer the scale of clumping. Differences in

the level of aggregation detected by different sampler sizes may be related

to the scale of clumping in. the populations. Taxa with lower indices of

dispersion for the small stovepipe than the larger samplers (Chironomidae

larvae, Chironomidae pupae, and Physa ) may be clumped on a scale nearer

0.10 m2 than 0.05 m . Taxa like Baetis and Cheumatopsyche may be clumped

on a scale nearer the smaller area. The scale of clumping depends on the

scale of heterogeneity in the factor causing the clumping and the scale of

response to the factor by the animals. Differences in the scale of clumping

between taxa can be expected since. the invertebrates differ in size, mobil-

ity, and the factors to which they are respondingo The range of sampler

sizes used seems to be near the average clump size for the invertebrates

within this riffle, and thus near the optimum size for studying microdis-

tribution. Although all benthic invertebrates are mobile to some degree

their short term distributions are probably fairly stable on this scale s

The best sampler size for measuring association between taxa by corre-

lation of numbers is the size that best detects aggregation since a large

range of densities will be sampled. The sampler sizes in this study should

therefore be effective for detecting microdistributional associations of

taxa. The associations must be interpreted in terms of the range of habi-

tats sampled. If the whole stream was sampled all of the common taxa of



52.

this study would probably be strongly associated as riffle taxa. Since a

uniform riffle was sampled the associations represent microhabitat associa-

tions. Associations should be best detected with samplers that most nearly

collect all of the invertebrates within each sampling unit, thus the stove-

pipe dendrograms are probably more reliable than the Surber dendrogram. The

Surber dendrogram definitely shows least separation of the major groups.

The slopes of the regression of one taxon on another will differ in some

cases between the Surber and stovepipe samplers because the Surber collected

some taxa in different proportions than the stovepipes. Combining the data

in these cases could decrease the correlation. This effect is obvious for

the Chironomidae larvae - Physa pair, for which the correlation coefficient

for all samplers combined is considerably less than all the single sampler

correlations. The dendrogram for the stovepipe samplers combined is prob-

ably most reliable, despite the fewer degrees of freedom than with all

samplers combined, because the stovepipe samplers had similar results and

were more efficient than the Surber sampler.

If the distribution of Chironomidae larvae is at all stable the larvae

and pupae should be highly associated. The high Chironomidae larvae -

Chironomidae pupae correlations for all samplers suggest that the methods do

detect real associations. The taxa appeared to group on the basis of feed-

ing mechanisms and modes of existance with two exceptions. Physa seems to

have little in common with the burrowers of the group (Chironomidae and

Nais ). It is the most weakly associated member of the group and may repre-

sent a chance association. Eaetis and Cheumatopsyche are also quite differ-

ent but form the most highly associated group in the study (P<.0001 for

both combinations of samplers). Although they are in different habit and

feeding categories they do have some other similarities. Both are among
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the few aquatic insects whose terrestrial adults enter the water to ovi-

posit. Most individuals of both taxa were quite small, so the association

could be due to selection of similar sites for oviposition. Another simi-

larity is that both have a direct current requirement. Cheumatopsyche is a

net-spinning caddisfly that captures its food from flowing water. Baetis

is a streamlined swimming mayfly with high oxygen requirements that is usu-

ally found on top of rocks in the highest current velocities (Rabeni and

Minshall, 1977).

Every sampling unit within the riffle at site 1 was probably poten-

tially available habitat for every taxon o Negative associations would be

expected only if one taxon behaviorally excluded another or if the environ-

mental factors determining distribution were negatively correlated. The

lack of negative correlations suggests that neither of these situations

were occurring in this study. The groups determined by cluster analysis

were independently distributed. Each taxon may tend to concentrate where

its food supply is densest, thereby obtaining the most food per unit time.

The food resources for the different functional groups of feeders may have

been independently distributed, resulting in the independently distributed

functional groups of invertebrates. Benthic invertebrates seem to parti-

tion food mainly by the methods they use to obtain it and the microsites in

which they feed rather than by qualities of the food. Streams are unstable

environments with a low diversity of food types but they are physically

very heterogeneous. The coexistence of a large number of species may be

possible primarily because of microhabitat specialization.

The relationships suggested by the data from this study were very

likely real in this particular instance, but they may not be general to

other streams, other habitats within this stream, or even this habitat at



other times of the year. The composition, density, and diversity of the

fauna, life history stages of the species present, and complexity and sta-

bility of the habitat are probably all important in determining the distri-

butional patterns of the populations present. Intraspecific and interspe-

cific competition and predation may vary in importance depending on the

circumstances. Catastrophic influences, such as floods, probably eliminate

any natural grouping of the fauna for some time. Combining the approach

used in this study with the study of factors related to the distribution of

benthic invertebrates in streams may help to elucidate the causal mechan-

isms of small scale community structure under different conditions.
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APPENDIX A

Macan (1958) recognized five categories of methods for sampling benthic

invertebrates in swift, stony streams: (1) collection by hand; (2) coloniza-

tion of units of natural or artificial substrate; (3) boxes or cylinders

that enclose an area of the stream bottom ; (k) stationary nets into which

dislodged organisms are. washed; and, (5) shovel samplers that are pushed

through the substrate. These categories will be used in discussing the

advantages and disadvantages of the major types of methods. In streams

with substrates of silt or sand samplers such as grabs, dredges, and corers

can also be used but their use is very limited in high gradient streams.

Most hand collection methods involve lifting individual stones from

the stream. Standardized methods of hand collection, such as five minute

collections of stones in front of a net (Macan, 1958), have been used for

rough faunal comparisons but are poor quantitative methods. Errors are

introduced through variation in the area of habitat sampled, subjective bias

by the collector, and selectivity for certain taxa. The only advantage to

this method is its speed

Trays filled with natural substrate were first used by Moon (1935*

19lt0) to investigate the movements of the benthic fauna in the littoral

zone of a lake. Wone and Wickliff (19^0) examined the effects of substrate

particle size and the surrounding habitat on the colonization of substrate

filled baskets in a stream. An artificial substrate sampler of hardboard

plates was designed by Hester and Dendy (1962) for use as a standard samp-

ler in water quality investigations. A wide variety of substrate coloniza-

tion samplers have been devised since c They have been especially appealing

to investigators of benthic invertebrates as indicators of water quality

because results are often less variable than with conventional sampling
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methods (Grossman and Caims, 197k). However, as Cummins (1962, 1966, 1975)

points out, colonization samplers do not necessarily provide quantitative

estimates for the fauna within the surrounding stream bottom. They are most

valuable for use in controlled experiments examining the effects of differ-

ent variables on selective colonization (Egglishaw, I96I1; Coleman and Hynes,

1970; Townsend and Hildrew, 1976; Rabeni and Minshall, 1977).

A shovel sampler consists of a cutting edge in front of a frame with

netting that is pushed down into the substrate and upstream for a fixed

distance (Allen, 19li0; Macan, 1958). A coarse net collects stones and gra-

vel and prevents them from entering and damaging a fine net. Such samplers

can be adapted for use in deep water (Usinger and Needham, 1956), but the

depth of penetration into the substrate is limited. Shovel samplers do not

work well on rough stream bottoms and considerable losses of organisms can

occur around the mouth of the net if the current velocity is too high or

low because the substrate is disturbed greatly.

The simplest method involving the use of a stationary net is standard-

ized kicking upstream from a hand held net (Hynes, 1970). The chief advan-

tage of this method is its speed. Morgan and Egglishaw (1965) found that

it yielded quite consistent results, but Frost et al.(l97l) evaluated the

technique and found that less than 20% of the fauna was collected. The

results were affected by many factors, including duration of sampling,

kicking intensity, complexity of community, behavior of fauna, net mesh,

and current velocity. The method cannot be considered strictly quantita-

tive. The Surber sampler (Surber, 1937) is a more quantitative version of

the same basic method. A square foot frame with sides marks an area upstream

from a net. The substrate within the frame is thoroughly brushed and dis-

turbed to dislodge organisms which are then carried into the net by the
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current. The Surber sampler has became the most widely used stream bottom

sampling method. Little equipment is required, samples can be taken rapidly,

and preliminary sorting is accomplished right in the stream. There are also

numerous drawbacks to the method • If there is Little or no current organ-

isms are not washed into the net. If current velocity is high organisms

are lost by backwash around the edges. The finer the mesh of the net the

more serious the backwash problem, with a coarse net many small inverte-

brates pass through. Other sources of error are loss of organisms under

the frame, entrance of drifting organisms into the net, incomplete removal

of the fauna from the substrate, edge errors in coarse substrates, erosion

around the frame in swift currents, and limitations concerning the depth of

water and depth within the substrate that can be sampled.

The Surber sampler has been modified in various ways to overcome some

of these difficulties. Hess (19UD designed a cylindrical sampler with a

base of 3/h inch strap iron that could be turned a short distance into the

bottom to prevent escape of organisms under the frame. The front of the

cylinder was constructed of 1/6 inch hardware! cloth to prevent entrance of

material from upstream and the rear was made of canvas with an opening

leading to a fine net. The backwash problem was reduced with these modifi-

cations, watewand Knapp(1960 improved this design further by enclosing

the entire cylinder with kV M™ *esh netting, and using a removabie collec-

tion bag at the end of the net. Lane (197U) prevented the escape of small

invertebrates and reduced the backwash problem by using a Surber sampler

with two nets, the inner net of 1 mm mesh and the long outer net of 250/fm

mesh. Screen-bottomed catch bottles were attached to the ends of both nets.

Mundie (1971) utilized removable double nets (600^m and 50/fm) on a stream-

lined floorless box sampler with a narrow adjustable inlet at the upstream
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endo The sampler is placed on the bottom and a shoulder of gravel is built

tip around the outside. The current entering the sampler can be controlled

and all material coarser than 50#m can be removed up to depths of 10 to

30 cm.

Other box samplers have been devised that do not make use of the cur*-

rent to wash animals into a net. Needham (1931;) pushed a square foot box

into the streambed, washed off enclosed rocks in a bucket, and sieved the

enclosed water after stirring the finer sediments. Whitley (1962) used a

similar approach for sampling mud-bottomed streams. A sheet metal cylinder

was pushed into the bottom, water was baled out, and the substrate scooped

into containers. Both of these methods are of limited application in stony

streams. Coffman et al. (1971) applied this idea to riffle habitats by

using a plexiglass box with a base to which foam rubber was attached. Two

collectors kneeled on the flange on opposite sides of the sampler, shutting

off the current. Sediments and invertebrates were removed to a depth of

5 cm by hand, with a trowel, and with a fine mesh dip net. Some fine mater-

ial and small invertebrates that settle into the interstices of the sub-

strate below are missed. Cummins (196Z*) turned an 8.5 cm diameter cylinder

into the substrate, forced a steel plate under it, and removed the entire

contents. This is not practical for a larger sampler. Wilding (19^0) des-

cribed a brass cylinder sampler (1 ft^) with teeth attached to the lower

margin to aid in penetration of stony stream bottoms. Coarse materials

were removed and placed in a container. The remaining material was agitated

and a closely fitting perforated cylinder (O.Oi; mm holes) with a rotary

leaf valve in the bottom was inserted in the first cylinder with the valve

open. The valve was then closed, the cylinder removed, and the contents

sieved. Before the inner cylinder was devised a 2 inch suction pump was
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used to remove the remaining animals with the water (Davidson and Wilding,

19^3)* hut the investigators felt that excessive time was required to rid

the samples of silt. Merritt, Cummins, and Resh (1978) portrayed a flow

diagram for detailed analysis of stream bottom samples collected with a

toothed cylinder (Wilding or stovepipe sampler) and a bilge-type hand pump.

Such samplers have the .advantage that the inorganic substrate and organic

matter in storage can be removed to a desired depth along with the fauna for

analyses of factors related to distribution. Drawbacks are the bulk of

equipment and relatively high labor per sample, difficulty in penetrating

rough stream bottoms, and loss of organisms in swift currents caused by

downward eddies from placing the sampler.

Net mesh and depth of sampling are two factors greatly affecting the

reliability of results that have caused problems in most samplers and ren-

dered the results of most studies incomparable. Jonassen (1955) showed

that by reducing the sieve mesh from 0.6 to o 2 ram the numbers of

Chironomids and Oligochaetes collected from lake bottom samples were in-

creased by 100 to 600%. Barber and Kevem (1973) obtained similar results

in a river, increasing total invertebrate numbers by 95 to 325$ by chang*-

ing from a 0.50 to 0.25 mm sieve. Most samplers do not collect microinver-

tebrates at all, but many have severly underestimated the small individuals

of what are normally termed macroinvertebrates as well. The problem has

been that decreasing mesh size has resulted in increasing other losses and

sampling labor. The box and cylinder samplers that do not sort the fauna

with the current are most promising for eliminating this problem. A number

of recent studies (Coleman and Hynes, 1970: Radford and Hartland-Row, 1971 j

Hynes, 197h} Williams and Hynes, 191k} Hynes, et al., 1976) have shown that

normal surface-dwelling benthic invertebrates can occur in considerable num-
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bers down to depths of at least 70 cm beneath the surface of stream sub-

strates. Maximum densities often occur at a depth near 10 cm, which is

deeper than moat samplers penetrate. The great amount of labor involved in

deep sampling methods makes reasonable sample sizes impractical, and the

relationship of the deep-dwelling fauna to the community existing at the

water-substrate interface is not known Perhaps the best solution to this

problem is to attempt to sample efficiently to a depth of at least 10 cm in

quantitative studies and to collect a few samples with deep sampling methods

to give a rough picture of vertical distribution in the stream studied. The

depth used in a study should always be carefully controlled and specified so

that the portion of the habitat sampled is clear.
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APPENDIX B

Parametric statistical tests are based on the assumption that the data

are from a population with a normal frequency distribution. Two properties

included in this assumption that are important when testing for differences

between means are that the variance is independent of the mean and that the

components of the variance are additive. The frequency distributions of

data from aggregated populations are positively skewed and in most sampling

data the mean and variance tend to increase together. The application of

methods based on the normal distribution to such data can result in errone-

ous conclusions, especially with small sample sizes. The alternatives are

nonparametric methods applied to rankings of the data in which no assump-

tions are made about the distribution of the population, and parametric

methods applied to a mathematical transformation of the data that fulfills

the assumption of normality. The latter alternative was chosen because the

study was designed for application of two-way analyses of variance and cor-

relation coefficients o An analysis of variance tests the hypothesis that

different treatment means are equal with the assumptions that the population

is normally distributed and the variances for all means are equal « A corre-

lation coefficient gives an estimate of how well changes in one variable

can be predicted from changes in another based on the assumption that the

populations form a bivariate normal distribution.

If a sample is large enough for the counts to be placed in a frequency

distribution an adequate transformation can be chosen by testing its fit

with known frequency distributions for which specific transformations apply.

For small sample sizes as in this study a general transformation must be

chosen from the relaticnship of variance to mean. For samples from dis-

tinctly aggregated populations in which the variance is many times greater
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than the mean the most useful transformation is the logarithm transformation

(Southwood, 1966; Elliott, 1971). If counts of zero are present a constant,

usually one, must be added to the counts first. The variances are signifi-

cantly greater than the means for all the common taxa in this study so the

log (x+1 ) transformation was applied to the counts.

Normally distributed data plotted on a probability scale give a straight

line (Southwood, 1966). If the distribution is positively skewed (i.e., the

population is aggregated) the points form a concave curve. To test the ade-

quacy of the transformation for normalizing the data the original and trans-

formed counts for six of the samples covering a wide range of aggregation

(Morisita's index values of 1.31 to 3.0£) were plotted on a probability

scale (Fig. 5). In each case a straight line fits the plot of the trans.-

formed data better than that of the original data. The transformation

appears most adequate in the middle of the range of aggregation.

The variance tends to increase with the mean for most taxa. Taking all

the data for the common taxa together the logarithms of the means and vari-

ances are highly correlated (r=0.91 ), despite differences in how the differ-

ent taxa are distributed. The logarithms of the means and variances of the

transformed data are not significantly correlated (r-0.12). VS.th the origi-

nal data F-tests reveal significant differences (P<.05) between the highest

and lowest variances for most taxa as estimated by different samplers. All

differences are nonsignificant (P>.20) for the variances of the transformed

data. The transformation therefore appears adequate for fulfilling the re-

quirements of independent means and variances and equal variances among

treatments. This also insures that the components of the variances are

additive.

In order for the analyses of variance to test for significant differ-
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Figure p. The original and transformed data for six taxa plotted on a

probability scale.
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ences among sampler density estimates it was necessary to adjust the counts

so that they all represented the same area of the stream bottom since dif-

ferent sampler sizes were used. All counts were adjusted to numbers per

0.10 m% the area of the large stovepipe sampler. This was a minor adiust-

/ment for the Surber sampler counts but the counts for the small stovepipe

sampler were doubled. .Doubling the counts increases the variances by a fac-

tor of four. This would result in errors in the analysis of the adjusted

data because of large violations of the assumption of equal variances.
'

After the log (x+1 ) transformation is applied to the adjusted data, however,

the variance is changed from the variance of the transformed unadjusted data

by a factor of less than 1.5 in all cases. In no case does it become sig-

nificantly different from the variance of the transformed data for the

other two samplers, so errors caused by the adjustment are minimal.
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1

A quantitative sampling method for estimating densities of benthic

invertebrates in streams was developed and evaluated in King's creek, an

intemittant stream on the Konza Prairie Research Natural Area near

Manhattan, Kansas. The sampling equipment consists of an open, toothed

cylinder (stovepipe sampler) that is bored into the streambed, a hand

operated bilge pump that removes water, invertebrates, and fine sediments,

and a sorting tub that separates invertebrates and detritus from the in-

organic sediments in the field. Stovepipe samplers of two sizes (O.Of? m

and 0.10 m^) were compared to the Surber sampler, the most widely used

method, by sampling a small, uniform riffle. The comparison was made with

twelve randomly located groups of sampling units, each group consisting of

one sampling unit collected with each sampler to a depth of 10 an in the

sediments. Nets used on the Surber sampler and the sorting tub for the

stovepipe samplers were of 1 mm and 355/<m mesh size, respectively.

A total of thirty taxa were collected, many of which were rare. The

small stovepipe, large stovepipe, and Surber samplers revealed mean total

densities of 3l|13, 1863, and 1021; invertebrates per square meter, respec-

tively, all of which were significantly different (P<.05). Of the twenty-

three taxa collected by every sampler seventeen showed the pattern of

highest density with the small stovepipe and lowest density with the Surber

sampler (P<.001 by Chi-square). The Surber sampler yielded densities sig-

nificantly (P<.10) less than those obtained with the small and large

stovepipes for seven and five taxa, respectively. The small stovepipe

estimates were significantly (P*£.10) greater than those of the large

stovepipe for two taxa . The Surber sampler collected significantly (P< ,01

)

fewer taxa per sampling unit than both stovepipe samplers, for which the

difference was not significant (P>.1|0). Underestimation of densities by



the Surber sampler was due primarily to incomplete removal of the fauna

from the sediments and passage of small invertebrates through the net. The

greater volume of sediments collected with the large stovepipe resulted in

decreased sorting efficiency relative to the small stovepipe. Particulate

organic matter was collected from a single sampling unit with the small

stovepipe and fractionated into seven size classes ranging from 0,24-5 to

2000 /{ m. Total ash-free dry weight was 1119 grams per square meter to a

depth of 10 cm in the sediments. The smallest class (0.li5 - 53#m) con-

tained 71$ of the total and the 53 - 125/<m and 125 - 250#m classes con-

tained 8h% of the remainder.

From the extensive data obtained from the comparison microdistribu-

tional patterns and species associations were examined. All taxa were

highly aggregated, but there were differences between taxa in level of

aggregation and scale of clumping. Correlation coefficients were computed

for the counts of all possible pairs of the nine most common taxa. A

cluster analysis performed on the correlation matrix for the combined data

of the stovepipe samplers revealed four distinct groups of taxa:

(1 ) Stenonema - Choroterpes ; (2) Baetis - Cheumatopsyche ; (3) Chironomidae

larvae - Chironomidae pupae - Nais - Fhysa ; and, (h) Limnophora . The mem-

bers of these groups corresponded well with distinct categories of feeding

mechanism and mode of existence.


