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Chapter I

Introduction

In the early 1970's the United States experienced its first energy-

crisis. At that time about 97% of the world's energy needs were being

supplied by fossil fuels. The need for the United States to become less

dependent on petroleum sources led to an extensive search for alternate

energy sources. One of these alternatives is geothermal energy.

Geothermal energy is the natural heat produced within the Earth's

crust by slowly decaying, naturally occurring, radioactive isotopes (i.e.

uranium, thorium and potassium) and by conduction from the hotter

interior regions. This energy is stored in several forms: hydrothermal

reservoirs (naturally-occurring pockets of steam or hot water),

geopressured reservoirs, magma reservoirs and hot dry rock reservoirs.

This thesis presents a computer model suitable for analyzing hot dry rock

reservoirs in two dimensions using the finite element method.

1.1 TheHDR Concept

In a geothermal energy context, hot dry rock (HDR) is defined as

naturally heated, unmelted crustal rock, that does not produce natural

steam or hot water at commercially useful rates. HDR exists everywhere

beneath the earth's surface; however, the quality of the resource depends on

the local temperature gradient. At a given location, the temperatures at

economical depths may not be high enough for electric power generation,

but would almost everywhere be suitable for direct use in agriculture or
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food and chemical processing, or for supplemental energy generation or

space heating (Armstead, 1978).

The energy is extracted from a region of hot rock by circulating

pressurized water in a closed loop through a man-made fracture system

created by hydraulically fracturing the rock between two well-bores. The

useful heat is recovered at the surface through heat exchangers; the cooled

water is reinjected to recirculate through the underground loop (see Figure

1.1). Current estimates show that at depths <10 km, the HDR reservoir base

contains -32 million Quads of energy. 1 Two percent of this energy would

supply the United States' nontransportation needs for about 2000 years at

present consumption rates (Los Alamos annual report, 1979).

1.2 The HDR Program

The HDR program originated at Los Alamos National Laboratory

(LANL) in 1970 as a feasibility study of underground heat extraction from

low permeability rock. The work at LANL continued, and in 1977 the

world's first HDR geothermal energy system (Phase I) was completed at

Fenton Hill, New Mexico. In 1979 the system was enlarged using hydraulic

fracturing and a series of additional flow tests were run. The tests led to a

reasonably well defined model for the system (Los Alamos annual report,

1981). During flow tests in 1980 and 1981 heat extraction for the Phase I

system rose to ~5 MWt and the rate of water loss decreased to about 1.5% of

the flow rate. An electric generator was operated at its full rated capacity of

1
1 Quad = 1 quad rillion (10 15 ) Btu = 334 MW centuries ~10 18 J.



60 kwA and exceeded its overall design efficiency of 5.7%.

During 1979 a larger, deeper, hotter Phase II system was begun. The

initial drilling for the two Phase II wells was in 1980. Initial

hydrofracturing from the injection well in 1983 produced a fracture system

quite different than observed in the Phase I wells. Figure 1 .2 shows the

anticipated Phase II fracture system based on an analysis of the Phase I

and other HDR systems. Two types of joints make up the reservoir flow

paths: vertical shear joints that are initially closed and require high

pressures to open, and inclined tensile joints that are also initially closed,

but require lower pressures to open. The actual Phase II fractured system

determined from the location of microseismic events is three dimensional

rather than planar, inclined rather than vertical, and did not hydraulically

connect the two wells. Rather than continue with more hydrofracturing,

the injection well was directionally redrilled in 1985 to intercept the fracture

system created from the production well. This redrilling was successful,

and subsequent hydrofracturing improved hydraulic communication

between the two wells (Franke, 1988).

In May and June 1986 the Initial Closed loop Flow Test (ICFT) was

run on the Phase II system to obtain operating characteristics needed to

plan the year long Long Term Flow Test (LTFT). The LTFT will be used to

predict thermal draw-down as well as other long term effects required for

thorough reservoir evaluation. The 30 day ICFT succeeded with final

production of about 10 MWt at 192° C, while injecting 285 gpm at 4600 psi.

The final water loss rate and flow impedance were high, 27% and 18



psi/gpm respectively, but were still declining (Kelkar et al., 1987). Birdsell

and Robinson (1988) have had moderate success modeling the reservoir as

an equivalent porous medium. They used the code FEHM developed by

Zyvolosky et al. (1988) which includes heat and mass transport effects but

currently does not include any deformable rock effects. FEHM also has the

capability to perform uncoupled tracer calculations.

One of the primary goals of the HDR program has been to

characterize the fractured reservoirs to allow economic analysis and

prediction of reservoir production, and ultimately to determine the

economic feasibility of a commercial HDR energy production site.

Characterization of an HDR reservoir usually proceeds by analyzing

seismic, temperature, flow rate, and tracer data. Many new diagnostic

methods have been developed from the HDR programs in the U.S. and other

countries including statistical microseismic event analysis, porous flow

models, tracer analysis, as well as steady state and transient discrete crack

flow models. This thesis presents a method for analyzing transient fluid

flow in discrete cracks with coupling between the fluid flow and rock

deformations. In this model, both the crack porosity and flow conductance

are nonlinear functions of the fluid pressure.

1.3 Previous work

The traditional approach to modeling fluid flow through discrete

fractures has been to assume viscous, incompressible flow between smooth

parallel plates (Snow, 1965). This has come to be known as the "cubic law,"

in which the volumetric flow rate is proportional to the pressure gradient



and the joint aperture cubed (see Figure 1.3). Witherspoon et al. (1980) and

Ryan (1987) verified the validity of the "cubic law" in laboratory work for

laminar flow between parallel planar plates. The cubic law was verified for

open joints and for closed joints down to a minimum of 4 urn. Witherspoon

et al. (1980) also discussed deviations from the parallel plate model and

recommends using a factor of roughness in the flow equation, particularly

for high (> 10 MPa) crack closure stresses. Values for the factor of

roughness vary from 1.04 to 1.78. Brown (1987) also recommends this. Su

(1988) developed a finite element model for 1-D fluid flow based on the cubic

law and included an uncoupled tracer model.

Several finite element models of coupled fluid flow in fractured rock

masses have been developed recently. Noorishad et al. (1982) developed a

code to solve two-dimensional quasi-static saturated porous media. Their

results show that significant differences in pressure distribution and flow

rate occur due to coupling fluid flow with rock deformations compared with

the uncoupled flow solution. Hilber and Taylor (1976) developed a dynamic

code for discrete fractures that takes into account the inertial effects of both

the fluid and fracture movements. The code has been used to study seismic

events along predetermined faults due to fluid injection. Cundall (1982)

developed the Fluid Rock Interaction Program (FRIP) to analyze the

dynamic behavior of discrete flow paths and discrete blocks. The blocks

interact with each other as well as with the fluid. FRIP has been used for

several transient response studies of a geothermal reservoir (Pine and

Batchelor, 1984), (Pine and Ledingham, 1984), (Pine and Cundall, 1985).



Asgian (1988 a) also developed a discrete flow model. The FFFLOW

model solves for quasi-static rock deformations and transient fluid flow in

two dimensions. The continuum rock masses are linear elastic; the joints

are nonlinear elastic and include both normal and shear rock stresses as

well as fluid pressures. The results indicate that the enhanced

permeability zone is not the same as the pressurized zone. Asgian (1988 b)

studied the transient response due to different pumping rates. The studies

indicate that the peak response (peak pressure, slippage, and aperture

change) is less intense for lower pumping rates than for higher pumping

rates of equal volumes of fluid.

1.4 Objectives and Scope

The primary objective of this thesis is to develop a finite element

model of fluid flow through fractured rock. The finite element method was

chosen because the governing equations for both the rock masses and fluid

flow are well understood, and implementation is straight forward. The

model developed is capable of solving the highly nonlinear equations and is

capable of solving very large problems. Extensive use of the interactive pre-

and post-processing developed by Swenson (1985) makes this model a finite

element "analysis system." This thesis extends Su's (1988) work to include

the coupled fluid flow - rock deformation model. This model is the second

step in developing a coupled fluid flow - rock deformation - heat transfer

model capable of modeling HDR reservoirs in two dimensions.

The HDR reservoir is modeled as a horizontal plane with discrete

flow paths to model the fluid flow. The jointed rock mass forming the flow



paths are not porous media. Initially open joints can be modeled as empty

fluid elements that fill up with time. Because of the robust solution

algorithm, free floating rock masses can effectively be modeled.

In this model, as in the model developed by Su (1988) the fluid density

and viscosity are assumed constant. In the next model, which will include

heat transfer in both the structure as well as the fluid, the temperature

dependent properties of the fluid will be handled more generally.

The remainder of the thesis is divided into 6 chapters. Chapter II

presents the finite element derivations for the rock and fluid models, and

Chapter III explains how these two independent models are coupled.

Chapter IV describes the problems used to verify the model, and Chapter V

explains results of problems that model the HDR reservoir at Fenton Hill,

New Mexico. Chapter VI gives a summary of the thesis and conclusions

about the results presented.
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Figure 1 .1 : Hot Dry Rock Concept
(From LANL FY83 Report)
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Chapter II

Finite Element Model

A finite element model of a problem gives a piecewise approximation

to the governing equations. The region in which the solution is desired is

divided into discrete elements and an approximate solution is assumed over

the discrete element region. The contribution of each element is then added

to a global system matrix, which can be solved for the nodal unknowns.

The first section of this chapter develops the finite element method (FEM)

for each of the four element types used in this thesis.

A joint model must have certain characteristics to model the complex

relationship between the fluid flow and the joint opening. The second part

of this chapter discusses some rock mechanics fundamentals and presents

the joint model implementation.

In this application of FEM we are interested in solving for a set of

nodal unknowns (displacements and pressures) that interact with each

other through a highly nonlinear relationship. The joint displacements are

a function of joint fluid pressures and a cubic function of the joint closure

law, and joint flow rates are a linear function of joint pressure gradients

and a cubic function of joint displacements. The third part of this chapter

describes the solution method (dynamic relaxation) used to solve for the

nodal unknowns.

Two separate models are developed in this thesis, one each for the

structural solution and the fluid solution. However, the structural solution

11



depends on the fluid solution and the fluid solution depends on the

structural solution. The fourth part of this chapter describes the coupling

that must occur between the two solution algorithms for a truly coupled

solution.

Tracer information can help immensely when characterizing an

HDR reservoir. Though a tracer model is implemented, it was not

exercised for this work. The final section of this chapter discusses the

tracer solution implemented by Su (1988).

2.1 Element Derivations

This section describes the element derivations for each of the four

element types used in this thesis: the two dimensional continuum element,

one dimensional fluid flow element, interface element, and boundary

spring element. The two dimensional continuum element and interface

element derivations follow those of Swenson (1985); the derivation of the

fluid flow element follows that of Su (1988). The boundary spring element is

a special case of the interface element.

2.1.1 Elasto-Dynamic Structural Element

The equation of equilibrium for a body in three dimensional

Euclidean space is

a
ijJ
+b

i
=pu

i , (21)

12



where <Jij is the stress tensor, b\ is the body force, p is the density and u is

the acceleration ( indicates the second derivative of displacement w.r.t.

time).

Assuming small displacements, small strains and elastic materials,

the strains are related to the displacements by

e
ij

=1
/2( u

iJ
+ u

J,i)'
(2.2)

and the stresses in terms of the strains are

a
ij
= ^kk^ij + 2l^ij

»

(2.3)

where 5jj is the Kronecker delta, and X and u are Lame's constants.

Multiplying the governing equation 2.1 by a small, arbitrary variation

in the displacement, 5uj, and integrating over the volume we have

GiiiSuidV+f bi5u;dV=
I
pu;5uidV.

J V JJ Jv jv (2.4)

Integrating the first term of equation 2.4 by parts and applying the

divergence theorem gives

t:8uidS- a::5e H dV+ biSuidV=
j
puiSiijdV,

J
S

Jv J J J v Jv (2.5)

where ti is the surface traction over S and eij is the strain tensor.

The finite element approximation for the body is achieved by

discretizing the body into elements and applying equation 2.5 to each of the

elements. We then sum the contribution of each element to obtain the

integrals over the body:

13



I j/s
ti5u i

dS-/
v
a

Ij
5e

ij
dV + /v

b
1
5u

i
dV = /v

pu^u^V i .

e=1
l

e e
) (2.6)

Introducing matrix notation and working with only one element we have

I 5u
T
tdS-| 5e

TadV+{ 5u
T
bdV-| p5u

T
u*dV = 0.

;S e % -fy e %
(2?)

Over each element the displacements are functions of the values at the

nodes surrounding the element

u = Nu a , (2.8)

where ua are the nodal displacements. The strains follow as

e = Bu a , (2.9)

and the stresses as

a = De - (2.10)

Using these interpolation functions and substituting into equation 2.7 yields

I 5u a N
TNdSt a

- 5u a B
TcdV+| 5u a N

T
bdV

Jr. Jv- Jv.c>q Vg V,

-I p5u a N
TN ii adV = 0.

^Ve (2.11)

Dropping the body force term, and since Su^ is arbitrary,

I N TNdSt a -l B
T
adV-l pN T

NdVu' =0.
JSe

a ^ e Jv?
(212)

Assembling the element contributions, we obtain the global stiffness

matrix K, the global mass matrix M, and the global force vector f. The

nodal accelerations can now be calculated as:

14



where,

u' a
= M'^f-Kua). (213)

Ku a = i|/v B
T
adV ),

M = ij/v pN
TNdv),

v e

(2.15)

= i{/
s
NWa

)

f =

(2.16)

Note that Kua is not evaluated as an explicit element matrix

multiplied by the displacement vector. It is not even necessary to build a

global stiffness matrix. If we place the external forces in a force vector f,

then accumulate the internal forces from each element's contribution

using equation 2.13, we are left with the unbalanced forces that result in the

body acceleration.

2.1.2 Fluid Flow Element

Figure 2.1 shows the differential element over which the

conservation of mass will be written. The conservation of mass can be

stated as,

m in- mout
= ^(stored mass)

,

or written as,

15



pual pual + ^— (pual) dx = 3-
(
pal) dx ,

3x dt
(2.18)

where p is the density, u is the fluid velocity, a is the crack opening, and 1 is

the element thickness.

For a unit thickness element the volumetric flow rate is q = ua. Now

with constant density the conservation of mass can be written as,

aq •

5x
'

(2.19)

Using Darcy's Law we assume that the flow rate is proportional to the

pressure gradient and the joint permeability,

q = -k ^
P8x

'

(2.20)

The joint permeability, kp , is given by the cubic law (Figure 1.3),

3

k =
a

12M (2.21)

where a is the joint opening, |i is the dynamic viscosity, and f is a frictional

loss factor. Substituting this into equation 2.19 we get the desired

expression,

d\\ Pax/ * (2.22)

We now obtain the weak form of the differential equation by

multiplying equation 2.22 by an arbitrary weighting function w and

integrating over the joint length,

JL
v '

(2.23)

16



Integrating the first term by parts gives,

—^dxK
p ax ax

ax •

(2.24)

Substituting into equation 2.23 gives the desired result,

JL

k n -r— -^-dx -
| wadx = 0.

P dx dx
(2.25)

The finite element approximation proceeds as before by dividing the joint

into discrete elements. The integrals of equation 2.25 are then evaluated

over each element and summed over the body,

S([*#- /*££*- twi*)-0.
e=1

V
Jl

) (2.26)

The first term is the "natural" boundary condition and allows flow rates to

be specified where flow rates are not equal to zero.

We introduce shape functions and matrix notation to interpolate the

known quantities inside the element,

a = N a a ,

vt dw DW = Nw a , 3^=Bw a ,

ax

q = N q a ,

P = N Pa-
a^"

= BPa '

17



where N is a row matrix of shape functions, B is the matrix of the shape

function derivatives and a, wa , pa , and qa are vectors of the nodal values.

Substituting into equation 2.26 yields,

/,
B
T
B p a dx + I w Jb

T
B a a dx } = (

(2.27)

Since wa is arbitrary, and the nodal values are constant, we may write,

i(/kp
B
TBdxp a +

(
kD B B dx p a B

T
B dx a a ) = .

e = U e
' (2.28)

Assembling the equations, we obtain the global matrices,

K pPa = Q-S a a , ^.29)

where Kp is the permeability matrix, pa is the vector of nodal pressures, Q

is the vector of specified flow rates, S is the storage matrix due to the joint

openings and aa is the vector ofjoint opening velocities at the nodes. Note

that the above formulation recognizes the transient nature of the quasi-

steady problem through the rate of the joint displacement. Over each time

interval, the total flow in minus the total flow out must equal the change in

stored fluid. The transients do not include inertial terms, but arise as

changes in flow rates resulting from crack opening velocities.

2.1.3 Interface and Boundary Spring Elements

In this model, where we are approximating rock masses with

fractures in them, we need a way to model contact between the rocks and

the fracture. The fractures between the rock masses have rough, jagged

faces with many small openings and pockets that can contain water long

18



before the pressures are high enough to cause the joint to open. When the

fluid pressures are high enough to overcome the normal stresses in the

rock, shear stresses may cause shearing in the fracture before the joint

actually opens.

Swenson (1985) included an "interface element" that is implemented

as a special case of surface tractions. The term used to apply these

tractions is the first term of equation 2.12:

I N TNdSt a ,

where ta are the tractions at the nodes. This element transmits

information through a joint to an adjacent element by using a specified

traction-displacement relation. Figure 2.2 shows a typical relationship

which approximates a rough crack interface (Gangi, 1978). Note that for

zero relative normal displacement in the element there is still a traction

being applied across the crack. This traction transmits the in-situ stress in

the rock normal to the interface element. A shear law is not currently

included, however provisions are made so that a law such as that

implemented by Asgian (1988) could be implemented in the future. The

reader is referred to Swenson (1985) for a complete description of the

interface element.

To include the far field stresses in the model, a boundary spring

element has been included. This boundary spring represents the

characteristics of the far field elastic response. The reservoir is a local

(although physically large) perturbation on the rock surrounding the

19



reservoir. Using the boundary springs allows a small piece of rock to be

"cut" out while retaining the elastic effects of the rock outside the cut

region. This element is a simple extension of the interface element

discussed above. It uses a traction-displacement curve to define a spring

stiffness between the boundary of the finite element mesh and the far field.

The boundary spring should neither be too soft nor too stiff.

One approximation assumes that the local disturbance decays within

a distance the same size as the reservoir. This leads to a stress vs

displacement relation given by,

Au E

where E is the modulus of elasticity, a is the in-situ stress normal to the

spring element, L is the length of the far field rock mass to be modeled as a

spring, and Au is the change in length of the far field rock mass that will

completely relieve the in-situ stress. Figure 2.3 shows a typical stress vs

displacement relationship used to model the far field stresses.

To implement the finite element method discussed above, the

quadratic six noded isoparametric triangle was selected for the structural

element (Swenson, 1985), and three node isoparametric line element for the

fluid and interface elements. All elements are integrated numerically

using Gauss-Legendre quadrature (Zienkiewicz, 1977). Details of the

integration for the structure and interface elements can be found in

Swenson (1985). The fluid element is similar to the interface element.

20



2.2 Joint Model

Two of the four element types described in this chapter are used to

model the rock joint characteristics as it is pressurized with fluid. The

interface element is superimposed on the fluid element to form a

pressurized rock joint. The surface tractions due to the fluid pressure are

added to the surface tractions due to the interface element. Conceptually

this makes sense because initially, when there is no fluid pressure, the

rock joint carries all the load. As the fluid pressure increases, according to

fundamentals of rock mechanics (Duncan, 1969), the load carried by the

rock joint decreases until the fluid pressure is equal to the initial stress in

the rock. Using rock mechanics concepts this is stated as:

Total stress = Effective stress + Pore pressure
(Joint stress) (Fluid pressure)

The pore pressure is simply the fluid pressure and is applied as a surface

traction. The effective stress is specified by a stress vs displacement curve

that is called the opening law and is also applied as a surface traction. The

opening law used in this thesis is the "Bed-of-Nails" model (Gangi, 1978).

Gangi showed that the functional dependence of the joint opening variation

of a fracture can be modeled as

m
1
-"

a(P) = a
°L \

/r V J' (2.30)

where a is the zero pressure joint opening, P is pore pressure, Pi is the

effective modulus of the asperities, and m is a constant (0 < m < 1) which

characterizes the distribution function to the asperity lengths. For all work

in this thesis a = 0.32 mm, Pi = 70 MPa and m = 0.3636 (Brown, 1988a).

21



Figure 2.4 compares the "Bed-of-Nails" model with a "natural"

crack. Figure 2.4a shows a "natural" crack formed by creating a hairline

fracture, then translating the lower half of the medium to the right. This is

similar to how open cracks are formed in nature. Figure 2.4b illustrates

the "Bed-of-Nails" model. The distribution of asperities is treated as a

distribution of rods, which is much simpler to analyze than the mechanical

properties of the natural crack.

The joint law used in the present calculations is very stiff. As a

result, it was necessary to use care to ensure convergence. This is

discussed in Section 3.1 and Chapter VI.

2.3 Solution Method

As mentioned before, the problem we are solving is highly nonlinear.

Many methods exist for solving highly nonlinear problems, but few are as

robust as Dynamic Relaxation (DR). Consider a simple problem where a

stiffness matrix is a function of displacement. The static equilibrium

equation can be written as,

K(x)x = f, (2.31)

where K(x) is the nonlinear stiffness matrix, x is the displacement vector,

and f is the force vector. To solve this problem using DR we would rewrite

the equation as,

Mx + Cx + Kx = f, (2.32)

22



where M is a mass matrix and C is a damping matrix. If the

damping matrix is defined as C = cM, then equation 2.32 can be rewritten

as

x=M" (f - Kxj-cx. (2.33)

When the mass matrix is lumped to be a matrix with elements on the

main diagonal, the inverse of the mass matrix is the inverse of each of the

nodal masses. As discussed in Section 2.1.1, an equation of the form of

equation 2.33 is vectorizable and does not require that the entire stiffness

matrix be assembled. These features greatly reduce storage requirements

and simplify programming requirements. Note also that the damping

term is a scalar, not a vector or matrix quantity. Equation 2.33 can now be

integrated explicitly by the central difference method. The resulting

equations are:

x n + i/ = x_i/ + x n At

,

n+/
2

n /2
n

(2M)

n+1 x n-l Xn+l/At
'2 (2.35)

where n is the time step and At is a fixed pseudo-time increment. Now we

select At, M, and c to allow the solution to converge as fast as possible.

The solution algorithm for the structure relies heavily on the original

algorithm in Swenson's (1985) code. Because it is a dynamic code, the

inertia and physical mass matrix already exist. We alter this original

mass matrix to maintain faster convergence. The density for each element

is divided by the square of the information transit time for that element.
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This has the effect of setting the transit time to ~1 for each element, which

also sets the minimum integration time step to ~1. Underwood (1983)

shows an example problem that describes this.

For the fluid solution an explicit stiffness matrix is built on the

element level. When this is available, Underwood (1983) suggests using

Gerschgorin's theorem to make the mass matrix a function of the stiffness

matrix:

mii = 1/4 At2 Zj I kij I
, (2.36)

where m^ are the diagonal elements of the diagonal pseudo mass matrix

M, and kjj are the elements of the stiffness matrix K. He also suggests

evaluatingM with At = 1.1 and iterating with At = 1.0 to ensure stability. Su

(1988) found it necessary to iterate at At = 0.5 for stability.

Underwood (1983) also suggests using Rayleigh's quotient to predict

the approximate minimum natural frequency (0o for the current

deformation mode,

co = V xTR x / xTM x . (2.37)

Then the damping for this mode is approximated by

c = 2^Wo

.

(2.38)

where t, is the damping ratio.

The damping ratio % can be used to reduce or increase the damping

factor for better convergence. Because 0)o is only an approximation to the
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lowest active frequency there is only a general correlation between the

damping ratio and the rate of convergence.

This method works reasonably well for both the pressure and

structure solutions as long as no rigid body modes are present in the

solution. Rigid body displacements correspond to low frequencies, and the

damping calculated by equation 2.38 becomes extremely small. As a result,

higher frequencies are underdamped and convergence is very slow, with

much high frequency oscillation. For the problems worked in this thesis

rigid body modes are almost always present in both the structure and the

fluid. Therefore, an alternate, less sophisticated, but more reliable velocity

reduction damping method was implemented. After the accelerations are

integrated to update the velocities, the new velocities are multiplied by a

reduction or damping term,

*n + y2
= Un-l/Z + ^AtJ damp

(2.39)

This slowly reduces the velocity as the problem progresses and eventually

forces the problem to steady state.

The major problem with this approach is that the appropriate

damping is problem dependent. This places a greater burden on the user to

examine results closely to ensure convergence. However, due the

interactive nature of the program, the analysis can be stopped at any time

and the response monitored to allow judgment to dictate whether the

damping should be increased or decreased. This allows the user to supply

information about how close the solution is to steady state that would
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automatically be supplied by a method such as Raleigh's quotient if the

rigid body modes were not present.

The value of damping should not be taken lightly however. From

equation 2.39 we can see that as xn+i/2 is substituted for xn_i/2 at each time

step the velocities are reduced as a function of Cn where n is the number of

iterations. For n = 2000 the effect of damping on the velocity can readily be

seen:

Damping Velocity Reduction

0.999 0.135

0.9999 0.819

0.99999 0.980

From this we can see that small changes in the damping parameter

can have profound effects on the solution over several thousand iterations.

If the damping factor is increased slightly the velocity reduction will not

occur so readily and the solution can progress to convergence at a faster

rate. It is the user's responsibility to recognize these inconsistencies while

analyzing results and to modify parameters such as the damping factor

and tolerance and iteration coupling parameters (discussed in Section 3.1)

to ensure that the results obtained are understood thoroughly.

2.4 Coupling between Fluid and Structural Models

As shown above, both the fluid and structural equations are

independent modules. The structural model is coupled to the fluid model

through the pressures applied on the joints. The fluid model is coupled to
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the structural model through the joint opening displacements. In the fluid

solution, complete compatibility between the models is obtained. Both the

models are solved iteratively. Information is passed between the models at

user specified intervals. This process continues until global convergence is

obtained.

2.5 Tracer Model

Tracers are used to track the motion of fluid inside an HDR reservoir.

Tracer studies can help determine reservoir volume and thermal

characteristics as well as other information. At Los Alamos both reactive

and nonreactive tracers have been used. Su (1988) developed an uncoupled

tracer model for nonreactive tracers. His tracer model has not been

exercised in this work, however it is included in the model. Some

modifications may be needed before it is used extensively. Robinson (1988)

has shown that the joint aperture appropriate for the fluid flow solution

may not be appropriate for the tracer fluid flow solution. Figure 2.5

compares the hydraulic aperture wh with the tracer aperture wt. The

tracer aperture is much larger than the hydraulic aperture used to find the

fluid flow solution. The larger aperture for the tracer leads to larger

volumes and significantly influences tracer concentrations. Robinson

(1985) also developed a residence time distribution curve which is useful for

determining a reservoir's volume. His method could be used to verify the

tracer model.
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Figure 2.1: Conservation of Mass Differential Element
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Figure 2.5: Hydraulic Aperture and Tracer Aperture
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Chapter III

Implementation and Modelling Approach

A computer program called DRACULA (Dry £ock Analysis Code)

has been developed to simulate transient fluid flow in fractured,

deformable, rock masses. This code implements the equations and

concepts discussed in Chapter II. This chapter discusses the basic

concepts necessary for operation of DRACULA, then presents some general

information about modelling HDR reservoirs.

3.1 Implementation

DRACULA was developed to provide an interactive graphics

environment to allow the user to specify and monitor the problem in a

simple, reliable way. To monitor the solution's progress, the user can stop

an analysis and view intermediate results. If necessary, control

parameters can be modified before restarting the analysis. The code

CRACKER (Swenson, 1985) was used as a basic foundation to implement

these interactive concepts and to make use of the existing structural

analysis concepts. The interactive nature of CRACKER unifies the

traditionally separate tasks of preprocessing, analysis, and post-

processing.

From the MAIN menu page the user may define the problem, save

data, run the analysis or view the results (see Fig 3.1). The ANALY

PARAM option controls three options: the GLOBAL, FLUID and DYN REL

parameter pages. Each of these contains parameters that control program
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execution such as end time, time step size, data output frequency and

analysis type. The PLOT page allows the user to view the results as

pressure and stress contour plots, time history plots, displaced mesh plots

and others. SAVE RSTRT, SAVE PLOT and SAVE GEO allow the user to

output the restart, plot and geometry data to files for future reference. The

REMESH page allows the user to delete and add elements, drag nodes,

change material properties, and redefine initial and boundary conditions.

GO BATCH and GO INTERACT tell the program to start a batch analysis

or perform an interactive analysis. For the batch analysis, a batch start file

is written and the program stops, ready to restart in batch mode. For an

interactive analysis, as the analysis proceeds messages are displayed to the

user in the MAIN PAGE. If trouble is encountered a message is displayed

and control returns to the user; in batch mode if trouble is encountered a

restart file is written.

Three of the control parameters contained in the DYN REL and

FLUID parameter pages regulate the total number of iterations the problem

will be allowed to run as well as how often coupling occurs between the two

solutions. In the FLUID page the "Number of Fluid coupling iter" is the

number of iterations the fluid routine is allowed before it returns the

current solution to the structure. In the DYN REL page the "Number of

Structure coupling iter" is the number of iterations the structure routine is

allowed before it returns the current solution to the fluid. In the DYN REL

page the "Total allowed iterations (structure)" is the total allowed iterations

for the problem. It is designated for the structure because it actually counts

the total iterations for the structure solution. This is because the structure
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iterations are more time consuming than fluid iterations. Also, the fluid

solution typically converges in less iterations than the structure and can

therefore usually have a better fluid solution for every set of structure

iterations.

Two other control parameters contained (one each) in the FLUID and

DYN REL pages are the convergence tolerances for each of the two

routines. The fluid routine uses a different convergence criterion than the

structure routine. The fluid routine is converged when each individual

normalized pressure change from the last iteration to this iteration

changed less than its tolerance:

"new" "old . „ ,5 < to1 -

p old

The structure is converged when the square root of the normalized sum of

the displacements squared is less than its tolerance:

< tol
24(u okr u new)

XlKew) /

In a reservoir there are many fractures that are able to store fluid

before building enough pressure to relieve stresses holding the cracks

together. To model this phenomenon the fluid elements have a special

characteristic — they are not required to start with fluid in them. If the

fluid element's initial opening (a fluid material property) is greater than a

user specified tolerance, then the element is assumed to be empty. When

adjacent fluid elements fill with fluid they can start to fill the next empty
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element, and the fluid solution can progress through the mesh. It is not

necessary that any or all of the fluid elements be open, or closed initially.

By closing them all, the steady state flow solution for the reservoir can be

reached at the end of the first converged solution. By opening them all, the

fluid movement through the reservoir can be observed from the time fluid

injection begins.

The dynamic relaxation solution method is implemented for both the

fluid and structural finite element schemes in separate subroutines. The

structure routine solves the structural finite element problem, controls

structure data output to files, and controls the coupling between itself and

the fluid routine. The fluid routine solves the fluid finite element problem,

controls fluid data output to files, and presents the structure routine with

an updated fluid solution.

The time step reduction factor is another important parameter

contained in the GLOBAL parameter page. The solution method currently

implemented is an explicit integration method. The stability of the

integration scheme is dependent on the time step size. The solution

algorithm will select an appropriate time step based on the size of the

smallest structural element, but the stiffnesses of the interface elements

and specifically the joint law also need to be considered. Because the joint

law is very stiff compared to a typical structural element for these

problems, the time step must be reduced by a factor of 100. This increases

the run time on a problem because 100 times as many time steps are now
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required for the same displaced solution. Chapter VI gives

recommendations on removing this constraint.

3.2 Modelling Approach

HDR reservoirs are large, three dimensional underground regions,

typically measured in hundreds of meters. These three dimensional

regions comprise a lattice of small and large fractures. When fluid is

pumped into a reservoir the reservoir expands like a balloon. Most of the

fluid can be recovered by letting the reservoir contract, but some of the fluid

will be lost at the outer boundary of the reservoir and some is trapped in

"open" fractures. The Phase II HDR reservoir at Fenton Hill, New Mexico

displays these characteristics. As a first approximation the Phase II

reservoir will be modelled as a horizontal plane with unit depth. We look at

the horizontal plane in plan view, with flow occurring only in the fractures

in this plane.

The researchers at Los Alamos National Laboratory have evidence

that as 99% or more of the volume in their HDR reservoir is due to the

small, low opening stress fractures (Brown, 1988). A small number of the

fractures in the reservoir have a high opening stress. The low opening

stress fractures are called "tensile" fractures, and the high opening stress

fractures are called "shear" fractures. Brown (1988) also reports that the

principal stresses on the reservoir are about 1 MPa and 24 MPa for the

minimum and maximum principal in-situ stresses. For this model the

shear fractures are assumed to be perpendicular to the maximum

principal stress and the tensile fractures are assumed to be perpendicular
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to the minimum principal stress. In reality the principal stresses would be

rotated counterclockwise slightly, but DRACULA does not currently have a

shear law in the joint model. The in-situ stress on the tensile fractures is

10 MPa, and the in-situ stress on the shear fractures is 24 MPa; both are

strictly normal stresses.

3.2.1 Joint Model Implementation

As discussed in Section 2.2, the joint model uses the fluid element

superimposed on the interface element. The tensile fractures and shear

fractures use the same joint model but refer to different materials. The

tensile fractures use material type one; the shear fractures use material

type two. The fluid and interface elements get their material data from

their respective material tables. Figure 3.2 shows the joint opening law for

interface types one and two. There is only one opening law as defined in

Section 2.2. The curve is shifted to keep the body in initial equilibrium for

the two in-situ stresses. The distance the curve is shifted must be stored as

fluid material data to be used as an initial opening for the joints. This gives

each joint some finite free volume before any fluid is pumped in.

Figure 3.3 shows the finite element mesh used for the problems

analyzed in Chapter IV. The three vertical joints model the shear

fractures. The tensile joints are offset to force the flow paths to include the

high opening stress shear joints.
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3.2.2 Reservoir Boundary Conditions

To model the effects of the rock surrounding the reservoir, springs

are placed on the outer edge of the finite element mesh. Figure 3.4 shows

typical plots for interface materials three and four. Notice that the springs

are preloaded to 10 MPa and 24 MPa to maintain initial equilibrium. As the

reservoir expands and the volume increases the far field stress increases

with the spring's compression. The spring element sets the displacements

on the outside of the element to zero and has inside nodes attached to the

rock masses.

The fluid boundary conditions are important to consider before

running a problem. Pressure and flow rate histories may be specified for

transient problems. The "natural" boundary condition for the fluid flow

problem is that no flow occurs on a boundary where no condition is

specified. One other condition that can be applied globally to the reservoir

boundary is a condition that allows fluid to "leak" out of the reservoir as a

function of flow rate vs. pressure. This is called a far field flow loss or

leakage boundary condition.
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Figure 3.1: DRACULA Menu Concept
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Figure 3.3: Application Problems Finite Element Mesh
(Note: Only flow paths shown for clarity)
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Chapter IV

Verification Problems

Two verification problems will be used to illustrate DRACULA's

ability to model fluid flow. A single flow path is used so the results can be

interpreted more easily. The path considered is one tensile flow path from

Figure 3.3. The first problem is a steady state flow problem. A specified

flow rate is applied at one boundary of the problem and a far field flow

boundary condition is applied to allow fluid leakage at the other boundary.

The second problem is a transient flow problem. A constant reservoir

pressure is applied and the steady state (no fluid flow) solution is found.

Then a step change in the pressure boundary condition initiates a pressure

transient.

Figure 4.1 shows the mesh used for both of the problems discussed in

this chapter. The verification problems are simple, one dimensional

problems with a single flow path in the X direction. Table 4.1 summarizes

the reservoir properties used for all the problems in this thesis. Poisson's

ratio was set to zero for the verification problems. Figure 4.2 shows plots of

the boundary spring stiffness applied for both verification problems.

Boundary springs with a relatively high stiffness were used to help speed

convergence.

4.1 Steady State Verification Problem

This problem displays the option to specify a pressure - flow rate

relation on the boundary of the mesh to simulate a far field "leakage"
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boundary condition. Figure 4.3a shows the far field relation specified as a

linear function of pressure and flow rate (nonlinear functions can also be

specified). The flow rate was specified at the right end of the mesh as

shown by Figure 4.3b. Normally the far field pressure - flow rate relation

would be enforced on the right boundary as well as the left boundary. But

when a specific pressure or flow rate condition is specified on a boundary,

the far field boundary condition will not be applied at that node.

The flow rate solution should be constant through the entire flow

path. Also note that numerically all the boundary conditions specified for

this problem are flow rates; however, because the far field boundary

condition is a function of pressure, a unique pressure solution does exist.

Convergence rates are normally slower for problems with far field and flow

rate boundary conditions specified.

Figures 4.4 is a flow rate plot for this steady state problem. The flow

rate is constant through the flow path as expected. As shown by Figure 4.5,

the pressure on the left boundary corresponds to the correct flow rate for the

far field boundary condition. In addition, the joint stress shown by Figure

4.6 added to the fluid pressure from Figure 4.5 gives the total stress shown

by the line plot of the Y stress in Figure 4.7. This shows that the

fundamental rock mechanics assumption from Section 2.2 is satisfied in

DRACULA.

The last figure for this problem (Figure 4.8) is a displaced mesh plot.

Note that the joint openings change as the pressure changes in the joint.
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Since the flow rate is constant through the flow path, the pressure gradient

must also adjust with the joint openings to maintain the specified flow rate.

4.2 Transient Verification Problem

This problem is analogous to inflating a balloon. All the input flow is

used to expand the joint. If the pressure is reduced, this stored fluid is

available to flow out of the joint. To start the problem a constant 9.0 MPa

fluid pressure was applied to one end of the flow path and a zero flow

boundary condition was imposed on the opposite end of the flow path. This

results in a fluid solution with constant fluid pressure in the joint and no

fluid flow. Next the applied pressure is dropped to 1 .0 MPa, initiating a

pressure transient in the problem, causing fluid flow out of the joint.

The analytical solution for the first part of this problem comes from a

simple one dimensional rock compression problem. The fluid pressure is

constant in the joint, causing a uniform linear translation of the two rock

masses. The initial stress in the block is ax = -24 MPa and oy = -10 MPa.

Initially the joint also has a stress of -10 MPa. Inflating the joint to a fluid

pressure of 9 MPa opens the joint. This causes the block to translate and

increases the boundary load to -10.2 MPa. In the joint, the fluid pressure is

9 MPa and the joint stress is reduced to 1.3 MPa. The stress in the block

also increases to 10.3 MPa. The values are not exact because relatively loose

convergence tolerances were used. The effect of this can be seen on the line

plot in Figure 4.9. The Y stress should be constant along this line plot.

Figure 4.10 is a time history plot that also shows that though the solution is
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nearly converged, more iterations are needed to allow the blocks to translate

and increase the boundary spring load to -10.3 MPa.

At time = + the applied pressure was dropped to 1.0 MPa. Each

transient solution must be obtained by iterating on the nonlinear flow

problem, with the previous solution giving initial conditions for the solution

currently being sought. An important parameter that must be selected

before a transient is initiated is the time step (t-step) over which the

transient will act. Recall from Chapter II that the fluid flow is governed by,

KpP a = Q-S a a .

The S aa term acts as a fluid source in the analysis. If a joint is closing,

this term supplies additional flow to the calculation. In DRACULA the aa

term is implemented in finite difference form as,

a new "
a old

a a
=

t-step

The fluid flow equations we are solving are now a linear function of

the joint displacements from the mesh (anew) and still a cubic function of

joint displacements in the joint permeability. The flow rates are influenced

directly by the selection of t-step as well as the displacements. Notice above

that as t-step increases, the storage term has less and less effect on the

solution, and approaches the steady state solution. And conversely, as t-

step is reduced, the flow rates can be influenced significantly by the storage

term.
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Figure 4.11 shows a time history of four displaced mesh plots for a

transient solution with t-step = 0.125. As shown in Figure 4.12, the initial

condition at time = 0.0 is a uniform joint opening with a pressure of 9.0

MPa. When the pressure at the outlet is dropped, fluid begins to flow out of

the joint. The joint closes first at the outlet. Eventually, the excess fluid is

forced out of the joint and the pressure is uniform at 1.0 MPa.

Figure 4.14 is a history plot of the fluid flow rate at the outlet and a

history plot of the pressure at the opposite end of the flow path. The outlet

flow rate rapidly decreases as the pressure driving the flow decreases to the

specified outlet pressure.

Figure 4.15 is a similar fluid flow rate plot comparing the outlet flow

rate for different values of t-step. This plot displays the effects t-step has on

the storage term as discussed above. Smaller values of t-step cause higher

initial flow rates with sharper transients; larger values of t-step cause

lower initial flow rates with solutions nearer a new steady state solution for

the new boundary condition.

One simple check for the validity of a transient solution for this type

of problem is that the integral over time of the flow out of the joint be equal to

the change in volume of the joint. Table 4.2 summarizes the changes in

volume representing the integrals for the area under each flow rate vs.

time curve from Figure 4.15. As t-step decreases from 0.5, the volume

integrated under the flow rate curve approaches the actual change in

volume. Note that for t-step = 1.0 the integrated volume is also increasing
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and approaching the actual change in volume. As the time step is

increased the solution does approach the next steady state solution.

4.3 Summary

In this chapter we presented two verification problems to illustrate

DRACULA's ability to model coupled fluid flow and rock deformation in an

HDR reservoir. The first problem displayed steady state results from flow

rate and far field fluid boundary conditions. The finite element results

show that the flow rate is constant through the flow path at the correct

specified value and that the pressure solution does satisfy the far field

boundary condition. The second problem showed the effects of the time step

size on the results of a transient solution. This problem shows that the time

step size does affect the results of a transient problem and that as the time

step size is reduced a more accurate transient solution is obtained. Both

problems show that the effective stress law from Section 2.2 is satisfied.
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Table 4.1

Reservoir Properties

Poisson's Ratio 0.20

Young's Modulus 25000 MPa

Initial Joint Aperature, x 0.1032e-3 m

Initial Joint Aperature, y 0.1632e-3 m

Maximum Principal Stress, ax 24 MPa

Minimum Principal Stress, ay 10 MPa

Fluid Dynamic Viscosity, u (@ 220° C) 11 6.6e-6 N-s/m2

Factor of Roughness, f 1.5
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Table 4.2

Joint Volume Change

t-step (s) 0.0625 0.125 0.25 0.5 1.0 oo

Vol. (m3x106
) 933.5 925.9 916.5 914.7 947.3 957.9
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Figure 4.4: Flow Rate Contour Plot
(Steady state verification problem)
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Figure 4.5: Pressure Contour Plot

(Steady state verification problem)

Figure 4.6: Joint Effective Opening Stress

(Steady state verification problem)
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(transient verification problem)
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Time= 0.12500E+00 Step= 1 Mag= . 10000E+06

Time= 0.25000E+00 Step= 3 Mag= 0. 10000E+06

Figure 4.11: Time History Plot of Displaced Mesh Plots,

t-step = 0.125 (transient verification problem)
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Time= . 37500E+00 Step= 1 Mag= 0. 10000E+06

Time= 0.10000E+01 Step= 1 Mag= 0. 10000E+06

Figure 4.11 cont: Time History Plot of Displaced Mesh Plots,
t-step = 0.125 (transient verification problem)
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Time= O.OOOOOE+00 Step= 10 Mag= 0. 15000E+05

Figure 4.12: Initial Displaced Mesh Plot
(transient verification problem)
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Figure 4.13: This figure intentionally left blank
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Figure 4.14a: Flow Rate Transient Solution
(transient verification problem)

o

X- 10.000 Y- 5.00

8.000 •

6.000

4.000

0.000
0.000 0.500 1.000 1.500 2.000

TIME (xlO °)

Figure 4.14b: Pressure Transient Solution
(transient verification problem)
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ChapterV

Applications

This chapter presents the results of several problems analyzed to

investigate the transient and steady state flow characteristics of an HDR

(Hot Dry Rock) reservoir. Each of the problems presented here use the

same finite element mesh. The first two problems are steady state flow

problems. Fluid is not allowed to leak at the mesh (reservoir) boundary for

either problem. One problem has the injection well fluid pressure lower

than both in-situ reservoir stresses; the other problem has the injection well

fluid pressure above the minimum in-situ reservoir stress, but lower than

the maximum in-situ reservoir stress. The last problem has transient

boundary conditions that model experiment #2070 conducted by Los Alamos

National Laboratory at Fenton Hill, New Mexico. It applies a pressure

history at the injection well (EE-3A) and monitors the pressure rise at the

shut-in extraction well (EE-2). There is no far field fluid leakage.

5.1 Low Pressure Steady State Problem

Figure 5.1 shows the mesh used for this steady state problem with the

boundary conditions labelled. Problems with only pressure boundary

conditions converge more rapidly than those with other boundary condition

types. For this problem, with two pressure boundary conditions, both below

the minimum in-situ stress, none of the joints will completely open and the

joint law will remain in effect.
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Figure 5.2 is a fluid pressure contour plot showing the steady state

pressure solution. The pressure plot is almost perfectly symmetric about a

vertical center line through the mesh with little pressure drop in the X

direction and a nearly linear pressure drop in the Y direction. The flow

rates through the mesh are shown in Figure 5.3. The arrows represent

flow direction when shown on the plot. The arrows are not shown for flow

rates out of the legend range. The flow rates are constant and the same for

each of the three vertical flow paths. The extremely small flow rates on the

boundaries indicate that the fluid solution is converged reasonably well for

the current structure solution. A careful investigation of the flow rates at

the extraction well shows that some flow does move around behind the

extraction well to exit the mesh (see Figure 5.4).

Figure 5.5 is a displaced mesh plot for the steady state flow solution.

Notice that the higher fluid pressures at the bottom of the mesh near the

injection well cause both horizontal and vertical joints to open more than at

the top of the mesh. Also notice that the stiffer vertical joints are not as far

open as the softer horizontal joints, as predicted by the difference in the

joint opening laws for the two. The pressure drop is low enough across the

soft tensile joints that they provide a constant pressure "header" across the

bottom of the mesh.

Throughout the mesh the displacements are not as uniform as the

pressure plot might indicate. This is because the problem is not completely

converged. To reduce computer run times a loose structural solution

tolerance was used. An inspection of the displacement history plots for
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several nodes in the mesh shows that run times were reduced at the

expense of totally converged solutions. Figure 5.6 compares X and Y

displacement history plots for three nodes in the mesh. Each of the X

displacement plots show good convergence, as expected from the displaced

mesh plot. The Y displacement history plots do not show good convergence

even though the specified tolerance was met. However, the solution is

nearly converged. The line plot in Figure 5.7 shows the Y stress varies only

slightly in the mesh from the top to the bottom and is near the expected

value. As discussed in Section 3.1, the relatively slow convergence is due to

the extremely stiffjoint law that forced a time step reduction of 100. A

solution to this difficulty is discussed in Chapter VI.

5.2 High Pressure Steady State Problem

This problem has specified pressure boundary conditions in the same

locations as the previous steady state problem. For this problem the

injection pressure is 15 MPa and the extraction pressure is still 1 MPa.

When the fluid pressure rises above the initial in-situ stress the joint

elements will open and not carry any load. Only the fluid pressure in the

joints will act on the rock blocks, which can "float" in the middle of the

mesh. The blocks are free to move because with only the fluid pressure

acting, translations are possible without changes in the force balance. As

fluid pressures continue to rise and the joint openings increase, the blocks

are free to translate more.

In this problem we demonstrate the ability to model floating blocks by

specifying in inlet pressure of 15 MPa and an outlet pressure of 1 MPa.
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Because the inlet pressure is above the minimum in-situ stress of 10 MPa

in the Y direction, joints will completely open and blocks will "float" in the

Y direction near the inlet.

Figure 5.8 shows the calculated pressure distribution. A uniform

pressure does exist locally around the inlet location. This is because the

joints have completely opened and all load is being carried by the fluid in

the joints. As we approach the outlet, the pressure decreases and the

structural joints are carrying part of the load.

To satisfy equilibrium, the final stress in the Y direction should be 15

MPa, consistent with the specified input pressure. Figure 5.9 is a line plot

of the Y stress in the mesh. The Y stress is not constant in the mesh as

expected. Figure 5.10 is a line plot of the X stress and shows that the stress

is constant along the line. The Y stress is not constant along the line of

Figure 5.9 because the solution is not completely converged due to a loose

convergence tolerance. As the solver algorithm seeks a solution, the

stresses reach local equilibrium with the fluid pressures. Global

equilibrium of the blocks near the extraction well is not satisfied, and these

blocks must translate to drive the boundaries of the reservoir out against

the boundary springs. This will increase the loads in the boundary springs

and result in global equilibrium. Figure 5.9 shows that the local stresses in

the rock masses have come up to the current fluid solution, but the rock

masses have not translated to bring the forces and stresses to equilibrium

in the mesh. The Y displacement history plots in Figure 5.11 show this.

Node 450 is in the bottom third of the finite element mesh and node 1950 is
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in the top third of the mesh. Both nodes have increasing positive

displacements, but from Figure 3.4, interface material three, we see that

the displacements at the top of the mesh need to be more than twice the

current displacement of node 1950 for the mesh to be in equilibrium.

Again, due to the extremely stiffjoint model, the time step was

reduced by a factor of 100. As a result, problem run times for complete

convergence would be excessive. None the less, it appears that the local

solution for the pressure is approximately correct, since local convergence

has been obtained and the translations shown in Figure 5.10 are in the

expected direction.

Two factors must be addressed to obtain a completely converged

solution. First, we can speed the solution by using an effective joint law

with the same flow characteristics but a softer effective structural stiffness

(Chapter VI). Secondly, we must consider whether it is realistic to allow

blocks to "float". For the conditions discussed in Section 5.2 the blocks

should be held in place by shear forces applied by the X normal stress that

is still acting on the blocks, even though a shear model is not implemented

at this time. It may be more realistic to tie each block to ground to limit

rigid body motion. Even if the injection pressure is above both in-situ

stresses, one would not expect blocks as large as the ones in this model to be

completely floating.
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5.3 Transient Flow Problem

This problem uses the same finite element mesh as the two previous

problems. The same joint opening law and boundary spring stiffnesses are

also used. No far field fluid loss is allowed at the reservoir boundary. As

mentioned before, this problem models a constant flow rate shut-in test

which was a part of experiment #2070 conducted by LANL at Fenton Hill,

New Mexico. Water was pumped into the HDR reservoir at a flow rate of

10.1e-3 m3/s (133 gpm). The pressure was monitored at both the injection

well and the shut-in extraction well. Figure 5.12 shows the measured

pressure history at the injection well during experiment #2070.

This test is analogous to verification problem two, where a single

joint was pumped up like a balloon, then allowed to collapse. For the

current problem the shut-in extraction well pressure is monitored as the

reservoir is being inflated. Because a single flow rate boundary condition

will not yield a unique pressure solution, the pressure history monitored at

the injection well during test #2070 was applied and the resulting input

flow rate and shut-in extraction pressure were monitored. Figure 5.13 is a

plot of the applied injection well pressure history and a plot showing the

application point. For this problem the bottom of the mesh is considered a

line of symmetry with no fluid flow through this boundary. This allows us

to model a reservoir that is twice as large as could be modelled otherwise.

Because solution times are basically linear with problem size, the run time

was reduced by about half.
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Figure 5.14 is a pressure contour plot for the first time step of the

transient fluid solution. Recall that the injection well was located in the

lower left corner of the mesh and that no flow is allowed out of the mesh.

The pressure at the injection well did rise to the specified pressure and

there is a significant pressure gradient from that point to the top of the

mesh. The minimum pressure in the mesh is 0.97 MPa, only slightly above

the initial pressure of 0.7 MPa.

Figure 5.15 is a plot comparing the measured output pressure history

for well EE-2 (shut in pressure history) to the calculated pressure history

from the transient boundary conditions discussed above. The far field flow

loss was zero, so all the flow into the reservoir was accommodated by the

joint openings. The results show that the calculated output pressure

increases faster than the measured response.

This problem is an initial attempt to simulate a reservoir

experiment. It demonstrates that the features needed to model the

experiment are working, however, a careful review of input assumptions is

needed to develop the final reservoir model. Three factors can easily slow

the transient response of our model: increasing the reservoir volume,

introducing a far field flow loss, and changing the time step size.

Increasing the number of flow paths will slow the transient response

by producing additional fluid storage volume. Experimental data indicates

that during hydrofracturing tests on the Phase II reservoir, 99% or more of

the injected fluid volume was accommodated by aseismic tensile fracturing

(Brown, 1988b). The present analysis corroborates this observation, with
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nearly all input flow used to open tensile fractures. If more tensile joints

are included in the model, then more fluid can be stored in the tensile

joints, and it will take longer for the fluid to reach the shut in well. This

will slow the shut-in transient.

Introducing a far field loss will slow the transient by producing

leakage paths for the fluid. The far field flow loss is not well understood,

but researchers at LANL (Brown, 1988a) feel that the far field flow loss for

test #2070 was negligible (less than 2 % of the injection flow rate). In the

present analysis, no far field loss was assumed.

Finally, changing the time step size may affect the response. If the

time step in the solution is too large, the solution approaches the steady

state solution. As the time step is reduced, the results converge to the

transient solution. Additional calculations are needed in which we vary

the time step size to examine convergence.

5.4 Summary

Three applications problems were presented in this chapter. The low

pressure steady state problem showed that although good results can be

obtained for a large problem, care must be taken to insure that the problem

is converged. The high pressure steady state problem confirmed this. With

the injection well pressure above the in-situ Y stress, the blocks were

"floating" in the Y direction. Large translations in the mesh are required

of most of the mesh to compress the boundary springs enough to balance

the stress applied by the high fluid pressure. However, the fluid solution
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should not be significantly affected by these translations because the mesh

has come to a local equilibrium and because the rigid body translation does

not affect the three major shear flow paths where the majority of the

pressure drop occurs between the inlet an outlet wells. The transient

problem displayed many of the same convergence characteristics as the

high pressure steady state problem because of pressures above the Y in-situ

stress. The transient results are encouraging, but the effects of the fluid

time step, reservoir volume and far field flow losses need to be investigated.

The solution run times for each of these problems was significantly slowed

by the stiff interface elements.
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P = 1.0MPa

P = 7.5 MPa

Figure 5.1: Boundary Conditions
(low pressure steady state problem)
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Figure 5.2: Pressure Contour Plot

(low pressure steady state problem)

77



Figure 5.3: Flow Rate Contour Plot

(low pressure steady state problem)

Figure 5.4: Flow Rate Contour, Zoom Around Extraction Well
(low pressure steady state problem)
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Figure 5.5: Displaced Mesh Plot
(low pressure steady state problem)
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Figure 5.6: Displacement History Plots

(low pressure steady state problem)
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Figure 5.6 cont: Displacement History Plots
(low pressure steady state problem)
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Figure 5.6 cont: Displacement History Plots

(low pressure steady state problem)
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Figure 5.7a: Y Stress Line Plot

(low pressure steady state problem)
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Figure 5.7b: Line of Application for Above Line Plot
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Figure 5.8: Pressure Contour Plot

(high pressure steady state problem)
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Figure 5.9a: Y Stress Line Plot

(high pressure steady state problem)
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Figure 5.9b: Line of Application for Above Line Plot
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Figure 5.10: X Stress Line Plot

(high pressure steady state problem)
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Figure 5.11: Displacement History Plots
(high pressure steady state problem)
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Figure 5.13:

b) Application Point

Applied Pressure Boundary Condition
(transient application problem)
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Figure 5.14: Pressure Contour Plot, First Transient Step

(transient application problem)
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Figure 5.15: Comparison of Calculated and Experimental
Output Pressure Histories
(transient application problem)
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Chapter VI

Summary and Conclusions

This chapter gives a summary of the thesis and explains the

conclusions that can be drawn from the verification and application

problems. Finally, recommendations are made for future work both for

extending DRACULA's capabilities and for modelling HDR reservoirs with

DRACULA.

6.1 Summary

In Chapter I we introduced the Hot Dry Rock concept. A brief history

of the Hot Dry Rock program was presented to better understand the past

modelling and experimental results.

In Chapter II the theoretical basis for the finite element method

solution was developed for both the structural and fluid models. The

structure is assumed linear elastic. A six noded quadratic triangle is used

to approximate the structural solution. The fluid flow rate is assumed

proportional to the pressure gradient and the joint permeability, which is a

cubic function of the joint openings. A three noded quadratic line element

is used to approximate the fluid solution. A surface element is presented

which when superimposed on top of the fluid element models the joint

opening law influenced by fluid pressures. The highly nonlinear nature of

the problem was discussed and dynamic relaxation was presented as a

solution method capable of solving the problem.
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Chapter III presents the computer code DRACULA written to

implement the concepts introduced in Chapter II. The interactive nature of

DRACULA gives the user the ability to specify a problem and monitor the

results all in the same interactive graphics environment. Next, some input

data for DRACULA was discussed as it relates to the boundary conditions

for the reservoir.

In Chapter IV we presented verification problems which illustrate

that DRACULA can solve highly nonlinear steady state and transient fluid

flow problems. We showed that flow rate and far field flow loss boundary

conditions can be combined in one problem and also showed that the choice

of the time step size for transient problems is important.

Three applications of DRACULA were illustrated in Chapter V. The

first problem showed that good, converged results on these nonlinear

problems are attainable even on large problems. Because all the fluid

pressures were below the in-situ stress, the joint laws acted as expected

with softer tensile joints opening more than the stiffer shear joints. Very

little pressure drop was seen in the tensile joints compared to the shear

joints.

The second and third problems both had fluid pressures above the

minimum in-situ stress, but below the maximum in-situ stress.

Convergence was reasonably good locally where fluid pressures were above

the minimum in-situ stress, but rigid body translation of many of the blocks

in the mesh are required before global convergence can be attained.

Excessive run times are required for these problems because the joint
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stiffnesses of the interface elements required the integration time step to be

reduced by a factor of 100 to maintain stability. The third problem also

showed that the fluid time step size, reservoir far field boundary conditions

and number of fluid flow paths should be evaluated to obtain a model

transient response that is closer to the experimental transient response.

6.2 Conclusions

An analysis tool was constructed that is useful for analyzing Hot Dry

Rock reservoirs. However, a careful review of the initial and boundary

conditions is needed to develop a final reservoir model.

Low pressure problems are easier to model than high pressure

problems because for fluid pressures less than the in-situ stresses the joints

do not open. Therefore the mesh is not required to translate large distances

to bring the mesh to equilibrium.

High pressure problems (those with fluid pressures above the

minimum in-situ stress) converge reasonably well at a local level, with

local structural stresses rising to local fluid pressures, but the rigid body

modes required to achieve global equilibrium need longer run times.

The transient problem was essentially a set of high pressure

problems and displayed the characteristics discussed above. For the mesh

and t-step used, the transient response was much too fast compared to the

experimental data. The second verification problem showed that reducing

t-step can improve a solution. The effects of t-step on this problem should be

investigated.
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The tensile joints have a strong effect on the flow. They have a larger

initial opening (slightly) and they open up farther. They have higher flow

rates with less pressure drop. For each problem investigated, the injection

point was offset in the mesh to attempt to force flow across the mesh, but for

each case the injection point location seemed to have little bearing on the

results. The pressure horizontally across the bottom of the mesh was

essentially constant and the flow rates in the shear paths from the injection

well to the extraction well were constant and equal for each flow path.

Loose convergence tolerances on the structure gave adequate fluid

results for the low pressure problem, but the fluid results for the high

pressure problem may change slightly when the problem is truly

converged. The pressures near the extraction well are fixed at 1.0 MPa.

The joint stress must increase to about 14 MPa for a total stress of 15.0 MPa

to balance the injection fluid pressure. Stresses this high in an interface

element will require joint closure. This will be true for both the tensile and

shear joints. These smaller displacements will definitely affect the flow

solution, probably by causing higher pressure gradients near the extraction

well.

The joint law is =100 times stiffer than the structural elements. This

necessitates reducing the time step by a factor of 100 to insure numeric

stability. If the spring stiffness could be reduced without affecting the fluid

solution the time step reduction factor could be increased and solution

times significantly reduced.
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Even though the tolerance for a problem may be reasonable for a good

solution for some problems, other problems may require tighter tolerances

for good solutions. The results from the two steady state problems show

this. The problem with the 7.5 MPa injection pressure converged to a

reasonable solution with a structure tolerance of O.le-3 and a fluid tolerance

of 0.5e-4. However, the 15 MPa injection pressure problem did not converge

with the same tolerances and the same damping and coupling parameters.

This problem required tighter tolerances and less damping for better

convergence.

6.3 Recommendations

As discussed in Section 3.1 the solution algorithm is significantly

slowed by the extremely stiff joint opening law. One method of removing

this constraint is to artificially soften the joint stiffness for the global

structural solution, but still recover the joint openings using the original

joint opening law. This could be implemented by putting a relatively soft

spring in series with the joint law for the structural solution. This would

not significantly affect the structural solution. If this method were to work

the solution time could be reduced by a factor of 100.

The results of the transient problem in Section 5.3 are encouraging

from the stand point that transient results were obtained for such a large

highly nonlinear problem, but the results did not match well with the

experimental results from test #2070 conducted by LANL. Three major

factors can affect the transient results of these transient problems: (1 ) the

fluid time step size, (2) the reservoir volume and the distribution of volume
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between shear and tensile fractures, and (3) far field fluid boundary

conditions. Each of these should be studied to better understand their

effects on transient problems.

The results of this thesis are a foundation on which to build a fully

coupled heat transfer, fluid flow, rock deformation analysis code. The fluid

flow and rock deformation models are now fully coupled. The next step is to

include temperature dependent fluid viscosity, thermal stresses and a heat

transfer model for heat flow between the structure and the fluid.

Dynamic relaxation has proven to be a very reliable solution method

for these nonlinear problems. In addition it has the virtue of approximately

linear solution time increase with problem size. However, it is not a fast

solution method. Many other methods exist that are reasonably robust with

good initial guesses on the solution and are much faster than dynamic

relaxation. Since dynamic relaxation seems to be at its worst when it is

near a solution, other methods should be investigated with the intent that

dynamic relaxation would start the problem and an alternate solution used

for final convergence. The effects of the rigid body modes of many of the

blocks in the finite element mesh must be considered when investigating a

new solution algorithm.

Some of the "floating" block problems described in Section 5.3 would

not present themselves if a shear law existed in the model. If a shear

model is implemented, DRACULA should be modified such that the joint

laws are entered in terms of the principal stress orientation rather than as

data in a table. This would allow the effects of the principal stress

98



orientation to be investigated much more easily than with the current joint

law implementation.
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ABSTRACT

Hot Dry Rock geothermal reservoirs are currently being developed

around the world. Extensive experimental work has been done, but few

numerical models exist. This model solves the coupled fluid flow -- rock

deformation problem and provides the foundation for fully coupled heat

transfer with thermal stresses.

A computer program called DRACULA (Dry Rock Analysis Code) is

used to model steady state and transient fluid flow results. The model uses

discrete joints to model the fluid flow through the fractured rock. Two

separate models are used in the program: (1 ) a structural model to solve for

rock deformations, and (2) a fluid model to solve for fluid pressures. The

two models are coupled through the joint permeability (cubic law) and the

effective stress law. Dynamic relaxation is used to obtain solutions.

The formulation includes the transient storage terms associated with

joint opening velocities. This allows the user to simulate reservoir

operation in an inflation/deflation mode where fluid is pumped into the

reservoir, stored by opening rock joints, and then recovered when the

pressure is lowered.

Verification problems demonstrate that the fluid and structural

models are correctly coupled. The first verification problem shows flow

through a single flow path where joint opening is not uniform. The second

illustrates inflation/deflation in a single flow path.



Results are presented for a more complex model simulation of the

Fenton Hill reservoir. Results for flow between two wells at specified

pressures show that the tensile joints (normal to the smallest in-situ stress)

open and have higher flow rates with less pressure drop than the shear

joints (normal to the maximum in-situ stress). When the injection

pressure is raised above the minimum in-situ stress, the tensile joints

completely open and rock masses "float". An initial simulation of a shut-in

experiment at Fenton Hill demonstrates the storage effect of joint openings.

Recommendations are made on speeding solutions and further

calculations needed to model the Fenton Hill reservoir.




