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I Introduction

The connnon practice for testing the homogeneity of a set of n treatment

means In an analysis of variance Is to use the F test, where F - ( treatment

mean square ) / ( error mean square ) . The procedure has special desirable

properties for testing the homogeneity hypothesis that the n population treat-

ment means Or) are equal. When the resulting F Is larger than the correspond-

ing tabulated F at a previously chosen level of significance a , It Is concluded

that there are some difference among the n treatment means. However, this

test gives no decision as to which of the p. may be considered different and

which may not. Hence several test procedures have been proposed for solving

this problem.

One of the simplest test procedures is R. A. Fisher's (5) least signifi-

cant difference test. Some others are Student-Newman-Kuels (7,8,12) multiple

range procedure, D. B. Duncan (1,3) new multiple range test, J. B. Tukey (13)

significant difference rule and H. Scheffe (11) significant difference rule.

Recently, Duncan (2,3) suggested a Bayeslan least signf leant difference test

for a symmetric multiple comparison of n treatment means.

The purpose of this report is to discuss the various test procedures and

the basic points of difference among them; a complete set of results from di-

gital computer to Illustrate the protection and the power of the Fisher LSD

test procedure also is presented.



II General Assumptions and Decisions

In the general problem we are given a sample of n observed means, say

*1» *2»**'» * » which are assumed to be drawn Independently from n normal
n

populations with true means y^, y2»«'«» W » respectively, and a common unknown

2 2
"

2
variance o. s , the error mean square Is an unbiased estimate of o, and Is

Independent of the observed sample means, based on the degrees of freedom f.

In the simplest case with n = 2, only two sample means x^ and X2, there

are three possible decisions:

(1) xi Is significantly less than X2,

(2) X2 Is significantly less than xi,

(3) xi and X2 are not significantly different.

When n - 3, there are 19 possible decisions:

(1) Six decisions of the form: xj < X2 < X3 (1,2,3)

I.e. (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1).

(2) Three decisions of the form: xj = X2 but xi , X2 < x ( 1,2 , 3)

I.e. (1.2. 3), ( 1.3. 2) and (2.3. 1).

(3) Three decisions of the form: xi < X2 but X2 - X3 ( 1, 2^3)

i.e. (1, 1^, (2, 1^ and (3, 1.2) .

(4) Six decisions of the form: xi < X3 but xj- X2, X2 - X3 (1.2.3)

I.e. (1^,3), (1_^,2), (2J^), (2.3.1), (3.1_^) and ( 3.2,1) .

(5) One decision of the form: xi = X2 = X3 denoted as ( 1,2.3) .

The number of decisions Increases very rapidly as n increases, making

the situation very complicated. Following are just some of the examples,

(1) n| decisions of the form (l,2,,,,,n) with no underscoring.

(2) n: (n-1) / 2 decisions of the form (1.2 .3 n) with one pair of

means underscored.



(3) n!(n-2) / 3 decisions of the form (1.2.3. 4 n) with three means

underscored,

(4) nf(n-2) decisions of the form (1x2,3,4.,. .. ,n) with two pairs of

means overlapped.

(5) One decision of the form ( 1,2 n) with all means underscored,

which implies that all n means are not significantly different from

one another.

If one wishes to know which treatment means are equal and which are not,

no matter whether they are greater (less) than the others, the decision pro-

blem can be simplified. In general, we have ( 2 ) ^°^ ^^° treatment-mean

comparison, ( 3 ) for three-mean comparison, ( ? )for four-mean comparison,.,,

(jj_-j^)
for .(n-l)-raean comparison provided that the prior F-test for testing

the equality of n treatment means is significant.



Ill Fisher's Least Significant Difference Test ( LSD )

If an analysis of variance leads to rejection of the hypothesis that n

treatment means are equal, given equal variance at a predetermined level of

significance p(, one uses the t-test on all ( ^ ) possible hypotheses that

V. " u. for all i ?* j with the same o level of rejection. Then Fisher's (5)

least significant difference LSD is defined as:

LSD
a - \ f d.f.^«' (-7;-^-^) <3.1)

where s is the error mean squares in the preceeding ANOVA,

f is the error degrees of freedom associated with s,

r., r. are the number of replicates in the i , j treatment,

When r. - r « r,

LSD - t , . . / 2s^ / r - t . , , s-
/~2~

(3.2)o a, £ d.f.V a, f d.f. x V v-»«*/

where s- is the standard error of mean.

Each difference between means is compared with the LSD^. If the

difference x^ - x, exceeds the LSD , the corresponding population means are

said to be unequal. If the difference x, - x. is less than LSD it is
i J a

concluded that the corresponding population means are equal.



IV Student-Newman-Keuls Multiple Range Procedure (NMR)

The first procedure to use the multiple protection principle was proposed

by Newman (8) working from a suggestion by Student (12). In this procedure,

which was later proposed by Keuls (7), Newman made use of Student's idea for

subdividing a group of ranked treatment means into subgroups asserted to be

not heterogeneous and presented tables for a number of percentage points of

q = w/s (4,1)

where w is the range in a sample of n treatment means ( x , x _i,..., x. and

X is the largest treatment mean whereas x^ is the smallest ) from a normal

population with variance a^, so w > 0. s^ is an unbiased estimate of o^ based

on degrees of freedom. Also w and s are independent.

It is useful to find the expectation of the q given in (4.1), because

t fil , ~ = V 1 .

s2 = £: ( X, - X )2/f
i=l ^

where x is an unbiased estimate of the true mean and

Hence p(s) = (f^^^s^'V^^ ^^)/ (2^^'^^^^T(f/2)a^); s^> (A. 2)

E(q) =
J q p(q)dq

Jr*
-1

^ ws p(w)p(s)dwds; since w and s are independent

/"" /* -1
=

[ / wp(w)dw ][ / s p(s)ds ]
Jo -va

= E(w) j s p(s)ds

/"" -1
" E(w/a) J as p(s)ds

= E(w/o)f^'/2/(2(f-2)/2^(^/2)a(^-^^s^-V^«'/2o2

= E(w/o)/f72r[(f-l)/2]/r(f/2) (4.3)

The value of E(w/a) may be found from Tippett (1925) pp. 387-7 or from
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Tables for Statistlcans and Biometrlcans Part II, Table XXII.

2 2 2
If one wishes to test Hq ( p<j^- t^^' ••• "

^n ^ ^l" ^2" * * * '
"^n

^

by means of random samples, Newman suggested using w • q s- as the test eri«

terion, where s- is the standard error of a mean. To apply this test, the

following steps are taken:

(1) Subdivide the n treatments as precribed by the choice of the parti-

cular set of treatment having meaning.

(2) Choose a significance level, d, .

(3) Compute s- and the values: "
•" •

•

w " q • 8.
n ^31,n X

w , q , • s_ . . '

n-1 ^a,n-l X

w« - q - • s_
3 ^3<,3 X

q„ •s- -t,,,, J~2 s. - LSD.,
^o(,2 X ot.f d.f.'^ X c<*"2 ^o(,2 ' "x "Dt,f d.f.'

where q i > n, n-1, ... ,2 can be found from takles given in Newman (8)
o(,i

or Federer (4).

(4) Rank the n treatment means from highest to lowest.

(5) Compare the range of n treatment means ( x - x, ) with the calculated
n 1

w , if the difference ( x - x. ) is less than w , the process stop, and the n

sample means are asserted to belong to a non-heterogeneous group. If ( x - x. )

is greater than w , subdivide the means into two groups of ( n - 1 ) means each,

i.e. ( X - X2 ) and ( x - x ) , and compare the range with w , etc.

The process stops whenever the actual range of a subset is less than the calcu-

lated range. No subset of means is compared if the subset is included in a lar-

ger subset which has less than the calculated range w .



V Duncan's New Multiple Range Test (CMR)

Duncan (1,3) argued that at least adequate protection would be provided

in any « -level procedure by securing its protection levels at the values

P ( 1 - "^ ) > where p is the number of treatments concerned in making

the comparisons. The value ( 1 - « )P~ is the probability of accepting the

joint null hypothesis when any ( p - 1 ) orthogonal comparisons among p means

are subjected to ( p - 1 ) o^ -level independent test. Duncan said such levels

are achieved and accepted without question in sequences of independent experi-

ments that occur in the course of an investigator's experiences throughout time.

Protection levels of this type based on degrees of freedom were used in

constructing Duncan's early multiple Fvtest. The tables for which are available

in Federer (4).

The Duncan's (1,3) multiple-range-rule (IMR) uses the protection level:

Pjj - ( 1 - c< ) based on degrees of freedom, where n is the total number

of treatments in an experiment, and p is the number of treatments concerned

in making the comparisons.

A general ot -level multiple range test is given by the rule: " The di-

fference between any two means in a set of n treatment means is significant

provided that the range of each and every subset which contains the given means

is significant according to an « -level range test, where a - 1 - 7
-1

P P
•

7p " ( 1 - U ) , and p is the number of means is the subset concerned."

The test procedures contains the following steps

:

(1) Choose the significance level, 0( .

(2) Compute s- and R ,X p* •

vhere s_ is the standard error of a mean.
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R q
J,

8- , p Is the number of treatments concerned,

c^ level q can be found from tables given in
P

Fryer's (6) book.

Then:

R - q 8-
n ^«,n X

R-
1 q 1 8-

n-1 D<tn-1 X

^2 ''c(.2 «x - ^a.f d.f. 2^'«x " "2 °^ <^>

(3) Rank the n treatment means from the highest to the lowest denoted

as ( x^
, Xjj_2 » • • • » X 1 ) •

(4) Compare the range of n means ( x - x, ) with R , if ( x - x, )n 1 n' n 1
'

less than the calcuClated R^, the process stops, and the n means are declared

to be equal, otherwise the process continues. Subdivide the means into two

groups ( x^ - X 2, x^_j^ - Xj^ ) each compare with R again, etc. The

process stops whenever the actual range of a subset is less than the compute

range. No subset of means is compared if the subset is Included in a larger

subset which is less than the calculated R . Note that in Duncan's DMR

test, no prior F test from an analysis of variance is used, although are usually

performs an analysis of variance to obtain an estimate of (p"
, the population

variance.



VI Tukey's Significant Difference Rule (TSD) Based on Allowance

In 1951 Tukey (13) introduced the concept of estimating simultaneous

confidence intervals for the differences between all pairs of n treatment

means. A set of intervals with a joint confidence coefficient (1- « ) is given

by

{ d^j - TSD < S^j < d^j + TSD , all i.j, ijtj } (6.1)

where d. , - x. - x , the observed treatment difference.

5. . f^i
"

f^-i » ^^^ t^'^"^ treatment difference.

TSD q 6- , q^ is the upper C< point of the Studentized range,

8. is the standard error of mean.

One of the main uses given for this procedure is in solving the multiple

comparisons problem. In this use, if the confidence interval for &,. lies

to the left or right to the zero, treatment i is declared significantly less

or larger than treatment j. If the interval for 5.. includes zero, treatment

i and j are declared not significantly different. In other words, this may

be expressed as the TSD (Tukey-significant-difference) rule: Any difference

exceeding TSD is significant, any difference not exceeding TSD is not signifie

cant.
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VII Scheffe's Significant Difference Test Based on Contrast (SSD)

The general problem, which Scheffe (11) stated, is that of making infe-

rences about the contrasts among a set of "true means" or "true main effects"

, li. in the analysis of variance.
*^ k

i-1 ^ ^
(7.1)

is called a contrast, where c. ( i 1, 2, ... ,
k ) is a set of known con-

stant which satisfy the condition that S*^* " 0; f^. (i»l,...,k
i-1 . ^

is a set of unknown parameters.

The value of the linear function for a particular set of 6 will be called

the value of the contrast, therefore the symbol denotes both for the contrast

and the value of contrast.

We make the assumption usual in the analysis of variance that bhere is a

set of statistics p- , |^ ,
u^ and cr , such that the

f^,
have a multiva-

12
rite normal distribution and are statistically Independent of 7 , that

E ( /^^ ) - ^^ , ( 1 - 1, 2, ... , k )

cov
< r 1 • ^' j ^ " ^j ( 1, j - 1,2, ,,, , k ) (7.2)

where a., are known constants.

Using the matrix notation:

^1

^^2

Tk-'

'^l'

K2

N [ •

•

•

L^kJ

r a^j_ a^2

'21 22

*lk^

'2k

'kl *k2 ri,. J*^k

LA. />^ N [ W Act

For any contrast 8, it is estimated by 6 , where
k

'^ "2 c

1-1
1 ri

(7.3)



u

2 It k
with variance (Tg T* ?T a. . c. c.

® 1-1 1-1 ^J ^ J
(7. A)

^ - - - - /n2 2
If <r Is unknown. It Is estimated by cr , and <^ c Is estimated by:

** 1-1 j-1 ^J ^ J •

2
Now, we shall prove that Q Is an unbiased estimate of 6 with variance r .

Since ^ ^ N [ e , A -s-^ ] by (6.3);

^
1-1 ^

A

^i ^ *^i« *^2' "• • *^k
^

f^2

k
Then

and

C
f^
^ N I C'

f;^
, C A C <3-

] ; where C*
f^

- 23 c /^

1-1 ^ ^

2
C' A C <j- - ( Cj,, C2, ... , Cj^ ) *11 *12 •

*21 *22 •

•• ^k^

^2k

<^ \l \2 •

r^i K

\k^ »• "^k J

1-1 J-1 ^ J ^J

(Refer to Th- 3.6 page 56 Grayblll's "An Introduction to Linear Statistical

Models" ). Define the positive constant S from

- ( k - 1 ) F, (7.5)* (k-l,f)

where F^
^^.^ ^. denotes the upper cX point of the F-dlstrlbutlon with k-1

and f degrees of freedom. Then the probability is 1- a that the value of all

the contrasts simultaneously satisfy

e-S<s-< e i 6 + S (7.6)

no matter what the values of all unknown parameters.

This results may be used for Interval estimation of all contrasts of in

—

terest. No matter how many contrasts are estimated by the method (7.6), the

probability that all the statments thus made will be correct will be great than
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or equal to 1 - o(
.

This result may also be used to declare any estimated contrast "signifi-

cant different from zero or not" according to the corresponding interval (7.6)

excludes 9 * or not. More precisely, after selecting a set of c. subject to

(6.1) and thus determining a contrast, we make one of the following statements:

/% '^ />

(1) is not significantly different from zero, if - S cr^ < 9 < S '^x.

/^ ^
(2) 9 is significantly different from zero and positive, if 9 > S (T/^.

(3) 9 is significantly different from zero and negative, if 9 ^ S ^g*

As a general application, we define:

where n number of treatments in the experiment, f - number of degrees of

freedom associated with the error variance. F , , ,» is the upper ci point
a., (n-l,f)

of the F-distribution.

We use jT s- S as the criterion for testing the difference between any

two means. If the difference between any two means exceeds the value of

-J2 8- S , the two means are significantly different.

In the special case where all the /-^ have the same variance a. cr

and all pairs of f^^ , pt (i?*j) have the same covariance a (y . The

Tukey's (13) method based on allowance can be applied. Th^ probability is

1 - Ok that the values of that all the contrasts simultaneously satisfy:

9 - To- f 9 < 9 + Tct (7.8)

where the contrast T is defined as

T - -2- £: |cj q ( a^^^ - a^2 )^ (7.9)
''"^:'\

and cr is an estimate of cr
, q is the upper tx point of the Studentized range,

for the range of a sample of K in the numerator, and f degrees of freedom in

the denominator, this is, the upper a point of the quotient w/s, where w and
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8 ( s > ) are satlstically Independent, w is the range of a random sample

2 2 2
of K standard normal deviates and t • I <t has the OC distribution

with f degrees of freedom.
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VIII Example and Comments

To illustrate, consider the example given in Duncan (3), the application

of a 5Z-level of the above five test procedures to the results of a bread-baking

experiment shovm in Table 8.1. The problem of testing the differences among

the mean loaf volumes for 17 different varieties of wheat. The differences

involved are shown individually in Table 8.2, and the summary of difference

shown in Table 8.3.

Applying the rule, the observed F-ratio is 28.35 which is much larger than

F AC ii r:/ ( when 0^ -.05 with 16 and 64 degrees of freedom ).
•U3,lD,04 I



IS

Table 8.1 Loaf Volumes for Flour of 17 Varieties of Wheat,

Tested at Five Levels of Potassium Bromate Added In Baking

(1) Varietal Means Ranked in Order

MFDCQLHGNBFIKJEAO
624 729 755 801 828 829 846 853 861 903 908 922 933 951 977 987 1030

(2) Analysis of Variance

Source of Variation d.f. Ms F
^.05,16,64

Between Varieties 16 48,559 28.35 1.81

Between Bromate Levels 4 29,134 17.01

Error 64 1,713

(3) Standard Error of a Varietal Mean and of a Difference

When the Number of Obserations is 5

8- - ( 1713/5 )^^^ - 18.51

SA - i8.51 (2)^/^
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Table 8.2 Significance of Difference Among Means by Five Multiple Comparison

Procedures, I.e. Fisger's Least Significant Difference Test (LSD),

Student-Newman-Keuls Multiple Range Procedure (NMR), Duncan's New

Multiple Range Test (DMR), Tukey's Significant Difference Rule

(TSD)and Scheffe's Significant Difference Test (SSD)

.

(1) 5% Level Significant Range for P Means

P 2 3 4 5 6 7

NMR
P

DMR
P

52.4 62.9 69.2 73.7
•

77.0 79.8

52.4 55.1 56.9 58.2 59.2

(2) Least Significant Dlff'erence

LSD - 52.4 TSD - 94. 6 SSD - 99.6

(3) Comparisons

Varieties & Means

1030 R2

A 987 n R3

E 977 n 53a R^
. 1

1

J 951 n n 79c R5

K 933 n n 54a 97d Re

I 922 n n 55a 65b + R7
,

"

F 908 n n n 69b 79c + Re
' ' '

B 903 n n n n 74b 84c + Rg

N 861 n n 61b 72b 90c + + +

G 853 n n 55a 69b 80c 98d + +

H 846 n n 57b 62b 76b 87c + +

L 829 n n n 74c 79c 93c + +

Q 828 n n n n 75b 80c 94c +

C 801 n n n n 60b + + + Ris

D 755 n 73c 74c 91c 98d + + + .. + Rl6

P 729 n 72c 99d + + + + + + + Ri7

M 624 75c + + + + + + + + + +

Symbol Legend: n:

a:

b:

c:

d:

+;

Not significant by any procedure.
Significant by LSD only.
Significant by LSD and DMR only.
Significant by LSD, DMR and NMR only
Significant by all except SSD.
Significant by all procedures.



Table 8.3 Summary of Difference Found Not-slgnlfleant

by Five 5Z Level Multiple Comparison Rules

17

Rules: LSD DMR NMR TSD SSD

Number

Number Extra

Mangnltude of

Extra Difference

Maxlmiim Difference

34

1.99 s

38 49 65 69

4 11 16 4

53-55 57-76 72-94 97-99

2.10 s^ 2.90
'd

3.59 s^ 3.78s^
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^
•' Note that the SSD rule has not been proposed by Scheffe as a multiple com-

parison procedure for difference alone among uncorrected and homoscedastlc

means as presented in the above example, this was Duncan's suggestion.
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8.2 Conmsnta

In the various test procedures, different points of view can be taken n

about the Importance of type I error relative to type II error, power and the

protection level against type I error.

R. A. Fisher combined an F-test of testing If the n treatment means are °

equal, given equal variance, with a t-test, provided the null hypothesis Is

rejected. The prior F-test assumes 100 ( l-o() Z protection against type I

error on the n-mean comparisons. No further effort Is made to maintain any

specified level of protection against type I error even for t-mean comparisons

when t < n. But for the palrwlse multiple t-test of the n treatment means com-

parisons, there are ( 2 ^ comparisons,without a prior F-test, the most extreme

case Is the comparison of the largest mean with the smallest mean. In this

case, Pearson and Hartley (9,10) have shown that n treatment type I error Is

not 5 percent for n^ 2, but some large value. The size of a n-treatment type

I error Is equal to;

1 -
f^n ( Q ) (8.2.1)

where ^P^^ ( Q ) - P^ ( Q ) + a^ (Q ) / f + b^ ( Q ) / f^

P ( Q ), a (Q ) and b ( Q ) are obtained from Table I In Pearson and

Hartley (10), ti - number of treatments, f - degrees of freedom associated

1/2
with error variance, Q - 2 ' t , ,,,,

«,r d/r/

For more than two treatments In a group the size of the n treatment type I

error associated with the comparison of the largest mean with the smallest mean

is larger than 5 per cent If the ^ are actually equal. For f-40, t -_ .jT-2.86

the n-treatment type I error associated with the comparison of the largest mean

with the smallest mean Is approximately equal to 27 per cent for five treatments,

59 per cent for ten treatments and 86 per pent for 20 treatments. Thus without
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a prior F-teat, the multiple t-test procedure for comparing the largest and

the smallest means should not be used when there are more than two treatments

in the experiment.

The Newman point of view was that the protection against type I error in

two treatment means, three treatment means, ... , n treatment means comparisons

should be kept at the same level, namely 100 ( 1 - ^ ) %. Duncan introduced

in his new multiple range test with its special protection level based on de-

grees of freedom, the concept of protection against type 1 error which decreases

is according to the formular 100 ( 1 - o(.
)P X, where p is the number of tre-

atment means concered in a subgroup.

As to Tukey's TSD and Scheffe's SSD, it can be compared under the special

case where all the p-. have the same variance a,.a- , all pairs ^ . , f^ (if'J)

2
have the same covariance a^^^ ^ ^y ^^^ ratio R of the squared length of the

confidence interval of (7.8) and (7.6}[

2 '^ 2 2-^2
R - ( S^ < ) / ( r o-^ )

2 2 2
where <r^ - (^ ^n

-
^12 ^ ^ 2 c^^

2 2
Because <s- ' <s ( c^, c^, . . , , c^^ )

(8.2.2)

(8.2.3)

''^ll «12

*21 *22

Ikl '

''M
2k ^2

•

•

•

•

•

•

•

•

vv ' ' '^v^ \l \2 '" \k ' ' '^k

^ *^1 "11 "*"
*^1 ^ C2 + c^ + . .

. + c. ) a. _ + . . . +

+ ... +c2 a^^ + cj^ ( c^+ ... + c,^_^ ) a^2 1*=2 *11

^ ^ ^1 g^ *=i
" ^2 ( c^ ( c^ + ... + Cj^ - c^ ) +

+ . . . + Cj^ ( Cj^ + . . . + Cj^ - Cj^ ) ) ]

2 r is, 2
- CT I ^1 S c + a

1-1

+ ... + Cj^ ) ]

^2 ( c^ + ... + c^ ) - a^2 ^ ^=1 +
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k k k

o- [a., 22 c + a _ ( 51 c ) - a^ c 1
^^ 1-1

^ -^ 1-1 ^ 1-1 ^ ^

k k

^ f *11 Z: '^l - «12 .^- ^1 ^

^-^
k

2 / ^ r 2
«" ^ ®11 " *12 ^ -^ ^i^

1-1 ^

1^

[ T. f
c^l q ( aj^i - ai2

^^^^^
^ ^ ^^ O-^)- O"? is an estimate

k
and

1-1
2

of (S"^ . Therefore
^ k k

R- (s2/q2)[ 2 cj / / S |c.|/2)^/2- (8.2.4)
1-1 ^ ^ 1-1 ^

Table given In Scheffe (11) shows how the relative efficiency of the two

methods varies with k. As k Increases, equation (7.6) gets relatively worse

on the difference of \<. - ^. . If we are Interested In testing the palrwlsed

means. I.e. some jm are equal, some are not, we should use Tukey's TSD method,

because It gives a shorter confidence Interval.
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IX Bayeslan Approach to Multiple Comparisons

9.1 Before we start to discuss the Bayeslan approach to multiple comparisons,

it may be helpful at this point to review very briefly the notations, defini-

tions and technique from the general decision theory due to Wald (14).

Consider the problem of choosing between two decisions

dp : accept Hq : t - Tq ,

d. : accept H. : r - T, . (9.1.1)

Let the loss function for the decision d^ and d. be represented by

L«( r ) - y °* "^ " ^0 • and L, (T ) -f *^1 *
"^ " "^0 •

"0 ( r ) -
I

"*
• and L^(

\- c T - T , "C- Tj^ ,

(9.1.2)

where c_ and c- are positive numbers with c_ > c^ ;> 0.

Let prior probabilities for H_ and H^ be represented by

p ( r ) - C Po •
"^ " "^0 •

/ n -r - -^ (9.1.3)
'- Pi ' ^ ^^1 '

where p^ + Pj^ - 1.

We will use an indicator function to represent a two decision test rule

*^ ^ '
•) (9.1.4)
^ 1. t € R^ ,

where R- and R. are the sets of t values for yhlch the corresponding

decision are to be made.

The value of or 1 for ( t ) at any t thus indicates that the

decision d^ or d^^ is to be made at that t. The probabilities of d„and d.

for any t will be denoted by P [ d^| T ] , 1 - 0, 1. Slmilarlly, in represent-

ing a multidecision rule with p decisions d. d we will use
i P

. t 4 R

(9.1.5)
( t ) -

f
"' «= '^ ^ .

i 1, t t R^
,
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where R. is the set of all points t at which the corresponding decision is

to be made.

The risk of any decision rule ( t ) -
[ 0j^(t), ^^^t) , ... , (t) ]

for any p decisions d, , d„, ... , d at any parameter point is the expected
i / p

loss

R ( Itt) - 21 L,( r ) P [ d. I r ] (9.1.6)
1-1 ^

where L . ( r ) are the loss for d , i 1, 2, . . . , p at -c .

The average risk, for any p-decision rule ( t ) as above is the weighted

average
rOO

A(0)- )R(0|T)P(T)dT, (9.1.7)
J

R ( 01

T

-co

where P ( r ) is the prior density for T. • .:

A Bayes rule ( t ) for any problem is the rule which minimizes the

average risk (9.1.7).

9.2 With much help from the more general work of Lehmann , it is possible

to solve the multiple comparisons problem by Bayesian approach, Duncan (2,3)

developed the Bayes solution for the multiple comparisons problems to a tolerated

error probability "of the first kind" for ,each simple difference, that is in-

dependent of the number of treatments being compared.

There are two common types of Student-t problems closely related to the

Bayesian multiple comparisons problem whlch^wlll first be discussed,

(a) A two-decision Student-t problem. Given a random observation t from a

noncentral t-distribution with non-centrality parameter t and v degrees of free-

dom, a common problem is that of choosing between the two decisions

d^ : decide r < A and d^ : decide T > /i ,

* Refer to Lehmann "A theory of some multiple decision problems I, II"

Ann. Math. Stat. , 21, 1-26 and Ann. Math. Stat., 28, 1-25, 1957.
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where A > 0.

In the theory of hypothesis testing, this problem Is often more lo98ely

regarded as that of testing H_ : "r ^ against H : ~C > 0,

Let the loss function be

Lo(T)
T >

0,

0.

L^(T) . j '^ll^l

^
,

t TT < 0.

r > 0, (9.2a.l)

where k- and k. are positive constants such that k- > k_ and x has a

2normal prior density P ( T ) with mean zero and variance y , then the Bayes'

rule for this problem Is Of the common form

r 0, t < t^ ,

(»*( t ) -

^1, t > t^
, (9.2a.2)

2
where t^ - t^( k, v, y ) Is a significant t value which Is determined by

the ratio k - k^^ / k- from loss function, the degrees of freedom v for t

2
and the variance y of the prior density for X . The significant t values

2
for different combinations of k, v, y are given In Table 9.2a.l. We will

2
call k, V, > the error seriousness ratio, the error degrees of freedom and

the risk-weighting variance ratio respectively. It is of interest to note

that a loss ratio of 100 ( log k - 2 ) infinite error degrees of freedom (v-OO)

a risk-weighting variance ratio of 3 ( y - 3 ) gives a t^ of 1.987 close td

that 1,960 of a .025 lo vel Student-t test of H : Z ''' 0.
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Table 9.2a.l Mlnimum-Average-Rlsk Significant t Values ( t^ Values )

Log k

Y^ V 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1 0.0 0.375 0.807 1.353 2.102 3.160 4.685 6.854

2 0.0 0.413 0.860 1.379 2.012 2.814 3.851 5.208

«• 4 0.0 0.434 0.884 1.367 1.900 2.502 3.197 4.010

6 0.0 0.443 0.891 1.356 1.848 2.374 2.948 3.580

14 0.0 0.451 0.898 1.340 1.779 2.217 2.654 3.099

00 0.0 0.457 0.902 1.326 1.721 2.091 2.436 2.759

1 0.0 0.444 1.053 2.053 oo ,00 •0 00

2 0.0 0.484 1.060 1.926 4.077 00 OS 00

3 4 0.0 0.506 1.056 1.718 2.623 4.178 9,595 00

6 0.0 0.515 1.053 1.653 2.370 3.308 4.732 7.706

14 0.0 0.522 1.047 1.528 2.136 2.724 3.360 4.074

•• 0.0 0.528 1.041 1.531 1.987 2.414 2.813 3.186

1 0.0 0.572 1.930 00 «B m a> 00

2 0.0 0.610 1.532 8.741 00 00 00 00

1 4 0.0 0.629 1.395 2.648 8.592 00 as 00

6 0.0 0.637 1.353 2.303 3.980 13.625 00 00

14 0.0 0.642 1.308 2.030 2.859 3.891 5.326 7.818

as 0.0 0.646 1.275 1.875 2.433 2.957 3.445 3.902

1 0.0 0.767 00 00 B «• • a.

2 0.0 0.785 2.292 oo <S « a* •

0.5 4 0.0 0.791 1.963 9.243 00 00 OB m

6 0.0 0.794 1.800 3.777 oo 00 00 a»

14 0.0 0.792 1.653 2.693 4.162 6.670 oo 00

M 0.0 0.792 1.562 2.296 2.980 3.622 4.219 4.779
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(b) A related three-decision Student-t problem. Given a similar observed

t value, a problem related to that of (a) Is one of choosing between the three

common decisions,

d- : decide T * /i ,
•

d. : decide T > A ,

and d^ : decide Z < -A , (9.2b. 1)

where, as before, A > 0. In the language of the experimenter d-, d^ and d»

are the decisions that r Is not significantly different from zero, that t

Is significantly greater than zero and that r Is significantly less than eero,

respectively. Again, we assume the loss function to be a simple linear form,

0, T - ,

L<^) ( r )

[

(2) f Ciirl . r <i
,

L^^^r ) - ) ^ (9.2b.2)
L - r > ., Z y ,

I

^T (^> -5 0. r> 0.

C^-C , T > ,

where Cq and c^ are positive constants such that Ci - c^ > c_ and the prior

density for T be the same normal as defined In (a). Then the Bayes rule for

this problem Is obtained as follows:

First of all, we consider that the three-decision subset system

"O* l^'*^^» v^ : r >A , w^: r <- a , (9. 2b. 3)

can be expressed as the restricted product of two component two-decision subset

systems like that of the previous problem in (a) , namely

Component system for + T : w^ : T < A , w^ ! "C > ^

Component system for - X : w~ : -t:<A, "i
• - T > ^ .

(9. 2b. 4)
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Thus

w Wp r. w]^ , Wj^ - w^ r» wj^ , w^ - Wq r> w^ • (9. 2b. 5)

The intersection of w n w~ - hence is excluded. Each of the main

decisions is equivalent to two Joint component decisions

dp to dp with dg ,

d^ to d^ with dp , (9. 2b. 6)

d2 to dg with d^ ,

where d" is the decision r6 w , cX +, -. i - 0, 1.

Second, if we put ^^i
" ^i

" ^q and k^ - c^ , the loss for the main

decisions can be expressed as the sums of losses for its component decision

given by the two-decision loss function (9.2a.l) in (a). Any decisions rule

( t ) for the three-decision problem can also be expressed in terms of

two component two-decision rules. For this purpose it is convenient to first

reexpress the two-decision function (t) in the two-element vector form

( t ) -
[ 0Q(t) 0^(t) ],

wiiere 0Q(t) 1 - (t) and 0j^(t) - (t). In this form the bayes rule

(t) of (a) appears as

( (1 ) , t < t^ ,

0*( t ) -

1(0 1 ) , t > t^ . (9. 2b. 7)

With this vector notation for the two-decision function and the components

of the three decisions, we can write -

0^^^t) -
t 0^Q^(t) 0^J^t) 0^^\t) ]

- [ 0j(t) 0~(t) 0^(t) 0Q(t) 0j(t) 0j[(t) ] , (9.2b.8)

where 0.(t) 0, or 1 denotes the not making or making of decision d. ,

o( - +, -, i - 0, 1.

From the result of (a), the component solutions are
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,(10). t < t^ ,

^ ( 1 ) , t > t^ ,

(1 ) , -t < t,

(9.2b. 9)

0* (t) - j
J'

( 1 ) , -t > t^ .

: Since 9^(t) - I only if t > t^
^i*^^)

- 1 only if t > -t^, and t^ is

positive ( from kj^ > k^ ) we have 0jl(.t) 0j^*(t) - for all t.

The required Bayes rule is given by

0^*^t) - [ 9^Ut) 0n:(t) 0j(t) 0o;(t) 0-it) 0^;,(t) ]'0* 0*

(10 0) ,

(010) ,

(001) ,

-it'

( t < t^
j

( t > -t^ ) - t < t^ ,

( t > t^ ) ( t > -t^ ) - t > t^ , (9.2b.l0)

( t < t^ ) ( t < -t^ ) - t <-t^ ,

where the significant t ratio t^ - t^( k, v, > ) is the same as that of (a)

(2)
with the loss ratio now given by k - (Cj^ / c^ ) - 1, and where ^ (t) - or 1

denotes the not making or making of the decision d.,i-0,l,2.

Given N - n(n-l)/2 t(c) A.~>8ymmetric multiple comparisons problem.

statistics of the form

t
I

with non-centrality parameters of the form

F

where N denotes the set of pairs | 1,2; 1,3;

A common multiple comparisons problem is that of choosing between the three

decisions

pq

pq

p "^q rp-^.

( V- - U ) / or^ -^

pqfeN, (9.2c. 1)

pq e N, (9. 2c. 2)

, .; (n-l),n j .

d : *' '^ w ,

pq pq pq

d : X 6 w .

pq pq pq

d : T 6 w ,

pq pq pq

(9.2c. 3)
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simultaneously for all pq £ N, where

„0 . l-r I < A w^ : T >A , w^ : r < -A. (9. 2c. 4)

Under a generalizations of the linear additive loss functions and normal

prior density used as before, the losses are defined as the sum of losses (9. 2b. 2)

for each of the component decisions involved; that is

L<»>(T) - L(">(T,d^) - E l(2) (T ). jJ-0.
1. 2;

i - 0, 1, ... , M-1,

where M - NO. of multiple comparisons subsets, (for example, if n-3, M-19 ).

From the additive losses assumption it follows that the average risk for

any decision rule 0^"^t) -
[ 0^J^(t) ... 0^1 (t) ] may be expressed as

the sum of average risks for component three-decision rules

0^**^) - [
0P''(t) 0P*^(t) 0P^(t) ], (9.2c. 6)

provided again that the component rules are compatible. Thus we can write

A ( ^^ , 0^"M - 21 A (t^. 0P^(t) ). (9.2C.7)

pqcN

As before, the Bayes rule

0^;^t). [ 0^;>(t) ... 0^lit) ] ,
.

for the multiple comparisons problem is formed by the products

<»^^i(t) - TT l»^\(5) . Xt -0,1.2, (9.2C.8)
^

pq€ N j"-* ^^

pq '
" ;/

of the elements of the Bayes rules 0^^ (t) minimizing

A ( f^ ,
0P*l(t) ), pqeN

,
(9. 2c. 9)

;
.

pBovided these are compatible. This is minimized by

r ( 1 ) , ( t' < t^ ) - ( t < t^/R ),
pq * pq "

0" (t) - {(010). ( t' >t^ ) - ( t > ^J"^ >• (9. 2c. 10)
* pq " pq

< 1 ) , ( t' <-t^ ) - ( t^ c -t^/R ),
pq * pq *
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2
^'^

2 2
where t' - R t for all pq € N , and R - v'/[ v * 21 t / (1+/)],

pq pq i,2

v' - V + n - 2.

The Bayes rule for the multiple comparisons problem Is given by the sdmul-

taneouB application (9. 2c. 8) of all N - n(n-l)/2 of the three-decision Bayes

rules (9. 2c. 10).

9.3 Example of Bayes rule:

Suppose that n samples of yields have been obtained for n new treatments.

For each and every pair (a,b) of treatments it is required to decide whether a

can be recommended as the superior, whether b can or whether to withhold re-

commendations on both. The loss ratio c being the same for all pairs, and are

additive in giving the losses for each of the joint decisions to which they con-

tribute. Risks are to be averaged with respect to a normal independent prior

density for each of the means f^i> f^o* **' * f^
each with the same mean and

2 2
same variance > o" / r .

The required decision rule is then given by the simultaneous application '

(9. 2c. 8) of (9. 2c. 10) where t^ - t^( k, v', V^ ) with k - c-1 and v'-vfn-2

n(r-l) + n - 2 and where t' can be obtained by analysis-of-variance type
pq

steps as follow: Put S^ , S , S' and S for the treatment sum of squares,
t pq pq e M »

the sum of squares for the pq difference, the residual sum of squares for the

pq difference and the error sum of squares

" -2 - 7

respectively, where C is the correction term ( ^ ^ *j^ ) / n r .

i'^ j-1 J
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t 2
Let s' denote the pooled estimate of cr obtained as

pq

s'^ - ( S + S' / ( 1 T^ )] / v'.
pq e pq

Then t' may be obtained as the square root of the variance ratio
pq

f^ - S / s'^ ,

pq pq pq

t' Is given the same sign as x - x .

pq P q

A more convenient rule for application can be obtained by expressing the

inequalities t' < t^ In the form d | d^ where d^ is a least significant

2
value for the difference d - x - x . From t' - t . we get

pq P q pq *

tj - S / s'^ - v' S / [ S + ( S^ - S ) / ( 1 + V^ )]
* pq pq pq e t pq

^* I s^ -^ ( s^ - Sp^ ) / ( 1 + r2 )] o v- Sp^

s I v' + tW ( 1+ r )] - t^ [ s^ + s / (1+ if^ )].
DO * " e t

.(100),

- 1 ( 1 ),0r(t) -

U 1 ).

2 2 2
But S - r d / 2 , hence this gives d-d. where

pq pq ' * pq *

1/2

^* - It tj [ s^ + s^ / ( 1 + ^^ >i / [ V + tj / ( 1 + v^ )]}

From this and a check on signs it follows that the multiple comparisons Bayes

rule Is given by the simultaneous application of the rules

I pq' *»

pq *

d < -d..
pq *

2
Note that In the complete absence of prior criteria for choosing y > ve

2
can obtain an estimate of it from the variance ratio F S / (n-1) s , where

2
8 is the pooled within-sample variance estimate

3 - ZT 2 ( x - X ) / n(r-l).
1-1 j-1 ^-'

As for choosing an error-weight ratio k, a usful approach will be to choose

a k ratio which would tend to give the same order of t value as would ha\>e seemed

desirable in a corresponding two treatment-experiment situation in the past.
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X Monte Carlo Studies of Fisher's LSD

Since many comments have been made about protection against type I error

and power under various test rules, Monte Carlo studies of Fisher's LSD under

a completely randomized design experiment were performed using digital computers.

Although other definitions are possible, herein one defines the protection

against type 1 error by the ratio:

100 ( number of correct 2-mean decisions when
f^^

" N'j)

Protection '

———
Total number of 2-mean decisions when Mj " ^4

One defines the power of the test by

100 ( number of correct decisions when M ^^
+ H 4 )

Power —
Total number of 2-mean decisions when p . + |x.

Following are some illustrations relevant to table 10.1 with sample size .

equal 10 observations in all Instances.

(1) Sampling of N(5,4), N(5,4), N(5,4), N(7,4)and N(7,4) simultaneously,

denoted as N(5,5,5,7,7;4). In this experiment, there are ( „ ) 10 decisions

to be made about the null hypothesis H„ : ( h^ " H^ ) for If J " 1.2,3,4,5,

1 )' J« given equal variance. It is known that 4 of the 10 decisions should be

decisions to accept H. , and 6 of them should be decisions to reject it because

one knows the true population mean. Hence after a sufficient number of sets

of samples, it is possible to obtain an estimate of the probabilities of type I

error and type II error on a per-decision basis as defined above. After simu-

lations of 672 sets of samples, the protection was 96 per cent when > .05 and

the power was 52 per cent.

(2) Sampling of N(5,4), N(5,4), N(5.5,4) N(7,4) simultaneously

is denoted by N(5, 5, 5. 5, 5. 5, 6, 6, 6. 5, 6. 5, 7, 7; 4). There are ( ^^ ) - 45 possible

decisions in testing the pairwise equality of the population means. Because one
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knows true means of the population, it is clear that there are exactly 5 cases

for which H. - p, for all i ^ j, and AO for which p^ -
f^

for all i ^ J,

after the simulation it was found that the protection against type I error was

96 per cent for s^ - .05 and the power was 18 per cent.

(3) Samplelng of N(6,6), N(7,6), N(8,6), N(9,6).and N(10,6) simultaneous-

ly denoted by N (6, 7, 8, 9, 10; 6). None of the true means are equal. After 200

sets of samples we found the power of the test is 40 per cent and 51 per cent

for o*. - .05 and ex - .10 respectively. >

The results shown in table 10.1 gives some interesting evidence regarding

the comparative powers of these to detect the true population difference between

means under what could represent practical conditions. From the table, there

is no support for the fear that Fisher's LSD test lacks protection against type

I error. As expected, the power of the test depends on the actual differences

which exist among the true means ^. and also depends on the size of the popu-

lation variance.



Table 10.1 Results from a Monte Carlo Study of Fisher's LSD Method of

Making Multiple Comparisons for a Type I Error Experiment
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Experimental Situation

Nl5,5,5.7,7 4]

6)

8J

10}

121

14}

16)

Correct Decision %
s s

(NO^ in Paratheses are NO^ of Decisions)

When^." /A (protection) When/i" /^ (power)

o^ - .05 o( = .10 o( = .05 o( - .10

( 2688) 96 ( 848) 90 ( 4032) 52 ( 1272) 69

( 800) 96 ( 800) 90 ( 1200) 39 ( 1200) 53

( 800) 95 ( 800) 91 ( 1200) 26 ( 1200) 37

( 800) 96 ( 800) 92 ( 1200) 19 ( 1200) 30

( 800) 96 ( 800) 92 ( 1200) 15 ( 1200) 24

( 800) 96 ( 800) 93 ( 1200) 14 ( 1200) 22

( 1928) 97 ( 800) 93 ( 2892) 13 ( 1200) 17

N[5.5.5.5,5,5,

7,7.7,7 4)

6)

8)

10)

12]

14)

16)

(11298) 95 ( 4263) 89 (12912) 57 ( 4872) 71

( 4200)

( 4200)

( 4200)

( 4620)

( 4725)

( 6300)

96

96

97

96

97

97

( 4200)

( 4200)

( 4200)

( 4620)

( 4725)

( 4200)

90

92

93

92

93

93

( 4800)

( 4800)

( 4800)

( 5280)

( 5400)

( 7200)

38

27

20

17

14

12

( 4800)

( 4800)

( 4800)

( 5280)

( 5400)

( 4800)

53

39

31

25

23

21

n[5,5,5.5,5.5,6,6,
6.5,6.5,7,7 4j

6)

81

lOj

12]

14)

16)

( 1000)

( 1000)

( 1000)

( 1000)

1000)

( 1000)

( 1000)

(

96

96

97

96

96

96

98

( 1000)

( 1000)

( 1000)

( 1000)

( 1000)

( 1000)

( 1000)

92

92

93

93

93

93

96

( 8000)

( 8000)

( 8000)

( 8000)

( 8000)

( 8000)

( 8000)

20

13

9

8

7

6

4

( 8000)

( 8000)

( 8000)

( 8000)

( 8000)

( 8000)

( 8000)

29

22

15

13

11

10

8

Nf5,5,6,6,7.7,
8,8,9,9 4)

8J

10)

12)

14)

16)

( 1000)

( 1000)

( 1000)

( 1000)

( 1000)

( 1000)

( 1000)

95

96

95

95

95

95

94

( 1000)

( 1000)

( 1000)

( 1000)

( 1000)

( 1000)

( 1000)

90

91

91

89

90

91

90

( 8000)

( 8000)

( 8000)
8000)

( 8000)

( 8000)

( 8000)

(

56

44

34

31

25

23

20

( 8000)

( 8000)

( 8000)

8000)

( 8000)

( 8000)

( 8000)

(

64

53
45

40

34

32

30
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Correct Decision %

(NO* in paratheses are NO* of Decisions)

Experimental Situation When \i' y . (protection) When M." y (power)

a " .05 = .IC a =
J

.05 a " . 10

N[5.5,5,5,5.5,5.5 ,5.5,

5.5,6,6,6,6,6.5 ,6.5,

6.5,6.5,7,7,7,7 ; 4] ( 4500) 95 ( 3000) 92 (16000) 23 (10000) 30

, 6] ( 6000) 96 ( 6000) 92 (32000) 13 (32000) 21

; 8] ( 6000) 96 ( 6000) 92 (32000) 10 (32000) 18
;io] ( 5250) 97 ( 5250) 93 (28000) 7 (28000) 15

12] ( 3000) 97 ( 3000) 93 (16000) 6 (16000) 12

,14] ( 3000) 97 ( 3000) 92 (16000) 6 (16000) 10
16] ( 6000) 98 ( 6000) 95 (32000) 5 (32000) 9

N[5.6,7.8,9
, A] Not Applicable ( 9030) 52 ( 2000) 61

, 6] II ( 2000) 41 ( 2000) 51
8] II ( 2000) 35 ( 2000) 44

10] II ( 2000) 25 ( 2000) 34

12] M ( 2000) 23 ( 2000) 32

14] II ( 2000) 20 ( 2000) 29

16] II ( 6510) 16 ( 2000) 26

N[5,5,7,7,9,9,
11,11,13,13 ; 4] ( 1000) 95 ( 1000) 91 ( 8000) 85 ( 8000) 90

; 6] ( 1000) 96 ( 1000) 90 ( 8000) 76 ( 8000) 82

; 8] ( 1000) 96 ( 1000) 92 ( 8000) 72 ( 8000) 78
;io] ( 1000) 96 ( 1000) 90 ( 8000) 65 ( 8000) 73

;12] ( 1000) 94 ( 1000) 89 ( 8000) 61 ( 8000) 69
;1A] ( 1000) 95 ( 1000) 90 ( 8000) 57 ( 8000) 65

;16] ( 1000) 95 ( 1000) 90 ( 8000) 54 ( 8000) 62

N[5.5,5.5,5,5,5,

5.5,5,8,8,8, 8.

8,8,8,8,8,8 4] ( 9000) 94 ( 9000) 90 (10000) 92 (10000) 96
6] (17550) 95 (17550) 90 (19500) 78 (19500) 86
8] (13500) 95 (13500) 89 (15000) 65 (15000) 76

10] (17640) 95 (17640) 90 (19600) 55 (19600) 67
12] ( 9000) 95 ( 9000) 90 (10000) 49 (10000) 63
14] ( 9000) 95 ( 9000) 90 (10000) 45 (10000) 58

1

16] (16380) 95 (16380) 90 (18200) 37 (18200) 50



36

Experimental Situation

Correct Decision %
s s

(NO— In paratheses are NO— of Decisions)

VJhen u." w (protection) When \i " p (power)

a = .05 a = .10 a » .05 a - .10

N[5,7,9,ll,13 A]

,
6]

8]

10]

12]

.14]

,16]

N[5,5,5,6,6.5,7,7. 5,

8,8.5»9,9.5 A]

6]

8]

10]

12]

14]

16]

Not Applicable

Not Applicable

( 5960)

( 2000)

( 2000)

( 2000)

( 2000)

( 2000)

( 2000)

(16920)
9000)

9000)
9000)

9000)

9000)

( 9000)

77

77

70

68

62

56

50

A8
Al

34

28

23

19

18

( 2000)

( 2000)

( 2000)

( 2000)

( 2000)

( 2000)

( 2000)

( 8100)

( 9000)

( 9000)

( 9000)

( 9000)

( 9000)

( 9000)

88

82

76

73

70

65

63

57

50
A2

38

33

28

26
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The main concern of this report is the synmetric multiple comparisons

problem of simultaneously testing the difference between several sample

(treatment) means taken in all possible pairs. Various test procedures for

solving this problem are discussed and illustrated. These include: Fisher's

LSD (Least Significant Difference Rule) .which is used whenerer the observed

F-ratio is greater than the corresponding tabulated F value at a predetermined

oc level of significance in an analysis of variance setting; Student-Newman-

Keuls NMR (Multiple Range Test) and Duncan's DMR (New Multiple Range Test),

which are based on multiple protection principle, instead of working on ( 2 )

pairwise comparieon for all possible pairs, compare the range of the treatment

means with the test statistics; Tukey's TSD (Significant Difference Rule),

using the concept of estimating simultaneous confidence intervals for the

difference between all pairs of n treatment means; Scheffe's SSD (Significant

Difference Rule) based on contrast, which is a linear function of a set of

"true means" or "true main effects" such that the summation over all the known

constant is equal to zero, use the test statistic to declare any estimated con-

trast significant greater than zero, less than zero or not significantly from

cero; recently, Duncan developed a Bayesian approach to the multiple comparison

problem, based on the minimum average risk, starting from two related Student-t

problems, the Bayesian comparisons rule follows. A Monte Carlo estimation of

protection and power of Fisher's LSD test has been performed on an IBM 1410

computer, a complete set of its results is also presented.


