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SUMMARY

The primary purpose of this investigation was to determine

if model reinforced concrete beams could be used experimentally

to predict the behavior of prototype beams in flexure and tor-

sion. The results of the model tests were compared with

Whitney's theory for the ultimate strength of reinforced con-

crete beams in flexure and with Lessig's theory for the ultimate

strength of reinforced concrete beams in torsion. The flexure

specimens contained only longitudinal reinforcement while the

torsion specimens contained longitudinal and transverse rein-

forcement.

The flexural experiments were designed to allow a statis-

tical analysis of the data for certain cross-section-span com-

binations. The torsion experiment was designed for a range of

cross-section-m combinations where m is the ratio of tranverse

force to longitudinal force in the reinforcing steel.

The results from the flexure tests agreed very well with

Whitney's theory. The results from the torsion tests did not

agree with the ultimate strength predicted by Lessig's theory.



INTRODUCTION

The use of models in research and as an aid to design has

become increasingly important in recent years. As will be

shown later, it has been demonstrated that the behavior of

structures can be investigated both in the elastic and inelas-

tic ranges through the use of model analysis. It was the pur-

pose of this study to determine whether or not results from

the tests, performed by the writer, on small-scale models of

reinforced concrete beams could be used to predict, with suf-

ficient accuracy, the behavior of full-scale reinforced con-

crete beams as determined from theoretical analysis based on

well established relationships between applied load and beam

behavior.



REVIEW OF LITERATURE

Whitney's (1) method for calculating the ultimate strength

of reinforced concrete beams in flexure has seen wide use since

its development. It serves as a firm basis for comparing the

ultimate strength of model beams tested in flexure. In 1961

Onesti (2) used Whitney's method for computing the ultimate

strength of plaster models.

Until 1959 a reliable theory for predicting the ultimate

strength of reinforced concrete beams in torsion was not avail-

able. Lessig (3,4,5) developed equations based on measured

parameters of the tested specimens to calculate the strength

of a beam in pure torsion and in combined bending and torsion.

Lessig used prototype beams to develop this theory. Fan (6)

and Cardenas (7) used direct model analysis to investigate

Lessig' s theory with fairly successful results.

Burton (8) in 19 64 developed a technique to study small

scale models of prestressed concrete structures in the inelas-

tic range. To achieve this objective, his experiments were

directed toward the design, construction, and testing of small

scale models of pretensioned, prestressed concrete beams. In

order to test models of such a nature in the inelastic range,

it was desirable that as close a model-prototype relationship

as possible be maintained. To meet this requirement, it was

necessary that the materials used in the model faithfully re-

produced the behavior of the materials in the prototype struc-

ture. It was therefore necessary to find a substitute material
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for use in the model which would simulate the concrete of the

prototype structure. It was concluded that a mix consisting

of plaster and Ottowa sand exhibited the required compressive

strength.

In a study in 1964, Chao (9) investigated the application

of small scale model analysis to prestressed concrete. The

first part of this paper was a theoretical study of similitude

requirements for determining ultimate flexure strength by

models using Whitney's method, followed by a presentation of

experimental results. The second part concerned the use of

model beams as a device for investigation of the relationship

between the ultimate flexural strength of prestressed beams and

the degree of prestressing using both under-reinforced and over-

reinforced prestressed beams. The results from this investiga-

tion were insufficient to draw definite conclusions.

In 1964, Fan (6) presented the results of a study on model

reinforced concrete members in simple flexure and torsion. In-

cluded in this investigation were numerous control tests in

connection with plaster mix design and the properties of the

reinforcing steel. In addition, this series of studies also

dealt with rectangular reinforced plaster model beams in pure

bending and pure torsion. The experimental results of the

bending tests compared quite well with the predicted behavior

according to Kognestad's theory (10).

Cardenas (7) in 1965 studied the behavior of rectangular

reinforced plaster model beams subjected to combined bending
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and torsion. The test specimens which contained both longitu-

dinal and web reinforcement were analyzed by Lessig's (3,4,5)

theory. The test results for plain . .. longitudinally rein-

forced specimens tested in torsion were compared with the

elastic and p astic theories. The experimental results agreed

reasonab"- with >...eoretical results calculated using

Les. g s theory. The experimental results did not agree with

either the plastic or the elastic theories.

Thus, in its brief history, model analysis of reinforced

concrete members has become a useful tool for the structural

engineer.



MATERIALS AND PROCEDURES USED TO DETERMINE MATERIAL AND SPECIMEN
PROPERTIES

The physical properties of the model materials used were

determined in order to provide a basis for a theoretical analy-

sis with which to compare the experimental investigation. These

properties are used in Whitney's theory (1) for ultimate flex-

ural strength and in Lessig's (3,4,5) theory for ultimate tor-

sional strength of concrete beams.

The mix used as a model substitute for concrete in this

investigation consisted of 40 percent Ultracal 30, 20 percent

Standard Ottowa Sand (20-30) , and 40 percent local crushed lime-

stone between the No. 8 and No. 16 sieves. The weight of water

added was 33.3 percent of the weight of the Ultracal 30. The

Ottowa sand was used in the air-dried condition.

The aggregate used was 3/8 in. Zeadale limestone. Two

different shipments of aggregate were required. One was used

to determine the properties of the mix and was used in the

flexure tests while the second was used for the torsion tests.

The absorption of the first shipment was 3.9 percent while for

the second shipment it was 4.1 percent.

Procedures for Fabricating Specimens for Determining Material
Properties

The mixing procedure consisted of oven-drying the aggre-

gate for 4 8 hours followed by cooling to room temperature. The

aggregate was then immersed in water for 24 hours before the

specimens were cast. Immediately before the mixing, the excess



water was taken off leaving the rock plus the absorbed water

plus one-half the mix water. The ingredients were placed in

a mechanical mixer and mixed for 30 seconds then the remaining

water was added and mixed for two minutes. The specimens were

fabricated in steel forms and covered with saturated cloths. At

the end of one hour the specimens were removed from the forms

and covered with saturated cloths for 23 hours. After the 24

hour curing period the specimens were tested.

Procedures for Strength Testing of Model Test Specimens

Compression and modulus of rupture samples were cast. Six

specimens were cast horizontally with available steel forms

having dimensions of 1 x 1 x 4-in. Three specimens were tested

in compression and three in flexure from each batch. Three

batches were tested to determine the uniformity of properties

from batch to batch. The modulus of rupture was obtained using

a third-point loading as shown in Figure 1.

0.12

ms

1.25- 1.25 *H 1.25 "-**)}"•"" O.i:

FIGURE 1. LOADING CONFIGURATION FOR SPECIMENS TESTED IN
FLEXURE



Presentation of Data Obtained From Strength Testing of .Model
Test Specimens

A representative stress-strain curve was obtained from the

nine specimens tested in compression. The strains were averaged

for each stress level and the resulting stress-strain curve is

shown in Figure 2 with a stress-strain curve for 3,000 psi con-

crete (6). Although the compressive strength of the plaster

mix simulated that of 3,000 psi concrete, the stress-strain

curves are not similar. The data are shown in Table 1 and the

results of an analysis of variance are shown in Table 2 for the

compression specimens and the modulus of rupture specimens.

The results of the F-ratio test, for both compression and mod-

ulus of rupture tests, indicate that the batch-to-batch varia-

tion is not significantly greater than the within-batch varia-

tion. Thus, the specimens from all batches, for either test,

can be treated as though they all came from the same batch.

Properties of Wire Used to Simulate Reinforcing Bars

The longitudinal reinforcement consisted of #6-32 threaded

rod. The first number in the rod designation was the nominal

diameter of the rod and the second number was the number of

threads per inch. The tensile area was computed as 0.0075

square inches. As mentioned by Fan (6), the threaded rod as

obtained from the producer did not exhibit a definite yield

point. Therefore, it was necessary to anneal the rod before

using it. Approximately 35 rods were placed on a steel frame

with nuts on each end of each rod to hold the rods in place.
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TABLE 1

RESULTS FROM COMPRESSION AND MODULUS OF RUPTURE TESTS

Test
Specimen Batch Number

1

Compressive 1 2855 3000 2710

Strength, 2 2690 2800 2830

osi. 3 2790 2845 2900

Modulus of 1 414 427 402

Rupture, 2 439 377 389

psi. 3 389 452 439
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The reinforcement was placed under slight tension and placed in

an oven at 9 50 degrees F for two hours.

Two shipments of the longitudinal reinforcement were re-

quired. Three specimens from each shipment were sampled after

they were annealed. A 10-in. gage length was tested by measur-

ing the elongation of the rod at certain loads using a dial

gage. Using the method of least squares, a straight line was

fitted through the linear portion of the stress-strain curve

for each sample. The modulus of elasticity and the yield

point were determined for each sample tested. The three values

for the modulus of elasticity and yield point respectively were

averaged. The idealized stress-strain curves were constructed

from these average properties. The actual stress-strain curve

for the first sample tested for the reinforcement for flexure

beams is shown in Figure 3 along with the idealized curve for

for this shipment. The actual stress-strain curve for the first

of three samples tested and the idealized stress-strain curve

for the reinforcing steel used in the torsion beams are shown

in Figure 4

.

The transverse reinforcement for the torsion beams was

obtained from a local wire warehouse. For the 1 x 2-in. beams,

No. 15 gage smooth black annealed wire was used. Number 15

gage bright basic wire was used for the transverse reinforce-

ment in the 1.41 x 2.83-in. beams. The transverse reinforce-

ment was used as obtained. The stress-strain curves for these

wires were obtained using the same procedure as for the longi-
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tudinal reinforcement. The stress-strain curve for a sample

of the black annealed wire is shown in Figure 5 along with the

idealized curve. The stress-strain curve for a sample of bright

basic wire is shown in Figure 6 along with the idealized curve.
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FLEXURE TESTING PROGRAM

Review of Ultimate Strength Theory

In 1937 Whitney developed a method for ultimate strength

design and analysis of reinforced concrete members. This

method has seen wide use since its acceptance in 1955 by the

American Concrete Institute because of its simplicity and

accuracy. The assumptions made by Whitney (1) are as follows:

(1) The stress-strain relationship and the distribution

of compressive stress in the section is non-linear. This com-

pressive stress distribution is replaced by one that is a sim-

ple rectangle.

(2) The uniform compressive stress in the assumed rectan-

gular stress block is 0.85 f
t

"c*

(3) The total force and the location of the neutral axis

of the rectangular stress block is assumed to be the same as

the actual stress block.

The internal forces in the member at failure are shown in

Figure 7. The depth of the assumed compressive stress block

is denoted as "a" with "b" being the width of the member.

For the cross-section to be in equilibrium the compression

in the concrete must equal the tension in the reinforcing

steel. Therefore,

0.35 f" ab = A f (1)
c s y

with p = A /bd and e = f /0.85 f . Solving equation (1) for

the depth of the compression zone, a, gives

a = epd
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and the lever arm for the internal resisting moment as

(d -
f)

- d( i _ 2|d).
(2)

Mtheo

'

1

0.85 f

-Om

a/2
C = 0.85 f'bd

2

c

c = d - a/2

-e* T = A f
s y

FIGURE 7. DISTRIBUTION OF INTERNAL FORCES AND STRESSES AT FAILURE

When failure is caused by yielding of the tension reinforcement,

the ultimate moment is

M, . = A f (d - =) .theo s y 2
(3)

Equation (3) allows the ultimate flexural strength of a beam

to be calculated if the beam dimensions and the strength of the

steel and concrete are known.

According to Hognestad (10) , failure at ultimate load by

crushing the concrete occurs when the tensile steel ratio

exceeds

0.43 f' 0.50 f'

p = , £_ tO p. =
?
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for concrete not exceeding f = 5,000 psi . Using Whitney's

assumption, a balanced steel percentage of

f

Pb
= 0.456 -^- (4)

gives
,

f bd
M.. = —£, (5)theo 3

for the maximum moment in a beam with balanced reinforcement.

For an over-reinforced beam, Whitney suggests limiting p

to the value of

0.40 f'

Pmax " f
— (6)

y

to prevent the use of beams whose failure in compression would

be sudden and possibly catastrophic. Substituting p for p

of equation (3) yields

Mtheo " °' 306 f
c
bd2 (7)

for the ultimate moment of an over-reinforced concrete member.

Design of Experiment for Flexure Tests

The experimental program consisted of testing 18 model

beams. The beams were of two sizes, namely 0.71 x 1.41-in.

and 1 x' 2-in. Three span lengths were tested for each of the

cross-sections. These were: 18 in., 27 in., and 36 in. Three

specimens were fabricated for each cross-section-span combin-

ation. The percentage of reinforcement was constant and such

that the beams were under-reinforced in order to induce

yielding of the steel as the mode of failure. The experimental

design is shown in Table 3.
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TABLE 3

DESIGN OF EXPERIMENT FOR FLEXURE TESTS

Cross
Section Span Length, in,

18 27 36111
0.71 x 1.41-in. 2 2 2

3 3 3111
1 x 2-in. 2 2 2

3 3 3

Results from Quality Control Tests

For each beam tested, four quality control samples were

cast. Two were tested in compression and two in flexure. The

results of the tests for quality control are shown in Table 4,

for compressive strength, and in Table 5, for modulus of rupture.

Confidence limits were computed for batch means using the rela-

tionship x ± ts— using the value for t with 17 degrees of free-

dom and a/2 = 0.025.

The upper and lower compressive strength values for indi-

vidual batch means, shown at the bottom of Table 4, are 2,710

psi. and 2,900 psi. The average compressive strength values

for the 18 batches range from 2,710 psi. to 2,870 psi. which

are within the range of values for upper and lower compressive
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strength required for the assumption that the values obtained

are no different than those that would have been obtained if

all the specimens had come from a single batch for an alpha

level of 0.05.

A comparison of upper and lower values of modulus of rup-

ture, for individual batches with average values for the 18

batches, shown in Table 5, leads to the same assumption as that

for compressive strength. That is, all 18 batches can be as-

sumed to yield modulus of rupture results which are no different

than the results that would have been obtained if all test

specimens had come from the same batch. These assumptions are

further born out in the Analysis of Variance computations shown

in Table 6, where batch-to-batch differences cannot be differ-

entiated from within-batch differences when tested at an alpha

level of 0.05.

The compressive strength of the quality control samples

was close to that of 3,000 psi. concrete but the modulus of

rupture was slightly higher. Greater variation in the

flexural strength than in the compressive strength of the con-

trol samples was expected.

Procedures Used in the Flexure Tests

Figure 8 shows the two cross-sections tested. The third-

point loading configuration is shown in Figure 9. Figure 10

shows a beam in the testing machine with external stirrups in

place. The external stirrups were used on the outer thirds of

each specimen to prevent the beam from failing in shear. They
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ta- .71—

j

1.41

fc

50^J .21

(a) Typical cross-section for 0.71 x 1.41-in. beam

25

.30

(b) Typical cross-section of 1 x 2-in. beam

FIGURE 3. TYPICAL CROSS-SECTION OF FLEXURE SPECIMENS
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-<- •L/3 • L/3 *~« L/3

^w

FIGURE 9. LOADING CONFIGURATION OF FLEXURE SPECIMEN

FIGURE 10. FLEXURE SPECIMEN IN TESTING MACHINE
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were made from two 3/8 in. wide steel plates fastened together

by 3/16 in. stove bolts to form a box stirrup which was then

bolted on the specimen as shown. Loading pads 1/4 in. wide

were placed under the loading points to prevent local crushing

of the concrete. The applied force required for the beams to

fail was measured by a load cell.

Analysis of Results from Flexure Experiment

The ultimate load cell readings are shown in Table 7 for

the reinforced beams tested in flexure. An analysis of variance

was performed on the load cell readings and is also shown in

Table 7. The analysis of variance indicated that cross-section

area, A, contributed significantly to differences observed in

load cell readings. Span length, L, did not. The interaction

term, AxL, again contributed to observed differences.

The analysis indicates that a significant part of the

variation in the load cell readings can be explained on the basis

of the cross-sectional area, A. This, of course, was anticipated

on the basis of well known theory concerning the behavior of

reinforced concrete beams subjected to flexure. That is, according

to Whitney, the theoretical failure moment of an under-reinforced

concrete beam is:

M
theo = P bd f

y
(d - |)

or

Mtheo = P A f
y
(d - |)

where p is the percentage reinforcement and A is the cross-

section area of the beam.
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TABLE 7

ANALYSIS OF ULTIMATE LOAD CELL READINGS OF FLEXURE BEAMS

Span Length, in.

Cross
Section

18 27 36

Ultimate Load Cell Readings

225 165* 110

.71 x 1.41-in. 230 175 105

205 140 100

Average 220 160 105

Standard Deviation 13.23 18.03 5.00

Coefficient of Variation 6.02 11.28 4.76

625 400 310

1 x 2-in. 600 410 280*

635 410 305

Average 620 407 298

Standard Deviation 17.92 5.76 16.09

Coefficient of Variation 2.85 1.42 5.39

(continued on next page)



30

TABLE 7

ANALYSIS OF ULTIMATE LOAD CELL READINGS OF FLEXURE BEAMS

(continued)

Source df SS MS F F Sign,
a = .05

Cross Section, A 1 352,800 352,800
3^^^ 18.50 Yes

Span Length, L 2 146,033 73,016 i7'267
19 - 00 No

A x L 2 34,534 17,267 91 3.89 Yes

Spec, in
L x A cells 12 2,283 190

Total 17 535,650

*Remade since the plane of failure was located outside the

middle third.
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The lack of significance of the length in explaining the

variation in the load cell readings was also anticipated since

the moment capacities of beams of differing cross-sectional

areas are not closely related to the lengths.

The amount of moment present for a given loading is

however dependent on the length of the beam. Therefore, for

beams with the same cross-sectional area, but of different

length, the load cell readings would be expected to decrease

as length increased.

However, the significant A x L interaction indicates clearly

that the effect of beam length is not the same for 0.71 x 1.41-in.

beams as it is for 1 x 2-in. beams. This is evident: by the

fact that with increasing beam length, the differences in

load cell readings for beams of different cross-section become

smaller. At lesser lengths, the load cell readings diverge

reflecting an increasingly greater effect of cross-sectional

area for given length.

The physical properties of the 18 beams tested in flexure

are shown in Table 8 along with the measured and theoretical

moments. Beams 1-.7-27 and 2-1-36 were remade since failure

occurred outside the middle third due to insufficient external

stirrups. The loads obtained for the remade specimens are marked

by an asterisk. The theoretical failure moments were less than

the measured ultimate moments in all but two cases. The 1 x 2-in.

beams were closer to the predicted failure moments than the

smaller beams. Figure 11 shows the crack patterns exhibited
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FIGURE 11. FLEXURE SPECIMENS AFTER FAILURE
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by the beams tested. The flexure beams demonstrated the expected

tension crack between the two load points.

Figure 12 is a graph of the average load cell reading versus

the span length. The plot demonstrates the existance of sig-

nificant interaction since the difference in results, for the two

cross-sections, are not the same for each of the three span

lengths.

In comparing the differences between the predicted load

cell reading by Whitney's method and the average load cell reading

from the flexure tests, a two-tailed "t" test was performed. The

value of t being calculated from the formula

x - p

t = — /~N~ (8)
s

where x = average of the load cell readings from flexure

tests in lbs .

,

v = theoretical load cell reading computed by

Whitney's method in lbs.,

s = standard deviation for individual observations,

and

N = 3, the number of specimens in each cell.

The computed value of t is shown in Table 9. For a probability

level of 5 percent, t becomes significant when it is greater

than 4.303. Only the results in cell 2-1-27 are significantly

different from the predicted results computed by Whitney's

method.
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TABLE 9

STUDENT'S T-TEST FOR SIGNIFICANT DIFFERENCES BETWEEN
OBSERVED AND CALCULATED RESULTS FOR FLEXURE SPECIMENS

Cross
Section 18 27 36

y 205.6 137.1 102.8
o

x 220.0 160.0 105.0

s 13.23 18.03 5.00

0.71 x 1.41-in. N 3 3 3

t . 1.88 2.20 0.74calc

t = .05 4.30 4.30 4.30
a

Sign. No No No

y 581.6 387.8 290.8

x 620.0 406.7 298.3

s 17.92 5.79 16.09

1 x 2-in. N 3 3 3

t , 3.71 5.65 2.64calc

t = .05 4.30 4.30 4.30

Sign. No Yes No
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Conclusions Based on Flexure Experiment

The quality control samples exhibited consistent physical

properties as shown by the analysis of variance for the compres-

sion and modulus of rupture specimens. The insignificant value

of the F-ratios indicate this fact and allowed the IS flexure

specimens, cast from separate batches, to be considered as if

they were from the same batch.

The results of the flexure experiments demonstrated con-

sistent results as shown by the analysis of variance of the load

cell readings. The two-way analysis of variance shown in Table

7, and the graph in Figure 12 demonstrate the significance of

cross-section ana span, and of interaction between the cross-

section and span.

The Student's t-test showed that there was no significant

difference between the mean value of the actual failure load for

each cross-section-span combination and the calculated value of

failure load for an alpha level of 5 percent with the exception

of the beams in cell 1-27. The 0.71 x 1.41-in. beams were

closer to the predicted load as demonstrated by the lower value

of t„. in the t-test. These results show that Whitnev's

method for predicting the ultimate strength of a beam in pure

flexure is satisfactory.



TORSION TESTING PROGRAM

Review of Lessig's Theory

In 1959 Lessig developed a method for calculating the

ultimate strength of a reinforced concrete beam in combined

flexure and torsion. According to Lessig, a beam subjected

to combined bending and torsion can fail in one of two modes.

In the first mode the inclined neutral axis intersects the two

vertical sides of the member which would indicate a high

flexure to torsion ratio. For a low flexure to torsion ratio,

the beam would fail in the second mode where the inclined

neutral axis intersects the two horizontal surfaces of the beam

as previously shown in Figure 13. Only the second mode of

failure will be presented since only torsion is under consider-

ation. The assumptions necessary to develop Lessig's theory

are as follows:

(1) The longitudinal and transverse reinforcing steel

which crosses the tension cracks reaches its yield point at

failure.

(2) The tension capacity of the concrete is neglected.

(3) The transverse reinforcement is uniformly spaced

throughout the test section.

(4) No external loads are applied within the test

section.

Referring to Figure 13, for pure torsion

M, = and V = 0.
b
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M,

M,

FIGURE 13. FREE BODY OF A RECTANGULAR REINFORCED CONCRETE
BEAM UNDER COMBINED BENDING AND TORSION
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The value of the external torsional moment vector along the

neutral axis is given by

C
M B M

theo'

The internal resisting moment consists of four parts.

1. Due to compression in the concrete, Figure 14.

M
l - ' f
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2 O

Then
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l
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+ C
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FIGURE 14. COMPRESSION ZONE AT FAILURE OF A RECTANGULAR
REINFORCED BEAM
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Therefore

pf p x - x 2

M, = -
,,

- / [x. + (
— —)y] dy

1 21
2 Q

1 p

or
2

v
PfC

r

P
r

2 ,
(X

I
X
2 - X

l>
(X

2 - X
l

}

2 „M = -n—- / [X
X

+ 2 y + ^ y ]dy
2 o K

Then
2

pf
2 2

(X
2

~ X
l

)

M
1

= —21— [x
x
p + (x

1
x
2

- x^p + 3 p]

or

2
"

p f
c 2 2

M
l

= —6I7-
(X

2
+ X

1
X
2

+ X
l>

'

Finally

2 2
(h + C

2 ) "2 2
M
i

=
<rr f

c
(x

2
+ x

2
x
i

+ x
i

}
•

(9)

2. Due to the longitudinal steel.

(x + x )

M
2 " A

s
f
y
[d

2 2 * "TT ' (10)

3. Due to the horizontal branch of the stirrups

Let cot a =

(c
2

- e
2
c
2

)

X + X
(b - -i-, -)
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(l - o
2
)c

2
or cot a =

2b - (x. + x„)

Then

(b - xjcot a (b - x, ) cot a . C_
M, - A f i

[ i (^) - a.]
'3 "vvy S

L
2

V

C
2

' "1 J
1
2

(b - x~)cot a (b - x. ) cot a . C„
+ A.f. , ^ 1 x (^-) - a,]

v vy S l
2

X

C
2

1
J

1
2

*

Substituting the value for cot a gives

(1-0
?
)C

2
. (b-x,)

2
+ (b-x

9 )

2

M
3 " Vvy SIT

J" { ? <1 " 9
2

)

,, h ,,,2 "
a
l

}
'

(11)
1 2 [2b - (x

1
+x

2
)

]

4. Due to the vertical leg of the stirrups.

C-0- (x + x ) C
M, = _|2- A

v
f
vy

[b-a
2 2

2
] j| (12)

Equating the internal and external moments

C
2 M,_ = M, + M + M + M„ (13)

1
2

theo 1 2 3 "4

2 2
t,~ (D + C~J "2 9

"T7-
Mtheo

= ^2 f
c
(x

2
+ X

2
X
1

+ x
l>

2 61
2

(x + x,) .

+ A
s
fyt d

2 --T^— 1 -q-

(1-6,)C? v, <b-x.)
2
+(b-x,)

2

+ vvy —^r-^^^~r- - ^
C
?
Q
7 (x, + x„) C

+ Vvy -T— [b ~ *2 ~ 2 1-TJ-
' < 14 >

From equation (13) , it can be seen that the internal

moment depends only upon the values of x , x , C and .
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The values of x, and x„ must be such that the internal
i 2

resisting moment is a minimum. Differentiating equation (14)

with respect to x. and then x yields identical results if

x, = x«. Therefore, it is necessary that x, = x
2

. Substituting

x for x
n
and x_ into equation (14) gives

2 2
+C

*L- = —,-,
2

f x" + A f (d„ - x)~
C
2 ..

(h +C
2> "2 , , ,.„ ... h

1_ 'theo 21„ c s y 2 1

(1-0„)C^
+ Vvy SI, ^"V " *1 ] (15)

G
2
C
2

C
2

+ Vvy -S- (b ~ a
2

" X) T7 •

Differentiating equation (15) with respect to x yields

„ (h; + cb . q cI
f x —=-, A f JL - A f -4r=- = 0.
c 1

2
s y 1- v vy Sl

2

Therefore

A f h + A f (C n/S) 0.
s y v vy 2' 2 . , r .

x = —
n >) ^5 • (16)

f (h + C^)
C 2

If the tension crack has the same angle of inclination on

all sides of the beam, the value of Q„ will be

Q
2 = 2bVh (17 >

Since the maximum angle of the tension crack should be 45°

the maximum value of C„ is

C
2

= 2b + h. (18)
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Lot

m =
A f b
v vy

A f S
s y

and

A
l

= d
2 " t

a
2

=
2
(b - a

2
-

f)
+ £(1 -

2
)

2
- • <1 - G

2
).

Then

h mC
?

M.. - A f. 3- (A, + A„ -r—=-) . (19)theo s y C„ 1 2 by

From equation (19) the theoretical torsional capacity

can be calculated for a given cross-section. For evaluating

the test specimens, the value of 0- and C_ should be measured

from the actual crack pattern at failure. The expressions

Q-C^/S in equation (16) and [(b-x)/S] cot a in equation (11)

are the theoretical number of stirrups which intersect the

failure surface. The actual number of stirrups should be

used in analyzing the test specimens.

Making the necessary substitutions to analyze the test

specimens yields the four moment components as

:

2 2
,, 2

(IT + C,)
M
i " V TT

2
'

hM
2

= A
s
f
y
(d

2
- X)^—

C (1 -
p
)h C

M, = A f N, [—

-

™ - a,] -^=—
,3 v vy h 4C

2
1 J

a. '
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and

M, A f N (b - a - x) -^
4 * v vy v 2 I.

Let

N = number of the vertical branches of the stirrups
intersecting the tension crack

and

N, = number of the horizontal branches of the stirrups
intersecting the tension crack.

From equation (13)

,

M
calc (
—

} = M
l

+ M
2

+ M
3

+ M
4

' f
c
X 2I^- + Vy (d

2 "f> TJ

(1 - G-)h C
+ A f N, [ j - a ]

_£
v vy h L

4 1
J 1

+ A f N,{b - a« - x) t4 . (20)vvyv 2 1 o

Since

iM
caic „

(h2+c;'
a , „

c
2 . , h—

TZ— = = f x > Af N i Af s

—

ox c 1_ v vy v I- s y 1_

which yields

hA f + A f C„N
x = S y V ^ 2 v

m

Substituting this value of x into equation (20) gives
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M
calc

= A
s
fy^ < d

2
" I>

+ A
v
f
vy

N
v
(b " *2 " !>

(1 -
2
)h

+ A f N, [
, a-]. (22)v vy h 4 1 \*-*-i

Let

A f b
m = T~t¥ ' < 23 >

s y

A, « d '- $ , (24)
1 2 2 '

md

A, = N (b -*—*) + N [£(1 _ ) _ a i (25)

This gives the internal torsional capacity of the cross-

section using the measured values C_ , 0.. N , and N, as
2 2 v h

h m C
?
S

M
calc

= A
s
fy-C7 (A

1
+ A

2 KB— >
' < 26 >

The torsional moment computed on this basis, M , is computed

using the actual measured parameters of the specimen. The

applied torsional moment is referred to as M
act

Lessig suggests that for a tension failure, a reasonable

value of m must be used when designing the beams. For a

balanced section the ratio of transverse force to longitudinal

force in the reinforcing steel would be 1.0. From the previous

tests by Lessig, good results were obtained when m ranged

between 0.3 to 1.0. Cardenas (7) also obtained reasonably good

results for values of m from 0.4 to 0.7.
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If a compression failure occurs, equation (26) gives a

much higher value for the measured ana theoretical moments.

Therefore, for compression failures Lessig suggests the use

of the emperical formula

M
c

= kb
2
hf^

, (27)

where k is a constant determined by Lessig to range from 0.07

to 0.12.

Timoshenko (6) in 1949 suggested that the elastic torque

could be computed according to the formula

M
e

2

1
= f

t
0b h , (28)

where J2f is a function of h and b. When h/b = 2, $ = 0.246.

According to the plastic theory, the torque at failure

is given by

M
p

= f^b
2
(3h - b)-£- . (29)

Design of Experiment for Torsion Tests

The experimental program consisted of testing 18 beams in

pure torsion. The beams were of two sizes, namely 1 x 2-in. and

1.41 x 2.83-in. Three values of m, the ratio of transverse force

to longitudinal force in the reinforcing steel, were selected

for each cross-section. These were: 0.4, 0.5, and 0.6. Three

specimens were fabricated for each cross-sectional area - m

combination. The beams were designed to induce yielding of the

reinforcement as the mode of failure in torsion. The percentage
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of longitudinal reinforcement was constant while the amount of

transverse reinforcement was varied to give the required values

of m. The experimental design is shown in Table 10.

TABLE 10

DESIGN OF EXPERIMENT FOR TORSION TESTS

Cross
Section m

0.4
p_;_5

0.6111
1 x 2-in. 2 2 2

3 3 3111
1.41 x 2.83-in. 2 2 2

3 3 3

Results from Quality Control Tests

For each torsion specimen tested four quality control sam-

ples were cast. Two were tested in compression and two in

flexure. The results for quality control are shown in Table 11,

for compressive strength, and in Table 12, for modulus of rup-

ture. The upper and lower compressive strength values for indi-

vidual batch means, shown at the bottom of Table 11, are 2,709

psi. and 2907 psi. The average compressive strength values for
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the IS batches range from 2715 psi. to 2895 psi. which are with-

in the range of values for upper and lower compressive strength

required for the assumption that the values obtained are no

different than those that would have been obtained from 18 test

specimens from a sing] atch for an alpha probability level

of 0.C5.

A comparison of upper and lower values of modulus of rupture,

for individual batches, with average values for the 18 batches,

Table 12, leads to the same assumption as that for compressive

strength. That is, all 18 batches can be assumed to yield modulus

of rupture results which are no different than the results that

would have been obtained if all test specimens had come from

the same batch. These assumptions are further born out in the

Analysis of Variance computations shown in Table 13, where batch-

to-batch differences cannot be differentiated from within-batch

differences when tested at the alpha level of 0.05.

Procedures Used in the Torsion Tests

The two cross-sections tested are shown in Figure 15. The

numbering system used when referring to the torsion specimens

is the same as that used in the flexure tests except for the

torsion specimens in which the third number refers to the value

of m for that beam.

The testing apparatus used for the torsion specimens is

shown in Figure 16. The cylinder holding the beam where the

torque was applied was fabricated concentric with the shaft.

The specimen was held in place using four cap screws and was
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(a) Typical Cross-section of 1.41 x 2.83-in. Beam

U—1.00 a-j
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(b) Typical Cross-section of 1 x 2-in. Beam

FIGURE 15. TYPICAL CROSS-SECTION OF TORSION SPECIMENS
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FIGURE 16. TORSION SPECIMEN IN TESTING APPARATUS
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centered by counting the threads showing on the cap screws on

the outside of the cylinder. The torque was applied through a

20 in. lever arm by a hydraulic jack.

The load cell was attached to the lever arm and the force

from the jack was applied through the cell. The beam was placed

in the testing apparatus so that the lever arm was approximately

15 degrees below horizontal. This procedure produced some error

in measuring the initial load but as the specimen rotated the

lever arm became more nearly horizontal, and consequently, the

load was measured more accurately. Some difficulty was encoun-

tered with the load cell at the small loads measured since the

maximum capacity of the cell was 50,000 lbs. whereas the loads

being read were less than 100 lbs. After the specimens failed,

a zero reading was taken and the necessary correction for zero-

ing the cell was added or subtracted.

The rotation of the specimens tested in torsion was measured

by the use of two slide projectors and two mirrors which were

attached to the beams one foot apart. The images of the mirrors

were projected onto two scales 11.40 ft. from the beam. After

each 5 lbs. loading increment, the movements of the images of

the mirrors was noted and the unit angle of twist was calculated

by the formula

Y « -V2 (30)

where

L = the change in the left scale reading after a load

increment in ft.,
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A = the change in the right scale reading after a load

increment in ft. ,

D = the gage length between the center line of the two

mirrors in ft.

,

and

R = the distance between the specimen and the scales in

ft.

Although this does not give the exact rotation, equation (30)

allows approximate torque-twist curves to be plotted. These

curves are shown in Appendix A.

Analysis of Results from Torsion Experiment

The ultimate load cell readings are shown in Table 14 for

the reinforced beams tested in torsion. An analysis of variance

was performed on the load cell readings and is also shown in

Table 14. This analysis shows that the difference in cross-

sectional area, A, accounts for a significant part of the varia-

tion in ultimate load cell reading. This was anticipated since

the torque carrying capacity of a beam is, according to Lessig,

approximately proportional to the linear dimensions of the

cross-section. The lack of significance of the m ratio, when

summing across areas, was also anticipated since its effect is

almost identical with that of the length in the flexure tests.

That is, within an area grouping m should have been quite sig-

nificant in explaining variation in the daca, but across

cross-sectional it would lose its significance. This should



have resulted in m not being significant and in A x ra being

significant. However an examination of the data in Table 14

immediately indicates that m had no significance even within

area groupings. The average load cell reading, standard

deviation, and coefficient of variation is also given in Table

14 for each cross-sectional area-m combination. Only the

1 x 2-in. with m = 0.5 had a coefficient of variation less

than 5 percent.

The physical properties of the 18 beams tested are shown

in Table 15 with the measured, calculated, and theoretical

moments where

M = actual failure moment determined from load cellmeas

readings in ft-lbs.,

M , = moment calculated by Lessig's theory using the

measured parameters, C„, C
2
3 ;>' N ' and N

h
^n

in-lbs.

,

and M , = moment calculated by Lessig's theory using cal-

culated parameters C„ and C_0_ in in-lbs.

The measured torsional moments were greater than the calculated

moments but less than the theoretical moments for the 1 x 2-in.

beams. For the larger beams the measured failure torques v/ere

approximately half of the calculated moments but only about one-

third of the theoretical moments.

The crack patterns exhibited by the torsion specimens are

shown in Figure 17. According to Lessig, the failure of the

beam should take the form of helical cracks at approximately



TABLE 14

ANALYSIS OF ULTIMATE LOAD CELL READINGS OF TORSION BEAMS

Cross
Section

1 x 2-in.

Average

Standard Deviation

Coefficient of Variation

1.41 x 2.83-in.

Average

Standard Deviation

Coefficient of Variation

m

0.4 0.5 0.6

Ultimate Load Cell Readings

32

24*

37*

31

6.56

21.20

34

44

44

41

5.79

14.24

32*

30

33*

32

2.24

1.58

44

42*

39*

42

2.55

6.12

24*

30*

39

31

7.55

24.35

46*

47

40*

44

3.81

8.59

(continued on next page)
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TABLE 14

ANALYSIS OF ULTIMATE LOAD CELL READINGS OF TORSION BEAMS

(continued)

Source df SS MS F F Sign,
a = .05

Cross Sec-ion, A 1 545 545.0 90.83 18.50 Yes

Ratio, m 2 10 5.0 0.83 19.00 No

A x m 2 12 6.0 0.23 3.89 No

Spec, in
A x m cells 12 313 26.1

Total 17 880

*Measured value of C~ obtained by adding twice the horizontal

length of the bottom crack.
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4 5 degrees with the longitudinal axis of the beam. Since the

complete length of the specimen is under the same torque, the

cracks should start at random locations. This was not the case

however, in this study. The tension cracks in the 1 x 2-in.

beams generally started at the pinned support and worked across

the beam. For the larger beams, the tension cracks usually

started at the support where the torque was applied. In some

cases a crack pattern of sufficient length to measure the value

of C„ was not developed. That is, the tension crack failed to

make one complete revolution around the specimen. These beams

are marked in Table 15 by an asterisk. To obtain the required

value of C
2

, twice the horizontal projection of the crack on the

bottom of the beam was added to C-Q-, the horizontal projection

of the crack along the side of the beam.

Using the elastic theory presented by Timoshenko, the moments

predicted for the 1 x 2-in. and 1.41 x 2.83-in. beams respectively

are

M . = 204 in-lbs. and M , = 930 in-lbs.el el

The above values were calculated using the value of f obtained

from the analysis of variance of the control samples.

Figure 18 shows the average experimental, calculated, and

theoretical load cell readings versus m. The curves illustrate

graphically the wide divergence of the results for the larger

beams. The results for the smaller beams are in much closer

agreement.
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er-
Average load cell readings from experiments

Load cell readings calculated from
measured parameters

Theoretical load cell readings

- One standard deviation for average
experimental load cell readings

1.41 x 2.83-in. Beams

e—

—

i"

1 x 2-in. Beams

0.4 0.5

m

0.6

FIGURE 18. PLOT OF LOAD CELL READINGS VERSUS m FOR TORSION
SPECIMENS
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For the analysis of the test results, the values of Mcalc

and M., were reduced to a theoretical load cell reading by
theo

dividing the moment by the 2 in. lever arm. According to

Lessig's torsion theory, M , and M,, should be the same.
* 7 ' calc theo

To test the difference between the measured, calculated, and

theoretical load cell readings, the Student's t-test was per-

formed. Table 16 gives the comparison using the average Mcalc

as the theoretical value of the mean, u . For an a = 0.05, the

assumed hvpothesis that the mean of M , and M are the same
J ^ calc meas

would be accepted for all of the 1 x 2-in. beams but rejected

for all of the 1.41 x 2.83-in. beams. Table 17 gives the Stu-

dent's t-test with M.. as the theoretical value of the mean.
theo

For an a = 0.05, the hypothesis would be accepted only for values

of m of 0.4 and 0.5 for the 1 x 2-in. beams.

As expected, the slope of the linear portion of the torque-

twist curves for the 1 x 2-in. beams was generally less than

that for the 1.41 x 2.83-in. specimens. (Appendix A). It was

further expected that the specimens would continue to take load

after the initial tension cracks started but this was not the

case. In every specimen tested, the load dropped off immediately

at initial cracking and continued to drop until ultimate failure

occurred.

Conclusions Based on Torsion Experiment

The quality control samples exhibited acceptable uniformity

and allowed the assumption that batch-to-batch differences could

be ignored when analyzing the test data.
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TABLE 16

STUDENT'S T-TEST FOR SIGNIFICANT DIFFERENCES
BETWEEN M AND M , FOR TORSIONmoas calc SPECIMENS

Rl

Cro'~

s

Section 0.4 0.5 0.6

P o
24.0 25.3 28.0

x 31.0 31.7 31.0

s 6. 56 2.24 7.55

I x 2-in. N 3 3 3

'calc X ' 85 4.95 0.69

t = .05 4.30
a

4.30 4.30

Sign. No Yes No

u 60.3
o

59.6 61.2

x 40.7 41.7 44.3

s 5.79 2.55 3.81

1.41 x 2.83-in. N 3 3 3

Sale 6 ' 02 12.18 7.69

t = .05 4.30
a

4.30 4.30

Sign. Yes Yes Yes
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TABLE 17

STUDENT'S T-TEST FOR SIGNIFICANT DIFFERENCES
BETWEEN M and M. . FOR TORSION SPECIMENSmeas theo

m
Cross
Section 0.4 0.5 0.6

v 32.8 38.0 43.4
o

x 31.0 31.7 31.0

s 6.56 2.24 7.55

1 x 2-in. N 3 3 3

t , 0.48 4.87 2.84
caj.c

t = .05 4.30 4.30 4.30
a

Sign. No Yes No

U Q
116.5 127.2 138.0

x 40.7 41.7 44.3

s 5.79 2.55 3.81

1.41 x 2.83-in. N 3 3 3

t , 22.60 58.10 42.60

t = .05 4.30 4.30 4.30
a

Sign. Yes Yes Yes
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The analysis of variance of the ultimate load cell reading

showed inconsistent results for all specimens tested except for

those of cell 1-0.5. The two-way analysis of variance shown in

Table 14 and the graph in Figure 18 showed the insignificance of

the effect of m and of the interaction between m and A on the

load cell readings. These parameters should be significant in

the analysis as the ratio of transverse to longitudinal steel in

the beam is important in determining its strength in torsion. The

interaction between m and A should have been significant. No

explanation is offered for this lack of agreement other than possi-

ble difficulties with the torsion test apparatus which, because

of its crudeness, may not have been loading test specimens in the

manner assumed.

The Student's t-test showed no significant difference between

the mean value of the actual failure moment for the 1 x 2-in.

beams using either M , or M,, on as the mean. The Student's t-

test showed very significant differences between the measured

moment and both the calculated and theoretical moments used as

the mean for the 1.41 x 2.83-in. beams.

The significant differences between the mean and the mea-

sured moments could be due to a misalignment of the supports as

a new fixture was used for the pinnned end for the larger beams

.

The test apparatus only allowed for a check of vertical align-

ment usinq a level.



Lessig's theory did not predict the strength of the beams

tested in torsion as shown by the t-tests. The spacing of the

transverse reinforcement was varied in an attempt to produce

significant differences in the ultimate strength of the beams

but this did not occur. The torsion capacity of the 1.41 x 2.83-

in. beams was not much greater than that of the smaller beams.

This would indicate errors in the fabrication or testing of the

beams

.



69

GENERAL CONCLUSIONS

The Ultracal-30 mix used in the experiments was a satis-

factory substitute for 3,000 psi. concrete in terms of compres-

sive strength. The modulus of rupture of the 1 x 1 x 4-in.

specimens was high when compared to that of 3,000 psi. concrete.

The analysis of variance of the specimens used to design the

mix and used to analyze the quality control samples demonstrated

the insignificance of the batch-to-batch variance.

The flexural testing program indicated that small scale

model testing could be used with confidence to predict the

ultimate strength of beams loaded in flexure. In most cases the

beams failed at loads slightly higher than those predicted by

Whitney's theory.

The results of this study indicate that the values of the

calculated and theoretical moments indicated by Lessig's theory

for the 1 x 2-in. beams predicted the failure torque as shown

in the Student's t-test. Lessig's theory failed to predict the

ultimate torque for the larger beams as did the elastic and

plastic theories.
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RECOMMENDATIONS FOR FURTHER RESEARCH

The problem of flexure in rectangular under-reinforced

sections has been thoroughly studied. However, a statistical

approach has not been used to analyze the test results of con-

crete beams of other shapes. Work is needed in the area of

model analysis of T-beams and box-section beams. Different

sections of under-reinforced prestressed concrete beams also

need investigation to determine if model analysis gives reason-

able results.

Although the longitudinal reinforcing steel after annealing

was satisfactory, the two -cypes of smooth wire used as transverse

reinforcement had many undesirable properties. The black an-

nealed wire used in the smaller torsion specimens was extremely

soft and exhibited a low yield point. While the bright basic

wire used in the large torsion specimens was quite satisfactory,

it could not be obtained in a smaller diameter. Wire with a

yield point of 50 ksi. available in many diameters is badly

needed. This would allow reasonable spacing of the stirrups.

For the flexure specimens the copper bar chairs were in-

sufficient for holding the longitudinal reinforcement in place.

A better method of supporting the reinforcing steel for beams

containing internal stirrups is needed. Although extra bar

chairs placed on top of the reinforcing steel helped, difficulty

was experienced in alignment of the steel in the forms.

The results of this study indicate that definite limits

need to be established concerning the ratio of longitudinal
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reinforcement to concrete compressive strength. Lessig states

that the torsion theory gives good results for an m of 0.4 to

1.0. Limits also need to be defined accurately for this ratio.

The testing apparatus used for the torsion experiment re-

quires refinement to insure correct alignment of the specimen.

The apparatus should be constructed so as to prevent an impact

load being applied to the specimen when the concrete first

cracks.
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LIST OF SYMBOLS

a = depth of the compression stress block in flexure beams,
in.

2
A = cross-sectional area of longitudinal steel, in.
s

2
A = cross-sectional area of one leg of the stirrups, in.
v

b = width of beam

c = lever arm of internal forces in Whitney's method, in.

C~ = total length of cracked surface projected along the
longitudinal axis of beam, in.

d = effective depth of beam, in.

D = the gage length between the center line of the two
mirrors

E = modulus of elasticity, psi.

f = vield stress of transverse reinforcement, psi.
vy

f = yield stress of longitudinal reinforcement, psi.

f = concrete strength in compression, psi.

it

f = design strength of concrete, psi.

i

f = flexure strength of the concrete, psi.

h = total depth of beam

L = span of beam

m = ratio of transverse to longitudinal force in the beam

M, = external bending moment, in-lbs.

K , = moment calculated from measured parameters, in-lbs.
calc '



M = moment calculated from load cell readings, in-lbs.meas ^ '

M , = torque computed using the elastic theory, in-lbs.

M = torque computed using the plastic theory, in-lbs.

M, u = moment calculated from theories, in-lbs.rheo

N = number of specimens in a cell

N" = number of horizontal branches of stirrups intersecting
the failure surface

N = number of vertical branches of stirrups intersecting
the failure surface

P

A
s

bd

R = distance between the specimens and scales, ft.

s = standard deviation

S = stirrup spacing, in.
X - u

t = computed by ———
- in the Student's t-test

s// N

V = shear force, lbs.

x = mean of the samples in a cell

x = depth of the compression zone in torsion, in.

a = probability level of rejecting a true hypothesis

A_ = change in left scale reading, ft.

A
R = change in right scale reading, ft.

u = theoretical value of the mean

2
C-

>
= Pr°jected length of crack on side opposite to the

compression face of the specimen, in.
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ABSTRACT

The primary purpose of this investigation was to determine

if model reinforced concrete beams could be used experimentally

to predict the behavior of prototype beams in flexure and in

torsion. The physical properties of the "Ultracal 30" mix used

as a substitute for concrete and of the various wire used as

reinforcement were established.

The results of the model tests were compared with Whitney's

theory for the ultimate strength of reinforced concrete beams in

flexure and with Lessig's theory for the ultimate strength of

reinforced concrete beams in torsion. The flexure specimens

contained only threaded rod used as longitudinal reinforcement.

The torsion specimens contained the threaded rod for longitudinal

reinforcement and also smooth wire for tranverse reinforcement.

The flexural experiments were designed to allow a statistical

analysis of the data for certain cross-section-span combinations.

The torsion experiment was designed for a range of cross-section-

m combinations where m is the ratio of tranverse force to longi-

tudinal force in the reinforcing steel.

The results from the flexure tests agreed very well with

Whitney's theory. The results from the torsion tests did not

agree with the ultimate strength predicted by Lessig's theory.

It is believed that the torsion test apparatus applied a degree

of fixity to the ends of the beams due to misalignment.


