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Abstract

Randomized experiments help reduce bias in estimates of the average treatment effect

by ensuring that confounders have the same distribution across treatment groups. However,

some randomizations can still have imbalances on important confounders, which can lead

to inaccurate estimates. Post-stratification is one method for correcting these imbalances

to improve estimates. In post-stratification, we form groups of units, called strata, and

estimate the overall treatment effect by taking a weighted average of treatment effects within

each stratum. In practice, strata are formed based on the values of the confounders. We

examine the ad-hoc post-stratification method, where we form groups of units so that every

group has at least one treated and control unit. A sufficient condition for the unbiasedness

of post-stratification estimators is treatment assignment symmetry—that conditioned on

the number of treated units within each stratum, each treatment assignment is equally

likely. However, ensuring that each stratum has at least one treatment status often violates

assignment symmetry and leads to biased estimates. This report considers a new method

for forming strata— cluster hierarchy and merge post-stratification (CHAMP)—that ensures

that each treatment status is represented within each stratum and satisfies a weaker form of

assignment symmetry required for unbiased estimation. We perform a simulation study to

compare CHAMP post-stratification with ad-hoc methods for forming strata. We show that

CHAMP post-stratification successfully eliminates bias while ensuring small standard errors

of post-stratification estimators. Finally, we apply our method to the Study to Understand

Prognoses and Preferences for Outcomes and Risks and Treatments (SUPPORT) dataset to

assess the efficacy of right heart catheterization in the initial care of critically ill patients.
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Chapter 1

Introduction

The causal effect of an action is the difference in responses or outcomes when a unit re-

ceives treatment and when it does not. There may be some independent variables whose

values may influence outcomes and can be correlated with treatment—these are known as

confounders (Bauman et al., 2002). For example, in assessing a regimen for treating coro-

navirus, where old people tend to have more severe cases of the coronavirus than young

people, age is a confounding variable. Confounders can cause bias in estimates when there

are imbalances in treatment groups.

Randomization has become an increasingly important tool most statisticians and analysts

use to make inferences inference and estimate treatment effects since the time (Fisher, 1936)

introduced the idea. A randomized experiment is a process where treatments are randomized

to units,and can ensure that the distribution of confounders is the same across treatment

groups.

However, imbalances on confounders can still occur even when treatment is randomized

across units.One way of reducing imbalances in the design of the experiment is statistical

blocking. This is a process where researchers partition a sample of units into disjoint sets

of units called blocks (Higgins et al., 2016). After experimenters have stratified units, they

randomize treatments to the units within their predefined blocks (Miratrix et al., 2013).
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The process of blocking removes variability of treatment effect estimates (Krzywinski and

Altman, 2014). There are instances where blocking may not be feasible, because blocking

is a technique that is done before randomization. This implies blocking lacks foresight

and there is no blocking after randomization (Miratrix et al., 2013). Mostly, researchers

rely on covariates adjustments after randomization in instances where blocking cannot be

performed (Keele et al., 2010; Pocock et al., 2002). Post-stratification is another way to

perform an adjustment.

Post-stratification is a process where a researcher stratifies units based on confounders

and finds a weighted average of the strata-level treatment effect estimates. Post-stratification

is used to adjust for treatment effect estimates after randomization is performed. Post-

stratification is similar to blocking in the sense that both improve precision. Also, if the

number of treated units in each stratum are predefined and are fixed, then the estimate

of the treatment effects by blocking will be the same as the treatment effects estimate by

post-stratification (Miratrix et al., 2013). When post-stratification is performed properly,

imbalance between treatment groups can be mitigated, leading to increased precision in

treatment effect estimates.

Post-stratification estimators require each treatment status to be represented within each

stratum. Unfortunately, current methods for enforcing this condition leads to a violation of

the assignment symmetry—that conditional on the number of each treatment status within

each stratum, each randomization is equally likely to occur (Miratrix et al., 2013) This can

inject bias into the post-stratification estimator.

In this report, we investigate some ad-hoc methods for forming strata and measure their

bias, standard errors and MSE under various models of response. We then perform a simu-

lation study to compare the ad-hoc methods to a proposed method for stratification, called

Cluster Hierarchy and Merge Post-stratification (CHAMP), that is designed to eliminate the

bias that is present in the ad-hoc methods. We give evidence that CHAMP removes the bias

in post-stratification estimators while ensuring competitive standard errors when compared
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to the ad-hoc methods.

1.1 Post-stratification

Post-stratification is a process where a researcher stratifies units based on confounders and

finds a weighted average of the strata-level treatment effect estimates (Miratrix et al., 2013).

Post-stratification of an experiment is similar to stratification of a sample, so we first begin

with a description of stratification.

1.1.1 Stratification

Stratification is a sampling technique where a population is divided into sub-populations

called strata and samples are drawn independently across strata (Miratrix et al., 2013).

Stratification provides samples that represent major subgroups of the population and im-

proves precision of estimators. There are individual responses of people which are expected

to vary with age and similar factors but are not available at the time of stratification prior to

sampling. After sampling, estimates of the population totals in every category are obtained

from known census totals if the individual units are classified according to the categorical co-

variates. The aggregate of these estimates in every category produces the overall population

estimate.

We divide population of N units into H homogeneous groups called strata. Each of the

hth stratum would consist of Nh units. We draw a sample of size nh from the Nh units (Singh,

2003). Figure 1.1 gives a visual depiction of stratification.

1.1.2 Description of post-stratification

Post-stratification in simple terms is stratification after performing a sample or experiment.

Post-stratification is a way of factoring in covariates to improve estimates in a way that looks

like stratification.
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Figure 1.1: Stratification

1.1.3 Steps of Post-stratification

Post-stratification is performed as follows. We take a sample of n units from the population

of N units using a chosen sampling technique. We divide the population into H strata, where

units within each stratum have similar values of confounding covariates. The values of Nh,

where h = 1, 2, ..., H and
∑H

h=1Nh = N may or may not be known. We select each sample

unit and place them in the hth stratum based on the covariates such that
∑H

h=1 nh = n,

where h = 1, 2, ..., H (Singh, 2003). Figure 1.2 gives a visual depiction of stratification.
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Figure 1.2: Post-stratification

1.2 Literature Review on Post-stratification

We now review some papers applying post-stratification methods.

(Valliant, 1993) pointed out that in complex large-scale surveys, particularly household

surveys, post-stratification is a sampling technique that is used to improve the efficiency

of estimators. Although inferences are better when they are conditioned on the achieved

post-stratum sizes, he used a design-based conditional theory to make inferences from post-

stratified samples. Much concentration was given on the properties of several commonly

used variance estimators to determine whether they estimate the conditional variance of the

post-stratified estimator of the finite population model. He did a simulation study of the

theory using a fixed, finite population of 10,841 persons included in September 1988 Current

Population Survey (CPS). Weekly wages and hours worked per week were considered as the

variables. 2886 geographic segments which composed of about 4 neighbouring households

were included in the study. Eight post-strata were formed based off age, race and sex.

A two-stage stratified sample was used in which segments were selected as the first-stage
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units and persons as the second-stage units. In both cases, the strata had same number

of households. Within each stratum, segments were systematically selected and a random

sample of four persons was selected without replacement in each segment. It was concluded

that post-stratification is an important sampling technique that helps in reducing variance

and also reducing bias of an estimator.

(Little, 1993) developed a Bayesian model-based theory for post-stratification instead of

the conventional method of randomization where inference is based on sampling distribution

whilst holding population values fixed. He talked about the difference between stratification

and post-stratification, i.e., stratified sampling is limited to variables that are known for

survey units before data is collected whereas post-stratification combines data collected in

the survey with aggregate data on the population from other sources. He used an example

to make that difference clear. For instance, a demographic survey generally cannot stratify

on age, because the ages of individuals are unavailable until after the interview is conducted.

However, the population age distribution may be available in aggregate form from census

data. This is when post-stratification comes into play. Post-stratification classifies the sample

by age groups and weights individuals in each group up to the sub-population total. He talks

about a usual estimator of Ȳ as the post-stratified mean or weighted mean. Let Z denote

the post-stratifying variable, let Y denote a survey variable, and consider inference for the

finite population mean Ȳ =
∑

hPhȲh, where Yh is the mean in post-stratum. Suppose that

a simple random sample of size n is selected,r of which respond to the survey and Let nh and

rh ≤ nh denote the number sampled and the number responding in post-stratum h. Write

P = {P1, ..,PH}, n = {nl, ..., nH}, and r = {ri, ....rH}. Then P and r are assumed known.

ȳps =
H∑

h=1

Phȳh =
1

r

r∑
i=1

wiyi,

where yi is the value of Y for respondent i, ȳh is the respondent sample mean in post-stratum

h, and wi = rPh

rh
if zi = h; that is, case i belongs to stratum h.

6



1.3 Neyman-Rubin Causal Model

Randomized experiments are regarded as the “gold standard” for performing causal infer-

ence. In designing an experiment, Fisher mentioned that randomization of treatments in

experiments is the basis for causal inference (Box, 1980; Fisher, 1992). Neyman also rec-

ognized the works of Fisher and developed an important model between the relationship of

treatment assignment and causal inference, popularly known as the Neyman-Rubin Causal

Model (NRCM).

The Neyman-Rubin non-parametric model of potential outcomes, which serves as the

basis of our estimation method, has become an increasingly popular model that has received

a lot of attention in the fields of Statistics (Rosenbaum, 2002); (Holland, 1986); (Rubin, 1974,

2006), Medicine (Christakis and Iwashyna, 2003); (Rubin, 1997), Political Science (Bowers

and Hansen, 2005); (Sekhon, 2004, 2009); (Imai, 2005), Economics (Dehejia and Wahba,

1999, 2002); (Abadie and Imbens, 2006), and Sociology (Smith, 1997); (Morgan and Harding,

2006).

Assume we have n experimental units, and treatments are completely randomized to the

n units. We denote Ti as the treatment assignment indicator for unit i, thus Ti = 1 if unit i

receives treatment, and Ti = 0 if unit i receives control.

We assume the Neyman-Rubin model (Holland, 1986; Rubin, 1974) of response. We

consider yi(1) ∈ R to be unit i′s outcome if it were treated, and yi(0) to be its outcome

if it were given control. We call these the potential outcomes of unit i. For each unit, we

observe either yi(1) or yi(0) depending on whether we treat it or not. We also assume that

the potential outcomes are not random. The treatment effect on unit i is defined as

τi = yi(1)− yi(0). (1.1)

The average treatment effect (ATE) is defined as
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τ =
1

n

∑
i

{yi(1)− yi(0)} =
1

n

∑
i

τi i = 1, ..., n. (1.2)

Note that, even though unit level treatment effects are not estimable, we can still estimate

the ATE, for example, with the difference in sample means. See Table 1.1 for details.

Illustration
Unit Potential Observed
i Treatment Control τi Ti Yi τi

1 y1(1) y1(0) y1(1) - y1(0) 1 y1(1) y1(1)- �
2 y2(1) y2(0) y2(1) - y2(0) 1 y2(1) y2(1)- �
3 y3(1) y3(0) y3(1) - y3(0) 1 y3(1) y3(1)- �
4 y4(1) y4(0) y4(1) - y4(0) 1 y4(1) y4(1)- �
5 y5(1) y5(0) y5(1) - y5(0) 0 y1(0) � - y1(0)
6 y6(1) y6(0) y6(1) - y6(0) 0 y2(0) � - y2(0)
7 y7(1) y7(0) y7(1) - y7(0) 0 y3(0) � - y3(0)
8 y8(1) y8(0) y8(1) - y8(0) 0 y4(0) � - y4(0)

ATE τ = 1
8
{(y1(1)− y1(0)) + ...+ (y8(1)− y8(0))} τ̂ = 1

4
{(y1(1) + ...+ y4(1)} − 1

4
{(y5(0) + ...+ y8(0)}

Table 1.1: Only one potential outcome for each unit can be observed. The other potential
outcome is missing. The unit’s treatment effect, τi, is not estimable because of the missing
potential outcomes. However, the average treatment effect, τ , can be estimated, for example,
using the difference in sample means, τ̂ = 1

4
{(y1(1) + y2(1) + y3(1) + y4(1)} − 1

4
{(y5(0) +

y6(0) + y7(0) + y8(0)}. Here, � represents the unobserved potential outcomes.

If we assign treatments to units, we cannot observe both treatment and control for a

particular unit. This means that if we treat a unit, we would know the outcome under the

treatment, but would not know its outcome if it were not treated and vice-versa. This is

the fundamental problem of causal inference (Holland, 1986). The hypothetical unobserved

outcome for a unit is called the counterfactual. In causal inference, we find estimates of the

treatment effects by using available outcomes to estimate counterfactual.

The NRCM states that the observed response Yi only depends on the potential outcomes

of i and the treatment given to unit i,

Yi = Tiyi(1) + (1− Ti)yi(0), (1.3)

where the potential outcomes yi(1) and yi(0) are fixed, but Yi is random because of the
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treatment assignment indicator Ti.

The NRCM does not need any distributional assumptions. However, it should be noted

that randomization does not give us a certainty that the observation on one unit should not be

affected by the particular assignment of treatments to other units (Cox, 1958). Thus, inherent

in the Neyman Rubin Model of response is the stable unit treatment value assumption

(SUTVA). SUTVA implies that treatments applied to one unit do not affect the outcome for

another unit (Rubin, 1978). SUTVA is also called the ”no interference” assumption between

units.
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Chapter 2

Assumptions and Estimators

2.1 Estimation of Treatment Effects under

Post-stratification

Define bi ∈ B to be the covariate which are observed for all units and are unaffected by

treatment. Post-stratification can greatly reduce variation in the proportions of the units

treated over using a simple difference-in-means estimator.

The classic unadjusted estimator τ̂sd (Miratrix et al., 2013) is the observed simple differ-

ence in the means of the treatment and control groups and it is given by:

τ̂sd =
n∑

i=1

Ti
W (1)

Yi −
n∑

i=1

(1− Ti)
W (0)

Yi. (2.1)

We know the quantities Ti and Yi from Equation 1.3, but W (1) =
∑

i Ti is the total number

of treated units, W (0) is total control and W (1) + W (0) = n. The strata that are defined

by the levels of b have stratum-specific ATEk (Miratrix et al., 2013):

τk ≡
1

nk

∑
i:bi=k

{yi(1)− yi(0)} k = 1, ..., K, (2.2)
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where nk is the number of units in stratum k . The overall ATE can then be expressed as a

weighted average of these ATEks:

τ =
K∑
k=1

nk

n
τk. (2.3)

The simple difference estimator can be used to estimate ATEks for each stratum k:

τ̂k =
∑
i:bi=k

Ti
Wk(1)

yi(1)−
∑
i:bi=k

(1− Ti)
Wk(0)

yi(0), (2.4)

where Wk(1) and Wk(0) are the number of treated and control units in stratum k respec-

tively.

A post-stratification estimator is an appropriately weighted estimate of these strata level

estimates:

τ̂ps =
∑
k∈B

nk

n
τ̂k. (2.5)

For post-stratification estimators to estimate the ATE unbiasedly, it is sufficient for the

randomization of treatment to units to satisfy the treatment assignment symmetry assump-

tion. (Miratrix et al., 2013) defined that a randomization is assignment symmetric if it

satisfies the following two assumptions:

Assumption 1. Equiprobable treatment assignment patterns: all
(

nk

Wk(1)

)
ways to treat Wk(1)

units in stratum k are equiprobable, given Wk(1).

Assumption 2. Independent treatment assignment patterns: for all strata j and k, with j 6=

k, the treatment assignment pattern in stratum j is independent of the treatment assignment

pattern in stratum k, given Wj(1) and Wk(1).

Theorem 1. The strata level estimators τ̂k are unbiased, i.e.

E[τ̂k] = τk k = 1, ..., K.
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Proof.

E[τ̂k] = E[
∑
i:bi=k

Ti
Wk(1)

yi(1)−
∑
i:bi=k

(1− Ti)
Wk(0)

yi(0)]

= E[
∑
i:bi=k

Ti
Wk(1)

yi(1)]− E[
∑
i:bi=k

(1− Ti)
Wk(0)

yi(0)]

=
∑
i:bi=k

E[
Ti

Wk(1)
]yi(1)−

∑
i:bi=k

E[
(1− Ti)
Wk(0)

]yi(0)

Note that E[
Ti

Wk(1)
] = E[E[

Ti
Wk(1)

| Wk(1)]] = E[
Wk(1)

Wk(1) ∗ nk

] =
1

nk

Similarly E[
1− Ti
Wk(0)

] =
1

nk

So E[τ̂k] =
∑
i:bi=k

1

nk

yi(1)−
∑
i:bi=k

1

nk

yi(0)

= τ

Corollary 1. The unadjusted simple difference estimator τ̂sd is

E[τ̂sd] = τ

Theorem 2. The post-stratification estimator τ̂ps is unbiased, i.e.

E[τ̂ps] = τ k = 1, ..., K.
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Proof.

From Equation 2.5 ,E[τ̂ps] = E[
∑
k∈B

nk

n
τ̂k]

=
∑
k∈B

nk

n
E[τ̂k]

From Theorem 1, E[τ̂k] = τk

E[τ̂ps] =
∑
k∈B

nk

n
τk

From Equation 2.3, E[τ̂ps] = τ.

2.2 Performance of Estimators

We will judge the performance of the estimators based on these statistical properties. Sup-

pose there is an estimator β̂ of parameter β.

Definition 1. (Bias)

The bias of an estimator β̂ is

bias(β̂) = E(β̂)− β. (2.6)

The estimator β̂ is unbiased for β if bias(β̂)=0.

Definition 2. (Variance)

The variance of an estimator β̂ is

var(β̂) = E(β̂ − E(β̂))2. (2.7)

The standard error of β̂ is

√
var(β̂).

13



Definition 3. (Mean squared error)

The mean squared error of an estimator β̂ is

MSE(β̂) = E(β̂ − β)2 = var(β̂) + bias(β̂)2. (2.8)

Bias is basically the differences between the expected value of a measurement and the

true value of the parameter being estimated. Unlike bias, the magnitude of precision is solely

contingent on the estimated (or observed) values and is entirely independent of the actual

value. Precision measures the variance of an estimation technique (West, 1999). Bias and

precision in tandem define the performance of an estimator. If an estimator is more biased

and less precise, its overall ability is worst to make an accurate point estimation. Accuracy

is the total distance between the observed value and the true value (Bainbridge, 1985). We

use the standard deviation to measure precision and the Mean squared error to measure the

estimators accuracy. The standard deviation is used in lieu of the variance, because standard

deviation is on the same scale as the mean and directly comparable.
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Chapter 3

Ad-hoc Post-stratification and

CHAMP Post-stratification

3.1 Methods of Post-stratification

In post-stratification, units with similar values of the confounder are grouped together before

performing estimation. In this report, we will evaluate different ways of performing this post-

stratification. We will consider Ad-hoc post-stratification and CHAMP Post-stratification.

3.2 Ad-hoc Post-stratification

It is infeasible to ensure that randomness is contained within the set of assignments if we

stratify after randomization. If we form strata before treatments are randomized, we can per-

form statistical blocking. This means that, post-stratification will be a very useful ingredient

in estimating treatment effects when we stratify after randomization. Thus, in practice, it is

often not possible for stratification and randomization to satisfy the assignment symmetry

assumption necessary for unbiased estimation.

We now detail a few ad-hoc methods for which strata can be formed given the ran-

domization. These methods will ensure that each stratum contains one of each treatment
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condition.

1. With ad-hoc post-stratification, we form groups of units so that each group has at least

one treated and one control unit.

2. We group units with similar values of categorical covariates.

3. In the case of one confounding covariate, we can sort the units based on values of this

covariate. We then start from one end of the covariate space and add units to the

stratum until it has at least one treated and one control unit.

4. Continue adding units to groups until there are no more units. If the last group does

not contain one unit from each treatment condition, add it to the second-to-last group.

3.2.1 Left-to-Right Ad-hoc Post-stratification

In left-to-right post-stratification, we start from the smallest value of the covariate and add

units to strata in increasing order of the covariate. Figure 3.1 demonstrates a left-to-right

post-stratification on eight units. Left-to-right post-stratification proceeds as follows.

1. We start from the left end of the covariate space and add units from the smallest to

the largest to a group until group has at least one treated and one control unit.

2. Continue adding units to groups until there are no more units. If the last group does

not contain one unit from each treatment condition, add it to the second-to-last group.

3.2.2 Right-to-Left Ad-hoc Post-stratification

In right-to-left post-stratification, we start from the largest value of the covariate and add

units to strata in decreasing order of the covariate. Figure 3.2 demonstrates a left-to-right

post-stratification on eight units. Right-to-left post-stratification proceeds as follows.
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Figure 3.1: Left to Right Ad-hoc Post-stratification

1. We start from the right end of the covariate space and add units from the largest to

the smallest to a group until group has at least one treated and one control unit.

2. Continue adding units to groups until there are no more units. If the last group does

not contain one unit from each treatment condition, add it to the second-to-last group.

In Figure 3.2, unit 1 was the remainder, so we add it to the group containing units 2

and 3.

3.2.3 Ends-to-Center Ad-hoc Post-stratification

In ends-to-center post-stratification, we alternate between left-to-right post-stratification

and right-to-left post-stratification, working our way towards the center of the covariate

distribution. Figure 3.3 demonstrates a ends-to-center post-stratification on eight units.

Ends-to-center post-stratification proceeds as follows.
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Figure 3.2: Right to Left Ad-hoc Post-stratification

1. We start from the ends of the covariate space and add units to a group until that group

has at least one treated and one control unit.

2. Continue adding units to groups until there are no more units. If the last group does

not contain one unit from each treatment condition, add it to the second-to-last group.

In Figure 3.3, units 5 and 6 were the remainder, so we add it to the group containing

units 3 and 4.

3.2.4 Illustrative Numerical Examples of Ad-hoc Post-stratification

We now consider the performance of these ad-hoc estimators under various scenarios. For

each example, we define the potential outcomes under treated and control where these po-

tential outcomes are specified for each of the n units under study.
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Figure 3.3: Ends-to-Center Ad-hoc Post-stratification

For example,...

Example 1: We consider every unit in the potential outcomes to be the same, but units

in the potential outcomes under treatment are greater than the corresponding units under

control. For this simple case, post-stratification estimators should be able to estimate the

ATE unbiasedly, and this is true for the three ad-hoc estimators considered.

Consider y1 = (4,4...,4); y0 = (1,1...,1); n = 6, and W (1) = 3.

ATE = 3

Estimator n Estimate StandardError Bias

Adhoc:Left 6 3 0 0
Adhoc:Right 6 3 0 0
Adhoc:Center 6 3 0 0

Table 3.1: Units in the potential outcomes under treatment are greater than the correspond-
ing units under control. We have unbiased estimates for this set of potential outcomes and
the estimates are the same for all the types of the ad-hoc post-stratification.
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Example 2: We consider every unit in the potential outcomes to be the same, and units

in the potential outcomes under treatment are the same for the corresponding units under

control. There are no differences in the estimates and the deviations are the same for each

ad-hoc estimator.

Consider y1 = (1,2...,6); y0 = (1,2...,6); n = 6, and W (1) = 3.

ATE = 0

Estimator n Estimate StandardError Bias

Adhoc:Left 6 0 1.301 0
Adhoc:Right 6 0 1.301 0
Adhoc:Center 6 0 1.301 0

Table 3.2: The potential outcomes under treatment are the same for the corresponding
outcomes under control. There is not much difference with this set of potential outcomes.

Example 3: We consider every unit in the potential outcomes under treatment to be in

ascending order of magnitude and the corresponding units under control to be in descending

order. There were some slight differences in the estimate. Also, the standard errors were the

same.

Consider y1 = (1,2...,6); y0 = (6,5,...,1); n = 6, and W (1) = 3.

ATE = 0

Estimator n Estimate SD Bias

Adhoc:Left 6 0.075 0.160 0.075
Adhoc:Right 6 -0.075 0.160 -0.075
Adhoc:Center 6 0.075 0.160 0.075

Table 3.3: The potential outcomes under treatment are the same for the corresponding
outcomes under control. We can see some disparities in the estimates and they are as a
result of the direction of the outcomes.
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3.3 Cluster Hierarchy and Merge Post-stratification

A sufficient condition for unbiasedness of the post-stratification estimator, the strata level

estimators, and the simple difference in means estimator is treatment assignment symmetry.

This assumption ensures that

E
[

Ti
Wk(1)

]
=

1

nk

k = 1, ..., K, (3.1)

Equation (3.1) is also sufficient for unbiased post-stratification estimators.

We propose a new post-stratification procedure called Cluster Hierarchy and Merge Post-

stratification (CHAMP) that is designed to satisfy (3.1) without assignment symmetry.

Thus, this proposed method should allow for unbiased estimation of the average treatment

effect. CHAMP post-stratification proceeds as follows.

1. Construct the following cluster hierarchy.

(a) Stratify the population into k1 clusters of equal size, where n is divisible by k1.

Call these the level 1 strata.

(b) Stratify these clusters into k2 clusters of equal size, where k1 is divisible by k2.

Call these the level 2 strata.

(c) Continue this stratification into clusters until you are left with one strata con-

taining all n units.

2. Form the following post-stratification.

(a) Begin with the stratification into k1 clusters.

(b) If a level 1 stratum s1 does not have at least one treated and control unit, find

the level 2 stratum s2 that contains s1 and merge all units belonging to s2 into a

single stratum.
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(c) Continue this merging until all strata in the post-stratification contain at least

one treated and one control unit.

To ensure that post-stratification improves estimation precision, the cluster hierarchy

should be built to ensure that units with similar values of confounding covariates belong to

the same cluster. For example, in the case of one confounding covariate, units can be sorted

in increasing order of that covariate and stratified with respect to that ordering as in the

ad-hoc methods.

Also note that we can require strata to have arbitrarily many treated and control units.

However, by ensuring at least one treated and one control unit belongs to each strata, we

are guaranteed that the post-stratification estimator is well defined.
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(a) One of the clusters does not contain at least one treated and control,i.e. We
do not merge units 5 and 6 since both of them are treated.

(b) We will join units 5 and 6 to the closest neighbours which are 7 and 8

Figure 3.4: CHAMP Post-stratification
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3.4 Simulations and Results

We run a simulation of 10000 units. We choose sample of sizes 8, 16, 100 and 500. We

consider equal number of treated and control units in each case. We will also consider every

unit in the potential outcomes under treatment to be in ascending order of magnitude and

the corresponding units under control to be in descending order. For every estimator, we

will the estimates, the standard errors, the bias and the Mean Squared Error (MSE).

Simulation 1:

Consider y1 = (1,2...,8); y0 = (8,7,...,1); n = 8, and W (1) = 4.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 8 0.153 0.057 0.153 0.080
Adhoc:Right 8 -0.153 0.348 -0.153 0.080
Adhoc:Center 8 0.068 0.350 0.068 0.072

Simple Difference 8 0.00 0.00 0.00 0.00
CHAMP 8 0 0.356 0 0.127

Table 3.4: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same stan-
dard error and same absolute value of the estimate. Unlike the above ad-hoc post-
stratification, the ends to center gives us a minimum bias. The CHAMP has an unbiased
estimate.
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Simulation 2:

Consider y1 = (1,2...,16); y0 = (16,15,...,1); n = 16, and W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 0.38 0.35 0.38 0.26
Adhoc:Right 16 -0.38 0.35 -0.38 0.26
Adhoc:Center 16 0.05 0.38 0.05 0.14

Simple Difference 16 0.00 0.00 0.00 0.00
CHAMP 16 0.00 0.53 0.00 0.28

Table 3.5: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same stan-
dard error and same absolute value of the estimate. Unlike the above ad-hoc post-
stratification, the ends to center gives us a minimum bias. The CHAMP has an unbiased
estimate.

Simulation 3:

Consider y1 = (1,2...,100); y0 = (100,99,...,1); n = 100, and W (1) = 50.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 100 0.74 0.23 0.74 0.60
Adhoc:Right 100 -0.74 0.23 -0.74 0.60
Adhoc:Center 100 0.01 0.23 0.01 0.08

Simple Difference 100 0.00 0.00 0.00 0.00
CHAMP 100 0.00 0.27 0.00 0.07

Table 3.6: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same stan-
dard error and same absolute value of the estimate. Unlike the above ad-hoc post-
stratification, the Ends-to-Center gives us a minimum bias. The CHAMP has an unbiased
estimate.
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Simulation 4:

Consider y1 = (1,2...,500); y0 = (500,499,...,1); n = 500, and W (1) = 250.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 500 0.81 0.11 0.81 0.67
Adhoc:Right 500 -0.81 0.11 -0.81 0.67
Adhoc:Center 500 0.00 0.13 0.00 0.02

Simple Difference 500 0.00 0.00 0.00 0.00
CHAMP 500 0.00 0.11 0.00 0.01

Table 3.7: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same stan-
dard error and same absolute value of the estimate. Unlike the above ad-hoc post-
stratification, the ends to center gives us a minimum bias. The CHAMP has an unbiased
estimate.

3.5 Special Cases

We consider cases where the potential outcomes under the treatments vary either at the ends

or in the middle whilst keeping the potential outcomes under the control constant at 0 for

every unit. We choose a sample size of 16 units, where equal number of treated and control

units. The goal is to know where the bias is.

Special Cases to Consider
Cases Potential

Treatment Control
1 -20,-10,-5,-2,-1,-1,0,0,0,0,1,1,2,5,10,20 0,0,0,...,0
2 0,0,-1,1,-2,5,10,-20,20,-10,-5,2,1,-1,0,0 0,0,0,...,0
3 -8,-4,2,2,2,2,2,2,2,2,2,2,2,2,-4,-8 0,0,0,...,0
4 2,2,2,2,2,2,-4,-8,-8,-4,2,2,2,2,2,2 0,0,0,...,0
5 0,0,-1,-1,-2,-5,-10,-20,0,0,1,1,2,5,10,20 0,0,0,...,0
6 0,0,-1,-1,-2,-5,-10,-20,20,10,5,2,1,1,0,0 0,0,0,...,0
7 -10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,150 0,0,0,...,0
8 150,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10 0,0,0,...,0
9 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32 32,30,28,26,24,22,20,18,16,14,12,10,8,6,4,2

Table 3.8: Special Cases
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Case 1: Consider y1 = (-20,-10,-5,-2,-1,-1,0,0,0,0,1,1,2,5,10,20);

y0 = (0,0,...,0); n = 16, and W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 0.31 1.58 0.31 2.60
Adhoc:Right 16 -0.31 1.58 -0.31 2.60
Adhoc:Center 16 0.01 1.39 0.01 1.94

Simple Difference 16 0.00 2.10 0.00 4.43
CHAMP 16 0.00 1.84 0.00 3.38

Table 3.9: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same stan-
dard error and same absolute value of the estimate. Unlike the above ad-hoc post-
stratification, the ends to center gives us a minimum bias. The CHAMP has an unbiased
estimate.

Case 2:

Consider y1 = (0,0,-1,1,-2,5,10,-20,20,-10,-5,2,1,-1,0,0);

y0 = (0,0,...,0); n = 16, and W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 -0.01 2.66 -0.01 7.04
Adhoc:Right 16 -0.01 2.63 -0.01 7.04
Adhoc:Center 16 -0.07 2.90 -0.00 8.43

Simple Difference 16 0.00 2.10 0.00 4.43
CHAMP 16 0.00 2.64 0.00 6.94

Table 3.10: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same stan-
dard error and same absolute value of the estimate. The above ad-hoc post-stratification
provided estimates with smaller bias than the ends to center ad-hoc post-stratification. The
CHAMP has an unbiased estimate.
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Case 3:

Consider y1 = (-8,-4,2,2,2,2,2,2,2,2,2,2,2,2,-4,-8); y0 = (0,0,...,0); n = 16, and W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 0.12 0.95 0.13 0.92
Adhoc:Right 16 0.13 0.95 0.13 0.92
Adhoc:Center 16 0.27 0.73 0.27 0.61

Simple Difference 16 0.00 0.93 0.00 0.87
CHAMP 16 0.00 1.07 0.00 1.14

Table 3.11: Left-to-Right ad-hoc post-stratification estimator provided estimates with
smaller bias than the ends to center ad-hoc post-stratification. The CHAMP has an un-
biased estimate.

Case 4: Consider y1 = (2,2,2,2,2,2,-4,-8,-8,-4,2,2,2,2,2,2);

y0 = (0,0,...,0); n = 16, and W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 -0.03 0.96 -0.03 0.83
Adhoc:Right 16 -0.03 0.96 -0.03 0.83
Adhoc:Center 16 -0.16 0.99 -0.16 0.91

Simple Difference 16 0.00 0.93 0.00 0.87
CHAMP 16 0.00 1.07 0.00 1.14

Table 3.12: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same stan-
dard error and same absolute value of the estimate. The above ad-hoc post-stratification
provided estimates with smaller bias than the ends to center ad-hoc post-stratification. The
CHAMP has an unbiased estimate.
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Case 5:

Consider y1 = (0,0,-1,1,-2,5,10,-20,20,-10,-5,2,1,-1,0,0);

y0 = (0,0,...,0); n = 16, and W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 -0.01 2.65 -0.01 7.04
Adhoc:Right 16 0.01 2.65 0.01 7.04
Adhoc:Center 16 -0.07 2.90 -0.07 8.43

Simple Difference 16 0.00 2.10 0.00 4.43
CHAMP 16 0.00 2.64 0.00 6.95

Table 3.13: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same stan-
dard error and same absolute value of the estimates, and gave us minimum bias. The
CHAMP has an unbiased estimate.

Case 6:

Consider y1 = (0,0,-1,-1,-2,-5,-10,-20,20,10,5,2,1,1,0,0);

y0 = (0,0,...,0); n = 16, and W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 0.04 2.44 0.04 5.97
Adhoc:Right 16 -0.04 2.44 -0.04 5.97
Adhoc:Center 16 -0.02 2.76 -0.02 7.60

Simple Difference 16 0.00 2.10 0.00 4.43
CHAMP 16 0.00 1.84 0.00 3.39

Table 3.14: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same
standard error and same absolute value of the estimate. Unlike the above ad-hoc post-
stratification, the ends to center gives us a minimum bias. The CHAMP has an unbiased
estimate.
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Case 7:

Consider y1 = (-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,150);

y0 = (0,0,...,0); n = 16, and W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 0.09 11.85 0.09 140.51
Adhoc:Right 16 -1.37 8.89 -1.37 80.90
Adhoc:Center 16 -1.36 8.92 -1.36 81.47

Simple Difference 16 0.00 10 0.00 100
CHAMP 16 0.00 11.70 0.00 137

Table 3.15: Left-to-Right Ad-hoc post-stratification gives us a minimum bias. The CHAMP
has an unbiased estimate.

Case 8:

Consider y1 = (150,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10);

y0 = (0,0,...,0); n = 16, and W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 -1.37 8.89 -1.37 80.90
Adhoc:Right 16 0.09 11.85 0.09 140.51
Adhoc:Center 16 -1.37 8.90 -1.37 80.90

Simple Difference 16 0.00 10 0.00 100
CHAMP 16 0.00 11.7 0.00 137

Table 3.16: Right to Left ad-hoc post-stratification provides us with a minimum bias. The
CHAMP has an unbiased estimate.
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Case 9:

Consider y1 = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32);

y0 = (32,30,28,26,24,22,20,18,16,14,12,10,8,6,4,2); n = 16; W (1) = 8.

ATE = 0

Estimator n Estimate StandardError Bias MSE

Adhoc:Left 16 0.75 0.70 0.75 1.05
Adhoc:Right 16 -0.75 0.70 -0.75 1.05
Adhoc:Center 16 0.10 0.75 0.10 0.57

Simple Difference 16 0.00 0.00 0.00 0.00
CHAMP 16 0.00 0.79 0.00 0.63

Table 3.17: Left-to-Right and Right-to-Left Ad-hoc post-stratifications have the same
standard error and same absolute value of the estimate. Unlike the above ad-hoc post-
stratification, the ends to center gives us a minimum bias. The CHAMP has an unbiased
estimate.

3.6 Discussion on the Simulations and Cases

CHAMP post-stratification estimator provided us with unbiased estimates. It proved to be

a better estimate. However, it was difficult to see what was causing the bias or its location.

Hence,considering cases with different potential outcomes, where we vary the numbers at the

ends and at the center of the potential outcomes helped to determine location of the bias.

For instance, Tables 3.15 and 3.16, bias was heavy at the tails while tables 3.13 and 3.14,

bias was heavy at the center.

3.7 Right Heart Catheterization (RHC)

The Right Heart Catheterization (RHC) was introduced 30 years ago and is widely used

to actively study patients who were critically ill in the Intensive Care Unit(ICU). Previous

studies provide no standard or limited information on assessing its clinical effectiveness or

cost-effectiveness. In an observational study with data from Study to Understand Prognoses
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and Preferences for Outcomes and Risks and Treatments (SUPPORT) where 5735 patients

were considered, 2184 patients were managed with RHC in the first 24 hours and 3551

patients were managed without RHC. The responses considered were the time it took patients

to survive, the length of time patients stayed at the hospital and ICU, costs incurred at the

hospital, and the intensity of care. They measured the rate of survival up to day 180. It

was observed that patients managed with RHC had 180-day survival rates as well as higher

hospital costs than patients managed without RHC (Connors et al., 1996).

Miratrix et al. considered the implementation of post-stratification in adjusting treatment

effect estimates in randomized experiments. In a Pulmonary Artery Catheterization(PAC)

or RHC trial, they selected 1013 subjects. 506 subjects were assigned to treatment and 507

subjects were assigned to control. The response variable was the Quality Adjusted Life years,

which implies higher values for Quality Adjusted Life years would mean longer life. Covariate

imbalance in randomized controlled trials in predicting the probability of death could be due

to too many fluctuations in the data or the initial health of the patients. If we group patients

based on their initial health using post-stratification procedure, the covariate imbalance can

be solved. We expect patients with better initial health to have higher quality of life after

the procedure than those with worse health. Miratrix et al. estimated the treatment effects

within the resulting strata and averaged them appropriately. Post-stratification corrected

the bias that were as a result of covariate imbalance and decreased variance of treatment

effect estimates.

3.7.1 Description of SUPPORT Data

The Study to Understand Prognoses and Preferences for Outcomes and Risks and Treat-

ments (SUPPORT) was a 5-medical center study of decision making and responses of adult

patients who were critically ill and hospitalized. The five centers were: Beth Israel Hospital,

Boston, Mass; Duke University Medical Center, Durham, NC; Metro-Health Medical Center,

Cleveland, Ohio; St Joseph’s Hospital, Marshfield, WI; and University of California Medical
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Center, Los Angeles. The coordination of the study was performed by George Washington

University, Washington, DC, and the statistical analysis was performed at Duke Univer-

sity. The disease classifications were acute respiratory failure (ARF), chronic obstructive

pulmonary disease (COPD), congestive heart failure (CHF), cirrhosis, nontraumatic coma,

colon cancer metastatic to the liver, non-small cell cancer of the lung (stage III or IV), and

multiorgan system failure(MOSF) with malignancy or sepsis.

The SUPPORT data excluded the following factors: age less than 18 years, death or

discharge within 48 hours, inability to speak English, acute psychiatric disorders, pregnancy,

acquired immunodeficiency syndrome (AIDS), acute burns, and head trauma or other trauma

(unless acute respiratory failure or MOSF developed later). The design for the SUPPORT

data contained two phases. Phase I was a prospective observational study, and Phase II was

a cluster randomized control trial. In Phase I, 4301 patients enrolled from June 1989 to June

1991. In Phase II, 4804 patients enrolled from January 1992 to January 1994. Admitted

or transferred patients to the ICU within the first 24 hours were allowed to partake in the

study. Hence, a study population of 5735 patients was considered. An APACHE score—

which provides a measure of initial health—was measured on each patient upon admission.

Of note, the patients included in the SUPPORT study were more likely to receive RHC if

they had worse initial health. This suggests that a difference-in-means estimate without

adjustment would be biased towards the ineffectiveness of RHC.

3.8 CHAMP Estimator on RHC

The RHC dataset that we worked on contains information on 5735 subjects with 63 variables.

We applied the CHAMP post-stratification estimator on this dataset. The CHAMP post-

stratification has 3 levels of clusters. The first level contains clusters of 5 units; the second

level contains clusters comprised of 31 levels 1 clusters; the third level contains the entire

dataset.
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We post-stratified on the APACHE initial health score, i.e. we sorted on APACHE,

and divided into groups based on this sorted score. We had an estimate of 0.008 using the

CHAMP post-stratification estimator. Imbalances in the estimates arise due to the fact that

the difference in means estimate would be biased towards the ineffectiveness of the RHC.

Group Unadjusted Mean P-value
Treatment 60.73901

<2.2e-16
Control 50.93354

Table 3.18: The means in the treatment groups were significantly different from zero with a
p-value of <2.2e-16, indicating an imbalance

3.9 Discussion

The CHAMP post-stratification estimator is a better estimator in determining the unbiased-

ness of treatment effect estimates. The CHAMP estimator provided unbiased estimates in

all the simulations and cases considered. Where the ad-hoc estimators provided unbiased

estimates, the CHAMP estimator had lower standard errors and mean squared error(MSE).

CHAMP also increases precision. The simple difference in means estimator gave us unbi-

ased estimates with low standard errors. This is as a result of how we chose the number of

units under treatment and control. Thus, due to the symmetry in our models, it makes the

difference in means better.
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Chapter 4

Conclusion

In this report, we used the Neyman Rubin model of response to obtain estimators that will

provide unbiased estimates of the average treatment effect. We examined the ad-hoc post-

stratification method, where we form groups of units so that every group has at least one

treated and control unit. We focused on the left-to-right, right-to-left and ends-to-center

ad-hoc post-stratifications. Also, we presented our estimation method called Cluster Hier-

archy and Merge Post-stratification(CHAMP). We compared the ad-hoc post-stratification

method with the CHAMP method. We found that CHAMP post-stratification estimator al-

ways provides unbiased estimates of the Average Treatment Effects. Where the ad-hoc post-

stratification provided unbiased estimates, the CHAMP post-stratification estimates had a

lower standard deviation. This shows that CHAMP post-stratification estimator is a bet-

ter estimator relative to the ad-hoc post-stratification estimator. CHAMP post-stratification

successfully eliminates bias while ensuring small standard errors of post-stratification estima-

tors. In all cases of unbiasedness, CHAMP post-stratification estimator improves precision

relative to ad-hoc post-stratification estimator. We applied our method to the Right Heart

Catheterization dataset. We post-stratified on the APACHE score, but had different es-

timates and that was due to the imbalance in initial health between treatment groups on

APACHE score.
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4.1 Future Work

Probing deeper, the results in this report also provide a strong foundation for future work

in the estimation of average treatment effects using CHAMP. One area of future work is

proving the theoretical properties rigorously about the unbiasedness and standard errors of

the CHAMP estimator. Another area is in finding rules for dividing units when there are no

small prime divisors of the number of units.
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Appendix A

R code for Ad-hoc Post-Stratification

Estimator

#For a given 0-1 randomization, get left-to-right ad-hoc stratification.

ltradhoc = function(randomiz){

#Store randomization into a variable called myrand for manipulation

myrand = randomiz

#Store all indices in a variable called tempstrat for manipulation

tempstrat = 1:length(randomiz)

#Create a list to store the stratification

mystrat = list()

#Boolean to determine whether or not to continue

docont = TRUE
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#Count the number of entries in mystrat

count = 0

while(docont){

#Get which are 0’s and which are 1’s

which0 = which(myrand == 0)

which1 = which(myrand == 1)

#If either which0 or which1 is empty, finish out mystrat and break.

if(length(which0) == 0 | length(which1) == 0){

#Add the rest of the indices to the last entry of mystrat

mystrat[[count]] = c(mystrat[[count]], tempstrat)

#Prepare to end for loop

docont = FALSE

}

#Otherwise

else{

#Adding a stratum. Increase the count

count = count + 1

#Make a stratum comprised of all entries leading to the first 0 or 1.

endstrat = max(min(which0), min(which1))

addstrat = tempstrat[1:endstrat]
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#Add addstrat to mystrat

mystrat[[count]] = addstrat

#Remove entries from myrand and tempstrat

myrand = myrand[-(1:endstrat)]

tempstrat = tempstrat[-(1:endstrat)]

}

}

#Output mystrat

mystrat

}

#Then run lapply to get your result.

#For a given 0-1 randomization, get right-to-left ad-hoc stratification.

rtladhoc = function(randomiz){

#Store randomization into a variable called myrand for manipulation

myrand = randomiz

#Store all indices in a variable called tempstrat for manipulation

tempstrat = 1:length(randomiz)
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#Create a list to store the stratification

mystrat = list()

#Boolean to determine whether or not to continue

docont = TRUE

#Count the number of entries in mystrat

count = 0

while(docont){

#Get which are 0’s and which are 1’s

which0 = which(myrand == 0)

which1 = which(myrand == 1)

#If either which0 or which1 is empty, finish out mystrat and break.

if(length(which0) == 0 | length(which1) == 0){

#Add the rest of the indices to the last entry of mystrat

#Sort it to make it look a little cleaner

mystrat[[count]] = sort(c(mystrat[[count]], tempstrat))

#Prepare to end for loop

docont = FALSE

}

#Otherwise

else{
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#Adding a stratum. Increase the count

count = count + 1

#Make a stratum comprised of all entries leading to the first 0 or 1

#coming from the right side.

startstrat = min(max(which0), max(which1))

endstrat = length(myrand)

addstrat = tempstrat[startstrat:endstrat]

#Add addstrat to mystrat

mystrat[[count]] = addstrat

#Remove entries from myrand and tempstrat

myrand = myrand[-(startstrat:endstrat)]

tempstrat = tempstrat[-(startstrat:endstrat)]

}

}

#Output mystrat

mystrat

}

#For a given 0-1 randomization, get end to center ad-hoc stratification.
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etcadhoc = function(randomiz){

#Store randomization into a variable called myrand for manipulation

myrand = randomiz

#Store all indices in a variable called tempstrat for manipulation

tempstrat = 1:length(randomiz)

#Create a list to store the stratification

mystrat = list()

#Boolean to determine whether or not to continue

docont = TRUE

#Count the number of entries in mystrat

count = 0

while(docont){

#Get which are 0’s and which are 1’s

which0 = which(myrand == 0)

which1 = which(myrand == 1)

#If either which0 or which1 is empty, finish out mystrat and break.

if(length(which0) == 0 | length(which1) == 0){

#Add the rest of the indices to the last entry of mystrat

#Sort it to make it look a little cleaner
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mystrat[[count]] = sort(c(mystrat[[count]], tempstrat))

#Prepare to end for loop

docont = FALSE

}

#Otherwise

else{

#If count is even, do left to right

if(count%%2 == 0){

#Adding a stratum. Increase the count

count = count + 1

#Make a stratum comprised of all entries leading to the first 0 or 1.

endstrat = max(min(which0), min(which1))

addstrat = tempstrat[1:endstrat]

#Add addstrat to mystrat

mystrat[[count]] = addstrat

#Remove entries from myrand and tempstrat

myrand = myrand[-(1:endstrat)]

tempstrat = tempstrat[-(1:endstrat)]

}
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#If count is odd, do right to left

else{

#Adding a stratum. Increase the count

count = count + 1

#Make a stratum comprised of all entries leading to the first 0 or 1

#coming from the right side.

startstrat = min(max(which0), max(which1))

endstrat = length(myrand)

addstrat = tempstrat[startstrat:endstrat]

#Add addstrat to mystrat

mystrat[[count]] = addstrat

#Remove entries from myrand and tempstrat

myrand = myrand[-(startstrat:endstrat)]

tempstrat = tempstrat[-(startstrat:endstrat)]

}

}

}

#Output mystrat

mystrat

}
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#Pick Treated and total number of units

myn = 16

myt = 8

##Use this when myn<=20

#Get all combinations of choosing myt units from myn

allcombs = combn(myn,myt)

#Get all 0-1 randomizations

allrands = apply(allcombs, 2, function(x, myn){

assign = rep(0,myn)

assign[x] = 1

assign

}, myn = myn)

##Use this if myn>20

#If simulated data

set.seed(1094)

allrands = replicate(10000, sample(c(rep(1,myt),rep(0,myn-myt))))

n = length(allrands[1,])

#Get all left to right stratifications:

aa = apply(allrands, 2, ltradhoc)
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#Get all right to left stratifications:

bb = apply(allrands, 2, rtladhoc)

#Get all ends to center stratifications

cc = apply(allrands, 2, etcadhoc)

# #MIKE: If you need to extend to an even larger set of nc and nt, use simulation

# nc = 50

# nt = 50

#

# #Numrands probably needs to be large (on the order of 100,000)

# numrands = 200

# samprands = replicate(numrands, sample(c( rep(0,nc), rep(1,nt) ) ) )

#

# #Get all left to right stratifications:

# aa1 = apply(samprands, 2, ltradhoc)

#

# #Get all right to left stratifications:

# bb1 = apply(samprands, 2, rtladhoc)

#

# #Get all ends to center stratifications:

# cc1 = apply(samprands, 2, etcadhoc)
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GetStratamean<-function(y1,y0){

y1rands<-t(allrands*y1)

y0rands <- t((1-allrands)*y0)

Stratest = rep(0,n)

for (i in 1:n){

aa_i<-aa[[i]]

y1mean<-numeric()

y0mean<-numeric()

StrataMean_vec<-numeric()

for(k in 1:length(aa_i)){

y1mean[k]<-sum(y1rands[i,aa_i[[k]]])/sum(allrands[aa_i[[k]],i] == 1)

y0mean[k]<-sum(y0rands[i,aa_i[[k]]])/sum(allrands[aa_i[[k]],i] == 0)

StrataMean_vec[k] <-y1mean[k] - y0mean[k]

stratSize = length(aa_i[[k]])

numUnits = length(allrands[,i])

StrataMean_vec[k] = StrataMean_vec[k]*stratSize/numUnits

#MIKE: Stratum weighting on StrataMean_vec[k]

}

#MIKE: At this point, you need to store your estimate.

#MIKE: set stratest[i] = sum(StrataMean_vec)

print(StrataMean_vec)
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print(aa_i)

print(numUnits)

print(allrands[,i])

Stratest[i] = sum(StrataMean_vec)

#cat("Row",i,": ",Stratest,"\n")

}

TrueATE = mean(y1-y0)

cat("ExpectedEstimate(Overall ATE)",":",mean(Stratest),"TrueATE",":",TrueATE,"Variance",":",mean((Stratest - mean(Stratest))^2),"Standard Error",":",sqrt(mean((Stratest - mean(Stratest))^2)), "Bias",":",mean(Stratest) - TrueATE,"MSE",":",mean((Stratest - mean(Stratest))^2)+(mean(Stratest) - TrueATE)^2)

Stratest

}

GetStratamean1<-function(y1,y0){

y1rands<-t(allrands*y1)

y0rands <- t((1-allrands)*y0)

Stratestj = rep(0,n)

for (j in 1:n){

bb_j<-bb[[j]]

y1mean<-numeric()

y0mean<-numeric()

StrataMean_vecj<-numeric()

for(b in 1:length(bb_j)){
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y1mean[b]<-sum(y1rands[j,bb_j[[b]]])/sum(allrands[bb_j[[b]],j] == 1)

y0mean[b]<-sum(y0rands[j,bb_j[[b]]])/sum(allrands[bb_j[[b]],j] == 0)

StrataMean_vecj[b] <-y1mean[b] - y0mean[b]

stratSize = length(bb_j[[b]])

numUnits = length(allrands[,j])

StrataMean_vecj[b] = StrataMean_vecj[b]*stratSize/numUnits

#MIKE: Stratum weighting on StrataMean_vec[k]

}

Stratestj[j] = sum(StrataMean_vecj)

#cat("Row",i,": ",Stratest,"\n")

}

TrueATE = mean(y1-y0)

cat("ExpectedEstimate(Overall ATE)",":",mean(Stratestj),"TrueATE",":",TrueATE,"Variance",":",mean((Stratestj - mean(Stratestj))^2),"Standard Error",":",sqrt(mean((Stratestj - mean(Stratestj))^2)), "Bias",":",mean(Stratestj) - TrueATE,"MSE",":",mean((Stratestj - mean(Stratestj))^2)+(mean(Stratestj) - TrueATE)^2 )

Stratestj

}

GetStratamean2<-function(y1,y0){

y1rands<-t(allrands*y1)

y0rands <- t((1-allrands)*y0)

Stratestz = rep(0,n)
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for (z in 1:n){

cc_z<-cc[[z]]

y1mean<-numeric()

y0mean<-numeric()

StrataMean_vecz<-numeric()

for(c in 1:length(cc_z)){

y1mean[c]<-sum(y1rands[z,cc_z[[c]]])/sum(allrands[cc_z[[c]],z] == 1)

y0mean[c]<-sum(y0rands[z,cc_z[[c]]])/sum(allrands[cc_z[[c]],z] == 0)

StrataMean_vecz[c] <-y1mean[c] - y0mean[c]

stratSize = length(cc_z[[c]])

numUnits = length(allrands[,z])

StrataMean_vecz[c] = StrataMean_vecz[c]*stratSize/numUnits

#MIKE: Stratum weighting on StrataMean_vec[k]

}

Stratestz[z] = sum(StrataMean_vecz)

}

TrueATE = mean(y1-y0)
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cat("ExpectedEstimate(Overall ATE)",":",mean(Stratestz),"TrueATE",":",TrueATE,"Variance",":",mean((Stratestz - mean(Stratestz))^2),"Standard Error",":",sqrt(mean((Stratestz - mean(Stratestz))^2)), "Bias",":",mean(Stratestz) - TrueATE,"MSE",":",mean((Stratestz - mean(Stratestz))^2)+(mean(Stratestz) - TrueATE)^2 )

Stratestz

}
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Appendix B

R-Code for CHAMP

Post-Stratification

#CHAMP POSTRATIFICATION EXACT

champPost = function(randomiz){

if(length(randomiz) == 6){

tiers = matrix(0,6,2)

tiers[,1] = ceiling(1:6/3)

tiers[,2] = 2 + ceiling(1:6/6)

#Keeps track of which tier we’re on.

whichtier = rep(0,6)

#Keeps track of which block we’re on.

whichblock = rep(0,6)
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#Which units have not been assigned to a tier yet

slunits = rep(0,6)

#Check Hierarchy

for(i in 1:2){

#Need to break?

if(length(slunits) == sum(slunits)){

break

}

#Which blocks are bad?

remblocks = tiers[which(slunits == 0),i]

#which units belong to those blocks?

consunits = which(tiers[,i] %in% remblocks)

#Check mean in that tier

testagg = aggregate(randomiz[consunits], by = list(tiers[consunits,i]), mean)

#Blocks that meet the guidelines

goodblocks = testagg[(testagg[,2] > 0 & testagg[,2] < 1),1]

#Which units correspond to the good tiers now

goodunits = which(tiers[,i] %in% goodblocks)
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#What tier do they belong to

whichtier[goodunits] = i

#Which block do they belong to

whichblock[goodunits] = tiers[goodunits,i]

#Now we have a 1 here.

slunits[goodunits] = 1

}

}else if(length(randomiz) == 8){

tiers = matrix(0,8,3)

tiers[,1] = ceiling(1:8/2)

tiers[,2] = 4 + ceiling(1:8/4)

tiers[,3] = 6 + ceiling(1:8/8)

#Keeps track of which tier we’re on.

whichtier = rep(0,8)

#Keeps track of which block we’re on.

whichblock = rep(0,8)

#Which units have not been assigned to a tier yet

slunits = rep(0,8)

#Check Hierarchy

for(i in 1:3){
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#Need to break?

if(length(slunits) == sum(slunits)){

break

}

#Which blocks are bad?

remblocks = tiers[which(slunits == 0),i]

#which units belong to those blocks?

consunits = which(tiers[,i] %in% remblocks)

#Check mean in that tier

testagg = aggregate(randomiz[consunits], by = list(tiers[consunits,i]), mean)

#Blocks that meet the guidelines

goodblocks = testagg[(testagg[,2] > 0 & testagg[,2] < 1),1]

#Which units correspond to the good tiers now

goodunits = which(tiers[,i] %in% goodblocks)

#What tier do they belong to

whichtier[goodunits] = i

#Which block do they belong to

whichblock[goodunits] = tiers[goodunits,i]

#Now we have a 1 here.
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slunits[goodunits] = 1

}

}else if(length(randomiz) == 10){

tiers = matrix(0,10,3)

tiers[,1] = ceiling(1:10/2)

tiers[,2] = 5 + ceiling(1:10/5)

tiers[,3] = 7 + ceiling(1:10/10)

#Keeps track of which tier we’re on.

whichtier = rep(0,10)

#Keeps track of which block we’re on.

whichblock = rep(0,10)

#Which units have not been assigned to a tier yet

slunits = rep(0,10)

#Check Hierarchy

for(i in 1:3){

#Need to break?

if(length(slunits) == sum(slunits)){

break

}

#Which blocks are bad?
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remblocks = tiers[which(slunits == 0),i]

#which units belong to those blocks?

consunits = which(tiers[,i] %in% remblocks)

#Check mean in that tier

testagg = aggregate(randomiz[consunits], by = list(tiers[consunits,i]), mean)

#Blocks that meet the guidelines

goodblocks = testagg[(testagg[,2] > 0 & testagg[,2] < 1),1]

#Which units correspond to the good tiers now

goodunits = which(tiers[,i] %in% goodblocks)

#What tier do they belong to

whichtier[goodunits] = i

#Which block do they belong to

whichblock[goodunits] = tiers[goodunits,i]

#Now we have a 1 here.

slunits[goodunits] = 1

}

} else if(length(randomiz) == 16){
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tiers = matrix(0,16,4)

tiers[,1] = ceiling(1:16/2)

tiers[,2] = 8 + ceiling(1:16/4)

tiers[,3] = 12 + ceiling(1:16/8)

tiers[,4] = 14 + ceiling(1:16/16)

#Keeps track of which tier we’re on.

whichtier = rep(0,16)

#Keeps track of which block we’re on.

whichblock = rep(0,16)

#Which units have not been assigned to a tier yet

slunits = rep(0,16)

#Check Hierarchy

for(i in 1:4){

#Need to break?

if(length(slunits) == sum(slunits)){

break

}

#Which blocks are bad?

remblocks = tiers[which(slunits == 0),i]

#which units belong to those blocks?
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consunits = which(tiers[,i] %in% remblocks)

#Check mean in that tier

testagg = aggregate(randomiz[consunits], by = list(tiers[consunits,i]), mean)

#Blocks that meet the guidelines

goodblocks = testagg[(testagg[,2] > 0 & testagg[,2] < 1),1]

#Which units correspond to the good tiers now

goodunits = which(tiers[,i] %in% goodblocks)

#What tier do they belong to

whichtier[goodunits] = i

#Which block do they belong to

whichblock[goodunits] = tiers[goodunits,i]

#Now we have a 1 here.

slunits[goodunits] = 1

}

} else if(length(randomiz) == 100){

tiers = matrix(0,100,4)

tiers[,1] = ceiling(1:100/5)

tiers[,2] = 20 + ceiling(1:100/10)

tiers[,3] = 30 + ceiling(1:100/20)

tiers[,4] = 35 + ceiling(1:100/100)
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#Keeps track of which tier we’re on.

whichtier = rep(0,100)

#Keeps track of which block we’re on.

whichblock = rep(0,100)

#Which units have not been assigned to a tier yet

slunits = rep(0,100)

#Check Hierarchy

for(i in 1:4){

#Need to break?

if(length(slunits) == sum(slunits)){

break

}

#Which blocks are bad?

remblocks = tiers[which(slunits == 0),i]

#which units belong to those blocks?

consunits = which(tiers[,i] %in% remblocks)

#Check mean in that tier

testagg = aggregate(randomiz[consunits], by = list(tiers[consunits,i]), mean)
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#Blocks that meet the guidelines

goodblocks = testagg[(testagg[,2] > 0 & testagg[,2] < 1),1]

#Which units correspond to the good tiers now

goodunits = which(tiers[,i] %in% goodblocks)

#What tier do they belong to

whichtier[goodunits] = i

#Which block do they belong to

whichblock[goodunits] = tiers[goodunits,i]

#Now we have a 1 here.

slunits[goodunits] = 1

}

} else if(length(randomiz) == 500){

tiers = matrix(0,500,5)

tiers[,1] = ceiling(1:500/5)

tiers[,2] = 100 + ceiling(1:500/10)

tiers[,3] = 150 + ceiling(1:500/20)

tiers[,4] = 175 + ceiling(1:500/100)

tiers[,5] = 180 + ceiling(1:500/500)

#Keeps track of which tier we’re on.

whichtier = rep(0,500)
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#Keeps track of which block we’re on.

whichblock = rep(0,500)

#Which units have not been assigned to a tier yet

slunits = rep(0,500)

#Check Hierarchy

for(i in 1:5){

#Need to break?

if(length(slunits) == sum(slunits)){

break

}

#Which blocks are bad?

remblocks = tiers[which(slunits == 0),i]

#which units belong to those blocks?

consunits = which(tiers[,i] %in% remblocks)

#Check mean in that tier

testagg = aggregate(randomiz[consunits], by = list(tiers[consunits,i]), mean)

#Blocks that meet the guidelines

goodblocks = testagg[(testagg[,2] > 0 & testagg[,2] < 1),1]

#Which units correspond to the good tiers now
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goodunits = which(tiers[,i] %in% goodblocks)

#What tier do they belong to

whichtier[goodunits] = i

#Which block do they belong to

whichblock[goodunits] = tiers[goodunits,i]

#Now we have a 1 here.

slunits[goodunits] = 1

}

}

else if(length(randomiz) == 5735){

tiers = matrix(0,5735,3)

tiers[,1] = ceiling(1:5735/5)

tiers[,2] = 1147 + ceiling(1:5735/155)

tiers[,3] = 1184 + ceiling(1:5735/5735)

#Keeps track of which tier we’re on.

whichtier = rep(0,5735)

#Keeps track of which block we’re on.

whichblock = rep(0,5735)

#Which units have not been assigned to a tier yet

slunits = rep(0,5735)
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#Check Hierarchy

for(i in 1:3){

#Need to break?

if(length(slunits) == sum(slunits)){

break

}

#Which blocks are bad?

remblocks = tiers[which(slunits == 0),i]

#which units belong to those blocks?

consunits = which(tiers[,i] %in% remblocks)

#Check mean in that tier

testagg = aggregate(randomiz[consunits], by = list(tiers[consunits,i]), mean)

#Blocks that meet the guidelines

goodblocks = testagg[(testagg[,2] > 0 & testagg[,2] < 1),1]

#Which units correspond to the good tiers now

goodunits = which(tiers[,i] %in% goodblocks)

#What tier do they belong to

whichtier[goodunits] = i
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#Which block do they belong to

whichblock[goodunits] = tiers[goodunits,i]

#Now we have a 1 here.

slunits[goodunits] = 1

}

} else {

stop("Not correct length")

}

whichblock

}

#Estimation given a poststratification

#Get estimate

estChampStrat = function(potout1,potout0, randomiz, champStrat){

#Get Which Treated

whichtrt = which(randomiz == 1)

#Get Which Control

whichcon = which(randomiz == 0)

#Size of the block

blocklength = aggregate(champStrat, by = list(champStrat), length)[,2]

#Treatment mean by block

trtres = aggregate(potout1[whichtrt], by = list(champStrat[whichtrt]), mean)[,2]
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#Control mean by block

conres = aggregate(potout0[whichcon], by = list(champStrat[whichcon]), mean)[,2]

#Standard post-stratified estimator

est = sum((trtres - conres)*blocklength)/length(potout1)

#Output

est

}

#Function for stratifying and estimating

ChampStratAndEst = function(randomiz, potout1, potout0){

#Get stratification

champStrat = champPost(randomiz)

print(champStrat)

#Get estimate

est = estChampStrat(potout1, potout0, randomiz, champStrat)

est

}

#Pick Treated and total number of units
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myn = myn

myt = myt

potout1 = potout1

potout0 = potout2

## For myn <=16, use this

#Get all combinations of choosing myt units from myn

allcombs = combn(myn,myt)

#Get all 0-1 randomizations

allrands = apply(allcombs, 2, function(x, myn){

assign = rep(0,myn)

assign[x] = 1

assign

}, myn = myn)

## For myn>16, use this simulation

set.seed(1094)

allrands = replicate(10000, sample(c(rep(1,myt),rep(0,myn-myt))))

#Get all poststratification estimates

allests = apply(allrands, 2, ChampStratAndEst, potout1 = potout1, potout0 = potout0)
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#Expected value

myev = mean(allests)

#Variance

myvar = mean((allests-myev)^2)

#Standard error

mysd = sqrt(myvar)

TrueATE = 1

#MSE

MSE = myvar +(myev - TrueATE)^2

#Output

c(myev, myvar, mysd,MSE)
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