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1. INTRODUCTION

Mixing or blending operations are carried out on particulate solids
in chemical, metallurgical, pharmaceutical and food industries. Despite
ité obvious importance, the mixing of solids is far from completely under-
-stéod. A considerable need exists for fundamental work to delineate the
mixing process-and to characterize.the resulting mixtures on the basis of
fundamental theo;y.

In general, investigations of solids mixing are concerned with two
broad aspects; those concerned with the characterization of mixtures and
those dealing with mechanisms by which the state of a mixture is changed.
Both aspects are equally important; therefore, the work described in
this thesis is concerned with both.

Because of the development of various modern technologies, e.g.,
the fiber optic probe method, continuous detection of particle distribu-
tion inside a mixer has become feasible. Under this circumstance the
disérete Fourier transform, which is a digitized version of the Yourier
transform, may be employed to interpret the data collected from a sampler
for the purpose of mixture characterization. The present study aims at
determining the relationship between the homogeneity of a solids mixture
and its discrete Fourier transform power spectrum for orderedrmixtures
as well as random ones.

Mixing of particulate solids in a horizontal drum mixer has been the
subject of many investigations because of its theoretical as well as
practical importance. When non-ideal particles which are different in
size and/or density are mixed, their mixing behavior is very random and

thus difficult to visualize. Practically no attempt has been made to



"elucidate the temporal change of particle distribution along the axial
direction of the mixer. In the present-work this has been modeled by
means of the Kolmogorov diffusion equation. Using the model, the non-
uniﬁmrm equilibrium concentration profile, which is a typical phenomenon

occurring when non-ideal particles are mixed in a horiéontal drum mixer,

could be fairly well described.



2.CHARACTERIZATION OF SOLIDS MIXTURES BY THE DISCRITE FOURTER TRANSFORM 2-1
2.1 INTRODUCTION '

The most widely used criterion for the measure of homogeneity of a

¢ solids mixture is based on the variance of spot samples, The variance,

however, reveals little as to the internal nature or structure of the

fi |

' mixture because it is a statistical quantity which depénds largely on

 the size as well as the number of samples taken from the mixture. A sur-
. ~ i

e

! vey of the literaturq;(Bourne, 1967; Harnby, 1971/72; Kristensen, 1973:

" Poole et al., 1964; Williams, 1969/70)\shows that extensive studies of

/

| characterization of the mixture homogeﬁeity have been carried out, which

?emphasize the investigation of the analysis of variance of spot samples,

The concentration of reference or key particles must be measured
at many position in the mixture to test its homogeneity. If the problem
of accurate determination of homogeneity is critical, as in the pharmaceuti-
cal production industry, continuous sampling over the entiré mixture batch
is necessary. When the mixture content is likely to deterioréte severely
during sampliﬁg, special technologies must be exercised in sampling.-
If tﬁe major ingredient in the mixture ié sensitive to a certain wavelength,
ghe fiber optic probe téchniQue may be used (Ashton et al., 1966). Harwood
et al., (1971) have reported a device to monitor compositional changes
in a mixture batch, which-emPIOYS the fiber optic probe. The signal from
its photo multiplier is displayed on a recorder. The measﬁred quaﬁtity
is the reflectance of the powder mixture at the position‘under investigation,
Compositions can be recovered from a calibration curve. Several probes
can be inserted into the mixture batch to obrain the concentration distri-
bution in the mixture batch. For a three-dimensional mixture batch, the
disturbance caused by inserting the probes cannot be completely eliminated,

However, when a photographic method is used, this difficﬁlty can be minimized



as long as the mixture is well mixed in the direction perpendicular to
the exposed surface. For further information on the sampling techniques,
readers are referred to the recent review by Schofield (1976). |

If any of the continuous samé;ing techniques mentioned above is
applicable, the Fouriér transform (FT) is one of thé convenient ortho-
gonal transforms that can be used to interpret the data collected from
a sampler, These transforms includé Walsh, Hadamard, Rademacher and Haar
functions (see, elg., Ahmed and Rao, 1975 for the definitions and properties
of these transforms). The FT has been extensively used as a means to
characterize images, to reconstruct the data, and to carry out many other
related tasks (see, e.g., Crowther et-al., 1970; DeRosier and Klug, 1968).

quper (1974) investigated the mixture pattern of metal powders
which were subjected to chemical diffusion during sintering or melting.
He attempted to approximate the concentration distribution of the key
particle by a series of sinusoidal fluctuations from the meanvvalue.
Though Fhe FT was not explicitely used by him, his approach (an expansion
in sine series)'is similar to the FT tecﬁnique.

The discrete Fourier transform (DFT) is the discrete version of the
FT. A continuous signal obtained from the sampier is digitized and the
FT is performed in a discrete manner, and then the input signal is inter-
preted on the transform domain. Since efficient DFT algorithms are available
(see, e.g., Cooley and Tukey, 1965; Ahmed and Rao, 1975), rapid treatment
of the collected data or signals is relatively easyofmThe present study
has been carried out to determine the relationship between the homogeneity

of a solids mixture and its DFT power spectrum, %
;j
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2.2 THEORETICAL

There are at least two distinct ways to carry out photographic
or visual sampling. In a continuous mixiﬁg ﬁrocess, the product mi#ture
marches in line, and the sampler, which is fixed in position over the
mixture stream, measures the concentration of the key particles passing
beneath it (Fig. 1). On the other hand, the sampler itself moves along
the mixture in a batch process (Fig; 2), The video signal which repre-
sents the concent}ation of the key particles appears on the displayer
as a function of time in Fig. 1, and as a‘function of the spatial position
in Fig. 2, For a two-dimensional batch mixture, the scanning is performed
horizontally and vertically.

To obtain a digitized form of signal, N equidistant positions are
located along the abscissa of the video signal as shown in Figz. 1 and
2, At each position there is a corresponding value of the éoncentration,
{X(m)}, m = 0,1,2,,0.,N-1, {X(m)} is termed a data matrix; mére precisely,

{X(m)} is a vector for the present one-dimensional case,

2.2.1‘+Properties of the Discrete Fourier Transform
Suppose that {X(m)} is a set of data of N finite numbers (m = 0,1,
2,4.4,N-1) obtained from the signal; then its DFT is defined as (see,

e.gs, Ahmed and Rao, 1975; Cooley et al., 1967):

N-1

Cx(k) = % b3 X(m)[cos(zzym) -1 sin(zgfm)]
mn=0 -
N-1
=3 % X@ W )
m=0
where ) #
N =2"
g2
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v -1

k =0,1,2,...,N-1

i

fﬁe DFT power spectrum is defined as

P = lc ()%, k=0,1,2,....0/2 | (@)
One of the properties of- the DFT, known as the shift theorem, can be ex-
pressed as follows (see, e.g., Ahmed and Rao, 1975):

If

Z(m) = X(wth), h = 0,1,2,...,N-1,
then

¢ () =W (k) (3)
This theorem indicates that the power spectrum is invariént with respect
to the shift of the elements of {X(m)}.

To illustrate the significance of the shift theorem in relation with

‘the solid mixture homogeneity, let us consider a completely‘segregafed
mixture composed of 8 particles, These particles are positioned linearly
forming a,one—dimeqsional mixture, Let us denqte this by [X]12 i.es,

[X]; = [11110000] | (4)
By performing the DFT on [X]l we obtain

(Y1} = [T10X]] | (5)
where the subscript tldenotes the transpose, [T] is the DFT mafrix, and [Y]l
is the transformed vector of [X]l. Generally when N particles are involved
the component of [T] is given by

A LW, mk o= 0,1,2,...,8-1 (6)
Suppose that the particles of {X]l are shifted to the right by bulk move-

ment to form another mixture [X]2 such that

[X], = [00111100] ] t (7)
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As far és the mixture homogeneity and pattern are concerned, [X]l and [X]2 '
are essentially identicalhin'the sense that in each mixture the key particies.
are clustered together, and hence both are in the completely segregated
state., By virtue of the shift theorem, the DFT power spectrum of the two
mixtures can be shown to be identical. This is one reasoﬁ why the DFT
is more advantageous than other orthogonal transformations in the charac-
terization of mixture patterns.

The physicai meaning of the DFT power spectrum of a mixture can be
further elucidated by considering a completely random mixture. It must
be noted that the first DFT power spectrum component is the square of
the average concentration, as can be shown from Eqns, (1) and (2). In

'faﬁt when k = 0, we have

1 N-1
C (0) == & X(m)
x
m=0
=q
and‘thus )
: 2 ‘
p(0) = q (8)

Suppose that a binary mixture is in the completely random state.
Then the expected value of concentration at each sampling position is iden-
tical to the average concentration q, irrespective of the size and/for num-

ber of samples. Since the autocorrelation function R(m is defined as

1 " N-1-m
R(m) = T T E[X(i) X(d+m)], 1 = 0,1,2,...,N-1 (9)
i=0

the autocorrelation function of the completely random mixture is given by

2

R(m) = q (10)

The DFT power spectrum can be obtained by the inverse discrete Fourier
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transform (IDFT) of the autocorrelation function (see, e.g., Ahmed and
Rao, 1975)., This yields

N-1 V—mk

p(k) =  R(m) W', k=0,1,2,...,N/2 (11)
; =0
,Thefefdre,
p(0) = ¢
p(k) = 0’ k = 1’2’UIO,N/2 S (12)

This implies tha£ thé power spectrum of a completely random mixture

is essentially the delta function. Since p(0) is independent of the
mixture homogeneity, it ean be conveniently used td normalize the power
spectrum, Hereafter, we shall denote the normalized power spectrum

by p(kY, k= 0,1,2,.e.,M/2.

A completely random mixture is statistically equivalent to a uniform
mixture in ﬁhe sense that the expected wvalue of conéentratign_at every
sampling position is identical. Assuming that the concentration is
uniformly distributed, i.e.,

X(0) = X(1) = ... = X(N-1) = q, o (13)
the power spectrum of a uniform mixture can be shown to be the same
as that given in Eqn. (12) because of Eqn., (10). The concept of uniforﬁity
and‘randomness, therefore, can be interchangable in solids mixtures
as far as the power spectrum is concerned. In this context it is interesting
to establish correspondences between the correlograms and the power
spectrum, The former has been introduced by Danckwerts (1953) and extended
by Schofield (1970). Danckwerts defined the correlogram as the correlation
coefficient p(m) with a distance lag m, i.e.,
1 ~N-1-m i
Tom iio E[(X(1) - q) (X(itm) - q)]

p(m) = 5 ‘ (14)
g




where
m= 0,1,2,-.-,N"'1
2 ;
¢ = sample variance
Since the expected value of concentrétion at each sampling position

is identical for a completely random mixture, it can be shown that

p(0) =1

]

o(m) =0, m=1,2,.0.,N-1 | (15)
The area under tﬁe cofrelogfam up to Fhe point where.it first crosses
‘the m—axis is defined as the scale of segregation. The characteristics
of the correlogram and the DFT power spectrum are identical for a completely
random mixture as caﬁ-be seen by comparing Eqns. (12) and (15).

Another property of the DFT, known as Parseval's theorem, states
that

N-1 N-1

5 X2(m) = C 2(0) + % [c_(k)]% A (16)
m=0 - k=1 X

1

when Eqn. (1) holds true. From Eqns. (2) and (8), we have

2 2
¢, (0) =p(0) =gq

and, therefore, Eqn. (16) can be rewritten as

N-1 N-1

1% m-q*= 5 [c 01 | (17)
m=0 k=1
or
) N-1
6" = & p(k) - p(0) (18)
k=0

Egn. (18) shows that the DFT power spectrum represents a mode by which
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- the key particle distribution contributes to the variance, 02. In other

words it contains more physical information about the mixture than the

variance itself.

The fundamental concepts of the DFT power spectrum presented so

far in one dimension can be extended to higher dimensions. For the

two-dimensional case, the DFT is defined as

| e km kym
Cox®pp X)) =y & I X(m, m) W = W,
1 2 m,=0 m_=0 i
2 1
where ) 251
N
Wl = e . L =1,2

{X(ml, m2)} is the two-dimensional data matrix with (NxN) elements.

The power sgpectrum can be defined similar to that in Eqn. (2), i.e.,

. 312
kl = 0,1,2,...,Nl/2'
2 o
k2 0,1,2,...,N2f~

For further information on the FT and DFT, readers are referred to

(19)

(20)

Ahmed and Rao (1975), Arsac (1961), Bracewell (1965), and Goodman (1968).



2.2.2 Mixture Pattern Classification

The patterns of solids mixtures can be classified according to the
concentration distribution of the key component. To be more specific,
we‘shall distinguish mixture patterns from mixture strﬁctures (Lai,

- 1976). The structure of a mixture refers to the packing arrangement

of the particles., For example, cubic and hexagonal packings are typical
ordered structures for a two-dimensionél mixture. A mixture with an
ordered patternAmay or may not have an ordered structure in microscopic
scale. In other words, inside each clump of the ordered pattern, the
packing structure of the particles may be random.

The mixing of particulate solids proceeds by two major mechanisms:
convection and diffusion., These two mechanisms usually yield different
patterns. Ordered pattern mixtures are created as a result of convective
mixing in an ordered manner, i.e., successive subdivision bf clumps fol-
lowed by orderly displacements. Diffusive mixing leads to a.random mixture,

Even though the importance of ordered mixing has been neglected
by éolids mixing investigators, Hersey t1976) points out that in producing
pharmaceutical mixtures, ordered miiing is sometimes more effective than
random mixing, especially for highly cohesive materials.

Ordered mixtures can be subdivided into two groups, striated and
checkered pattern mixtures, according to the layout of key particles
(see Fig. 3). One- and two-dimensional striated pattern mixtures have
essentially the same pattern. The latter is an elongation of the former
in one direction. Checkered pattern mixtures only exist in two-dimension.
For an ordered mixture, the number of striations or checks completely

specifies the pattern while this is not the case for a random mixture.
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To identify the pattern of a mixture, it is necessary to sample
it. Studies in sampling theory and practice have been centered mostly
on the random sampling, If, however, the‘pattern and homogeneitf of a
mixture need to be simultaneously determined, the systematic sampling
. may be more effective than the random sampling. This is due to the fact
" that an ordered mixture cannot be distinguished easily from a random

one only by random sampling.



-2.3 COMPUTER SIMULATION

+ To test the applicability of the DFT power spectrum technique, one-
and two-dimensional binary mixtures were simulated on the computer. To
reﬁresent the mixture contents, binary digits were employed as shown in

. Equs. (21) and (22).

128 128
[111......11000......00] (21)
8 8
11...110800...00
1 10 0
1. 0

(22)

111...11000...00
They represent, respectively, the completely segregated one- and two-
dimensional mixtures at the onset of the simulétion. Each mixtureicon—
sisted of 256 particles, half of which were key particles indexed by 1

and the other hélf were non-key particles indexed by 0.

Mixing processes whiéh gave rise to various mixture patterns were
simulated by interchanging particles at different locations. Ordered
mixtures were generated by alternately and regularly layering a group of
1 particles and a group of 0 particles. Random mixtures were generated by
means of random number generation. In this manner, 10 one-dimensional

and 10 two-dimensional random mixtures were generated, each of which was
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‘obtained after 20 random exchanges of particle locations. A one-dimensional
random mixture: which obeys the simple Fickian diffusion equation

2

ac _ 3 C :
o W By ‘ (23)
ox

was also simulated, where c is the concentration of the key particles
and D is the diffusion coefficient. For this purpose, the following
analytic solution for the boundary conditions that no tramsport of

particles takes place at both ends of the mixer was employed (Lacey, 1960);

2 2 -nzwz sin(ngm)
c-q=— I e T ERAATL cos(nwy) (24)
T n
_ n=1 :
where
T = pe/L?
L = length of the mixer
q = initial proportion of key particles
y = %'= normalized or dimensionless mixer positiom

A fixed number of samples with the same size (same number of particles
per sample) was systematically withdrawﬁ from each generated mixture.
For a one-dimensional ordered mixture, the number of samples was 32, and
each sample contained 8 particles, while 256 sémples, each containing

a single particle, were withdrawn from a one-dimensional (random) or
two-dimensional (ordered or random) mixture. The sampled data were
arranged in a one- or two-dimensional matrix array, and the DFT power
spectrum for it was calculated by using Eqn. (2) or (20). The maximum
component of the DFT power spectrum was identified and defined as the
‘mixing index, M,, the reason for which will be discussed later. For a
random mixture, random sampling was also conducted by withdrawing a fixed

number of samples of equal size to calculate the sample variance, 02.
. .
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2.4 RESULTS

Figure ﬁ sketches one-dimensional ordered mixtures in the order of
increééinghnﬁmber of striations together with their maximum power spectrum
coﬁponents (Ml). Fig. 5-A shows the power spectrum of the completely
segregated mixture corresponding to the first mixture in Fig. 4, while Fig.
5-B is ‘that of the most uniform mixturg corresponding to the last one in
Fig. 4. Figure 6 illustrates several checkered pattern mixtures and the
corresponding values of M.

The sample variances of one- and two-dimensional random mixtures, and
their maximum power spectrum-components are tabulated in the order of
increasing number of particle -exchanges in Tables 1 and 2, respectively.

Note that mixture 1 is in the completely segregated state while mixture 10

is almost in the completely random state.
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2.5 DISCUSSION

Several observations can be made from the numerical results of the
simulaﬁion. They are detailed in the following.
2:5.1  Mixing Index ' &

- Although all power specturm components can be used to characterize
some features of a mixture, it is extremely difficult to employ all of
them 1nrcharacterizing its homogeneity or in comPuting its mixing index.

—_For illustration, let us consider the following binary mixture [X]3.

[X]3 = [OOOiOOOOOIIDllllIOOll01011100110] (25)

The power spectrum components of this mixture are tabulated in Table 3.
For this mixture, the predominant power spectrum components, exclﬁding 5(0),
are 5(6),'5(10),and-5(1) in decreasing order. All of them can be
considered to be parametersVcharacterizing the homogeneity of mixture
[X]3. Therefore, to select a singlé mixing index, the ensemble average
of several predominating power spectrum components or only the maximum
component, Ml’ can be used, as long aé selection is consistent. The
latter is selected in the present study as a mixing index. The results
of numerical simulation indicate that M1 poséesses desirable characteristics
including stability from change in the average composition, sensitivity,
and efficiency.
2.5.2 Characteristics of Ordered Mixtures

Figure 4 shows that the DFT power spectrum can characterize an ordered
mixture. Ml increases as the striation number increases or as the mixing
process of an ordered mixture proceeds.

The power spectrum of an ordered mixture has a particular shape. As

can be seen in Figs. 5-A and 5-B, the most uniform (ordered) mixture has a



i 2-15

symmetrical power spectrum, and all components of the poﬁer spectrum have
zero values except at the two ends while the power spectrum components

z

of the completely segregated mixture (k = 0 and k = N/2) exponentially
‘decfeases down-to zero .with the increase in the wave number. Other
intermediate state mixtures lie between these two extremes. We can

expect thgt Ml of a two-dimensional checkered pattern mixture has a similar
property since such a mixture is also an ordered mixture( Fig. 6 )

The degree of mixedness of a checkered pattern mixture may be
investigated by other methods, fbr example, by contact number sampling
(Lai, 1974).

2.5.2 Characteristics of Random Mixtures

An actual mixing process is often accompanied by random movements
of individual particles, The DFT power spectrum of a resulting random
mixture has a different structure from that of an ordered one. As a
mixing process proceeds or the randomness increases, M1 decreases. This
is in sharp contrast to the characteristics of an ordered mixture for
which M, increases with an increase in uniformity or.homogenity. As the

1

mixture approaches cémpletely random state, M, approaches zero, thereby

1
confirming Eqn. (12) (also see Tables 1 and 2).

The variance -of a one-dimensional mixture which undergoes a mixing
process of the Fickian diffusion type, Eqn. (23) or (24), can be written

as (Lacey, 1960):

5 3 o adw (nqr) 2, -2n%t

CT~=—'2 E_[ ]e (26)
T n=l n
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When 1 is large (> 0.1), only the first térm (n = 1) is of .importance, and
Eqn. (26) 1s reduced to

z |
02 = %1 2—2“ z;inZQH : : (27)

fhe DFT power spectrum of this mixﬁure exhibits a special feature. Ml
is always equal to-g(l) and the rest of the powér spectrum components are
significantly lower than p(1). In fact, the exact relationship between
Ml and T can be shown to be (see the Appendix)

-1n Ml = 27 - (28)

From Eqns. (27) and (28), therefore, we can conclude that

]

1n?Mi = constant + 1n 02 ] : (29)

L+

This shows that a linear relatioﬁship exists between lnhMl and ln‘dz.
A similar result can be obtained for the two-dimensional case.

The mixing process simulated previously by randomly interchanging
particles at different locations is essentially a diffusive mixing process,
considering that the mixing time is pfopnrtional to the number of exchanges
of individual particles. Consequently, we can expect that a linear
relationship exists between lijl and 1n cz_as derived in Eqn. (29); The
data in Tables 1 and 2 for ane- and two-dimensional: random mixturés: .’
'plotted in Fig. 7 show such a linear relationship.

The mﬁiimum;DFT power spectrum,. Ml,‘has‘a‘resolving po;er to
distinguish the ordered pattern from the random one including the homo-
geneity of the mixture. in contrast, the sample variance, 02, does not

possess such a resolving power. Therefure, this property of M1 may be
useful when a product mixture, which must have a specific ordered pattern,

needs to be identified.
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2.5.4 _Fourier Transform vs. Walsh-Hadamard Transform

Using the Walsh-Hadamard power spectrum Wang, et al. (1977) developed
a similar technique to assess the random mixture homogeneity. In their
work, model mixtures employed for the computer simulation were two-
dimesional binary random mixtures represented by a (16x16) matrix.
The method ¢f generating a random mixture was identical to that
previously described in the present work. Aftef each fixed number of
interchanges, the two-dimensional Walsh-Hadamard transform{WHT) was
performed, and the correspoﬁding two-dimensional power spectrum was computed.
: The results show that the mixing index, based on the WHT power
spectrum component which has a predominating variance, is linearly cor-
related with that based on the sample variance, 02. This is somewhat
similar to the present observation for Ml shown in Fig. 7. No attempt
was made by Wang, et al. (1976) to apply their approach to ordered

mixtures. Therefore, it is not certain whether the WHT possesses the

resolving power similar to the DFT for ordered mixtures.
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2.6 CONCLUDING REMARKS

Continuous sampling techniques are being rapidly developed, and to
keep pace with this, a fast and reiiable technique for determining and
Elassify mixture homogeneity is needed. fhe present study was carried out
to test the applicability of the DFT power spectrum for this purpose. The
DFT is particularly useful when the homogeneity and pattern of a mixture
are to be simultaneously determined. A fast sampler and é well-trained
classifier are required for an efficient characterization of the mixture
quality by means of the DFT. The training procedure of the classifier
depends on the method of sampling as well as the specific criterion of
product quality.

The DFT téchnique can also be applied to multicomponent particle
systems. While training procedures for a multicomponent mixtue would be
substantially different from these for a binary mixture, the results of

the present work whould be useful in guiding development of such procedures.
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c

{c (o}
{ka{kl’kz)}
D

E

F(E,T)

Fo (£)

N, xNz
{p(k)}

{p(k)}

R{(m)

[T]

[x1,

{X(m)}
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concentration of key particles

one-dimensional DFT of {X(m)}

two-dimensional DFT of {X(ml,mz)}

diffusion coefficient

expectation or expected value

FT of ¢ with respect to y

F(g,0)

sampling lag

wave number

length of the mixer

sample sequence in one-dimensional mixtures
sample sequences in two-dimensional.mixtures
value of the maximum DFT power spectrum component
number of samples in one-dimensional mixtures
total number of samples in two-dimensional mixtures
one-dimensional DFT powér spectrum

normalized one-dimensional DFT power spectrum

average concentration or initial proportion of key
particles

autocorrelation function with distance lag m

DFT matrix

L 2T )
eIy e a complex constant
, 27
-i — , a complex constant
e Ng

digitized one-dimensional solid mixtures

one-dimensional data matrix



two-dimensional data matrix

DFT transformed vector of [X]l mixture
variance

Jdimensionless time

dummy variable

correlation coefficient with distance lag m
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"APPENDIX, DERIVATION OF EQUATION (28)

From Eqn. (23) we have

dc D Bzc
ot 2
ax

In dimensionless form

sc _ d%
- 2
a.T ay
where
%
T = Dt/L
= X
YL
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(A.1)

(A.2)

Let F be the Fourier transform of ¢ with respect to y, i.e.,

© -1
F(1,€) = [ c(y,T) e "V ay
Then Eqn. (A.1) can be transformed into

dF 2
dt

The solution to Eqn. (A.4) is given by

_521-
F(g,t) = FO(E)_e

where Fo(g) is the Fourier transform of c at 1T = 0. The

at a given 1 is, by definition,

]

[F(z,0 1%
[F, (£)1°
0

p(E,1)

2
e—2£ T

(A.3)

(A.4)

(A.5)

power spectrum

(A.6)



‘The discrete version of the above equation is

a
Pl = [Fy (1% &2

whefe
' N
k = 0,1,2,..., 2

The normalized power spectrum is given by

2
p (0 = BB o2k

p(0)
Since Ml is equal to p(l), we can conclude that
M1 - e-ZT
or
-In M, = 21

1

This is Eqn. (28) in the text.
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“a.n

(A.8)
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TABLE 1. One-dimensional random mixture classification.
s | oot | |2
1 0 0.4053 0.2500
2 20 0.2019 0.1344
3 40 0.1443 0.0967
4§ 60 0.0631 0.0444
5 80 0.0502 0.0400
6 100 0.0381 0.0356
7 120 0.0206 0.0422
8 140 0.0175 0.0244
9 160 0.0159 0.0256
10 180 0.0153 0.0256
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TABLE 2.. Two-dimensional random mixture classification.

Mixture g::gz;gzi Ml o :
1 0 | o.1026 0.2500
2 20 0.0524 10.1896
3 40 0.0277 0.1364
4 60 0.0126 0.0895
5 80 0.0101 0.0727
6 100 0.0061 0.0667
7 120 - | 0.0050 0.0505
8 140 0.0055 |  0.0440
9 160 | 0.0046 0.0365
10 180 0.0047 0.0321
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TABLE 3. Normalized power spectrum of [X] 3 mixture in Eqn. (;?5,)-

Wave Number, k Normalized Power Spectrum, p(k)
0 1.0000
1 0.0670"
2 0.0418
3 0.0159
4 ' ‘ 0.0023
5 0.0046
6 _ 0.1379 *
7 , 0.0237
8 0.0078
) 0.0164
10 0.0911 *
11 ~ 0.0082
12 0.0133
13 0.0211
14 | | 0.0104
15 0.0304
16 0.0156

* Stars represent the three predominating power spectrum components.
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3, STOCHASTIC DIFFUSION MODEL OF NON-IDEAL MIXING IN A =1

HORIZONTAL DRUM MIXER
3.1 INTRODUCTION

A study of solids mixing uvsually involves‘two basic aspects; one
is elucidation of the rate and mechanism of the mixing process-itSelf
~and the other is characterization of the resulting mixture including its
homogeneity (Bridgwater, 1975; Cooke et al., 1976; Fan et al., 1970;
Weidenbaum, 1958). Studies on the rate and mechanism of mixing have mainly
been concerned with the establishment of expressions or models for the
rate of mixing. Some of the models deal only with the overall rate of
mixing without regard to the spatial distribution of particles (see, e.g.,
Brothman, 1945; Coulson and Maitra, 1950; Rose, 1959; Weidanz, 1960);
others take into account both temporal change and spatial distribution
of the particle concentration (see, e.g., Hogg et al., 1966; Lai and Fan,
19?5; Oleniczak, 1962; Wang and Fan, 1976). The models of the former
class are expressed in terms of variance or degree.of mixedness which
is subjectively defined; those of the latter class are based on the Fickian
diffusion or stochastic equations. Obviously, from the fundamental point
of view, the change of the particle concentration distribution along the
mixer position should be of primary importance.

The modeling of axial mixing in a horizontal drum mixer was first

attempted by Lacey (1954) using the following Fickian diffusion equation

== (1)

where D is the diffusion coefficient which is generally a function of
t, x and ¢, For an ideal particle system containing particles with identi-
cal physical properties except color, the solution of Eqn. (1) with a
constant D yields an expression which is in reasonable agreement with

experimental data (see, e.g., Hogg et al., 1966). - However, Eqn. (1) is



not directly applica@}e to a segregating or non—idéal particie systemt
which may give rise:to a band formation,

The band formation was observed by ﬁonald and Roseman (1962) when
particles of different sizes were mixed in'a horizontal drum mixer. Bands
were first formed at the ends and then moved to the center, They‘attributed
this to axial fariation of the radial veloci;y profile., Bridgwater,

. Sharpe and Stoﬁker (1969) suggested that the interparticle percolation
and differences in void fraction are the probable reasons for such a pheno-
menon. Lloyd, Yeung and Freshwater (1970) observed that the equilibrium
concentration distribution depended on the spéed of mixer rotation for
a given particie system. Compared with these efforts to analyze and inter-
pret the band formation quélitatively, practically no attempt has been
made to describe it quantitatively. Hogg (1969) suggested that the devi-
ation from ideality could be handled by incorporation of concent;;tion
dependent D in Eqn. (1). As will be shown later, Eqn., (1) yields a flat.
eqﬁilibrium profile in a batch mixer independent of therfunctioﬁal fo;m
of D.

Because of its coﬁplexity, stochastic approaches may be advantageous
in modeling the rate and mechanism of non-ideal mixing and in predicting
the concentration distribution inside a mixer. While most of the stochastic
modeling efforts are concerned with ideal ﬁixing; Wang and Fan (1976)
applied the Markov chain to a non-ideal particle system. The objective
of this work is to examine the applicability of another stochastic model,
i.e., the stochastic or Kolmogorov diffusion equation, to such a system
which may give rise to a band formation. While this -equation was proposed

by earlier investigators (Molerus, 1966; Miller and Rumpf, 1967), no attempt

has been made so far to apply it in its original or rigorous form.
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‘Suppose that a binary mixture containing different size particles
is mixed in a horizontal drum mixer. It can be visualized that both
large and small particles move randomly or stochastically in ;he mixer.
In the vicinity of an end of the mixer, however, the probability for smaller
particles to migrate toward the éenter of the mixer is larger than that
of larger particles. This is due to the higher mobilities of the smaller
ones which tend to move through the interstices of the larger ohes.
Consequently, as mixing proceeds, the larger particles tend to remain

in the end region while a band of smaller ones moves away from it.



.

3.4 -

3.2 THEORETICAL

- First we shall assume that a particle being mixed undergoes a Markov
process, i.e., the probability for 4 particle to migrate from one position
to another in a drum mixer is independent of the intermediate steps.
This gives rise to the Kolmogorov diffusion equation.
3.2.1 Kolmogorov Diffusion Equation (see, e.g., Bharucha-Reid, 1960; Seinfeld
and Lapidus, 1974).
Suppose that a parﬁicle of the key component Or simply a key particle

was initially observed at XO(OSX <1), and that after a certain period

0

of mixing the particle is found at x(0x<l).. Xq and x are normalized
or dimensionless axial mixer positions which are variables.

Let us define a random variable {X(t); t£20} associated with x,
which obeys a continuous stochastic process of the Markov type defined

on the real line segment between 0 and 1. Furthermore, let us define

a conditional probability and its density function such that

i

F (%t x,t) = PriX(t) < xlX(tO} = xO]

aF
ox

11

f(xO,tO; X, t) (2)

In this expression, F(x X,t) is the conditional probability that

0*to

a key particle orignially at x, migrates to x during the time period

0

At = t-t

0 Since f(xo,t ; X,t) is a probability density function, we

0

have
1

S f(x ; X,t) dx =1 . | (3)
0

t
0’0
Another assumption necessary for the derivation of the Kolmogorov

diffusion equation is that the probability of particle motion during

an infinitesimal time interval At is negligible compared to At. Mathe-

matically,



1im " I E{xyt; x", t+at) di"

At
‘ .At-ﬂ). |x'-x|_>_t‘5

= T -f; J £(x,t-At; x',t) dx'

&5 |x'-x|28
=0 | %)
where | i
$>0 ; O<x'<1

From the assumption of the Markov property for the random variable, X(t),

we have
' 1
f(xo,to; X,t) = é f(xo,to; x‘,T)f(x‘,T; x,t) dx! (5)
where
O<x'<1
'tOSTst

Equations (4) and (5) give rise to the Kolmogorov or stochastic dif-

fusion equation of the following form (See Appendix 1 for the derivation):

of _ 3%(E) _ a(vE)

ot ax2 ox _ . (6)

where

f = f(xo,to; X, t)

Dilx, €] = lim <o fEaen)* Els by 2 AL dx" 7
atso A 2 ‘ ‘
| <"-x| <6
V(x,t) = Iim -f; I %z Elx, by x", t#AL) dx" (8)
' A0 b
Ixu_xl <5

In Eqns. (7) and (8), x" is a dummy variable in the neighborhood of x,
and D(x,t) and V(x,t) are respectively the diffusion coefficient and

the drift velocity. Equation (6) is written in ‘terms of the transition



_ probability density function. In practice, however; it is convenient

to express it in terms of concentration. Let N(x',to) be the number
density (number/unit volume) of key particles at x' and tos and N(x,t),
that at x and t. Then from the definition of the transition probability,

we can write

. 1 |
N(x,t) = f N(x',t,.) f(x',t.; x,t) dx' (9)
0 0 0
Since
N(x" t.)
c(x ,to) = N L
t
where

Nt = total number of particles in the mixture

c(x',to) = number concentration distribution of the key
. particles at time tj

c(x,t) = number concentration distribution of the key
particles at time t, -

Eqn. (9) can be rewritten as
1

rc(x;t) =/ c(x',t,) f(x',t

. 0} x,t) dx' ' (10)

By substituting Eqn. (10) into Eqn. (6), we obtain the following Kolmogorov

equation in terms of concentration (See Appendix 2):

dc _ az(Dc) _ 9(Ve)

e (1D
nac X

d

T

Note that in Eqn. (9) the transition probability f(x',t_; x,t) must be

0’

expressed in terms of the number fraction of key particles which migrate

from x' to x during the time interval between t0 and t. When the concen~

tration is expressed in terms of another variable such as weight or volume,

-
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the value of the transition probability is accordingly changed. In the
" present study the weight concentration is used instead of the number.
To simplify the model, we shall assume that the mixing process is

a stationary Markov process which depends only on the time interval At,

but not on t. Under this assumption, we have

D(x,t) = D(x)

V(x,t) = V(x) 7 ' (12)
The initial condition for Eqn. (11) is
c(x,0) = co(x) o o (13)

Tﬁe bouﬁdary conditions are obfained from the conservation of mass at the.
two boundaries. In a closed (bétch) system the mass flux, J(x), vanishes
at either boundary, i.e.,

_ J(x) = - E%g&l +ve=0 , at x = 0 and x = 1 - (14)

The variance, cz(t), and the degree of mixedness, M(t), can be calculated,

respectively, by

2 L 2 .
o7 (t) = [ [e(x)=-q]" dx ’ S ' (15)
0 S
where
1
q =/  c.{(x) dx
.0 0
and
M(t) =1 - o’(r) | | -16
B UOZ - (16)
where
002 = Cl(l"Q)

If the drift velocity, V, vanishes for a closed or batch system,
Eqn. (11) reduces to

2
3qx,t) _ 9 [D(x) c(x,t)]
it 2 . ALL)

9x

Note that this equation is not identical to the Fickian diffusion equation

with a non-constant D, i.e., Eqn. (1), which is repeated below

Bcgzzt) [D( ) Bc(x t)] . (D)



These two equations reduce to an identical form only when D is invariant
with respect to x and t for a closed system. Under the equilibrium or

steady state condition, Eqn. (17) becomes

>’ [D(x) ¢ (x)]
=0 (18)
2
X '

"Solving the equation subject to the boundary conditions
J=0 , at x=0 and x=1 (19)
or

a[D(x) ce(X)]
90X

il

=0 , atx=0and x=1 (20)

we obtain
— | ’
ce(x) B%%T , for alllx (21)

where y is a positive constant and ce(x) is the equilibrium concentration
profile. This indicates that the functional form of D(x) can be deter-
mined from the equilibrium profile. On the other hand, the equiliﬁrium

profile based on Eqn. (1) with the same boundary conditions as before

leads to
Bce(x) ,
D(x) S 0 , at x=0and x=1 (22)
Therefore,
c,(¥) =q , for all x ' o (23)

Comparing Eqns. (21) and (23) we can see that the Fickian equation always
results in a flat equilibrium profile independent of D(x), while the
Kolmogorov equation gives different equilibrium profiles depending on
D(x). .The Kolmogorov equation reduces to the Fickian only when

D = y/q = constant

as stated previously.



Another distinction between the Kolmogorov equétion and the Fickian
equation is that the diffusivity coefficient appearing in the former is
a derive& quantity which has an explicit physical meaning while that in
the latter is essentially an emﬁirical parameter.

In the preceeding paragraphs the drift velocity has been neglected
to simplify the discussion. To understand its significance, let us consi-
der a mixing process as depicted in Fig. 1. In this figure‘curve A is

the key particle distribution at time t., which is assuﬁed to be the

0

delta function. Curves B and C are the distributions at time t1 and
t2, respectively, which are monitored in the subsequent time intervals.

Furthermore, let us assume that distributions B and C have finite means

and variances. The means of distributions B and C are denoted by X

and Xys respectively, and the variances by Gz(tl) and cz(tz) respectively.

Obviously, distribution A has a mean X)) and the variance

2
o (to) =0,
According to Eqn, (7), the average diffusion coefficient in the region

between X and Xqys and that between X and X, are, respectively,

_ 12
D(x0 -+ xl) 7 O (tl)

= 1 2 .
D(x0 + X)) =50 (tz) (24)
According to Eqn. (8), the corresponding drift velocities, are, respectively,

.xl—x

1

V(x -+ x,) o
0 1 tl to

I

= 2 0
V(xo > xz) = t—q (25)
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When V is negligible, the initial concentration distribution A undergoes
a transition to B' and eventually to C' as shown in Fig. 1; however,

when V is not negligible, distribution A becomes B and eventually becomes
C.

It must be noted that the overall average V(x) inside a -batch mixer
must vanish since there is no net transport of particles out of the mixer
ends. Thus,

1
[ V(%) dx = 0 (26)
0 ;
However, for a continuous mixer with continuous feeding and removal of
particles, a net velocity of the particles through the mixer,lvb, is
finite and non-zero, i.e.,

1

.f V(x) dx =
]

Vb >0 (27)

3.2.2 Simultaneous Determination of the Diffusion Coefficient and the Drift
Velocity

The diffusion coefficient D(x) and the drift vélocity v(x) are con-
tinuous fun;tions of the dimensionless mixer position x, and their experi-
mental determinations are extremely difficult, thus they can be approximately
acconplished at best by discretizing x.

Suppose that the mixer is divided into n hypcthetical sections in
the axial direction. Assuming that the mixing process is a discrete sta-
tionary stochastic process, each section can be considered as the states
of the Markov chain (see, e.g., Parzen, 1962; Lai and Fan, 1975; Wang

and Fan, 1976). Furthermore, let P denote the probabilitywthat the

ij
state value undergoes a transition from the i-th section to the j~th

in one-step time interval or one trial. Then we can write the one-step

transition matrix as
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Pig Pig v o ¢ By

(P, .] . . L (28)

ij 8 . 5 .

\?nl Pn2 T 7 Tom
If the tracer key particles have been layered originally in the i-th
section of the mixer as shown in Fig. 2-A, they will disperse throughout
the mixer interior after ; short mixing time, as shown in Fig. 2-B.

Even though there exists a loﬁal concentration gradient inside the j-th
section, we can assume that the average weight fraction of the key parti-
cles in the j—-th section be approximately Pij' Note that, for this
tracer experiment, the displacements of the tracer particlés from the
initial position to the neighborhood are relatively small since the
mixing time is short, and thus, the condition |x" -'x] < § in Eqns. (7)
and (8) must be approximately valid. Furthermore, under the assumption

of the stationary Markov process, we have

D(x) = 1lim -f? i %(x"—x)z f(x,t; x",t+At) dx"
At=>0
[ x"-x]| <6
1 n 2 1 (1]
= I-E(x -x) f(x,t; x",t+at) dx (29)
]fLXRS
and
V(x) = lim 'ﬁ? I (x"-x%) f(x,t; x“,t+At) dx"
At-+0 '
[x"-x|<85
= [ £(x,t; x",t+ t) dx" (30)

| x"-x| <8

These equations can be approximated, respectively, by writing them in

discrete forms as
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& .
- 1. .42 1
D(xi) = -E 2(xj‘xi) Pij = (31)
; j=1
n 1
V(xi) o 'E (xj~xi) Pij . (32)
=1
where
Ax" &
n

IA

Xy Xj <1
Equations (31) and (32) are essentially numerical integration formulas
for Eqns. (29) and (30), respectively.
3.2,3 Methods of Solving the Kolmogorov Equation

As can be seen from Eqn. (11), the Kolmogorov equation is a parabolic
partial differgntial equation, and any method for solving such a differential
equation can be ;sed. An analytic solution may be obtained by the separation
of variables or Laplace transform. The solution strategy should depend
on the functional form of D(x). 'B%?T ﬁhich is not analytic at the boundaries
gives rise to a singular diffusion problem. The solution of the singular
diffusion problem is not straightforward. To eliminate this difficulty,
it is assumed here that D(x) is continuous, twice-differentiable, and finite
in the closed interval [0, 1].

Since the analytic solution of Eqn. (11) is usually difficult a
numerical approabh;-e.g., the method of lines, can be employed. A
computer package, the PDESOL (Sincovec and Madsen, 1975), is available
for executing numerical calculations based on the method of lines which
converts, by means of a finite difference method, the original partial
differential equation dependent on x and t into a set of ordinary

" differential equations dependent only on x.
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3.3 EXPERIMENTAL

* The mixer used for the experiments was constructed from a 0.14 m
diame;er lucite tubé,_0.37 m long, fitted with 0.28 m diameter lucite
flangs. The tube was separable so that the upper portion could be removed
for loading and smpling. Particles used were spherical lucite with an
average diameter of 0.16 cm, 0,32 CT?OI 0.48 cm with an average density
of 1.156 gr/cm3. For each particle system the smaller ones were identified
as the key particles.

Prior to each experimental run, determination of the one-step transi-
tion matrix [Pij] was carried out independently at a specified rotational
mixer speed. This was accomplished by loading the key particles into one
compartment of the mixer by using a templet which was designed to divide
the mixer into ten equal sections and measuring the key particle distribu-
tion at each section after rotating the mixer for 6ne minute, The diffusion
coefficient and drift velocity were calculated according to Egns. (31)
and (32), respectively.

The mixer was loaded end to end with 50% by weight of key particles,
which were initially layered on the left half of the mixer. 500 grams
of particles were loaded in the mixer at a time which was equivalent to
filling approximately 25% of the total mixer volume. Concentration change
along the axial mixer position with time was monitored by using the same
templet as mentioned previously. At predetermined time intervals the par-
ticles were completely removed by suction from each compartment, and the
weight fractions of the key particles were measured. The mixer was rotated

at a speed of 15, 30, or 45 rotations per minute,

7
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3.4 RESULTS

* Figures 3 and 4, respectively, show the variations of the diffusion
coefficient and the drift velocity with respect to.the dimensionless
mixer pesition x. In these figures’S/M stands for the system containing
particles with diameters 0,32 cm-0.48 cm and M/L stands for that containing
particles with diameters 0.32 cm-0.48 cm. We shall use these notations
in the succeeding paragraphs.

The functional forms of D(x) and V(x) were determined by means

of the least square method. Substituting these into the governing dif-
ferential equation, i.e., Eqn. (ll):“numerical solutions were obtained
subject to the boundary condition, Eqn. (14), by using the PDESOL package.

| Figures 5-A, 5-B and 5~C show the concentration profiles for the
S/M system rotated at 15 r.p.m. Figures 6-A, 6-B and 6-C are the profiles
for the same particle system with a rotational speed of 45 r.p.m. In
these figures the solid lines represent fhe experimentally observed data
and the broken lines are those predicted based on the model. The solid
circles drawn in Figs. 5-C and 6-C are the predicted equilibrium concentra-
tion data based on the model. Note that the prediction based on the model
did not involve the fitting of the model to the experimental data through
adjustible parameters. It was based on the D(x) and V(x) which were inde-

pendently determined through one-step tracer experiments.
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3.5 DISCUSSTION
* A8 can be seen in Figs. 3 and 4, D(x) and V(x) are not constant

but vary significantly with x, The diffusivity coefficients at both ends
and at the center of the mixer appear to be higher than those of other
positions. Figure 3 shows that increases in the ratational speed and
density difference tend to induce an increase in the diffusivity coefficient.

In contrast to the strong dependence of the diffusivity, D(x), on
the rotational speed and size difference, the drift velocity, V(x), was
found to be nearly independent of the particle system and the rotational
speed, Figure 4 shows that the rotational speed does not appreciably
affect the velocity distribution of the S/M system. In this figure, a
positive V(x) indicates that the average local movement of the key particles
is toward the right in the axial direction of the mixer, and a negative
V(x) indicates it is in the opposite direction. Since the system Investi-
gated in this work was a batch system, the nét particle flow inside the
mixer must be negligible as previously indicated. ©Note that the area
under the curve V(x) vanishes approximately, i.e., Eqn. (26) is approximately
valid. The dependence of V(x) and D(x) on thg density difference has not
been investigated in the present study. This is because a horizontal drum
mixer is a non-free-fall or packed type mixer in which each particle being
mixed is in close cdntact with the surrounding particles and the particle
size difference mainly induces demixing due to the percolation threugh
the interstices of the larger ones. Therefore, the effect of density
difference on D(x) and V(x) is relatively unimportant.

The calculated distribution profiles in Figs. 5-A through 6-C are
in reasonably good agreement with the experimental results. The discrepancies

between the model and the experiment may be due to the assumption of the



.statidnary Markov process. As can be seen in these figures the mixing
rate-in the initial stage is faster than expected. However, a generally
good agreement between the model and the experiment, especially near the
equilibrium state, indicates that the present model is useful for modeling

the non-ideal solids mixing in a horizontal drum mixer.



3-17

3.6 CONCLUSION

* The significant conclusions of this work are listed below.
1. The Kolmogorov or stochastic diffusion equation can describe quantita-
tively the non-ideal mixing behavior in a horizontal drum mixer.
2. The Fickian diffusion equation, even in its most general form, cannot
describe the band formation in the mixer.
3. The diffusion coefficient, D(x), and the drift velocity, V(x}, can
be determined simultaneously from the one-step tracer experiment under
the assumption of the stationary Markov process.
4. D(x) as well as V(x) in a non-ideal mixing system can vary significantly
with the axial mixer position.
5. The average value of V(x) over the entire mixer must vanish for a
batch system.
6. D(x) is affected by the nature of the particle system being mixed
and the rotational speed of the mixer while V(xz) is relatively unaffected
by them.
7. The Kolmogorov equation gives different equilibrium concentration
profiles depending on the functional dependence of D on %, and thus D(x)
can be determined from the equilibrium profile if V(x) is ﬁegligible.

It should be‘poted that the Kolmogorov equation is useful for modeling

not only particulate mixing but also other systems such as fluidized

beds or flow reactors where the diffusion mechanism predominates.
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co(x)

-

F(xn,t 7 X,t)

0

f(xo,t { X, t)

0
J
M(t)

N(x,t)

]
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concentration of tﬁe key particles
initial concentration of the key particles
diffusion coefficient, (L2/6)

cumulative conditional probability for a key particle

to move from X, to x during At = t - tO

conditional dens%ty function of F(xo,t

instantaneous mass flux, (M/Lze)

gt %)

degree of mixedness

number density distribution of key particles at
x and t ‘

total number of. particles

transition proﬁability matrix

average concentfation of the key component
initial position of a key particlé

dummy variables which assume values between 0 and
1

drift velocity, (L/6)

bulk velocity of solids, (L/8)
a_positive constant
infinitésimal positive number

variance
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APPENDIX 1 DERIVATION OF THE KOLMOGOROV DIFFUSION EQUATION (Bharucha —
-Reid, 1960)

"Let R(x) be a nonegative continuous fuhétion such that
R(0) = R(1) = R(0) = R(1) = 0 : - (Al-1)

In terms of the function R(x), it is clear that

lim g1 f(xo,to;x,t+6t) - f(x $%, t)

,t
A0 0 AL gt

R{x)dx

1 af(xo,to;x,t)

o - | )
0 — 3% R(x)dx | (A1-2)

Replacing t by t+At and T by t in Eqn. (5) of the text, we have

X' ) E(x", t5x%, tHAL) dx (A1-3)

. =1 .
f(XO’tO' X, t+At) 0 f(xo,to,

Substitution of Eqn. (Al-3) into the left hand side of Eqn. (Al-2) yields

Bf(xo,tO;x,t)

1
b = R(x)dx
lim 1 1 ' '
= I il
At—0 At [ 0 f(x stosx ,t) f(x tix, t+At) R(x)dxdx
11
=3 0 (xos tO;X, t)R(X)dX]
= lim [f 1 f(x B o t) {J f(x' tex t+At)R(X)dX]‘dX'
At+0 At 0’0’ sl X,
-.I 1 f(x. .t ;x%,t)R(x)dx]
0 0! 0’ L]
_lmoo1 o1 1 , ' '
T At20 At { 0 f(XO,tO,‘x, t) 0 E(x,tyx", t+AL)R{x" ) dxdx
d 1f(x Lt 3%, t)R(x)dx
0 O’ 0! b ]
= I - ] . _ ~
At>0 At { Elxgstgsx, ) 707 E(x, £5x", tHAE)R(x")dx' ~ R(x)}dx (Al-4)

Note that in the above derivation we interchanged x and x' since they are

dummy variables. Expansion of R(x') in the neighborhood of x gives
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R(x') = R(x) + (x'-x)R(x) +-%(x'—x)zﬁ(x) % Bt =02 (A1-5)

By truncating the higher order terms of the above equation when [x'—x|<6,

we obtain

R(x') = R(x) + (x'-0R() + 3(x'-0) R(x)

(A1-6)

Multiplying both sides of Eqn. (Al-6) by f(x,t;x',t+At)dx’ and performing

term by term integrations of the resulting expression, we obtain

;1

0 f(x,t;x', t+AL)R(x')dx"'

= Rl ,01 £(x,t:x", t+AL) dx’"

| + R(X)Iol (x'-x)f(x,t;x", t+At)dx’

+ %R(x)jol(x'—x)zf(x,t;x',t+At)dx'

- ¥
Eqn. (3)in the text states that

1

0 f(x;t;x',t+At)dx' =:l

(A1-7)

(3)

" Thus the second term on the right side of Eqn. (Al-7) can be written as

il

0 (x'—x)f(x,t;x',f+ﬁt)dx'

I . oo
bt o 25 (K O E G, £ AL dx!

+ Ilx._x|<6(x'-x)f(x,t;x',t+£\t)dx'

Since

IX'_:Xl >6f(x$t;xl yt+At)dx' = 0(Ar)

(A1-8)

from Eqn. (4) of the text, we can rewrite Eqn. (Al-8) as

r 1

0 {(x'"-x)F(x,t;x", t+At)dx" =

J
|x'-x|<8

(x'-x)f(x,t;x', t+At)dx' (Al—9)

The third term of the right hand side of Eqn. (Al-7) can be derived in

an identical manner to yield
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, L 2. "' [ | .,_2 eng! ' (A]l-
--;J; =0 E G i oran)axt = T (00 TG 6 AR ax? (AL-10

By sudbstituting Eqns. (Al1-9) and (A1-10) into Eqn. (Al-7) and using Eqn. (3),
we obtain

1

0 f(x,t3x', t+At)R(x")dx' - R(x)

N
= R(x) |x"“'x|<6

(x'-x)f(x,t;x', t+At)dx’

.]_'" I 1 2 P | T ) Al-11
+ 2R(x). Ix'—x|<5(x x) f(x,t;x',t+At)dx (Al-11)

Substituting Eqn. (Al-11) into the integrand of Eqn. (Al-4) gives

1
fo 2f
0 e Rdx

folf{VR + DR} dx

'01 £VRdx + ;01 FDRdx B (S )

where f stands for f(x,t;x',t+At); V and D are identical to those defined
in Eqns. (7) and (8) of the text.
Integration by parts with respect to x gives

(1 1 a[vf]

fVRdx

3
0 = [EVR]g - 4" 5 R dx
1,0 "1 (1 a%[£v]
I = fVRdx = [fVR]. + J R dx (A1-13)
0 R R |

Since R(0) = R(1) = R(0) = R(1) = 0, the above equations can bé simplified

to
1 e - _1 L 3[vE] '
0 fVR dx 0 o R dx

. 2, ' \

_101 FVE dx = xolﬁ_L%El R dx (a-14)

Substituting Eqn. (Al-14) into Eqn. (Al-12), we obtain

;1
0

af _ 3[Vf]

{ at 9x

2
4 2 [DS]} R dx = 0 (A1-15)
ox )

Since R(x) is an arbitrary function, we can conclude
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2
of _ 3°[Df] _ B[Vf]

] axz Ix

T

*

This is the Kolmogorov equation, Eqn. (6), in the text.
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APPENDIX 2 DERIVATION OF EQUATION (11)
. From Eqn. (10) we have

'EE = I 1 v af '
t 0 e (x ’to) 3t qx

2 2
9 (gc) =1 1 c(x',t ) L(Df) dx"
0 0 2
90X ox
aVe) _ 5 1 ' B(VE) o
ox 0 el ’tO)' ax s

Substituting these expressions into Eqn. (6) we obtain

1 i ; dc _ 37 (Dc) 3(Ve) v
0 cx ,tG) I Y axz + . ] dx 0

This must be satisfied for 5. arbitrary c(x',to). Therefore Eqn. (11)

follows.
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Fig. 1. Schematic diagram for illustrating the physical

significances of D(x) and V(x).
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-4, SUMMARY AND RECOMMENDATIONS

In Section 2 the discrete Fourier transform (DFT) power spectrum
has been employed as a means to characterize a solids mixture. The DFT
poﬁer spectrﬁm has been shown to represent the mode by which the key
. or reference particle distribution contributes to the variance, 02.
In other words, it contains more physical information about the mixture
than the variance itself.

Computer simulated results show that the maximum component of the
DFT power spectrum (Ml) can be employed as a mixing index; this index
can distinguish random mixtures from ordered ones. As the mixing process
of an ordered mixture proceeds, the maximum power spectrum component
increases.. This has been shown to be true for any ordered mixture
(striated or checkered mixture). On the other hand, it decreases as
mixing proceeds for a random mixture. This resolving power of Ml to
distinguish ordered and random mixtures according to their hdmogeneities
is rgmarkable in comntrast. to 02 which does not have it.

It has been confirmed theoretically that for a mixture undergoing
a mixing process according to the Fickian diffuéion equation, the maximum

DFT power spectrum component, M., is related with 02 as

1!

=1

in Ml = const x in 02

In section 3 modeling of non-ideal mixing in a horizontal drum mixer

was attempted using the Kolﬁogorov equation of the following form

delx,t) _ g[D(x) clx,t)]  8[V(x) elx,t)]

at . sz X

The Kolmogorov diffusion equation can describe quantit®tively the non-

ideal mixing behavior in a horizontal drum mixer,. while the Fickian diffusion
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.equation, even in its most general form, cannot do so. The diffusion
coefficient, D(x), and the drift velocity, V(x), which appear in the
above equation can be determined simultaneously by discretizing the
dimensionless mixer position, x. These are obtained from the one-step

'tracef-experiment under the assumption of the stationary Markov process.
Experiments show that D(x) and V(x) vary significantly with x and that
D(x) is affected by the mature of the particle system being mixed and

‘the rotational speed of the mixer while V(x) is relatively unaffected
by them. The Kolmogorov equation gives a fixed equilibrium concentration
profile depending on the functional dependence of D on x,‘and thus D(x)
can be determined from the equilibrium profile if V(x) is negligible.

Recommendations for further studies are listed below:

(1) The DFT technique developed in section 2 can also be applied to

<+ -. a multicomponent particle system... While training procedures

for a multicomponent mixture would.be substantially different
from those for a binary mixture, the results of the present
work should be useful in guiding the developmeﬁt of such proce-
dures. A practical sampling method for two-dimensional real
mixtures may be accomplished by using the T.V. camera.r In this
case the DFT technique combined with the image processing tech-
nique can yield a fruitful result in characterizing the pattern
and homogeneity of the mixture.

(2)‘ The applicability of the Kolmogorov diffusion equation described
in section 3 is not restricted to solids mixing; it can be applied
to any system in which the diffusion mechanism is predominant,

especially when the diffusion takes plate in a non-uniform field.



If is recommended that an experimental method to determine the temp-
oral dependence of D(x) and V(x) be develoﬁed, so that the stationary
assumption used in this work can be removed. We may apply this model to
multi-component and non-ideal mixing in a horizontal drum mixer, which
is farrfrom being understood at the present time.

In the present study the axial mixer position of a particle during
the mixing process was assumed to be a continuous random variable. 1In
cérrying out solids mixing experiments, however, fhe concentration of the
key particles is usually measured in a discrete manner with respect to
the spatial coordinate. To be compatible with such experimental measure-
ments, a discrete-in-space stochastic model (e.g., continuous Markov
chain) seems to be more convenient in simulating the mixing process in a
horizontal drum mixer. Such a model can be developed as a supplementarj

one to the Kolmogorov diffusion model.

L 4=3
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ABSTRACT

" F =3 Initﬁis thesis' two important aspects of solids mixing have been
studied; elucidation of the mixing process and characterization of a solids
mig;ure.

- The abplicabilit& 5f the diécfete Fourier transform (DFT) for the cha-..
racterization of random and odered solids mixtures has been tested. It has
been found that the DFT-power specttum possesses more significant physical
- meaning than the variance itself, Computer simulated results show that the
maximum component of the DFT power spectrum can Bé_emﬁloyed as a mixing
index; this index can distinguish random mixtures from :.ordered mixtures.rlt
has also been confirmed theofetically that, for mixing processes obeying.
the Fickian diffusion equation, there exists a linear relationship between
the log;rithmic plot of the variance and the‘maximum DFT power spectrum

component,

Because of the complex and stochastic nature of a solids mixing process
which involyes a non-ideal particle system containing particles of different
size and/or density in a horizontal drum mixer, the stochastic or Koimogorov
diffusion equation in its rigorous form can bg applied to modeling such a
process, Furthermore, the Kolmogorov diffusion eéquation can describe the
non-uniform concentration profile in the mixer in contrast to the Fickian
diffusion equation which cannot do so,

Tgo parameters appearing in the Kolmogorov diffusion equation, the

diffusion coefficient and drift velocity, have been experimentally determined
in this work from one-step tracer experimente, and their physical significances
have been discussed, A good agreement between the model and the experimental
data, has been observed, In general_éhis model can be applied to any system

in which the diffusion mechanism is predominant.



