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Abstract 

Isotope analysis combined with micrometeorological techniques can bring new insights 

into the mechanisms governing biogeochemical cycles in ecosystems. New field-deployable 

optical sensors that have recently become available can provide accurate trace gas concentration 

measurements at sampling rates suitable for micrometeorological measurements. These 

instruments could help enhance current carbon cycling research efforts. This research will bring 

new insights into understanding the biophysical processes governing the carbon cycle at the 

ecosystem scale, which will be crucial for enhancing our future climate change scenario 

predictions. The impact that land use management has on the carbon cycle components of an 

ecosystem is an important issue that could be addressed with this new approach. More notably, 

research is needed to identify how management practices affect the abundance of C3 and C4 plant 

communities in grasslands and to identify how shifts in plant community composition can 

modify the net ecosystem exchange of CO2. Chapter 1 of this thesis provides a literature review 

on the carbon cycle in grasslands, stable isotope analysis in environmental mediums, and the 

combination of isotope analysis with micrometeorological methods to study carbon exchange at 

the ecosystem scale. In Chapter 2, we describe the evaluation of the performance for a multi-port 

sampling system’s measurements of vertical concentration gradients of stable isotopes of CO2. 

The results of these analyzes show that the sampling system was suitable to measure vertical 

gradients of concentration under field conditions. Chapter 3 describes how the sampling system 

was used to study the isotope exchange in two watersheds at the Konza Prairie Biological station 

under distinct management conditions. Gradients of isotopes were measured in two adjacent 

watersheds (K2A and C3SA). The K2A watershed is burned every other year, while the C3SA 

watershed is in a patch-burn grazing system and is burned every three years. Results show that 

the sampling system’s performance is adequate for our study. The sampling system was able to 

detect clear differences in the isotopic composition of nighttime NEE between the watersheds, 

which is believed to be greatly influenced by C3 and C4 plant community composition. Further 

research is needed to examine the role that other environmental conditions played on altering the 

isotopic signals of the NEE in each watershed. Additionally, other management practices should 

be examined using this sampling system to determine their impact on biophysical drivers in the 

ecosystem, which could subsequently impact the plant community abundance and diversity.
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Chapter 1 - A literature review on the use of stable isotope analysis 

and micrometeorological techniques to investigate processes 

governing CO2 exchange in ecosystems 

 1.1 Carbon cycle in grassland ecosystems 

The global carbon cycle is composed of many exchange mechanisms that are biotic and 

abiotic in nature. Photosynthesis is a major carbon pathway that is responsible for the exchange 

of CO2 between the land surface and the atmosphere. Research suggests that global plant 

photosynthesis assimilates 175 Pg C per year (Welp, 2011). This assimilated carbon can be used 

by the plant for tissue growth and maintenance. Plant growth and maintenance metabolize the 

assimilated carbon, producing CO2. The efflux of CO2 from the plant represents the plant’s 

respiration. Estimates of global plant leaf respiration are roughly 60 Pg C per year (Atkin et al, 

2015). Another important carbon exchange pathway is soil respiration. Soils anchor the plant’s 

root systems and provide a habitat for many soil microorganisms within the rhizosphere, but soil 

microbes also exist outside of the rhizosphere. The plant’s root system and the soil microbes can 

metabolize carbon assimilates and substrates creating an efflux of CO2 from the soil. Our current 

estimates of global soil-CO2 efflux to the atmosphere is approximately 91 Pg C per year (Raich 

& Schlesinger, 1992; Raich et al, 2002; Hashimoto et al, 2015). Continued research is needed to 

identify how biophysical processes, environmental drivers, and their feedbacks influence the 

carbon exchange components of the global carbon cycle, which will affect our ability to predict 

future climate change scenarios (Field et al, 2007). This research will be especially useful for 

studying the movement of carbon in ecosystems, such as grasslands. 
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Grassland ecosystems cover a significant portion of the Earth’s land surface (White et al, 

2000) and are major reservoirs of carbon (Conant, 2010). Human activities and management 

practices have led to major changes in the percent of land covered by grasslands (White et al, 

2000; Anderson, 2006; Clay et al, 2014) and the loss of 50% to 70% of grassland soil carbon to 

the atmosphere (Schwartz, 2014). Studies have shown that grasslands are sensitive to changes in 

climate (Blair et al, 2014; Harrison et al, 2015) and are therefore susceptible to being influenced 

by global climate change. For example, Harrison et al. (2015) found that a decrease in midwinter 

precipitation led to a loss in grassland plant diversity. Since climate change is expected to alter 

the global pattern of precipitation events (Trenberth, 2011), there is the possibility of grasslands 

around the world losing their diversity. Blair et al. (2014) notes that there are documented shifts 

in the distribution of North American grasslands as a response to droughts, thereby suggesting 

that many grasslands have already been impacted by changes in precipitation patterns. Thus, 

there is an urgent need to study grassland management practices and to implement proper 

management practices that will help minimize or prevent further losses of carbon in grasslands, 

reduce losses of plant diversity, and make grasslands more resilient to climate change. 

Animal grazing and prescribed burns are two major management practices influencing 

the carbon budget of grasslands (Conant, 2010; Collins & Calabrese, 2012; Blair et al, 2014). 

One direct impact that grazing and fires have on the carbon budget of grasslands is the removal 

of carbon from the ecosystem. Grazers remove carbon in a grassland by consuming plant 

material and assimilating the nutrients from plant material into their biomass. Fires remove 

carbon from the ecosystem because the combustion of organic matter releases carbon dioxide 

into the atmosphere. The frequency, intensity, and timing of these fire events can also influence 

the carbon budget of a grassland by changing the plant community composition and soil 
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properties of the ecosystem (Collins & Calabrese, 2012; Šimanský, 2015). Changes in plant 

community composition and in soil properties can change the carbon budget of the ecosystem by 

altering the quantity of carbon stored (Mendoza-Ponce & Galicia, 2010), location of the carbon 

stored (Wang et al, 2010; Wei et al, 2012), and stability of the carbon stored in the ecosystem 

(Eskelinen et al, 2009), because different plant species allocate different quantities of carbon to 

their respective vegetative parts, such as their roots, stems, leaves, and other anatomical 

structures. 

Fire is often purposely introduced into grassland ecosystems by using prescribed burn 

treatments (PBT). These treatments are often used to enhance the growth of particular grass 

species, such as warm season C4 grasses, and to deter the growth and spreading of unwanted 

plant species, such as Juniperus virginiana, in grassland ecosystems (Taylor, 2008; Knapp et al, 

2009; Randall, 2012; Blair et al, 2014). The frequency of fires is critical to hindering the growth 

and expansion of forest ecosystem succession into grasslands. Ratajczak et al. (2016) observed 

that sites with PBT conducted over a period smaller than 3 years typically remained as 

grasslands, but sites that were burned less frequently were more susceptible to ecosystem 

transitions to shrublands and woodlands. Therefore, the suppression of fire events can increase 

the probability that a grassland undergoes ecosystem succession, transforming the grassland into 

a shrubland and eventually a forest. Shrublands and forests can have vastly different carbon 

allocation schemes compared to a grassland ecosystem (Pinno & Wilson, 2011). For example, 

forests tend to have relatively more carbon partitioned to aboveground tree biomass and have a 

low root to shoot ratio, while grasslands tend to have more carbon partitioned belowground into 

fine roots and have a higher root to shoot ratio (Peichl et al, 2012; Wang et al, 2014).  
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Another crucial component of grassland management is the timing of a prescribed burn. 

Appropriate timing of a prescribed burn is critical for suppressing the growth of an unwanted 

plant community. By applying a burn during a timeframe when these unwanted plants are most 

susceptible, such as during a part of the plant’s life cycle when fire is most damaging to its 

health, prescribed burns can help regulate the population of particular plant species in an 

ecosystem (Knapp et al, 2009; McGranahan et al, 2012; Randall, 2012; Towne & Craine, 2014). 

For example, Towne and Craine (2014) note that traditional spring burn treatments in a prairie 

ecosystem lead to an increase in the cover of C4 grasses, such as Sorghastrum nutans (Indian 

grass), while autumn and winter burn treatments led to an increase in the cover of C3 grasses, 

such as Koeleria macrantha (Junegrass) and plants in the genus Carex (sedges). The correct 

timing and frequency for a prescribed burn is often complicated by weather conditions (Weir, 

2011), topography of landscape (Whelen, 1995), moisture content of fuel (McGranahan et al, 

2012), and the amount of fuel, which can dictate the intensity and effectiveness of a prescribed 

fire (Knapp et al, 2009).  

Since fires can be important for stimulating the growth of particular plant species in the 

ecosystem, PBT can be advantageous for enhancing the quantity and quality of certain forage 

plants that are consumed by many herbivores (Dufek et al, 2014; Raynor et al, 2015). Grazing 

operations often manage stocks of herbivores that selectively consume specific forage species 

(Rinehart, 2006; Taylor 2008). Since each herbivore species has their own preference for certain 

plant species, and because the herbivores have different grazing patterns within an ecosystem 

(Allred et al, 2011), grazing operations can eventually change the plant community composition 

in the ecosystem (Taylor, 2008; Spasojevic, 2010). This shift in the plant community 

composition can be notably different from the more uniform changes in plant community 
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composition brought about by fire treatments (Collins & Smith, 2006). This further complicates 

our attempts to understand the relationships between the carbon cycle and land use management 

in grassland ecosystems. Improper management of grasslands, such as overgrazing, can lead to 

critically low levels of biomass. This biomass serves as a fuel stock for fire treatments. Low fuel 

stocks reduce the effectiveness of PBT for controlling the growth of unwanted plants (Delgado-

Balbuena, 2013), which increases the probability of unwanted plant encroachment in the 

ecosystem. In some grazing operations, this encroachment can reduce the forage production 

needed to feed livestock and the profitability of grazing systems (Simonsen et al, 2015). 

Therefore, a balance between PBT and grazing operations must be maintained if grassland 

managers want to protect the ecosystem that sustains their livelihood. 

 Quantifying the effects that these different management practices, and the many 

environmental drivers that play a role in implementing these practices, have on an ecosystem’s 

carbon cycle is an important step to improving our understanding of how changes to grasslands 

can ultimately affect the carbon budget of the biosphere. A myriad of methods and techniques 

are used to describe the movement of carbon across many temporal and spatial scales. These 

practices attempt to assistant us in describing why and how carbon budgets change over time. 

 1.2 Monitoring carbon exchange in ecosystems 

Several methodologies have been formulated to monitor or estimate the net movement of 

CO2 in ecosystems. The net movement or exchange of CO2 in an ecosystem is the resulting 

difference between CO2 sequestered by ecosystem photosynthesis and the amount of CO2 

released by ecosystem respiration. Net CO2 ecosystem exchange has been monitored 

continuously at several sites around the world using micrometeorological techniques, such as the 

eddy covariance method (Baldocchi et al, 2012). The eddy covariance approach uses time-
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averaged scalar concentration measurements and wind velocity measurements to measure gas or 

energy fluxes. Due to technological limitations, many past CO2 flux monitoring campaigns that 

used eddy covariance were short (Baldocchi, 2003). Advances in instrumentation and data 

storage capabilities have helped facilitate eddy covariance projects in analyzing CO2 fluxes year 

round (Lee et al, 2004). These projects have slowly coalesced into a network of flux 

measurement towers, located in diverse environments, called the FluxNet (Law, 2005; Baldocchi 

et al, 2001; Baldocchi et al, 2012). This network has helped scientists investigate the 

mechanisms that control carbon exchange within many different ecosystems and has helped 

improve global carbon cycling models (Williams et al, 2009). Nevertheless, even with the 

increasing availability of ecosystem CO2 exchange data, our current carbon cycle models are 

inaccurate, contain many uncertainties, and need further constraints in their input parameters to 

yield more accurate results (Williams et al, 2009; Welp et al, 2011; Ciais et al, 2013; Collins et 

al, 2013; Raczka et al, 2016). 

The increase in accuracy and precision of current global carbon model estimates will be 

essential for guiding policy makers in their efforts to create more effective actions and decisions 

for mitigating global climate change. Many uncertainties stem from issues in upscaling our 

models of CO2 exchange from the plant to the ecosystem level (Griffis, 2013), the unknown or 

unquantified impacts on different components of the carbon cycle brought about by changes in 

ecosystem land use or management (Ciais et al, 2013), and the unclear effects that increasing 

CO2 concentrations and climate change have on CO2 exchange mechanisms in the soil-plant-

atmosphere continuum (Brüggemann et al, 2011; Welp et al, 2011; Ciais et al, 2013). The 

analysis of stable isotopes of CO2 could potentially improve our understanding of the biophysical 

processes responsible for the carbon exchange in ecosystems (Dawson et al, 2002; Griffis, 2013; 
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Flanagan and Farquhar, 2014) and help to improve our current carbon cycling modeling 

attempts. 

 1.3 Stable isotopologues of CO2 

Isotopes are variants of a specific element with different numbers of neutrons in their 

nuclei. Some isotopes are stable, while others are unstable. Stable isotopes are forms of isotopes 

that do not undergo radioactive nucleic decay, while unstable isotopes can undergo this decay 

process. Isotopologues are compounds that contain varying isotopes of different elements. Table 

1.1 displays the abundance of CO2 isotopologues in the free atmosphere. The free atmosphere is 

defined as portion of the atmosphere in which Earth’s surface friction negligibly influences the 

motion of air (Stull, 1988). This table shows that the CO2 isotopologue containing the light stable 

isotopes 12C and 16O is relatively more abundant compared to the other forms, such as 13C16O2, 

12C18O16O, and 12C17O2, which occur in very trace amounts. In this literature review, the focus of 

future discussions will be on the CO2 isotopologue forms 12C16O2, sometimes labeled just as 

12CO2 or 12C, and 13C16O2, which is sometimes similarly labeled as just 13CO2 or 13C. 

Table 1.1 Common abundance of CO2 isotopologues present in the free atmosphere, 

measured by the National Oceanic and Atmospheric Administration’s ESRL division 

(ESRL-A, 2016) 

Mass Isotopologues Abundance 

44 12C16O2 98.40% 

45 13C16O2 1.19% 

45 12C17O16O 0.0748% 

46 12C18O16O 0.41% 

46 13C17O16O 0.00084% 

46 12C17O2 0.0000142% 
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The analysis of stable isotopes over varying temporal and spatial scales in the 

environment often involves monitoring the changes in the ratio of isotope or isotopologue 

concentrations within environmental mediums, such as water, air, soil, and plants. Changes in the 

abundance of an isotope are often expressed in terms of a delta notation, which is given by: 

𝛿 = [(
𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) − 1] × 1000 (1.1) 

where δ is the isotopic composition of a given substance (‰), Rsample is the ratio of the 

abundance of the heavier isotope to the abundance of the lighter isotope in a sample, and Rstandard 

is the isotope ratio of a reference material, such as the Vienna Pee Dee Belemnite sample (V-

PDB) for carbon isotopes 12C and 13C. For example, the δ13C represents the 13C/12C composition 

of a given material or sample with respect to the standard material V-PDB. A positive δ13C value 

would indicate that the sample is relatively enriched in the heavier isotope compared to the 

standard material, while a negative δ13C value would indicate that the sample is relatively 

depleted in the heavier isotope compared to the standard material. 

The isotopic composition of a substance can change over space because several physical, 

chemical, and biological processes can inherently prefer to consume one isotope or isotopic form 

over the other forms. Therefore, these processes can change the ratio of isotopes in 

environmental mediums. For example, the proportion of atmospheric CO2 isotopologues has 

steadily shifted over time (Ciais et al, 2013). This shift in the atmosphere’s δ13C has been coined 

the Suess effect, named after the chemist Hans Suess. Seuss was the first to identify this process 

and its influence on radiocarbon dating (Keeling, 1979). The Seuss effect is the result of fossil 

fuel combustion processes producing CO2 that has a more negative δ13C signal, equal to -28‰, 

compared to the average δ13C signal of the free atmosphere, which is roughly equal to -8‰ 

(ESRL-B, 2016). The byproducts of fossil fuel combustion therefore make the free atmosphere’s 
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δ13C signal more negative over time (Keeling, 1979; Ciais et al, 2013). Interestingly enough, the 

δ13C value in the fossil fuel combustion products reveal the origins of the fossil fuels to be made 

up of organic matter that was derived from decomposition of C3 plant tissue. 

Processes that discriminate against one isotope or isotopologue form over others are 

labeled as fractionation events. Most fractionation events can be classified into two categories: 

kinetic fractionation events or equilibrium fractionation events. Kinetic fractionation events 

occur when irreversible unidirectional reactions or transport processes take place (Kendall & 

McDonnell, 1998; Griffis, 2013). Such events occur when there is a non-limiting amount of 

substrate for a reaction, when substrates of a reaction become physically isolated, and because of 

differences in chemico-physical properties between isotopes (Kendall & McDonnell, 1998; 

Ghashghaie & Tcherkez, 2012). The mass of an isotope or an isotopologue can play a major role 

in the substances chemico-physical properties, as well as influence the isotope’s kinetic energy 

(KE) and potential energy (PE) status. For example, let us assume we have two CO2 

isotopologues: 13CO2 and 12CO2, both moving between two points in space and both are at 

thermal equilibrium with one another. The isotopologue 12CO2 has a smaller mass than 13CO2. In 

order for the two isotopologues to have equal KE, while moving an equal amount of distance to 

reach a point in this space, for instance a reaction site, the heavier isotopologue must have a 

lower velocity compared to the lighter isotopologue. Thus, the heavier isotopologue will take 

longer to move the same distance as the light isotopologue moves to reach the reaction site 

(Cobb, 2012). Potential energy principles can be applied to describe discrimination events 

against isotopes by examining the energy in the compound’s chemical bonds. Heavier isotopes in 

the compound tend to create stronger chemical bonds between elements compared to lighter 

isotopes. Lighter isotopes’ bonds in compounds are more easily broken, allowing the isotope to 
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be reacted with at faster rates compared to the heavier isotopes. Thus, under non-equilibrium 

conditions, the lighter isotope will be reacted with first and the reaction’s products will be 

relatively enriched in the lighter isotope compared to the substrates consumed by the reaction 

(Cobb, 2012). 

Equilibrium fractionation events occur when conditions are present that allow chemical 

and physical processes to reach an isotopic equilibrium (Kendall & McDonnell, 1998; Griffis, 

2013). Although the reaction rates of particular isotopes will be identical in these processes, this 

does not mean that the isotopic compositions of the processes’ products will be consistently 

identical (Kendall & McDonnell, 1998). This is because the magnitude in which equilibrium 

fractionation events discriminate against particular isotopologues is dependent on not only the 

physical properties of the isotopes, like in kinetic fractionation events, but also on other 

variables, such as temperature or the physical phase-state of the compound. For example, the 

evaporation of water in a pool tends to result in a change of the isotopic composition of the water 

vapor leaving the pool’s surface and the remaining water in the pool. Typically, the water 

vapor’s isotopic ratio of heavy to light isotopes will become more depleted in the 18O isotope 

compared to the source pool, while the remaining pool water will become relatively enriched in 

18O, because the lighter isotopes evaporate more readily than heavier isotopes (Kendall & 

McDonnell, 1998). 

The change in the ratio of the isotopic composition (α) between the products and 

reactants of a reaction that induces a fractionation event is given by: 

𝛼 =  
𝑅𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

𝑅𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
 (1.2) 

where Rreactants is the isotopic composition of the material before the fractionation event takes 

place, and Rproducts is the isotopic composition of the material after a fractionation event occurs. 
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This change in isotopic composition between products and reactants can also be seen as a 

discrimination (Δ) against the heavier isotope or a measure of the deviation of α from unity, and 

is usually defined by: 

∆ =  𝛼 − 1 (1.3) 

isotope discrimination of the heavier isotopologue can also be described as the reduction or 

depletion of the heavier isotopologue during fractionation events (Brüggemann et al, 2011). In 

particular, solving for the amount of discrimination against the heavier isotopologue present in a 

given reaction or process (∆13𝐶) can be accomplished by: 

∆13𝐶 =  
𝛿13𝐶𝑠 − 𝛿13𝐶𝑝

1 + 𝛿13𝐶𝑝 
 (1.4) 

where δ13Cs is the isotopic signature of the carbon compound prior to being used in a chemical 

reaction or moved in a physical process, while δ13Cp is the isotopic signature of the carbon 

compound after the chemical or physical activities have occurred (Brüggemann et al, 2011). 

1.4 Measures of stable isotopes 

Measuring the magnitude of discrimination against isotopes is possible by analyzing the 

changes in the stable isotope concentrations of a sample over time. Differences in the stable 

isotope concentrations and the magnitude of discrimination values can be very small, thus it is 

imperative to have accurate and precise measurements of stables isotopes when studying 

fractionation events and quantifying discrimination processes. This is accomplished using a 

variety of instruments and techniques. In this section, we will focus on instrumentation that is 

used to analyze the quantity of isotopes in a given sample.  

The traditional method for analyzing isotopic ratios in different samples was 

accomplished using isotope ratio mass spectrometers (IRMS). These spectrometers can 

distinguish different isotopes based on their mass-to-charge ratios and motions in a strong 
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magnetic field (Griffis, 2013). Although IRMS can provide very accurate measurements of 

isotopic composition of materials, sample preparation and purification is time consuming. This 

can make IRMS analysis expensive and labor intensive. This is especially true when these 

systems are interfaced with additional analyzer systems (Ghosh & Brand, 2003; Muccio & 

Jackson, 2009; Griffis, 2013). Such interfaces include elemental analyzers, gas chromatographs, 

and liquid chromatographs. Elemental analyzers and gas chromatographs are the most commonly 

used interfaces, while liquid chromatography may require revisions to become applicable for 

more isotopic studies (Muccio & Jackson, 2009). The IRMS systems and their interfaces can be 

used for a variety of projects that do not require high-frequency data measurements and where 

samples can be analyzed in the laboratory, but coupling this technology with methods that 

describe the movement of scalars in the atmosphere, such as micrometeorological techniques, 

can be challenging. This is because of the lack of portability, high maintenance costs, and 

amount of time committed for sample preparation reduces the potential of these systems to be 

used with many micrometeorological techniques that require fast temporal resolution 

measurements of gas concentrations (Griffis, 2013). One alternative to IRMS systems is the use 

of new optical sensors for isotopic measurements. 

Several types of instruments and techniques use optical sensors to monitor the 

concentrations of isotopic compounds, such as quantum cascade lasers, cavity ring down 

spectroscopy, Fourier-transform infrared spectroscopy, and tunable diode laser absorption 

spectroscopy (TDLAS) (Griffis, 2013; Vitiello et al, 2015). Griffis (2013) notes that TDLAS 

instruments were some of the first to be used in-situ environments. These spectrometers work by 

exploiting the fact that each isotopic compound of interest has a unique molecular absorption 

spectrum of energy. These instruments use a laser source to emit radiation at a known intensity, 
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wavelength, and frequency through a sampling cell. The properties of this radiation match the 

vibrational resonance properties of the scalar of interest, which allows the radiation to be 

absorbed by the scalar. At the end of the sampling cell is a laser detector that measures the 

strength of incoming electromagnetic radiation. The change in the intensity of the 

electromagnetic radiation spectrum between the laser and detector reveals the quantity of the 

isotopologues. Recent advances in optical instrument systems have allowed for increased 

sampling rates that are suitable for the use of micrometeorological methods. In some optical 

systems, the need for cryogens to cool the laser is no longer required. This reduces upkeep time 

and allows for more extensive sampling campaigns, which can be invaluable for monitoring 

long-term changes in carbon cycling components within an ecosystem as a result of changes to 

management practices and climate change. 

High frequency stable isotope measurements and micrometeorological approaches can be 

combined to trace the movement of CO2 in ecosystems and the magnitude of transportation in 

processes that exchange CO2 (Griffis, 2013; Flanagan & Farquhar, 2014; Riederer et al, 2015). 

For example, Wehr et al. (2016) combined these approaches to better quantify the magnitude of 

ecosystem respiration during the day and night times in a deciduous temperate forest. They 

found that ecosystem respiration is lower during the day than at night, which is counter to what 

was originally believed. Combining high frequency stable isotope measurements and 

micrometeorological approaches together can provide many research opportunities and could 

prove to be very powerful for expanding our knowledge of the carbon cycle. In studying the 

movement of carbon in an ecosystem, it must be remembered that many small-scale components, 

such as plants and soils, contribute to ecosystem exchange and efflux of CO2. The next following 
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sections will focus on the plant and soil components that contribute to the movement of CO2 in 

an ecosystem. 

 1.5 Stable isotope discrimination in plants 

The stable isotopes of CO2 have been used to study biophysical CO2 exchange processes 

in ecosystems at various space and time scales (Brüggemann et al, 2011; Werner & Gessler, 

2011, Werner et al, 2012; Ciais et al, 2013). The 12CO2 and 13CO2 isotopologues have been 

investigated extensively at the leaf and plant scales because of how the ratio between the two 

changes during carbon exchange mechanisms, such as plant stomatal uptake, photosynthesis, and 

respiration of carbon substrates (Dawson et al, 2002; Sun et al, 2011; Tcherkez et al, 2011; 

Ghashghaie & Tcherkez, 2012; Ghashghaie & Badeck, 2014).  

The relative abundance of 13CO2 in plant material is usually lower than the 13CO2 

concentration of the air outside the plant. This is because there is discrimination against the 

13CO2 molecules as they move near and through the plant (Table 1.2). For example, there is 

slight discrimination against the 13CO2 molecules as they diffuse through the leaf air-boundary 

layer interface. This is because the heavier isotopologue has a higher mass and subsequently 

slower diffusion velocity through the boundary layer, compared to the lighter isotopologues. This 

discrimination value (∆13𝐶) against the heavy isotopologues can result in a 2.9‰ decrease in the 

abundance of 13CO2 with respect to the abundance of 13CO2 in the ambient air (Brüggeman et al, 

2011; Ghasghaie & Tcherkez, 2012). Furthermore, the heavier isotopologue is discriminated 

against when moving through the leaf stomata, resulting in an approximately 4.4‰ reduction in 

the abundance of 13CO2 compared to the ambient air 13C signal (Brüggemann et al, 2011; 

Ghasghaie & Tcherkez, 2012). Additional discrimination occurs as the 13CO2 molecules enter the 

leaf intercellular space and diffuse into the aqueous solution, where they will eventually reach 
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the enzymatic sites for photosynthesis, resulting in an approximate decrease in their abundance 

of roughly 0.7‰ and 1.1‰ respectively (Brüggemann et al, 2011). 

Different photosynthetic pathways, like C3 and C4 pathways, have different degrees of 

discrimination against 13CO2. Much of the difference between their magnitudes of discrimination 

is based upon the steps involved in each pathway. For example, C3 plants rely upon the Calvin 

cycle to transform CO2 into organic molecules. This cycle uses the enzyme Rubsico to catalyze 

the creation of 3-phosphoglycerate molecules. The Calvin cycle acts as a fractionation event as it 

discriminates against the 13C isotope by an average of roughly 20‰ to 29‰, compared to the 

isotopic signal of atmospheric CO2 (Ghasghaie & Badeck, 2014).  

C4 photosynthesis processes are different from C3 as they include additional steps before 

CO2 is consumed in the Calvin cycle, and the Calvin cycle occurs in the bundle sheath of C4 

plants compared to the mesophyll of C3 plants. One of the early steps in C4 plants is the diffusion 

of CO2 into the leaf and its movement into the cytoplasm. As CO2 molecules enter the cytoplasm 

they undergo a hydration reaction to produce HCO3
-. This reaction causes a discrimination 

against the 13CO2 molecule with an approximate value of -9‰ (Tcherkez et al, 2011). The HCO3
- 

molecule is used with phosphoenolpyruvate (PEP) molecules to create oxaloacetate. This process 

is catalyzed by the enzyme PEP carboxylase (PEP-C). This oxaloacetate is eventually converted 

into malate, transported to the bundle sheath, and is then broken down into pyruvate and CO2. 

These CO2 molecules are then concentrated near the site of Rubisco catalysis thereby increasing 

the chance that even the heavy isotopic compounds will undergo carboxylation. The C4 

photosynthesis pathway thus helps avoid photorespiration losses and reduces overall carbon 

isotope discrimination, as C4 plants discriminate against the 13C isotope by an average of 4 to 

15‰, compared to isotope signal of atmospheric CO2 (Ghashghaie & Tcherkez, 2012; von 
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Caemmerer et al, 2014). Table 1.2 provides a summary of the location for the major fractionation 

events and their respective discrimination values. 

Table 1.2 Primary fractionation events and their discrimination values against 13CO2 

during photosynthesis 

Locations of fractionation event ∆13C 

 Leaf air-boundary layer 2.9 

Leaf stomata 4.4 

Leaf Intercellular air space 0.7 

Intercellular aqueous solution 1.1 

C3 photosynthesis 20 – 29 

C4 photosynthesis 4 – 15 

 

Plants that fix carbon using the Crassulacean acid metabolism process, also known as the 

CAM photosynthetic pathway, discriminate against the 13C isotope in a unique fashion. CAM 

plants can show discrimination values similar to C3 plants during the daytime, but during the 

night, the discrimination values are more similar to what is observed in C4 plants (Farquhar et al, 

1989). This is likely due to the inherent changes in the photosynthetic pathway over the course of 

a day. At night, the process of storing CO2 into the cellular vacuoles as malic acid, a C4 acid, acts 

as a carbon concentrating mechanism much like the C4 pathways ability to move carbon into the 

plant’s bundle sheath. During the day, the stored carbon is eventually transformed into CO2, 

which is used in the Calvin cycle. 

Besides photosynthesis, other plant physiological processes discriminate against the 13C 

isotope and can ultimately influence the isotopic composition of the plant’s respiration efflux, 

biomass, and other byproducts. For example, glycolysis is a metabolic process that breaks down 

complex organic molecules into CO2 and energy. In this process, there are a series of 

conversions between many intermediate molecules. Each conversion can create fractionation 
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events, such as the conversion of 3-phosphoglyceraldehyde to 1,3-bisphosphoglyceric acid. This 

conversion step tends to create a discrimination value of approximately 5‰ (Tcherkez et al, 

2011). Werner and Gessler (2011) note that there are three major potential mechanisms that can 

influence the variability of the δ13C signal in plant, soil, and ecosystem respired CO2. The first 

factor they mention is that changes in the substrates used for plant or soil microbial metabolism 

can alter the δ13C signal of the respired CO2. Secondly, they mention that strength of different 

metabolic pathways can add to the variability of the δ13C signal in respired CO2. Lastly, 

variations in the ecosystem δ13C CO2 signal can occur because distinct components of the 

ecosystem, such as the soil and plants, contribute different magnitudes of CO2 fluxes and their 

δ13C signals at different times. Such processes are discussed more extensively in Werner and 

Gessler (2011), as well as by Tcherkez et al. (2011).  

Many carbon exchange mechanisms and their magnitudes of discrimination against 

particular isotopes can change because of several factors. For example, Ghashghaie and 

Tcherkez (2012) note that the 13C-signal in photosynthetic products can vary between plant 

species, varying plant growth stages, and environmental conditions. Another example is that leaf 

growth and aging creates a change in the physical properties of the leaf, such as its thickness. 

This increase in leaf thickness can enhance the discrimination against heavier CO2 

isotopologues, because with increases in leaf thickness comes increases in mesophyll thickness 

and a subsequent decrease in mesophyll diffusion conductance (Flexas et al, 2012, Barbour et al, 

2016). A larger mesophyll space means that the CO2 molecules must travel a greater distance to 

reach the enzymatic sites for carboxylation. Thus, there will be likely be a more discrimination 

against the heavier CO2 isotopologues (Kodama et al, 2011; Flexas et al, 2012; Werner et al, 

2012). Additional research is still needed to address knowledge gaps in fractionation events 
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during post-carboxylation, decarboxylation, and C4 photosynthetic pathway processes (Werner et 

al, 2012; von Caemmerer et al, 2014; Ghashghaie & Badeck, 2014).  

 1.6 Isotope exchange in soils 

Soils play a large role in the global carbon cycle. Soils are the largest carbon pool in the 

terrestrial biosphere and contain the second largest carbon exchange pathway between the 

atmosphere and the terrestrial biosphere (Raich & Schlesinger, 1992; Scharlemann et al, 2014). 

Despite the vast amount of research on soils, there is a lack of understanding on the formation 

and distribution of global soil carbon stocks (Guo & Gifford, 2002; Wang et al, 2010; Shi et al, 

2012; Torn et al, 2013), the carbon exchanges processes within soil systems (Wang & Hsieh, 

2002; Bond-Lamberty & Thomson, 2010), and how soils systems are altered under changing 

environmental conditions, plant communities, and management practices (Raich & Schlesinger, 

1992; Bahn et al, 2008; Liu et al, 2009; W. Wang et al, 2013; Scharlemann et al, 2014; Beverly 

& Franklin, 2015). The analysis of carbon compounds in soil systems provide new insights into 

the mechanisms governing carbon exchange in the soil (Amundson et al, 1998). This section will 

provide examples of how isotope research has helped study the soil carbon cycle thus far and the 

future of isotopic analysis applications to soil systems research.  

  Stable CO2 isotope analysis has become a great tool for understanding the biophysical 

drivers of soil CO2 transport dynamics and for identifying the major contributors of soil CO2 

efflux (Nickerson et al, 2014). The three primary sources of soil CO2 efflux are the autotrophic, 

heterotrophic, and rhizosphere respiration pathways. The heterotrophic component of soil 

respiration originates from microbial decomposition of carbon materials, such as organic matter, 

while the autotrophic component of soil respiration is primarily attributed to plant root 

respiration, but can also include organisms that are in a symbiotic relationship with plant roots. 
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Rhizosphere respiration is debatably classified as a part of either the autotrophic or heterotrophic 

pathways (Kuzyakov, 2006). For this review, the rhizosphere component will be discussed as an 

independent pathway. 

These respiration pathways can produce different δ13C signals over time, because their 

signals are highly dependent upon the isotopic composition of the carbon substrates that are 

being consumed. For instance, in autotrophic soil respiration the main source of carbon 

substrates for root respiration is the aboveground carbon assimilates synthetized by the plants. 

These substrates are influenced by different biochemical pathways before reaching the root sites 

of respiration. For example, the δ13C signal of the autotrophic soil respiration can majorly 

depend on the plant species and environmental factors (Ghashgaie & Badeck, 2014). This is also 

true for the carbon exudates that are used in the rhizosphere respiration pathway (Zhu & Cheng, 

2011). The δ13C signature of the heterotrophic respiration soil efflux relies upon the 13C 

composition of the soil organic matter and the microbial community that will use the organic 

matter’s substrates in metabolic pathways. The large variety of microbial decomposers in soils 

can also influence the δ13C signal in heterotrophic CO2 effluxes, because each microbial species 

uptakes and respires the carbon substrates through their own unique physiological mechanisms 

(Henn & Chapela, 2000; Garcia-Pausas & Paterson, 2011).  

In order to improve and validate current soil carbon partitioning models, there must be 

continued attempts at untangling respiration and total CO2 efflux components (Albanito et al, 

2012). Bowling et al. (2015) remarks that the differences in the δ13C isotopic signals between the 

soil respiration pathways in established ecosystems, in which plants and soil carbon have similar 

isotopic compositions, might be too small to be useful for distinguishing the source components 

in the total respiration efflux δ13C signal. Such observations are usually different compared to 
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non-established ecosystems, such as agricultural ecosystems, because there might be drastic 

differences between the isotopic signals of the respiration components. For example, Fassbinder 

et al (2012) showed that the autotrophic and heterotrophic soil respiration components 

contributions to an agricultural ecosystem’s respiration could be separated using isotopic 

analysis and micrometeorological measurements. They observed that during the soybean and 

corn growing seasons, the measured ecosystem soil respiration δ13C signals were close to the 

δ13C values that are commonly associated with the respective plant’s photosynthetic pathway, 

while during the springtime the δ13C signal of the ecosystem respiration was close to the 

expected range of C3 plants regardless of the plants growing at the time. They hypothesized that 

during the springtime the soil microbial decomposition of C3 plant residue was contributing 

strongly to the net ecosystem CO2 efflux. 

Many other factors, such as the physical properties of soils and environmental conditions, 

are believed to influence the δ13C signal of soil efflux CO2 (Bowling et al, 2008). Uncertainty 

exists in isotopic analysis at the soil system scale because there are knowledge gaps on the extent 

in which environmental variables affect δ13C signal temporal dynamics, such as precipitation 

events (Unger et al, 2012) and periods of drought (Balogh et al, 2015). Bowling et al. (2015) 

discussed that previous studies observed diel fluctuations in the isotope composition of the soil 

CO2 efflux. These studies attributed the changes in isotopic composition to changes in 

environmental forcing, but Bowling et al. (2015) did not find similar results based on 

experimental data collected in a subalpine forest. Balogh et al. (2015) argues that drought events 

are one case of environmental forcing that can change the magnitude and isotopic signals of soil 

system CO2 efflux. One important conclusion of their study is that the autotrophic respiration 

fluxes were hampered by drought conditions to a greater extent than the heterotrophic fluxes. It 
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is possible that under normal, non-drought conditions, the isotopic signals could be too similar to 

be used in isotope analysis. In reality, soil moisture content can vary over the course of a 

growing season for many ecosystems. More research is needed to determine if there is a strong 

correlation between soil moisture content and the strength of the autotrophic and heterotrophic 

CO2 δ
13C signals. In addition, there is a need for research to clarify the extent that other physical 

and environmental factors play on the variability of the soil CO2 efflux δ13C signal over time.  

Currently, soil CO2 efflux is often measured at the soil surface using chambers. These 

measured fluxes are a result of the contributions of different sources at different depths in the 

soil, which means the individual contributors’ δ13C signals will be convoluted. Future soil system 

isotopic analysis research will likely use online subsurface sampling techniques to discern the 

strength and isotopic signals of soil CO2 efflux sources at various soil depths and temporal scales 

(Goffin et al, 2014; Gangi et al, 2015). Although we can attempt to use the heterotrophic and 

autotrophic isotopic signal analysis to separate the contributors to the surface CO2 efflux, the 

subsurface sampling method has the potential to enhance our soil CO2 flux partitioning 

approaches. In addition, more detailed sampling approaches could improve our understanding of 

how environmental drivers affect the δ13C composition of the soil CO2 flux. This future 

technique could prove very valuable for improving current land surface and carbon cycle models. 

 1.7 Carbon isotope analysis in ecosystems 

Isotope analysis can be useful for studying carbon exchange processes at the ecosystem 

scale, such as identifying the contributions that C3 and C4 plants have on the ecosystem 

respiration. For example, Shimoda et al. (2009) measured the flux of CO2 and the δ13C signal of 

atmospheric CO2 and plant biomass samples from a mixed grassland ecosystem. With these data, 

they were able to determine the proportion of C3 and C4 plants contributing to the ecosystem CO2 
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respiration. They found that C4 plants contributed roughly 63-67% to the ecosystem’s respiration 

during the months of October and November. Isotope analysis can also be used to separate the 

net ecosystem CO2 exchange (NEE) into its assimilation and respiration components. Bowling et 

al. (2001) performed flux partitioning by collecting CO2 gas samples in flasks at two heights 

within a deciduous forest. These gas samples were examined for their isotopic composition and 

their data were used in a series of equations that partitioned the NEE data, collected by eddy 

covariance instruments, over the duration of the experiment. Though they felt that there were 

sufficient data to successfully complete their partitioning attempts, they concluded that direct 

eddy covariance measurements of the 13CO2 flux would be necessary in the future.  

Other attempts at combining isotopic analysis with micrometeorological techniques used 

different instruments, such as TDLAS. These systems often required a fair amount of time 

committed to instrument upkeep, such as for refilling the cryogen that cools the instrument’s 

laser (Griffis, 2013). With advances in isotope gas sampling analysis and environmental 

parameter measurement instruments, we can more effectively combine powerful 

micrometeorological techniques with isotopologue analysis. Three techniques that will be 

addressed in this section are used to predict or monitor the concentration of scalars in an 

ecosystem. These are Keeling plots, eddy covariance, and the isotope flux ratio analysis. 

A Keeling plot is a technique that can be used to estimate the concentration of a scalar in 

an ecosystem based on the assumption that mass is conserved during the exchange or movement 

of scalars between two stocks or reservoirs (Köhler et al, 2006). In terms of CO2, the commonly 

used reservoirs used in this technique is the CO2 concentration emitted from a source component 

and the concentration of CO2 in the background. The addition of these two concentrations gives 

us the atmospheric CO2 concentration levels. This technique can accompany isotopic analysis, 
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allowing researchers the ability to estimate δ13C values for a given CO2 concentration based on a 

linear regression approach (Pataki et al, 2003). Two basic assumptions are made when using this 

technique. Köhler et al. (2006) states that the first assumption is that the ecosystem or system of 

reservoirs being examined can only contain two reservoirs. Secondly, they state that the isotopic 

ratio of carbon added by a source does not change during the time of observation. This linear 

modeling approach does have inherent disadvantages that can limit its application in particular 

studies. Pataki et al. (2003) notes that turbulence can eliminate the buildup of CO2 profiles and 

that advection can bring in air masses that have passed over ecosystems that are not of interest, 

thereby adding CO2 with an isotope signal that is not wanted. Such phenomena could lead to 

erroneous Keeling plot mixing lines and inaccurate results. Additionally, Keeling plots have 

traditionally used flask sampling approaches to collect gas samples. This approach significantly 

limits the amount of data points that are available for analysis because time is needed to collect 

the gas samples, prepare said samples, and run it through an IRMS system. Though IRMS 

systems have some applications in a few micrometeorological methods, such systems are not yet 

fully capable of being used in high frequency eddy covariance measurements (Griffis, 2013).  

Eddy covariance is one micrometeorological technique used to measure CO2 exchange in 

ecosystems, and can be useful for isotopic analysis. With great advancements in technology 

during the 90’s, such as the advancements in sonic anemometers, gas analyzers, personal 

computers, and dataloggers, the eddy covariance method has become the most popular 

micrometeorological technique used to quantify CO2 and energy fluxes at the ecosystem scale 

(Baldocchi, 2003). This technique is based on the fact that turbulent motion in the atmosphere 

(eddies) transports matter and energy between the land surface and the atmosphere. The 

covariance between the changes in the concentration of scalars with the change in direction or 
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motion of these eddy can be monitored overtime to reveal the net movement of a scalar in or out 

of an ecosystem, in terms of the flux density of that scalar.  

The use and accuracy of eddy covariance flux measurements relies on several 

assumptions. Burba (2013) states that the measurements being made are assumed to represent the 

area of interest. To do this, he says that the upwind fetch and footprint of fluxes must be 

adequate in length and size to ensure that the scalars being measured are coming from the area of 

interest. Next, we must assume that the instruments being used can detect small changes in the 

concentrations of the scalars of interest. Other assumptions include that the terrain is horizontal 

and uniform, air density fluctuations are negligible, and flow divergences and convergences are 

negligible. One other common assumption that must be addressed is that the instruments should 

be placed just high enough above the canopy to properly sample ecosystem fluxes in the 

boundary layer of interest (Burba, 2013). Considerations about the isotopic measurement 

instrument must be addressed as well. Isotopic measurement instruments are essentially closed 

path gas analyzers. As such, several factors like the tube material, tube dimensions, air flow rate, 

and inline filters, must be examined to prevent excessive tube attenuation of gas species and to 

help observe high quality data (Massman & Ibrom, 2008; Haslwanter et al, 2009; Munger et al, 

2012; Burba, 2013). The eddy flux (𝐹, kg m-2 s-1) of a given scalar by using the following 

equation: 

𝐹 =  𝜌𝑎𝑖𝑟̅̅ ̅̅ ̅ 𝑤′𝑐′̅̅ ̅̅ ̅  (1.5) 

where 𝜌𝑎𝑖𝑟̅̅ ̅̅ ̅ is the time averaged dry air density (kg m-3) and 𝑤′𝑐′̅̅ ̅̅ ̅ is the time averaged covariance 

of vertical wind speed (𝑤, m s-1) with the gaseous scalar mixing ratio (𝑐, molgas kgdry air
-1).  

Recent studies have combined eddy covariance and isotopic measurements to study 

isotopic exchanges at the ecosystem scale (Griffis et al, 2008; Wehr et al, 2013). Wehr and 
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Saleska (2015) used stable carbon isotopes to partition the net ecosystem-atmosphere exchange 

of CO2 in a temperate deciduous forest. They measured the flux of the net CO2 ecosystem 

exchange, its isotopic ratio (13C/12C), and the isotopic ratio of the non-foliar respiration. This 

study shows that some of the individual flux components could be identified and quantified. 

They believe that this quantifying helped reduce errors and biases in their data, as well as create 

more confidence in the precision of their measurements. 

Sturm et al. (2012) measured CO2 fluxes and their isotopic ratios using eddy covariance 

over a mixed forest canopy, but determining ecosystem discrimination on hourly or diurnal time 

scales proved to be a challenge in this ecosystem (Sturm et al, 2012). They found that their eddy 

covariance measurements had a low signal-to-noise ratio and an uncertainty equal to 10‰, which 

meant that small variations in the isotopic signals could not be sufficiently resolved. They 

believe that they could improve upon the signal-to-noise ratio by placing the sensors closer to or 

within the canopy so that they would be able to measure larger fluctuations in concentration in 

comparison to the free atmosphere. Under certain conditions, such as short or dense canopies, 

their recommendation may not be feasible because current eddy covariance instruments are too 

bulky to be deployed within short or dense canopies. Eddy covariance can also encounter 

additional issues when measurements are taken within a canopy. These issues are related to the 

instrumentation’s inability to measure eddy motions with time scales faster than the instrument’s 

response time and is related to the inability of the instrument to measure eddy motion that 

occupies a volume smaller than the sampling volume of the instrument (Burba, 2013). These 

small eddies form from the breakdown of larger eddies by drag forces created by the canopy and 

surface. This drag results in a transfer of momentum from the eddy turbulence to the surface 

layer elements, often called a momentum sink, which results in a reduction in the turbulent 
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kinetic energy (Wilson, 1989). The reduced kinetic energy results in a decrease of the eddy’s 

size. As a result of these interactions between the canopy and turbulence, there is a higher 

probability for encountering the small eddies when coming closer to and deeper within the 

canopy (Burba, 2013), thereby making eddy covariance measurements unreliable in such cases. 

Thus, an alternative method is needed to measure the movement of scalars. 

One commonly used alternative to eddy covariance measurements is the flux-gradient 

methodology. To estimate flux-gradient values, we can use the following equation (Meredith et 

al, 2014):  

𝐹𝐶 = −𝐾𝑚𝜌𝑛̅̅ ̅
𝑑𝐶̅

𝑑𝑧
   (1.6) 

where 𝐹𝐶 is the flux of a scalar (kgscalar m
-2 s-1), 𝐾𝑚 is the eddy diffusivity coefficient (m2 s-1), 𝜌𝑛̅̅ ̅ 

is the time-averaged molar density of dry air (kgdry air m
-3), and 𝑑𝐶̅/𝑑𝑧 is the mean concentration 

of the scalar for a given height at d𝑧 (kgscalar kg-1
dry air m

-1). Traditional flux-gradient approaches 

rely upon the Monin-Obukhov similarity theory to derive a relationship between concentration 

gradients and fluxes of scalars (Simpson et al, 1998; Meredith et al, 2014; Monson & Baldocchi, 

2014). Though this technique can prove to be a useful alternative in settings where eddy 

covariance measurements are not feasible, the technique can have several challenges. Notably, 

the scalar transport coefficients in the similarity theorem can often be underestimated in the 

roughness sublayer (Simpson et al, 1998; Monson & Baldocchi, 2014). The roughness sublayer 

is an atmospheric layer that is heavily influenced by the canopy surface. Sampling within this 

layer is inherently difficult because of the complex and often-chaotic nature of turbulence flow 

through the heterogeneous canopy elements (Monson & Baldocchi, 2014). Another problem with 

the flux-gradient technique is that several assumptions are made when using the flux-gradient 

relationships. One of the main assumptions of this approach is that the length scale of turbulence 
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transport of the scalars is smaller than or nearly equal to the length scale of the concentration 

gradients. This assumption can be invalidated because in some canopies there are large eddies 

that sweep away the concentration gradients, thereby creating a counter-gradients, which makes 

for unrealistically large eddy diffusivity values (Monson & Baldocchi, 2014). Due to these 

concerns, this technique is sometimes used in the inertial sublayer, the atmospheric layer just 

above the roughness sublayer. However, according to Smith and Cresser (2003), gradients in this 

sublayer might become too small and difficult to measure. Therefore, careful consideration 

regarding the heights of concentration measurements used to conduct flux-gradient 

measurements must be made. 

The flux-gradient relationships have been adapted for isotopic studies for finding the 

isotopic flux ratio (Griffis et al, 2004), which is described as: 

𝐹𝐻𝑒𝑎𝑣𝑦

𝐹𝐿𝑖𝑔ℎ𝑡 =  
−(𝐾

𝜌𝑎̅̅ ̅̅

𝑀𝑎
) 

𝑑[𝐻𝑒𝑎𝑣𝑦]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑑𝑧

−(𝐾
𝜌𝑎̅̅ ̅̅

𝑀𝑎
) 

𝑑[𝐿𝑖𝑔ℎ𝑡]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑧

   (1.7) 

where FHeavy/FLight is the ratio of the net fluxes of the heavier and lighter isotopologues 

respectively (dimensionless), such as 13CO2 and 12CO2, 𝜌𝑎̅̅ ̅ is the time averaged air density (kg m-

3), Ma is the molecular mass of dry air (kg), 
𝑑[𝐻𝑒𝑎𝑣𝑦] ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑑𝑧
 and 

𝑑[𝐿𝑖𝑔ℎ𝑡] ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑧
 are the time averaged 

concentration gradients. Equation 1.7 is often used between discrete samplings inlets and can be 

represented using the following equation: 

𝐹𝐻𝑒𝑎𝑣𝑦

𝐹𝐿𝑖𝑔ℎ𝑡
=  

−(𝐾
𝜌𝑎̅̅ ̅̅

𝑀𝑎
) [𝐻𝑒𝑎𝑣𝑦]𝑧2−[𝐻𝑒𝑎𝑣𝑦]𝑧1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

−(𝐾
𝜌𝑎̅̅ ̅̅

𝑀𝑎
)[𝐿𝑖𝑔ℎ𝑡]𝑧2−[𝐿𝑖𝑔ℎ𝑡]𝑧1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

    (1.8) 

where the expressions [Heavy]̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and [Light]̅̅ ̅̅ ̅̅ ̅̅ ̅ are the time averaged concentration values between 

two heights, z2 and z1 respectively. Equation 1.8 can be simplified even further by assuming that 

the eddy diffusivity for each isotopologue is the same, and that the dry air density and molecular 
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weight do not change substantially over the height that the air samples are taken. Based on the 

previous assumptions, equation 1.9 can be rewritten as follows: 

𝐹𝐻𝑒𝑎𝑣𝑖𝑒𝑟

𝐹𝐿𝑖𝑔ℎ𝑡𝑒𝑟 =  
[𝐻𝑒𝑎𝑣𝑦]𝑧2−[𝐻𝑒𝑎𝑣𝑦]𝑧1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 [𝐿𝑖𝑔ℎ𝑡]𝑧2−[𝐿𝑖𝑔ℎ𝑡]𝑧1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     (1.9) 

The ratio between heavier and lighter isotope fluxes is usually expressed in delta notation and is 

given by: 

𝛿𝐹 = (
𝐹𝐻𝑒𝑎𝑣𝑖𝑒𝑟 𝐹𝐿𝑖𝑔ℎ𝑡𝑒𝑟⁄

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1)    (1.10) 

where δF is the isotopic composition of the flux (‰) and Rstandard is the isotopic composition of a 

standard material, e.g. VPDB.  

As shown in the derivation of the isotopic flux ratio equation, when converting the flux-

gradient variables to the isotopic flux ratio equation we cancelled out many of the K-theory 

terms. This allows the isotopic flux ratio method to not be as hindered by the weaknesses of the 

flux-gradient approach as was previously discussed in this section. However, it must be noted 

that the implementation of the isotopic flux ratio method, the flux-gradient approach, and eddy 

covariance can encounter difficulties when concentration gradients are small (Griffis et al, 2008).  

The isotopic flux ratio method has several advantages over the previously mentioned 

combination of eddy covariance and isotopic analysis. With flux-gradient approaches (Meredith 

et al, 2014) and its derived isotopic flux ratio methodology, there is no need for fast response 

instruments to obtain quality data. Fast response measurements could be useful, though, for 

detecting rapid shifts in isotopic compositions of respiration components. Santos et al (2012) 

evaluated the use of the isotopic flux ratio method in a forest ecosystem and compared their data 

with data from a modified Keeling plot, a more traditional means of estimating the isotopic ratio 

of CO2 for an ecosystem flux. They found that both methods had similar agreement in their δ18OF 

and δ13CF results, but the isotopic flux ratio method retained a greater amount of data. 
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Another advantage of the isotopic flux ratio method over other approaches is that it can be used 

to sample several areas of interest with the same gas analyzer. For instance, Glenn et al. (2011) 

used the isotopic flux ratio method to identify the dominant sources of respiration effluxes in an 

agricultural system. Their research site consisted of four experimental plots. Two of the plots had 

intensive tillage treatments and the other two had reduced tillage treatments. Gradients of CO2 

isotopologue were measured above those plots using a multiport sampling system connected to a 

tunable diode laser trace gas analyzer. The gas sampling campaigns occurred during the fall 

season and during the spring season right after the corn harvest. The organic matter in these plots 

was primarily composed of C3-based organic matter. As explained in section 1.4, the C3 and C4 

crops will have different δ13C values in their biomass. Because of the unique δ13C values in each 

crop’s biomass, Glenn et al. (2011) were able to estimate how much the decomposition of C4 

materials contributed to the total respiration flux for each plot throughout the study. They found 

that approximately 70% of the total respiration flux originated from the decomposition of C4 

materials during the fall of 2006. This value dropped to 20 to 30% during the following spring of 

2007.  

Drewitt et al. (2009) investigated the potential impacts that conventional tillage systems 

and no-till systems had on the soil and ecosystem respiration isotopic ratio signals. They used a 

tunable diode laser to measure concentrations of 12CO2 and 13CO2 above four plots. Two of these 

plots received a conventional tillage treatment, while the other two received a no-tillage 

treatment. Recent crop rotations consisted of winter wheat, corn, soybeans, and corn again. 

Drewitt et al. (2009) found that the plots that mixed corn residue into the soil using tillage had 

respiration δ13C values more characteristic of the C4 signature compared to the no-till field, but 

overtime the δ13C signals became more depleted. This revealed that carbon substrates from the 
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C4 residues became more scarce as time progressed. Thus, microbial decomposers began to 

target the C3 soil organic matter.  

The techniques mentioned so far are not suitable for studying the isotopic exchange 

within plant canopies. Novel approaches in studying isotopic exchange, such as inverse 

Lagrangian analysis techniques, could be an alternative to measuring the isotopic exchange 

within plant canopies. Lagrangian mechanics in classical fluid and field theory are different from 

Eulerian mechanics. Eulerian mechanics tend to use a static framework for describing or 

studying fluid motion and physical characteristics at a specific location in space and time 

(Monson & Baldocchi, 2014), whereas Lagrangian mechanics uses a moving framework to 

follow the flow of individually dispersed fluid particles or parcels (Jacques et al, 2012). 

Following these scalars allows the observer to describe the physical characteristics of the scalar 

for many trajectories over time. The Eulerian framework is commonly used for described the 

concentration of scalars at a fixed point and time (Jacques et al, 2012), which is typical when 

conducting micrometeorological observations of scalars. With the Lagrangian approach, 

turbulence statistics are used to predict the history and fate of the air parcel’s trajectory (Warland 

& Thurtell, 2000), which can lead to a better description of processes within plant canopies. 

Lagrangian analysis techniques could provide an alternative to traditional 

micrometeorological methods for studying the isotopic exchange within plant canopies and to 

separate the contributions of soil and plants to the net isotopic flux. Santos et al. (2012) 

compared the results of a Lagrangian dispersion analysis and isotopic flux ratio method in 

monitoring and inferring changes in isotopic concentration values in a forest canopy. They found 

that a backwards Lagrangian analysis held potential for further enhancing the studies of isotopic 

exchange in ecosystems, but required further evaluation under varying turbulence conditions. 
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 1.8 Chapter outlines and concluding remarks 

 Two additional chapters are included in this thesis. The next chapter is dedicated to 

describing the performance analysis of a novel tunable diode laser (TGA200A). An assessment is 

completed that described the performance of the instrument and the potential benefits in using 

buffering volumes to mix the analyzer’s air samples. In addition, an analysis into the number of 

sampling inlets affecting partial sampling time errors was completed. These evaluations are 

critical to ensuring high quality data is collected by the instrument and is helpful for 

understanding the strengths and weaknesses of the sampling system when used for gaseous 

isotopologue studies.  

The last chapter describes the use of this evaluated TGA200A instrument for in-situ 

measurements of two isotopic variants of CO2 within a tall-grass prairie ecosystem. As discussed 

in section 1.1, these ecosystems are major influencers of the global carbon cycle. Use of isotopic 

analysis could help improve our understanding of carbon exchange mechanisms in these 

ecosystems. Such research is needed to study the changes in carbon exchange because of 

changes to plant community composition, which is often brought about by different management 

strategies and techniques. In this study, prescribed burn treatments and grazing operations were 

the main management strategies used to alter plant community composition. Details about the 

site descriptions, how the TGA200A sampling system was setup, and how some environmental 

parameters likely impacted our isotopic signals will be discussed. 

Updating, revising, and ensuring quality checks in the micrometeorological methods, 

isotopic analysis techniques, and there implementations will often add more complex and 

rigorous mathematics. Such an increase in the difficulty of analysis may be necessary to 

accurately resolve the strength of CO2 sources and sinks in an ecosystem. This document has 
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touched on the importance for increasing research in grasslands and has highlighted the past 

research in forest ecosystems. However, many other ecosystems, ecotones, and biomes need to 

be investigated using the combined stable isotope analysis and micrometeorological approach, 

because all ecosystems encompass the global carbon and energy cycles. All the advances in 

techniques, methodologies, instruments, and other principles for studying the carbon cycle in the 

environment will be key to validating our future climate change models and their scenario 

predictions. 
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Chapter 2 - Performance evaluation of a multiport sampling system 

to measure vertical gradients of CO2 isotopes at the ecosystem scale 

 2.1 Introduction 

The combination of micrometeorological techniques and stable isotope analysis has led to 

more accurate, precise, and frequent measurements of CO2 components at the ecosystem scale 

(Bowling et al, 2008; Santos et al, 2012; Griffis, 2013, Wehr & Saleska, 2015). Recent 

advancements in stable isotope optical sensors will provide great improvements over traditional 

approaches that require labor-intensive sampling preparation, slow measurement frequencies, 

and limited sampling campaign intervals (Griffis, 2013). This new generation of sensors will 

surely help advance our ability to study plant, canopy, and ecosystem responses to climate 

change (Griffis, 2013). 

Tunable diode laser trace gas analyzers using thermoelectric cooling are an example of 

this new generation of optical sensors. These gas analyzers use spectroscopic principles to 

measure the concentration of isotopes of interest passing through the instrument’s sampling cell. 

The instrument’s laser generates electromagnetic radiation (EMR) over a very narrow range of 

the electromagnetic spectrum, with frequency and wavelength properties matching each 

isotopologues’ unique vibrational resonance frequencies (Griffis, 2013). This EMR is split and 

sent through a reference cell and a sample cell. The energy that is not absorbed by the 

isotopologue species of interest in the reference cell and sampling cell eventually travels to a 

detector at the end of each respective cell path. The difference in EMR emitted by the laser and 

EMR sensed by the detector, as described by absorption and transmission spectral analysis, is 

proportional to the quantity of the isotopologue of interest. 
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Isotope measurement systems require high precision to measure very small changes in 

isotope concentrations in natural environments. Instrument noise can limit the instrument’s 

ability to detect small changes in concentration of isotopes at ecosystems over a given time 

period. The use of sufficiently long averaging periods can reduce some instrument noise. 

Statistical approaches, such as Allan deviation analysis, can be used to evaluate instrument 

precision and its relationship with the averaging time. This analysis has been used in previous 

studies to evaluate the precision of isotope systems (Richter et al, 2009; Tuzson et al, 2011; 

Sturm et al, 2012). Therefore, this analysis could provide means to find the optimum averaging 

time interval with the least deviation, and therefore most precision, in concentration signals for a 

sampling system. 

Another source of measurement uncertainty arises from high frequency fluctuations in 

concentration measurements. These sampling errors reduce the signal to noise ratio, making it 

difficult to measure the small gradients of gas concentration often required to study isotope 

exchange in ecosystems. Buffer volumes have been used to reduce natural high frequency 

fluctuations in concentration signals and improve the ability of sampling systems to measure 

very small gradients of concentration (Meredith et al, 2014; Cescatti et al, 2016). Evaluating the 

effectiveness of these buffer volumes for a particular sampling system is crucial to improve the 

detection limits of gas sampling systems. 

Another major source of measurement uncertainty stems from partial sampling time 

errors. This source of uncertainty is particularly important for multi-port sampling systems, 

which use manifolds to measure more than one air inlet using a single gas analyzer. Each inlet is 

sampled during a relative short time interval, ranging from a few seconds to a couple of minutes, 

until the manifold redirects the airflow to the next subsequent air inlet. The amount of time spent 
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purging the system in-between air inlet switching creates a notable loss of inlet sample data and 

an increase in the chance of measurement errors. This measurement approach has the advantage 

of eliminating possible bias that may arise if different instruments were used to measure each air 

intake. However, errors associated with partial sampling time can be important when sampling 

multiple intakes with a single instrument. There is a need to characterize these partial sampling 

time errors and to evaluate the impact that the number of inlets being sampled can have on 

sampling errors. 

The objective of this study was to evaluate the performance of a new tunable diode laser 

trace gas analyzer (TGA200A, Campbell Scientific, Logan, UT, USA) and a custom-made multi-

port sampling system. Two distinct TGA lasers were analyzed for their deviation and precision 

by using an Allan deviation approach. An additional test was conducted to examine the 

effectiveness that a buffering volume has on reducing high frequency fluctuations of the 12CO2 

and 13CO2 mixing ratio measurements. The standard deviation values of gas concentration 

measurements that went through the buffering volume were compared with air streams not 

passing through a buffering volume. Sampling errors associated with partial sampling time were 

also evaluated based on number of inlets and if air was mixed using the buffer volumes. 

 2.2 Methodology 

 2.2.1 Instrumentation setup 

Mixing ratios of the stable isotopologues 13CO2 and 12CO2 were measured at 10 Hz using 

a tunable diode laser trace gas analyzer (TGA200A, Campbell Sci., Logan, UT, hereafter TGA). 

The precision and stability of two laser sources were examined. One laser measures the mixing 

ratio of 13C16O2 and 12C16O2, while the other laser measures the mixing ratio of 13C16O2, 
12C16O2, 

and 12C18O16O. These two lasers will be referred as the dual-band and tri-band laser, 
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respectively. One reference tank provided CO2 at a concentration of 2500 ppmv when using the 

dual-band laser, while another tank provided CO2 at a concentration of 10,000 ppm when using 

the tri-band laser. The gas from these tanks were drawn though the TGA reference cell at 20cm3 

min-1. Nitrogen gas was used to purge an air gap between the reference and sample cells and 

their respective detectors. A calibration of the TGA system was performed using NOAA 

standard CO2 tanks, with a span of 340 ppmv to 540 ppmv.  

Gas samples are drawn into the gas analyzer’s sampling cell from a custom-built 

multiport manifold sampling system using a vacuum pump (XDD1, Edwards, Crawley, UK). 

The multiport manifold and TGA were both connected to a datalogger (CR3000, Campbell Sci.). 

The datalogger controlled the manifold valves that directed gas samples through the analyzer and 

bypass. Over time, the manifold would switch valve positions to allow the Edwards vacuum 

pump to pull air through a different inlet gas stream than the previously analyzed inlet gas 

stream. Gas samples coming from inlets that are not being measured in a given interval are 

directed to a bypass port on the manifold. These gas samples are drawn through the exhaust port 

by using another pump (DOAV502, Gast Manufacturing, Benton Harbor, MI). The datalogger 

stored the gas analyzer’s isotopic and diagnostic data onto a memory card. These files were 

transferred to the laboratory server and converted to ascii format to be analyzed. 

Calibrations tanks and the buffer volume apparatus, also called an air mixing apparatus, 

were also connected to the multiport manifold system. The buffering volume apparatus (Figure 

2.1) consisted of eight 750 mL stainless steel flasks. Each gas-sampling inlet stream has their 

own 750 stainless steel flask, excluding the tubing connected to the reference and calibration 

tanks.  
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Figure 2.1 – A picture of the buffering volumes (metallic flasks) used with the multi-port 

sampling system.  

 

Although buffering volumes can increase the delay in measurements between sampling 

inlets, our sampling system is setup to allow for continuous airflow through the buffering volume 

and through the manifold. This continuous flow of gas samples helps reduce the delay time of 

gas samples reaching the sample cells of the gas analyzer. Aluminum/polyethylene composite 

tubing (Synflex 1300, Aurora, OH, USA), with an interior diameter of 4.318 mm, was used to 

carry gas samples between the inlets, tanks, the buffer volume apparatus, and multiport manifold. 

Low-density polyethylene tubing with an inner diameter of 6.35 mm connected the manifold’s 

exhaust port to the Gast pump. Similar tubing connects the gas analyzer to the Edward’s pump. 

The 13C composition of CO2 in the air was expressed in delta notation form, calculated 

using 13C16O2 and 12C16O2 mixing ratios measured by the TGA200A, given by: 

𝛿13𝐶 = [(
𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) − 1] ∗ 1000 (2.1) 

where δ13C is the carbon isotopic composition of a given substance (‰), Rsample is the ratio of the 

heavy isotopologue concentration (13CO2) to the more abundant lighter isotope concentration 

(12CO2) in a given gas sample. Rstandard is the reference isotopic ratio value, stemming from the 
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Vienna Pee Dee Belemnite samples (VPDB), equal to 0.011797 (Griffis, 2013). The delta 

notation simply gives a reference for how enriched or depleted the sample is with the 

concentration of the 13C relative to the standard material. 

 2.2.2 Allan deviation analysis 

 To conduct the Allan deviation analysis, we first used our Edwards pump to pull gas 

samples from a tank with a known CO2 concentration (~450 ppm) through the manifold and into 

the TGA sampling cell for 4 hours. The tri-band laser was the first laser to be tested and the test 

was conducted in the laboratory. Approximately three months later, the dual-band laser was 

tested using the same methodology as the tests conducted on the tri-band laser. However, the 

tests for the dual-band were completed under field conditions. The CO2 mixing ratio and δ13C 

signal from each laser during the 4-hour interval was used to calculate the Allan deviation using 

the following equation (Allan, 1966): 

𝜎𝑦
 (𝜏) = √

1

2(𝑛 − 1)
 ∑(𝑦𝑖+1 − 𝑦𝑖)2

𝑛−1

𝑖=1

 (2.2) 

where 𝜎𝑦
 (𝜏) is the Allan deviation at some given length of time scale, n is the number of samples 

being examined, 𝜏 is the length of the time scale allotted for the averaging interval of the signals, 

𝑦𝑖 is the signal value within an interval of 𝜏, yi+1 is the signal value within the next interval of 𝜏, 

and i is an index. Values of 𝜎𝑦
 (𝜏) were obtained for a range of τ values ranging from 0.1 to 4000 

seconds using a Matlab script. This time interval was selected as it corresponds to typical 

averaging time intervals in micrometeorological studies. 

2.2.3 Buffer volume tests 

The tri-band laser was used to measure the mixing ratio of CO2 from two sampling inlets. 

The sampling inlets were positioned to sample air from an exhaust port located inside 
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Throckmorton Hall’s plant growth chamber room. The exhaust port consisted of a plastic box 

with a volume of approximately 38 L with a 12.7 cm outer diameter plastic hose attached to its 

top. A blower (Vanguard 208VAC, Rotron) drew air from the top of Throckmorton hall through 

the hose and into the box. 

To evaluate the effect of buffering volumes on concentration measurements, one 

sampling inlet was connected directly to the manifold. The other sampling inlet was connected to 

the buffering volume apparatus, which was then connected to the manifold. Each inlet’s air 

stream was sampled by the TGA every 30 seconds over a two-day period. The mixing ratios of 

13CO2 and 12CO2 were measured by the TGA during each 30-second cycle. The CR3000 

monitored which inlet was being analyzed by the TGA during these 30-second cycles, which was 

necessary for accurate data labeling. Data containing the 30-second mixing ratio cycle and their 

respective inlet labels, inlets with or without the buffering volume treatment, were then 

transferred to the CR3000. The CR3000 was programmed to calculate the standard deviation of 

mixing ratio values during each 30-second cycle. Each 30-second cycle was then sorted out by 

the corresponding sampling inlet. The standard deviation values between each corresponding 

inlet were then compared to evaluate the effect that buffering volumes had on the standard 

deviations on CO2. 

 A method proposed by Qiu (2006) was used to estimate errors associated with partial 

sampling times and to determine if buffering volumes reduced these errors. In this methodology, 

we need to split an original sample’s results into different sub-samples to simulate multiple inlets 

and their respective sample mixing ratio averages. Data were collected over the course of one 

day at the Konza Prairie Biological Station’s K2A watershed. Two inlets were used to draw gas 

to the TGA during this experiment. One inlet stream was passed through a buffering volume, 
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while the other inlet stream was not. The first 10 seconds of each 30-second sampling interval 

for this inlet was eliminated, leaving 20 seconds of data to be averaged. The omission of these 

10-second intervals was necessary to ensure that each currently being sampled air intake’s gas 

stream had completely purged the previously sampled air intake’s gas stream.  

The 20-second averages were then split into 5 groups, hereafter called sub-samples. Since 

the TGA operates at 10 Hz, this means that 200 measurements are gathered in each 20-second 

sampling interval. Therefore, splitting these 200 measurements up into the 5 sub-samples results 

in 40 measurements per sub-sample. The splitting into sub-samples simply simulates the use of 5 

inlets cycling samples through the TGA. This splitting was done for the inlet stream that had 

passed through the buffering volume and the inlet stream that did not go through a buffering 

volume. Purging times in the sub-samples were deemed unnecessary for this particular 

experiment, as the main emphasis of this particular experiment was to determine if buffering 

volumes helped reduce the partial sampling time errors and the deviation values of CO2 and 

δ13C. 

The mean mixing ratio of CO2 and δ13C for each full sample period, Co, and their 

respective sub-sample periods, Ci, can be subtracted from one another to determine the apparent 

error for each sub-sample (ΔCi). For example, the full sample mean mixing ratio or δ13C for 

some time interval of 20 seconds is Co and the first sub-sample mean within that full sample has 

a value of Ci. The difference between Ci and Co (Ci – Co) is the error associated with partial 

sampling time for these samples, which is labeled as ΔCi. The 20-second samples, which were 

not split, were then used to estimate the maximum and minimum error by using the central limit 

theorem as suggested by Qiu (2006). By using this theorem, we assume our data to be normal 
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and that we had a large number of samples. The central limit theorem (CLT) with 95% 

probability is given as follows: 

|𝑐̅ − 𝜇𝑐| =
1.96 𝜎𝑐 

√𝑛
  (2.3) 

where |𝑐̅ − 𝜇𝑐| is the estimated maximum and minimum error, 𝑐̅ is the sub-sample mean, and 𝜇𝑐 

is the full sample mean. 𝜎𝑐 is the standard deviation of the full time period sample set and n is 

the number of samples in the set. The daily root mean square error was computed and compared 

between the buffering-volume treated sub-samples and the sub-samples that did not undergo a 

buffering-volume treatment. Lastly, the number of sub-sample periods that went above or below 

the maximum or minimum errors, respectively, were compared between the sub-samples that 

were passed through the buffering volume to the sub-samples that were sent directly to the 

sampling manifold. The number of instances that the sub-sample periods went above or below 

the minimum and maximum error estimates were tallied for the sub-samples that had undergone 

a buffering volume treatment and tallied for the sub-samples that did not. These tallies were 

compared against the total number of samples in their respective treatment (with buffering or 

without buffering) in order to calculate the percentage of occurrences that sub-sample group 

means went above or below the maximum error estimate value at 95% probability. 

The relationship between partial sampling errors and the number of air intakes was 

investigated during a 7-day period. Samples were taken above a native tall-grass prairie canopy. 

A single inlet was used to sample air; therefore, there was no cycling to other inlets or tanks. Air 

sampled from the single air inlet was mixed using the air buffering apparatus in order to reduce 

high frequency fluctuations and variability in the CO2 mixing ratios and δ13C values. Data 

analyzed from this single inlet’s air stream were split into sub-sample groups simulating 2, 4, and 

10 inlets. Each sub-sample groups was given 30 seconds of analysis time. The initial 10 seconds 
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in these 30-second intervals were removed to allow for purging time. Only one sub-sample group 

was analyzed for its CO2 mixing ratio and δ13C 30-minute averages over the duration of the 

experiment. The 30-minute averages from this one simulated inlet, per sub-sample group, were 

compared with the true 30-minute averages that were based on the single air inlet’s data. For 

example, in the case of the sub-sample group with 2 inlets, only one of these inlets’ 30-minute 

averages were compared against the 30-minute average from the single inlet. Similarly to the 

methodology used by Qiu (2006), the values for each sub-sample group’s one inlet 30-minute 

average was subtracted by the true 30-minute average values. These values, referred to as ΔC 

(similar to ΔCi), reveal the error between treatments compared to the true values. These values 

and their standard deviations were compared over the 7-day period. 

 2.3 Results and discussions 

2.3.1 Allan deviation 

The Allan deviation plots shown in this section were limited to 3000 seconds. This was 

done to help highlight noise and deviation characteristics that occur with changing averaging 

intervals. Plotting the entire 4-hour interval could reduce our ability to see noise characteristics 

and trends in deviation because of plot scaling effects. From here on, the term CO2 refers to the 

total mixing ratio of the CO2 in the gaseous sample and does not refer to one particular 

isotopologue. 

Figure 2.2 displays the Allan deviation curves of δ13C and CO2 for both the tri-band and 

dual-band lasers for a range of averaging time intervals. Figure 2.2A shows that the tri-band laser 

typically has higher Allan deviation values than the dual-band laser for all averaging time 

intervals. The dual-band laser’s initial δ13C deviation value, when 𝜏 is at 1 second, is 

approximately 0.42‰, while the tri-band laser’s initial δ13C deviation value is approximately 
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1.68‰. Figure 2.2B shows that for all averaging time intervals plotted, the tri-band laser had a 

relatively higher Allen deviation than the dual-band laser’s Allan deviation values. The initial 

CO2 deviation values for the dual-band and tri-band are, respectively, 0.13 ppmv and 0.49 ppmv. 

Higher deviation in the averaging time interval typically means more variability and less 

precision in the data. The dual-band laser’s performance, in terms of its precision for measuring 

CO2 and for measuring 12C16O2 and 13C16O2 so that δ13C can be calculated, has less deviation and 

more precision than the tri-band for all averaging intervals. Many factors could play into why 

this occurring. Since the tri-band dedicates time to scanning for three separate isotopologues 

(12C16O2, 
13C16O2, and 12C18O16O), there are less data points available to be measured and likely 

more deviation in the data set. The dual-band dedicates time to scanning for only two separate 

isotopologues (12C16O2 and 13C16O2). Therefore, more data points are available to be analyzed 

and less variability is expected. 

Additional analysis is needed to determine if differences in pressure and temperature in 

the TGA sampling cell and reference cell are influencing the results of this particular study. The 

dual-band’s average pressure during sampling of the tank was 30.1 mb, while the tri-band was on 

average at 24.3 mb. Additionally, the TGA’s temperature was approximately 35ºC when using 

the tri-band and 45.3ºC when using the dual-band laser. It would be very beneficial to repeat this 

test again and analyze both lasers in house. This test would surely confirm the results revealed in 

Figure 2.2, but new minimum deviation values might become available to analyze and compare 

between the two lasers. 
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Figure 2.2 – (A) Allan deviation comparison between the tri-band and dual-band laser’s δ13C 

signals and (B) shows the Allan deviation comparison of the tri-band and dual-band laser’s 

CO2 mixing ratio signals. The averaging time interval (𝝉) ranged from 1 to 3000 seconds. 

 

 2.3.2 Buffer volumes and partial sampling errors 

Figure 2.3 shows the diel changes in CO2 mixing ratio over time for this experiment and 

the results of the buffering experiment, respectively. The air inlet stream with a buffering volume 

connected (blue shade) had an average flow rate of 212.31 cm3 min-1 during the test, while the 

air inlet stream without the buffering volume connected had an average air flow rate of 204.31 

cm3 min-1 during the test. The TGA’s pressure stayed relatively constant through the experiment 

and was on average 22.34 mb. Each inlets’ 13CO2 and CO2 mixing ratio values and their standard 

deviations were compared for a 2-day period, but only 36 hours of this experiment will be 

discussed to help distinctly show differences between the deviation values of the inlets. 

Figure 2.3A shows the mixing ratios of CO2 measured for both inlets over the course of 

36 hours, while Figure 2.3B displays the CO2 mixing ratio standard deviation values for the 

inlets. The CO2 mixing ratio increases dramatically during the daytime for both air intakes. 
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Daytime mixing ratio values vary widely for both inlets, with brief periods of stable mixing 

ratios between spikes in mixing ratio values throughout the day. Nighttime mixing ratio values 

showed less variability and were lower in CO2 values compared to the daylight measurements for 

both inlet treatments. Additionally, both treatments appear to have similar mixing ratio values 

during the nighttime measurements. Figure 2.3B displays the change in standard deviation over 

the course of the buffering volume test. Inlet 6 (without buffering volume) showed more 

fluctuations in CO2 mixing ratio than the sample line with the buffering volume (inlet 5).  

Results from Figures 2.3A and 2.3B show that the use of buffering volumes in multi-port 

sampling systems definitely helps reduce noise concentration measurements. Since the gas being 

sampled is derived from an urban environment, the spikes in CO2 mixing ratio is likely based on 

anthropogenic sources, such as vehicle emissions. The timestamps seem to coincide with what 

would be inferred as the rush-hour traffic. Hence, a major increase in the CO2 mixing ratio 

occurs at these times. The buffer volumes appear to attenuate the spikes in the CO2 mixing ratio. 
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Figure 2.3 – (A) shows the CO2 mixing ratios (ppmv) measured from sampling inlets with 

and without air mixing volume treatments over time and (B) shows the CO2 mixing ratio 

standard deviations (ppmv) for the gas sampling inlets with and without the air mixing 

volume apparatus treatment (inlets 5 and 6, respectively).  

 

Figure 2.4 depicts the results of the sub-sample partial error experiment for air inlets with 

the buffering volume attached (inlet 5) and without the buffering volume attached (inlet 6). For 

Figure 2.4A, estimates reveal that 1059 sub-sample error values exceeded the maximum positive 

estimated error values and that 1058 sub-sample error values were below the maximum negative 

estimated error value. This shows that nearly 29.4% of the 7195 sub-samples had errors that 

were unpredictable using the CLT with 95% probability. The root mean square error for this 

treatment was calculated to be 0.2528 umol CO2 mol-1 dry air per day. For Figure 2.4B, estimates 
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reveal that 538 sub-sample error values exceeded the maximum positive estimated error values 

and that 510 sub-sample error values were below the maximum negative estimated error value. 

This shows that about 14.6% of the 7195 sub-samples had errors that were unpredictable using 

the CLT with 95% probability. This value of 14.6% is notably less compared to the 29.4% value 

obtained by the inlet stream that did not have a buffering volume attached. The root mean square 

error for this treatment was calculated to be 0.1149 umol CO2 mol-1 dry air per day, which was 

less than the root mean square error for inlet 6. 

Figures 2.5 depicts the results of the sub-sampling partial errors of δ13C values for inlets 

6 and 5, respectively. Figure 2.5A reveals that approximately 195 sub-sample error values 

exceeded the maximum positive estimated error values and that 194 values were below the 

maximum negative estimated error values. This reveals that about 5% of the sub-samples had 

errors that were unpredictable using the CLT with 95% probability. The root mean square error 

for this treatment was calculated to be 0.25‰. For Figure 2.5B, we found that roughly 181 sub-

sample error values exceeded the maximum positive estimated error values and that 169 values 

were below the maximum negative estimated error values. This reveals that about 4.9% of the 

sub-samples had errors that were unpredictable using the central limit theorem with 95% 

probability. The root mean square error for this treatment was calculated to be 0.25‰. There 

appears to be minimal difference between the treatments when examining the δ13C signal. 

The results in Figures 2.4 show that samples going through the buffer volumes were more 

concise compared to the samples that did not undergo mixing through the buffering volumes. 

What this means that the samples that did undergo mixing were typically closer to the true 30-

minute values compared to samples that did not undergo a mixing treatment. Therefore, the 

buffering volume apparatus helped reduce the errors associated with partial sampling times when 
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examining the CO2 mixing ratio and improved the confidence that our data would fall within the 

maximum error estimates. Figure 2.5 shows that the buffering volume had relatively little impact 

on decreasing the apparent error and the standard deviation values for δ13C signals. One theory 

behind this is that since δ13C is a ratio between the 13C16O2 and 12C16O2 molecule and that the 

buffering volume likely mixed both isotopologues equally well, δ13C would not likely be 

influenced. If the buffering volumes did create a noticeable fractionation event, then this 

would’ve likely influenced the results shown in Figure 2.5. 

Figure 2.6 depicts the results of the CO2 mixing ratio partial sampling time error test for a 

different number of air intakes. For this test, the 30-min mixing ratio measurements by a single 

intake, which were not subject to partial sampling time error, were used as a reference to the true 

30-min mixing ratio measurements. Figure 2.6A shows that increasing the number of inlets for 

the sampling system appears to decrease the accuracy of the mixing ratio measurements, likely 

because of data loss from cycling through other inlet sampling and purging cycles. There a few 

instances when this trend is not true. For example, in the early hours of DOY 214, the 4-inlet 

treatment’s error value appears to be equal to or just above the error value of the 10- inlet 

treatment. The reduced sample size for the 10-inlet treatment might be increasing the variability 

of the dataset, thereby resulting in a higher-than-normal difference compared to the true 30-min 

mixing ratio measurements.  

Figure 2.6B shows that, much like the results revealed in Figure 2.6A, the 10-inlet 

treatment consistently had higher values. In this case, these are higher standard deviation values. 

Thus, the trend in these data is that increasing the number of inlets in a sampling cycle can lead 

to higher variability within each of the inlets respective 30 minute sampling average periods. 
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Similarly, there are instances where the deviation values of the lower number of inlet treatments, 

2 and 4, are relatively close to one another. This has been attributed as random error. 

 

Figure 2.4 – (A) shows partial sampling errors calculated (red dots) with respect to the full 

sample mean values for inlet 6 (without air-mixing) and (B) depicts results with respect to 

full sample mean values for inlet 5 (with air-mixing). The blue lines in both plots depict the 

maximum positive and negative errors of the CO2 mixing ratio that can be estimated using 

the central limit theorem. 
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Figure 2.5 – (A) shows partial sampling errors calculated (red dots) with respect to full 

sample mean values for inlet 6, the treatment without air mixing and (B) depicts the results 

with respect to full sample mean values for inlet 5, the air mixed sample treatments. The 

blue lines in both figures depict the maximum positive and negative δ13C (‰) errors values 

that can be estimated using the central limit theorem. 
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Figure 2.6 – (A) shows the 30-minute average mixing ratio of CO2 results of the multiple 

inlet tests and (B) shows the standard deviation values for these 30 minute averaging 

periods. The red shading represents the values of error for the 2-inlet treatment, black 

shading for the 4-inlet treatment, and blue shading for the 10-inlet treatment. 

 

Figure 2.7 depicts the evaluation of the differences in δ13C signals between the respective 

multiple inlet treatments and the true single inlet treatment’s 30-minute averaging period. Figure 

2.7A shows a noticeable trend in the increase of difference in δ13C signal with an increase in the 
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number of inlets used in a sampling cycle, but this trend is not as strong as the one depicted in 

Figure 2.7A for the CO2 mixing ratio values. In many periods, the 2 and 4-inlet treatments have 

equal to or roughly greater difference values compared to the 10 inlet treatment. Despite this 

apparent weaker trend, the δ13C signals for the 4-inlet treatments were usually lower than 0.1‰. 

For the 2-inlet treatments, the δ13C signal is usually lower than or equal to 0.05‰. Much like the 

previous plots regarding this multiple treatment experiment, Figure 2.7B reveals there is a 

notable trend between the increasing number of inlets and the increase in the magnitude of the 

difference in standard deviation values. However, as mentioned in the previous discussion, the 

trend is not as clear as for the CO2 mixing signals. Several instances occur where the smaller 

number of inlet treatments have standard deviation difference values equal to or greater than the 

10-inlet treatment, but this is likely attributed to random sampling error. Despite these 

occurrences, the standard deviations for most treatments is typically below 0.1‰, but a few 

instances where values are higher did occur for the 10-inlet treatment. Based on these results, it 

appears that increasing the number of inlets used in a sampling system increases the 

measurement noise due to partial sampling time errors. The sampling system’s performance does 

not appear to be hindered majorly when using 4 inlets. 
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Figure 2.7 – (A) shows the 30 minute average mixing ratio of δ13C (‰) results of the 

multiple inlet tests and (B) shows the standard deviation values for these 30 minute 

averaging periods. The red shading represents the values of error for the 2-inlet treatment, 

black shading for the 4-inlet treatment, and blue shading for the 10-inlet treatment. 

 

 2.4 Conclusions 

More tests are needed to describe the noise of δ13C and CO2 signals when using the dual-

band laser with the air-mixing volume apparatus attached to the gas inlets. In addition, the long-

term accuracy and stability of each laser needs to be tested. Our tests show that this instrument is 
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suitable for monitoring and measuring ambient air samples for CO2 isotopologues. Although the 

tri-band laser source was less precise than the dual-band laser attachment, measurements of 

12C18O16O could increase our understanding of the interactions between the water and carbon 

cycles. Thus, precision and variability in stable isotope signals might be traded for the ability to 

measure 12C18O16O. 

Though one inlet is optimal for this sampling system, one inlet can be an unfeasible 

option when wanting to analyze the gas concentration profile in a canopy and ecosystem. 

Analyzing the concentration profile with one gas analysis instrument requires multiple inlets at 

varying heights. Therefore, a more sophisticated approach might be necessary to indicate the 

maximum number of inlets feasible with a given acceptable apparent error and deviation in the 

sampling system’s performance.  

Lastly, the buffering volume system helped reduce errors associated with partial sampling 

time and helped to reduce natural variability of CO2 mixing ratio measurements. Additional tests 

could be used to test error reductions and variability for the 18O stable isotope signal when using 

the tri-band laser. Additionally, since the buffering volume test used the tri-band laser and the 

tests were completed in an urban setting, similar buffer volume tests are needed with the dual-

band laser attachment in a similar setting. This would help show the amount of error expected 

with the dual-band, compared to the tri-band, when buffering volumes are used to mix gas 

samples. Advances in optics may help improve the tri-band laser’s performance. Additional 

lasers might become available for the TGA200A in the near future that measure isotopic signals 

in methane and other trace gas species. These lasers would require performance tests similar to 

what has been conducted in this experiment. Identifying the quality of data produced by these 

lasers will be essential to enhancing our future global carbon cycling models. 
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Chapter 3 - In-situ measurements of CO2 isotope exchange using 

tunable diode laser spectroscopy and micrometeorological methods 

at a tall grass ecosystem 

3.1 Introduction 

There is a need to better understand how environmental drivers and management 

practices influence the carbon cycle at the ecosystem scale, so that we can better predict how 

climate change will affect precipitation patterns, ambient air temperatures, and energy 

partitioning and biogeochemical cycles (Dore, 2005; Wu et al, 2011; Ciais et al, 2013; Collins et 

al, 2013). Such changes could significantly alter the plant community composition (Walther et al, 

2002), ecosystem services (Lawler et al, 2014), and eventually soil properties (Post et al, 2000; 

Schwartz, 2014). The feedbacks created from changes in ecosystems and environmental 

variables are not well understood, nor well predicted, thereby leading to a notable loss of 

certainty and accuracy in current carbon cycling models that are used to simulate global climate 

change scenarios (Griffis, 2007; Welp et al, 2011; Cuntz, 2011; Ciais et al, 2013; Dymond et al, 

2016). In order to resolve these issues, so that we can better predict and prepare for different 

climate change scenarios, we must have a better understanding of how the connections between 

carbon exchange mechanisms in the soil-plant-atmosphere continuum are altered when 

ecosystems are put under different management practices and environmental conditions 

(Brüggemann et al, 2011; Werner et al, 2012). 

With recent advances in optical instrumentation, we can now sample gases at faster 

sampling rates for longer sampling campaigns, which will be helpful to solve some of our 

knowledge gaps regarding carbon cycling in ecosystems (Griffis, 2013). As noted in Chapter 1, 
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this advancement in optical sensor technology has facilitated the combination of 

micrometeorological measurements with stable isotope analysis to measure changes in the 

isotope composition CO2 and H2O ecosystem effluxes at a wide variety of spatial and temporal 

scales. (Werner et al, 2012; Griffis, 2013). These new techniques could bolster our ability to 

analyze the movement of CO2 in ecosystems that undergo changing management practices and 

environmental conditions. These measurements could be particularly useful in mixed grassland 

ecosystems because these ecosystems take up a relative large proportion of the Earth’s surface 

and are a significant carbon stock (White et al, 2000; Conant, 2010), thereby making them a 

pivotal player in the global carbon cycle. As such, major changes in these ecosystems, brought 

about by management practices and environment drivers, could drastically alter or even enhance 

global climate change. Two of the major management practices of grasslands are rangeland 

grazing operations and timely prescribed burn treatments (Collins & Calabrese, 2012; Fischer et 

al, 2012). As previously mentioned in Chapter 1, management conditions can significantly alter 

species composition, notably the C3 and C4 composition, as well as the isotopic signal of a 

grassland ecosystem’s net CO2 exchange (NEE). Hence, the practice of combining 

micrometeorological techniques with stable isotopic analysis could help us to monitor changes in 

C3/C4 composition in these ecosystems by tracking the relative contribution of these species to 

the net CO2 exchange at the ecosystem scale. 

The main objective of the study described in this last chapter was to investigate how 

grazing and prescribed burns affect the 13C composition of the NEE at the Konza Prairie 

Biological Station using high frequency measurements of 13CO2 and 12CO2 and 

micrometeorological techniques. The mixing ratios of 13CO2 and 12CO2 were monitored using a 

tunable diode laser spectrometer (TDLS) at two heights, in two watersheds during the 2016 
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sampling season. These watersheds are under different management conditions: one is ungrazed 

under a 2-year prescribed burn cycle and the other one is grazed in a 3-year patch burn cycle. It 

is hypothesized that these watersheds will have notably different isotopic ratios of the 13CO2 and 

12CO2 NEE fluxes. 

 3.2 Methodology 

3.2.1 Site description 

The site selected for our study was the Konza Prarie Biological Station (KPBS, Lat: 39.0987º N; 

Long:-96.5671º; Alt: 415 m) south of Manhattan, Kansas. The KPBS is located in the Flint Hills 

of Kansas and is one of the few remaining native tall-grass prairie ecosystems. The KPBS is 

described as a temperate mid-western continental climate with an annual mean temperature of 

13ºC (Collins et al, 2012). Annual precipitation is approximately 835 mm and the majority of 

this rainfall occurs during the growing season, which encompasses early March into late August 

(Hayden, 1998), but the rainfall can vary significantly on a year to year basis. The dominant 

wind direction in Kansas is from the south. The Flint Hills area primarily consists of perennial C4 

grasses, such as big bluestem (Andropogen gerardii), little bluestem (Schizachyrium scoparium), 

indiangrass (Sorghumstrum nutans), and many others. Perennial forbs, woody vegetation, and C3 

grass communities also inhabit the landscape. The diversity and abundance of plant species 

varies considerably depending upon the experiment location within each watershed, because 

each watershed has different management treatments consisting of varying prescribed burn 

treatments, such as different frequencies and times of ignition, to different grazing applications. 

The field experiment was carried out from April to November in 2016 in two adjacent 

watersheds: K2A and C3SA. The K2A watershed is burned every other year and is ungrazed. 

The most recent prescribed burn occurred on April 12, 2016. The majority of species in this 
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watershed are C4 grass plants, while woody species communities are sparsely connected in the 

hill valleys. The C3SA watershed is a part of a patch-burn grazing system with neighboring 

watersheds, with particular sections of the watershed being burned every three years. The last 

burn occurred on April 1, 2014 and the grazing system was established in 2011. The stocking 

density from May 1st to October 1st is roughly 3.2 ha per cow and calf pair (Konza LTER, 2016). 

The C3SA watershed had a noticeable increase in the abundance of sedges, shrubs, and woody 

species relative to the K2A watershed. In some parts of watershed, there are flattened stands of 

vegetation because of cattle movement stomping plants down onto the soil surface. This 

influences the variability of the plant height across the landscape, thus the canopy height and leaf 

area index (LAI) of the C3SA watershed is expected to be not as uniform as the K2A watershed. 

 The soil properties of these watersheds vary considerably because of the topographical 

features of the landscape, such as the hill slope position, are notably different. The K2A 

watershed predominately contains soil units mapped as a Benfield-Florence complex with slopes 

ranging from 5% to 30%. This complex has a typical profile depth of 96.5 cm before reaching 

weathered bedrock (NRCS, 2016). The main textures in this complex are silty clay loams and 

silty clays, within the A and B horizons respectively. The air intakes sampling gases in this 

watershed, which will be discussed more extensively later, were installed well within the 

Benfield-Florence complex-mapping unit. The C3SA watershed is predominately composed of 

Clime-Sogn complexes with slopes ranging from 3% to 20%. The typical profile depth of these 

complexes is 78.7 cm before reaching weathered bedrock (NRCS, 2016). The main texture in 

this complex is a silty clay throughout the soil horizons. Air intakes for this watershed were 

installed near a shift between the Clime-Sogn complexes and the Benfield-Florence complexes. 

Soil maps for the K2A and C3SA watersheds are provided in Appendices A and B, respectively. 
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3.2.2 Isotope measurements 

The mixing ratios of the 12CO2 and 13CO2 isotopologues were measured at a frequency of 

10 Hz using a tunable diode laser trace gas analyzer (TGA200A, Campbell Scientific, Logan, 

UT, USA, hereafter TGA). The first laser used in the beginning of the experiment analyzed air 

for the mixing ratio of 12C16O2, 
13C16O2, and 12C16O18O (tri-band). This laser was replaced on 

May 18th (DOY 139) by one that measures the mixing ratio of only 12C16O2 and 13C16O2 

isotopologues (dual-band). As described in Chapter 2, the tri-band laser typically had higher 

deviation values compared to the dual-band laser. This may play a role in our isotope analysis 

results. Such measurements are possible by these lasers using the tunable diode laser 

spectroscopy techniques as described in Chapters 1 and 2. Additional details about this technique 

are provided by Griffis (2013) and Bowling et al (2003). The TGA, and the casing that houses 

the instrument, were contained in a large white insulated wooden box. The box has an air 

conditioning unit attached to its lid to provide temperature control if necessary. Sampling inlets 

for the K2A watershed were installed April 17th (DOY 108), while inlets for the C3SA watershed 

were installed June 10th (DOY 162). 

The TGA was interfaced with a custom-made multiport manifold sampling system 

(Campbell Scientific, Logan, UT, USA) to measure the isotopic composition of atmospheric CO2 

above the canopies in the K2A and C3SA watersheds using air intakes (Figure 3.1). Air was 

drawn through the air intakes using sample (XDD1, Edwards) and bypass (DOAV502, Gast) 

pumps. Plastic tubing with a 12.7 mm outer diameter connected the TGA sample pump and a 

similarly sized low-density polyethylene tubing connected the manifold system to the bypass 

pump. 
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The air sampling intakes consisted of a stainless-steel tube connected to a plastic rain 

diverter and a mesh screen. Downstream from the stainless tubing is a heated filter (SS-4F-K4-7, 

7µm sintered element filter, Swagelok, OH, USA) which was used to prevent dust accumulation 

and mitigate condensation in the sampling line and manifold. A PVC cover was used to shield 

the intake filter and the power connection to the heating element. The intakes were connected to 

aluminum/polyethylene composite tubing (Synflex 1300, Aurora, OH, USA), with an outer 

diameter of 6.35 mm and interior diameter of 4.32 mm, which was used to direct gas samples 

from the gas inlets to the air mixing volume apparatus, consisting of a series of 750 ml stainless 

steel flasks (1 flask per inlet line). Such mixing volumes act as a high-pass filter, which helps 

reduce high frequency in the trace gas measurements caused by atmospheric turbulence and 

minimizes errors caused by partial sampling time (Meredith et al, 2014; Cescatti et al, 2016). The 

air from all intakes was then drawn into the custom-made manifold (Campbell Sci.), which was 

used to direct the airflow from each inlet to the TGA or through the bypass. Reference tanks 

were directly connect to the TGA, while calibration gas tanks were directly attached to the 

manifold. The reference gas (2500 ppm CO2) was drawn though the TGA’s reference cell at a 

flow rate of 200 cm3 min-1.  

 

Figure 3.1 – Schematic diagram illustrating of the isotope sampling system used in this 

study. 

 

 The gradient of mixing ratios of 12CO2 and 13CO2 were measured at two heights above 

the canopy for each watershed. Initially, the air inlet heights for the K2A watershed were 0.49 m 
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and 1.53 m, while the inlet heights for the C3SA watershed were 0.56 m and 1.7 m. The intake 

heights were adjusted as the plant canopy height increased during the growing season, so that the 

lowest intake was above the roughness sublayer. Inlets were sampled for 30 seconds each before 

switching to another inlet. The K2A site’s inlets were sampled first in a sequential order from the 

lowest to highest inlet, followed by the C3SA site’s inlets being sampled in a similar fashion. 

Sample flow rate was maintained around 200 cm3 min-1. This was done for roughly 4 minutes 

before switching to sampling the calibration tanks (~320 ppm and ~450 ppm CO2). These tanks 

were sampled for 30 seconds each before switching back to inlet streams. The total cycle of 

measurements lasted for 5 minutes. The K2A site’s air sampling inlets are approximately 174 

meters west of the C3SA site’s air sampling inlets. 

 3.2.3 Flux measurements 

An eddy covariance (EC) system was installed at the K2A watershed to measure fluxes of 

energy and CO2. An open path infrared gas analyzer (LI-7500, LICOR Biosciences, Lincoln, NE, 

USA) measured the mixing ratio of CO2 and H2O, while a 3D sonic anemometer (CSAT3, 

Campbell Scientific) was used to measure the three orthogonal wind components (ux, uy, and uz) 

during the sampling campaign. A datalogger (CR3000, Campbell Sci.) was used to record the 

data from the open path gas analyzer and the sonic anemometer at a frequency of 20 Hz. The EC 

instruments were installed at a height of 2.5 m. An additional EC system was installed 6 meters 

west of the first EC system. This extra EC system consisted of a combined sonic anemometer 

attached to a closed-path infrared gas analyzer (IRGASON, Campbell Scientific, Logan, UT, 

USA). The IRGASON was installed at a height of 2.58 m. Power supply issues and 

programming mistakes caused a loss of data for the first EC system. Data from the extra EC 

system was used to fill data gaps in the original EC system’s flux measurements. Linear 
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regression analysis was conducted between the two systems to verify that differences between 

measured fluxes were minimal. Appendix C provides a plot of the flux comparison results. The 

flux comparison results between our EC system and the IRGASON EC system show that both 

flux values were highly correlated (R2 = 0.9441) and that differences between fluxes were small 

(slope = 0.9881). Therefore, data gaps in our original EC system were reliably filled using the 

IRGASON flux measurements. High frequency raw data from the original EC system were 

automatically transferred to a server every 30 minutes. Onsite card storage for both the original 

EC system and the alternate EC system were collected weekly. The high frequency data were 

processed using an offline software package (EddyPro, 6.0.0, LICOR Biosciences). Processed 

data were then used to fill gaps between the original EC system and the extra EC system by 

using a commercial software package (MATLAB, R2014a, The MathWorks Inc., Natick, MA, 

2014). 

Soil CO2 flux was measured at least every other week using an automated chamber 

system (LI-8100, LICOR Biosciences, Lincoln, NE, USA). Ten chamber collars, made of PVC 

tubing (10 cm inner diameter, 5 cm in height), were placed at a cardinal and semi-cardinal 

direction 2 meters away from the EC station at a soil depth of 2.3 cm. Sampling dates were often 

2-3 days after precipitation events had occurred. This was done to ensure our data was collected 

during times when moisture was readily available for microbial activity, but not when saturated 

to reduce the likelihood of sampling on days when respiration would be inhibited by excessive 

moisture. To ensure the accuracy of the soil CO2 measurements, plant biomass was clipped from 

the interior of the collars; collars would be reinstalled every month to ensure good contact with 

the soil, as the natural wetting and drying of the soil pushed the collars out over time. 

Measurements for each collar included a 30-second dead band interval and a 2-minute sampling 
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period. The sampling flow rate of the LI-8100 was set to the lowest setting available as 

suggested by the manual. Volumetric soil water content and soil temperature were sampled at 10 

cm below the soil surface. A linear regression model was created by correlating the LI-8100 

outputs with the soil moisture and soil temperature variables measured by our soil moisture 

sensors (CWS655, Campbell Scientific, Logan, UT, USA). The linear regression model used was 

solved by using the follow: 

𝑅𝑠 =   𝑖 ∗ 𝑇10 + 𝑗 ∗ 𝛩10                                                                                                (3.1) 

where 𝑅𝑠 is the soil respiration (umol m-2 s-1), 𝑇10 is the soil temperature at 10 cm (ºC), 𝛩10 is 

the volumetric soil moisture content at 10 cm (%), and i and j are coefficients solved for using 

linear regression analysis in SAS. The measured soil respiration data collected by the LI-8100 

was the dependent variable needed to create estimates for the i and j coefficients. This model is 

similar to the linear model described by Chen et al. (2011), but one notable difference is 

apparent. For example, we attempted to use the linear model without converting soil moisture 

content into relative soil water content. This model was then applied to our seasonal soil 

moisture and soil temperature data, and then compared with our NEE flux data for only the K2A 

watershed, as the C3SA watershed does not contain an EC system to compare fluxes. Soil 

respiration data from the previous K2A growing season were included in our model so that the 

model simulates expected respiration values for the treatment, rather than just a specific growing 

season.  

3.2.4 Support measurements 

The vegetation phenology at K2A watershed was monitored using digital photographs 

(Richardson et al, 2007). Digital photographs of the plant canopy were taken at K2A every 15 

minutes, between 10 AM and 5 PM, using a digital camera (Trail camera – 4 megapixel, 
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Bushnell). The camera was mounted to the original EC system’s aluminum tower. These photos 

were processed using a MATLAB function provided by the PhenoCam network (“PhenoCam 

Tools”, 2016) to find the green chromatic coordinate (GCC) of the canopy, which was used in 

this experiment as a surrogate for describing the canopy green-up vigor and canopy senescence. 

A grey reference panel was used to ensure the red-green-blue channels of the camera were not 

experiencing signal drift. The reference panel’s grey color is expected to create a near constant 

GCC value because of the equal distribution of red, blue, and green color signals that a grey 

panel reflects. The reference panel was replaced with a larger version on June 15th. This helped 

increase the area of interest that was examinable in our GCC MATLAB program when analyzing 

the reference panel. The GCC MATLAB program was set to average GCC values over 3 day 

spans. The camera was set up facing the north direction to reduce the likelihood of photo 

overexposure due to sunlight. Figure 3.2 depicts an example of one of the photographs taken by 

our digital camera during the full bloom of the grass canopy (DOY 255, September 11). 

Photographs were also used to help describe weather conditions, such as cloudy or clear sky 

conditions and precipitation events.  
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Figure 3.2 – A sample photograph of the canopy, where several grass species have fully 

bloomed. A National Ecological Observatory Network tower is on the right side of the 

picture. 

 

 The maximum height of grass plants, as well as for forb and herbs, which will be labeled 

as other plants in the results section, were measured for both watersheds on a bi-weekly basis. 

Each watershed had 9-10 sections measured, each section having 3 repetitions of height 

measurements. Additional height measurements were made for the woody plants in the C3SA 

watershed. These height measurements were important for understanding the potential CO2 

source and sink heights of plants relative to our sampling inlets. Additionally, leaf area index 

was indirectly measured using a plant canopy analyzer (LAI-2000, LICOR Biosciences, Lincoln, 

NE, USA). LAI was taken of the canopy in each watershed. There were approximately 9 sections 

measured for LAI, each with 3 repetitions, for each watershed. For the K2A watershed, woody 

species were not present near the LAI sampling locations. The C3SA watershed had an 

additional 9 sections measured to identify the LAI of woody species in the watershed. This data 
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was combined with the plant canopy data gathered for the C3SA. This combination of data is 

meant help identify the heterogeneity in LAI values within the watershed, which is helpful when 

wanting to describe physical features of the watershed.  

Other variables, such as, rainfall, air temperature and humidity, incoming shortwave 

radiation, photosynthetically active radiation (PAR), and infrared canopy temperature were 

measured at the K2A watershed by the K2A original EC system. The 30-year climate normal 

data and daily average data were obtained from a nearby KPBS weather station (Arguez et al, 

2012), located approximately 4 km WNW from the K2A EC systems.   

 

 

3.2.5 Standardizing stable isotopic variations of CO2 and isotope flux ratio method 

Mixing ratio measurements for CO2 isotopologues were expressed in delta notation using 

equation 2.1. Mixing ratio vertical gradients of the isotopologues 13CO2 and 12CO2 were used to 

calculate the 13C composition of NEE using the isotope flux ratio approach, as follows: 
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                                                                                                 (3.2) 

where F13C/F12C is the ratio of the net fluxes of the 13CO2 and 12CO2, 𝜌𝑎𝑖𝑟̅̅ ̅̅ ̅ is the time averaged air 

density component (kg m-3), Kc is the eddy diffusivity, Ma is the molecular weight of dry air, 

d13𝐶𝑂2
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𝑑𝑧
 are 30-min averaged concentration gradient differences for their respective 

CO2 isotopologues. Equation 3.1 can be further simplified since eddy diffusivity is the same for 

both isotopologues, and that the density of air and molecular weight of dry air for each sample of 

the isotopologues are equal. With these assumptions, F13C/F12C is given by: 
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Where [13CO2]z2 – [13CO2]z1 is the measured mixing ratio gradient of 13CO2 between the two 

inlets and [12CO2]z2 – [12CO2]z1 is the measured mixing ratio gradient of 12CO2 between the two 

inlets. The value of the F13C/F12C can also be expressed in delta notation as follows: 

𝛿13𝐶𝐹 = (
𝐹13𝐶 𝐹12𝐶⁄

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1)                                                                                                (3.4) 

where δ13CF is the isotopic ratio flux composition in delta notation described in per mil (‰) and 

Rstandard is the isotopic ratio of the VPDB, 13C/12C = 0.0112372. 

 3.3 Results and discussions 

 3.3.1 Site environmental conditions 

Figure 3.3 shows 8-day temperature average values collected at the KPBS weather station 

during the experimental period and over a 30-year period (‘Daily averages’, NOAA). 

Temperature data show that winter, spring, and summer months were higher than the climate 

average temperatures. Warming periods such as this could lead to earlier plant emergence and 

budding times (Cleland et al, 2006). In some instances, such as between DOY 139 to 154, the 

2016 average temperatures are relatively close to the average climatological normal values.  
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Figure 3.3 – KPBS weather station’s 8-day temperature averages from 1981-2010 and the 

2016 KPBS weather station’s 8-day temperature readings (ºC). 

 

Figure 3.4 shows numerous intense precipitation events often created periods through the 

growing season with greater than climate average cumulative precipitation, but there are also 

periods of cumulative deficits. There is a clear difference in accumulated precipitation between 

the 2016 season and the climatological normal during parts of the mid spring, such as between 

DOY 149 to 153. It must be noted that daily-accumulated precipitation data provided is from the 

KPBS weather station and not the K2A weather station. This is because the K2A station was not 

actively monitoring precipitation data prior to the start of the sampling season and does not have 

the capability to effectively measure snowfall. Independent tests reveal that the intensity of 

rainfall events early in the sampling season were reasonably similar, however later on in the 

season the K2A station’s rain gauge was less reliable because of data gaps caused by power 

problems associated with the station’s datalogger. 
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Figure 3.4 – The KPBS weather station’s average cumulative precipitation normal totals 

(mm), from 1981 – 2010, and the KPBS weather station’s 2016 accumulated precipitation 

totals (mm) 

 

 Figure 3.5 shows the volumetric water content and soil temperature readings, 

respectively, over the course of the growing season. As shown in Figure 3.5A, peak water 

content occurred at approximately DOY 146. A dry down period soon followed until roughly 

DOY 181, but realistically there should be an increase in the water content prior to this because 

Figure 3.4 shows that there was a series of periods were accumulated precipitation events from 

DOY 175 to DOY 185. The missing data gaps in 3.5A and 3.5B prevented us from seeing the 

spike in water content before DOY 181. Figure 3.5B shows that soil temperature had sharp 

increase in temperature from DOY 127 to DOY 134. Based on photographs, and measurements 

of incoming shortwave radiation (Figure 3.6), this spike in soil temperature could be related to 

the cloud conditions being mostly clear during this time interval, therefore the incoming solar 

radiation could be high compared to days where clouds are present. Additionally, the canopy had 
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not yet reached closure, allowing direct sunlight to warm the soil surface instead of being 

intercepted by the plant canopy. Shortwave radiation had an initial spike in values approximately 

a day or two before the spike in soil temperatures. After the initial spike in soil temperature there 

was a brief span of days consisting of mostly cloudy conditions, where altostratus clouds 

dominated most of the cloud types. These cloudy conditions influenced solar radiation and likely 

contributed to the relatively large drop off in soil temperatures around DOY 140. Soil 

temperatures were at their maximum near DOY 168 through DOY 174. Soil temperature would 

start to decrease after this time, until DOY 230 to DOY 234. During this time, the temperature 

had a brief increase during the daytime period because of clearer skies during the previous days. 

Many of the periods of lower soil temperatures coincided with periods of recent precipitation 

events and increases in water contents. This correlation could be caused by numerous things. 

Notably, incoming solar radiation after rainfall events may be used to heat up and vaporize the 

water that was deposited by the precipitation events, thereby reducing the energy available to 

heat up the soil. We can use latent heat flux to monitor how much energy is being used to 

vaporize the water as discussed in Section 3.3.4 
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Figure 3.5 – (A) 30-minute average volumetric water content (cm3 cm-3) and (B) 30-minute 

soil temperature measured at 10 cm depth at the K2A watershed. 

 

 

Figure 3.6 – Half-hourly values of shortwave radiation (W m-2) as measured by a 

pyranometer (LI200R, LICOR Biosciences, Lincoln, NE, USA). 
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3.3.2 Vegetation measurements 

Plant phenology for the K2A site was assessed by examining the green chromatic 

coordinate (GCC) values from digital photographs. This GCC data are provided in Figure 3.7. 

Values of GCC increased sharply between DOY 108 through 135 (April 17 - May 14), and 

peaked around DOY 150 (May 29). The sharp increase in GCC may be attributed to the green up 

time of plants in this ecosystem. A sharp drop in GCC occurred during DOY 160. This sharp 

drop is attributed to an inherent problem in the methodology. Since the averaging interval is 3 

days long, it does not describe the GCC values in-between the 3 day spans. An independent 

investigation reveals that signals during the drop off had periods where GCC values were 

abnormally low. These abnormal values appear to be caused by a community of plants that look 

noticeably less green compared to neighboring vegetation. This community may have 

experienced wilting or the community was composed majorly of plant species that do not exhibit 

as much greenness as surrounding plant species. Based on digital photographs, canopy 

senescence started for a large majority of the grass species around the end of September (DOY 

266 to DOY 268). GCC values did not drop sharply during the senescence period. This was 

likely caused by the grass species’ lower leaves remaining green until roughly late November. 

Non-grassy plant species in the watershed appeared to remain green later in the year as well, 

which may have contributed to the steady decline in GCC values.       

Plants often would grow in front of the camera’s line of sight to the reference panel, 

thereby influencing our ability to ensure the camera was not drifting in its red, green, and blue 

channels. Future recommendations include using an even larger reference panel and to install the 

panel closer to the camera. This setup would help reduce the likelihood of plants contaminating 

the GCC signal of the reference panel. In addition, a higher quality camera may be necessary to 
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provide better picture resolution, allowing for more of the canopy to be sampled and better color 

balance. A camera is also needed for the C3SA watershed to provide a similar analysis for the 

phenology of the canopy. A panoramic camera could be especially useful for this watershed, 

because the canopy is much more heterogeneous in terms of plant species compared to the K2A 

canopy. Nearby trees and sedges could have different green-up and senescence times compared 

to grasses in the K2A watershed, which could influence our ability to better analyze our flux 

result comparisons.  

 

Figure 3.7 – 3-day average green chromatic coordinate (GCC) values obtained from digital 

photographs taken at the K2A watershed in 2016. 

 

Plant maximum height measurements are plotted in Figures 3.8 and 3.9. The grass plants 

had a relatively fast increase in their heights around DOY 215 (August 2). Our digital 

photographs around this date time reveal that the grass plants were starting to reach boot stage. 

They then quickly started to head out. As expected for the grass plants, full canopy bloom 

accompanied the average maximum grass heights on DOY 255 (September 11), which was 

shown earlier in Figure 3.2. A shift in the canopy GCC was expected during this time, but the 
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shift was more apparent 3-4 days after full canopy bloom (Figure 3.2). The relatively large 

standard deviation values in the grass plant height measurements is believed to be primarily 

associated with significant height differences between grass plant species, such as little bluestem 

and indiangrass. Indiangrass tended to have higher maximum heights, while little bluestem was 

typically shorter in stature. The other non-grass plant heights remained fairly close to one 

another compared to the grass plant species respective heights.  

Figure 3.9 shows the maximum heights of the grass plants, woody species, and the herbs 

and forbs that were noticeably below the grass plant maximum heights.  The grass plant 

maximum heights in the C3SA watershed typically had greater standard deviation values 

throughout the season compared to the K2A grass plant maximum heights standard deviation 

values. This is likely a result of grazing in the C3SA watershed. Cattle could roam near the 

sample sections and, assumingly, consumed or stomped on plants where height measurements 

were taken. The effects of grazing are reflected during the last sampling visit on DOY 281 as a 

notable decrease in the grass plant top heights was observed. Although there was a drop off in 

plant heights observed during the last sampling of heights for the K2A watershed, the magnitude 

in change between plant heights from the previous sampling visit is much more apparent in the 

C3SA watershed. This change in heights for the last sampling visits is roughly equal to 0.19 cm 

for C3SA, which is greater than the ~0.02 cm change in heights observed for the K2A watershed. 

Plants in the C3SA watershed that were below the grass tops were relatively uniform in height 

and showed a decline in heights similar to the K2A’s heights of plants below the grass tops. For 

future sampling, cages might be required to isolate plant communities from cattle intrusion in 

order to find out how grazing impacts plant heights for this watershed.  
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Figure 3.8 – Plant heights during the growing season for the K2A watershed. Error bars in 

this chart depict the standard deviation found for each sampling period. 

 

Figure 3.9 – Plant heights during the growing season for the C3SA watershed. Error bars 

in this chart depict the standard deviation found for each sampling period. 
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 Figure 3.10 displays the LAI values for each watershed and the standard deviation values 

for these LAI values, respectively. Figure 3.10A shows that when including woody species into 

the LAI measurements, the LAI values in the C3SA watershed had a relatively higher LAI value 

compared to the canopy LAI values that did not include woody species for both the K2A and 

C3SA watersheds. The K2A watershed appears to have slightly more LAI over the duration of 

the sampling period, but one data point seems inconsistent with this trend. On DOY 222, the 

C3SA and K2A canopy LAI values were nearly equal to one another and is likely just a 

coincidence in the data. Figure 3.10B reveals that the LAI standard deviations for the C3SA 

canopy, when including woody species, is very high compared to the canopies without woody 

species for both K2A and C3SA. Many of the woody species plant stands that were measured for 

LAI relatively shorter tree stands and bushes nearby. Many of the woody species and bushes 

identified during LAI measurements were Cornus drummondii (dogwood) and Rhus glabra 

(smooth sumac), respectively. The standard deviation for the canopies without woody species in 

both the K2A and C3SA were relatively close to another throughout the sampling campaign. In 

addition, Figure 3.10B shows that relatively high amounts of standard deviation occurred when 

including woody species with other plants in the C3SA watershed. This can be caused by many 

factors, such as not sampling the LAI in the exact positions every sampling period. In addition, 

many tree species have different growth patterns and responses in the environment to the non-

woody species. A much more effective methodology for collecting LAI is needed to better 

describe the physical characteristics of the canopy. 



77 

 

Figure 3.10 – (A) Leaf area index values for the K2A watershed and C3SA watershed and 

(B) Leaf area index standard deviation values for the K2A watershed and C3SA watershed. 

 

3.3.3 Soil CO2 measurements 

Figure 3.11 displays the soil respiration data as estimated by our linear regression model as 

described in Section 3.2.3. In Appendix D, we find that the model has a noticeable correlation 

(R2
adjusted = 0.6692) with the measured efflux values when using soil temperature and moisture 

content as our independent variables. The model also adjusts readily to the changes in the soil 

moisture content and temperature, much like what would be expected for real soil CO2 fluxes. 

More real time data point comparisons with modeled outputs could help instill confidence in the 

model’s ability to predict soil CO2 efflux. Relative water content might be a more appropriate 

variable to assess instead of volumetric water content, as described by Normal et al. (1992). 

Another model that Norman et al. (1992) proposed includes the use of LAI measurements. Tests 

are needed to determine if Norman et al. (1992) models have higher R2
adjusted values compared to 

our linear model. 
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Figure 3.11 – A multiple linear regression plot displaying the measured soil moisture 

content (%) and measured soil temperatures (ºC) relationship with modeled soil CO2 flux 

the dots are the measured independent variables and the colored grid is our linear 

regression plane. 

 

3.3.4 Ecosystem flux measurements 

Figure 3.12 shows half-hourly values of latent heat fluxes during the growing season. 

Latent heat flux typically followed an increase and decrease in its values during wetting and 

drying cycles. For example, DOY 150’s noticeable precipitation event increased the latent heat 

energy until roughly DOY 160. Other peaks in these latent heat flux values appear during days 

following precipitation events, such as the precipitation events during DOY 175 to DOY 180 and 

DOY 222 to DOY 224. The overall trend in latent heat was downward from around DOY 182 

until the end of the sampling campaign. Cloudy skies likely contributed to varying degrees of a 

lagged response of latent heat flux after a precipitation event, cloudy days could block the solar 

radiation that helps drive the latent heat flux. 
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Figure 3.12 – Half-hourly values on latent heat fluxes (LE, W m-2 s-1) in the K2A watershed 

during the 2016 growing season. 

 

Values of NEE and modeled soil CO2 efflux for 30-min periods are provided in Figure 

3.13. NEE values were positive during the nighttime due to the absence of photosynthesis 

activity. Values of the modelled soil CO2 fluxes appear to be close in magnitude to NEE values 

during the nighttime early in the sampling campaign, suggesting that soil CO2 is a major 

component of the nighttime NEE values. It must be mentioned that the modeled soil CO2 values 

are at their minimum during the night because of soil temperatures reaching their minimum. This 

is expected and is caused by radiative cooling processes at night that reduce the soil temperature. 

The soil moisture variable appears to be a big limiting factor in the modeled soil CO2 flux values 

when compared against the NEE values, but describing this relationship with decreasing or 

increasing soil moisture content is not straightforward. There are instances when soil moisture is 

relatively high and the soil CO2 flux values are relatively close to the NEE flux values (DOY 

155). In other instances where relative soil moisture content is present, the soil CO2 flux 
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measurement is lower than the NEE flux values (DOY 266). This is likely just the result of the 

coupling between soil moisture content and soil temperature, and how one of these variables, 

namely precipitation, can be so much more variable compared to the other, such as soil 

temperatures.  Daytime NEE values are negative during the growing season because of 

vegetation performing photosynthesis. These daytime NEE values reach their greatest (negative) 

amplitude during DOY 160 and DOY 197. After DOY 197, there is a steady decline in the 

daytime NEE values. This is likely caused by the growth, development, and eventual senescence 

of the canopy. 

 

Figure 3.13 – Half-hourly values of NEE for the K2A watershed compared to the modeled 

soil CO2 respiration data. 

 

3.3.5 Temporal dynamics of the isotope exchange in grazed and ungrazed watersheds 

Figure 3.14 shows the diel cycles of half-hour averages for the CO2 mixing ratio and 

δ13C, respectively, measured above the plant canopy in early June. Only one week of data is 

shown to help enhance key points of interest on the graph. Showing a longer time frame might 
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increase the scaling of the graph, which could reduce the amount of detail that would be more 

apparent at a smaller scaling. Diel cycles of CO2 mixing ratio follows cycles of daytime 

vegetative photosynthesis and nighttime ecosystem respiration building up in the nocturnal 

boundary layer. δ13C values also exhibit a similar pattern that is influenced majorly by the day 

and night processes, except during the daytime the δ13C is increasing and at night the δ13C signal 

is decreasing. This is likely caused by the uptake of 12CO2 plants in either watershed ecosystem, 

creating a relative enrichment in the δ13C signal. At night time, some of the previously 

sequestered 12CO2 molecules, in the form of carbon substrate, are metabolized and released 

during respiration back into the canopy. This release of 12CO2 starts to shift the δ13C signal to 

being more depleted. 

 

Figure 3.14 – Half-hourly average values of: (A) CO2 mixing ratio and (B) δ13C of 

atmospheric CO2 at the two watersheds. The values were derived based on the 

concentration readings from the top sampling inlets of the ungrazed and grazed watersheds 

(1.52 m and 1.5 m, respectively). 

 

Values of the CO2 mixing ratio were mostly similar for both the ungrazed and grazed 

watersheds during this one-week period, while the δ13C signals were noticeable different during 
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the same time frame. The grazed watershed appears to have a relatively more enriched δ13C 

signal during the daytime compared to the ungrazed watershed. At nighttime, the reverse is true. 

This may reveal that, during the daytime, the typically C4 dominant community in the ungrazed 

watershed is sequestering relatively more of the 13CO2 molecules compared to the C3 community 

in the grazed watershed. This creates a depletion in the δ13C signal of the ungrazed watershed. 

The nighttime reveals that the δ13C signals reflect the respiration of the sequestered isotopic CO2 

molecules. Since the C4 community had previously uptaken more of the 13CO2 during the day, 

the subsequent metabolism of the substrates that were made using the 13CO2 molecules reflect a 

more enriched δ13C signal in the ambient air of the ungrazed watershed. Soil respiration could 

also be playing a role in the diel changes in δ13C, but it is unclear how at this time. 

The δ13C signals became more varying and more depleted towards the end of the week. 

Soil moisture content may have had an impact on these δ13C signal trends, as according to Figure 

3.8A the soil moisture content was starting to wane considerably at the end of Figure 3.14’s time 

frame (DOY 167). However, since we did not have soil moisture sensors installed at the grazed 

watershed, it is unclear if the soil moisture content of the grazed watershed was decreasingly as 

equally as the ungrazed watershed. It would be reasonable to assume that both watersheds were 

possibly experiencing a significant dry down period at the same time, because these sites are  

within close proximity to one another. It is likely that precipitation events affecting one site will 

have likely influenced the other. However, soil properties and topography are notably different 

between the two sites, as noted in the site descriptions. Therefore, soil moisture content could be 

different between the two watersheds over the course of Figure 3.14’s timeline. A much more 

thorough evaluation of the soil moisture content and its relationship to the plant and soil 

microbial water demands is needed to better describe plant and soil contributions to the δ13C CO2 
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signal. This will require soil moisture probes installed at deeper depths characterize accurately 

the soil moisture content status of the soil surrounding plant roots. Also, isotope analysis of the 

soil respiration δ13C values will help us identify how much the soil respiration component is 

contributing the to the δ13C CO2 measured in the watersheds. 

The isotopic composition of NEE was determined using the isotope flux ratio method 

(see section 3.2.4). Previous studies show that small gradients of mixing ratios increase the 

uncertainties of δ13CF of NEE estimates (Griffis et al, 2004; Santos et al, 2012). Therefore, we 

assessed the minimal gradient threshold needed to retain high quality data and to mitigate noise 

by analyzing the results presented in Figure 3.15. This figure shows that as our absolute 

gradients of CO2 concentrations become very small, typically less than 1-2 ppmv of CO2, the 

flux-ratio signal becomes much more variable. Using this figure, we identified that gradients 

equal to or greater than 3.5 ppmv would provide the high quality data needed to correctly assess 

the differences in the δ13CF signal for both the grazed and ungrazed watersheds. Hereafter, 

references to data being filtered out or being eliminated will simply refer to some data points not 

having a high enough concentration gradient. MATLAB scripts and functions were programmed 

to not process data points with too low of concentration gradients. Instead of being processed and 

used in MATLAB calculations, the MATLAB scripts and functions replace these respective data 

points δ13C, δ13CF, and CO2 values with ‘Nan’ values. These ‘Nan’ values, or not a number 

values, are simply placeholders in our data outputs generated by our MATLAB scripts.   
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Figure 3.15 – Relationship between the isotopic flux-ratio signal in delta notation (δ13CF) 

versus the concentration gradient of CO2 in absolute form for the ungrazed (A) and grazed 

(B) watersheds. 

 

Figure 3.16 shows the ensemble half-hour average of the δ13CF composition of NEE for 

the mid-summer portion and early fall parts of the sampling campaign. The time scales are 

representing the ensemble average of each half-hour interval in a day over a 30-day span. Both 

Figure 3.16A and 3.16B show a consistent enrichment in the δ13C signal of the ungrazed 

watershed compared to the grazed watershed, indicating that C4 plants might be having a greater 

impact on the movement of CO2 in the ungrazed watershed compared to the grazed. However, it 

is apparent that the δ13CF signals of both watersheds are missing during the daytime in Figure 

3.16B and only for the grazed watershed during the mid-summer δ13CF analysis shown in Figure 

3.16A  These data gaps are likely caused by our previously created gradient filter removing data 

points from the dataset because they have too low of gradients. However, there is uncertainty as 

to why the ungrazed signal does not become filtered out during the day for the mid-summer 
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analysis, much like the grazed data and its data gaps during the daytime for both the mid-summer 

and early fall. It might be possible that values for the ungrazed system are stronger than the 

concentration gradient threshold of 3.5 ppmv during the daytime of the mid-summer period. In 

the other instances where gaps in data are apparent, it is likely that well-mixed conditions are 

present and creating too small of CO2 gradients between the sampling inlets. This is a result of 

high turbulence mixing created by daily diurnal heating that breaks up the nocturnal boundary. 

Figure 3.11 shows that NEE started to decrease in early fall. This may create weak gradients of 

CO2 being sampled between the two sampling inlets for either watershed; therefore, the gradients 

are not strong enough to make the gradient threshold and the δ13CF values are filtered out. 

 

Figure 3.16 – Half-hourly ensemble average of δ13CF for 30 day-periods during (A) the 

midsummer (DOY 162 to DOY 192) and (B) early fall portion (DOY 220 to DOY 250) for 

the grazed (C3SA) and ungrazed (K2A) watersheds 

 

Since the nighttime signals appear to be more reliable to analyze, because they tend to not 

have too weak of gradients and not be eliminated by our gradient threshold filter that is used in 

our MATLAB data processing script, the average daily night δ13CF signals were used to 
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determine if a seasonal trend is apparent. Figure 3.17 displays these nightly values from DOY 

100 to DOY 250. This plot shows the 12-hour average nighttime date for a given day of the year. 

There is a slow shift in both watershed’s δ13CF night time signals over the course of the growing 

season. It appears that the ungrazed δ13CF signals start to become relatively enriched in its δ13CF 

signal as the season progresses. Lai et al. (2003) found similar results in their work at the 

Rannells Prairie, a research site near the Konza Prairie Biological Station. They solved for δR 

using a Keeling plot method and collected weekly samples of the ecosystem air using an 

automated flask collection system. Values from the grazed watershed during DOY 100 to DOY 

150 are not available. This is due to the inlets in this watershed not being installed until later on 

in the season. The ungrazed δ13CF signal between DOY 100 and DOY 150 appears to have 

greater variance compared to later on in the season. This could be attributed to the laser that was 

used initially in the experiment having more variance. In addition, the canopy at this time was 

relatively young. As such, even though the data passed our gradient threshold values, the mixing 

of signals from the atmosphere and young canopy likely contributed to some of the notable 

variability. The δ13CF signal trends for both watersheds started to become more negative later on 

in the season, as the canopy will have fully senesced. At the time of full senescence, the δ13CF 

signal should mostly reflect that of the heterotrophic soil respiration component of the ecosystem 

respiration. Since source and sink strength components will have weakened by that point in the 

growing season, further data analysis could show similar variability in the δ13CF signal during 

DOY 100 to DOY 150 for the ungrazed watershed, but uncertainty exists regarding the 

prediction of the grazed watershed’s δ13CF during this period. 

There is a noticeable difference between the δ13CF values of the ungrazed watershed and 

the grazed watershed when examining the period of DOY 150 to DOY 250. The ungrazed 
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watershed has δ13CF values typically between -21‰ and -16‰, while the grazed watershed has 

varying, more depleted, δ13CF signal range between -26‰ and -18‰. Lai et al. (2003) found by 

that C4 plants likely adjust the δR value in the prairie to be between -17.5 to -13 per-mille (‰), 

while C3 plants were suspected to shift the δR signal to be more negative than -18 per-mille (‰). 

The δ13CF signal in the grazed is comparably more depleted to what Lai et al. (2003) found, while 

the ungrazed watershed has several instances where the δ13CF is comparably more depleted.  

 

Figure 3.17 – Nightly average δ13CF (‰) signal for the ungrazed watershed and the grazed 

watershed. 

 

The δ13CF signal of the grazed watershed appears more varying compared to the ungrazed 

watershed. Lai et al. (2003) reported that wind direction and wind speed can shift the sources of 

signals measured by a sampling system, which would affect the variability in δR values. Since the 

grazed watershed’s δ13CF value appears to be quite variable over time, an investigation similar to 
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the one performed by Lai et al. (2003) was conducted. Figure 3.18 displays graphs of wind 

characteristics related to the δ13CF for the nighttime values found in Figure 3.17. Figure 3.18A 

shows that the depleted δ13CF signal at the ungrazed watershed (K2A) could be associated with 

the wind direction coming from the south to the southwest. Therefore, there is a weak trend 

between wind direction and increasingly negative δ13CF signals for the K2A watershed. Figure 

3.18B does not appear to have a consistent pattern in its δ13CF signal versus wind direction, but it 

is possible that a weak trend could be interpreted. This weak trend seems to show that winds 

coming from the south and moving more easterly may enrich the δ13CF signal. Figures 3.18C and 

3.18D appear to show that wind speed is marginally influencing our δ13CF results. A more 

thorough investigation into the relationship between wind characteristics and the δ13CF
 will likely 

require the use of a flux footprint model. A flux footprint model can help estimate where our 

fluxes are originating from across the watersheds. Using the flux footprint model with satellite 

imagery could help identify clusters of plant communities that are nearby, or far away in some 

situations, that could be influencing the δ13CF signals.  In addition, there is a need to identify the 

δ13CF and δ13C signal of soil respiration in both watersheds, as well find a better way to estimate 

the strength of the flux generated by soil respiration overtime. Soil respiration isotope analysis 

could be essential for helping us better understand the variability of the δ13CF and δ13C signals for 

both watersheds. 
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Figure 3.18 – Plots of (A) wind direction compared to the δ13CF signal for the ungrazed 

watershed, (B) wind direction compared to the δ13CF signal for the grazed watershed, (C) 

wind speed compared to the δ13CF signal for the ungrazed watershed, and (D) wind speed 

compared to the δ13CF signal for the grazed watershed. 

 

 3.4 Conclusion 

It is apparent that this combination of micrometeorological techniques with the relatively 

new tunable-diode laser trace gas analyzer can adequately monitor changes in the δ13CF and δ13C 

signals for comparative ecosystems with varying grassland management practices. Less filtering 

and more data retention might be possible by using a more sophisticated method for choosing the 

CO2 gradient cutoff filter for the δ13CF signals. In addition, it might be worthwhile to install more 

sampling inlets. Having more sampling inlets may help provide a larger height distance between 

sampling inlets, which could help resolve some of the weak gradient issues. Additional inlets 

could be installed in different sections of both watersheds to determine if there is similar 

variability in the δ13CF and δ13C signals. As noted in Chapter 2, issues can arise for the sampling 

system when adding additional sampling inlets. More inlets can lead to more partial sampling 



90 

time errors, but a tradeoff between potential errors and more reliable data points must be 

assessed based upon the site. Environmental conditions must also be examined more closely to 

determine their impact on the growth of the vegetation and the subsequent impact on the 

ecosystem signals of CO2. These changes to the ecosystem may ultimately influence the values 

of δ13C and δ13CF signals in NEE. The complexity that environmental parameters add to the 

analysis of δ13C and δ13CF signals is daunting, but such analysis will be necessary to develop a 

better understanding on the relationship that the environment plays on δ13C and δ13CF signals. 

For now, this newly combined methodology and instrumentation practice holds great promise for 

future site endeavors. Many more data points are available to analyze compared to traditional 

methods, such as Lai et al. (2003) attempts to characterize the prairies δR values, and there is 

hope that further improvements in the sampling methodology could drastically increase the 

utility of this practice. Future experiments may look to implementing a soil respiration-sampling 

regime that can identify changes in soil δ13C flux over time. Such an experiment could help 

identify the relative contribution of the soil CO2 efflux component to the net ecosystem CO2 

exchange. In addition, future experiments should look to examine additional isotopologues, such 

as 12C18O16O, because they could provide help to better link together water and carbon cycles. 

Lasers are currently available to analyze for the aforementioned isotopic compound, but 

independent tests have revealed the laser to be too noisy for ecosystem research. More 

technology updates could bolster this instrument, allowing for even better carbon and water cycle 

analysis studies. 
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Appendix A - Table of the soil mapping units distribution for the 

K2A watershed 
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Appendix B - Table of the soil mapping units distribution for the 

C3SA watershed 
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Appendix C - IRGASON flux measurements compared to 

LI7500/CSAT3 flux measurements 
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Appendix D - Soil CO2 respiration model statistic tables and graphs 
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