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I. INTRODUCTION

In many buildings, openings through the webs of steel beams are
required either for access or for utility installations. Therefore, to
find an econcmic and convenient method for cutting openings and fabri-
cating appropriate reinforcement is necessary. Before 1960, there were
more than 70 publicationsl’z* which, either in Russia, or the United States,
or other countries, reported on stress comcentrations for small round
holes through plate and beam webs. In the past few years, researchers
have been endeavoring to investigate larger rectangular openings through
beam webs. Both analytical and experimental investigations have been
made of various openings with and without reinforcing. These investi-
gations were concerned with the stress concentration factor, the neces-
sity for reinforcing, the amount of reinforcing, the location of rein-
forcing, and the effect of different moment-shear (M/V) ratios for
various types of reinforcement.

An investigation has been carried out at Kansas State University
including 16 elastic tests, 3 plastic tests and theoretical analyses by
using the Vierendeel truss concept for a 6"x9" rectangular web opening
at the middepth of a W12x45 steel beam subjected to 4 different loadings

with various M/V ratios.

The purpose of this report was; (1) to find an analytical solution

by evaluating a reasonable element mechanism to simulate the beam behavior

*
Superscripts refer to items listed in the References.



with web opening using the finite element method with the ICES-STRUDL
computer program, (2) to compare the effects of different lengths of
reinforcing bar (see Fig. 1) for a wide-flange beam with web opening, and
(3) to obtain a comparison with experimental results and analytical

results based on Vierendeel assumptions presented in reference 3.

ey
6 2" to A" Txtensio
911 pr— |
. /Reinforcing Bar

e =

e ol o

Two-sided Reinforcing
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Fig. 1 Web Opening and Reinforcing Details



II. LITERATURE REVIEW

In 1932, M,uskhelishvili4 introduced a practical method to solve
plane elasticity problems, particularly for the stress distribution in
a plane weakened by an opening. In 1950, Joseph and Brock5 used his
complex variable method to obtain an exact solution for the stress con-
centrations around small openings of several shapes subjected to pure
bending.

Using the same method, Heller, Brock and Bart6, in 1962, presented
a solution for the stress around a rectangular opening with rounded
corners in a uniformly loaded plate. 1In 1962, they adopted the same
procedures obtaining stress distributions due to bending with shear.7
In both cases, they presented curves showing tangential stresses around
the boundary of a typical family of rectangles and the maximum values of
the boundary stress as a function of both aspect ratic and corner ratios.
From curves, they concluded that a basic reduction in stress concentration
occurs with increased radius, and the interaction between stress concen-
trations 1is equivalent to a mutual cancellation or stress relief.

In 1962, Segners had an investigation concerning the necessity, con-
figuration, amount, and location of openings through a beam web. His
method is based on the concept that a member with such an opening
has points of contraflexure centered above and below the opening at the
center line., He then verified this by laboratory data. He gave the con-
clusion that, on the basis of test results and cost comparisons, the most

satisfactory configuration for reinforcement is as shown in Fig. 2. The



yield load moment of the reinforced section is only about 70% of that for the
original gross section, but there is no significant difference in the
ultimate moment between them. He recommended that reducing the ratio

of opening depth to girder depth, or relocating the opening within the

span would be the approach te save cost.

/—P—
X Fap I Opening \
\

Reinforecing

Reinforcing

Fig. 2 The Ideal Reinforcement

In 1962, Snell8 used the finite element method to analyze a rec-
tangular plate with opening of one-third the width of the plate subjected to
uniaxial tension in a plane stress field. He found that the maximum
stress concentration is 3.65. The finite element method, with element
size of one~twelfth of the opening in linear length, gave an average stress
concentration in the eritical element as 3.31., He also suggested two
approaches to reduce the stress concentration occuring around the opening
in a plate. The first method involved adding reinforcing at the points of

high stress, while the second method adds reinforcing in such a way that



it draws the stress away from the opening. He found that ring reinforce-
ment resulted in a decrease of 30% in the stress concentration, while using
strip type reinforcing with the same amount of reinforcing in a favorable
location gave 23% reduction. In the same case, for strip type rein-
forcing with double the amount of reinforcing, the reduction in stress
concentration was 36%., The test series indicated that the most effective
length for strip reinforcing was closely approximated by placing the re-
inforcing in such a way that the ends of reinforcing are on lines drawn
outward from the corners of the opening in the plate at a 45° angle to

the plate axes.

In 1966, an analytical method for calculating stresses around elliptical
holes in a wide-flange beam under a uniform load was presented by Bowerg.
The applicability of the analysis depends on the hole size and on the
magnitude of the M/V ratio at the hole. TFor circular holes, boundary com-
ditions at the hole for moment equality are satisfied when the ratio of
beam depth to hole diameter is 2,0 or greater. The results also indicated
that for a M-V ratio of 4.8/L, in which L is the span length of the beam,

a depth ratio of 6.0 is required to satisfy shear-moment equality. In the
same year, he conducted tests on simply supported wide-flange beams with
and without cantilever action having circular or rectangular web openings
loaded by concentrated loads.lo He concluded that the elastic analysis

can accurately predict the tangential stress along the hole and the bending
stress on transverse cross sections in the vicinity of the hole for circu~
lar and rectangular openings not exceeding half of the web depth. He also

concluded that the Vierendeel method predicts a reasonably accurate bending



stress except for local stress concentrations at the opening corners.

In 1968, Redwood and McCutheonll reported some tests to failure of
steel wide-flange beams containing one or two unreinforced openings,

The openings are various shapes but all have the same height which is
equal to 57% of the beam depth. The experimental results indicated that
under pure bending the moment capacity of the beams with one or two
openings can be calculated based on the plastic modulus of the net section
through the opening. The presence of shear reduces the moment capacity
.ot the beam at the cpening below that for pure bending. The reductior.

is a function of dpening shape, dimensions, the spacing of openings,

and the shear/moment ratio. The presence of an adjacent circular opening
at the spacings tested did not reduce the strength below that of a beam
containing a single circular opening. At the M-V ratio of 0.425, the
moment capacity reduces to 64% - 72% for both simple and double circular
openings, and reduces to 407 for a single rectangular opening.

In 1968, Bowerl2 suggested the criteria for elastic design, plastic
design, and buckling design. He concluded that, for elastic design,
beams with web holes should be designed using the same basic factors of
safety against yielding as in the AISC specification, except that the
maximum allowable bending and shear stresses should be computed using the
actual stresses causing yielding at the hole rather than nominal beam
stresses. For plastic design, beams with web holes should be designed
using the AISC load factor of 1.70, except that the maximum allowable
loads should be computed using the actual ultimate strength of the beam

at the hole rather than the strength of the gross beam. For large spacings



of holes, the effects of each hole should be computed individually. For
more than two adjacent holes, use Vierendeel frame analysis; for geo-
metrically dissimilar adjacent holes, use a frame analysis. With regard
to buckling, beams with holes are subject to the same types of buckling
as beams without holes. However, some possible buckling modes may be
more likely to occur in beams with holes than in beams without holes.
The AISC formula for web crippling is applicable for beams with holes,
so long as the edge of the hole is at least 4" from the edge of

bearing. When a hole is located in a region of pure bending, the possi-
bility of vertical flange buckling could be checked by assuming that

the compression T-section at the hole acts as a column.

In 1969, Cheng conducted a test of a rectangular opening with round
corners in a wide-flange beam subjected to combined bending and shear
using the photosttress method in conjunction with electrical resistance
strain gages.l3 He concluded that larger deflections are to be expected
in a beam with web openings and caa be well predicted by elastic theory.
Simple beam theory can not be used to predict the normal stress which
1s non-linear in a region extending from the edge of the opening a dis-
tance about equal to the depth of the beam from the opening.

In 1970, Congdon and Redwoodla conducted an investigation concerning
the plastic analysis of reinforced openings through beam webs based on
the assumption of perfectly plastic material behavior. A series of tests
were carried out to determine the effects of M-V ratio, reinforced area,

hole aspect ratio, ratio of hole depth to beam depth, and location of



reinforcement on the beam behavior. The experimental results confirmed
the assumption of simple stress distribution at failure. The equation
for figuring out the area of reinforcement to take maximum shear capacity
was also provided. The effects due to one-sided reinforcement for the
web opening are not much different from those obtained from reinforcement

on both sides of the web at ecritical points.



ITI. METHOD OF ANALYSIS

A. Introduction

Knowledge of the force-displacement relationships and material
properties is necessary in order to solve structural engineering problems.
The classical techniques of structural analysis used to solve these
problems use either the displacement compatibility approach or the force
equilibrium appreoach. In the conventional structural analysis the member
dimensions and the explicit stress-strain relationships are generally
known., Analyses of complex structures, composed of beams, plates, grlids,
ete., are too complicated to be handled either by the beam theory or
the classical continuum mechanics approaches. With the help of the digital
computer, matrix operation methods meet the needs for the analysis of
complex structures.

The direct stiffness method is generally preferred over the force
method and other displacement methods. Its apparent advantages are, (1),
no need for having to select the redundant forces before the structural
stiffness matrix is formulated; (2), the structural stiffness matrix is
usually sparsely populated and banded along the principal diagonal; (3),
no excessive operation of triple matrix multiplication is needed to form
the structural stiffness matrix.

The initial development of the direct stiffness method was by Levyls
who introduced the idea of replacing the continuous structure by parts
or elements, finding a stiffness matrix for each element, and then com-
bining these stiffness matrices. Turner et al.l5 refined this application

by assuming the real continuum to be divided into assemblies of imaginary,
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finite triangular, or rectangular slices interconnected only at a finite
number of nodal points on their boundaries at which some equivalent
forces, representative of the distributed stresses actually acting on

the element boundaries, were supposed to be considered. The displacements
of these nodal points are the basic unknown parameters of the whole
problem. The state of displacement within each finite element is defined
uniquely by a displacement function in terms of its nodal displacements.
Therefore the state of strain, and the state of stress are also defined
by this function throughout the element including its boundaries. Once
these stages have been reached, we can find the element stiffness matrix
by the energy method and follow the standard direct stiffness method.

The new idea of the finite element method is the analysis of the
stiffness characteristics of arbitrary two or three dimensional elements.
Using such elements, the structural idealization is obtained by dividing
the original continuum into segments of appropriate sizes and shapes,
all of the material properties of the original system being retained in

the individual elements,
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B. The Direct Stiffness Method

(a). Derivation of element force-displacement equation

For each element, relationships between forces (equivalent
to the distributed forces on the element boundaries) and_dis—
placements at the node points can be derived in matrix form
referred to the local coordinates:

{£} = [k] {8}
where {f} and {8} are column matrices of forces and displacements
respectively at the nodes, and [k] is a square, element stiffness
_ matrix referred to the loecal coordinate axes.

(b). Transformation of the element stiffness matrix

Each element stiffness matrix must then be transformed
from the local coordinate system to the global coordinate system

1
of the complete structure. .

[kl = [7]"[R][T) (2)
where [k] is the element stiffness matrix referred to the global
coordinates, [T] is the transformation matrix relating the local
coordinates and the global coordinates, and [T]T is the transpose

of [T].
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(c). Assembly of the total stiffness matrix

The element stiffness matrix can be expressed as

1 1
k k
1 s . ,
k'] = ii ij (3)
i ! 1
k k..
ji ii

for each element. The superscripts refer to the element number and the
subscripts are refered to the joint name as shown on Fig. 3. TFor the
entire structure, the total stiffness matrix is obtained by superposition

of each of the element stiffness matrices.

( \
1 1
kii kjj o o o
1 1 2 3 2 4
k + k., +k7, +k k k k
ji i i3 A h| jk jl jm
2 : 2
K] = |e Ky kg © o (4)
3 3
o] klj o kll o
o k o 0 k.4
L mj mm

It is easy to visualize that member 2 connecting joints j and k will
only influence the equilibrium equations of these two joints, and

il
therefore will only affect the elements kjj’ kjk’ kkj’ and kkk of
the complete structure stiffness matrix,

The force-displacement relation for the entire structure is then

{F} = [K] {u} + {FO} (5)
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Fig. 3 Element Assembly

where {F} is th: column matrix of applied external loads including re-
actions, {FO} is the column matrix of nodal foreces introduced to maintain
the initial structural shape in the presence of thermal gradients or
equivalent effects, [K] is the total stiffness matrix, and {U} is the
column matrix of actual nodal displacements of whole structure.
{(d). Determination of nodal displacements

The complete structural stiffness matrix [K] is singular and can-
not be inverted. However, the set of Egs. (5) can be arranged and

partitioned so that

4 K
F' 11 12 U’
e fmore e ©
1

where {F'} are the specified loads applied to the structure, {R} are the
reactions at points of support or constrained deflections, {u'}l are the

unknown displacements, and {C} are the specified displacements (zero for
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undeformed support points). For the case of the presence of thermal
gradients, the column matrix on left side of Egqs. (5) includes Fo, i.e.,

F = F-Fo. The unknown displacements may then be found as
1 = -1 ' -
{u'} = [K;,] [{F} [K,,] {C}J (7
The reactions can be obtained in terms of the nodal displacements as,
s 1
{r} = [K,,] {U'} + [K,,] {C} (8)

(e). Determination of stresses

In each element, stresses (or internal loads) may be found directly

from the nodal displacements:

{c} = [s] {6} 9
where [s] is the stress matrix for the elements.

(f). Comments on the complete structural stiffness matrixl6

(1). The set up of the structural stiffness matrix does not need to
refer to loading or boundary conditions or to redundancy.

(2). All terms along the main diagonal of the structural stiffness
matrix are po;itive, which means that the directions of forces and cor-
responding displaccments are coincident.

(3). The sum of the elements in any column of the complete structural
stiffness matrix is zero, which reflects adherence to the conditions of
equilibrium.

(4). It is seen that the total stiffness matrix is always symmetric
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and is always singular. The symmetric property reveals the truth of
Maxwell's reciprocal theorem. The singularity of the stiffness matrix
represents the possible rigid-body motion of the structure.

(5). Stability of the structural element arrangement is assured
if the inversion process in determining the unknown displacements can
be carried out. In other words, on specifying adequate conditions on
the displacements, sufficient to prevent rigid-body motion, the singu—
larity present in the structural matrix will be removed. TFor instance,
the reduced stiffness matrix [Kll} is nonsingular for a statically stable
structure and can be inverted.

(6). Alternative boundary conditions can be studied by merely re-
arranging the partitioning of the structural stiffness matrix and
proceeding with the solution as before.

(7). Members may be removed, or new ones added, by simply intro-
ducing the necessary changes into the appropriate local elements of the

complete structural stiffness matrix.
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C. Formulation of the Finite Element Method
(a). Introduction

Certain approximations have been introduced into the formulation
of the finite element in the discretization of the original continuum
and the evaluation of element properties. Judgement is required in
making the proper subdivision, such as element shape and degrees of
freedom, so that the substitute structure can simulate the actual
structure. It is also important to choose a suitable displacement
function which can satisfy the requirement of displacement continuity
between adjoint elements. All of these factors will determine whether
the substitute structure is stiffer or more flexible than the real
structure and to what degree the approximation is acceptable.

In brief, the finite element technique has the following character-
istics:

(1). Structural discretization;

(2). Necessity for choosing proper displacement functions;

(3). Evaluation of element properties;

(4). Assemblage of finite elements and following the standard

displacement method procedures.

In applying this method, the following requirements must be satisfied
simultaneously:

(1). Force equilibrium in each element;

(2). Displacement compatibility at nodal points between adjacent

elements;



(3), The internal forces and deformations are related through the
geometric and material property characteristics.

(b). Plane stress in plate — triangular element

The first civil engineering applications of the finite element
technique have been in studies of plane stress and plane strain.

Various shapes of finite elements were employed in these analyses.
In general, applicable rectangular elements give a little better ap-
proximation of stresses and deflections for a given nodal pattern than
triangular elements, because they employ a closer deformation approxi-
mation. However the use of gquadrilateral elements could entail arith-
metical difficulty and consequently a disproportionate increase of com-—
puting time in deriving the element characteristics. Because of greater
adaptability of the triangular shape in fitting arbitrary boundary
geometries, triangular elements will be used here.
(1) Displacement functions

Consider an arbitrary triangular element with nodes i, j, m
numbered in an anti-clockwise order as shown in Fig. 4. The plane dis-

placements of a node have two components

u,
{s,} = {Vl} (10)

i
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Fig. 4 Element Incidences

and the six components of element displacement can be listed as a column

matrix

(8} = 1% (11)

Assume the following parametric displacement field for the two dis-
placement components at any point within each element:

e-...
u = ul + o)X + u3y

v =a, +a.x + ey (12)

These two equations can be expressed in the general form as

P ]
u  (x,y) € lxyvyooo *
= [N]{u}e = [ }m v (13)
v (x,y) coo0olxy

18



19

where [N] and {a}® are displacement functions and undetermined coef-
ficients respectively. Evaluate nodal displacement components in terms

of the undetermined coefficients:
{8} = [A] {a} (14)

On substituting the boundary conditions in Eq. 13,

u, = a. + Op¥y + uByi,

um = ul + azxm + u3ym,
(15)
Vi = a4 + asxi + aﬁyi,
VJ = a4 + a5xj + aéyj,
Vm = % + “5%n * 6 m
These equations reveal the square matrix [A] as
r 3
1 Xy yi o] o o
1 X . o o
i Yy °
1 X Y o] o o A 1 o
1
[A] = o m = |- —i— 4 - - - - (16)
o o o 1 X, : 4] : 11
(o] o} o] 1 X ’
5| e
o 0 o 1 X Yoo

This will be square if the number of displacement functions has been taken
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equal to the number of nodal displacement components. Solving these
equations by sub-matrix for Ugs Gpy Oqy Opy Gg, and A in terms of the

nodal displacements u., uj, u s Vi’ Vj’ and Vﬁ, i.e:4

(o} = [a~11{5} (17)

and substituting into Eqs. (13), we can obtain finally

(=
1]

1

e [(ai + bix + ciy) ug + (aj + bjx + cjy) uj + (am + bmx

+ cmy)um] and (18)
1

v =5r [(ai + bix + ciy) Wy ok (aj + bjx + cjy) Vj + (am + bmx

+ cmy) Vm]

in which

i j jm
c, =X =X, = i
i m | mj
aj Sy T Y oo
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m j ji
Also
Lomy 9y
2A = det |1 X, ¥ = 2 (area of triangle i, j, m) (19)
1 X Ym

Egs. (18) can be represented in the form of egs. (13):

e

} = [NT {§} = (1N, ING, IN'] {6} (13A)

ulx,y)
{ f

V(x,y)

with I a two by two identity matrix, and

a, + bix + e,y

N! = (20)

I1f the coordinates are taken from the centroid of the element for the
simplification of the calculation then

Xy + xj + X =¥y + yj + Yy = © and
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= a, = a (21)

From Eqs. (18) we find that the displacement varies linearly along any
side of the triangular element and has identical values at the nodes.
This therefore guarantees the continuity of displacements with adjacent
elements.
(2), Strain

In the determination of the strain-displacement relationship for
the element, it is assumed that small deflection theory of classical

elasticity is applicable. The internal strains can be obtained as fol-

lows:
() ( s 5
x ox
Pl w w2 A on \ (22)
y ay
Ju ov
——+__
ny oy X
N J \ 4
Taking the appropriate partial derivatives of Eqs. (18), gives
bi, o, bj’ 0, bm, o
1
{e} = T s R L {6} = [B] {6} (23)
Ci, bi s Cj ] bj ’ Cm9 bm

Obviously, the [B] matrix is independent of the position within
the element, and hence the strains are constant throughout. There are

some initial strains which are caused by shrinkage, crystal growth, or
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temperature change, which are independent of stress and usually are de-
fined by average, constant values. This is consistent with constant
strain conditions.
(3). Stress and elasticity matrix

For plane stress in an isotropic material, the stress-strain re-

lationship can be obtained from Hooke's law as

UK EX
ex - (Ex)o = _E'— ¥ E
G'x _{_I__V_
Ey - (Ey)0 = = s e (24)
Txy
Ty ™ (ny)o= 2(1 + v) B

where (sx)o, (Ey)o and (yxy)0 are initial strains.

Solving for stresses,

g € - E
X X X0

o = D] e - ¢ (25)
y (p] y yo

T —
Xy Txy T Yxyo

1 v 0
[D] = E2 v I o |, (26)
1-v
o o A

=
n

elastic modulus, and
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v = Poisson's ratio,

For the plane strain case, a similar procedure can be followed to
find the [D] matrix.
(4). The stiffness matrix

Let {f} be the nodal forces which are equivalent statically to
the boundary stresses and distributed loads on the element. By applying
virtual displacements of {§'} at the nodes, the following equation must

be satisfied.

dWi = dWe (27)

Where dWi is the internal virtual work and dwe is the external work

associate with the virtual displacements.

{6117 (£} (28)

dw
e

aw = [ e} {o} av
vol

1

{8 317 (D] IB] {6} av

vol

= (1" D] [B] av) {6} (29)

vol

Where {e'} is the matrix of the virtual strains induced by virtual dis-
placements {8'}, and {¢} is the matrix of the actual stresses associated
with the nodal forces {f}.

Introducing unit values of the wvirtual displacement components in

sequence and substituting into equation (27) yields
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(£} = | f (81T [p] [B] dv]{é} (30)

vol
By definition, the bracketed term then represents the element stiffness
matrix.

The integration indicated in the equation presents no problem for
this element since none of the matrices involved is a function of the
coordinates x and y. Thus the triple product [B]T [D][B] is constant
and can be taken outside the integral sign. The remaining integral is
simply the volume of the element, or A+t when the plate thickness t is

constant.

[k] = [B]T [D] [B] ta (31)
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IV. NUMERICAL EXAMPLES

A. Review of Experimental Set Up

The experimental tests in reference 3 were conducted on three W 12 x 45
steel beams which were subjected to a single concentrated load at mid-
span and simply supported on the ends. By varying the length of the
shear span from 100 in. to 40 in. in increments of 20 in. as shown in
Fig. 5, four values of the moment-shear ratio at the opening were studied.

Fig. 1 shows that for each beam the web opening was 6" deep and 9"
long with a 1/2" corner radius and centered on the centroidal axis of the
beam. Thus, the opening width to depth ratio was 1.5 and the nominal
ratio of depth of opening to depth of beam was 0.5.

One series of tests was made without reinforcing and three series
of tests were conducted with reinforeing bars.

The type of reinforecing used on the test specimen conslsted of
rectangular cross section bars oriented parallel to the beam flanges and
welded to the web above and below the opening. Four inch extension and
six inch extension of the reinforcing bars beyond the edges of the
opening were used in separate tests.

With the same cross sectional area of reinforcing bar, either one-
sided reinforcing or two-sided reinforcing was tested as shown in Fig. 1.

The cross sectional dimensions of the beam used in the study were
the nominal values as indicated in Fig. 6a, The modulus of elasticity
was 29,000 ksi, the modulus of rigidity was 11,150 ksi, and the Poisson's

ratlo was taken as 0.3.
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B. Simplification of the Problem

The three dimensional structure was modified to meet the need of
the analysis using the plane stress finite element method. The proce-
dure followed was to substitute equivalent bar members pin-connected to
the appropriate nodes of the plate elements for the flanges and rein-
forcing bars. These bar members have one dimensional material properties
which can transfer only axial forces.

Since we are more interested in the stress concentration around
the opening, only a portion of the beam was studied, It is assumed that
the influence of the opening on the stress distribution is no longer sig-
nificant at a distance of one beam depth from the edge of the opening due
to Saint-Venant's principle. A cut portion 30" long centered on the cen-

troidal axes of the opening as shown in Fig. 7 was studied.

20" 2P
by

(D |
30" j_f Span

=

v j 2 X
)

L 30"

Fig. 7 Portion of Beam Used in Analysis
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The idealization, using a plane stress procedure to simulate the
beam behavior of one-sided reinforcing, was also included in case that
kind of reinforcing was adopted. This is based on the conclusion in
references (3, 14) that the one-sided reinforcing makes no discernible
effects different from those of the two-sided reinforcing. Therefore,
the results of this study can represent both types of reinforcing with
the same total cross sectional area.

As shown in Fig. 6b, the shapes of flanges and reinforcing were
shrunk to points in order to meet the needs of the plane stress analysis
procedure. Also the distances from centroids of flanges and reinforcing
to the neutral axis of the beam were readjusted from the original places
in the test specimen to be in accord with the arrangement of the dis-

cretization.

C. Discretization

It is obvious that the accuracy will improve as the size of mesh
is decreased. Though no general rule can be stated as to how best dis-
sect a given structure, the idealization is just a technique considering
how the substitute structure simulates the behavior of the actual structure.
Good results are frequently obtained with rather coarse subdivisions.20
For instance, a deep rectangular beam is subjected to pure bending. Two
rectangular discretizations are considered as shown in Fig. 8. We knew
from assumptions of beam theory that plane cross sections remain plane in
bending. However, the axial fibers of the beam become curved. Thus, in

order to best approximate the straight transverse sections and curved
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Actual Structure

[ a/4

Discretization (a)

a/4

Discretization (¥b)

Fig. 8 Discretization of A Deep Beam



32

axial sections that occur during deformation, the discretization (b) in
Fig. 8 is prefered over the discretization (a). Another two examples
from reference (20) are shown in Fig. 9 through Fig. 12 with the surprising
results shown in Fig., 9 and Fig., 11. Examination of the above typical
results shows that as the triangles are well formed, i.e., essentially
equilateral, better results are expected. The poorest overall displace-
ment pattern are produced with the discretization which contains many
weak triangles.

After the elements are discretized, by using a systematic pro-
cedure for numbering the nodal points, the matrix can be placed in a
band form which allows the equations to be solved using a minimum of
computer time and storage. The sclution time is proportional to the square
of band width., Fig. 13 shows that care in numbering the nodal points rep-
resents a considerable saving.25

Following the techniques described above, the portion to be studiled
in this report was discretized to be 289 elements including reinforcing
members as shown in Fig. 14. Smaller triangular elements were used near
the opening in order to éet a better picture of stress distribution near
the opening. Elements 1 to 256 are triangular plane elements. Members
257 to 275 are two force members replacing the flanges, and members 276

to 280 are also two force members representing the reinforcing bars.

D. Superposition

The boundary forces acting on the 30 in. wide plate section were
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-1

jﬁ

1 ksi

Plate Subjected to In-plane Bending

Displacements from Different Discretizations

No. of |V @ x=3, y=0 u @ x=3%, y=2
Case Node — -
Nodes F.E.M./Exact F.E. M, /Exact
1 12 812 . 240
2 12 916 812
3 15 825 w115
4 20 .919 . 286
5 18 . 951 . 940
6 35 L 960 LO46
¥ F.BE.M. = Finite Element Method
Fig. 9 Example I : Plate With Pure Bending
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(3n,2n)

X,

(BH'OH)

Case 1 ¢ 12 HNodes 12 Elements Case 2: 12 Nodes 12 Elements

/
/

Case %: 15 Nodes 16 Elements Case 4: 20 Hodes 24 Elements

Case 5: 18 lodes 24 Flements Case 6: 35 Nodes 48 Elements

Fig, 10 Discretizations for Example I
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s Y, v
T
4n X,u Z W
1

= 4" - -1

Rectangular FPlate
I,V
ksi
ksl X,u |iksi
|
[
4ksi

Cantilever Plate Subjected to End Shear
Displacements from Different Discretizations

No. of v @ x=0, y=0 u @ x=0, y==2"

Case Node F.E.M./Exact F.E.M./Exact
1 15 +S873 .836
2 23 .962 . 942
3 33 «965 . 950
4 45 . 962 . 942
B 33 « 949 .912
6 45 .956 .G3%6
Fig. 11 Example II : Cantilever Plate Subjected

to End Shear
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-
=

(O,-Z") (4n,_2u)

Case 1 : 1% Nodes 16 Elements Case 2 : 23 Nodes 32 Elements

/ /

NS

Cése 3 1+ 33odes 48 Elements Case 4 : 45 Hodes 64 Elements

Case 5 : 3% Nodes 44 Elements Case 6 : 45 Nodes 60 Elements

Fig, 12 Discretizations for Example II
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regarded as made up of two different forces as shown in Fig. 15. The
isolated portion subjected to end shears and moments is statically
equivalent to the same portion subjected to a pure bending plus shear
with bending. By static equilibrium, the factors Xl and X2 can be found
for any shear-moment combination by solving the following two equations

simultaneously

1]
=

1000 Xl - 1000 X2 "

1000 Xl + 1000 X,

I
o

Four sets of X values for different moment-shear ratios are listed in
the table in Fig. 15.
(a). Displacement Boundary Condition

Due to the pure bending, Fig. 16(a), the portion is symmetrical
with respect to the Y axis and antisymmetrical with reépect to the X
axls. For the case of bending with shear, the portion is antisymme-
trical with respect to both the X and Y axes. Therefore it was possible
to analyze only one-quarter of the section by introducing appropriate
restraint conditions on the boundary nodes as illustrated in Fig. 16(b)
and Fig. 16(c).
(b). Consistent Nodal Loads

The moments and shear forces on the free body shown in Fig., 16
were approximately represented by a series of concentrated loads applied
at the nodal points on the end section in this analysis. The bending
stresses at the end section were calculated by means of the flexural

formula



v
MA \¢B
\/ X
1
Y
1000z, \§000x1
l // X
Pure Bending
-+
) g
200 1000x
LY, — I\
X
,éng
10003(2 = 2
End Shear With Bending
M/V M, Ma X, X0 v
80 | 780 |1140 | 0.96 | o0.18 |200%p/3
60 | 540 | 900 | 0.72 | o0.18 [200%/3
40 | 300 | 660 | 0.48 | 0,18 [200x,/3
20 | 60 | 420 | 0.24 | o0.18 |200%/3
Fig. 15 Superimposed Loading Conditions
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Vv
Pure Bending Bending With Shear

a, Deformation Shape

Top Flange

o

L@ Opening
| ) ¢ Beam & Opening
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1000

X

e e apf, of o of

b. Pure Bending

Y,v
‘L | Top Flange

i
|- ¢ Opening
| ¢ Deam & Opening

. B

¢, End Shear With Bending

Fig. 16 Displacement Boundary Conditions
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Since the stress varies linearly aleng the boundary, the consistent

nodal loads were found by the trapezoidal loading formula

ht

P, =— (20, + g,)

p, 5 1= 76 (29 t 0y
h _ ke

P, o, Py =g (o) + 20y

t = thickness of web
o = force intensity per unit area

The concentrated load at each nodal point was the sum of the static
resultants from the adjacent sides. The small difference between the sum
of the moments produced by these concentrated nodal loads about the
neutral axis and the statical moment at the section was proportionately
resolved into a series of small concentrated loads, which were then added
to the previous concentrated loads. The sum of the moments produced by
these resultant concentrated loads were equal to a half of the statical
moment 1000 K-in. The concentrated loads are shown in Fig. 17.

The shearing stresses were calculated by the formula

-
Vom

The consistent nodal loads from the resultant of parabolic variation

loading were calculated by the formula
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th

Py T P1 =54 (7T1 + 612 - 13)
h
Py T2 X
. th
P h ” P2 =1 (Tl + lOT2 + 13)
3 3
T. = shear stress per unit area

t = thickness of web

The shear stress on the flange was assumed to be concentrated at the
center point of the flange. The consistent nodal loads are shown in

Fig. 18.
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V. PRESENTATION AND COMPARISON OF RESULTS

The stresses determined by the finite element method using constant
strain triangles are constant throughout an element., Two baslc ap-
proaches have evolved for the interpretation of the stresses. Provided
that the material properties of the elements on a node are the same,
the corresponding stresses in these elements may be averaged and the
result attributed to the common node. Alternatively, the stresses de-
termined for an element may be assigred to a particular point within the
element — usually the centroid. In this report the second procedure
was used to determine the stress distribution.

A, Normal Stresses

In Fig. 19 through Fig. 22, the normal stresses were calculated by
the finite element method were compared with the stresses calculated by
the Vierendeel method and the experimental results in reference (3).

The stresses at section x = 0 and x = -4.5" for a 4" extension of re-
inforcing were compared with the experimental results. Four setups of
different M/V ratio were plotted. The solid line represents the results
of the finite element method with the calculated values at cross polnts.

It is seen that the finite element method agrees better with the
experimental results than the Vierendeel method at the centerline of the
opening (X = 0). At the section X = -4.5", the normal stresses are not
all in good agreement with the experimental results, However, the finite
element method appears to predict a more reasonable stress distribution
than the Vierendeel method which, unlike the elasticity analysis, pre-
dicts linear bending stresses and does not account for stress concen-

tration. For all cases, the finite element method predictions are in
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excellent agreement with the experimental values for the stresses at
flanges.

Using the same cross section and the same location of reinforcing
bar, the different stress distribution for different lengths of rein-
forcing are shown in Fig. 23 through Fig. 26. The results for no re-
inforcement and the 6" extension of reinforcing were from a report
by Y.I. Hsu26 at Kansas State University. At the section X = 0, the
stress at the top edge of opening for the 2" extension of reinforcing
was found to be SOZVOf the corresponding stress with no reinforcing,
and the stress for the 6" extension of reinforcing was about 68% of
the corresponding stress with no reinforcing. These are shown in
Figs., 23a, 24a, 25a, and 26a. In Figs. 23c¢c, 24c, 25c¢, and 26c, at the section
X = - 4,75", the stress for the 2" extension case is about 90% of the
stress for the unreinforced case, while the stress for the 6" extension
case is only 70% of the stress for the unreinforced case. The graphs
at the section X = - 10.75" show that the stress distribution is only
slightly affected by the opening. The stress distribution patterns are
similar for the four cases of M~-V. However, the magnitude of the
stresses are unusual and interesting. The case with no reinforcement
has the smaller stress of the four cases, while the 4" extension case
has a larger stress than other three cases. The reason the maximum
stress with the 4" extension is larger than the maximum stress with the
6" extension at the section X = -10.75" is evident., When the reinforcing

was terminated near a section, only the local stress concentration occured,



47

and the average stress for the calculated area tended to be low.
B. Shear Stresses

The results of the experiments3 indicated that the shear stress
distribution was insensitive to the M-V ratio. The shear stresses for
an M-V ratio of 60" were plotted to represent the results for the
series.,

In Fig. 27, the shear stresses at sections X = 0, X = - 7.5",
and X = - 10.75" were shown for the 4" extension of the reinforcing.
The results of both the Vierendeel method and the experimental data were
from reference 3 and compared with the results of the finite element
method. It can be seen that the predictions based on the finite element
method were in excellent agreement with the experimental results. The
results evaluated from the Vierendeel method indicated a linear stress
distribution which tended to correspond to the mean value obtained from
the finite element method except at the section X = O,

In Fig. 28, the shear stresses for different lengths of reinforcing
were compared using the finite element analysis. The M-V ratio of 60"
was used to represent the series. The shear stresses are not much dif-

ference except at the location near the reinforecing terminal.
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Fig. 23 Effects of Reinforcement on Normal Stresses

For M/V = gon
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VI. CONCLUSIONS

The predictions of normal stresses using the finite element analysis
agree better with the experimental results than those obtained using
the Vierendeel method. The normal stresses obtained at the top
flange using the finite element method were in excellent agreement
with the experimental results.

Even for the short 2" reinforcing extension, the advantage of re-
inforcing is very apparent. The stress distributions for different
lengths of reinforcing do not change very much. However, one finds
that the longer the reinforcing, the more the stresses were drawn
from the flange to the reinforcing location,

The stress distributlon patterns are generally the same. A sharp
stress concentration is near the corner of opening, except in the
region within 2" of the reinforcing termination.

Under the constant shear force, the maximum normal stress occcurs

at the top edge of the opening for low moment. It occurs at the
flange for M-V ratios higher than 60". In other words, to relocate
the opening may be one way to change the controlling stresses.

The shear stresses obtained using the finite element method were in
excellent agreement with the experimental results for the 4" ex-
tension of reinforcing.

The effect of reinforcing on shear stresses is small except in the

region near the reinforcing.
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ABSTRACT

Using the finite element analysis, this report presents a study of
the effects of stress concentration in a wide-flange beam with a rein-
forced web opening. The direct stiffness method and the plane stress
theory were reviewed. A 30" segment of the beam was divided into 275
elements to be studied., The ICES-STRUDL computer program was used to
obtain the numerical results which were compared with the experimental
results obtained at Kansas State University. The results were also
compared wifh the results obtained using the Vierendeel method. For
different lengths of reinforcing with the same cross section and lo-
cation different results were obtained and compared. It was concluded
that the finite element analysis provided good agreement with the ex-
perimental results. Also the stress concentrations near the corner of

opening were decreased significantly when reinforcement was used.



