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Abstract

Distribution theory is an important tool in studying partial differential equations. Dis-

tributions are linear functionals that act on a space of smooth test functions. Distributions

make it possible to differentiate functions whose derivatives do not exist in the classical

sense. In particular, any locally integrable function has a distributional derivative. There

are different possible choices for the space of test functions, leading to different spaces of

distributions. In this report, we take a look at some basic theory of distributions and their

Fourier transforms. And we also solve some typical exercises at the end.
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Chapter 1

Introduction

Distribution theory was developed by the French mathematician Laurent Schwartz in the

early fifties, after the work of P. Dirac, O. Heaviside, J. Leray and S. Sobolev. It is still an

important tool in mathematical analysis today.

Distributions are linear functionals that map a set of test functions into the set of real

numbers. The basic idea in distribution theory is to reinterpret functions as linear function-

als acting on a space of test functions. We often define distribution by integrating standard

functions against a test function. On distributions, we can define a (generalized) derivative

so that many of the usual rules of calculus will hold. Moreover, distributional derivatives

generalize classical derivatives: if f has a classical derivative, then its distributional derivative

is the same as the classical one.

The Fourier transform is easily defined in L1 as an integral, but image of the Fourier

transformation. Hence the inverse can not always be defined as an integral. In L2, the

Fourier transform must be defined as limit, but turns out to be one-to-one onto L2. The right

space here is the space of Schwartz functions. The Fourier transform is an automorphism on

the Schwartz space, which is contained in L1. S being a topological vector space, F induces

an automorphism on its dual, the space of tempered distributions S ′.

Not all the proofs of theorems presented in this report are included. We selected a
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number of them, which we believe that the proof of those will illustrate the important

techniques.

This work is mostly based on the notes of Josefina D. Alvarez Alonso1. We also consult

the books from C. Zuily2 and S. Kesavan3. For necessary real analysis background, we use

the book from R. Wheeden and A. Zygmund4.
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Chapter 2

The Spaces D and D′

Definition 2.1. Given a function φ : Ω → C, φ ⊂ Rn open, the support of φ, denoted as

supp(φ), is the closure of the set {x ∈ Ω | φ(x) 6= 0}. When a function is continuous and

has continuous derivatives of all orders, we will say that it is infinitely differentiable.

The space of infinitely differentiable function with compact support is denoted by C∞0 (Rn)

in Rn.

Definition 2.2. Let x ∈ Rn with coordinates (x1, . . . , xn). A multi-index α is an n-tuple

α = (α1, . . . , αn)

xα = xα1
1 . . . xαn

n .

The order of a multi-index α is defined as

|α| = α1 + . . .+ αn

Given x ∈ R, α, β multi indices, we say α ≤ β iff αi ≤ βi,∀1 ≤ i ≤ n. For α ≤ β, we define(
α
β

)
=
(
α1

β1

)
. . .
(
αn

βn

)
. We set

Dα =
∂|α|

∂xα1
1 . . . ∂xαn

n
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Definition 2.3. Let D={φ : Rn → C | φ is infinitely differentiable and the supp(φ) is

compact}. And D(Ω) = {φ : Ω→ C | φ is infinitely differentiable and the supp(φ) is compact

.} We say that φj → φ in D iff ∃ compact set K ⊂ Rn such that supp(φ), supp(φj) ⊂ K,

and ∀α, ∀j ∈ N,

supx∈Rn |Dαφj −Dαφ| → 0 as j →∞

Functions in D are called test functions.

Example 2.4. Let ρ(x) =

 e
−1

1−|x|2 , |x| < 1;

0, |x| ≥ 1.
then ρ in the space D and supp(ρ) = {x ∈

Rn | |x| ≤ 1}.

Example 2.5. If f ∈ L1
loc(Rn), then (Tf , φ) =

∫
fφdx defines an element of D. More

examples are found in the exercises at the end of this report.

Definition 2.6. A linear funtional T : D → C is called a distribution if whenever φm → φ

in D, we have (T, φm) → (T, φ). The space of distributions, which is the dual of the space

of test functions, is denoted by D′.

Definition 2.7. A sequence {Tj} in D′ is said to converge to the distribution T ∈ D′ if for

each φ ∈ D, (Tj, φ)→ (T, φ).

Definition 2.8. Given funtions f, g : Rn → C,the convolution of f with g is defined by

f ∗ g(x) =

∫
Rn

f(x− y)g(y)dy.

Theorem 2.9. If f ∈ L1(Rn), g ∈ Lp(Rn), 1 ≤ p ≤ ∞, then the convolution f ∗ g is

well-defined for almost everywhere x ∈ R and further, f ∗ g ∈ Lp(Rn) with

‖f ∗ g‖Lp(Rn) ≤ ‖f‖L1(Rn)‖g‖Lp(Rn).

Proof. Let q be the conjugate exponent of p, i.e. 1
p

+ 1
q

= 1. Let h ∈ Lq(Rn). Then
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(x, y)→ f(x− y)g(y)h(x) is measurable and,

∫
Rn

∫
Rn

|f(x− y)g(y)h(x)|dxdy =

∫
R
|h(x)|

∫
R
|f(x− y)g(y)|dydx

=

∫
R
|h(x)|

∫
R
|f(t)g(x− t)|dtdx

=

∫
R
|f(t)|

∫
R
|h(x)||g(x− t)|dxdt

≤ ‖h‖Lq(Rn)‖g‖Lp(Rn)‖f‖L1(Rn)

< +∞

where we have used Holder’s inequality and the fact that by the translation invariance of

the Lebesgue measure g(x) and g(x− t) have the same Lp norm. Thus by Fubini’s theorem

∫
R
h(x)f(x− y)g(y)dy

exists for almost all x and we can choose h(x) 6= 0 for all x. Also

h→
∫

(f ∗ g)h

is a continuous linear functional on Lq(Rn) with norm bounded by ‖g‖Lp(Rn)‖f‖L1(Rn) which

shows, by the Riesz Representation Theorem, that f ∗ g ∈ Lp(Rn) and ‖f ∗ g‖Lp(Rn) ≤

‖f‖L1(Rn)‖g‖Lp(Rn) holds.

Theorem 2.10. Given K ⊂ Rn compact, and ε > 0, there exist φ ∈ D such that

0 ≤ φ(x) ≤ 1,∀x ∈ Rn,

φ(x) = 1,∀x ∈ K,

supp(φ) ⊂ Kε = {x ∈ Rn|d(x,K) < ε}.
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Theorem 2.11. D is dense in Lp , 1 ≤ p <∞.

Definition 2.12. A distribution T ∈ D is zero on an open set Ω ⊂ Rn, denoted as T |Ω = 0

if ∀φ ∈ D with supp(φ) ⊂ Ω,

(T, φ) = 0.

Definition 2.13. Given TinD′, the support of T is denoted as supp(T ),

supp(T ) = Rn\ ∪ {Ω ⊂ Rn, T |Ω = 0}

Theorem 2.14. Let Ω ⊂ Rn be an open set and let {Ωi}, i ∈ I constitute an open cover of

Ω. Let Ti ∈ D′(Ωi) such that whenever Ωi ∩ Ωj 6= Ø, i 6= j, then

Ti|Ωi∩Ωj
= Tj|Ωi∩Ωj

Then there exists a unique distribution T ∈ D′(Ω) such that

T |Ωi
= Ti,∀i ∈ I.

Proof. Let {φi}, i ∈ I be a locally finite C∞ partition of unity subordinate to the cover

{Ωi}. Let φ ∈ D(Ω), then the support of φ intersects only finitely many open sets Ωi and

φφi has support in Ωi. We define

T (φ) =
∑
i∈I
Ti(φφi)

Which makes sense since the right-hand-side is a finite sum. Let φ̃m → 0 in D(Ω). Let

K be a compact set containing supp(φ̃m) for all m. Let i1, i2, ...il be the indices such that

K
⋂

supp(φij) is non-empty for 1 ≤ j ≤ l and K
⋂

supp(φi) = Ø for all other i.Thus,

T (φ̃m) =
l∑

j=1

Tij(φ̃mφij)

Note that φ̃mφij → 0 in D(Ωij). Thus T (φ̃m)→ 0 and so T ∈ D′(Ω)

We now show that T |Ωi
= Ti, Let φ ∈ D(Ωi). For any j,

φφj ∈ D(Ωi ∩ Ωj)
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then Ti(φφj) = Tj(φφj)

T (φ) =
∑
j

Tj(φφj) =
∑
j

Ti(φφj) = Ti(
∑
j

φφj) = Ti(φ).
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Chapter 3

The Spaces S,S ′, E , E ′

Definition 3.1. E = {ϕ : Rn → C, ϕ ∈ C∞(Rn)}

φj → φ in E iff ∀α ∈ Nn
0

supx∈Rn |Dαφj −Dαφ| → 0 as j →∞.

Definition 3.2. The Schwartz Space, or the space of rapidly decreasing functions, S, is

given by

S = {f ∈ E(Rn)| lim
|x|→∞

|xβDαf(x)| = 0 for all multi-indices α and β}

We say that φj → φ in S iff ∀ multi indices α, β,

supx∈Rn |xα(Dβφj −Dβφ)| → 0 as j →∞.

The following statements are easy to verify for f ∈ E(Rn):

1. f ∈ S if, and only if, for every polynomial P (x) and for every differential operator L

with constant coefficients, the function

P (x)Lf(x)

is bounded in Rn.

8



2. f ∈ S if, and only if, for any integer k ≥ 0, and any multi-index α, the function

(1 + |x|2)kDαf(x)

is bounded in Rn.

Theorem 3.3. S ⊂ L1(Rn) and the inclusion is continuous.

Proof. Let f ∈ S. Then for any integer k ≥ 0, there exists a constant Mk > 0 such that

sup
x∈Rn

|f(x)|(1 + |x|2)k ≤Mk

Now, for k > n/2, it is well known that (1 + |x|2)−k ∈ L1(Rn) (using polar coordinates).

Hence

∫
Rn

|f(x)| dx =

∫
Rn

|f(x)| (1 + |x|2)k(1 + |x|2)−kdx

≤ Mk

∫
Rn

(1 + |x|2)−kdx

< +∞.

Thus f ∈ L1(Rn). Also if C =
∫
Rn(1 + |x|2)−kdx, then

‖f‖L1(Rn) ≤ C sup
x∈Rn

(|f(x)|(1 + |x|2)k).

Hence if fm → 0 in S it follows that ‖fm‖L1(Rn) → 0 and the continuity of the inclusion

follows.

Theorem 3.4.

D ⊂ S ⊂ E ,

with dense inclucions.
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Theorem 3.5. E ′ can be identified with subset of D′ of distributions of compact support.

Theorem 3.6. Let T : D → C, the following are equivalent:

(i) T is a distribution, i.e. T ∈ D′

(ii) T is linear, and given any compact set K, ∃m = m(K) ∈ N0 and CK > 0 s.t. ∀φ ∈ D(K)

|(T, φ)| ≤ CK sup
x∈Rn

|α|≤m

|Dαφ(x)|

if m does not depend on K, we say that T is a distribution of order m.

Proof. (ii)⇒ (i) is easy to show, T is linear and well-defined by (ii). ∀φj → 0 in D,

(T, φj) ≤ CK sup
x∈Rn

|α|≤m

|Dαφj)| → 0

So T is a distribution.

(i) ⇒ (ii) (proof by contradiction) Assume ∃K ⊂ R, K compact such that ∀m ∈ N and

CK > 0, ∃ φ with supp(φ) ⊂ K such that

|(T, φ)| > CK sup
x∈Rn

|α|≤m

|Dαφ(x)|

Pick CK = m and let φm the function in D(Rn) such that supp(φm) ⊂ K, so

|(T, φm)| > m sup
x∈Rn

|α|≤m

|Dαφm(x)|

WLOG, may assue (T, φm) = 1, then

1

m
> sup

x∈Rn

|α|≤m

|Dαφm(x)
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So φm → 0 in D, contradicts that (T, φm) = 1.

Definition 3.7. D′(m) is the subspace of D′ form by distributions of order ≤ m

Definition 3.8. Given m ∈ N,

D(m) = {φ : Rn → C|φ has continuous derivatives for order ≤ m and supp(φ) is compact} .

We say that φj → φ in D(m) iff for any compact set K such that supp(φ), supp(φj) ⊂ K and

∀α, |α| ≤ m,

Dαφj(x)→ Dαφ(x) in Rn .

Theorem 3.9. (Leibniz’s rule)

If φ, ψ ∈ E, given multi-index α ∈ Nn ,

Dα(φψ) =
∑
β≤α

(
α

β

)
DβφDα−βψ
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Chapter 4

Differentiation of distributions

Let f ∈ C1, φ ∈ D , then

(T ∂f
∂x1

, φ) =

∫
∂f

∂x1

(x)φ(x)dx =

∫ ∞
−∞

dxn . . .

∫ ∞
−∞

dx2

∫ ∞
−∞

∂f

∂x1

(x)φ(x)dx

(T ∂f
∂xj

, φ) = −(Tf ,
∂φ

∂xj
)

Definition 4.1.

(DαT, φ) = (−1)|α|(T,Dαφ)

In any of these spaces D′,S ′, E ′, we define (DαT, φ) = (−1)|α|(T,Dαφ) for φ, respectively

in D,S, E .

Theorem 4.2. Let K be any the of spaces D′,S ′, E ′, then Dα is a linear and continuous

operator from K into itself. In addition, if T ∈ D′,

supp(DαT ) ⊂ supp(T )

Proof. We will show this for K = S ′, linearity of Dα is trivial. Assume Tj → T in S ′, then
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∀φ ∈ S, (Tj, φ)→ (T, φ), so

(DαTj, φ) = (−1)|α|(Tj, D
αφ)

→ (−1)|α|(T,Dαφ)

= (DαT, φ)

Next to show supp(DαT ) ⊂ supp(T ), assume supp(φ) ⊂ Rn\supp(T ), then (T, φ) = 0, since

supp(Dαφ) ⊂ supp(φ), so (T,Dαφ) = 0,

(DαT, φ) = (−1)|α|(T,Dαφ) = 0

so supp(DαT ) ⊂ supp(T ).

Definition 4.3. The translation operator τ−h is defined by

τ−hf(x) = f(x+ h)

Where h = (0, . . . 0, hj, 0, . . . , 0)

Theorem 4.4. There exist

lim
h→0

τ−hT − T
hj

=
∂T

∂xj

That is , ∀φ ∈ D,

lim
h→0

(τ−hT, φ)− (T, φ)

hj
= (

∂T

∂xj
, φ).

Proof. ∀φ ∈ D, left hand side is

(τ−hT, φ)− (T, φ)

hj
=

(T, τhφ)− (T, φ)

hj
= (T,

τhφ− φ
hj

)
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Each function τhφ−φ
hj

has compact support independent of h, say |h| ≤ 1,

Dα[
φ(x− h)− φ(x)

hj
] =

Dαφ(x− h)−Dαφ(x)

hj

So it is sufficient to prove that τhφ−φ
hj
→ −∂φ

∂xi
in D as h → 0. We will show this by using

Mean Value Theorem twice,

|φ(x− h)− φ(x)

hj
+
∂φ

∂xj
(x)| = | − ∂φ

∂xj
(ξ) +

∂φ

∂xj
(x)|

= |∂
2φ

∂x2
j

(η)||x− ξ|

Where ξ is between x and x − h, η is between x and ξ. Since |x − ξ| → 0 as h → 0 and φ

has compact support, so |∂2φ
∂x2j

(η)| is bounded. So

lim
h→0

(τ−hT, φ)− (T, φ)

hj
= (

∂T

∂xj
, φ).

Theorem 4.5. If T ∈ S ′, there exists a rapid decreasing function f and multi-index α ∈ Nn

such that

T = Dαf

Theorem 4.6. Let T ∈ D′, and Ω ∈ Rn, Ω is open such that Ω̄ is compact. Then there is

a continuous function f = f(Ω) : Rn → C and m = m(Ω) ∈ N such that

T =
∂mn

∂xm1 . . . ∂x
m
n

f

.
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Chapter 5

Tensor Product, Convolution and

Multiplication of Distributions

Definition 5.1. Given f = f(x) : Rn → C, g = g(y) : Rm → C, then the tensor product is

defined by f(x)× g(y) : Rn+m → C.

If f ∈ L1
loc,x and g ∈ L1

loc,y, then f × g ∈ L1
loc,

(f × g, φ) =

∫
f(x)g(y)φ(x, y)dxdy

=

∫
f(x)

[∫
g(y)φ(x, y)dy

]
dx

=

∫
g(y)

[∫
f(x)φ(x, y)dx

]
dy

Notation: Tf is on D′x, Tg on D′y, Tfg on D′xy.

Definition 5.2. A function is φ(x, y) is called a function of separated variables if φ(x, y) =

α(x)β(y) for functions α, β. If we define W = Tx × Sy, then

(W,φ(x, y)) = (Tx, α)(Sy, β).
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Theorem 5.3. Let T ∈ D′x, S ∈ D′y , then

i) Given φ ∈ Dxy , the function ψ(x) = (Sy, φ(x, y)) ∈ Dx

ii)The application

Dxy → C

φ→ (Tx, (Sy, φ(x, y))) ∈ D′xy.

Theorem 5.4. Functions of separate variables are dense in Dxy.

Theorem 5.5. There exists a unique extension of T × S to Dxy such that

(Tx × Sy, α(x)β(y)) = (T, α)(S, β).

Theorem 5.6. Let T ∈ D′x, S ∈ D′y, then

i) supp(T × S) = supp(T )× supp(S)

ii) Given α ∈ Nn, β ∈ Nm,

DαxDβy (T × S) = DαxT ×DβyS.

Definition 5.7. Given φ ∈ D,

(f ∗ g, φ) =

∫ [∫
f(x− y)g(y)dy

]
φ(x)dx

=

∫ ∫
f(x− y)g(y)φ(x)dxdy

=

∫ ∫
f(x)g(y)φ(x+ y)dxdy

Define

(T ∗ S, φ) = (Tx × Sy, φ(x+ y)).
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Theorem 5.8. If T ∈ D′, S ∈ E ′, then (T ∗ S, φ) defines a distribution on D(R2n) and

supp(f ∗ g) ⊂ supp(T ) + supp(S)

.

Theorem 5.9. The inclusions

E ⊂ D′

D ⊂ E ′

holds, and they are continuous and dense.
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Chapter 6

Fourier transform

Definition 6.1. Let f ∈ L1(Rn). The Fourier Transform of f , denoted by f̂ or F [f ], is a

function defined on Rn by the formula

f̂ =

∫
Rn

e2πix·(x)dx, ,

where x · ξ =
n∑
j=1

xjξj is the usual Euclidean inner-product in Rn.

Theorem 6.2. If f ∈ L1(Rn), then F [f ] is bounded, continuous and

lim
|ξ|→∞

F [f ](ξ) = 0.

Theorem 6.3. i) If ∀β, such that |α| ≤ k, k ≥ 1, Dβf is continuous and integrable, then

F [Dβf ](ξ) = (−2πiξ)βF [f ](ξ), |β| ≤ k.

ii)If f and |x|kf are integrable for some k ≥ 1, then f̂ has continuous derivatives up to

and including order k, and

Dβ f̂(ξ) = F [(2πix)βf ](ξ), |β| ≤ k.
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Theorem 6.4. If f∈ L1, h ∈ Rn, k ∈ R and k 6= 0, then

F [τhf ](ξ) = e2πiξ·hf̂(ξ)

F [f(kx)](ξ) =
1

|k|n
f̂(
ξ

k
).

Definition 6.5. Conjugate Fourier transform of f ∈ L1, denoted as F̄ [f ], is defined by

F̄ [f ](ξ) =

∫
e−2πiξ·xf(x)dx.

If we define f̌(x) = f(−x), then

F̄ [f ] =
ˇ̂
f

F̄ [f ] = F [f̄ ].

Theorem 6.6. If f and F [f ] ∈ L1, then

F̄F [f ] = f a.e.

Theorem 6.7. If f ∈ L1
⋂
L2, then f̂ ∈ L2 and

‖F [f ]‖L2 = ‖f‖L2 .

Theorem 6.8. F and F̄ are isomorphism from S to itself.

Given φ ∈ S,

F ◦ F̄ [φ] = F̄ ◦ F [φ] = φ.

Proof. If F : S → S is continuous, then so is F̄ since F̄ (φ) = F (φ̄)

If ∀φ ∈ S, F̄F [φ] = φ, then

FF̄ [φ] = FF [φ̄] = F̄ [F [φ̄]] = φ̄

19



Next, want to prove that F continuous from S to S. Take φ ∈ S,

sup
ξ∈Rn

|ξαDβφ̂(ξ)| ≤ cα

∫
|Dα[(2πix)βφ(x)]|dx

≤ cα

∫
(1 + |x|2)n+1

(1 + |x|2)n+1
|Dα[(2πix)βφ(x)]|dx

≤ cα sup
x∈Rn

|(1 + |x|2)n+1Dα[(2πix)βφ(x)]|
∫

(1 + |x|2)−n−1dx

Since φ ∈ S, so (2πix)βφ(x) ∈ S, by alternate definition, supx∈Rn |(1+|x|2)n+1Dα[(2πix)βφ(x)]|

is bounded,
∫

(1 + |x|2)−n−1dx is also bounded, then φ̂(ξ) ∈ S.

Next, need to show that F̄F (φ) = φ,∀φ ∈ S. ∀y ∈ Rn,

φ(y) =

∫
e−2πiξyφ̂(ξ)dξ =

∫
[

∫
e−2πiξ(x−yφ(ξ)dx]dξ

We could not reverse the order of the integral, however, given ψ ∈ S, for each j = 1, 2, . . . ,

the following double integral exists:

∫ ∫
e−2πiξ(x−y)φ(ξ)ψ(

ξ

j
)dxdξ =

∫
e−2πiξyφ̂(ξ)ψ(

ξ

j
)dξ

Changing variables by letting u= ξ
j
, v = j(x− y), so

∫
e2πiuvφ(

v

j
+ y)ψ(u)dudv =

∫
φ(
v

j
+ y)ψ̂(v)dv

Hence,
∫
e−2πiξyφ̂(ξ)ψ( ξ

j
)dξ =

∫
φ(v

j
+ y)ψ̂(v)dv

Then we take the limit of both sides, we could do this because functions are in S. So

ψ(0)F̄F [φ](y) = φ(y)

∫
ψ̂(v)dv

Then we prove this theorem if we can find a ψ ∈ S satisfying

ψ(0) = 1 and
∫
ψ̂(v)dv = 1
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Function ψ(x) = e−π|x|
2

would do this job. Since ψ̂ = ψ and
∫
ψdx = 1.

Definition 6.9. Given T ∈ S ′,∀φ ∈ S, define:

(F [T ], φ) = (T, F [φ])

Theorem 6.10. F and F̄ are isomorphism from S ′ to itself.

FF̄ [T ] = F̄F [T ] = T.

Theorem 6.11. Let f ∈ L1(Rn), then

F [Tf ] = Tf̂ in S ′.

Theorem 6.12. If T has compact support, then

F [T ]ξ = (Tx, e
2πiξ·x), in the sense of D′ξ.

Proof. Since T ∈ S ′, so there exists a function f slowing increasing at ∞ and continuous.

Let β ∈ Nn
0 such that T = Dβf . In addition, since supp(T ) is compact, if χ ∈ C∞0 such that

χ ≡ 1 on a neighborhood of supp(T ), then

(χT, φ) = (T, χφ)

= (Dαf, χφ)

= (−1)|α|(f,Dα(χφ))

= (−1)|α|
∑
γ≤α

(
α

γ

)
(f,DγχDα−γφ)

=
∑
γ≤α

(
α

γ

)
(−1)|γ|(Dα−γfDγχ, φ)

= (
∑
β≤α

Dβfβ, φ).
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Dβfβ is compact supported and slowly increasing at ∞,

F [T ] =
∑
β≤α

F [Dβfβ]

=
∑
β≤α

(−2πiξ)βF [fβ]

=
∑
β≤α

(−2πiξ)β
∫
e2πiξxfβ(x)

=
∑
β≤α

(−2πiξ)β(fβ, e
2πiξx)

=
∑
β≤α

(−1)β(fβ, D
β
xe

2πiξx)

=
∑
β≤α

(Dβfβ, e
2πiξx)

= (Tx, e
2πiξx).

Theorem 6.13. (Paley-Wiener) Given T ∈ S ′, the following are equivalent:

i) supp(T ) ⊂ x ∈ Rn : |x1| ≤ c, |x2| ≤ c, . . . |xn| ≤ c

ii) T̂ is a continuous function that extends as an extire function to Cn, satisfying:

∀ε > 0 , ∃A(ε) such that if z = (z1, . . . , zn) ∈ Cn, then

|T̂ (z)| ≤ A(ε)e2π(c+ε)(|z1|+...+|zn|).

Theorem 6.14. If φ, ψ ∈ S, then

F [φF̄ [ψ]] = F [φ] ∗ ψ

Similarly, we can change F̄ and F .
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Proof.

F [φF̄ [ψ]] =

∫
e2πiz·ξφ(ξ)[

∫
e−2πiξ·xψ(x)dx]dξ

=

∫
[

∫
e2πi(z−x)·ξφ(ξ)ψ(x)dx]dξ

=

∫
ψ(x)[

∫
e2πi(z−x)·ξφ(ξ)dξ]dx

= F [φ] ∗ ψ

Since the double integral exists so we could change the order of integration.

Theorem 6.15. If f, g ∈ L1, then ∀ξ ∈ Rn,

F [f ∗ g](ξ) = F [f ](ξ)F [g](ξ).

Theorem 6.16. If T ∈ E ′, S ∈ S ′,

F [T ∗ S] = F [T ]F [S], in the sense of S
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Chapter 7

Exercises

Exercise 7.1. Demonstrate the following inclusions are strict and continuous:

Lploc ⊂ Lqloc ⊂ D
′, 1 ≤ q < p ≤ ∞.

Proof. Let f ∈ Lploc, then ∀Kcompact set,
∫
K

|f |pdx < ∞, let m = p
q
, since p > q, then

m > 1, choose n such that 1
m

+ 1
n

= 1. Then

∫
|f |qdx =

∫
|f |q ∗ 1dx

≤
(∫

(|f |q)m dx
) 1

m
(∫

(1)ndx

) 1
n

≤
(∫
|f |p
) 1

m

dx|K|
1
n

< ∞

So f ∈ Lqloc. Next, need to show that the inclusion is continuous. Given f, fn ∈ Lploc such

that fn → f in Lploc, i.e (
∫
|f − fn|pdx)

1
p → 0, need to show that (

∫
|f − fn|qdx)

1
q → 0. If

we define function g = f − fn, then the proof will be similar as above. Let f = 1

|x|
1
q

, then

f ∈ Lqloc, but f /∈ Lploc, so the inclusion is strict.
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Let f ∈ Lqloc, then ∀ϕ ∈ D, (Tf , ϕ) =
∫
fϕdx,

|(Tf , ϕ)| ≤
∫
|f ||ϕ|dx

≤ (

∫
|f |q)

1
q (

∫
ϕp)

1
p

≤ (

∫
|f |q)

1
q |suppϕ|

1
p

< +∞.

If fn → f ∈ Lqloc, then (T, fn)→ (T, f).

Exercise 7.2. Given any φ ∈ D(R), consider

lim
ε→0+

∫
|x|≥ε

φ(x)

x
dx

Prove that the limit exists and it defines a distribution, we will call it principal value of 1
x
,

denoted as p.v. 1
x
.

Proof. Linearity is ok since both integral and limit are linear.

lim
ε→0+

∫
|x|≥ε

φ(x)

x
dx = lim

ε→0+

∫
|x|≥ε

φ(x) + φ(−x)

2x
+
φ(x)− φ(−x)

2x
dx

= lim
ε→0+

∫ ∞
ε

φ(x)− φ(−x)

x
dx

=

∫ ∞
0

φ(x)− φ(−x)

x
dx

By FTC, |φ(x)− φ(−x)| = |
∫ x
−x φ

′(s)ds| ≤
∫ x
−x |φ

′(s)|ds ≤ 2|x| sup |φ′|

∫ ∞
0

φ(x)− φ(−x)

x
dx ≤

∫ ∞
0

2x sup |φ′|
x

dx

≤ 2 sup |φ′|
∫
supp(φ)∩[0,∞]

1dx

= 2 sup |φ′||supp(φ) ∩ [0,∞]|
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So p.v. 1
x

is a distribution.

Exercise 7.3. Given p ∈ R, p < n + 1, and a function α ∈ D such that α ≡ 1 in a

neighborhood of 0, show that

∫
|x|−p[φ(x)− α(x)φ(0)]dx, φ ∈ D(R)

defines a distribution of order at most 1.

Proof. Let r ∈ R be a small number, then α ≡ 1 in B(0, r), letK = supp(φ)

∫
R

φ(x)− α(x)φ(0)

|x|p
dx =

∫
B(0,r)

φ(x)− α(x)

|x|
× 1

|x|p−1
dx+

∫
R\B(0,r)

φ(x)− α(x)φ(0)

|x|p
dx

≤
∫
B(0,r)

sup
c∈B(0,r)
x∈Rn

|φ′(c)| 1

|x|p−1
dx+

∫
R\B(0,r)

φ(x)− α(x)φ(0)

|x|p
dx

≤ sup
c∈K
x∈Rn

φ′(c)‖|x|1−p‖L1
B(0,r)

+

∫
R\B(0,r)

φ(x)− α(x)φ(0)

|x|p
dx

< C(K)‖Dφ‖+

∫
K\B(0,r)

φ(x)− α(x)φ(0)

|x|p
dx

|
∫
K\B(0,r)

φ(x)− α(x)φ(0)

|x|p
dx| ≤

∫
K\B(0,r)

|φ(x)− α(x)φ(0)|
|x|p

dx

≤
∫
K\B(0,r)

|φ(x)|+ |α(x)||φ(0)|
|x|p

dx

≤ ‖φ‖L∞(‖α‖L∞ + 1)

∫
K\B(0,r)

1

|x|p
dx

< ˜C(K)‖φ‖L∞(‖α‖L∞ + 1)

Since φ, α ∈ D, then they are bounded. |φ(x)| ≤ ‖φ‖L∞ , |α(x)| ≤ ‖α‖L∞ and
∫
K\B(0,r)

1
|x|pdx

is a constant depending on K.
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Exercise 7.4. Given T ∈ D′, show that there exists an infinite number of distributions S

∈ D′ such that S=T.

Proof. Let H = {ψ ∈ D :
∫∞
−∞ ψ = 0},define φ(x) =

∫ x
−∞ ψ(t)dt

Fix γ0 ∈ D to be some function so that
∫∞
−∞ γ0 ≡ 1, then for ∀γ ∈ D, γ = λγ0 + ψ when

λ =
∫∞
−∞ γ and ψ ∈ H. Define 〈S, ψ〉 = −〈T, φ〉,∀ψ ∈ H. Let γ ∈ D, then

〈S, γ〉 = 〈S, λγ0〉+ 〈S, ψ〉

= λ〈S, γ0〉+ 〈S, ψ〉

Make a choice c ∈ C and set 〈S, γ0〉 = c, then 〈S, γ0〉 = λc+ 〈S, ψ〉, Since S ∈ D′

〈S ′, γ〉 = −〈S, λγ′〉

= −λ〈S, λγ′0〉 − 〈S, ψ′〉

= −λ〈S, γ′0〉 − 〈S, ψ′〉

Next, claim that γ′0, ψ
′ ∈ H, recall that

∫∞
−∞ γ0 = 1,

∫∞
−∞ ψ = 0,γ0(x) → 0 as x → ±∞, so∫∞

−∞ γ
′
0 = 0,

∫∞
−∞ ψ

′ = 0, hence

−λ〈S, γ′0〉 − 〈S, ψ′〉 = = λ〈T,
∫ x

−∞
γ′0(t)dt〉+ 〈T,

∫ x

−∞
ψ′(t)dt〉

= λ〈T, γ′0〉 − 〈T, ψ〉

= 〈T, λγ0 + ψ〉

= 〈T, γ〉

So S ′ = T in D′. Since c is arbitrary chosen, so we will have infinite number of distributions

S ∈ D′ such that S ′ = T .

Exercise 7.5. If f ∈ L1, prove that

f = lim
R→∞

∫
|ξ|≤R e

−2πix·ξf̂(ξ)dξ, in the sense of S ′.

27



Proof. Let fR =
∫
e−2πix·ξf̂(ξ)χ|ξ|≤Rdξ, need to show that ∀ϕ ∈ S, (TfR , ϕ)→ (Tf , ϕ)

lim
R→∞

(TfR , ϕ) = lim
R→∞

∫
ϕ(x)

∫
|ξ|≤R

e−2πix·ξf̂(ξ)dξdx

= lim
R→∞

∫ ∫
ϕ(x)e−2πix·ξχ|ξ|≤Rf̂(ξ)dξdx

= lim
R→∞

∫
f̂(ξ)χ|ξ|≤R

∫
ϕ(x)e2πix·(−ξ)dxdξ

=

∫
R

f̂(ξ)ϕ̌(ξ)dξ

= (Tf̂(ξ), ϕ̌(ξ))

= (T̂f , ϕ̌x)

= (Tf , ˆ̌ϕ(x))

= (Tf , ϕ).

Using the Fubini’s theorem and Dominated Convergence theorem.

Exercise 7.6. Prove that the derivative Dα is continuous from D′(m) to D′(m+|α|).

Proof. First need to show that if T ∈ D′(m), then DαT ∈ D′(m+|α|). Let K be any compact

set such that ∀ϕ ∈ C∞0 (Rn), supp(ϕ) ⊂ K, since T ∈ D′(m), so

|(T, ϕ)| ≤ CK sup
|β|≤m

‖Dβϕ‖∞

C is any constant depends on K, then we have

|(DαT, ϕ)| = |(−1)α(T,Dαϕ|

≤ CK sup
|β|≤m

‖DβDαϕ‖∞

≤ CK sup
|γ|≤m+|α|

‖Dγϕ‖∞

So DαT ∈ D′(m+|α|). Next need to show that if Tj → T in D′(m), then DαTj → DαT in

28



D′(m+|α|), so if ∃Tj ∈ D such that ∀ϕ ∈ D, the lim
N→∞

(
∑N

j=1 Tj, ϕ) exists. Then

lim
N→∞

(
N∑
j=1

DαTj, ϕ) = (−1)|α| lim
N→∞

(
N∑
j=1

Tj, D
αϕ)

exists because if ϕ ∈ D, then ψ = Dαϕ ∈ D, so DαTj → DαT in D′(m+|α|).

Exercise 7.7. Calculate xkδ(l) for k, l ∈ N

Proof. ∀ϕ ∈ C∞(R)

(xkδ(l), ϕ) = (δ(l), xkϕ)

= (−1)l(δ,Dlxkϕ)

= (−1)l(δ,
l∑

j=0

(
l

j

)
DjxkDl−jϕ)

If l ≥ k ,Djxk = k(k − 1) . . . (k − j − 1)xk−j = 0, when j − k > 0

(−1)l(δ,
l∑

j=0

(
l

j

)
DjxkDl−jϕ) = (−1)l

l∑
j=0

(
l

j

)
Dj(δ, k(k − 1) . . . (k − j − 1)xk−jDl−jϕ)

= (−1)l(δ,
l∑

j=0

(
l

j

)
DjxkDl−jϕ)

= 0, ifk − j > 0

aslo = 0 if k − j > 0, so it only has value when j = k and l > k, therefore,

(xkδ(l), ϕ) = (−1)l
(
l

k

)
Dl−kϕ(0)
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Exercise 7.8. If T ∈ D′(m) and α ∈ D(p), p ≥ m, show that

(αT, φ) = (T, αφ), φ ∈ D(m)

defines a distribution of order ≤ m.

Proof. Let K ⊂ Rn be compact, take φ, ϕ ∈ C∞, such that supp(ϕ) ⊂ K. Since T ∈ D′(m),

so |(T, φ)| ≤ CK sup|β|≤m |Dβφ|. Want to show |(αT, ϕ)| ≤ CK sup|β|≤m |Dβϕ|

|(αT, ϕ)| = |(T, αϕ)|

≤ CK sup
|β|≤m

|Dβαφ|

= CK sup
|β|≤m

|
∑

0≤j≤β

(
β

j

)
DjαDβ−jϕ|

≤ CK
∑

0≤j≤β

(
β

j

)
|Djα||Dβ−jϕ|

≤ CKM
∑

0≤j≤β

‖Dβ−jϕ‖L∞(K)

≤ CKM̃ sup
β−j
|Dβ−jϕ(x)|

Exercise 7.9. Calculate the following the derivative in D′

a) ∂n

∂x1...∂xn
Y (x), where

Y (x) =


1 if x1 ≥ 0, . . . xn ≥ 0;

0 else
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Proof. When n = 2, let ϕ ∈ C∞0 (R2),

(
∂2

∂x1∂x2

Y, ϕ) = (Y,
∂2

∂x1∂x2

ϕ)

=

∫ ∞
0

∫ ∞
0

∂

∂x1

(
∂

∂x2

ϕ(x1, x2)

)
dx1dx2

=

∫ ∞
0

lim
R→∞

∫ R

0

∂

∂x1

(
∂

∂x2

ϕ(x1, x2)

)
dx1dx2

=

∫ ∞
0

lim
R→∞

∂

∂x2

ϕ(x1, x2)
∣∣∣R
0
dx2

=

∫ ∞
0

− ∂ϕ
∂x2

(0, x2)dx2 (since lim
R→∞

ϕ(R, x2) = 0)

= −
∫ ∞

0

∂ϕ

∂x2

(0, x2)dx2

= − lim
R→∞

ϕ(0, x2)
∣∣∣R
0

= ϕ(0, 0)

Using the same way, we can get the ( ∂n

∂x1...∂xn
Y, ϕ) = (−1)nϕ(0, . . . , 0︸ ︷︷ ︸

n

)

Exercise 7.10. We set with r = (
n∑
i=1

x2
i )

1/2 6= 0,

En =

 log r if n = 2;

r2−n if n ≥ 3

a) Prove that En belongs to D′(Rn).

b) Let ∆ =
n∑
j=1

∂2

∂x2j
. Compute ∆En in the sense of distributions.

Proof. a) It is easy to see that the function En is locally integrable in Rn. Indeed if we use
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polar coordinates we get

∫
|x|≤1

|En(x)|dx =


−2π

∫ 1

0
r log rdr = π

2
if n = 2;

2π
∫ 1

0
rdr if n ≥ 3

b) We have < ∆En, ϕ >=< En,∆ϕ >. ∀ϕ ∈ D(Rn), so

< ∆En, ϕ >=

∫
R
En(x)∆ϕ(x)dx

Since not all the derivatives of En are locally integrable we cannot integrate by parts in the

above integral. We shall overcome this difficulty in the following way. Since En is locally

integrable, by Lebesgue’s theorem, we can write

< ∆En, ϕ >= lim
ε→0

∫
|x|≥ε

En(x)∆ϕ(x)dx = lim
ε→0

Iε

Now En ∈ C∞ for |x| = r ≥ ε and ϕ ∈ D(Rn), so we have

Iε =

∫
|x|≥ε

∆En(x)ϕ(x)dx−
∫
|x|=ε

(En
∂ϕ

∂r
− ϕ∂En

∂r
)dσε

Let us compute ∆En in {x : |x| ≥ ε}.

1. n = 2:
∂

∂x
log(x2 + y2) =

2x

x2 + y2

∂2

∂x2
log(x2 + y2) =

2y2 − 2x2

(x2 + y2)2

∂2

∂y2
log(x2 + y2) =

2x2 − 2y2

(x2 + y2)2
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So ∆E2 = 0

2. If n ≥ 3:
∂

∂xi
r2−n =

2− n
2
· 2x · r−n = (2− n)xi · r−n

∂2

∂x2
i

= (2− n)r−n + (2− n)xi ·
−n
2
· 2xi · r−n−2

So ∆En = (2− n) · nr−n − n(2− n)(
n∑
i=1

x2
i )r
−n−2 = 0 since

n∑
i=1

x2
i = r2, i.e. ∆En = 0.

Therefore

−Iε =

∫
|x|=ε

(En
∂ϕ

∂r
− ϕ∂En

∂r
)dσε

To compute Iε we use polar coordinates

xi = r · fi(θ1, . . . , θn−1) i = 1, . . . , n

so we get

dx = F (θ1, . . . , θn−1)rn−1dθ1 . . . dθn−1

and the measure on the sphere of radius ε is equal to

dσε = εn−1F (θ1, . . . , θn−1)dθ1 . . . dθn−1 = εn−1dσ1

where dσ1 = F (θ1, . . . , θn−1)dθ1 . . . dθn−1 is the measure on the unit sphere.

On the other hand:
∂

∂r
=

n∑
i=1

∂

∂xi

∂xi
∂r

=
n∑
i=1

xi
r

∂

∂xi

since ∂xi
∂r

= fi(θ1, . . . , θn−1) = xi
r

.

Let us compute now the limit of Iε when ε goes to 0.
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1. n = 2

−Iε =

∫
|x|=ε

(log ε
∂ϕ

∂r
− ϕ · 1

ε
)εdσ1 =

∫
|x|=ε

ε log ε
∂ϕ

∂r
dσ1︸ ︷︷ ︸

<1>

−
∫
|x|=ε

ϕdσ1︸ ︷︷ ︸
<2>

We have |∂ϕ
∂r
| ≤

n∑
i=1

|xi
r
|| ∂ϕ
∂xi
| ≤

n∑
i=1

sup
R
| ∂ϕ
∂xi
| since |xi

r
| ≤ 1, so we get

< 1 >=
∣∣∣ ∫
|x|=ε

ε log ε
∂ϕ

∂r
dσ1

∣∣∣ ≤ C|ε log ε
∂ϕ

∂r
| ·
∫
dσ1

So this term tends to 0 when ε→ 0. For the second term we write

< 2 >= −
∫
ϕ̃(ε, θ)dσ1 where ϕ̃(ε, θ) = ϕ(r cos θ, r sin θ)

When ε → 0, by Lebesgue’s theorem < 2 >→ −ϕ̃(0, θ) ·
∫
dσ1 and since ϕ̃(0, θ) =

ϕ̃(0, 0) we get

lim
ε→0

Iε = 2πϕ(0, 0) = 2π < δ, ϕ >

2. n ≥ 3

−Iε =

∫
r=ε

1

εn−2

∂ϕ

∂r
εn−1dσ1 −

∫
r=ε

ϕ̃(ε, θ1, . . . , θn−1)(2− n) · 1

εn−1
εn−1dσ1

=

∫
r=ε

ε
∂ϕ

∂r
dσ1 + (n− 2)

∫
r=ε

ϕ̃(ε, θ1, . . . , θn−1)dσ1

The first term tends to 0 since |∂ϕ
∂r
| ≤ sup

R
| ∂ϕ
∂xi
| ≤ C.

By Lebesgue’s theorem the second term tends to

(n− 2)ϕ(0)
{∫

dσ1

}
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so

lim
ε→0

Iε = Cn(2− n)ϕ(0) = (2− n)Cn < δ, ϕ >

where Cn is the measure of the unit sphere in Rn.

Therefore in all cases we have ∆En = anδ where an is a constant.

Exercise 7.11. Let f(x) = e−|x|
2
, x ∈ Rn. Find the Fourier Transfrom of f.

Proof. It is easy to see that f ∈ L1(Rn). We first compute the Fourier transform when

n = 1. Thus for ξ ∈ R,

f̂(ξ) =

∫ ∞
−∞

e(−2πixξ)f(x)dx

=

∫ ∞
−∞

e(−π2ξ2)e−(x+πiξ)2dx

We can evaluate this integral using Cauchy’s theorem in the complex plane since the function

is holomorphic. Consider the contour Γ =
4⋃
i=1

Γi shown in the following figure:

Figure 7.1: Contour Γ

By Cauchy’s theorem,
∫

Γ
e(−z2)dz = 0. Further
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∣∣∣ ∫
Γ2

e−z
2

dz
∣∣∣ =

∣∣∣ ∫ πξ

0

e−(R+iy)2dy
∣∣∣

=
∣∣∣ ∫ πξ

0

e−R
2

e−2iRy exp(y2)dy
∣∣∣

≤ Ce−R
2

and so this integral tends to 0 as R→ +∞.

Similarly

lim
R→+∞

∫
Γ4

e−z
2

dz = 0.

Thus

∫ ∞
−∞

e−(x+iπξ)2dx = − lim
R→∞

∫
Γ1

e−z
2

dz

=

∫ ∞
−∞

e−x
2

dx

=
√
π

as is well-known. Hence,

f̂(ξ) =
√
πe−π

2ξ2 .

Now for any general n,

f̂(ξ) =

∫
Rn

e−2πix·ξe−|x|
2

dx

=

∫
Rn

e
−

n∑
j=1

(x2j+2πixjξj)

dx

= (
√
π)ne

−
n∑

j=1
π2ξ2j

= (π)n/2e−π
2|ξ|2
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Exercise 7.12. Let S ∈ E ′(R) and T ∈ D′(R). Show that for k ∈ N:

xk(S ∗ T ) =
k∑
j=0

(k
j

)
(xjS) ∗ (xk−jT )

Proof. By definition, for ϕ ∈ D(R),

< xk(S ∗ T ), ϕ >=< S ∗ T, xkϕ >=< Sx, < Ty, (x+ y)kϕ(x+ y) >>

Now

(x+ y)k =
k∑
j=0

(k
j

)
xjyk−j

It follows that

< xk(S ∗ T ), ϕ >=< Sx, < Ty,
k∑
j=0

(k
j

)
xjyk−jϕ(x+ y) >>

Now

< Ty,
k∑
j=0

(k
j

)
xjyk−jϕ(x+ y) >=

k∑
j=0

(k
j

)
xj < Ty, y

k−jϕ(x+ y) >

and

< Ty, y
k−jϕ(x+ y) >=< yk−jTy, ϕ(x+ y) >

< Sx, x
jΨ >=< xjSx,Ψ > for all Ψ ∈ C∞(R)

It follows that

< xk(S ∗ T ), ϕ > =
k∑
j=0

(k
j

)
< xjSx, < yk−jTy, ϕ(x+ y) >>

=
k∑
j=0

(k
j

)
< (xjS) ∗ (xk−jT ), ϕ >
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Exercise 7.13. Let ρ ∈ D(Rn) be such that ρ ≥ 0 and
∫
Rn ρ(x)dx = 1. For ε > 0 we set

ρε(x) = 1
εn
ρ(x

ε
), and for u ∈ D′(Rn), uε = u ∗ ρε. Show that when ε→ 0:

• If u ∈ Lp(Rn), 1 ≤ ρ ≤ +∞, uε → u in Lp(Rn), and prove the inequality ‖v ∗ ρε‖Lp ≤

‖v‖Lp, ∀v ∈ Lp(Rn).

Proof. First of all ρε → δ in E ′ when ε→ 0. Indeed suppρ ⊂ {|x| ≤M} and

∫
ρε(x)ϕ(x)dx =

∫
|x|≤M

ρ(x)ϕ(εx)dx ∀ϕ ∈ C∞(Rn)

Then:

• ρ(x)ϕ(εx)→ ρ(x)ϕ(0) a.e. if ε→ 0

• |l(|x|≤M)ρ(x)ϕ(εx)| ≤ sup|y|≤M |ϕ(y)|ρ(x) ∈ L1(Rn)

The result follows from the Lebesgue theorem and from the fact that
∫
ρxdx = 1.

Let u ∈ Lp(Rn). Since C0
ε (Rn) is dense in Lp, there exists a sequence (uj) in C0

ε such that

(1)∀α > 0,∃J : j ≥ J ⇒ ‖uj − u‖Lp <
α

3

Let j0 be fixed, j0 ≥ J . Then

(2)‖u ∗ ρε − u‖Lp ≤ ‖u ∗ ρε − uj0 ∗ ρε‖Lp + ‖uj0 ∗ ρε − uj0‖Lp + ‖uj0 − u‖Lp

It follows from (1)

(3)‖uj0 − u‖Lp <
α

3

Moreover we have

∀α > 0,∃ε0 : ε < ε0 ⇒ sup |uj0 ∗ ρε(x)− uj0(x)| < δ
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Now

‖uj0 ∗ ρε − uj0‖Lp = (

∫
K

|uj0 ∗ ρε(x)− uj0(x)|ρ)1/ρ

≤ C sup
K
|uj0 ∗ ρε(x)− uj0(x)|

< Cδ

So if ε < ε1

(4)‖uj0 ∗ ρε − uj0‖Lp <
α

3

Let us assume the following inequality has been proved

(5)‖v ∗ ρ‖Lp ≤ ‖v‖Lp ∀v ∈ Lp

Then we shall have

(6)‖u ∗ ρε − uj0 ∗ ρε‖Lp ≤ ‖uj0 − u‖ <
α

3

Using (2), (3), (4) and (6) we shall get

∀α > 0,∃ε1 : ε < ε1 ⇒ ‖u ∗ ρε − u‖Lp < α
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