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INTRODUCTION

The commercial development of continuous breadmaking processes has

brought about many changes in breadmaking technology. Continuous bread-

making was rapidly accepted by the baking industry due to its efficiency and

important economic advantages. Approximately 20 to 30 percent of commercial

white pan bread in the United States is produced by this process (55). How-

ever, this process has met with some resistance largely because of the rela-

tively different bread characteristics that it produces. Some consumers feel

that the bread made by the continuous process differs in such attributes as

bread structure and flavor compared to those of conventional bread, and as

a result considerable complaints have been received from consumers (5^0-

The major complaints are: tender and doughy bread crumb that dis intergrates

with wet fillings, execessive shrinkage when toasted, and a lack of fermen-

tation flavor and aroma (22). Therefore, the initial rapid success of con-

tinuous breadmaking process has leveled off over the last several years.

To overcome this problem, extensive investigations have been conducted

on improving the quality of bread made by the continuous process to achieve

bread characteristics resembling those of conventional bread. Examples of

these efforts include: introducing a brew system or preferment into this

process, and conventional processing of continuous mix dough after extrusion.

These changes brought about some improvements in bread quality, but not enough

to overcome all objections. Therefore, the trend in the Unite States now

appears to be away from continuous breadmaking towards conventional bread

processes

.

On the other hand, the Chorleywood bread process in England has been

widely accepted by both consumers and industry and as a result now accounts



for more than 70 percent of the total bread production in England (13, 1 8)

.

This process achieves considerable savings in time and efficiency compared

to the traditional bulk fermentation system previously used by the British.

Although successful in England, little work has been done to utilize

this process for making U.S. white pan bread. British bread differs consi-

derably in formulation and physical attributes compared to that produced in

the U.S. Therefore, this study was undertaken with the hope that it would

shed light on developing a process suitable for bread production in the U.S.

with some economic advantages compared to conventional breadmaking.

The objectives of this study were:

1. To identify the optimum processing parameters required to produce

U.S. sponge dough-type bread by a mechanical dough development procedure.

2. To study the effects of commercial surfactants (dough strengtheners

and crumb softeners) on bread made by a mechanical dough development type

method.



REVIEW OF LITERATURE

History of Mechanical Dough Development

Bread has been a major part of the human diet since the beginning of

civilization, and most bread has been made with some types of fermentation.

Many believe that significant modifications in dough structure during

fermentation are, in part, responsible for dough development which represents

a state of mellowness and yields sufficient extensibility for gas retention

as well as the capability for production of the best quality bread. Therefore,

the best bread has always been associated with and produced by fermentation.

A better understanding of the science and technology of breadmaking made

it possible for people to think about making bread more economically, i.e.

in a shorter time without sacrificing bread quality. Great efforts have been

expended to achieve this goal. Fermentation was the major target to be attack-

ed because it was the longest part of the breadmaking process. Some success

has been realized in this area, but it has only recently been possible to

bring about dough development by rapid mechanical action rather than by fermen-

tation.

The first attempt at mechanical dough development was made by Swanson

and Working (51) at the Kansas State Agricultural College. In this report,

they showed that small doughs mixed at 60 or 120 r.p.m., which are much more

rapid than conventional mixing speeds, and panned immediately without fermen-

tation, could produce bread equal or better in every aspect than bread made

by conventional mixing with fermentation. These results were striking and

opened up new possibilities in breadmaking technology. However, their data

was largely overlooked, and interest was not reborn until 1937.



At that time Baker (k) recognized the effects of mixing, oxygen and

chemical oxidants on dough and suggested that mixing was responsible for

dough development through the rearrangement of molecules to facillitate reac-

tion with oxidizing agents. A special balance between mechanical action and

oxidizing agents was strongly suspected, and different types of mixing were

also emphasized to give stretching action in the dough rather than tearing,

rubbing or cutting (3).

Continuous mixing process . On the basis of his previous work, Baker (5)

developed the Do-Maker process which was the first process to achieve the

goal of continuous dough development. In this process, small quantities of

dough were mixed quickly and continuously so that it could supply the neces-

sary output of dough for normal commercial operation. A certain amount of

fermentation is considered necessary to impart acceptable bread flavor and

taste. Approximately 20 to 30 percent of the commercial bread in the United

States is produced by this process (55). Many researchers (5, '*+, 31) report-

ed that fermentation in conventional breadmaking could be replaced by using

a liquid broth or preferment system containing sugars, malt, yeast and yeast

food. The fermented broth could be incorporated into a dough with other

dough ingredients in a pre-mixer and then prepared in the dough developer

under intensive mixing under pressure. Snyder (49) summarized the advantages

of this process over conventional processes as follows: 1) elimination of

equipment 2) space saving 3) reduction in labor requirements and k) sav-

ings in materials and ingredients.

On the other hand, continuous breadmaking still has some limitations.

Many reports (2k, kk) have outlined the problems encountered with the con-

tinuous mixing process. These problems related to bread quality and to the



use of many of the ingredients, especially flour and milk (6, 46).

The typical grain of continuously mixed bread is small, spherical and

characterized by regular sized cells due to the release of the pressure

developed in the mixing chamber. The cell structure is totally disoriented

due to ommission of the moulding stage (44) . All these factors bring about

a tender, weak, and doughy crumb structure, which was quite different from

the crumb characteristics the consumers were used to. This also accounted

for the alleged lack of flavor in bread made by this method (44)

.

In an attempt to refine the process to alter the bread characteristics

to resemble those of conventional bread, the brew procedure and the ingredients

of the preferment system were thoroughly investigated by many researchers

(7, 47). This work brought about some improvement in the quality of continuous

mixed bread. However, it was not enough to satisfy consumers and their

preference is still largely for the bread made by conventional processes.

Chorleywood process . Attempts to apply modern breadmaking technology

to commercial breadmaking were very active in England where a different type

of bread compared to that of the U.S. was produced. English bread is charac-

terized by a lean formula and very dense structure, with a specific volume

around 3.8 (41).

The continuous breadmaking process, developed in United States, received

a great deal of attention from British scientists and considerable success was

achieved in making a British type bread by this process. British bakers still

face the same problems as U.S. bakers when using this process (54). However,

intensive study on batch type mechanical dough development at Chorleywood

resulted in the production of an acceptable U.K. type bread. The most important

characteristic of the Chorleywood process was that the critical factor for

optimum dough development was the total amount of work imparted to the dough,



which was centered around 0.4 horse power per pound per minute for a very wide

range of flours (2, 5*0 . Other characteristics of this process included

increased level of oxidant (ascorbic acid), extra water addition, increased

yeast level, fat addition and mixing under partial vacuum to reduce air cells

in the dough. The time required to impart optimum work input was also a special

feature of this process; less than five minutes was recommended as optimum.

Bread produced by the Chorleywood process now acounts for over 70 percent of

the total bread production in England (13, 41).

Major Characteristics of Mechanical Dough Development

Work input . The high level of work input in conjunction with high level

of oxidizing agents is the most important factor in the production of good

quality bread by mechanical dough development (23), and the main factor

contributing to the reduction in fermentation time of conventional bread

processes (52, 54). In addition, mechanical work is applied to the dough

very intensively within a short time. A certain level of mixing speed is

also a prerequisite to attain optimum dough development (39).

Critical minimum mixing speed varied depending on the mixer type, but

the work input was not altered when different mixing speeds were employed

(34). The success of this process involved the selection of an appropriate

mixer; hexagonal mixing plates were used to give sufficient mixing action

in a short period of time (5*0.

Oxidant level . A high level of a particular oxidizing agent or combina-

tion of oxidizing agents is reported to be necessary for mechanical dough

development (2, 9, 18, 50). The exact mechanism of this action is not clearly

understood yet, but a likely explanation can be suggested involving the com-

bination of high oxidant levels with the high level of intensive mixing action,



and summarized as follows:

The intensive mixing action by a specially designed mixer provides the

unique mixing action of stretching and opening up of the gluten protein to

expose the masked sulfhydryl group present in the glutenin to chemical attack

of oxidizing agents. A similar phenomenon is thought to occur during the

bulk fermentation period in the conventional breadmaking process.

This eventually increases the number of sulfhydryl groups which can

interact with other strained disulfide bonds produced by violent mixing

action. Consequently, this brings reactive sites into contact at a very

rapid rate which markedly increased the interchange reaction, that will

yield the correct spatial configuration for optimum dough development (Sh) .

Generally recommended levels and combinations of oxidizing agents are

75 ppm of ascorbic acid, a combination of 10 to 20 ppm of potassium iodate

and kO to 50 ppm of potassium bromate, and a combination of equal amount of

ascorbic acid and bromate (13, 50).

Water absorption, yeast level and dough temperature . Compared to the

water absorption in the conventional breadmaking process, 2 to 3 percent of

extra water absorption is required for optimum dough mach inab i 1 i ty and final

bread quality. This is due mainly to the decreased loss of fermentable solid

material as a result of the lack of bulk fermentation and will lead to an

increase in bread yield (18, 19).

Increased level of yeast is another feature of this process. The eli-

mination of bulk fermentation necessitates a higher rate of gas production

in the first hour or so of reduced processing time. This can be brought

about by using high levels of yeast and a high dough temperature. A 50 to

100 percent increase in yeast level is recommended (2, 9).

A markedly high dough temperature is typical in this process, because



of the comparatively large amounts of work input. The dough temperature is

controlled by many factors, but mainly by the work input level. Approximately,

5 °F. increase in dough temperature was observed for each watt-hour per pound

of dough (32, 5*0. The optimum dough temperature of Chorleywood bread process

lies between 84 °F. and 88 °F. (2, 54).

Current Research for Making U.S. White Pan Bread by Mechanical Dough Development

The striking success of the Chorleywood process in England has been very

impressive to other parts of the world, especially in the United States.

Efforts to utilize this process for making U.S. type white pan bread were

undertaken and a few researchers (2, 16, 33) and commercial bakers (19) tried

to make acceptable U.S. type white pan bread by this process. The possibility

for this effort was solidly estabilished by their efforts, but many problems

remain to be solved before this process can be feasible for commercial bread-

making. Esters (19) reported that the 417 r.p.m. of high speed mixing was

able to produce acceptable U.S. type bread without fermentation and also

reported the optimum conditions for the baking process and modified formula

for this process.

Kilborn and Tipples (33) reported a study on mechanical dough develop-

ment for U.S. type bread that would be comparable to sponge and dough bread.

They modified the bread formula for mechanical dough development with a minimum

of change based on sponge and dough processes and concluded that the bread

produced by mechanical dough development was as good as the bread made by

conventional sponge dough process in quality. They also conducted panel tests

to detect the flavor difference but reported no difference in flavor. As far

as bread flavor is concerned, many arguments are still unresolved especially

on the role of fermentation in flavor development. Some workers (34, hS)



reported that fermentation might- have little or no effect on bread flavor

while others found that fermentation was a prerequisite to produce accepta-

ble bread flavor (11). A very interesting report (kk) has been published on

bread flavor claiming that the bread flavor is attributable more to a differ-

ence in crumb texture than to any lack of actual flavor components.

Others (2, 9, 16) also reported the possibility that the batch type

mechanical dough development was as beneficial for U.S. type breadmaking as

for U.K. type breadmaking. However, only a very small portion of bakeries

are using this process in the United States and also their major product by

this method is hearth type bread rather than white pan bread. The reason

for this was postulated that the success in U.K. was due mainly to the

relatively different dough system and a different degree of dough development

desired compared to U.S. type breadmaking (33). Another reason for this

was supposed to be the baker's preconception of fermentation and the lack

of research done on this in terms of commercial feasibility to provide the

full confidence on this process for U.S. white pan breadmaking.



MATERIALS AND METHODS

Mater ial s

The flour used was milled by Ross Milling Co. from a blend of Hard Red

Winter Wheat and Spring Weat. The flour was malted and enriched to meet the

standards of identification for commercial white flour. Laboratory analysis

showed this flour to contain 1 3.7 % moisture, 1 1 .5 % prote in and O.kk % ash

(data on a \k % moisture basis). The Brabender Farinograph absorption was

60.6 % and peak time was 6.0 minutes. Other data on the flour include Agtron

color of 61 and falling number of 275. For the study on the oxidizing agents

system, four different oxidizing agents were used. Four different dough

strengtheners were also used to study the effect of dough strengtheners on

the bread made by this process. Cysteine (L-cysteine hydrochloride mono-

hydrate) was used as a reducing agent to cut down the mixing requirement.

Table 1 includes all information on the chemicals used in this experiment.

Dough strengtheners were dissolved in $k °F. water before use.

Methods

Baking procedure . A modified bread formula and baking procedure

obtained from preliminary experiments based on the characteristics of

mechanical dough development were chosen for this experiment. The formula

is presented in Table 2.

The baking procedure used in this experiment is as follows: wet ingred-

ients including water, yeast suspension and oxidant solution were added first

and the rest of the dry ingredients were added simultaneously. Mixing started

immediately after the applied vacuum attained a certain constant level. The

ingredients were mixed under 17 mm Hg of vacuum for 30 seconds and then mixing
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Table 1. Chemicals Used in the Experiment

Chemicals Brand Function Manufacturer

Potass ium Bromate

Potassium lodate

Ascorb ic Acid

Oxidizing Agent

ii

Mai 1 inckrodt, Inc. St,

Louis, Missouri

M

Azod i ca rbonam i de

(ADA)

Mono-diglycer ides

+ Polysorbate 60
(P-60/MG)

TANDEM 11

H

Ethoxylated Mono- XPANDO
diglycerides + Mono-
diglycer ides (EMG/MG)

Succinylated Mono- XMB - 6

glycerides + Mono-
glycerides (SMG/MG)

Sodium Stearoyl EMPLEX
2-Lactylate (SSL)

" Aldrich Chemical Company
Milwaukee, Wis.

Dough Strengthener Id United Inc.,

and Crumb Softener Wilmington, Delaware

Breddo Food Products
Corporation, Kansas City,

KS.

Eastman Chemical Products
Inc., Kingsport, Tenn.

n Patco Products,
Kansas City, Mo.

Cysteine Hydrochloride
Monohydrate

Reducing Agent Sigma Chemical Company
St. Louis, Mo.
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Table 2. Original Formula

Recommended Formula
Ingredient Percent(f lour basis) Grams for Sponge and Dough

Process(% flour basis)

Flour

Water

Yeast

Salt

Sugar

Shorten ing

N.F.D.M.

KBr0
3

KIO,

Arkady

100 3000

60 1800

3.5 105

2.0 60

5.0 150

3.0 90

2.0 60

40 ppm 120 mg

10 ppm 30 mg

- -

100

57

2.0

2.0

6.0

3.0

2.0

0.25

5275
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was stopped to clear the mixer wall. The rest of the mixing was done under

the same level of vacuum as previously described. After mixing, the dough

was dumped out and scaled immediately to 539 gm and the temperature was recorded,

The scaled dough was then rounded and kept in an intermediate proofing cabinet

at 86 °F. and 85 % relative humidity for 10 minutes. The dough was then

punched, moulded, panned and proofed to 1.5 cm above the pan at 105 °F. and

93 % R.H. and then baked at 425 °F. for 25 minutes. After k$ minutes cooling

the bread was bagged and sealed in a polyethene bag and stored at room tem-

perature. Bread scoring was conducted the next day.

Bread evaluation . Bread volumes were measured immediately after baking

by rape seed displacement and weights were measured for determination of

specific volume.

Arbitrary standards for grading grain structure were prepared by 0.5

point intervals of grain score from 6.0 to 9.0. Actual grading on grain

structure was done by comparing samples to the standards.

Crumb color was measured with the Agtron Mul t ichromat ic Abridged Reflec-

tance Spectrophotometer Model M 300 with monochromic spectral line of the

blue mode (436 nm of wavelength). The scale was standadized using standard

disc # 44 and # 68 to read 0.0 and 100.0, respectively. Measurements carried

out on half an inch thick slices cut from the middle of the loaf. Black paper

with a 2 by 2 inch square hole was used to block the escaping light at the

edges of the slice and to standardize the reflectance area between slices.

Both sides of the slice were checked and readings were averaged.

Crumb firmness of the sliced bread was measured one day and four days

after baking. Two slices, one inch thick, from the middle part of the

bread were tested for firmness on the Bloom Gelometer.
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Scorings on crust color, break and shread and symmetry were also con-

ducted by visual judgement. But it was thought that too much subject iveness

and experimental error could be easily incorporated into these scorings.

Therefore, these results were not used as input data for the Statistical

Analysis System (SAS) but used only as a reference.

Mixing conditions . The Tweedy 35 High Speed Dough Mixer Developer

was used in this study. This was the smallest mixer in the series of Tweedy's

high speed mixers available for commercial use. It can handle dough

quantities from 7 to 60 pounds; 11 pounds of dough per batch were used in

this experiment.

The Tweedy mixer is especially designed to impart large amounts of work

into the dough in short periods of time, usually in less than five minutes.

It also has a unique control system capable of accurately measuring the

amount of work input into the dough by setting the Energy Input Controller

with watt-hrs per pound of work input or mixing time in seconds.

The amount of work required for a given mix depends upon the total

weight of the dough. Therefore, to calculate the required amount of work

input, the weight of the total ingredients in pounds or kilograms was deter-

mined and multiplied by the intended watt-hrs per pound or kilogram. The

following calculation gives an example;

Total weight of ingredients =11.6 lbs (5.25 Kgs)

For 7 watt-hrs/lb = 11.6 x 7 = 81.2

For 15.5 watt-hrs/Kg - 5.25 x 15.5 = 81.2

Therefore, watt counter was set at 81.

Another operational feature includes two different tilt positions such

as full tilt and half tilt for operational convenience.

Experimental design . Four seperate experiments were designed and conducted.
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The first experiment was on the effects of processing conditions on mechanically

developed bread quality. The conditions studied were water absorption, work

input and dough temperature. The objective of this experiment was to find

the best combination of these three conditions which produces the best quality

bread and to detect the possible interaction between them.

The technique of Response Surface Methodology (RSM) described by Cochran

and Cox (15) was used. This technique involves taking certain data points

from a factorial design and solving for a response surface containing the

desired response of dependable variables such as specific volume or grain

structure, as a function of the independent variables of water absorption,

work input and dough temperature.

Each of the three variables was investigated at five different levels;

Table 3 shows the variables and their levels. The factorial design of three

variables with five different levels each is presented in Table 5. Dependent

variables were used as input data (Y) and the regression coefficients were

computed by the Taylor expansion equation:

Y = B + B|Xf + B 2X 2
+ B3X3 + B n X] 2 + B22X2 2

+ B33X32 + B
12

X,X 2 + B
|3
XlX

3
+ B23X2X 3 .

The computer program generates the coefficients of regression equation.

In order to find the combination of levels of the three variables where

the maximum or minimum occurs, we took the partial derivatives of the quadratic

model with respect to each of the variables and set them equal to zero. The

point at which the maximum or minimum occurs is obtaintd by solving these

equations simultaneously. In some cases, this procedure gave a solution which

was outside the region covered by the experiment or a solution which can neither

be a maximum or a minimum. In this case, the maximum was found by using a

search procedure.
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Table 3. Processing Conditions and Their Levels for RSM Study

Processing Conditions Symbol

•1.682 -1

Code

1 1.682

Water Absorption X) 56.6 58 60 62 63.4

Work Input

(watt hrs/lb)

Dough Temperature
(°F)

X2 5.3 8 8.7

85.3 88 92 96 98.7

Table 4. Oxidizing Agents and Their Levels for RSM Study

Oxidizing Agent Symbol

Code

-1.682 -1 1 1.682

Ascorbic Acid
(ppm)

X) 15 37.5 60 75

Azod i carbonam i de (ADA) x
2

8 20 32 ko
(ppm)

Brornate

(ppm)
X
3

10 25 ko 50



Table 5. RSM Design for Three Variables at Five Levels

18

Var iable
Number

Xi* X2
* *?

1

2

3

k

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.682

.682

1.682

1.682

-1.682

1.682

* Refer to Table 3 and h.
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In a second experiment, the main effects studied were those of the oxi-

dixing agents on bread characteristics. The same technique as described

previously was used for this experiment. The oxidizing agents studied were

ascorbic acid, bromate and azodicarbonamide; Table 4 shows the variables

and their levels. The experimental design is the same as Table 5.

In a third experiment, the main effects studied were those of surfactants,

or dough s trengtheners , on bread qualities especially on crumb firmness.

Four different dough conditioners were used at four different levels: 0.0,

0.17, 0.34 and 0.5 percent each. The dough conditioners studied are presented

in Table f.

Duncan Multiple Range Test, described by Snedeor and Cochran (48) was

used to determine the significance of the difference between various treat-

ments. This test was also programmed by computer using the S.A.S.,

Jn the fourth experiment, the main effects studied were those of cysteine

and work input on bread characteristics. The purpose of this experiment

was to test the possibility of cutting down the work input level to a

reasonable range. A large amount of work input which is required for optimum

dough development with the high speed intensive mixer sometimes increases

dough temperature beyond an acceptable level and causes serious damage to

bread qual i ty

.

The same R.S.M. technique was used for this experiment, but with two

independant variables and five different levels each. The design was slightly

simplified compared to the other experiments. Taylor equation for this experi-

ment was

:

Y = B + BjX, + B
2
X
2

+ B,^] 2 + B22X2 2 + B ]2 X
1

X 2 .

Table 12 and Table 13 shows the variables with their levels and factorial

design for this experiment.



20

RESULTS AND DISCUSSION

Preliminary experiment were conducted to determine optimum starting

bread formula and procedures for the main experiment. The original bread

formula (Table 2) and baking procedure were obtained from this preliminary

experiment and used in the first experiment.

Effects of Work Input, Water Absorption and Dough Temperature

Work input, water absorption and dough temperature are the most impor-

tant processing parameters in mechanical dough development. They may also

interact or there may be a specific combination of these parameters to produce

the best bread quality. Numerous researchers have noted that the work input

varies depending upon the dough conditions (3*0; that the dough development

is regulated by work input (39); and that low dough temperature increases the

water absorption (50).

Response surface methodology was used to study these factors. This

technique reduced the experimental work required to examine the effect of

several processing conditions on a given response. The response surface

equation and corresponding contour plots permit the investigator to quickly

locate the optimum solution to a problem and verify the predicted solution

exper imental ly

.

The factorial design (15) used in this experiment gives the reasonable

combination of 20 data points which are 23 factorial points, extra points

with 0(= 1.682, and 6 points at the center; i.e., zero point with 7 watt-

hrs./lb. of work input, 60 % water absorption and 92 °F. dough temperature.

The data points, discussed above, were completely randomized to set the
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experimental order, and 20 batches were baked with two replications. In

each batch, three loaves of breads were baked, and all the data were aver-

aged. Appendix 1 contains all the experimental data for this experiment.

The averaged scores on specific volume and grain structure, and overall

score were used as input data for a computer program.

Specific volume . The response surface for specific volume (obtained

from Appendix 1) was found to be:

Specific Volume = 6.6070^ + 0.19^33 X] + 0.28321 X 2 + 0.25182 X3

- 0.01267 x, 2 - 0.0577^ x 2
2 - 0.036536 X32

- 0.1125 X1X2 + 0.11125 X1X3 - 0.09375 x 2x 3

where: X] = water absorption

X
2

= work input

Xo = dough temperature.

This equation was used to locate the combination of three conditions

that gave maximum scores of specific volume by differentiating with respect

to each factor as previously described. However, it is necessary to deter-

mine if the estimated point is the true maximum point. For the estimated point

obtained to give a maximum point, the matrix of the second partial derivatives

must be negative definite. This is equivalent to B^> 0, Br y 0, B,y 0,

^BZ^Bi; - B7 < 0, I0J* > 0. In this checking procedure, the response surface

equation for specific volume did not satisfy the above conditions. Therefore,

the maximum point of specific volume in the region covered by the experiment

was found by a search procedure which checked every point inside the region

* Determinant of the matrix of the second partial derivatives.
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Fig. 1. Contour plot of specific volume (C = 5.5, D = 6.0, E = 6.5, F = 7.0,

G = 7.5) for work input and dough temperature at 62% water absorption,
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Fig. 2. Contour plot of specific volume (B = 5.0, C = 5.5, D = 6.0, E =

6.5, F = 7.0) for work input and dough temperature at 58 % water

absorption.
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Fig. 3. Contour plot of specific volume (C = 5.5, D = 6.0, E = 6.5, F = 7.0,

G = 7.5) for water absorption and work input at 61 °F. dough tempe-

rature.
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at a certain interval to find the point of relatively high response. The

interval of 0.5 in the RSM scale was used in this procedure.

In the region covered by the search procedure, 63 % water absorption,

7 watt-hrs./lb. of work input and 98 °F. dough temperature gave the largest

specific volume.

Besides the search procedure, it is advisable to run several contour

plots to understand what happens in the neighborhood of the maximum when the

levels of variables are changed from their estimated optimum value.

A series of contour lines of two variables can be drawn holding other

variables constant (27, 28). The third quadrant in all of the figures (1

through 18) is the region covered by the experiment.

Figure 1 shows the changes in specific volume as a function of work input

and dough temperature at 62 % water absorption level. Higher dough temperature

gave a higher specific volumes, but higher work input did not necessarily

give a higher specific volume. In the region covered by the experiment, 7

watt-hrs./lb. of work input at 98 °F. dough temperature gave the largest

specific volume. The extrapolated contour lines clearly show the relationship

between work input and dough temperature.

Figure 2, like Figure 1, shows changes in specific volume as a function

of work input and dough temperature. This time, however, the water absorption

was reduced to 58 percent. The highest specific volume was obtained from

the combination of high work input level (8.5 watt-hrs./lb.) and medium dough

temperature (92 °F.), which is contrary to Figure 1. All the variables

(water absorption, work input and dough temperature) interacted so that

changing any variable affected the remaining two variables (Figure 3).

Grain score. The response surface obtained for grain was as follows:
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Grain = 8.22488 + 0.031951 X, + 0.34579 X
2

- 0.19336 X3 - 0.14944 X,
2

- 0.14944 X 2
2 - 0.20246 X

3
2 + 0.01250 X,X

2
+ 0.0875 XjX

3

- 0.15 x 2x 3

where: X] = water absorption

X2 - work input

X, = dough temperature.

To determine if this equation gave a true maximum, a series of checking

procedures were used as described earlier. The checking procedure showed

that this equation satisfied the conditions for a true maximum point.

Therefore, the equation was used to find the optimum combination of the

three conditions that gave the maximum score for grain characteristics.

The differentiation procedure previously described was used for this purpose.

The optimum combination of the three conditions for maximum grain score

was found to be X] = - 0.1581, X
2

= 1.728 and X
3

= - 1J520, which corresponded

to about 60 % water absorption, 8.7 watt-hrs./lb . of work input and 87.5 °F.

dough temperature. These levels lie in the region covered by the experiment,

with the exception that the work input level is marginal for the upper limit

of the region investigated. In this case, an experiment was conducted to

verify that the maximum point was the true maximum, because the quadratic

equation could give misleading results when applied outside the region of

data collection. The experiment did verify the maximum point.

Several contour plots were drawn to determine how the grain score changed

when the variable levels were changed from their optimum. Figure 4 shows the

response of grain scores as a function of work input and dough temperature

at 60 % water absorption. The estimated maximum point is clearly visible
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Fig. k. Contour plot of grain score (A = 6.0, B = 6.5, C = 7.0, D = 7.5,

£ = 8.0, F = 8.5) for work input and dough temperature at 60 %

water absorption.



27

<
<

r-j

•Q

a

"3
-J)

SI

CQ U

a u>

03
a3

a?

o
u

u
m

o

u

'-> '-J

a

D
Q

UJ
UJ

a
o

u
LU

u a. u.

U- -X u- a. u_ a.
u. a. u.
U, a.

u- a. a.

UJ

u.
J.

u. u_
u.

LU

U.
u.
LL.

JJ

UJ
JJ

_Ja_

u

1_)

Q.i

u
u

a

u

c

UJ
UJ
UJ
UJ

UJ
UJ
JJ
UJ

u,
U.
u.

Li-

lt,

u.
U-
j_ -a.

LU

Li,

UL,

U.
a.

u.

u. u_
U.U.H.I. LL

LU LU

a

o

LU
LL)

..'J

I

Lb
LU
UJ

UJ

LU

UJ

a
Q

LU LU
LU L'j

LU UJ LU -JJ IU
LU LU LU

n
a

u
u

o a
CJ O. O C Cj

a u o a u o a

a

n

lj

u

u

C4

*s%

2=

I

Jo - 3ijiuradij3i Honoa



28

on the oval shape contour lines. A slow decrease in grain score was observed

as the levels of work input and dough temperature are changed from their

optimum conditions, but beyond about 7.0 watt-hrs ./lb. of work input and

Sk F. dough temperature, the decrease in grain score was accelerated as

expected.

Figure 5 and 6 illustrate the effects of water absorption and dough

temperature, and water absorption and work input on grain score at constant

levels of work input and dough temperature, respectively. From Figure 4, 5

and 6, several conclusions can be drawn. First, since the contour lines of

Figure k are oval shaped with the long axis positioned from top left to

bottom right, this may suggest an interaction between dough temperature and

work input. This interaction may indicate that some movement away from the

optimum variable levels could be made without significant decrease in grain

score.

Secondly, the contour lines of Figure 5 are also oval shaped but project

in the opposite direction compared to those in Figure 4. The interaction

between water absorption and dough temperature may also provide more tolerence

in grain score as the optimum variable levels move toward higher water

absorption and higher dough temperature.

On the other hand, the contour lines in Figure 6 form almost round rather

than oval patterns; this suggests that no interaction exists between water

absorption and work input.

The statistical analysis of the data showed a significant interaction

between work input and dough temperature and a significant interaction

between water absorption and dough temperature. But no significant inter-

action was found between water absorption and work input ( Ct =0.05).
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Fig. 5. Contour plot of grain score (A = 6.0, B = 6.5, C = 7.0, D = 7.5,

E = 8.0, F = 8.5) for water absorption and dough temperature at

8.5 watt-hrs/lb of work input.
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Fig. 6. Contour plot of grain score (A = 6.0, B = 6.5, C = 7.0, D = 7.5,

E = 8.0, F = 8.5) for water absorption and work input at 88 °F.

dough temperature.
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Figure 4, 5 and 6 show that acceptable bread (i.e. bread with a grain

score of 8.5) can be made within the following ranges of the three breadmaking

parameters; 58 to 61 .5 % water absorption, 7.7 to 9.8 watt-hrs ./lb . of

work input and 85 to 91 °F. dough temperature.

Overall bread characteristics . To determine the best combination of

the three variables for the overall bread characteristics, we assigned

equivalent numerical values for specific volume and grain score and used

the combined overall score as input data for the quadratic model (see Table

6). For example, a specific volume of 6.8 and a grain score of 9.0 were

considered as satisfactory and assigned 20 points each. The remainders of

the scores were assigned according to the above standards.

The response surface obtained for the overall score was as follows:

Overall Total = 29.7136 + 1.81553 X, + 6.1904 X
2

+ 0.1631 X
3

- 1.7053 X,
2

- 2.1^71 X
2
2 - 2.5006 X3

2
- 0.9375 X,X

2

+ 1.4375 x,x
3

- 2.3125 x
2
x
3

where: X] = water absorption

X2 = work input

X, = dough temperature.

The checking procedures and the partial differentiation method were

used to determine if this equation could give a true maximum and to

calculate the estimated optimum point that would give the maximum overall

score.

The estimated maximum point was found to be Xi = - 0.5333, X2
= 2.1607,

X, = - 1.1198, which corresponded to 59 % water absorption, 9.2 watt-hrs. /lb.



Table 6. Weighed Overall Score
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Specific Volume

Processing Condition Others
Grain Score Arbitrary Score

6.8

6.6

6.4

6.2

6.0

5.8

5.6

5.4

5.2

5.0

4.8

7.0

6.8

6.6

6.4

6.2

6.0

5.8

5.6

5.4

5.2

5.0

9.0

8.8

8.6

8.4

8.2

8.0

7.8

7.6

7.4

7.2

7.0

20

18

16

\k

12

10

8

6

k

2
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of work input, and 88 °F. dough temperature, respectively. This calculated

maximum point correlated well with the contour plots drawn at different

levels of each variable.

Figure 7 illustrate the effect of work input and dough temperature on

the overall score at 59 % water absorption. The oval-shaped contour lines

show an interaction between work input and dough temperature. Again, more

tolerance to overall score reduction was expected when work input was

decreased and dough temperature was increased from the optimum levels for

the variables.

Figure 8 shows the effect of water absorption and dough temperature

on the overall score. An interaction between water absorption and dough

temperature was observed in Figure 8 and changes in the direction of higher

water -absorption and higher dough temperature were expected to be desirable

for more tolerance to overall score reductions.

It is, however, very difficult to satisfy all three conditions at

the maximum point, largely because of the high work input required with

low dough temperature. Dough temperature increase is almost 1 inearly propor-

tional to the work input imparted to the dough. Therefore, low dough

temperature with high work input is difficult to achieve under laboratory

condi t ions

.

Considering the effects of the three variables on the overall score,

we decided to change the levels of the three variables from the maximum

to the direction of higher water absorption, lower work input and higher dough

temperature. Even though all three characteristics of specific volume, grain

score and overall score are considered together, the above changes were

thought to be reasonable.
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Fig. 7. Contour plot of overall score (A = 10, B = 15, C - 20, D = 25,

E = 30, F = 35) for work input and dough temperature at 59 %

water absorption.
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Fig. 8. Contour plot of overall score (A =10, B = 15, C = 20, D = 25,

E 30, F = 35) for water absorption and dough temperature at

8.5 watt-hrs/lb of work input.
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In summary, with respect to the U.S. type breadmaking by batch type

mechanical dough development, the RSM study showed:

1. Water absorption, work input and dough temperature were equally

important in the production of desirable bread characteristics, as shown in

Plate 2, 3, and *f.

2. Interactions between these three variables were highly suspected

and it was supported by the shapes of contour lines and statistical analysis

on the data. However, more study on these interactions is strongly recommended,

3. The optimum level of each variable for producing good bread quality

was: 58 to 61 % water absorption, 8.0 to 10.0 watt-hrs ./lb . of work input

and 85 to 91 °F. dough temperature. This was based on the overall score.

h. Based on the estimated maximum point and the interactions between

three variables, the optimum variable levels were considered to be 60 %

water absorption, 8.5 watt-hrs. /lb. of work input and 89 °F. dough temperature.

This combination was used for the rest of the experiment.

Oxidizing Agents

A high level of oxidant has been recommended by several researchers for

mechanical dough development (9, 18, 50, 5*0. The combination of intensive

mechanical work and the chemical reaction resulting from high levels of

oxidizing agents has reportedly been a key to successful mechanical dough

development (12, 5*0.

Many reports have been published on the oxidizing system commonly used

in mechanical dough development (23, 50). However, the oxidation requirements

vary depending upon the flour (42), formula, and processing. Consequently,

the optimum oxidizing system for U.S. white pan breadmaking by mechanical
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dough development varies considerably with that used for conventional bread-

making processes or for the Chorleywood bread process (19, 33). Therefore,

a study was undertaken to determine the optimum oxidizing system for U.S.

white pan breadmaking by batch type mechanical dough development.

Three commonly used oxidizing agents (potassium bromate, ascorbic acid

and azodicarbonamide) were chosen for this study. Although protassium iodate

is still utilized by industry, it was excluded from this study because many

unfavorable iodate effects have been reported (1, 43).

The RSM technique also was used in this experiment. Preliminary experi-

ments were conducted to determine a relevant range of levels for each oxidiz-

ing agent. Table 4 shows the levels of oxidizing agents used and their

corresponding RSM scale. The experimental design used is shown in Table 5.

Specific volume, grain score and overall score were used as input data for

the computer program, the experimental data is presented in Appendix 2.

Specific volume . The response surface for specific volume was found to

be:

Specific Volume = 6.7165 + 0.05183 X] - 0.09*68 X2 + O.I6676 X3

+ 0.001463 X, 2 - 0.033 X2
2 - 0.2460 X32 + 0.07562 X,X

2

+ 0.050622 x,x
3

- 0.20678 x2x 3

where: Xj = ascorbic acid

X2 = ADA

X? = bromate

This equation did not satisfy the conditions for producing the true maximum.

Therefore, the maximum point was found by a search procedure, assisted by



several contour plots drawn at different levels of variables in the region

covered by the experiment. The kO ppm of bromate without ascorbic acid and

ADA showed the highest specific volume. Figure 9 and 10 illustrate the

effect of bromate on specific volume. The specific volume was gradually

increased by raising the bromate level up to 40 ppm. The specific volume

was decreased above kO ppm bromate. At low bromate levels desirable specific

volumes (around 7.0) were not possible with any combination of ADA and

ascorbic acid. From these results, it was concluded that bromate is the

most important oxidizing agent for obtaining desirable specific volume.

r
The effect of ADA on specific volume was unfavorable. The maximum

specific volume obtained using up to kO ppm ADA was approximately 6.0. ADA

also reacted unfavorably in combination with other oxidizing agents. Increased

levels of ADA decreased specific volume markedly. For example, a specific

volume of 7.0 at kO ppm of bromate was decreased to 6.6 by adding 20 ppm of

ADA. However, at low bromate levels (less than 25 ppm), the addition of ADA

improved the specific volume slightly, as shown in Figure 9.

The effect of ascorbic acid on specific volume was quite different

from that of ADA. Figure 10 illustrates the effect of ascorbic acid and

bromate on specific volume at zero level of ADA. As a single oxidizing agent,

ascorbic acid was not effective up to 120 ppm. At low bromate levels, the

addition of ascorbic acid decreased specific volume slightly. However, when

the bromate level was maintained at 40 ppm, the addition of ascorbic acid

slightly increased the specific volume. The relationship of ascorbic acid

to specific volume at various bromate levels may be explained by the reaction

mechanism of ascorbic acid in the dough. Ascorbic acid must be converted to

its dehydro form either by enzyme or oxidizing agent to exert an oxidizing

effect on the dough. At low bromate levels the oxidizing capability of the
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Fig. 9. Contour plot of specific volume (A = b.O, B = 5.0, C = 5.5, D =

6.0, E = 6.5, F = 7.5) for ADA and bromate at 60 ppm ascorbic acid,
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Fig. 10. Contour plot of specific volume (B = 5.0, C = 5.5, D - 6.0,

E = 6.5, F = 7.0) for ascorbic acid and bromate at ppm ADA.
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Fig. 11 . Contour plot of specific volume (B = 5.0, C = 5.5, D = 6.0, E

6.5, F = 7.0) for ascorbic acid and ADA at kO ppm bromate.
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dough system may be impaired because the dough system may lose some of its

oxidizing power by converting ascorbic acid to dehydro ascorbic acid.

However, at high levels of bromate, the oxidizing capability of the dough

system is enough to convert ascorbic acid to its dehydro form without signi-

ficantly reducing the oxidizing power of the dough. The combined effects of

ascorbic acid and ADA are illustrated in Figure 11 drawn at 40 ppm of bromate,

The unfavorable effect of ADA on specific volume could be partially overcome

by the use of high levels of ascorbic acid.

Grain score . Grain characteristics of the bread were considered to be

important because the effect of over-oxidation, normally associated with

large specific volume, is readily pronounced in grain characteristics. Over-

oxidation results in serious damage to bread quality. It is characterized

by a very open grain structure and poor crumb texture. In addition, it is

often associated with large holes along moulding lines and bottom corners of

bread (Plate 4) despite the large specific volume.

The response surface for grain characteristics was found to be:

Gra in = 8.1126 - 0.01854 X) - 0.32226 X2 - 0.1410 X3 + 0.07514 X)
2

- 0.10159 X2
2 - 0.33)34 X32 - 0.039375 X,X 2 + 0.001875 X1X3

0.414375 X 2X 3

where: Xi = ascorbic acid

X
2

= ADA

Xo = bromate.

This equation did not satisfy the conditions for producing the true maximum.

Therefore, a search procedure was used to locate the maximum point in the
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region covered by the experiment, and the contour plots, to study the effects

of varying levels of oxidizing agents away from their estimated optimum

level s

The highest grain score was obtained with approximately 30 ppm of

bromate without ADA. This grain score was not affected by adding up to 50

ppm ascorbic acid. This tendency was indicated by a series of contour plots

drawn at different levels of oxidizing agents.

The effect of bromate and ascorbic acid without ADA on grain charac-

teristics is illustrated in Figure 12. A change in grain score was observed

depending upon the levels of ascorbic acid. The grain score remained almost

constant up to 50 ppm ascorbic acid, but increased gradually above that

level. The beneficial effect of ascorbic acid on grain characteristics was

detectable only above 50 ppm. This is probably due to the fact that ascorbic

acid was not an effective oxidizing agent for this process. Therefore,

relatively high levels of ascorbic acid were required for its beneficial

effect on grain characteristics.

Figure 13 shows the response of grain score as a function of ADA and

bromate at the constant level of 60 ppm ascorbic acid. Without ADA, the

grain score increased gradually up to 30 ppm of bromate and decreased again

by additional bromate. The combined effect of bromate and ADA on grain

score was almost the same as for specific volume. At the low levels of

bromate, the use of ADA was slightly beneficial but above 15 ppm of bromate

it became detrimental, as shown in Figure 13.

Overall score . Overall score was used to determine the effects of

oxidizing agents on specific volume and grain structure simultaneously.

As shown in Table 6, a specific volume of 7.0 and grain score of 9.0 was
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Fig. 12. Contour plot of grain score (B = 6.5, C = 7.0, D = 7.5, E = 8.0,

F = 8.5, G = 9.0) for ascorbic acid and bromate at ppm ADA.
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Fig. 13. Contour plot of grain score (A = 6.0, B = 6.5, C = 7.0, D = 7.5,

E = 8.0, F = 8.5) for ADA and bromate at 60 ppm ascorbic acid.



48

m
CO

< ra
<* CO

CO

CO
< CO

< CO
<

<

<
<

CO

CO

CO

CO

CO
CO

o
o

CO
CO

< CO

o u o
o u o
o oo

u
o
oo
o
u
o
XT

o

< CO
CO <_>

CO
co O

<
< CO O

o

O Q O

a
a
Q

a
a

<
< co o

o
CO O Q

CO o
o

o a
o a

UJ

O
CO (_)

o
LU

LU

uo o
CO u o

a
CO

CO

o

co
CO

CO

o»

LU LU LU UJ
LU UJ

UJ LU LU
LU

LU UJ
LU UJ
LU

Q LU
LU

o
a

o u

co

co

CO

<

CO

UJ
aj

U. U.
U. u,

U. u. U.

LL
u. u. o o

O CO

O CO
|LU

m

udd - sivwoua



49

considered as satisfactory and received 20 points each. A specific volume

above 7.0 was considered undesirable and did not receive additional points.

The response surface for overall score was found to be:

Overall = 27.9445 + 0.073215 X] - 3.71592 X 2
+ 0.65894 X

3
+ 0.90746 X, 2

- 1.1250 X
2
2 - 5.6317 X

3
2 - 5.5 X 2X 3

where: X] = ascorbic acid

X 2 = ADA

X3 = brornate.

Because this equation did not satisfy the conditions for a true maximum

point, a search procedure and contour plots were used to locate the optimum

combination of these three oxidizing agents which gave the highest overall

score in the region covered by the experiment.

The highest overall scores were observed at 40 ppm of bromate without

ADA. However, the overall score at 40 ppm of bromate was increased linearly

with higher levels of ascorbic acid. Figures 14 and 15 show overall score

as a function of ADA and bromate, and ascorbic acid and bromate, respectively.

The importance of bromate as a part of an oxidizing system is also

indicated in Figure 14 and 15. With low levels of bromate, it was impossible

to produce an acceptable bread. In the region investigated in this experiment

no acceptable overall score was found with any combination of ascorbic acid

and ADA at low bromate levels. It was proven that the bromate level is

quite critical in dough, and that the careful optimization of bromate is

required to avoid over-oxidation and to utilize the beneficial effect of

the bromate.
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The effect of ascorbic acid and ADA on overall scores, either as single

oxidizing agents or in combination with other oxidizing agents, were similar

to those observed for grain score, as shown in Figures \k and 15.

In summary, it was found that well balanced levels of bromate are required

to obtain the most beneficial effect on bread quality as confirmed by other

researchers (43, 5*0. The over-oxidizing effect of bromate became pronounced

above kO ppm.

The effect of ascorbic acid on bread characteristics was different than

expected. Several possible reasons may be offered for this result. One

might be the unique mechanism of ascorbic acid in which it is converted to

dehydro ascorbic acid in order to exert its oxidizing effect in dough.

During the preliminary study conducted to determine the optimum region

of each oxidant, a series of experiments were carried out to establish the

effectiveness of ascorbic acid as a single oxidizing agent for this process.

Poor results were obtained using up to 150 ppm ascorbic acid (Plate 5).

This was contradictory to the claim found with use of the Chorleywood

bread process in England which recommended 75 ppm of ascorbic acid as a

standard oxidizing system. But in the present experiment, ascorbic acid

used alone performed so poorly that an acceptable loaf of bread could not be

produced.

In mechanical dough development, a closed mixing system under vacuum

was used because the vacuum was very beneficial to grain structure. A much

smoother and finer cell structure was obtained under vacuum. Therefore, we

suspected that the oxygen availability was not great enough to convert ascorbic

acid to its dehydro form. In this case ascorbic acid might react as a

reducing agent rather than an oxidizing agent as reported by Mauseth (kO)
,
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Fig. I**. Contour plot of overall score (A = 6.0, B = 6.5, C = 7.0, D = 7.5,

E = 8.0, F = 8.5, G = 9.0) for ADA and bromate at 60 ppm ascorbic

acid.
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Fig. I5. Contour plot of overall score (A = 6.0, B = 6.5, C = 7.0, D = 7.5,

E = 8.0, F = 8.5, G = 9.0) for ascorbic acid and bromate at ppm

ADA.
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who concluded that the ascorbic acid reacted as a reducing agent in the so-

called "oxigen starved" condition in the developer chamber of the continuous

mixing system. Even in the Chorleywood bread process, the importance of

air in the mixing system was noted (12). Therefore, lack of oxygen due to

vacuum might cause the very poor performance of ascorbic acid when it was

used as a single oxidizing agent.

Another series of experiments were conducted to determine if improving

the oxygen availability to the dough during the mixing period would affect

the bread quality. Several doughs with 1 50 ppm of ascorbic acid were mixed

at atmospheric pressure in open and closed conditions. Few differences were

observed between bread made from these doughs and bread made under vacuum.

However, as shown in Plate 5, the bread made with 1 50 ppm of ascorbic acid

was much better than the bread with no oxidizing agents at all, even though

the bread was far from satisfactory. Therefore, one could suppose that the

ascorbic acid exerted some oxidizing effect, although it was not as good as

when used in combination with bromate.

We strongly suspect that the difference in bread formula and the degree

of dough development in U.S. type white pan breadmaking as compared with

the Chorleywood bread process may be mainly responsible for the unexpected

results from ascorbic acid.

ADA was not a satisfactory oxidizing agent. Many reports (1, k3, 5*0

are available on the favorable effect of ADA as an oxidizing agent. The

action of ADA was reported to be rapid and to extend over a long period,

comparable to the action of iodate. The complimentary effect of ADA with

bromate was reported in the ratio of 1:2 (ADA: bromate). However, those

complimentary effects were observed in the present study only at bromate
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levels less than 25 ppm. A detrimental effect of ADA was observed at the

optimum levels of bromate and ascorbic acid. In mechanical dough

development, the fast acting oxidizing agent was supposed to be especially

beneficial because of the high oxidizing agent requirement in a short period

of intensive mixing. However, no benefit from ADA was observed in this

exper iment.

A possible explanation of this might be partly found in the rapid reaction

rate of ADA, which may easily produce over-or under-oxidized doughs in a

particular process. Williams (5*0 suggests that a sophisticated oxidant

blend is required for sufficient tolerance in order for ADA to be used

successfully. From this point of view, the RSM design may not be able to

detect that particular situations which are very sensitive to the level of

ADA.

To determine if the estimated optimum combination of oxidizing agents,

(as indicated by search procedure and contour plots) gave the best quality

bread, a series of experiments was conducted. This was, especial ly, necessary

in order to check the pronounced beneficial effect of ascorbic acid outside

the region covered by this experiment.

Two combinations of 30 and kO ppm of bromate without ADA were used with

increasing levels of ascorbic acid. The experiment showed that kO ppm of

bromate was on the verge of over-oxidation; therefore, 30 ppm of bromate was

considered as the safe bromate level combined with up to 80 ppm of ascorbic

acid. Even with 30 ppm of bromate, more than 100 ppm of ascorbic acid produced

the over-oxidizing effect in bread quality.

A few reports (8, 13, 50) also support the finding that the best oxidizing

agent system results from a combination of bromate and ascorbic acid, even
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though their ratios were different.

In summary, in respect to the best oxidizing agent system for U.S.

white pan breadmaking by mechanical dough development, the response surface

study indicated:

1. Bromate was the most effective oxidizing agent system for this

process

.

2. Ascorbic acid as a single oxidizing agent was not effective in

this process. The combined effect of ascorbic acid with other oxidizing

agents depended upon the levels of other oxidizing agents and the level of

ascorbic acid, itself. The beneficial effect of ascorbic acid was observed

only at relatively high levels of oxidizing agents.

3. The effectiveness of ADA either in a single or combined oxidizing

system was questionable for this process.

Z/jf. The recommended optimum combination of the three oxidizing agents

studied for this process was 30 ppm of bromate with 80 ppm of ascorbic acid

without ADA.
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Dough Strengtheners

Dough strengtheners (surfactants) have become a common ingredient in

breadmaking in the United States. Several reports (38, 44) have been compiled

on the effectiveness of each of the dough strengthener on breadmaking.

Surfactants are known to produce a softer bread crumb and to thereby

a beneficial effect on bread staling, which is one of the big problems faced

by the baking industry (43). Other reported functions of surfactants in

breadmaking include improving the crumb texture and softness, increasing

volume, and sometimes reducing the required amount of shortening (43).

Dough strengthening effects of some recently introduced surfactants are

reported to include an improvement in the tolerance of dough to mechanical

abuse during processing (30, 43).

Four commercially available dough conditioners, were investigated as

to their effectiveness for U.S. type white pan breadmaking by batch type

mechanical dough development.

The original bread formula and baking procedure revised with the results

of the optimized three processing conditions and oxidizing agent system were

used for this experiment. A simple experimental design was used to compare

the effects of the four different dough strengtheners on several bread

characteristics at four different levels which were evenly divided up to

0.5 % (flour basis), respectively. All 16 combinations were randomized and

experimented in duplicate. The differences between the treatments were

tested by Duncan's Multiple Range Test (48) using a Statistical Analysis System

(SAS) computer package. Data from this experiment is found in Appendix 3.

Table 7 summarizes the effects of dough strengtheners on specific volume.

Little difference in specific volume was observed between the treatments and
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Table 7- Duncan's Multiple Range Test for Specific Volume

Treatment Level Replication Grouping* Mean

2 1 2

3 3 2

3 2 2

3 1 2

1 1 2

8

2 3 2

1 2 2

1 3 2

4 3 2

2 2 2

4 2 2

4 1 2

A 7.21

B A 7.10

B A 7.08

B A 7.05

B A 7.02

B 6.97

B

B

6.97

6.97

B C 6.93

B c 6.90

B c 6.89

c 6.71

c 6.70

* Means with the same letter are not significantly dif ferent(al pha=0.05)

Treatment: = control Level: 0=0%

1 = polysorbate 60/MG 1 = 0.17%

2 = SSL 2 = 0.3^ %

3 = EMG/MG 3 = 0.50 %

k = SMG/MG
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the control. The differences observed by the Duncan Test included a signi-

ficantly higher volume at 0.17 % SSL* and lower specific volumes at 0.34 %

and 0.5 % of SMG-VMG compared to the control. However, the remaining levels

of SSL and SMG/MG showed no significant difference in specific volume compared

with the control. Results with the different levels of SSL were rather

inconsistent. On the other hand, EMG/MG* showed a consistent improvement

in specific volume, even though the differences were not significant, compared

wi th control

.

The above results agree with the reports of several researchers (38, 43,

44), with the exception of SMG. Therefore, it was concluded that there was

little difference among the treatments and control in specific volume. The

already optimized processing conditions and oxidizing agents system may have

contributed to the lack of significant difference in specific volume between

the control and dough strengthener treatments.

Table 8 summarized the effects of dough strengtheners on grain charact-

eristics. In general, no significant differences in grain score were observed

between the treatments and control with the exception of the poor grain score

in 0.5 % of SMG/MG. This was supported by additional experiments. Therefore,

it was suggested that the level of SMG/MG should not exceed 0.34 % for the

best result of grain characteristics. A tendency to improve grain score

when higher levels of dough strengtheners were used was observed, although

the difference was not significant.

Significant improvements were observed in crumb color by the treatments

of dough strengtheners as summarized in Table 9. Highly significant differ-

ences were observed in the high levels of dough strengtheners but no signifi-

cant differences were observed in low levels of dough strengtheners compared

* Refer to Table 2.
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Table 8. Duncan's Multiple Range Test for Grain Score

Treatment Level Repl i cat ion Grouping-'- Mean

2 3 2

3 3 2

4 2 2

1 2 2

1 3 2

2 1 2

2 2 2

1 1 2

k 1 2

8

3 1 2

3 2 2

h 3 2

A 8.85

A 8.80

A 8.80

A 8.75

A 8.75

A 8.70

A 8.65

A 8.60

A 8.60

A 8.58

B A 8.50

B A 8.50

B 8.20

* Means with the same letter are not significantly different( =0.05)

Treatment: = control Level: = 0.00 %

1 = polysorbate 60 / MG 1 = 0.17 %

2 = SSL 2 = 0.34 %

3 = EMG / MG 3 = 0.50 %

k = SMG / MG
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Table 9. Duncan's Multiple Range Test for Crumb Color

Treatment Level Repl icat ion Group ing* Mean

3 3 2 A 72.5

1 3 2 B A 70.0

k 2 2 B A 69.5

2 3 2 B A C 68.0

1 2 2 B D A c 67.5

3 2 2 B D A c 66.5

k 3 2 B D A c 66.0

2 1 2 B D A c 64.5

k 1 2 B D E c 63.5

3 1 2 D E c 60.5

1 1 2 D E c 60.0

2 2 2 D E 59.5

8 E 57.4

* Means with the same letter are not significantly different( =0.05).

Treatment: = control Level: = 0.00 %

1 = polysorbate 60/MG 1 = 0.
1 7 %

2 = SSL 2 = 0.34 %

3 = EMG/MG 3 = 0.50 %

k = SMG/MG



62

to the control

.

In general, color improvements were caused by the level rather than

the kind of dough strengtheners . Thus, one would conclude that the higher

level of dough strengtheners improved the crumb color significantly.

The improvement of crumb firmness is an interesting aspect of the use

of dough strengtheners. A great deal of study has been conducted on this

effect, but ambiguity still exists. However, the improving effect has been

clearly observed in many studies (37, 43, 44).

In this experiment, the effect of dough strengtheners in improving

crumb firmness was clearly observed. Significant differences were observed

between treatments in crumb firmness of one day old bread (Table 10), but

the differences leveled off in four day old bread (Table 11). Therefore,

only two treatments, 0.5 % EMG/MG and 0.5 % SMG/MG, showed significant

differences compared to that of control after four days.

In general, crumb firmness showed no correlation to the level of kind

of dough strengtheners.

In summary, the effect of dough strengtheners on bread quality made by

mechanical dough development was not so pronounced as it would be for bread

made by conventional breadmaking processes, especially for specific volume

and grain structure. However, crumb color and firmness showed significant

improvement when compared to the control

.

In general, no specific level or treatment significantly outperformed

the control in all bread characteristics investigated in this experiment.

The already optimized processing conditions and oxidizing agents system

could be partly responsible for this, as well as the alleged softer crumb

of bread made by mechanical dough development (2), although no attempt was
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Table 10. Duncan's Multiple Range Test for Crumb Firmness after 1 Day

Treatment Level Repl icat ion Group ing-v Mean

8 A 123.8

2 1 2 B A 120.5.

2 2 2 B A 116.5

3 3 2 B D A C 116.0

1 1 2 B D C 114.5

1 3 2 B D c 114.5

3 1 2 B D c 111.5

3 2 2 D E c 108.5

4 1 2 D E c 107.5

4 2 2 D E c 107.0

1 2 2 D E 104.5

2 3 2 E 98.5

4 3 2 F 84.0

* Means with the same letter are not significantly different( =0.05).

Treatment: = control Level: = 0.00 %

1 = polysorbate 60/MG 1 = 0.17 %

2 = SSL 2 = 0.34 %

3 = EMG/MG 3 = 0.50 %

4 = SMG/MG



64

Table 11. Duncan's Multiple Range Test for Crumb Firmness after k Days

Treatment Level Replication Grouping-'' Mean

210.3

204.5

203.5

195.5

193.5

191 .0

189.0

188.5

187.5

181.5

180.0

173.0

169.0

* Means with the same letter are not significantly different( =0.05).

Treatment: = control Level: = 0.00 %

1 = polysorbate 60/MG 1 = 0.17 %

2 = SSL 2 = 0.3k %

3 = EMG/MG 3 - 0.50 %

h = SMG/MG

8

1 1 2

k 1 2

2 2 2

3 2 2

2 3 2

2 1 2

3 1 2

h 2 2

1 3 2

1 2 2

3 3 2

h 3 2

A

B A

B A

B A

B A

B A

B A

B A

B A

B A

B A

B

B
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made to prove this effect in this experiment.

Consistent improvements of all bread characteristics investigated could

be observed at the 0.5 % level of EMG/MG, even though they were not always

significant.

It was concluded from this that:

1. In general, little significant improvement in specific volume and

grain score was observed from the use of dough strengtheners.

2. Significant improvements were observed in crumb color at the higher

levels of dough strengtheners, and in crumb firmness at the 0.5 % level of

EMG/MG and SMG/MG.

3. 0.5 % EMG/MG showed relatively good performance for all bread

characteristics tested compared to the control, although the differences

were not always significant.
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Cysteine and Work Input

The study on the optimum combination of three processing conditions

found work input and dough temperature located at the very margin of the

region covered by the experiment. It presented considerable difficulty in

controlling of dough temperature, because high work input normally results

in a very high increase in dough temperature under normal processing condi-

tions .

Since maintenance of optimum dough temperature is important to bread

quality, a method of reducing work input and thereby reducing the extremely

high dough temperature would be valuable. The reducing agent cysteine hydro-

chloride mono-hydrate, which is commonly used for chemical dough development

(26), was studied to determine its potential in reducing work input without

serious damage of bread quality. Similar attempts have been made for the

Chorleywood bread process (5*0 and other mechanical dough development process

and it was reported that the work input level could be cut considerably

without impairing bread quality (35).

Many reports (10, 16, 25, 36) are available on the effects of cysteine

on breadmaking processes and quality. Cysteine is one of the naturally

occuring alpha amino acids, and through disulfide bonding, this can link

protein subunits together into long chains. This cross link is mainly

responsible for the structural stability and elasiticity of wheat gluten

(5*0. Many studies (53, 54) have been conducted on the reaction mechanism

of cysteine in dough systems. It can be postulated that if free cysteine

is added to the dough system, it may rapidly react at the cross links

to free the protein chains one from another, eventually leading to

a rearrangement of protein chains into some optimum configuration,
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with even at relatively slow mixing speeds.

To study the combined effects of cysteine and work input on bread quality,

a careful balance between work input and cysteine levels was required, since

an imbalance of these two factors could result in either overmixing or under-

mixing of the dough. This point was also made by Mauseth (kO) .

The RSM technique was used for this purpose and a factorial design for

two variables described by Cochran (15) was used with 13 data points. These

points were randomized with duplicates samples. Table 12 includes the cysteine

and work input levels covered by this experiment and their corresponding RSM

scales and Table 13 shows the RSM design.

The original bread formula was revised by the findings obtained in the

previous three experiments included optimized processing conditions, oxidizing

agents, and the addition of 0.5 % EMG/MG. All of the data are in Appendix k.

Specific volume . The following response surface was obtained for specific

volume:

Specific Volume = 6.9767 + 0.12313 X, - 0. 1 3031 X2
- 0.09042 X|

2

- 0.1335^ X2
2 - 0.09 X]X 2

where: X] = work input

X2 = cysteine

It was apparent that this equation satisfied the conditions for true maximum,

so the estimated maximum point was calculated by the method described earlier.

The estimated maximum was Xj 1.10 and X 2
= - 0.862 which corresponded to

7.1 watt-hrs./lb. of work input and 15 ppm of cysteine, respectively. This

maximum point was inside the region covered by the experiment.

A contour plot (Figure 16) was drawn for specific volume as a function
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Table 12. Work Input and Cysteine and Their Levels for the RSM Study

Independant Variable Symbol
Code

.414 1 1.414

Work Input

(watt-hrs/lb)
4.6 5.0 6.0 7.0 7.4

Cys te ine

(ppm)
*2 12 40 68 80

Table 13. RSM Design for Two Variables at Five Levels

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

Mar iables

1.414

1.414

x2*

-1

-1

1

1

• 1.414

1.414

* Refer to Table 12,
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Fig. 16. Contour plot of specific volume (A = 4.0, B = 5.0, C = 5.5, D

6.0, E = 6.5, F = 7.0) for work input and cysteine.
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of work input and cysteine. The estimated maximum point was well correlated

with the contour lines which shape oval around the estimated maximum points.

Interaction was observed between the work input and the cysteine level

as shown by the oval shape of the contour lines. This interaction may

provide more tolerance in specific volume as variable levels move toward

lower work input and higher cysteine levels.

Figure 16 shows that acceptable bread (i.e., bread with a specific

volume of 7.5) can be made within the following ranges of the two breadmaking

parameters: 6.0 watt-hrs ./lb. of work input with 40 ppm of cysteine level.

Grain score . The response surface for grain score was found to be:

Grain = 8.50275 + 0.1279** X, - 0.01206 X
2

- 0.06001 X| 2 - 0.19*07 X 2
2

+ 0.0625 X]X2

where: Xj = work input

X2 = cysteine

The estimated maximum point was X, = 1.1^59 and Xo = 0.15322 which corres-

ponded to 7.15 watt-hrs. /lb. of work input and kk ppm of cysteine, respectively,

which are all inside the region covered by the experiment.

Figure 17 shows the effect of varying cysteine and work input levels on

grain characteristics. The over-and under-mixing effects were clearly observed

when the levels were changed from their optimum. The minimum level of work

input that can produce a grain score of 8.5 point was 6.0 watt-hrs ./lb. of

work input with 40 ppm of cysteine.

Overall score . The response surface for overall score was found to be:

Overall = 3^.36578 + 2.2207 X, - 1.25018 X2 - ] M7 1* X,
2

- 3. 1787 X2
2
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Fig. 17. Contour plot of grain score (A = 6.0, B = 6.5, C = 7.0, D = 7.5,

E = 8.0, F = 8.5) for work input and cysteine.
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Fig. 18. Contour plot of overall score (A = 10, B = 15, C = 20, D = 25,

E = 30, F = 35) for work input and cysteine.
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where: X] = work input

X2 = cysteine

The estimated maximum point was Xi = O.767, X2 = - 0. 19664 which corresponded

to 6.8 watt-hrs ./lb. of work input and 32 ppm of cysteine, respectively.

Figure 18 shows the combined effects of work input and cysteine on the

overall score. The minimum level of work input that can produce the 35 points

of overall score was 6.0 watt-hrs. /lb. of work input level with 35 ppm of

cysteine.

In summary, the RSM study on the combined effects of work input and

cysteine levels indicated:

1. Undesirable effects of over- or under-mixing were clearly observed

when the levels of work input and cysteine changed from their optimum levels.

2. Significant interaction between work input and cysteine was observed

for specific volume.

3. Based on the analysis of the overall score, a combination of 7.0

watt-hrs. /lb. of work input and 30 ppm of cysteine was recommended to minimize

work input for operational convenience.

This estimated result was verified as shown in Plate 6. The specific

volume was increased slightly and the grain score equalled those of the

control

.
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SUMMARY AND CONCLUSION

An attempt to make acceptable U.S. type white pan bread by batch type

mechanical dough development was carried out by optimizing important factors

involved in the breadmaking process. The areas studied included the effect

of processing conditions, oxidizing agents, dough strengtheners , and cysteine

on this process. Response Surface Methodology and the Duncan Multiple Range

Test were used; statistical analysis was obtained with a computer using

the Statistical Analysis System (SAS) computer package.

The processing conditions: water absorption, work input and dough tem-

perature were found to be of almost equal importance for obtaining optimum

bread quality. Interactions were observed, especially between work input

and dough temperature. Considering the estimated optimum and operational

convenience, a combination of 60 % water absorption, 8.5 watt-hrs ./lb. of

work input, and 89 °F. dough temperature was recommended for this process.

A study of oxidizing agent systems showed that bromate was the most

important oxidizing agent in this process. The effect of ascorbic acid

depended on the levels of oxidizing agents used. It was beneficial only

at high levels of combined oxidizing agents in this process, and its effect

was more pronounced for grain structure than for specific volume.

The effect of ADA was questionable. A slight improvement in bread quality

with ADA was observed only when combined with very low levels of bromate,

but when used singly or combined with other oxidizing agents, its reaction

was detrimental to bread quality. A combination of 30 ppm of bromate and

80 ppm of ascorbic acid gave the best result in the region covered by this

exper iment

.

The effect of dough strengtheners on this process was not pronounced.
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No significant differences were observed in specific volume and grain score

compared to the control. However, their beneficial effect on crumb color

and crumb firmness was obvious. There was no specific kind or level which

outperformed the control significantly. However, relatively good performance

of 0.5 % EMG/MG was observed in the bread characteristics studied.

The effect of cysteine on reducing work input in the dough system was

carefully studied. The results showed that work input could be reduced from

8.5 watt-hrs ./lb. to 6.0 watt-hrs./lb. with kO ppm of cysteine without a

significant decrease in bread quality. The best results were obtained with

a combination of 7.0 watt-hrs./lb. of work input and 30 ppm of cysteine.

In conclusion, this study showed that it is possible to make acceptable

U.S. type white pan bread by batch-type mechanical dough development. Even

though a direct comparison with good quality bread made by conventional

processes was not made, the large specific volume and the fine grain structure

obtained were obviously similar to those made by the conventional processes.
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Appendix 1. Processing Conditions

Number Water* Work* Dough* Spec if ic Grain Crumb Overal 1

Abs. Input Temp. Vol ume Structure Color

1. 1 1 -1 6.53 8.1 54 34

6.40 7.9 53 33

2. 1 -1 -1 6.05 7.9 48 20

6.10 7.8 45 17

3. 1 -1 1 6.92 8.4 52 25

6.97 8.2 54 25

4. 6.70 8.3 57 33

6.65 8.4 55 33

5. 6.69 8.2 55 34

6.75 8.4 52 32

6. -1.682 5.80 7.4 45 23

5.77 7.5 45 21

7. 1 1 1 6.55 7.1 37 28

6.49 7.0 34 26

8. -1.682 6.84 8.3 58 13

6.80 8.4 61 12

9. 1.682 6.26 7.0 35 23

6.30 6.8 36 25

10. 6.73 8.3 52 29

6.65 8.4 54 31

11. -1 -1 1 6.82 8.2 56 19

6.90 8.2 55 16

12. -1 -1 -1 6.21 7.6 48 18

6.15 7.7 49 20

13. 1.682 6.50 7.2 42 35

6.40 7.3 44 36

14. -1 l 1 6.09 7.0 35 25

6.15 6.8 38 26

15. 6.70 8.2 54 32

6.80 8.5 53 30

16. -1 1 -1 6.31 8.0 50 33

6.25 8.0 52 35

17. -1.682 6.65 8.3 56 24

6.73 8.4 60 20

18. 6.87 8.2 56 30

6.74 8.3 56 30

19. 1.682 6.80 8.4 54 28

6.75 8.3 55 30
20. 6.71 8.3 57 33

6.60 8.4 52 33

* Refer to Table 3.
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Number Ascorb ic» ADA* Bromate* Specific Gra in Crumb Overal

1

Acid Vo 1 ume Structure Color

1. 1 1 -1 6.53 8.0 54 25
6.40 7.8 53 22

2. 1 -1 -1 6.06 7.8 48 18

6.10 7.7 45 18

3. 1 -1 1 6.92 8.3 52 32

6.97 8.2 54 31

4. 6.70 8.2 57 29

6.65 8.0 55 26
5. 6.69 8.2 55 28

6.75 8.1 52 28
6. -1.682 5.80 7.5 45 13

5.77 7.5 45 12

7. 1 1 1 6.55 7.0 37 15

6.49 6.7 34 14
8. -1.682 6.84 8.6 58 34

6.80 8.5 61 33
9. 1.682 6.26 7.0 35 12

6.30 7.0 36 13
10. 6.73 8.0 52 27

6.65 8.1 54 27
11. -1 -1 1 6.82 8.2 56 30

6.90 8.3 55 32
12. -1 -1 -1 6.21 7.6 48 18

6.15 7.7 49 18

13. 1.682 6.50 7.3 42 18

6.49 7.2 44 16

14. -1 1 1 6.09 6.8 35 18

6.15 7.0 38 11

15. 6.70 8.2 54 29
6.80 8.0 53 28

16. -1
1 -1 6.31 8.0 50 23

6.25 8.1 52 23
17. -1.682 6.65 8.4 56 30

6.73 8.5 60 32
18. 6.87 8.2 56 30

6.74 8.0 56 27
19. 1.682 6.80 8.3 54 31

6.75 8.4 55 31
20. 6.71 8.3 57 30

6.60 8.0 52 26

* Refer to Table 4.
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Appendix 3. Dough Cond i t ioners

Spec if ic Gra in Crumb Crumb Crumb
Number Treatment* Level ** Vo 1 ume Structure Color Fi rmness

(1 day)
Fi rmness

(4 day)

1. 6.95 8.7 55 130 207
6.88 8.6 53 125 201

2. 1 1 7.08 8.6 60 116 211
6.96 8.6 60 113 198

3. 1 2 6.92 8.7 65 102 180
7.02 8.8 70 107 180

4. 1 3 6.90 8.7 65 114 176
6.97 8.8 75 115 187

5. 7.03 8.3 53 13^ 195
7.09 8.8 61 117 189

6. 2 1 7.15 8.6 64 116 173
7.27 8.8 65 125 205

7. 2 2 6,92 8.5 55 120 202
6.86 8.8 64 113 189

8. 2 3 6.99 8.7 72 95 202
6.95 9.0 64 102 180

9. 6.75 8.3 60 123 194
7.15 8.5 59 115 198

10. 3 1 7.13 8.5 58 115 191

6.97 8.5 63 108 186
11. 3 2 7.15 8.6 68 107 171

7.02 8.4 65 110 216
12. 3 3 7.17 8.8 73 115 172

7.03 8.8 72 117 174
13. 6.90 8.8 60 124 255

7.06 8.7 58 123 244
14. 4 1 6.58 8.6 64 111 200

6.82 8.6 63 104 207
15. k 2 6.70 8.8 70 104 185

6.72 8.8 69 110 190
16. 4 3 6.96 8.2 66 85 170

6.85 8.2 66 83 168

o
* Treatment: = control Level: = 0.00 %

1 = polysorbate 60/MG 1 = 0.17 %

2 = SSL 2 = 0.34 %

3 = EMG/MG 3 = 0.50 %

4 = SMG/MG
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Appendix 4.

.

Work Input and Cyste ine

Number Work* Cysteine* Specif ic Grain Crumb Overal

1

Input Vol ume Structure Color

1. 6.90 8.5 65 3^
7.00 8.5 67 35

2. -1 -1 6.62 8.2 65 28

6.71 8.3 67 30
3. -1

1 6.40 8.0 64 24
6.58 7.8 62 24

4. 6.89 8.5 65 3k
7.10 8.6 67 36

5. 1. 414 6.69 8.3 65 30

6.53 8.2 66 27
6. -1.414 6.92 8.6 68 35

6.93 8.5 66 34
7. 1 1 6.52 8.3 67 28

6.73 8.4 68 31

8. 6.92 8.6 66 35
7.03 8.4 68 3k

9. 1 -1 7.15 8.5 69 35

7.17 8.4 71 3k
10. -J. 414 6.91 8.0 69 29

6.78 8.0 71 28
11. 6.9^ 8.5 66 3k

7.08 8.5 68 35
12. -1.414 6.71 8.3 68 30

6.68 8.2 66 29
13. 6.90 8.5 67 3k

6.85 8.6 65 3k

Refer to Table 12



81

ACKNOWLEDGMENT

The author wishes to express his deep appreciation to his major professor,

Joseph G. Ponte Jr. for his guidance and valuable suggestions during the

research and preparation of this manuscript; and to Dr. Charles W. Deyoe,

Head of the Department of Grain Science and Industry for the provision of

research facilities and serving on supervisory committee and reviewing this

manuscript. Appreciation is expressed to Dr. V. Elizabeth Marston for serving

on supervisory committee and reviewing this manuscript.

Special appreciation and thanks are extending to Dr. Dallas E. Johnson

for his valuable guidance and suggestion for statistical analysis on this

work.

The author is grateful to his father, mother, and family to encourage

him to complete this work and help with thoughtful prayer.

Acknowledgment is also given to the Crop Improvement Research Center

in Korea for their financial support.



82

LITERATURE CITED

1. American Institute of Baking. Azodicarbonate as a substitute for iodate
in continuous-mix bread production. Bulletin No. 127, (1967).

2. Axford, D. W. E., and Chamberlain, N. et al. The Chorleywood process.
Cereal Sci. Today 8: 265 (1963).

3. Baker, J. C. The origin of the gas cell in bread dough. Cereal Chem.
18: 19 (19^1).

4. Baker, J. C., and Mize, M. D. Mixing doughs in vacuum and in the presence
of various gases. Cereal Chem. 14: 721 (1937).

5. Baker, J. C. Continuous processing of bread. 30th Annual Meeting of
the A.S.B.E. 65-71 (195^).

6. Baldwin, et al. Progress report-Effects of milk components on con-
tinuous mix bread. Cereal Sci. Today 9: 284 (1968).

7. Bayfield, E. G., and Young, W. E. Flour brew studies. Baker's Digest
39(3); 50 (1965).

8. Bottomley, R. A. Experiences with mechanically developed doughs produced
by the Tweedy Mixer. Food Sci. Tech. Abst. 2: 7M610 (1970).

9. Burth, N. D. Ultra-high speed mixing. Baker's Digest 45(2): 46 (1971).

10. Bushuk, W., Tsen, C. C, and Hlynka, I. The function of mixing in

breadmaking. Baker's Digest 42(4): 36 (1968).

11. Calrvel, R. Intensive kneal ing and its present and future consequence.
Food Sci. Tech. Abst. 1: 11M820 (1969).

12. Chamberlain, N., and Collins, T. H. The Chorleywood bread process; The
importance of air as a dough ingredient. FMBRA Bulletin, Aug. (4): 1977.

13. Chamberlain, N. Milling, baking research. Milling and Baking News 20
June, 1978.

14. Choi, R. P. Development of a preferment process for breadmaking.
Proceedings of 39th Annual Meeting of the A.A.C.C., Denver, Colorado
(1954).

15. Cochran, W. C, and Cox, G. M. Experimental Design. John Wiley and Sons,
Inc., N.Y., 1957.

16. Coppock, J. B. M. Accelerated mechanical dough development. A.S B E

79 (1969).

17. DeRuiter, D. Some observations of the effects of different breadmaking
system. Baker's Digest 42(5): 24 (1968).



83

18. Elton, G. A. H. Mechanical dough development. Baker's Digest 39(4)
38 (1965).

19. Estes, R. P. Progress report on acceleration of batch process bread
production. A.S.B.E. 94 (1966).

20. Evenson, M., and D'Appolonia, B. L. Effect of processing conditions on
continuous -mix bread quality. Baker's Digest 51(6): 11(1977).

21. Finney, K. F., Tsen, C. C, and Shogren, M. D. Cysteine's effect on
mixing time, water absorption, oxidation requirement, and loaf volume
of Red River 68. Cereal Chem. 48: 540 (1971).

22. Gorman, T. , and Gruber, F. Dough process trends. Part 1 and 2. Bakery
Prod. Market. 7: 61 May (1972).

23. Hall, C. H. Accelerating Batch process bread production. A.S.B.E.
51 (1965).

24. Henika, R. G., and Zenner, S. F. Baking with the new instant dough
development process. Baker's Digest 36(3): 36 (i960).

25. Henika, R. G., and Rodgers, N. E. Reactions of cysteine, bromate, and
whey in a rapid breadmaking process. Cereal Chem. 42: 397 (I965).

26. Henika, R. G. Cysteine, whey and oxidant reaction in continuous mix.
Cereal Sci. Today 10(8): 420-424 (1965).

27. Henika, R. G. Simple and effective system for use of response surface
methodology. Cereal Sci. Today 17: 309 (1972).

28. Henselman, M. P., Donatoni, S. M., and Henika, R. G. Use of response
surface methodology in the development of acceptable high protein bread.
Jr. of Food Sci. 39: 343-946 (1974).

29. Hoseney, R. C., and Finney, P. L. Mixing-A contrary view. Baker's
Digest 47(1): 22 (1974).

30. Jackel , S. S. New research expands knowledge of mixing requirements of
dough. Bakery Prod. Market. 6: 126 May (1971).

31. Johnson, J. A., and Miller, B. S. Preferment. Baker's Digest 31(3):
29 (1957).

32. Kerestedj ieff , N. Heat and efficiency effect of a mixer-developer.
Getreide Mehl Brot 26: 237-9 (1972) (Ger.).

33. Kilborn, R. H., and Tipples, K. H. Sponge-and-dough type bread from
mechanically developed doughs. Cereal Sci. Today 1: 25 (1968).

34. Kilborn, R. H. Factors affecting mechanical dough development. 1.

Effect of mixing intensity and work input. Cereal Chem. 49: 34 (1972).



8*+

35. Kilborn, R. H., and Tipples, K. H. Factors affecting mechanical dough
development. IV. Effect of cysteine. Cereal Chem. 50: 70 (1973).

36. Knight, R. A., and Christie, A. A. et al . Studies on the composition
of food. IV. Comparison of the nutrient content of retail white bread
made conventionally and by the CBP. British J. Nutrition 30: 181 (1973).

37. Koryachkina, S. Y. et al . The effect of mixing intensity on the
rheological properties of dough and the quality of bread. Food Sci.
Tech. Abst. 8: 7M865 (1967).

38. Landfried, B. W. Surfactants used by bread bakers. Cereal Sci. Today
22: 338 (1977).

39. Lyuchinskays , I. I. et al. Determining optimal conditions for dough
mixing. Khleb. Konditer, Prom. 13 No. 10: 34-6 (1969). Food Sci.
Tech. Abst. 2: 4M289 (1970).

40. Mauseth, R. E., Nees , J. [_., Chamberlain, L. M., and Johnson, W. R.
Oxidizing and reducing effects in the continuous dough process. Cereal
Sci. Today 12: 390-393 (1967).

41. Personal communication.

42. Pomeranz, Y. Review of components governing the oxidative requirements
of wheat flours. Baker's Digest 42(3): 30 (1968).

43. Ponte, J. G. Jr. Bread. In Wheat Chemistry and Technology, ed. by
Pomeranz, Y. A.A.C.C., St. Paul, Minn. (1971).

44. Pyler, E. J. Baking Science and Technology. Vol I, II. Siebel
Publ ishing Co. Chicago, III. (1973).

45. Redfern, S., Gross, H. et al . Research with a pilot scale continuous
breadmaking unit. V. Effect of brew fermentation time and make up on
continuous process bread flavor. Cereal Sci. Today 13: 324(1968).

46. Schiller, G. W. Flour requirement for continuous breadmaking. Baker's
Digest 41(2): 44 (1967).

47. Schiller, G. W. , and Gill is, J. A. Laboratory studies of flour for
continuous mix bread production. Cereal Sci. Today 9: 256 (1964).

48. Snedecor, G. W. and Cochran, W. G. Statistical Methods. Iowa State
Univ. Press.

49. Snyder, E. The continuous baking process. Baker's Diqest 37(4): 50
(1963).

50. Tipple, K. H. Recent advances in baking technology. Baker's Diqest
41(3): 18 (1967).



85

51. Swanson, C. 0., and Working, E. B. Mechanical modification of dough to
make it possible to bake bread with only the fermentation in the pan
Cereal Chem. 3: 65 (1926).

52. Tscheusner, H. D. et al. Analysis of wheat dough preperation by intensive
kneading. Food Sci. Teh. Abst. 8: 5M665 (1976).

53. Tsen, C. C. Chemical dough development. Baker's Digest ^7(5): hk (1973).

5^. Williams, A. Breadmaking: The Modern Revolution. Hutchinson Benham,
London.

55. Milling and Baking News. 206 (1978).



STUDIES ON THE PRODUCTION OF U.S. WHITE PAN

BREAD USING MECHANICAL DOUGH DEVELOPMENT

Nam Hwan Oh

B.S., Seoul National University, Korea 1972

AN ABSTRACT OF A MASTERS' THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Grain Science and Industry

Kansas State University

Manhattan, Kansas

1978



Different aspects of U.S. type white pan breadmaking by mechanical

dough development were studied with the Tweedy 35 high speed mixer. The

effects of processing conditions, oxidizing agent system, dough strengtheners

and the relationship between cysteine and work input were included. Response

Surface Methodology and Duncan Multiple Range Test were used in the statistical

evaluations

.

Three processing conditions - water absorption, work input and dough

temperature - were found to be closely related and their interactions were

clearly observed, especially between work input and dough temperature.

The recommended levels for this process were 60 % water absorption, 8.5 watt-

hrs./lb. of work input and 89 °F. dough temperature. Study on the oxidizing

agent system revealed that a combination of 30 ppm of bromate and 80 ppm of

ascorbic acid gave the best result. Ascorbic acid was beneficial only in

combination with other oxidizing agents, and no improving effect was observed

with ADA. The effect of dough strengthener was not significant, but some

improvement in bread quality was obtained from using 0.5 % Ethoxylated mono-

diglycer ide/mono-d iglycer ide. Cysteine was effective in reducing work input

from 8.5 to 6.0 watt-hrs ./lb. without seriously impairing bread quality.

However, the best results were obtained with the combination of 30 ppm cysteine

and 7.0 watt-hrs. /lb. of work input.

The results of this study show a potential for using batch type mechanical

dough development to produce acceptable U.S. type white pan bread.


