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INTRODUCTION

Rault (1) has outlined a method of servo design by consid-

ering the admissibility problem first. For the admissibility

criterion he used the following definition, based upon King's (2)

i ero error coefficient theory.

Definition . A feedback device is admiissible into the servo

class if it satisfies King's criterion. He further expands upon

this admissibility criterion by the introduction of an algorithm

lor determining an approximate identity operator.

An approximate identity (or aidentity) of order k is de-

fined as a servo that follows an input t^/kj with zero steady-

state error. An example of a first-order aidentity is the

transfer function

1
T(s) = (1)

1 + s

Ihis function follows a unii: step function with zero steady-

state error.

King (2) and Rault (1) have developed a set of relation-

ships which are sufficient to guarantee that a transfer function

is an aidentity of some given order. They extended this theory

to a relationship betv;een the coefficients of the numerator

and the denominator.

Rault observed that an increase of aidentity order in-

creased the performance of the servo. However, the transfer

functions under consideration were either ratios of polynomials

or s alone or z alone. The present paper discusses the
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admissibility of continuous feedback devices with time lag into

:he servo class and finds a process by wliicii this control system

oan be improved. A constraint that the servo must be stable will

be imposed; an unstable servo is a self-contradictory system.

'?o insure this last condition only positive real functions will

be used. Stability considerations alone do not exclude the

;.arge class of partial positive real functions because some

])artial positive real functions are stable and others are un-

:itable.

It is beyond the scope of this paper to study the transient

response of these sjszacas.

REQUIREMENTS FOR THE n^^-ORDER AIDENTITY

A control system whose transfer function is dependent on

i and time lag e"-^^ can have the formi:

„ „n p-mTs
I^T N

X! Z!^ "n.m
n=0 m=0

T(s,z) = (2)

,n „-miTs

n=0 m=0 ' m ^ e

This can be expressed as a rational bilinear form

T(s,z) - (3)

vhere z = e"'^^

<r= is°, si, s2, . . ., s")' (W

5 = (zO, zl, z2, . . ., zN).

-A =
(^xn^ri), a square matrix of order N + 1



= (b^^ ^) , a square matrix of order N + 1

' (primes) denote the transpose operation.

Lemma . A transfer function with, time lag as defined by

(2) is an n^-'^-order aidentity if it sa;;isfies

N N list-oraer

L ^0,k =
Xr. ^O.i^ faidentity

N

N N

k"-2bl,k

N

N

r kb 2 k
k=0

y 2^^-order

aidentity

(5)

\ n'^-'^-order

aidentity

'.'hese relations are independent of the nonzero sampling in-

terval, T seconds.

Proof. The steady-state error of this system can be

described as



E =

s— '3^
(6)

vhere n-1 is the degree of the polynomial input function. If

the systera is an n'^^-order aidentity^ E^^ must be zero. This

equation may be expressed as

En =
s —»-0 s"-l)( cr'B^ )

=

Ey assuming that

lim cr'B^ 7^

(7)

(8)
s-^0

we obtain

Ej^ = lim = (9)

Starting with a unit step function input, the first-order

aidentity criterion is

E^ = lim ( 0"B^ - cr'AJ ) = (10)
s —>0

which yields

lim
s-^

cr'A% ) = lim ( o-'B;^

s —>0 (11)

PDr the second-order aidentity one obtains the previous formula

a id

E2 = lim
s—>

= (12)

It is noted that E2 is indeterminate in form and

L 'Hospital's Rule may be applied to obtain

E2 = lim ( Vcr'B^ - s7cr'A% ) =
s^O (13)
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lira (Vcr'A^ ) = 11-m (V^'B^) (11+)

s -H^ s

V here V = d/ds

.

This illustrates the fact that for the second-order

£ identity to hold, the first must also hold.

By assuming that the first n-1 aidentities hold, an ex-

pression for the n"'^^-order aidentity can be obtained.

En=
s —> gn-l

(15)

ly using L'Hospital's Rule n-1 times

E„ = lim (V"""-^ cr'B^ - V"""^ cr'Aj) =0 (l6)
s->- .

vhich imiplies

lim (v"""^cr'A^) - lim ( v"^"^ <r 'B_^ ) (1?)
s s —>

The operator v ^""^ Is the (n-1)'^-'^ derivative of the pro-

ducts cr'A^ , and c^'B^ . This operation can be expressed as

Leibnitz's form.ula for the (n-1) ^ derivative of the product

of two functions (Ij.) , or

V'^'^ct-a; =
""E"^ ^ (V""""^ cr'A)(V^^) (18)
r=0 '

and

V""V'B^ = ''^ C^_^ ^ iv'"''"^ <r^-B)iv''^) (19)
r=0 '

where are the binomial coefficients.

These relationships between numerator and denominator will

be further developed. Beginning with the first-order case.
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one obtains

uhere

s-*-

uo' = cr ' = (1, 0, 0,
s—>-0

VQ = lim ^ = (1, 1, 1, .

s-)-0

.ikewise for the denominator one obtains

lim C7-'B^ ~ '^0 '-^"^0

s-^

find

Uq ' Avq = liQ ' Bv

0)

, 1) ;

(20)

(21)

(22)

(23)

This equation may be reduced to a relationship between the

coefficients of the transfer function by replacing the Uq ' s and

vq
' s by their appropriate vectors and multiplying.

Uo'Avq = (1,0,0,0, ... ,0)

^0,0 ^0,1 ••• '^0,N

aN,0

i2k)

N

k

nd

^0,0

Uq'Bvq = (1,0,0,0, .. .,0)

'0,N

(25)

^N,0
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k=0

For the second-order aidentity to hold, the above rela-

tionship as well as

,
lira (Vcr'A^ ) = lim (VcT'B^ ) (26)

s — s—>0
rrust hold. This last expression can be expanded by executing

the implied differentiation,

lim (V<r'A^ ) = u. 'Av^ + u^'Av-,
S—i-0 -L U U ±

= lira (VcT-'B^ ) = U-, 'Bvo + Up,Bv-|

s->0 X w u J.

where Uq and Vq are as previously defined

U;i_ = lim (Vcr) = (0, 1, 0, 0, 0)'
s

VI = lim (V^) = -T(0, 1, 2, 3, N)
s->

Using these vectors the coefficient relationship is

established

.

(27)

(28)

(0,1,0, ...,0)

-^^(1,0,0,...,0)

^0,0

/N,0

^0,0

^1,0

_aN,0

^0,N

^0,N
(29)
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N N

The same process can be applied to the left side and yields

N

k (30)

or

N N N N

f a. 1,
- T r ka^ , = f b. , - T r kbo , (31)

k=0 ^'^ k=0 k=0 ^'^ k=0

If aidentities of order one through n-1 are assimed to

hold, the coefficient relationship for the n'^^^-order aidentity

- th
(;an be derived. it has already been shown that for the n

order aidentity to hold the relationship

lim (v"""^ cr'A^ ) = lira ( v""""^ cr'B^ ) (32)
s —>- s —>0

nust hold.

Taking the limit of the implied differentiation yields

(n-l)(n-2)
,

^n-1 ^^0 + (n-l)^i-2 A^l +
^n-3 ^^2

+ . . . + (n-l)u-^' Av^_2 + Uq' Av^_^

(n-l)(n-2)
,

~ '^n-1 ^"^0 (^-l)^n-2 ^^1 + ~
^n-3 ^"^2

+ . . . + (n-Du;^' Bv^_2 + Uq' Bv^_;^ (33)

uhere Uq, Vq, v-j^ are as previously defined.



9

U2 lim (V^cr) = (0,0,2,0, 0)
'

s -*0

uo = lim (V^O-) = (0,0,0,6,0, 0)
s ->

i3k)

Un_i = lim (V^ ^cr) = (0,0,0, 0,(n-l)J,0, 0)
s

V2 = lim (V^5) = T2(0,l,i|,9, ...,n2)'
s-5-0

^3 lim (V^^) = -T^(0,l,8,27, N^)
3—^0

(35)

^n-l lim (V ^; = (-1) T (0,1,2 , N )

s ->

Replacing u's and v's by their appropriate vectors and

executing the implied multiplication gives the required coeffi-

cient relationship for the n'^^-order aidentity.

N N (n-l)J _ N ^

k=0 ^'^ k^-O
^'^

21 k=0
""^'^

(-l)^(n-l)i W
- . . . + i y k a^_(i+^) + . . .

m .' k=0

(-l)^-l(n-l)i N

(n-l)i k-^-O
^'^

K N
= (n-l)i r Vl,k - T r kb^.2,k (36)

k=0 k=0

(n-1); 2^2, (-l)^(n-l)i N
T

21 k^O ^ ^'^
mj k^O

n-("i+l).i^
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(-1) n 1 ^ n-1

(n-1) J k-^O

The aidentity equation in this expanded form can be looked

upon as polynomials in T. These polynomials are equal if and

c nly if coefficients of like powers of T are equal. It is

therefore permissible to write the above equation as a set of

equations by equating like powers of T. This results in the

£et of equations

N N

kSo
"^-^'"^ ^ kSo

"^^-^'^
•

(37)

k=0 k=0

Qhis completes the Lemma's proof.

AN AIDENTITY ALGORITHM

The aidentity criterion for the rational bilinear form can

t'e expressed as a matrix algorithm of the form

Diagonal (AQ^) = diagonal (BQ^) (38)

The matrix is the n^-'^-order aidentity operator matrix. This

matrix is used only after showing that the first order through
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the ( n-1) order aidentity criterion are satisfied by the

s:iven transfer function.

diag(AQ;^)

diag(

diagCAQ^)

Giag(3Q2)

diag(BQ2)

diaglBQ^)
(39)

diag(AQ^) = diag(BQ^)

for the complete h^^-order aidentity criterion.

Definition . is a square matrix of order N+1 where N+1

is the order of the square matrices A and B in the rational

bilinear form. Specific forms of are

:

1

1

1

Q2

010

310 (ill)
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(N+l)x(N+l)

"o . . . . 1 . .

^(n-l) l(n-2) ]_(n-p)
. . 1 1 . .

2(n-l) 2(n-2)
. . 2 1 . . . (42)

3(n-l)
•

•

^(n-1)

•

.. N 1 .. .

METHODS OF AIDENTITY IMPROVEMENT

The criterion for a servo that will follow an n^^-order

input function has been defined. The next problem is to gen-

erate this n -order servo recursively given some simpler system

as a starting point,

Rault has shown that given a transfer function A (a func-

tion of s alone or z alone) which is at least a first-order

aidentity; a higher ordered aidentity will be generated by the

transformation

Bn - 1

Bn + 1

A - 1
-in

A +
1_^

This can be extended to the form

Bn+1

^n+l

which reduces to

- 1
—

A - l'
n

A - 1

+ 1 A + 1 A + 1_
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Vi = -—
1 ^ AB.^

This is a special case of Richards' form for a positive

leal function

a + b
B = (1^6)

+ ab

Kalijak (3) has shown that if ^ is a positive real con-

stant, a and b are positive real functions; then B is also

positive real. If only positive real functions are considered,

^n+1 then always be positive real, and hence stable. This

rrethod of improvement of the function B^ has the canonical

(i.e., most economical) block diagram of Pig. 1.

In the context of equation {1+3), B^ is merely the n'^-'^ iter-

ation of A, the original transfer function. It is possible,

however, to use two separate functions for A and B^ and get an

increased order aidentity. With the idea of two independent

functions this aidentity improvement method can be looked at

ii two ways: (l) as an iterative procedure using simple struc-

tures for A to give improvement; and (2) as a one-step procedure

using a com.plex structure for A which will achieve the same

improvement.

Example of Iterative Process

Choose

:



A <^

Fig. 1. Canonical block diagram of

_
A +

^n+1 ~ •

1 + AB^
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£ nd (if8)

1 + 2(l-z)

Both of these functions are p.r.f. and approximate identi-

ties. By using the Richards' form, a new transfer function is

generated which is an approximate identity of order two.

1 1

1 1 + 2(i-z:
B2

1

1 +
(1 + s) (1 + 2(l-z)

)

i| + s - 2z

k + 3s - 2z - 2sz

"l"

(i,s;
k

1

(l,s)
k

3

(It-9)

The improvement of the response may be shown by applying

tae aidentity algorithm derived earlier.

For the first-order aidentity one obtains

diag
-2 1 k -2 1

= diag
_1 0_ _1 0_ _3 -2_ _1 0_

(50)

= (2,0)

The system under consideration, was already a first-order

aidentity. To show an improvement the new system must be at

l3ast a second-order aidentity. Applying the second-order
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aidentity criterion.

k-
-2 1 k -2 1

Diag = diag
1 1 1 _3 -2_ 1 1

(51)

= (-2, 1)

This shows that aidentity improvement has been realized.

It is readily seen that this is the highest order aidentity

contained in the given transfer function. To achieve a higher

order aidentity the same process may be used a second time;

the results are

1 i|. + s - 2z

1 + s

B3 =
ii + 3s 2z 2sz

1 +
i| + s - 2z

(1 + s) (Ij. + 3s - 2z - 2sz)

8 + 8s - J4.Z - h^sz + s^

8 + 8s -
ii-Z - i4.sz + 332 -

"8
-J+

0"
1

(l,s,s2) 8 -k z

_1 0_ _z2_

(l,s,s2)

k 0'

k
2

(52)

Testing this function it is seen that the transfer func-

tion is again improved by en increment of one.
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The Sino;le Step Process

In the previous example aidentity order was increased by

cne for each iteration. To get an increment of two in a single

C'peration the initial function A is chosen such that it is a

i econd-order aidentity. An example illustrates this point.

Given A and B such that

2 + 23

A =

B-

2 -r 2s

1

1 + 2(1 - z)

One can find from Richards' form, that B2 is

2 + 2s 1

2 + 2s -r s' 1 2(

B2 =
2 ^ 2s

1 +
(2 + 2s + 3^) (1 + 2(1 - z;

(53)

8s - Ij-z - ii.sz

8 + 8s - i^z - i+sz +332 - 2s'

(l,s,s2)

-k- o1 Ti

(l,s,s2)
I

8
i

1 1

k j

i

!

z

.2

-k

-k

-2

(55)

This is the same result as B^ in the previous example.

This example leads to 'ollowin^!; theorem.
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Theorem on, Aidentity Improvement

If = = — (56) .

IS an approximate identity of order n ^0; if A is a -order

aidentity of the form

ao + Bj_s + 323^ + , . . + ai^_is^"-^
A =

Sq + a-j_s + ags^ + ... + a^-l^^'''"

H(s;

H(s) + sk

then

1 + ABp

is an approximate identity of order k + n.

Proof .

H(s) P,

^n+1

H(s) + sk

H(s)
1 +

wliere

a na

Q^(H(s) + s^)

H(s) + H(s)Pn + s^Pn

H(s) + H(s)Pn + sl^Qn

d=^V^ + s^P^

^= col fcr,
(s^+l, sN+2^

. . s^+l^))

f = col (zM^ 2^+2^
. .

zN+i^))

(57)

Bn+1 =
(58)

(59)

(60)
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V is defined as an (N+l+k by N+l+k) matrix whose elements

Also s^P^ can be rewritten as an (N+l+k by N+l+k)are v^^y ...^ .

•natrix of the form

jkp =

cr

3N+1

,N+2

,N+k

and o"Vg + s^P

6

^0,0 ^0,1

^1,0

^N,N . . .

,N+1

,N+2

N+k

(61)

n

cr

;N+r

,N+2

,N+k

^0,0

Vk-1,0

^k, 0+^0,0

^k-l,N

^k^N'^^O^N ^k,N+l

^k-l,N+l

^k+N,0^®N,0- • •^k+N,N+2N,N Vk+N,N+1 •••VN+k,N+k

kr

^0,N+k

^k-l,N+k

^k,N+k

,N+r

,N+2

3+k

(62)

By the same method cr'V^ + s Q^^ is obtained
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,N+2

^0,0 vo^i ^0,N+k

Vk-1,0

vk,o-*-^o,o

^k-l,N Vk-1,N+1

Vk-l,N+bo,N vic,N+l

Vk-l,N+k

vk,N+k

'^N+k, 0+%, • • • VN+k, N v^f+k, N+1 • • • v^+k, N+k

3+1

,N+2

,N+k

(63)

The aidentity criterion may now be applied. For the first-

order aldentity it is true that

N+k N+k

£ ^0,j = L ^0,j (6I|.)

j=0 '
-

J=(

The second-order aidentity includes the criterion for the

3'irst order and

jW+k N+k

N+k N+k
(65)

J=0

The k^^-order aidentity is proven in the same manner.

N+kN+k ,
,

j=0

k-1.

N+k N+k , _

.
'-^ j=o "-'-J

(66)
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N+k N+k

N+k N+k

The ( k+1) ^^-order aidentity depends upon the assumption that

I'j^ is an aidentity of some order greater than zero. Applying

th
the (k+1) -order aidentity criterion,

N+k N+k

N+k N+k

(67)
N N+k

J=D J=N+1

'

• N N+k

The last equation may be rewritten as:
"

N+k N N+k N

j?o "'^'J *
j§,

"O'J =
j§o

"'''J *
jib

thOf all equations for the (k+1) -order aidentity only the

last equation need be examined. If it be assumed the is an

aidentity of order n;>0, the equation

N N

X ^o,j = .E, ^o,j (69)
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.Ls true since it fulfills the condition of being a first-

order aidentity. This in turn satisfies the last equation for

:he (
k+1) ''^^-order aidentity for Bj^+j.

In general, any aidentity of order less than or equal to

j:+n can be found for this process. Assuming that all conditions

]iold for order k+n-1, the aidentity of order k+n can be shown ,:

:o exist. Applying the criterion for this case,

N+k ^, , N+k ^, ,

'

,

r-> -n+k-1, _ c-» .n+k-1

N+k N+k

N ^ , N+k ,

N ^ ]_ N+k

N
. N+k

(^k+n-l,j + Sn-l,j) + ^Z^^ ^k+n-l,j

N N+k

This last set of equations may be rewritten as

W ^1 n N+k , ,5^ .n+k-1 _ v-- .n+k-l„

J=0
''^ j=o "J

(70)
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N+k „ T N ^ N+k , N

Summation of the v- -'s causes cancellation and leaves

J

V n-^-2„ _ r-" .n-2,
L J ^1 1

~ L J ^11
j=o j=o -^'J

N N

This set of equations, however, is the same set that

nust satisfy if it is to be an n'^^^-order aidentity. Since by

]iypothesis these are true, the proof for the ( k+n) order

.lidentity for B^^-j. complete.

A corollary to the, above theorem will now be stated.

Corollary . If A(s,z) is an aidentity but Bn(s,z) is not

an aidentity, then (A + Bn)/(l + AB^) will still be an

identity of order k.
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Proof . The aidentity criterion for the aidentities one

tirough k do not involve any terms of but only v^^j's.

Taerefore the first k-order aidentities are independent of B^.

CONCLUSION

Linear feedback devices with time delay have been discussed

in this thesis. The relations between numerator and denominator

coefficients of this device's transfer function that insure zero

steady-state error for polynomial inputs have been derived.

Taese relations hold for all systems in this class, i.e., con-

tinuous systems with no time delay, continuous systems with

time delay, or sampled-data systems.

It has been shown that Richards' form for a positive real

fjinction can increase the order of an aidentity. This procedure

allows the original system and the compensating system to be

completely independent of one another. Using this result, it

is possible to achieve any order of aidentity improvement that

is desirable.
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A method of control system design based upon admissibility

of the control system into the servo class has been presented.

A criterion for admissibility of control systems with time lag

has been described. This criterion, based upon King's zero

srror coefficient theory, is expressed as a set of relations

'Detween coefficients of the control system transfer function.

Using Rault's work as a starting point, a method of

realizing an improvement in the order of aidentity is pre-

sented. This development gives a systematic design for control

systems . .•

'


