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On Monitoring of Multiple Non-linear Profiles 

Most state-of-the-art profile monitoring methods involve studies of one profile. 
However, a process may contain several sensors or probes that generate multiple 
profiles over time. Quality characteristics presented in multiple profiles may be 
related multiple aspects of product or process quality. Existing charting methods 
for simultaneous monitoring of each multiple profile may result in higher false 
alarm rates. Or worse, they cannot correctly detect potential profile relationship 
changes. In this study, we propose two approaches to detect process shifts in 
multiple nonlinear profiles. A simulation study was conducted to evaluate the 
performance of the proposed approaches in terms of average run length under 
different process shift scenarios. Pros and cons of the proposed methods are 
discussed. A guideline for choosing the proposed methods is introduced. In 
addition, a hybrid method combining the salient points of both approaches is 
explored. Finally, a real-world data set from a vulcanization process is used to 
demonstrate the implementation of the proposed methods. 

Keywords: Big Data, Profile Analysis, Multiple Profiles Analysis, Multivariate 
SPC, Multivariate EWMA. 

Introduction 
Quality characteristics represented as profiles have been studied in recent quality 

monitoring literature in recent years. For examples, Jin and Shi (1999) examined the 
stamping tonnage data over time within a cycle. Kang and Albin (2000) introduced a 
calibration issue during the etch step of a semiconductor manufacturing process. Walker 
and Wright (2002) studied the density of wood board over a section. Chang and Gan 
(2006) showed the monitoring stability of a calibration process in order to assure its 
accuracy. Paynabar and Jin (2011) presented pressing force profile signals in a valve 
seat assembly operation.  Chang et al. (2012) investigated the temperature profile from a 
curing process for high-pressure hose products. These studies only consider one profile 
type in their respective applications.  

Taking the advantage of information technology, engineers no longer measure 
the quality characteristics by hands but through automatic data sensors. This paradigm 
shift has resulted in a tremendous amount of data. For example, Jin and Shi (1999) 
reported that one tonnage sensor within a sampling interval could collect 1500 data 
points for each part, and the database would store 2.88×106 data points for 30 presses in 
16 hours of production. Although modern database management systems can handle 
and store those huge datasets, it is very difficult for conventional multivariate statistical 
process control techniques, such as, Multivariate Hotelling’s T2 control chart, to deal 
with big data and multiple types of profiles simultaneously.  

Profile analysis can be simply characterized into two categories, linear and 
nonlinear profiles according to the shape complexity of a profile of interest. With 
respect to linear profile applications, model parameters are the subjects of monitoring 
because linear profiles are easy to be presented by, for example, a simple linear 
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regression model. Many studies monitored either intercept or slope parameter of the 
calculated simple linear regression model or monitoring both. For example, Kang and 
Albin (2000) proposed two approaches, the first one monitored slope and intercept with 
the Hotelling’s T2 control chart, while the second one monitored average residuals 
between sample profiles and reference profile followed by exponentially weighted 
moving average (EWMA) chart and R chart.  Kim et al. (2003) showed their method of 
three univariate EWMA charts monitoring slope, intercept, and the variance of 
deviation between samples and regression line performs better than EWMA/R chart in 
terms of average run length (ARL).  

Studies in nonlinear profile analysis can be categorized into four types— 
applying multiple and polynomial regression (Zou et al., 2007; Kazemzadeh et al. 2008; 
Mahmoud 2008), applying nonlinear regression models (Ding et al., 2006; Williams et 
al., 2007; Shiau et al., 2009; Chang and Yadama 2010; Chen and Nembhard 2011;), use 
of mixed models (Jensen et al., 2008; Jensen and Birch, 2009; Qiu et al., 2010; 
Paynabar and Jin, 2011 ), and use of wavelets (Reis and Saraiva, 2006; Zhou et al., 
2007; Chicken et al., 2009).  For more detail of those methods to monitor the process 
stability can be found in Woodall (2007) and Noorossana et al. (2011). 

The studies mentioned above only consider one profile type for process 
monitoring. However, data points that collected in a process or system may be 
characterized by two or more profiles. Noorossana et al. (2010) investigated a 
calibration application between desired force and the real force produced by 1600-ton 
hydraulic press machine. The machine consists of a set of cylinders, pistons and 
hydraulic pipe controlled by a programmable logic controller (PLC) for input and 
output factors adjustment. The input variable known as the desired force or nominal 
force is given by a motor placed on the top of machine so that four real forces or the 
response variables collected from four cylinders of the press can be measured by a PLC. 
Since four response variables can be considered as correlated linear profiles, 
Noorossana et al. (2010) proposed a multivariate simple linear profile method to deal 
with this problem. Specifically, all linear profiles are of the same type but for each press 
cylinder. Their method cannot monitor multiple correlated nonlinear profiles of 
different types that measure different process characteristics.  

An example of multiple correlated nonlinear profiles can be found in a curing 
process of high-pressure hose products. According to Chang et al.’s (2012) study, the 
high-pressure hose products are covered layers of rubber and metal wires, which are 
loaded and cured in a heated chamber called an autoclave or vulcanizer, equipped with 
several sensors in different locations for monitoring air temperature, condensation water 
temperature, and chamber pressure. Although the key factor of curing process is the air 
temperature, the other profiles, such as, chamber pressure profiles, monitored 
simultaneously also play important roles in the curing process. Note that, high chamber 
pressure will increase the speed of reaching target air temperature. Also, a sealed 
chamber helps air temperature climb quickly and stably to the setup temperature point. 
On the other hand, a leaking vulcanizer requires more energy consumption to maintain 
the same temperature during the curing stage. Therefore, it is easier for quality 
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engineers to monitor the pressure profile using statistical process control (SPC) tool for 
saving energy.  

Chang et al. (2012) only investigated the air temperature profile of the curing 
process. When this process is out of control, it is very difficult for quality engineers to 
pinpoint the root cause. It is possible that the chamber is not airtight but both 
temperature and pressure maintain their target values. However, the relationship 
between the temperature and pressure profiles may have changed. In this study, both air 
temperature and pressure profiles are considered simultaneously. This example provides 
an illustration of how the proposed framework addresses multiple profile process 
monitoring in general. This paradigm motivates us to develop a novel approach for 
simultaneous monitoring of multiple correlated nonlinear profiles. A two-profile 
simulation study is conducted to evaluate the performance of the proposed charting 
methods. 

Figure 1 shows overall air temperature and pressure profiles that generated from 
a typical curing process. It may be possible to construct an underlining physics equation 
between the air temperature and pressure so that the quality characteristics can then be 
transformed from profiles to parameters as variables used in multivariate control chart. 
However, this underlining equation is not easy to be formulated, and it cannot be 
generalized for all applications. In other words, this equation (if it can be formulated) 
can only be used in this curing process application. In addition, according to Figure 1, it 
is obvious that the temperature and pressure profile are correlated, and yet, it is hard to 
define such a correlation between profiles in general. Although monitoring those profile 
types using multiple multivariate control charts independently provides a solution, high 
false alarm rate and low detecting power is the major concern given that profiles are 
correlated to each other. This study provides a general SPC framework for multiple 
correlated linear or nonlinear profiles.   

The focus of this study is the development of a proper process monitoring strategy for 
monitoring multiple correlated nonlinear profiles. This study examines two alternative 
solutions, in which profiles are first fitted by B-splines according to Chang and 
Yadama’s method (2010). Then the deviations of the observed profile from the fitted 
profile are recorded to generate a vector of plotting statistics. A multivariate EWMA 
(MEWMA) control chart is then used for process monitoring. The first proposed 
method converts absolute deviations at each profile into a summary statistic. The second 
proposed method contains several numbers for each profile because a profile is 
segmented into p sections where p>1, where p is a constant to be determined from 
engineering knowledge or the complexity of a profile. Each section is represented by a 
summary absolute deviation statistic. A two-profile simulation study is conducted to 
characterize property of the proposed approaches in terms of ARL. We will also discuss 
the pros and cons of both approaches, and how we combine the salient features of both 
methods into a hybrid approach. The proposed hybrid method combines method I and 
method II, which monitors each section or segment by a MEWMA control chart.  
Multiple (p) MEWMA charts need to be maintained for the proposed hybrid method. A 
real-world data set from a curing process is used to demonstrate the implementation of 
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the proposed methods. 

The organization of this study is the following. First, the modified Chang and Yadama’s 
(2010) method is briefly summarized, as well as the MEWMA procedure, followed by 
the proposed methods. Second, the experimental design of the simulation is introduced 
for testing the robustness of the proposed methods. Third, the ARL property for all 
proposed methods is introduced. Finally, the discussion and conclusion will be drawn in 
this section.  

 

Figure 1 Overall air temperature and pressure profiles from the curing process of high-
pressure hose products. 

The Proposed Methods 

In this study, two methods, method I and method II, are proposed to monitor the 
stability of the process whose quality characteristics are multiple profiles. Both methods 
consist of one multivariate control chart for all profiles and share the common 
modelling treatment, i.e., the modified Chang and Yadama’s method (see Chang and 
Yadama’s, 2010). Therefore, this section summarizes the original Chang and Yadama’s 
method followed by the modified version. Then, the MEWMA procedure is presented. 
Finally, the proposed method I and II are shown in the last part of this section.   

Modified Chang and Yadama’s Method  

Chang and Yadama (2010) proposed a control charting framework to monitor non-
linear profiles in detecting shape changes. They proposed single segment and multiple 
segments approach for monitoring one profile. We will only introduce their multiple 
segments approach in this study because this approach provides more details of fault 
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location for diagnosis purposes. The procedure of their proposed multiple segments 
approach is shown in Figure 2. Note that 𝐷𝑖𝑗 in Step 5 can be presented as equation (1) 
where 𝑥�𝑗𝑘 is the mean profile of segment k that can be calculated by using B-spline 
fitting. Moreover, the MTY decomposition method shown in Step 7 can be found in 
Mason, Tracy, and Young’s (2001) study for interpreting T2 control chart signals. 

 𝐷𝑖𝑗 =
∑ �𝑥𝑖𝑗𝑘 − 𝑥�𝑗𝑘�𝑐
𝑘=1

𝑐 , 𝑖 = 1,2, … ,𝑛;   𝑗 = 1,2, … ,𝑝, (1)  

where |·| represents absolute value; n is the number of profiles and i is the index of 
profile; p is the number of segments of a profile and j is index of the segment; c is the 
number of control points within each segment so that a B-spline can be fit to each 
segment, and k is the index of control point. All numbers of n, p and c are known or 
well defined according to the manufacturing process and the complexity of a profile. 
The default c is equal to 16 according to Chang and Yadama’s study (2010). 

Procedure of Chang and Yadama’s Method 
Step 1: Apply Discrete Wavelet Transformation (DWT) to the given profile to the 

desired level, so that the DWT coefficients can be obtained. 
Step 2: Reconstruct the DWT coefficients to original domain in two sets, signal of 

mean and signal of variance.  
Step 3: Partition the mean signal into p segments.  
Step 4: Apply B-spline with c control points to each segment, so that a control point 

matrix of order n×c⋅p is constructed, where n is the profile replicates. 
Step 5: The mean distance difference vector 𝑌𝑖 = [𝐷𝑖1,𝐷𝑖2, … ,𝐷𝑖𝑝] is calculated, in 

which is associated with the control point matrix.  
Step 6: To monitor the profile stability, the Hotelling’s T2 statistics on Yi are 

calculated using the mean distance difference vectors.  
Step 7: If process is in-control, go to Step 5; otherwise the MTY decomposition 

method is used for identifying the responsible T2 components.   
Figure 2 Procedure of Chang and Yadama’s Method. 

For the curing example in this study, since the curing process is control by the PLC, the 
within profile variance is very small. In other words, noises in each profile are very 
small. Therefore, we do not consider the use of the discrete wavelet transformation (or 
DWT) method for modelling the variance profiles as originally proposed in steps 1 and 
2 in Chang and Yadama (2010). Moreover, according to Chang and Chou’s (2009) 
study, the B-spline fitting is sufficient without applying the DWT to the Chang and 
Yadama’s method when the monitoring of the profile shape change is the only 
consideration. Therefore, the B-spline fitting technique is applied to construct the 
proposed control charts. In addition to these changes, a MEWMA control chart is 
selected to be the charting tool due to its sensitivity and flexibility. In addition, the 
MTY decomposition method can be replaced by Chang and Chou’s (2010) marginal 
cumulative sum (or CUSUM) glyphs because of its benefits of visualization and 
capability of dealing with high dimensional dataset of up to 20. The procedure of 
modified Chang and Yadama’s method is shown in Figure 3. The MEWMA control 
chart is introduced in the next section.  
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Procedure of the Modified Chang and Yadama’s Method 
Step 1: Partition the mean signal into p segments.  
Step 2: Apply B-spline with c control points to each segment, so that a 

control point matrix of order n×c⋅p is constructed, where n is the 
number of profiles. 

Step 3: The mean distance difference vector 𝑌𝑖 = [𝐷𝑖1,𝐷𝑖2, … ,𝐷𝑖𝑝] is 
calculated, in which is associated with the control point matrix.  

Step 4 To monitor the profile stability, the MEWMA statistics are calculated 
using the mean distance difference vectors.  

Step 5: If process is in-control, go to Step 3; otherwise marginal CUSUM 
glyphs method is used for identifying the responsible T2 
components.   

Figure 3 Procedure of Modified Chang and Yadama’s Method 

Multivariate EWMA Control Chart 
The charting technique based on MEWMA is introduced in this section. The 

MEWMA was first developed by Lowry et al. (1992). It is the extension version of the 
EWMA for solving multivariate quality control problem. The procedure of MEWMA is 
presented as follows. The MEWMA statistics T2 of the ith observation is shown in 
equation (2), where Zi is the extension form of univariate EWMA as shown in equation 
(3). Note that 0 ≤ 𝜆 ≤ 1 and Z0=0. The selection of chart parameters, 𝜆 and H, can be 
found in Prabhu and Runger’s (1997). The variance-covariance matrix of Z’s, Σ𝑍𝑖, can 
be calculated using equation (4), where Σ is a variance-covariance matrix, which is 
either known or can be estimated from a phase I control charting procedure with m 
individual observations according to equations (5), (6), and (7). Moreover, Σ, shown in 
the equation (5) performs better than that of using the conventional approach if there 
was no trend, cycle, etc., in the process. If the process was totally random, the variance-
covariance structure determined by equation (5) and the conventional approach would 
have no difference (Holmes and Mergen, 1993).  

 𝑇𝑖2 = 𝑍𝑖
′
Σ𝑍𝑖
−1𝑍𝑖 (2)  

 Zi=𝜆(xi)+(1-𝜆)Zi-1 (3)  

 Σ𝑍𝑖 =
𝜆

2− 𝜆 �1− (1− 𝜆)2𝑖�Σ (4)  

 Σ =
𝑉′𝑉

2(𝑚− 1)
 (5)  

 𝑉 = [𝑣1′  𝑣 ⋯  𝑣𝑚−1
′ ]′ (6)  

 𝑣𝑖 = 𝑥𝑖+1 − 𝑥𝑖 (7)  
 

Method I: One Chart for All Profiles and One Segment per Profile 
The first method proposed in this study is straightforward. We first apply the 

Step 1 to Step 5 of the modified Chang and Yadama’s method in Figure 3 with one 
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segment to each profile so that multiple profiles become a vector with each element 
representing one profile. As shown in equation (8), given a set of profiles, Xi is the ith 
observation and m is the number of types of profile and Dj can be calculated by using 
equation (1) with the number of segment of 1. For example, if the number of multiple 
profiles is two types with 512 data points in a profile, such as, temperature and pressure 
profiles of curing process of high-pressure hose products in this study, the number of 
types of profile m is equal to two. Therefore, the Xi is transformed from a matrix of size 
2×512 into a 2×1 matrix. After Step 1 to Step 5 in Figure 3 is applied, the input 
variables expressed as equation (8) will be input into the MEWMA. Then a process will 
be stopped if any out-of-control signal takes place.  

 𝑋𝑖 = �𝐷1 𝐷2 …𝐷𝑗�𝑖
′ ,  

where i is the index of observations and j=1,2,…,m 
(8)  

Method II: One Chart for All Profiles and Multiple Segments per Profile 

The second approach in this study is similar to the method I except that the 
number of segments of each type of profile p is greater than 1. The number of segments 
p is defined by users’ pre-knowledge about the process of interest. In our real world 
case, the curing process of high-pressure hose product, the p is equal to three because 
the quality engineer in the PH cooperate specified the process consists of three stages. 
Users can also segment the profile based on the section of interests. The choice of p is a 
balance of diagnostic need and computational resources. Once the number of the 
segments is determined by quality engineers, the procedure of the method II and method 
I are identical. The input variables are specified in equation (9), where Xi represents the 
ith observation, k is the index of segment, and j is the index of profile. The advantage of 
using segmentation is that the quality engineers can gain more details of fault locations 
when a diagnosis is needed. In other words, the segmentation method is sensitive to 
partial profile shape changes. The main drawback of method II is that the type I error of 
the MEWMA will increase when the number of segments increases. For example, if the 
process consists of 5 profiles with 4 segments each, the vector Xi will contain 20 
elements while the one segment approach only has 5 elements in the vector.  

  𝑋𝑖 = �𝐷11,𝐷12, … ,𝐷𝑘𝑗�𝑖
′   

where k=1,2,…,p; j=1,2,…,m; i is the index of observations. 
(9)  

A Simulation Study 
In order to study the performance of the proposed methods, all charts are 

established with in-control ARL approximately 200, denoted by ARL0=200. Moreover, 
the out-of-control ARL is denoted by ARL1 in the simulation study. ARL1 is used to 
evaluate the charting performance of the proposed approaches at the same false alarm 
rate. The simulation study conducts two correlated four-parameter logistic curves.  The 
curve equation is adapted from Jensen and Birch (2009). They used this curve in their 
simulation study for generating ARL property and then applied this property to the real 
world case. Note that, their study only consider one type of profile. In this study, the 
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curve equation will be extended to multiple profiles case. Specifically, in each sample, 
two correlated profiles are studied simultaneously. Equation (10) shows the operated 
function in this simulation study. Note that the coefficients in the equation (10), A=5, 
B=8, C=0.6, and D=0, are as same as the setup in Jensen and Birch’s (2009) study. 
Further, to simulate the correlated multiple non-linear profiles, it is assumed that the 
parameters between profiles are generated from independently and identically 
multivariate normal distribution from one observation to another. If the parameters a 
and b are said to be generated from independently and identically multivariate normal 
distribution with mean vector µ and variance-covariance matrix Σ, it is denoted as 
(a,b)'~NM(µ, Σ)'. The equation of simulated multiple correlated non-linear profiles is 
shown in equation (11) of which coefficients follow the following distribution: (a0i, b0i)'
～MN(µ0, Σ0)', (a1i, b1i)'～MN(µ1, Σ1)', and (e1i, e1i)'～MN(µe, Σe)'. Specific setup for 
the parameters of multivariate normal distribution is given in equation (12). Note that 
equation (10) determines the shape of two multiple correlated profiles in the simulation 
study. Following the profile property of the high-pressure hose products in the curing 
example, in which the noises within each profile are very small, and the variance-
covariance matrix of error terms in equation (11) is denoted as Σe specified by equation 
(12). An example of 25-pair in-control multiple correlated nonlinear profiles generated 
by equation (11) is shown in Figure 4.  

 𝑦𝑖𝑗 = 𝐴+ 𝐷−𝐴

1+�
𝑥𝑖𝑗
𝐶𝑖
�
𝐵𝑖

 
+ 𝜖𝑖𝑗  for 𝑖 = 1,2,3, … ,𝑚; 𝑗 = 1,2,3, … , 𝑛𝑖 (10)  

 �
𝑓𝑖𝑗 = 𝑎0𝑖 + 𝑎1𝑖𝑦𝑖𝑗 + 𝑒1𝑖

𝑔𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑦𝑖𝑗 + 𝑒2𝑖
   (11)  

 

𝜇0 = (10,−5)′,𝜇1 = (10, 3)′,Σ0 = �
1 𝜌
𝜌 1�  ,Σ1 =

�
0.12 0.01𝜌

0.01𝜌 0.12 �, and 𝜇𝑒 = (0,0)′,Σ𝑒 = �
0.12 0.01𝜌

0.01𝜌 0.12 �  where 

𝜌 is correlation parameter. 

(12)  

 

Figure 4 An example of 25-pair in-control profiles. 
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Experimental Design 
To test the robustness of the proposed methods, profiles shifted in shape is 

considered in this simulation study with various testing factors. Figure 5 shows the 
experimental design of the simulation study. In this research, only shape changes are 
considered due to the shape change could be caused by a number of factor 
combinations. Given two types of profiles, Profile A and Profile B, possible factor 
combinations include two categories and five scenarios for the profile shapes changes 
are given according the scheme in Figure 5 for the simulation study.  

In addition to shifted types, correlations between profiles and shift sizes are also 
considered in this simulation study. For the factor of correlation between profiles, there 
are three attributes to be tested, i.e., low (ρ=0.3), moderate (ρ=0.5), and high correlated 
(ρ=0.9). As for shift sizes, three magnitudes: small, medium, and large shift, are 
considered in this simulation study. The in-control ARL is fixed at approximately 200 
for method I and method II. Therefore, there are total 45 cases to be tested for the 
proposed methods.  Detailed parameter settings for the simulation study are discussed as 
follows: 

Methods:  

– Method I and II. 
Shifted Types: 

– Only one type of profiles changed: 
• Entire profile changed: only profile A changed (Scenario 1). 
• Partial profile changed: only profile B changed (Scenario 2). 

– Both type of profiles changed: 
• Entire profile changed: both profile A and profile B changed 

(Scenario 3). 
• Partial profile changed: both profile A and profile B changed 

(Scenario 4). 
• Mixture changed: entire profile changed on profile A and 

partial profile changed on profile B (Scenario 5). 
Correlation between profiles: 

– 𝜌=0.3, 0.5, and 0.9 
Shift size: 

– Small, Medium, and Large shift 
Performance: 

– Average Run Length with in-control ARL of approximately 200.  
Figure 5 Design of experiment of simulation study. 

Only the shape of either profile A or B is shifted 

Scenario 1: The shape of profile A shifts entirely and the shape of profile B 
unchanged  

In this scenario, the shape of profile A is vertically shifted away from the 
reference profile. With respect to the real world case, the curing process for high-
pressure hose products, it is possible that the temperature profiles are shifted and go 
above the reference profile if the PLC or a thermocouple malfunctions, but the chamber 
is still airtight so that the pressure profiles are in control. This scenario may result in 
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defective hose products due to overheating in the chamber. In this simulation study, we 
consider whether the shape of profile A is shifted entirely and go above the reference 
profile or not. Note that coefficient a0 in equation (11) controls the vertical magnitudes 
change of profile A. Small shift is defined as the magnitude of a0 from 10 to 12; 
medium shift is magnitude of a0 from 10 to 14; and the large shift scenario is magnitude 
of a0 from 10 to 16. Figure 6 (a) shows the profiles in scenario 1 where the shape of 
profile A exhibits a large shift. Twenty-five in-control profiles and another 25 shifted 
profiles with correlation 𝜌=0.5 are superimposed on top of each other.  

Scenario 2: The shape of profile B shifts partially and the shape of profile A 
unchanged 

In this scenario, we alter b1 in equation (11) to change the partial shape of 
profile B. Scenario 2 examines whether the proposed method is capable of detecting a 
leaking chamber during the operation process. As described in scenario 1, scenario 2 
also considers three different correlations between profiles. Figure 6 (b) shows the 
graphics of scenario 2 profiles with large shift magnitudes along with 𝜌=0.5. From 
Figure 6 (b), profile B changes at the middle of the profile. The magnitude of small shift 
in the simulation model is b1 changed from 3 to 3.5. For medium shift, b1 is changed 
from 3 to 4, while b1 changed from 3 to 4.5 represents large shift in this simulation 
study.  

 Shapes of both profiles are shifted 

Scenario 3: Shapes of both profiles A and B are shifted entirely 
This scenario simulates the case both shapes of profiles A and B are changed 

entirely. Since the parameters a0 and b0 control vertical shifts in equation (11), a0 is 
altered to change the shape of profile A higher than the reference profile, and b0 is 
manipulated to make the entire profile B shift below the reference profile. The setting of 
correlations for scenario 3 is the same as that in the scenario 1 and 2, but the magnitudes 
of shift sizes are different from the former settings and given as follows: (1) small shift: 
a0 shifted from 10 to 12 and b0 shifted from -5 to -3; (2) medium shift: a0 shifted from 
10 to 14 and b0 shifted from -5 to -1; and (3) large shift: a0 shifted from 10 to 16 and b0 
shifted from -5 to 1. The superimposed profiles A and B with large shifted for scenario 
3 is shown in Figure 6 (c). Scenario 3 intends to simulate the case where both 
temperature and pressure profiles are changed, especially when malfunctions take place 
in both thermocouples and pressure sensors or the door of vulcanizer is not sealed.   

Scenario 4: Shapes of both profiles A and B are partially changed  
Scenario 4 examines the case when shapes of both profiles are partially changed. 

In this case, profiles A and B are all in control before the middle point of the process, 
but both profile A and profile B are shifted after the middle point. Figure 6 (d) shows 
the overall profiles of A and B including shifted profiles with large shifted magnitude. 
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The shift size in this scenario is as the follows: (1) small magnitude size of shift is 
simulated by altering a1 from 10 to 10.5 and b1 from 3 to 3.5; (2) medium shift is 
generated by changing a1 from 10 to 11 and b1 from 3 to 4; (3) large shift is created by 
changing the parameters a1 and b1 from 10 to 11.5 and 3 to 4.5, respectively. The 
correlations setting for each profiles in this scenario is the same as scenario 1 as well.   

Scenario 5: Shape of profile A is shifted entirely and the shape of profile B is 
shifted partially 

The parameter settings for the profiles in scenario 5 are given as following: (1) 
small shift: a0 shifted from 10 to 12 and b1 shifted from 3 to 3.5; (2) medium shift: a0 
shifted from 10 to 14 and b1 shifted from 3 to 4; (3) large shift: a0 shifted from 10 to 16 
and b1 shifted from 3 to 4.5. Specifically, we examine if the proposed method is capable 
of detecting changes when the shape of temperature profile A is shifted entirely but the 
pressure profile B is changed after half of the process. Figure 6 (e) shows the 
superimposed profile A and profile B with large shift magnitude. 

 

Figure 6 Scenarios of simulation study, (a) entire Profile A shifted only; (b) partial Profile B 
shifted only; (c) both Profile A and Profile B shifted entirely; (d) both Profile A and Profile B 

changed partially; (e) entire Profile A changed and partial Profile B changed. 
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Simulation Results and Discussion 
Simulations according to the scenarios 1 to 5 described in the previous section 

are conducted. The property of method I and method II is characterized by both in-
control and out-of-control ARL values. We fixed the in-control ARL0=200 for both 
methods. The out-of-control ARL, denoted by ARL1, is the smaller the better. The 
smallest ARL1 of both methods for all scenarios are shown in Table 1, which can also 
be used for MEWMA design since  𝜆 and H are readily available. In Table 1, the values 
of ARL1 of both methods are close to each other when the correlation coefficient, 𝜌, is 
low or moderate. However, once 𝜌 is high, the ARL1 is dramatically decreased in all 
scenarios. For example, the ARL1 for the case of small shift of scenario 2 is 36.349 
when ρ=0.3, but it decreases to 19.9006 when ρ=0.9. This crucial result confirms the 
research hypothesis that highly correlated profiles enhance detection power.  This result 
also justifies the merit of the use of multivariate control charts to monitor all profiles 
simultaneously rather than monitoring one profile at a time.  

Table 1 The smallest ARL1 method I method II under different correlation structures in all 
scenarios. 

 ρ=0.3 ρ=0.5 ρ=0.9 

Method I Method II Method I Method II Method I Method II 

Scenario Shift Size 𝜆=0.1 
H=14.03 

𝜆=0.1 
H=25.90 

𝜆=0.1 
H=14.49 

𝜆=0.1 
H=28.28 

𝜆=0.1 
H=14.49 

𝜆=0.1 
H=33.01 

1 Small 2.981 3.994 2.922 4.140 1.695 2.103 

 
Medium 1.480 1.827 1.468 1.873 1.205 1.259 

 
Large 1.101 1.233 1.107 1.253 1.061 1.081 

2 Small 36.349 2.477 37.816 2.562 19.901 1.706 

 
Medium 18.203 1.480 18.407 1.555 9.160 1.069 

 
Large 10.474 1.136 10.470 1.171 5.333 1.018 

3 Small 1.753 2.369 1.753 2.604 1.513 1.914 

 
Medium 1.070 1.195 1.055 1.244 1.006 1.260 

 
Large 1.001 1.006 1.000 1.006 1.000 1.001 

4 Small 18.390 1.385 20.123 1.552 25.526 2.181 

 
Medium 9.389 1.054 10.341 1.131 13.240 1.471 

 
Large 5.696 1.003 6.339 1.015 8.163 1.173 

5 Small 2.907 1.730 2.968 1.791 2.048 1.151 

 
Medium 1.476 1.101 1.497 1.120 1.208 1.039 

 
Large 1.103 1.004 1.110 1.006 1.044 1.006 

 
Moreover, method I performs better (i.e. smaller ARL1 values) in scenario 1 and 

scenario 3 comparing to method II, while the method II has lower ARL1 in scenario 2, 4 
and 5 than method I. In summary, when the shape of a profile change entirely, such as, 
scenario 1 and 3, method I is recommended.  Otherwise, method II is recommended for 
the other cases, such as, scenarios 2, 4, and 5, where profiles shift partially. In practice, 
one may not know whether a profile may shift entirely or partially. It is up to the quality 
engineers to collect process data and identify the majority of the scenarios during a 
phase I study. Details of the proposed methods property, ARL0 and ARL1, for all five 
scenarios in the simulation study are shown in Table A1 and Table A2 in the Appendix.  

We suggest the following strategy for users to implement the proposed methods. 
First, users should determine whether segmentations of profiles are appropriate or not. 
Second, they should also examine whether a linear model or nonlinear model can be 
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used to fit the entire profile or a segment of a profile. For example, the shape of 
temperature profiles in the curing process consists of three stages the heat-up stage, the 
curing stage and the cool-down stage. If users need to know at what stage a profile may 
be out of control, then profiles need to be divided into three segments. A linear model is 
adequate for the curing stage since the profile shape in this stage is a straight line. 
However, nonlinear models are needed to fit the warm-up stage and the cool-down 
stage. If users are confident in their process is stable and they only intent to know 
whether the process is in-control or not, method I is capable of fulfilling this need with 
its simplicity. Nonlinear models should be used to fit the entire temperature and 
pressure profiles. 

If the number of segments times the number of profile types is larger than 10, 
the conventional multivariate control chart may lose its effectiveness (Montgomery, 
2009) such that the proposed methods work worse than the nominal performance. To 
deal with this issue, users can combine method I and method II together. In other words, 
users can apply the hybrid method to separate process monitoring into stages if the 
process stages are well defined. Each stage can be treated as one complete profile period 
and method I can be applied to each stage. For instance, if the process can be divided 
into three segments, users can construct three multivariate control charts for the process. 
Note that each multivariate control chart is associated to each stage. The advantage of 
this method is that users can monitor the process and diagnose a potential problem at the 
end of a stage instead of the end of a process. This hybrid method maintains the 
effectiveness of the multivariate control chart.  

In summary, the charting frameworks of method I, method II, and the hybrid method are 
summarized here for any general multiple profile problem with p profiles and m 
segments.  We assume that all profiles can be segmented at the same locations. For 
method I, one MEWMA chart is maintained with the plotting statistics of a p × 1 vector. 
Each element of this vector represents an average sum of deviations of a profile from its 
nominal profile. Method II also maintains one MEWMA chart but with the plotting 
statistics of a mp × 1vector. Each element of this vector is the average sum of deviation 
of a segment instead of a profile. Finally, the hybrid method maintains m EWMA charts 
with the plotting statistics of a p × 1vector. Each element of this vector is the average 
sum of deviation of a segment. All segments are from their respective profiles. Each 
MEWMA is used during a particular segment only. 

A Case Study: a Curing Process of High-Pressure Hose Products 
In this section, the proposed charting framework for monitoring multiple 

nonlinear correlated profiles is applied to a curing process that consists of temperature 
and pressure profiles for high-pressure hose products. PH Corporation seeking 
opportunities for improvement provides 154 air temperature and pressure profiles of 
phase I data. All 154 profiles are superimposed in Figure 1. Also, based on the PLC 
setting for temperature, each profile was divided into three segments, the heat-up stage, 
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curing stage, and cool-down stage. Therefore, p=3 is given for method II in the process. 
Since two kinds of profiles are involved, m=2 in equation (9). 

Those 154 profiles are prepared for phase I control charting. In Figure 1, it is 
easy to visually identify some out-of-control profiles due to their shapes are 
significantly different from the major group. Figure 7 shows all abnormal profiles, 
characterized by solid lines, as well as in-control profiles, shown in shadow. Note that 
the abnormal profiles are excluded from the phase I control charting. Figure 8 shows the 
MEWMA control charts on the cleaned data set using (a) method I and (b) method II. 
From these figures, we observe that all data points are in control with its associated 
control limit H. Therefore, the control limit H, mean vector, and variance-covariance 
matrix generated from method I and method II are used in phase II process for further 
process monitoring.   

The issue of losing effectiveness using the multivariate control chart caused by 
the number of input variables larger than 10 may happen when the number of segments 
and number of profile types are large. To deal with this problem, the hybrid method is 
used to constructs three MEWMA charts for heat-up, curing, and cool-down stage, 
respectively.  Figure 9 shows the phase I MEWMA control charts for these three stages 
using the hybrid methods. Note that, since the number of profile types in each control 
chart is two, users can use the same control limit H as in method I, i.e., H=14.03. By 
using this hybrid method, users can not only diagnose which stage is responsible for the 
out-of-control signal, but also examine the stability at the end of the stage instead of at 
end of the entire process. For example, if the MEWMA control chart in the heat-up 
stage signal for out-of-control, operators can determine to stop the curing process or not, 
and start to diagnose potential causes at the end of that heat-up stage rather than at the 
end of the curing process. Early detection of process faults provides energy savings and 
assures product quality. 

 
(a) 

 
(b) 

Figure 7  Abnormal (a) temperature profiles and (b) pressure profiles superimposed on in-
control profiles.  
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(a) 

 

(b) 

Figure 8 The phase I process MEWMA control charts of curing process of high-pressure hose 
products using (a) method I and (b) method II.  
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Figure 9 phase I control charts of the curing process using the hybrid method. 

Conclusion and Future Study 
Most profile analysis research up to date deals with the monitoring of single 

profile, but applications, such as, the hydraulic press machine and the curing process of 
high-pressure hose products, contain multiple correlated profiles for process monitoring. 
Although the monitoring of each type of profiles independently may be considered as an 
approach for detecting abnormal ones, high false alarm and low detecting power may be 
a consequence when given profiles are highly correlated. This study aims to tackle this 
problem by providing a framework for the process monitoring when the process 
consists of multiple linear or nonlinear correlated profiles. The proposed method I 
applies the modified Chang and Yadama’s method that extends one profile process 
monitoring method (with m segments) to a multiple profile solution (each profile 
representing a segment). The proposed method II divides each profile into p segments 
first, and then applies the modified Chang and Yadama’s method to each segment. 
Therefore, the multiple-profile problem can be considered as a multivariate statistical 
process control problem with the number of input variables m×p. According to the 
simulation study, the method I has better performance in terms of out-of-control ARL 



18 
 

values when the shape of profiles is changed entirely in the process, and method II is 
more sensitive when the process experiences partial profiles changes.  

Additionally, the simulation results show that when profiles are highly correlated, the 
detecting power of the proposed method is much better than those cases with lower 
correlations. In a real-world case study, both method I and method II are capable of 
constructing the phase I process control chart if the product of the number of segments 
and the number of profile types is smaller than 10. The hybrid method that combines 
method I and method II are also investigated to provide quality engineers a broader 
view of diagnosis and maintains the effectiveness of detecting power. Moreover, since 
the proposed methods are sharing the common treatment of Chang and Yadama’s 
(2010) method, they can handle the different shapes from other applications as long as 
profiles in the process have their own desired shapes with gold reference profiles 
existed. For example, the shape of temperature and pressure profiles generated from a 
curing process of high-pressure hose products follow their respective shapes, and the 
proposed methods all construct the phase I control chart without generating any false 
alarm signals. 

Although the proposed methods show capability of dealing with multiple nonlinear 
profiles on monitoring products’ quality perspective, they have some limitations. First, 
although the method I is capable of detecting entire shape shifted scenario, it lack of 
diagnosis ability when the process goes out-of-control. Second, even though the method 
II provides quality engineers more information in regards to diagnostic purpose, it will 
be less efficient if the number of segments times the profile types is over 10. Finally, the 
hybrid method takes care of those disadvantages that provided by the method I and 
method II, but it will be distract if there are too many segments have been defined. The 
future study of profile analysis should be extended to cover all the disadvantages of the 
proposed methods and to be applied for more complicated data sets, such as, the data 
sets of images and spatial surface.     
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Appendix 

TableA 1 The average run length of method I with three different correlation structures. 

Method I 
𝝆=0.3 

𝜆 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
H 14.03 15.81 16.97 17.86 18.61 19.13 19.55 19.87 19.98 
ARL0 200.170 199.925 199.809 200.167 199.617 199.829 199.840 200.167 199.809 
Scen.  1 (small) 2.981 3.203 3.400 3.614 3.896 4.242 4.705 5.275 5.987 
Scen. 1 (medium) 1.480 1.554 1.608 1.665 1.717 1.760 1.821 1.897 2.014 
Scen. 1 (large) 1.101 1.125 1.142 1.162 1.174 1.184 1.195 1.205 1.214 
Scen. 2 (small) 36.349 49.035 59.258 68.725 76.818 83.557 88.074 94.022 99.801 
Scen. 2 (medium) 18.203 24.604 30.988 37.398 43.991 49.290 55.851 62.033 66.700 
Scen. 2 (large) 10.474 13.208 16.867 21.015 23.316 29.945 34.551 39.603 44.195 
Scen. 3 (small) 1.753 1.886 1.976 2.053 2.163 2.277 2.432 2.662 2.886 
Scen. 3 (medium) 1.070 1.091 1.107 1.122 1.135 1.144 1.155 1.164 1.173 
Scen. 3 (large) 1.001 1.001 1.002 1.002 1.003 1.004 1.004 1.004 1.004 
Scen. 4  (samll) 18.390 23.135 27.833 32.099 36.519 40.005 43.883 47.784 51.197 
Scen. 4 (medium) 9.389 11.178 13.228 15.711 18.580 21.055 23.962 27.048 29.549 
Scen. 4 (large) 5.696 6.504 7.522 8.668 10.082 11.653 13.457 15.642 18.002 
Scen. 5 (small) 2.907 3.135 3.301 3.493 3.743 4.047 4.386 4.935 5.499 
Scen. 5 (medium) 1.476 1.545 1.594 1.641 1.696 1.732 1.785 1.864 1.953 
Scen. 5 (large) 1.103 1.128 1.145 1.163 1.175 1.186 1.194 1.205 1.217 

𝝆=0.5 
𝜆 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
H 14.49 16.26 17.55 18.52 19.28 19.83 20.3 20.57 20.72 
ARL0 199.870 199.829 200.106 200.249 199.916 199.809 200.152 200.166 199.870 
Scen. 1 (small) 2.922 3.163 3.369 3.571 3.834 4.165 4.638 5.218 5.852 
Scen. 1 (medium) 1.468 1.541 1.592 1.646 1.701 1.748 1.811 1.886 1.983 
Scen. 1 (large) 1.107 1.132 1.155 1.172 1.185 1.198 1.210 1.221 1.238 
Scen. 2 (small) 37.816 49.977 61.750 71.478 80.470 86.518 92.114 96.633 102.777 
Scen. 2 (medium) 18.407 24.791 32.102 39.083 45.808 51.963 58.493 64.189 69.712 
Scen. 2 (large) 10.470 13.175 17.043 21.470 26.123 31.187 36.361 41.304 46.366 
Scen. 3 (small) 1.753 1.891 2.002 2.115 2.255 2.419 2.654 2.930 3.265 
Scen. 3 (medium) 1.055 1.079 1.096 1.111 1.125 1.134 1.148 1.160 1.171 
Scen. 3 (large) 1.000 1.000 1.001 1.001 1.001 1.001 1.001 1.001 1.001 
Scen. 4  (samll) 20.123 25.168 30.797 35.059 40.091 43.785 47.510 51.021 55.109 
Scen. 4 (medium) 10.341 12.377 14.897 17.851 20.570 23.577 26.695 29.542 32.576 
Scen. 4 (large) 6.339 7.271 8.485 9.909 11.521 13.280 15.450 17.942 20.349 
Scen. 5 (small) 2.968 3.192 3.398 3.596 3.857 4.185 4.604 5.130 5.797 
Scen. 5 (medium) 1.497 1.569 1.623 1.677 1.727 1.770 1.837 1.913 2.026 
Scen. 5 (large) 1.110 1.135 1.154 1.174 1.186 1.194 1.210 1.220 1.236 

𝝆=0.9 
lambda 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
H 14.49 15.95 16.99 17.81 18.4 18.9 19.16 19.38 19.43 
ARL0 199.995 199.809 199.743 199.731 199.840 200.167 200.167 200.152 200.098 
Scen. 1 (small) 1.695 1.741 1.767 1.792 1.814 1.825 1.843 1.869 1.881 
Scen. 1 (medium) 1.205 1.219 1.229 1.236 1.244 1.250 1.253 1.259 1.261 
Scen. 1 (large) 1.061 1.067 1.073 1.076 1.078 1.082 1.084 1.085 1.085 
Scen. 2 (small) 19.901 24.360 29.931 35.278 41.769 48.012 53.213 58.377 62.349 
Scen. 2 (medium) 9.160 10.493 12.289 14.643 17.444 20.958 24.490 28.552 32.204 
Scen. 2 (large) 5.333 5.852 6.479 7.379 8.526 10.127 11.763 13.906 16.345 
Scen. 3 (small) 1.513 1.590 1.652 1.713 1.762 1.827 1.888 1.941 1.972 
Scen. 3 (medium) 1.006 1.020 1.038 1.049 1.062 1.073 1.081 1.088 1.091 
Scen. 3 (large) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Scen. 4  (samll) 25.526 31.831 37.762 43.219 48.015 52.195 55.907 59.355 62.502 
Scen. 4 (medium) 13.240 16.166 19.269 22.902 26.093 29.443 32.566 35.929 39.076 
Scen. 4 (large) 8.163 9.380 10.997 12.814 14.774 17.386 19.817 22.445 25.021 
Scen. 5 (small) 2.048 2.136 2.196 2.258 2.326 2.405 2.481 2.603 2.747 
Scen. 5 (medium) 1.208 1.233 1.246 1.258 1.269 1.275 1.283 1.294 1.300 
Scen. 5 (large) 1.044 1.051 1.054 1.058 1.060 1.062 1.062 1.064 1.064 
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TableA 2 The average run length of method II with three different correlation structures. 

Method II 
𝝆=0.3 

𝜆 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
H 25.9 30.85 35.68 40.12 44.13 47.45 50.14 52.09 53.3 
ARL0 199.958 199.829 199.809 199.967 200.173 199.989 199.905 199.910 200.157 
Scen. 1 (small) 3.994 4.754 5.920 7.896 11.420 17.129 26.333 39.057 55.486 
Scen. 1 (medium) 1.827 2.076 2.350 2.655 3.075 3.673 4.565 6.151 8.515 
Scen. 1 (large) 1.233 1.323 1.426 1.538 1.668 1.789 1.966 2.217 2.549 
Scen. 2 (small) 2.477 2.812 3.152 3.583 4.008 4.425 4.776 5.004 5.128 
Scen. 2 (medium) 1.480 1.659 1.828 1.995 2.169 2.378 2.592 2.823 3.011 
Scen. 2 (large) 1.136 1.229 1.331 1.431 1.524 1.619 1.726 1.873 2.035 
Scen. 3 (small) 2.369 2.807 3.319 4.021 5.273 7.464 11.209 17.554 27.241 
Scen. 3 (medium) 1.195 1.297 1.417 1.552 1.696 1.848 2.044 2.332 2.833 
Scen. 3 (large) 1.006 1.015 1.031 1.057 1.083 1.105 1.132 1.153 1.175 
Scen. 4  (samll) 1.385 1.544 1.672 1.821 1.964 2.101 2.241 2.368 2.470 
Scen. 4 (medium) 1.054 1.099 1.155 1.209 1.262 1.319 1.371 1.416 1.463 
Scen. 4 (large) 1.003 1.009 1.016 1.029 1.044 1.063 1.083 1.107 1.111 
Scen. 5 (small) 1.730 1.964 2.198 2.440 2.740 3.050 3.459 3.829 4.169 
Scen. 5 (medium) 1.101 1.166 1.247 1.323 1.403 1.476 1.560 1.648 1.752 
Scen. 5 (large) 1.004 1.010 1.021 1.037 1.053 1.068 1.085 1.100 1.113 

𝝆=0.5 
𝜆 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
H 28.28 34.4 40.14 45.58 50.21 54.05 56.94 59.14 60.46 
ARL0 200.002 199.826 199.918 199.918 200.157 199.890 200.026 200.261 200.009 
Scen. 1 (small) 4.140 5.068 6.520 9.160 13.793 22.487 36.628 55.881 78.656 
Scen. 1 (medium) 1.873 2.185 2.487 2.860 3.376 4.108 5.312 7.541 10.969 
Scen. 1 (large) 1.253 1.363 1.477 1.615 1.760 1.917 2.143 2.431 2.876 
Scen. 2 (small) 2.562 2.946 3.353 3.806 4.288 4.704 5.004 5.217 5.377 
Scen. 2 (medium) 1.555 1.753 1.937 2.134 2.326 2.542 2.799 3.039 3.189 
Scen. 2 (large) 1.171 1.296 1.421 1.524 1.632 1.751 1.894 2.062 2.246 
Scen. 3 (small) 2.604 3.188 3.963 5.355 8.145 13.603 23.815 39.324 60.158 
Scen. 3 (medium) 1.244 1.412 1.593 1.786 2.009 2.284 2.727 3.555 5.149 
Scen. 3 (large) 1.006 1.020 1.051 1.092 1.140 1.194 1.242 1.294 1.352 
Scen. 4  (samll) 1.552 1.727 1.910 2.078 2.243 2.385 2.536 2.684 2.778 
Scen. 4 (medium) 1.131 1.206 1.280 1.371 1.438 1.505 1.577 1.644 1.710 
Scen. 4 (large) 1.015 1.033 1.061 1.102 1.141 1.177 1.204 1.231 1.263 
Scen. 5 (small) 1.791 2.059 2.315 2.584 2.927 3.329 3.785 4.211 4.630 
Scen. 5 (medium) 1.120 1.204 1.296 1.384 1.481 1.567 1.661 1.774 1.910 
Scen. 5 (large) 1.006 1.016 1.030 1.050 1.070 1.093 1.113 1.133 1.151 

𝝆=0.9 
lambda 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
H 33.01 42.39 51.24 58.85 65.58 71.08 75.29 78.35 79.98 
ARL0 199.989 199.850 200.026 200.289 199.826 199.936 200.164 199.826 199.826 
Scen. 1 (small) 2.103 2.590 3.096 3.683 4.451 5.813 8.575 13.740 23.184 
Scen. 1 (medium) 1.259 1.352 1.463 1.582 1.705 1.825 1.968 2.143 2.359 
Scen. 1 (large) 1.081 1.118 1.157 1.188 1.214 1.234 1.261 1.286 1.303 
Scen. 2 (small) 1.706 2.172 2.520 2.906 3.377 4.022 4.677 5.181 5.428 
Scen. 2 (medium) 1.069 1.187 1.377 1.567 1.749 1.891 2.056 2.335 2.686 
Scen. 2 (large) 1.018 1.029 1.049 1.081 1.133 1.193 1.259 1.308 1.350 
Scen. 3 (small) 1.914 2.386 2.934 3.507 4.032 4.585 5.046 5.445 5.723 
Scen. 3 (medium) 1.260 1.453 1.673 1.897 2.208 2.610 3.038 3.462 3.849 
Scen. 3 (large) 1.001 1.035 1.151 1.297 1.409 1.500 1.617 1.826 2.137 
Scen. 4  (samll) 2.181 2.479 2.773 3.091 3.366 3.569 3.665 3.737 3.777 
Scen. 4 (medium) 1.471 1.660 1.842 1.998 2.151 2.312 2.433 2.520 2.556 
Scen. 4 (large) 1.173 1.308 1.436 1.538 1.640 1.751 1.881 2.010 2.116 
Scen. 5 (small) 1.151 1.269 1.459 1.643 1.808 1.984 2.187 2.464 2.876 
Scen. 5 (medium) 1.039 1.052 1.065 1.075 1.084 1.093 1.099 1.104 1.109 
Scen. 5 (large) 1.006 1.012 1.015 1.018 1.022 1.025 1.026 1.028 1.029 
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