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Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations,
and/or integrals over the pair distribution functions, from experimental thermodynamic data on
liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations,
and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely
thermodynamic manner that avoids the use of structure factors. The approach is then applied to
binary mixtures of water + methanol and benzene + methanol over the full composition range under
ambient conditions. The observed correlations between the different species vary significantly with
composition. The magnitude of the fluctuations and integrals appears to increase as the number of the
most polar molecule involved in the fluctuation or integral also increases. A simple physical picture
of the fluctuations is provided to help rationalize some of these variations. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4913514]

I. INTRODUCTION

From a theoretical point of view, liquids and liquid
mixtures can be characterized using relative probability
distribution functions. Experimentally, the pair distribution
function can sometimes be obtained via scattering studies.
However, very little experimental information has been made
available concerning triplet and higher distribution functions
for real liquids and liquid mixtures despite the great interest
in these quantities; for example, to understand the deficits of
pairwise additive potentials.1–9 For pure monatomic liquids,
the works of Schofield, Buff and Brout, Gray, Gubbins, and
Egelstaff, among others, have shown that some information
concerning the triplet distribution functions is available—
in terms of integrals over the triplet and combinations
of the pair distribution functions—for cases in which the
derivatives of the radial distribution functions (RDFs) or
structure factors, S(Q), with respect to pressure or density
can be obtained numerically.7,10–19 These studies have been
crucial for determining the range of applicability of the pair
potential and for testing models of the three-body distribution
function for the few (and relatively simple) systems that are
amenable to this type of study.3,5,7,10,17–20

Unfortunately, the situation is significantly worse for
mixtures, especially those composed of polyatomic molecules,
and hence even less is known experimentally about the triplet
distribution function in these systems, primarily because
it has only been possible to obtain RDFs for a very
small subset of all possible mixtures.6,8,21,22 Nevertheless,
a few mixture-based studies have attempted to decipher the
importance of three body correlations. For example, Winter
and coworkers recently studied derivatives of the structure
factor in concentrated lysozyme solutions; however, this
involved significant approximations.5 Furthermore, osmotic
system studies using McMillan-Mayer (MM) theory provide

the osmotic virial coefficients,23 which do provide information
concerning pair and higher solute distributions, but with the
restriction of non-volatile solutes at low concentrations.23

We recently illustrated (for pure liquids only) how
to bypass the dependence on scattering data to obtain
information about triplet and quadruplet correlations from
bulk thermodynamic data alone using Fluctuation Solution
Theory (FST).24 Egelstaff and others previously obtained
similar information for some simple fluids (e.g., pure Ne,
Ar, Kr, and Rb) at a limited number of state points
using scattering studies in which the pressure or density
dependence of the long-wavelength limit of the structure
factor, S(Q → 0), was sometimes considered in addition to
the S(Q) derivatives.10,17,18,25,26 However, unlike the present
study, their main focus was to use scattering data to obtain the
higher order correlation data. Therefore, the systems and state
points studied were very limited.

Here, we extend the approach presented in our previous
study of pure liquids to include liquid mixtures across the
full composition range. The fluctuations and integrals are
then obtained for two binary mixtures of small molecules.
It should be noted that the approach described here is not
limited to binary mixtures and can actually be applied to
any stable mixture regardless of the type, complexity, and
concentration of the components and/or the state point. The
approach is essentially the inverse of several expansions that
have expressed higher order derivatives of thermodynamic
properties in terms of higher order fluctuations and their
distribution functions.13,27–30 However, previous approaches
have been less general;13,24–27 as they were typically developed
for osmotic systems and/or for infinite dilution only. Unlike the
previously mentioned MM theory, which is only applicable to
systems with very low solute concentrations,23 the FST-based
approach presented here is relevant for any concentration. In
fact, MM theory is actually a limiting form of FST.27

0021-9606/2015/142(9)/094504/14/$30.00 142, 094504-1 © 2015 AIP Publishing LLC
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The work of Bhatia and Ratti, and also Parrinello and
Tosi, most closely parallels the current approach.31–35 They
used a structure factor formulation in the long wavelength
(thermodynamic) limit to provide higher order structure
factors in terms of purely thermodynamic data. Their approach
was then applied to a binary mixture of a liquid Na+K
alloy to obtain the triplet fluctuations, albeit with a series
of approximations for the thermodynamic data. In principle,
this approach could be modified to study any liquid mixture.
Unfortunately, to our knowledge, it has not been used to study
mixtures of more common interest, e.g., mixtures composed
of polyatomic molecules such as methanol+water. In our
opinion, this is probably due to the use of a structure factor
formulation, which obscures the relationship to the otherwise
standard thermodynamic properties of liquid mixtures, and
also (incorrectly) suggests that some form of scattering data is
required. Here, we follow a similar path. The current approach
differs, however, in that fluctuations and integrals are provided,
no approximations are used, the theory is extended to include
quadruplet correlations in a simple manner, the dependence of
the results on the dataset and correlating equation is examined,
and the theory is presented in terms of a general matrix
formulation employing common thermodynamic quantities
that can be easily extended to include any number of
components. Furthermore, a simple physical model of the
fluctuations is also provided.

One of the interesting general findings shown below is that
FST indicates that the composition and pressure dependence of
particle-particle fluctuations both involve the third cumulants
of the particle number probability distributions. Specifically,
if the third cumulants were zero (meaning the distribution
was symmetric), the particle-particle fluctuations would be
independent of both composition and pressure. Clearly, this
is not the case and is in agreement with Greene and Callen’s
acknowledgement that the distribution is not truly Gaussian,36

although that is a common assumption or approximation.
Thus, in an effort to probe the underlying true distribution,
we illustrate how to extract these cumulants from an analysis
of the bulk thermodynamic experimental data for two binary
mixtures over their full composition ranges, and then we
show how these cumulants provide integrals over higher order
distribution functions.

II. THEORY

The most common application of Fluctuation Solution
Theory, i.e., traditional Kirkwood-Buff (KB) Theory,27 relates
second derivatives in the Grand Canonical ensemble (GCE)
to second derivatives in closed isothermal isobaric Gibbs
ensemble systems.29,37–43 Under isothermal conditions, the
second derivatives in the GCE only involve the particle
number fluctuations between all possible pairs of species.
These fluctuations are then related to second derivatives of the
Gibbs free energy for an equivalent closed system. The particle
number fluctuations can also be related to integrals over pair
distributions defined in the GCE. Here, we will extend the
usual FST approach to include third and fourth isothermal
derivatives in the GCE, and then relate these to third and
fourth derivatives of the Gibbs free energy. The fluctuations,

and the related integrals over triplet and quadruplet distribution
functions, are then determined from available experimental
data.

Second, third, and fourth isothermal derivatives with
respect to the chemical potentials ({βµ}) in the GCE provide
a series of particle number fluctuation densities,11,44,45 which
we define by(

∂ βp
∂ βµα

)
β,{βµ}′

= V−1 [⟨Nα⟩] ≡ ρα,(
∂ρα
∂ βµβ

)
β,{βµ}′

= V−1 �
δNαδNβ

��
≡ Bαβ,(

∂Bαβ

∂ βµγ

)
β,{βµ}′

= V−1 �
δNαδNβδNγ

��
≡ Cαβγ,(

∂Cαβγ

∂ βµδ

)
β,{βµ}′

= V−1




δNαδNβδNγδNδ

�
−


δNαδNβ

� 

δNγδNδ

�
−



δNαδNγ

� 

δNβδNδ

�
− ⟨δNαδNδ⟩ 
δNβδNγ

�


≡ Dαβγδ,

(1)

where δNα = Nα − ⟨Nα⟩, etc., denote a fluctuation in the
number of α particles, Nα is the instantaneous number of
α particles for an open system of volume V at a pressure
p, and β = (RT)−1 where R is the Gas constant and T
the absolute temperature. The above quantities correspond
to the cumulants of the multivariate particle probability
distribution for the open system. They are also closely related
to structure factors of various order.34,35,46 The B’s were
already defined by Kirkwood and Buff.27 For a multivariate
symmetric (e.g., Gaussian) distribution, the C’s and D’s would
be zero. For real solutions this is not the case, and the B’s, C’s,
and D’s can be used to quantify the pair, triplet and quadruplet
correlations between the various particle types.

The fluctuating densities defined in Eq. (1) can be
related to a series of corresponding distribution functions.
For multicomponent systems, the relationships between the
fluctuating quantities and the corresponding distribution
functions are provided by24

Bαβ = ρα(δαβ + ρβGαβ),
Cαβγ = ρα(δαβδβγ + δβγρβGαβ + δαβργGαγ

+ δαγρβGβγ + ρβργGαβγ),
Dαβγδ = ρα(δαβδαγδαδ + δαγδαδρβGαβ

+ δαδδβγργGαγ + δαγδβδρδGαδ

+ δβγδγδρδGαδ + δαβδβδργGβγ

+ δαβδγδρδGβδ + δαβδβγρδGγδ

+ δαδρβργGαβγ + δαγρβρδGαβδ

+ δγδρβρδGαβδ + δβγργρδGαγδ

+ δβδργρδGαγδ + δαβργρδGβγδ

+ ρβργρδGαβγδ),

(2)

where δαβ is the Kronecker delta function. The above
expressions involve integrals over the n-body spatial
distribution functions g(n)αβ...(r1,r2, . . .) that are similar in form

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.130.37.178 On: Tue, 16 Feb

2016 20:03:19



094504-3 E. A. Ploetz and P. E. Smith J. Chem. Phys. 142, 094504 (2015)

to the integrals appearing in the theory of imperfect gases or the McMillan-Mayer theory of (osmotic) solutions,23,27

Gαβ = V−1
 

g
(2)
αβ − 1


dr1dr2,

Gαβγ = V−1
 

g
(3)
αβγ − 1 − (g(2)αβ − 1) − (g(2)αγ − 1) − (g(2)βγ − 1) dr1dr2dr3,

Gαβγδ = V−1
 

g
(4)
αβγδ − 1 − (g(3)αβγ − 1) − (g(3)αβδ − 1) − (g(3)αγδ − 1) − (g(3)βγδ − 1)
− (g(2)αβ − 1)(g(2)γδ − 1) − (g(2)αγ − 1)(g(2)βδ − 1) − (g(2)αδ − 1)(g(2)βγ − 1)
+ (g(2)αβ − 1) + (g(2)αγ − 1) + (g(2)αδ − 1) + (g(2)βγ − 1) + (g(2)βδ − 1) + (g(2)γδ − 1)



dr1dr2dr3dr4,

(3)

where the spatial dependences are implied and have been
omitted for simplicity. Note that there is, by definition, no
angular dependence of the integrals even for molecules.
This is not an approximation. The integrals over the spatial
distribution functions are valid for any liquid density and are
obtained after averaging over the orientations of the molecules
explicitly involved in the integral, and averaging over the
positions and orientations of all the other molecules in the
system.

Hence, if one can obtain the fluctuating quantities in
terms of experimental data, then the corresponding integrals
over the center of mass based two, three, and four body
distribution functions can also be obtained. The fluctuation
densities and corresponding integrals provide alternative, but
complimentary, descriptions of any correlations that might
occur between particles within the system.

The above expressions are restricted to open systems.
The next step is to provide a connection to equivalent closed
systems, which are of more common interest. The traditional
application of FST involves the following second derivatives
of the Gibbs free energy,27,47,48

µαβ ≡
(
∂ βµα
∂xβ

)
T ,p

, κT ≡ −
(
∂ ln Vm

∂p

)
T

,

V̄α ≡
(
∂V
∂Nα

)
T ,p,{N }′

=

(
∂µα
∂p

)
T ,{N }

,

(4)

where κT is the isothermal compressibility, Vm is the molar
volume, and V̄α is the partial molar volume of species α. In
the original KB approach, expressions for the derivatives in
Eq. (4) were provided in terms of the pair fluctuations given
in Eq. (1), and thereby integrals over the pair distribution
functions provided in Eq. (3).27 Alternatively, if one knows the
composition dependent experimental properties displayed in
Eq. (4), one can invert this approach and obtain the fluctuation
densities and corresponding integrals. This is the so-called
KB inversion approach.48 Here, we wish to provide higher
fluctuations and correlations in terms of higher derivatives of
the expressions in Eq. (4).

The analysis is simplified by defining a corresponding set
of dimensionless fluctuating properties such that,

bαβ ≡ ρ−1Bαβ, cαβγ ≡ ρ−1Cαβγ, dαβγδ ≡ ρ−1Dαβγδ, (5)

where ρ = ρ1 + ρ2 + · · · = 1/Vm is the total number density.
We then note that the intensive GCE averages are a function
of the intensive thermodynamic variables associated with

the GCE, and therefore one can write the following general
isothermal differential:

d ⟨A⟩ =


α

(
∂ ⟨A⟩
∂ βµα

)
β,{βµ}′

dβµα, (6)

where the sum is over all m components in the liquid mixture,
and A is an intensive property—specifically ρ, ρα, Bαβ, or Cαβγ.
These relationships, coupled with the Gibbs-Duhem (GD)
expression at constant temperature


α Nαdβµα = βV dp, are

all that is required to extract the B’s, C’s, and D’s from
the relevant thermodynamic data for liquid mixtures. Using
Eq. (6), and the fact that ∂ρα/∂p = ρακT and ∂ρα/∂xβ

= ρ(δαβ − ραV̄β)/(1 − xβ), one can write the following matrix
expression for a binary solution of 1 and 2:

ba = I3, b = a−1, a = b−1, (7)

in terms of two symmetric dimensionless square matrices
of size m + 1. One matrix contains just GCE fluctuating
quantities

b =
*...
,

b11 b12 x1

b21 b22 x2

x1 x2 0

+///
-

, (8)

where xα is the mole fraction of species α, while the other
contains the corresponding isothermal experimental data,

a =
*...
,

µ′11 µ′12 ρV̄1

µ′21 µ′22 ρV̄2

ρV̄1 ρV̄2 −ρRT κT

+///
-

, (9)

where µ′αβ = βN
�
∂2G/∂Nβ∂Nα

�
p,T
=(1 − xβ)µαβ = (1 − xα)

µβα. This corresponds to the traditional KB theory approach
for a binary mixture. In this form, the theory involves
just two matrices, albeit with one extra dimension. It
should be noted that the determinants of the above
matrices for binary solutions are given by |a| = −µ22/x1
= −µ11/x2 = µ21/x1 = µ12/x2 and |b| = −x1x2η/ρ, respec-
tively, where η = ρ1 + ρ2 + ρ1ρ2(G11 + G22 − 2G12). Hence,
one can show that Eq. (7) produces the same results as
traditional KB theory.27,49 The extension to include additional
components is straightforward.

To obtain the higher fluctuations in terms of experimental
data for closed systems, we use the expressions in Eq. (6) and
write them in matrix form as,

ca = bX, c = bXa−1 = bXb, (10)
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where

c =
*...
,

c111 c112 b11

c121 c122 b12

c221 c222 b22

+///
-

. (11)

The final matrix involves derivatives of the dimensionless pair
fluctuations

bX =
*...
,

b11 + (1 − x1)b1
11 b11 + (1 − x2)b2

11 ρRTbp
11

b12 + (1 − x1)b1
12 b12 + (1 − x2)b2

12 ρRTbp
12

b22 + (1 − x1)b1
22 b22 + (1 − x2)b2

22 ρRTbp
22

+///
-

,

(12)

where the superscript i or p indicates an isothermal isobaric
derivative with respect to xi, or an isothermal derivative with
respect to pressure at constant composition, respectively. The
central row could be removed from the c and bx matrices, if
desired, as they provide additional expressions for the c’s that
are already contained in rows one and three. Solving Eq. (10)
symbolically provides rather complicated expressions. Hence,
we have simply solved the equations numerically in the current
approach.

Finally, to obtain the quadruplet fluctuations one can write
an additional matrix relationship

da = cX, d = cXa−1 = cXb, (13)

in terms of a matrix of fluctuations

d =
*.....
,

d1111 d1112 c111

d1121 d1122 c112

d1221 d1222 c122

d2221 d2222 c222

+/////
-

, (14)

and a matrix of triplet fluctuations and their derivatives

cX =

*.....
,

c111 + (1 − x1)c1
111 c111 + (1 − x2)c2

111 ρRTcp
111

c112 + (1 − x1)c1
112 c112 + (1 − x2)c2

112 ρRTcp
112

c122 + (1 − x1)c1
122 c122 + (1 − x2)c2

122 ρRTcp
122

c222 + (1 − x1)c1
222 c222 + (1 − x2)c2

222 ρRTcp
222

+/////
-

.

(15)

Clearly, one could continue indefinitely. However, it is unclear
if the experimental data can support such manipulations.

In summary, the previous expressions illustrate exactly
how to extract quantitative information concerning pair and
triplet correlations from readily available experimental data.
Traditional KB theory relates second derivatives in the Gibbs
and GCEs and can be represented by the following scheme,

{∂µ/∂x, ∂µ/∂p, ∂V/∂p} ←→ {bαβ} ←→ {Gαβ},
where the forward direction indicates the KB inversion
procedure,48 while the backward direction corresponds to
the results obtained in the original KB study.27 Here, we
have extended this approach to include third derivatives in the
Gibbs and GCEs as illustrated by the corresponding scheme

{∂2µ/∂x2, ∂2µ/∂x∂p, ∂2V/∂x∂p, ∂2V/∂p2}
←→ {cαβγ} ←→ {Gαβγ}.

The forward direction corresponds to the analysis performed
here and is equivalent to the KB inversion approach for

triplet correlations. The reverse direction provides expressions
for the corresponding thermodynamic data in terms of the
triplet fluctuations and integrals. More details are provided
in Appendix A and B, and emphasize the important role that
triplet correlations play in determining the thermodynamic
properties. Clearly, the latter derivatives can be used to
rationalize the composition and pressure dependence of the
chemical potentials and partial molar volumes, via simple
series expansions, and illustrate how these are related to both
the pair and triplet correlations.

III. METHODS

To apply the above expressions, one requires derivatives
of the pair and triplet fluctuations in terms of the experimental
isothermal isobaric data. This involves additional composition
and pressure derivatives of the original experimental data
provided in Eq. (4). The experimental data of interest for
traditional KB theory include the composition derivatives of
the chemical potentials, usually obtained from derivatives of
the excess Gibbs free energy of mixing, the partial molar
volumes, usually obtained from derivatives of the excess
volume of mixing, and the isothermal compressibility of the
solution, all as a function of composition. For a binary solution,
there are three unique B’s (and therefore Gαβ’s), four unique
C’s, and five unique D’s. Useful relationships for binary
mixtures are provided in Appendix B, and a more detailed
description of the general approach for multicomponent
systems is provided in Appendix C.

Here, we have chosen to study two binary mixtures.
Mixtures of water + methanol were selected as there is
substantial data concerning this system. In particular, multiple
raw datasets and several correlating equations are available
and have been studied in detail. Furthermore, all the required
pressure derivatives for the system are also available. Mixtures
of benzene + methanol were also examined. This system was
chosen as our previous studies have shown interesting mixing
behavior where methanol correlations lead to strong micro-
heterogeneity at low methanol mole fractions.50,51 For this
system, some of the pressure derivatives were approximated
(see Appendix C). However, based upon the real values
of these terms from the water+methanol analysis, the
terms approximated for the benzene+methanol system are
negligible under the ambient conditions studied here.

Sources of data for the water+methanol system at
298.15 K and 1 bar were as follows. Several data sets and
fitting functions for the excess Gibbs free energy of mixing
were explored; they are referred to in the accompanying
figures by the following abbreviations: RK1, RK2, W1,
W2, and W3. The specific datasets and fitting functions
are: RK1, 3-parameter Redlich-Kister (RK) equation52 fit of
the data from Butler et al.;53 RK2, 3-parameter modified-RK
equation54 fit of the data from Hu et al.;54 W1, Wilson
equation55 parameters provided by Soujanya et al.;56 W2,
Wilson parameters provided on page 61 of Gmehling et al.;57

and finally W3, Wilson parameters provided on page 62 of
Gmehling et al.57 All analyses were performed using the
same density data. The pressure derivatives for the pure
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liquid volumes, ∂nV o
α/∂pn with n = 1–3, were obtained from

REFPROP version 9.1 (NIST Standard Reference Database
23, NIST Reference Fluid Thermodynamic and Transport
Properties).58 The excess volume of mixing was fitted to a
4-parameter RK equation using the data of Douheret et al.59

The pressure derivatives of the excess volume of mixing,
∂nV E

m/∂pn with n = 1–3, were each fitted to 3-parameter RK
equations using the data of Kubota et al.60

Sources of data for the benzene +methanol system at
308.15 K and 1 bar were as follows. The excess Gibbs
free energy of mixing was obtained from the fit provided by
Wilson.55 The pressure derivatives for the pure liquid volumes,
∂nV o

α/∂pn with n = 1–3, were obtained from REFPROP
version 9.1.58 The excess volume of mixing was taken from the
4-parameter RK coefficients provided by Šerbanović et al.61

The higher pressure derivatives of the excess volume of mixing
were all approximated as zero as explained above.

IV. RESULTS

A. Infinite dilution behavior

The main focus of this study is liquid mixtures at
finite concentrations. However, it is useful to establish the
limiting behavior of the fluctuations and integrals as the
concentration of one species disappears in a binary mixture.
As the concentration of species 2 tends to zero, the fluctuating
quantities involving species 2 also tend to zero. The finite
fluctuating quantities that remain only involve species 1.
We then have the results described in our earlier study of
pure liquids.24 Hence, the fluctuations are related to pressure
derivatives of the pure liquid density according to

b11 = RT ρ
p
1 = ρ1RT κT ,

c111 = (RT)2[ρ1ρ
pp
1 + (ρp1 )2],

d1111 = (RT)3[ρ2
1ρ

ppp
1 + 4ρ1ρ

p
1 ρ

pp
1 + (ρp1 )3].

(16)

The corresponding G’s can then be obtained from Eq. (2).
The above expressions also provide some interesting limiting
cases. In the incompressible limit (IL), all the pressure

derivatives are zero and consequently there are no fluctuations.
This corresponds to the results expected for a closed system.
The limiting behavior of the integrals is then given by Eq. (2)
to provide

ρβGαβ → −δαβ,

ρβργGαβγ → 2δαβδαγ,

ρβργρδGαβγδ → −6δαβδαγδαδ.

(17)

Hence, the integrals are only finite when all indices are
identical. The integrals obtained here for real liquids do not
follow this limit as they are defined for equivalent open
systems. A second limiting case, the Gaussian limit (GL),
occurs when the particle number fluctuations are assumed to
be Gaussian or symmetric in nature. Here, the third (VC111)
and fourth (V D1111) cumulants are then zero, and the higher
integrals can be expressed in terms of the pair integrals using
Eq. (2).

The results for the pure liquids studied here are presented
in Table I as obtained from Eq. (16) and the two limiting
cases. The pure liquids all display positive values for the
pair fluctuations (required for all systems), with negative
values for the triplet fluctuations and positive values for the
quadruplet fluctuations. Negative values of VC111 indicate that
a depletion of molecules in a reference volume of the liquid
is favored over an addition, while positive values for V D1111
indicate that the corresponding particle number distribution is
more peaked than the normal distribution.24 The signs change
when examining the pair, triplet, and quadruplet distribution
function integrals. However, the deviation of the integrals from
the IL is consistent with the signs displayed by the fluctuating
quantities. The GL appears to be a good approximation for
pure water. However, this will not be true for liquid mixtures
(see later). The trends observed between the various liquids
follow the variation in the value of b11 (or ρ1RTκT). Hence,
benzene is closer to the IL, even though the compressibility
of benzene is much higher than water because the number
density of benzene is relatively low.

The properties of an infinitely dilute solute are also of
considerable interest. The limiting forms of the pair integrals
arising from the solution of Eq. (7) are given by

TABLE I. Pure liquid properties at 1 bar. Units: T is in K, ρ1 is in M and all other properties are dimen-
sionless. GL: Gaussian limit, IL: Incompressible limit. Data obtained from the default Equation of State within
REFPROP:58 Water, IAPWS-95;62 Methanol, de Reuck and Craven;63 Benzene, Thol et al.64 (∂3ρ1/dp

3)T was
calculated by a finite difference using the ∆ρ1 that corresponded to a ∆p of 1×10−20 bar. Code was compiled in
quadruple precision.

Property Methanol Methanol Benzene Water Water/GL IL

T 298.15 308.15 308.15 298.15 298.15
ρ1 24.540 34 24.246 47 11.049 34 55.344 56 55.344 56
pκT/10−5 12.640 13.542 10.434 4.525 4.525 0
b11 0.076 894 0.084 123 0.029 538 0.062 076 0.062 076 0
c111 −0.051 96 −0.062 38 −0.007 426 −0.014 19 0 0
d1111 0.106 0.138 0.004 87 0.005 61 0 0
ρ1G11 −0.923 107 −0.915 877 −0.970 462 −0.937 924 −0.937 924 −1
ρ1

2G111 1.717 4 1.685 3 1.904 0 1.799 6 1.813 8 2
ρ1

3G1111 −4.737 −4.562 −5.626 −5.226 −5.317 −6
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G22 ≈ RT κT − 2V̄2 + Vm(1 − f22)
+ x2Vm

�(1 − ρV̄2)2 + f22( f22 + 2ρV̄2 − 1)� ,
G12 ≈ RT κT − V̄2 + x2V̄2(ρV̄2 + f22),
G11 ≈ RT κT − ρ−1

1 + ρ2V̄2,

(18)

to order x2 and where f22 = ∂ ln γ2/∂x2. Using these
expressions in Eq. (A1) provides the following limiting
expressions for the triplet integrals:

G∞112 = RT(∂G12/∂p)∞ + G∞12(G∞12 + Go
11),

G∞122 = RT(∂G22/∂p)∞ + 2G∞12G
∞
22,

G∞222 = RT(∂G22/∂p)∞ + 2(G∞22)2 + V o
1 (∂G22/∂x2)∞,

(19)

where the derivatives of the pair correlation integrals are given
by

(∂G12/∂p)∞ = RT(∂κT/∂p)∞ − (∂V̄2/∂p)∞,
(∂G22/∂p)∞ = RT(∂κT/∂p)∞ − 2(∂V̄2/∂p)∞

−V o
1 κ

o
T ,1(1 − f∞22) − V o

1 f∞22p,

(∂G22/∂x2)∞ = RT(∂κT/∂x2)∞ − 2(∂V̄2/∂x2)∞
− V̄∞2 (1 − f∞22 − ρo

1V̄
∞

2 ) − V o
1 [ f∞222 − ( f∞22)2],

(20)

and the compressibility derivatives are,

(∂κT/∂p)∞ = V o
1 (∂2ρo

1/∂p2) − (κo
T ,1)2,

(∂κT/∂x2)∞ = −ρo
1V̄
∞

2 κo
T ,1 − ρo

1(∂V̄2/∂p)∞. (21)

The data provided in Secs. IV D and IV E agree with these
limiting expressions.

B. Symmetric ideal solutions

Symmetric ideal (SI) solutions provide a useful reference
point for describing real solution behavior.47,65,66 Hence, we
have also included the corresponding SI results for the two
liquid mixtures studied here. SI solutions are characterized by
GE

m = V E
m = 0 and give rise to the following general expression

for the pair distribution integrals:65

GSI
αβ = RT κT − V o

α − V o
β + Sm, Sm =


i
ρi(V o

i )2, (22)

where κT =


α ραV o
ακ

o
T ,α. Using the appropriate derivatives

of Eq. (22) in Eq. (A1) provide general SI expressions for the
triplet integrals

GSI
αβγ = 3(RT κT − V o

α − V o
β − V o

γ + Sm)2 − 2(V o
α + V o

β + V o
γ )2

− RT(∂V o
α/∂p + ∂V o

β/∂p + ∂V o
γ /∂p)

+


i
ρiV o

i

�
3RT∂V o

i /∂p

− (RT)2(V o
i )−1∂2V o

i /∂p2 − (V o
i )2

�
. (23)

The above expression is valid for SI mixtures containing any
number of components at any composition. Both the pair and
triplet integrals are finite and composition dependent for SI
solutions. The values are determined by the volumes of the
pure liquids and their pressure dependence.

The SI results for the two binary mixtures, water + meth-
anol and benzene + methanol, are provided in Figures 1 and
2. Even for SI solutions, the distribution of molecules within
a fixed volume of the mixture is not Gaussian in nature.
Furthermore, the fluctuating quantities display a significant
dependence on composition. This appears to be driven by
the changes in the number densities, as the corresponding

FIG. 1. Symmetric ideal fluctuating quantities for binary mixtures of water (1) + methanol (2) at 298.15 K and 1 bar (solid lines), and benzene (1) + methanol
(2) at 308.15 K and 1 bar (dashed lines).
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FIG. 2. Symmetric ideal integrals for binary mixtures of water (1) +methanol (2) at 298.15 K and 1 bar (solid lines), and benzene (1) +methanol (2) at 308.15 K
and 1 bar (dashed lines).

G’s display a far simpler dependence on composition. The
b’s display a single maximum or minimum, the c’s display
two, and the d’s display three. This is to be expected, as
they are essentially derivatives of each other. Mathematically,
the pair, triplet, and quadruplet fluctuations are second, third,
and fourth order polynomials in the composition, respectively.
This helps to explain the observed oscillating behavior of
these properties. Physically, one can also explain some of
these variations using the approach described in Sec. IV F.
The G’s generally alternate in sign as one goes from Gαα to
Gααα to Gαααα for all compositions.

C. The effects of different models and experimental
datasets

The theory presented in Sec. II is exact. Hence, there are
no assumptions or approximations in the equations leading to
the triplet and quadruplet fluctuations and integrals. However,
the results may be sensitive to the quality of the experimental
data used in the analysis. In particular, it is well known that
the pair fluctuations and integrals can depend significantly on
the quality of the raw excess Gibbs free energy of mixing
data and the type of correlating equation used to represent
these data.42 Hence, it is important to test the degree to
which the experimental data provide reproducible values of
the cumulants and integrals.

The results of such a test are shown in Figures 3
and 4 for water (1) + methanol (2) mixtures. This system
was specifically chosen as there are many determinations
of GE

m available. For example, at the time this analysis

was performed, there were 126 total water + methanol
binary vapor-liquid equilibrium (T-p-x-y) determinations
(from which GE

m is obtained) in the NIST ThermoData
Engine67–69 within Aspen Properties®, part of the Aspen
Plus Product Family within the aspenONE70 Engineering
CAD software from Aspen Technology, Inc. Five examples
are described in Sec. II and are presented in Figures 3 and
4. The GE

m determinations chosen here do not necessarily
pass all the possible thermodynamic consistency tests.67,71–78

For the present study, we decided not to eliminate data
sets based upon the results of these tests, primarily due to
the controversy and lack of clarity concerning how exactly
these tests should be performed, and because many of the
tests typically require the use of a model (such as Wilson
or NRTL) such that they are no longer purely tests of the
raw data itself.76,78 Furthermore, for most other mixtures,
there are going to be significantly fewer raw T-p-x-y data sets
available from which to obtain GE

m. Thus, the seemingly ad hoc
choices made here, while not fully satisfactory, are actually
more representative of the options that might be available for
most other systems. Nevertheless, a thorough investigation of
the dependence of the water+methanol results on the raw
data and correlating equation, incorporating thermodynamic
consistency checks and using more data sets and correlating
equations, is certainly called for in the future. We anticipate
that less disparity between the results would be observed
if only thermodynamically consistent data set/correlating
equation combinations were used for comparison. Therefore,
the results in Figures 3 and 4 may actually tend toward the
worst-case scenario.
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FIG. 3. Experimental (solid lines) and symmetric ideal (dashed lines) fluctuating quantities for binary mixtures of water (1) + methanol (2) at 298.15 K and 1
bar.

In Figures 3 and 4, there are clearly quantitative
differences between the experimental data sets, especially
when using different fitting functions. In particular, use of
the RK equation typically resulted in more extreme variations

with composition. Due to the well-known recommendation to
use the Wilson equation for mixtures containing alcohols,79–81

and due to the absence of a physical meaning for the RK
parameters, we anticipate that the Wilson analyses are better

FIG. 4. Experimental (solid lines) and symmetric ideal (dashed lines) integrals for binary mixtures of water (1) + methanol (2) at 298.15 K and 1 bar.
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representations of reality than are the RK analyses. However,
the trends in the properties with composition appear to
be reasonably clear for all five of the determinations, and
consistent results are obtained for the B’s and C’s for most
compositions. The D’s clearly show the largest variations
between data sets and models. It does appear that the present
type of analysis can provide reasonably reliable data for the
B’s and C’s, while care would have to be used when drawing
conclusions concerning the D’s. A similar story is found for
the corresponding G’s provided in Figure 4. Clearly, the G’s
also become less reliable as the relevant species’ concentration
approaches infinite dilution.

We have also investigated the effect of using ideal mixture
data for both the compressibility and volume of mixing (data
not shown). The assumption of an ideal compressibility
resulted in essentially no changes to the fluctuations or
integrals, while the assumption that V E

m = 0 resulted in visible
differences in the data, but these effects were small compared
to the differences observed on changing the dataset and/or
correlating equation. It should be noted that these results
are probably general for most liquid mixtures under ambient
conditions.42

D. Water and methanol mixtures

Further examination of the results for water + methanol
mixtures presented in Figures 3 and 4 leads to several
important observations. The results are only slightly different
from those predicted for a SI mixture. Indeed, it could be
argued that the difference from SI is less than the dispersion
observed between datasets and correlating equations. The
magnitude of the fluctuating quantities decreases as the
number of methanol indices increases. This appears to be
due to the higher number density for water, which contributes
significantly to the fluctuations, as the corresponding integrals
display little change or even a slight increase in magnitude as
the number of methanol indices increases.

The fluctuating quantities oscillate in value with
composition. A maximum or minimum in the b’s occurs
at a composition where the c’s are close to zero and the
d’s display a maximum or minimum. Again, this is to be
expected from the relationships in Eqs. (1) and (6), and this
issue is elaborated upon further in Sec. IV F. The water pair
fluctuations (b11) are always positive, as are the methanol pair
fluctuations (b22). The water triplet fluctuations (c111) start off
negative at low methanol mole fractions and then turn positive
as the methanol mole fraction dominates. The opposite trend
is observed for the methanol triplet correlations (c222). The
magnitude of the fluctuations is clearly largest for fluctuations
that contain a larger number of water molecules.

The corresponding integrals are displayed in Figure 4. It is
clear that fairly consistent results are obtained for the G11, G12,
G111, G112, G1111, and G1112 integrals at low x2 compositions.
The same is true for the corresponding (1↔ 2) integrals at
low x1 compositions. As one reaches infinite dilution of one
component, the results for integrals containing that component
depend substantially on the dataset and correlating equation.
Hence, care must be taken when analyzing data in this region.
The two limiting behaviors, IL and GL, only appear to be

approximately valid for pure liquids, e.g., for ρ2G111 when x2
approaches zero, and not for the integrals containing mixed
species at finite concentrations (data not shown).

E. Benzene and methanol mixtures

The results for mixtures of benzene (1) + methanol (2)
are displayed in Figures 5 and 6. This mixture clearly deviates
substantially from that predicted by SI behavior. In particular,
one observes a large positive correlation between methanol
molecules, indicated by the large b22 and G22 values, for
low mole fractions of methanol. Our previous studies have
suggested that this indicates a significant deviation from a
random distribution of methanol molecules, attributed to the
strong desire to form intermolecular hydrogen bonds, as the
environment becomes more non-polar.50,51 This large positive
correlation between methanol molecules extends from the
pair to the triplet and quadruplet fluctuations and integrals.
The magnitude of the fluctuations and integrals increases as
the number of methanol indices increases. Hence, not all the
triplet terms will contribute equally to the thermodynamic
properties provided by Eqs. (B2)–(B5). In particular, the c222
and c221 terms clearly dominate for benzene + methanol
mixtures at low methanol mole fractions. The symmetry
between the different fluctuations and integrals observed for
the SI and water + methanol mixtures is also present for
benzene + methanol.

F. General features of the fluctuating quantities

The expressions provided in Eqs. (1) and (6) also indicate
the conditions for which there is a maximum or minimum in
the B’s or C’s as a function of composition, as is commonly
observed. Using these expressions, followed by application of
the GD expression for binary solutions at constant temperature
and pressure provides

Bi
αβ = Cαβ1µ1i + Cαβ2µ2i = (Cαβ2 − m2Cαβ1)µ2i, (24)

where m2 = ρ2/ρ1. The chemical potential derivative has to
be positive or negative for stable solutions and hence the
derivative of Bαβ can only be zero when



δnαδnβδn1

�
=


δnαδnβδn2

�
, (25)

where we have made the substitution, ni = Ni/⟨Ni⟩. Hence,
for binary solutions, the maximum or minimum in Bαβ occurs
when the corresponding (reduced) triplet fluctuations are equal
for both components. Similar relationships can be obtained for
maxima or minima for the C’s in terms of the D’s. Conditions
that lead to a maximum or minimum in the G’s can also be
developed, but are significantly more complicated and also
appear less informative.

A somewhat reasonable physical picture of the two body
(and higher) particle number fluctuations can be developed for
binary systems. In Figures 1, 3, and 5, the SI and experimental
b11 and b22 values appear correlated, while the b12 value
appears to be anti-correlated with the other b’s. In pure liquids
of component 1, the b11 values describe the fluctuations of N1
particles in and out of a fixed volume of liquid. The magnitude
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FIG. 5. Experimental (solid lines) and symmetric ideal (dashed lines) fluctuating quantities for binary mixtures of benzene (1) + methanol (2) at 308.15 K and
1 bar.

of these fluctuations is determined by the size of the region and
the compressibility of the pure liquid, which is normally small
under ambient conditions. When component 1 is very dilute,
the value of b11 tends to zero simply because there are very few

N1 molecules in a given region of the liquid. For intermediate
compositions, one can observe particle number fluctuations
due to the compressibility of the liquid (Mechanism 1), but also
due to exchange of 1 and 2 molecules such that the volume

FIG. 6. Experimental (solid lines) and symmetric ideal (dashed lines) integrals for binary mixtures of benzene (1) + methanol (2) at 308.15 K and 1 bar. The
y-axis was multiplied by 10−5 in panel (c).
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of liquid remains essentially constant for all compositions
(Mechanism 2),

δN1V̄1 + δN2V̄2 ≈ 0. (26)

Hence, the magnitude of the fluctuations in mixtures
can increase dramatically due to this second mechanism.
This helps to explain why the b11 (and b22) fluctuations
are essentially anti-correlated with the b12 values. This
correlation/anti-correlation relationship also persists for the
higher order fluctuations involving pairs of c’s and d’s that only
differ by a single species index (c111 and c112, for example).
Furthermore, if one multiplies Eq. (26) by δNαδNβ/V and then
ensemble averages, one finds the approximate relationship
Cαβ1V̄1 + Cαβ2V̄2 ≈ 0, which is true when RT Bp

αβ is small.
Using the condition given by Eq. (25) implies that not only
are the relevant fluctuating quantities equal at the maxima and
minima, but they are both close to zero. This type of behavior
is observed in Figures 1, 3, and 5.

V. CONCLUSIONS

We have provided quantitative data concerning the role
of triplet and higher correlations for complex liquid mixtures
from experiment. The above approach avoids the need for
information from scattering data, which is difficult to obtain
for complex molecules and/or liquid mixtures. Therefore, data
for a wide range of liquid mixtures should be relatively easy to
access, albeit at the expense of an absence in spatial resolution.
The initial systems studied here suggest the data are sensitive
to the correlating equation used for the excess properties,
although the trends with composition remain consistent. The
correlations vary significantly with composition, even for
symmetric ideal solutions, and the degree of variation steadily
increases the higher the correlation function. The fluctuations
and integrals appear to be dominated by correlations between
the most polar molecules in the system. This is to be expected.
However, and more importantly, these correlations can now be
quantified using the approach presented here. It is envisioned
that the type of data provided here will enable more rigorous
tests of models and theories for liquids and their mixtures, will
help with the development of improved correlating equations,
and will provide insights into the pressure, temperature, and
composition dependence of the pair correlations in a variety
of systems. In particular, extra confidence in theoretical and
simulation studies of the triplet correlation functions, g(3)αβγ,
for example, can be provided when one has agreement with
experiment for the corresponding integrals.
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APPENDIX A: GENERAL FST RELATIONSHIPS
FOR MULTICOMPONENT SOLUTIONS

In this appendix, we outline a few of the expressions
resulting from the theory section in an attempt to clarify what
has been accomplished and how this has been achieved. The
following general relationships are apparent from Eqs. (10)
and (13):

cαβγ = ργRTbp
αβ +


i


bαβ + (1 − xi)bi

αβ


biγ,

dαβγδ = ρδRTcp
αβγ +


i


cαβγ + (1 − xi)ciαβγ


biδ,

(A1)

for any number of components. The first expression
summarizes the relationships derived by Bhatia and Ratti for
the third order structure factors at long wavelengths in binary
mixtures.34 The expressions for the bαβ quantities depend on
the number of components, although a general expression can
be written in terms of matrix cofactors as indicated by Eq. (7).
Nevertheless, the pair fluctuations can be expressed in terms
of the experimental data provided in Eq. (4), and the above
expressions indicate how additional pressure and composition
derivatives lead to the triplet (and quadruplet) fluctuations.
The expressions clearly involve many terms, even for binary
mixtures. Unfortunately, at present it is unclear which terms
may contribute the most to the final results.

The theory also provides FST relationships for several
thermodynamic quantities related to third derivatives of the
Gibbs free energy. In particular, if one takes derivatives of
Eq. (7) one finds

∂a
∂X
= −a

∂b
∂X

a, (A2)

where ∂a/∂X indicates a matrix of partial derivatives
containing the derivative of each of the original elements
with respect to X , etc., and X = Nγ or p. This matrix
expression can be solved to provide general expressions
for the thermodynamic properties of any multicomponent
mixture given by derivatives of the a matrix. Derivatives with
respect to composition provide the composition-composition-
composition (N-N-N) derivatives

*
,

∂µ′αβ

∂Nγ

+
-p,T
= −(V̄βµ

′
αγ + V̄αµ

′
βγ)/V

−

i, j

µ′iα(∂bi j/∂Nγ)µ′jβ, (A3)

where the sums are over all components.
Derivatives with respect to pressure provide a series of

relationships. The N-N-p derivatives are given by

*
,

∂µ′αβ

∂p
+
-T ,{N }

=

i, j

µ′iα(∂bi j/∂p)µ′jβ, (A4)

which also provide the composition dependence of the partial
molar volumes through the relationship

(
∂µ′αβ/∂p

)
T ,{N }

= βN
�
∂V̄α/∂Nβ

�
p,T ,{N }′. The N-p-p derivatives are provided

by (
∂ρV̄α

∂p

)
T ,{N }

= −ρ

i, j

µ′iα(∂bi j/∂p)V̄j, (A5)
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which also provide the composition dependence of the
compressibility through the relationship

�
∂ρV̄α/∂p

�
T ,{N }

= κT(1 − ρV̄α) − V
�
∂2ρ/∂p∂Nα

�
T

. Finally, the p-p-p deriv-
ative is given by

RT
(
∂2ρ

∂p2

)
T ,{N }

= ρ2

i, j

V̄i(∂bi j/∂p)V̄j . (A6)

To develop these relationships further requires derivatives
of the pair fluctuations obtained from using Eq. (6) to provide(

∂bi j

∂p

)
T ,{N }

= −bi jκT + β

k

ci jkV̄k,

N
(
∂bi j

∂Nγ

)
p,T ,{N }′

= −(1 − ρV̄γ)bi j +

k

ci jkµ′kγ.
(A7)

Hence, the pressure and composition dependence of the
pair fluctuations are related to the corresponding triplet
fluctuations. Using these expressions in Eqs. (A3)–(A6)
provides the final results for the thermodynamic derivatives
in terms of pair and triplet fluctuations, which we write in the
most condensed form as

µ′αβγ = −ρ(V̄αµ
′
βγ + V̄βµ

′
αγ + V̄γµ

′
αβ)

−

i, j,k

ci jkµ′iαµ
′
jβµ

′
kγ, (A8)

ρ*
,

∂ρ−1µ′αβ

∂p
+
-T ,{N }

= −κT µ′αβ +
*
,

∂µ′αβ

∂p
+
-T ,{N }

= −β

i, j,k

ci jkµ′iαµ
′
jβV̄k, (A9)

ρ−1
(
∂ρV̄α

∂p

)
T ,{N }

= κTV̄α +

(
∂V̄α

∂p

)
T ,{N }

= −β

i, j,k

ci jkµ′iαV̄jV̄k, (A10)

(
∂

∂p
ρ
∂ρ

∂p

)
T ,{N }

= (ρκT)2 + ρ

(
∂2ρ

∂p2

)
T ,{N }

= ρ3β2

i, j,k

ci jkV̄iV̄jV̄k . (A11)

In the above expressions, we have chosen to use the second
derivative quantities provided by the pair fluctuations for
simplicity, and because the sign of the quantities is then easier
to determine. The above expressions clearly indicate the
role of triplet correlations in determining the thermodynamic
properties of liquid mixtures. The above relationships can
also be used as the starting point for providing additional
derivatives in terms of the quadruplet fluctuations, if desired.

Finally, it should be noted that the relationship between
the two sets (primed and unprimed) of chemical potential
derivatives is provided by

µ′αβγ = βN2
(

∂3G
∂Nγ∂Nβ∂Nα

)
p,T

= −(δβγ + 1 − 2xβ)µαβ + (1 − xα)(1 − xβ)µαβγ

(A12)

and the above expressions obey the following relationships:
α

xαµ′αβγ = −µ′βγ,
α

xα(∂µ′αβ/∂p)T ,{N } = N β


α
xα

× (∂V̄α/∂Nβ)p,T ,{N }′ = 0,
α

xα(∂V̄α/∂p)T ,{N } = (∂Vm/∂p)T ,

(A13)

which can be obtained from the GD equation at constant T .

APPENDIX B: FST RELATIONSHIPS FOR BINARY
SOLUTIONS

In this appendix, we focus on the most common mixture
of interest, namely binary mixtures. For binary mixtures,
we have general expressions for the pair fluctuations in
terms of experimentally accessible data. Furthermore, the
GD expression allows one to focus on a single chemical
potential derivative. Hence, Eq. (A1) can be written as

bαβ = xαxβRT(∂ρ/∂p)T ,{N }
+ (1 − ραV̄α)(1 − ρβV̄β)/µ′αβ,

cαβγ = ργRT(∂bαβ/∂p)T ,{N } + bαβ(b1γ + b2γ)
− (x2b1γ − x1b2γ)(∂bαβ/∂x2)p,T , (B1)

dαβγδ = ρδRT(∂cαβγ/∂p)T ,{N } + cαβγ(b1δ + b2δ)
− (x2b1δ − x1b2δ)(∂cαβγ/∂x2)p,T .

Substitution of the derivatives of the first expression into
the second expression, etc., could be performed. However,
there are six terms for the pressure derivative and eight
terms for the composition derivative of bαβ and this route is
therefore undesirable. Hence, the approach outlined below in
Appendix C is to be preferred. However, in our experience the
composition derivatives of the excess Gibbs free energy will
dominate the results under ambient conditions.

The expressions for the triplet based thermodynamic
properties relevant for binary mixtures can also be simplified
by use of the GD expression to give

µ′222 = −3ρV̄2µ
′
22 − [c222 − 3m2c221

+ 3m2
2c211 − m3

2c111](µ′22)3, (B2)

ρ*
,

∂ρ−1µ′22

∂p
+
-T ,{N }

= −β[c221V̄1 + c222V̄2 − 2m2(c121V̄1

+ c122V̄2) + m2
2(c111V̄1

+ c112V̄2)](µ′22)2, (B3)(
∂ρV̄2

∂p

)
T ,{N }

= −ρβ[(c222 − m2c122)V̄ 2
2 + 2(c221

−m2c121)V̄1V̄2 + (c211

−m2c111)V̄ 2
1 ]µ′22, (B4)(

∂

∂p
ρ
∂ρ

∂p

)
T ,{N }

= ρ3β2[c111V̄ 3
1 + 3c112V̄ 2

1 V̄2

+ 3c122V̄1V̄ 2
2 + c222V̄ 3

2 ]. (B5)

Other derivatives can be obtained from the relationships
provided in Eqs. (A12) and (A13). The relationships for
the thermodynamic properties for binary mixtures provided
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by the pair correlations are given by47

µ′22 =
x2

1

x2
2b11 + x2

1b22 − 2x1x2b12
,

ρV̄2 =
x2b11 − x1b12

x2
2b11 + x2

1b22 − 2x1x2b12
,

ρRT κT =
b11b22 − b2

12

x2
2b11 + x2

1b22 − 2x1x2b12
,

(B6)

and can be used in Eqs. (B2)–(B5) if desired. The above
quantities are typically positive, although the partial molar
volume can be negative in some cases, and hence the sign
of the above derivatives is directly related to the sign and
magnitude of the triplet correlations.

APPENDIX C: ANALYSIS OF EXPERIMENTAL DATA

For a general multicomponent mixture, the molar Gibbs
free energy of mixing can be written as Gm =


α xαµα

= GE
m +


α xαµid

α, while the molar volume can be written
as Vm = V E

m +


α xαV o
α. The latter expression also provides

the required relationship for the isothermal compressibility.
Experimental excess Gibbs and volume of mixing data are
typically provided in terms of a correlating equation (Wilson,
Redlich-Kister, NRTL, etc.). Given such an equation, the
corresponding excess partial molar quantities are provided by

µE
α = GE

m + (1 − xα)
(
∂GE

m

∂xα

)
T ,p

,

V̄ E
α = V E

m + (1 − xα)
(
∂V E

m

∂xα

)
T ,p

.

(C1)

Here βµE
α = ln γα, where γα is the mole fraction scale

activity coefficient. Using the correlating equation, one can
then obtain higher derivatives of both the total chemical
potentials and the partial molar volumes given that ∂xα/∂xβ

= (δαβ − xα)/(1 − xβ). The corresponding ideal contributions
βµid

α = βµo
α + ln xα to the chemical potential derivatives are

given by

µid
αβ =

δαβ − xβ

xβ(1 − xβ) ,

µid
αβγ = −xβ(µid

αβ)2µid
βγ,

µid
αβγδ = −xβ(µid

αβ)2µid
βγ


µid
βδ − xγµid

βγµ
id
γδ − 2xβµ

id
αβµ

id
βδ


,

(C2)

for any number of components. In addition, we have also used
the following relationships for the cross derivatives:(

∂µαβ

∂p

)
T ,{N }

= β

(
∂V̄α

∂xβ

)
T ,p

,

*
,

∂µid
αβ

∂p
+
-T ,{N }

= β

(
∂V o

α

∂xβ

)
T ,p

= 0,
(C3)

together with, ∂GE
m/∂p = V E

m , all of which are valid for any
liquid mixture.

As noted above, in the present analysis of the experimental
data for binary solutions, we have made one minor
approximation for the mixture of benzene + methanol. It

has been assumed that

(
∂nVm

∂pn

)
T

=


α
xα

(
∂nV o

α

∂pn

)
T

, (C4)

when n > 1. This is equivalent to neglecting the pressure
dependence of the excess molar volume or excess partial
molar volumes. A comparison of the data provided in the
Sec. IV indicates that the magnitude of the c’s obtained
for liquid mixtures are typically much larger than for the
pure liquids. Furthermore, neglect of these derivatives for the
water + methanol system indicated very minor contributions
from these terms. Hence, this approximation should be very
reasonable under ambient conditions and will likely be needed
for other systems, as the pressure dependence of the solution
volume as a function of composition is rarely available in the
literature.

It is possible to obtain the derivatives of the fluctuating
quantities in terms of the derivatives of the experimental
data using the expressions provided in Eq. (6). However, this
quickly becomes rather tedious. A simpler, but more opaque,
alternative has been adopted here. The first derivatives of
the pair fluctuations can be obtained from Eq. (7) by taking
derivatives with respect to X = x1, x2, or p. This can be
continued to provide second derivatives of the pair fluctuations
such that

∂b
∂X
= −a−1 ∂a

∂X
a−1,

∂2b
∂X∂Y

= −a−1


∂2a
∂X∂Y

− ∂a
∂X

a−1 ∂a
∂Y
− ∂a
∂Y

a−1 ∂a
∂X


a−1.

(C5)

Hence, the first and second derivatives of the b’s can be
expressed in terms of derivatives of a single matrix, a, that
contains just experimental data. We note that ∂b/∂X , bX,
but the results from Eq. (C5) can be used to obtain the matrix
elements of bX. This approach can also be applied to obtain
derivatives of the triplet fluctuations, as required by Eq. (15),
to give

∂c
∂Y
=


∂bX

∂Y
− c

∂a
∂Y


a−1, (C6)

where Y = x1, x2 or p. These manipulations do not
necessarily provide clarity to the expressions developed in
Sec. II. However, they are relatively easy to implement
computationally.

Finally, the fluctuating quantities obtained from the
above approach have been verified by comparing each pair
fluctuation to the integral over the corresponding triplet
fluctuations provided by Eq. (6), and comparing each triplet
fluctuation to the integral over the corresponding quadruplet
fluctuations also provided by Eq. (6).
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