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INTRnDUCTInN 

concrete is not a new building material. Recorel of its extensive use 

date back to the time of the Roman Tmpire. Although concrete has been used 

over euese hundreds of years by an in his ronstructien work the complete 

Imowledge of its properties And therefore its caeabilitiee are still being 

discovered. A large change in its application cone ith the introduction of 

reinforcing steel to improve its ability to resist a ben ing load. Concrete 

is of such a nature th.t it is strong in compression but very weak in ten- 

sion. Uhen the steel is bonded to the concrete, so the two act 77e a unit, 

the steel carriea the tension and the concrete the compression stresseF. 

This allows the combine.' section to resist large bending moments. 

Another metho of concrete construction which has been developed in the 

past few years ami is still in the infant stage employs the principle of pre- 

stressing. This use of eencrete is based on the principle of londing the con- 

crete prior to its use so that the entire beam will be in compression. hen 

the load is applied it actually subtracts from the compressive stress in a 

portion of the c.nerete. The beaes ro 'ce-igne to be in compressi.ln ecrces 

the entire section :hen the fell design load is applied. In this type of 

structure the construction techniques elay a very large part in the final 

capacity of the beam ml close inspection with numerous tests ane rigid con- 

trol of the concrete mix are required to ins,lre end results that agree with 

the design calculations. 

The use of thin shell concrete, although comparatively new, does not em- 

A.oy any new -'esign principles. The fact that a curved metber can transmit a 

load by direct stress eith little bending, was employed in the construction of 

the large domes during the Roman Period. Thin shells are structures in which 
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the loads are sustained by thin curved slabs. When the slab is curved in two 

directi,ms it is called i dome. The recent improvement of construction tech- 

niques coupled -ith the shortage of steel in Europe has been responsible for 

its development to a point where it can compete ,,rith other mAerials in roof 

construction. 

The design of thin shell structures involves spending inmmerable hours 

on tedious nAmerical computations. The rIlericin Society of Civil Engineers 

appointed i committee to simplify this process so the design could be per- 

formed by the structural designer Ath greater ease. The results of the work 

of this committee -ere published in a manual entitled "Design of Cylindrical 

Concrete Moll goofs" and incl)des numerous tables and examples of design. It 

is the purpose of this re:ort to explain the procedure in using these tables 

and show an example of their application in the hope that a greater use of 

this type of construction .Till be realized. 

DEFINITION 

Thin shells may be defined as structures in which the loads are carried 

by thin curved slabs. This type of construction includes domes, which are 

slabs curved in two direction and barrels, which are slabs curved in one Arec- 

tim only. In this report the barrel tyce whose curvature is constant over the 

entire width of the section will be investigated. These barrels are supported 

by and are integral with transverse stiffners ( Plate I ) . 

Shell action is characterised by the transmission of loads primarily by 

direct stress with relatively small bending stresses. ?late I shows the dif- 

ference in the action of a shell and a flit plate. The peculiar property of a 

cylindrical shell comes from the behavior of the shell in the transverse directiJr. 
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looking nt Fig. 1 in Plate I as a free body, it is seen that shearing forces 

and moments .ire require to maintain the. external load in equilibrium. But in 

the strip of Fig. 3 the normal component of the externnl load is resisted by 

the transverse forces (normal stresses) on the rodial sections, while the other 

component (tangential) is resisted in;' shearing forces on the transverse sections. 

It is these shearing forces th-t distinguish shell action from arch action. 

The bnrrels ere broken down into two types, the short b rrel 77hose ratio 

of longth between stiffners to the radius is less than five to one and the long 

barrel with ratio of length between stiffners to the radius of greater than five 

to one. The long barrel can be examined in the transverse direction in the 

same manner as a beam of curved cross-section, using the simple beam theory. 

'or ir.-t,-nce, by e'llatinfir the mment of 711 the internal forces acting a 

n t tr!msvi:r-ely throh Then to the =rent of the external forces 

and reactions, the intensity of the extreme fiber stresses, even for complicato_ 

shell shapes, can be determined under the assumption of a straight line distri- 

bution of stress. For the short barrel the distance between supcorts grows 

smaller an the longitudinal fiber stress tend to become larger than those oiven 

by the simple beam theory. Because of this increase in stress in the region 

of the free edges(non-supoorted), the problem of she11 desion 'oas come to be re- 

orrded as a problem of supplying necess ry forces at the e ges for 

To illustrate the scanning capabilities of thin shell concrete one needs 

ooly to look at e of the other f.771("1:7 1,/Iles in hirtor7. ho ;:o'nes :onstr cted 

by the Romans are probably the most famous but they woulZi certainly not stand 

a favorable comparison with the thin shell concrete construction of today. The 

Tome of '''aint Peters Cathedral, made of stone, spans 1'51 feet and weighs 10,0OO 

tons; the shell Acmes in the market hall in Ieipzig soan 740 feet and weigh 



only 2,160 tons. 
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The credit for the first analytical approach to thin shell design goes to 

G. Lame and E Clapeyron in 1828. These Frenchmen used a theory which was based 

entirely on direct -tresses rnd therefore had to be limited to shells supported 

on P11 sides. In 185'2 A.E.H. Love included radial shearing forces and moments 

in his theory, providing the basis for later theoretical developments. Carl Zeiss 

receives credit for the first application of Love's equations when, in 1924, he 

used them in the design of a small concrete shell roof for the Zeiss Works in 

Jena, Germany. 

In 1930 U. FinsterwaldPr presented a new approximate method which gives 

displacements in fair agreement with experimental results, and a few years later 

this was improved upon by W. Dischinger. 

In this country the leading contributcr has been R. Scherer, who in 1936, 

furth ©r simplified it. Finsterwaldarts solution, 

EX LET; OF NOTE 

Foreign 

Grand Market Hall at FrAnkfurt, German17. be building is 720 feet lung by 

167 feet wide and consists of fifteen shells, of the long cylindrical type, each 

121 feet long by 46 feet wide. The shells at the crown are 2.75 inches thick and 

at the exterior -,re slightly thicker. 

Rail Station an the Chessingter Line of the Southern Railway, Engiand. Ibe 

structure is composed of cantilever shells covering a loading platform) the then, 

spans 25 feet between cantilever frames. The thickness of the shell is 3 inches. 
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Exhibition Hall in Turin& Italy. In this structure pre-cast thin shell 

elements 7s:ere u:,e;,. in c .mbinazIon with cast-in-place concrete. The precision 

casting of the elements on the ground -nd the use of the forms repeatedly en- 

abled the roof to be more economical than wood or steel, and at the same time 

crovided a striking architectural appearance, with windows in each panel to pro- 

vide lighting for the interior. The clear area is 312 feet ide and 750 feet 

long. 

United States 

American Airlines Hangar, Chicago Municipal Airport. This roof structure 

proved more economical than any steel design for the hangars at the tine of con- 

struction. The hangar was built during the war period when steel prices were 

high and delivery of the st el was hard to forecast. The span is 257 feet and 

the shell is inches thick at the crown 'nd 6 inches thick at the edge beam. 

The supporting ribs are spaced 29 feet on centers and the over all clear height 

is 58.11 feet. In this design the shell was placed at the neutral as of the 
rib to re uce the moments in the rib at the crown and springing line. The form 

centering was quite expensive but it was reused six tines to bring its cost per 

square foot down. When the coat of fire proofing the steel was added to the 

cheapest steel design, the resulting cost VAS considerably more than that of 

the concrete structure. 

Hangar at Rapid City Air Force Base in South Dakota. The clear span is 

340 feet; the crown of the hangar is 5 inches thick but commencing 60 feet from 

the springing line it increases to 7 inches at the spring line. Reinforced con- 

crete stiffening arches are 23 feet apart; length of the hangar is 300 feet. 

Army Quartermaster Warehouse in Columbus, Ohio. Each warehouse unit it 
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approximately 180 feet wi-e by 16j0 feet long and the project covers 2,576,u00 

7q. feet. The dpan of he shell is t5 feet; thickness at the crown is 32 inches 

which increases to 11 inches at the e 'ges. 

Hershey ?sports Arena in rshey, Pennyslvrnia. The clear sion in th,s 

structure is 222 feet with a rise of 5L feet. The shell thickness varies from 

32 inches at the crown to 6 inches at the edges. The arched rib stiff,-ners are 

39 feet on center. 

Livestock Colosseum in Montgomery Alabama. The clear span is 2J6 feet 

with a rise of h8 feet. The shell is 31 inches thick at the crown and 5z inches 

thick d.t the edges. The space between arches feet. 

Onondaga County Tlemorial-Syracu-e, New Y -'rk. The arch spans a dis- 

tance of 160 feet starting from cantilever on each side making the tAal clear 

span 210 feet. The shell thickness varies from 3 inches at the crown to 5 

inches at the edge. The cantilever an, arch frames are spaced on 20 foot centers. 

DESIGN FROCEMRS 

Although the design of shells appears to be more complicated than the de- 

sign of ordinary indeterminate structures, it is handled in a very similar man- 

ner. As a matter of fact since in most cases the thickness of the shell in con- 

crete construction is determined by s:-'me construction detail, such ds depth re- 

quired for reinforcement, a single investigation is generally sufficient. 

In the analysis of an ordinary indeterminate structure it is the usual pro- 

cedure to reduce it to a statically determinate structure by releasing en: 

restraints, thereby allowing rotation nd displacement of the ends to occur. 

Then reactions are applied to bring the boundary b-ck to its original or desired 

position. The final stresses are the algebraic sum of the stresses found in 



the statically determinate position and those caused by the end restraint. 

In thin shell design it is first assumed that the serfce load is trans- 

mitted to the supports solely by direct stresses, senetimes called "membreee 

stresses." In the preliminary step called "rembrane enaleeis" there arc Sis- 

placements and reectiens along the longitudinal edges of the shell that do not 

comply with the boundary requirements. To satisfy the requirements, equal forces 

are Tads- but ofethe opposite direction; these forces are celled line loads. 

In contrast with general surface loading, these line loaes create bending stresses 

as well as direct stresses in the shell. The stresses produced by the line 

loads must be aeded to the direct stress in the shell to obtein the final stress 

sett n. Thus it is een that the design of thin ehelln can be divided into 

two parte. The first step is to find the interne], stresses rfl edge f.xces 

created by the surfece loeds using the meibrance analysis, and the second step 

is to add the stressee sue to the edge line loeding. 

In the following procedure reference is r'ade to certain tables in the A. 

menusl on the seesign of Cylindrical Concrete Mall Roofs." Ill of these tables 

do not ar.).ern in this reports Snly these required in vorking out the example 

that will follew are included but an attempt will be made to explain each table 

as it appears in the eesien procedere. 

The first step is to determine the stresses Sue to surface loads. Since 

this is always possible for continuous loads, the stresses created by ary type 

of continuous load distribution expreesible as function of the longitudinal 

and radial coordinates, x rind / reel he determined. For most ccrditions, the 

surface leads will be uniform in the longitudinal direction of the shell. The 

force and displacement components produced by two such loads are presented' 

Slate 
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In the discussion the following symbols will he used: E is the modulus 

of elasticity of concrete; Pu is the intensity fliform loaJ on unit area; 

-nd P.7 is the intensity of -lead load on unit area. 

Although it is possible to obtain the internal forces produced by any sur- 

face loads, because of 7athematical difficulties the corrective loads 

applied along the longitudinal a -ges -4.e expressible only as functions of sin 

nsx or cos vrx in which n is any integer. To -void confusion in the applica- 
L 

tion of the line loads ender step two, it is expedient to regard the surface 

load on the shell as the sum of the partial loads, the intensity of which is 

defined as An sin nix. By a suitable selection of the values of A which will 
"7- 

vary with each n, it is possible to approlw-te with any degree of accuracy any 

variation of loading. This representatill of a known function by a series of 

sines or cosines is called "Fourier Analysis" enc the series is called the 

"Fourier Series." The Fourier series for a uniform load equals: 

Pt: !LP r sin trx 4.1/3 sin 3frx 4.1/5 in 5fici 
fi L 

Or 

Px: Lae Ell/N sin net 
n: 395 

The TUM of all the terms of the series gives the straight line P.71. In 

general only the first few terms of this series are needed to achieve suffi- 

cient accuracy. The internal force and displacements producer:' by the sinu- 

soidal loading represented by the first two terns -re riven in Tables 1B 7,nd 

10 in the A.S.C.E. handbook. 

It is evident from Tables 1A, 1B, and 1C that, for shells whose subtended 

angle is less than 1800, the membrane analysis gives transverse and shearing 

forces acting on and along the longitudinal edge. If the necessary marginal 

forces cm be provided by the edge reactions and at the same time it the 



TAPLANATI3N OF PLATI.-.; II 

tl.o coviponent per unit length of shell in the transverse diretion, con- 

po;:itive whorl tensile. 

Vx- :rect force component per nit length of shell in the lotzitudinal direction, nor. 

:11(ieved 1.0sitive whe tensile. 

t",e tangential shearing force per snit length of considered positive area ;: it cro- 

ates tension in the irection of ihcreaaing vall.lee of x end j. 

va the vertical displuement, clIsIdered positive '.,en :t is :n t;,e downwrd olrecticn. 

h- the 1.orisontal ,is :.erect Ji.)sitive when it is directed Irmord. 

L- len;:th of sell hetween 8114)c:rte. 

r: co terl r%i1M3 

t: t, lc 7:oss 1 . 

I3: vieasured from the left support. 

u L.easured from the rit3bt edge of shell. 

Skr. :anzle subtended by the edge of shell measured from the centerline axis. 
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displacements of the :upportinc member-c correspond to the calcel ted eisplace- 

ments of the hell, the membrane -nalysis suffices; but to fulfill these re- 

qeirements, leep ede- merbers are often needed. In most c-ses thee ere neither 

possible nor desirable. On the contrary, in current practice the longitudinal 

edge beams are frequently omittee or reduced to a minimem size to exploit the 

full strength of the concrete shell. This reduction in the size of the edge 

beans means thet the boundary conditions required by the membrane analysis are 

unfulfilled. To satisfy the requirements of statics, line loads must be applied. 

The second step in shell design consists of finding the stresses due to 

line loads along the longitudinal edges. Four sep-rate line loads, a radial 

shearing force, a longitudinal shearing force, a tangential transverse force 

and a moment, can be applied along each edge. The line loads along one edge 

can be different from those acting :long ;.he other eege. With these eight line 

loads, four m ech siee, any edge requirement can be satisfied. 

For a single berrel with no edge member, subject to a synmetrical loed the 

corrective line loads consist simply of a tangential transverse force and 

a longitudinal shearing force equal to but opposite in direction to TtS and S 

given by the membrane analysis. When the eege conditions are complicated by 

the presence of longitudinal edge beams or adjoining shells, in adiition to the 

above loads, a radial shearing force arri a moment normal to the eTe must be 

applied. The relative magnitude of each force will depend on the strains and 

rotation produced by each load. The procedure c-nsists of establishing a num- 

ber of sirultaneous equations fulfilLng known edge requirements. 

The effect of ege line loads in a shell is basically different from sur- 

face loads, the difference being the fact that the line loads prolIce bending 

as well as eirect forces. The various forces produced by line loads are 

illustrated in Flate III. 



The effect of line loa.is is most pronounced in the vicinity of the esge 

at which the line load is applied, ith the intensity of the internal forces 

generslly dininishing as the istance fr -m the anslie forces is increased; 

When the chord width is small compared to the longitudinal span, the internal 

resisting forces produced by the line loads applied at one edge do not dissinisS 

fast eno::sh so that the effect of a line lops' apslieci at one edge is felt at 

the farther edge. For this condition, the magnitude of angle subtended by the 

shell plays an important role in the distribution of the forces and must be 

considered; but, when the chord width is large compared with the longitudinal 

span, the effect of line loads on one edge is negligible on the other edge, and 

therefore line loads can be trested separately. There is no definite line of 

demarcation as to when the effect of line loads applied to one ete can be neg- 

lected at the other edse. cosputed values seem to insicste th-t, when 

r/L exceeds 0.6 -sith $k more than 300, each longitulnol edge can be treated 

separately. 

Because of this indication, data showing the effect of line loads are pre- 

sented in two groups of tlsles in the ",.3.C.E. manual. The first group (Tables 

21 and 2B) gives the force distribution and displacements at -ale edge is long 

barrels for symmetrical line loads represented by the first term of the Fourier 

series. Since the angle subtended by the shell plays an important role, this 

set of result- is presented in terms of three parameters r/L, r/t sad $k. It 

should be noted that in addition to the three force components Ted, 3, Tx, the 

value of YO is given. The value of the other bending moments arr, force com- 

ponents are omitted because they are insignificant in most cases. 

In compiling this set of tables (24 and ?P), the radial and tangential line 

loads have been resolved into vertical and horizontal line loads. For shells 



EXPLANATION OF PLPTF III 

1,701. the radial shearing force on the radial face per unit length of 
shell, considered positive when it acts outwardly on tht. face 
facing the negative direction. 

Nx- the radial shearing force on the longitudinal face per unit length 
of shell, considered ,)ositive when it acts outwardly on the face 
facing the negative x axis. 

MO: bending moment on the radial free per unit length of shell, con- 
sidered positive when it produces tension in the inner fibers. 

Mx= bending moment on the transverse face per unit length of shell, 
considered positive when it produces tension in the inner fibers. 

Mt: torsional moment per unit length of shell, considered positive when 
it produces tension in the inner fibers in the direction of increas- 
ing values of x and 0. 

lat.: the displacement of the shell in the longitudinal direction, con- 
sidered Liositive in the direction of increasing values of x. 

ve the tangential displacement of the sh,11, considered positive in 
the diruction of increasing values of 0. 

wz the radial displacement of the shell, considered positive in the 
outward direction. 

4. the rotation of the shell, considered positive when the section 
rotates clockwise. 
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with e-ge members or multiple barrel shells, the horizont?1 and vertic'l com- 

roncnts re preferable to tnngential and radial line loads. 

The second group (Tables Y and 3B) c-.era hell7 :hose ratio r/L exceeds 

J. and gives force components produced by line loads or one e-ige. For this 

ran ;e the behavior of the shell can be expressed as a function of the parameter 

rt. The tables in the &.S.C.E. manual have been computed for two sinusoidal 
L 
loadings, one with nal an one with n=3, since the second partial loading be- 

comes of increasing Lriport9nce R7 the value of r/L increases. 

The derivation of the three equations of equilibrium for the membrane 

analysis is shown below. 

Fig. 4 Transverse view of shell element 

The surface load is broken down into two components. R is the load per 

unit area acting radially and is considered positive when it acts outwardly. 

is the load per unit area acting tangentially and is considered positive 

when it acts clockwise. 

Summati-m of the forc.s in the radial ,iir,tction gives the following 

equations. 
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F radial= 0 

R rdim (T$4.2T$ di) d0/24.T$ di/2 
1-7 

R 4.0T$ 
-174 2 

R rm T$4.g 

drop bT$ di because it is small 

-Si 7. 
Therefore 

T$ - Rrm 0 

A summation of the forces in the tangenti'l lirecthn is presented below. 

To+ Sri day 

ea 

Trt 

Fig. 5 sketch of shell element showing tansenti.1 forces 

(Tic ?sl di) dx + (S+ ) rdir_ '!rd$ +TOdx 
bx 

a.1.7 didi4 As dxrd0= /rdidx 
bx 

Therefore 

a 
4, AS r ir: 0 

bx 
A summation of forces in the longitudinal -iirection gives the third equi- 

librium ecuation. 
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T,L+ 6T'4 44x "Fir 

Ifs 

"ig. 6 sketch of shell element showing lonvitudin-1 frees. 

(ex4 Tx cx) rdi (c4 1 d$) dx= Idx+Txr!,4 
i-i Eq 

I> Tx dxrd04.br; Oft 
17i 57 
Therefore 

bTx r 

x 

The7e three e-matilns can he wAtten ir. the fo'1lwin7 form: 

Rr 

S= /P dx--1/r/aTO dx 

Tx= --1/1D", dx4f.L(/; 

From the three equations of equilil:rium one can study the stresses caused 

by different types of loading. The first loading to be studied is a uniform 

transverse load cnlled Fu in :1-1ich the ,;eight 17 evenly distributed per hori- 

zontal foot. 

--Fu cos2 (44) 
ru cos (4-4) sin 4k-O) 
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TO --Ft r cost ($k -i) 

- Pu r 2cos (0-0) -in (0-0) 

When suhstitxted in the equation for she-,r the follo-,:ing 17 obta:ned: 

S:)(2Pu cos (0-0) sin (0-0) dx+/Pu cos (0-0) 7in (0-0) dx 441(b) 

S= 3Pu CO3 (0-0) sin (04) x+f1(0) when x= 1/2 s= 0 

Or. 3Pu cos (0-0) sin (4(4) 14/214) 

fli= Pu cos (0-0) sin ($1c4) 

S.T. 3Pu cos (0k-0) sin (0-0) x- 31 Pu cos (0-0) in (Sk-/) 

3Pu cos (ik-S) sin (0-0) 

which can b written in the for 

S= --it r (L/r) 3/2 cos (04) sin (0-0) (1- 2x/L) 

Next this is substituted in the formula for Tx 

Tx= -1/ibq lxi.f2 (0) 

1>S ,JXT Pa r (1-2x/L) [- 3/2 cos2 (04)4.3/2 sin? (0-0)] dx 

Tx="Pu T/r (1-2x/1) E-3/2 cos2 (0-0)4-3/2 sin2 (0-0)] dx +f2($) 

Tx= (x/IF-x2/1,7) D/2 sin2 ($k-1) - 3/2 cos2 (0-0)] Pur 0/ 4.f2(i) 

Tx= 0 when x= 0 for -11 (0) 

Therefore 

.!2(0)= 0 

The other loading corzi red is a variable transverse lo-d v rying as the 

weight of the shell. The dead lo-d Id in a loading of this type. The radial 

and tangential components of the load are: 

Ft= --Fd cos (0k-0) 

N gin (0-0) 

In a similar manner one arrives at the equilibrium equations: 

-Pd r (L/r) in ($k -$) (1-2x/L) 
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-- pd r cos (lc-4) 

Tx- r (1/r)2 cos (ik-S) x/L (1-x/L) 

It will be note' in the preceding derivation that the surface loas with 

the same transverse distribution but of lifferent longitudinal distribution 

will likewi:7e have the same transverse distribution of stresses. Also ioacis 

with like longitudinal distribution, but with different transverse .iistribu, 

tion, will produce the same longitudinal distribution of stresses. Therefore, 

surface unifrm in the transvrse *i.rnction v,qrving as the sin nips 

L 
in the longitudinn. direction, a Astribution employed to appraxim,te other 

to c-nditions, will have the same stress istribution in the transverse A- 

rection as 7 surf ce load uniform in both lirections. If the force nd dis- 

placement elmponents created by a surface loa' in the transvprse drection, 

are varied as the sin nix in the longitudinal ,drection we obtain the follow- 
L 

ing equations: 

TA: --FU r cost (0k4) sin 

S: r 3 (I.ir) cos (44) 

Tx: r 3 (h r)2 [cos' 

u= Pu r r/Et (I/03 [cos2 

nflkx 

sin 

cos 

b(nom 

radial 

n ft 

L 

cos 

nirx 

sin (/k-i) cos nix 

($r -$) -sin2 (/ k-S)1 

($k -$) - -in2 (/k-$)1 

(04k-0 ) x sin (Ac-111 

[cos' (ik-$) -sing (b1c-/S).] 

nix 

v= Fu r r/Et (L/4 6 I sin nix 
nir 

w= -- r r/Et (1104 t x 12+(nlyr)1+1/6 

cos2 (01c4)3 sin 

L L 

17 L 

in which u, v, an; a w are dislacements in the x, /, and 

The force cmvnents created by a surface loa(1 varying as weight of shell 

in the transwxse Axection and as sin nix in the longitudinal direction are as 

follows: 
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TOe --Fd r cos (6k-6) sin nnk 
L 

It r I/r 2 sin (6k-6) cos nNk 
fir L 

Txt Pd r (L/r)? 2 cos (6k-6) sin nil% 
Etir 

ut Pd r r/Et (L/r)3 2 cos (6k-6) cos EE 
17130 L 

v= Ssi r r/Et (I/r)4 2 14.2n212 (r/L)2 sin (6%-6)] in nik 

- Pd r r/Et (I/r)4 2 1+21:01.2 (r/L)2 (r/L)4.1 cos (6k-6) sin rink 
11144 L 

The gene-al equations just reviewed are independent of the longitudinal 

boundary coalitioss. Hence, the values for the internal fsrces obtained from 

the final expressions for these forces -re applicable to all cylindrical shells 

irrespective of the central -ng].e 26 subtended by the shell. 

The marginal forces existing slorg the longituAnal edge sue, be corrected 

to nrree with the actual csnd.tions by the spslicst:on of edge line losds. 

,,isce these edge loads produce ben ing and "irect stresses on the shell, the 

analysis of the effect of ege loads involves the bendin theory of shells. 

It is not the purpose of this report to derive ll the equilibrium equa- 

tions in the ben ing theory of shells but g few comments on the method seem 

appropriate. The strains nd rotations expresibl- as functions of the dis- 

placements u, v, ant w rre used to provide the required relationships to solve 

the esuations. Three equilibrium equations can be written in terms of the un- 

known displacement csmponents u, v,.and w an their derivatives, as functions 

of x and 6. To solve these three equations simsltsnesus4, two of the three 

unknowns must be eliminates snd this requires reccessive ifferentiations. When 

one finally rrives at a solution of this equation, it involves an eighth order 

homoFenesus differential equatisn. The final equations cmtain four arbi- 

trary constants; their evaluation depends on the specified e(ige csnditions. 
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The force and moment components can now be written in terms of u, v, and w, 

and substituted into the equilibrium equations. 

EX1FLE OF 7.EIGN P.1C7DU F OF ",Tr:IY 

TITITZTTM 7Tr1L7-B" RFT, c7-7LL 

4 snow loa of Pya 25 /p' is assumed as live oad. The Amensions 're as 

shown -11 Flate IT. With these dimension r/tr. 31.12 a 9.2 call it (10J); r/I= 
777 

"1 or 0.5; and Pd.: 3.75 150- L7 ')/1.e. 

77 17:55 
The first step in the analysis is to deter7ine by the membrane theory the 

internal forces produced by the surface lords. In this example, for the purpose 

of greater clarity, on y the first term of the Fourier series was used. The 

coefficients cane fr,m Table 1B in the A.S.C.E. m nual, which is .erived in the 

following manner. The 7urface load is broken into two components, R, in pounds 

per unit are- peting r:Clally, and ?5 per unit area acting tangentially. The 

three equilibrium equations arP rer.1-itten below. 

Ti= Rr 

3= -L/rP24 140x4f1(0) 

TX* --I/ratS 
d2(Q) 

The terms fl(i) and f2($) represent functions of the variable I and their waues 

-epenO n the b)und-ry ern itions. 9y successive differentiathms and integra- 

tions the values for the internal forces can be found. 

Let Pu be the ;inform lo, per unit ?rea and A( be the angle subtended by 

a radial plane through the ed:e of shell and a vertical plane. Then R= - Pu cos2 

(0-11) and 21, Pu cos (ik-e) sin (Sk4). These equations end the nes for Ti, 

Tx, an S can be written in the following form. Ti= r cos2 (0k4) in which 

the trm -cos2 ($k-$) is tabulated in column 3 of Table 1A. Likewise Sx -111U r 

(L/r) 3/2 cos (41(4) sin (lik-i) (1-2x/L) in which the term 3/2 ces (44) sin 



EXI'LANA2IN OF PLATE IV 

supported snell with te 

following dimensions: 

Lenth L= 62 feet 

Radius r= 31 feet 

Thickness t: 3 3/4 inches 

Subtended kry.les froi;. ea,;* to cen- 

ter line 04.: 400 
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Vombrane forces and :lisplacementa in simpl; 

supported cylindrical s loads varying 

longitudinally froz hero at the ends to naxi- 

um positive at ti:e middle. 
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($k-i) is tabulated in column 2 of Table 1k. If the shell is simpl7 supported, 

then Tx at xs C is equal to zero. Therefore, f2(i) is equal to zero. There- 

fore Tx= - Pa r (Lir)2 3/2 [eos2 ($k -$) (>6k.. )J x/L (1-x/1,) in which the 

term 3/2 (Cos2 ($k -/).] has been evaluaed an makes up the coeffi- 

cients in column 1 of Table 1A. 

The for-alias just mentioned are for a loadilg that is constant in the tronr- 

verse direction. For a loading that varies Ath the weight of the shell, such 

as dead load, the following expressions exist. n --Fd cos (0.4) and is Pd sin 

($k -i) in .:hich Pd is the unit weight of the shell. Now one can irite TS= --pl r 

cos (ilk -p() in ,.7hich the value for -cos (ik-S) can be found in column 9 of Table 

lk. limilarly Ss --Pd r (L/r) sin ($k -$) (1-2x/L). The term - sin (0k-i6) makes 

up column 8 of 1k; TX. -Pd r (I/02 cos (ilk -O) x/L (1-x/L); column 7 of the 

table is compiled by evaluating - cos (ik-/). 

Isaliving that Tables 18 and le are made up of partial loading one can adjust 

the terms Just derived by pitting in a f-ctor of sin ntik in which ng 1 for 
L 

Table 18 and n= 3 for 1C. 

Our ecuations for a load "niform in th transverse Arection but varying 

as the in nftx in the longitudinal direction are as folL)ws: Tx: - Pu r cost L 
(04) is presented in column 3 of tables 18 and 1C. % r 3 (L/r) cos 

n17 

($k-$) sin (ek-)d) cos 21155, column 2 is 3 [cos ()ik-0) sin ()dk-6 ii in both 
L, ntr 

tables 1B and 1C, n= 1 in la and z 3 in 1C. TX: --FU r 3 (10/r)2 [Cos2 
717' 

(ik-id) -sing (/1k -0 )] sin nft, Column 1 is the evaluation of 3 (-cos2 (0-4) 
n ff 

-sin (04)] 

The force components created by a surface load varying as the weight of the 

shell in the transverse direction and as sin eft in the longitudinal direction 

are as follow: 



TS: --Fd r cos ($k-S) sin Mix [-cos (Sk-S)] is compiled in coThrm 

- Pd r 2 sin (Sk-S) cos nrnc, - 2 sin ($k -0)] is compiled in 
nw I L r1r 

column o. 

TX= Pd r (I/r)2 2 cos (Sk-/) sin I- 2' Cjc (1.kn4).1 makes up 
7N7 I 77W7 

column 7. 

Since these Lcbulated value3 represen the effect of a ,:nit lo:7.4, these 

coefficients must be multiplied by the magniLde of the ap.lied loh,.s which are 

25 for snow load, and 47 for dead load. They also must be multiplied by both 

the factor indicated in -;,able 113 'nd bAr as reouired by the Fourier analysis. 

The values ,-re listed in rows 1 and 2 of table 1. For example, row 1 for part 

(a), the '7olution of TS at xv 714/2 (pound per foot) is obtained in the following 

manner. The equation from Table 1B for TS is TS- Pu r hAT coefficient sin 
1r 

So at xi. L/2 the !,in1TL/2- 1, leaving Lk (Fouriers cleries) 25(Pu) 31(r) coeffi- 

cient (column 3 Table 1B). For $. 400, 6k -S. 0 therefore coefficient= 1.000, 

giving an answer of -5,87. Likewise at j. 30 the coefficient would be found at 

Sk-S= 10 which is -.9698 when this is multiplied by 4/ .25.31 it4is equal to 

-957. Line 2 gives si filar results for the dead load using L7 as Pc and the 

coefficient from column 9 in Table 1B. The values for S and Tx are found in a 

similar manner us.ng the following formulas, Sd-Py r L/r Vir (coefficient) cos 

lq and Txt.iu r (L/r)2 4/111- (coefficient) sinitx. 

It is evident, by inspecting values at S. 0 in Table 1, that the membrane 

theory yields reactions along the longitudinal edges. Since these edges are 

unsupported, corrective line loads of equal but op osite v-lues must be applied. 

At x= L/2 for T$ and st x= 0 for 5, the unbalanced forces at Sr. 0 are: TS= -57) 

-1,),21= -2,u00 /ft: an S. -')?8 -1,519= -2,L4 /ft. 

fhe vertical and horizontal components of the transverse force are: Viim,OU0 
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sin Oki. 1,736 0/ft; qv' 7,u A) cos Oka 1,532 Vfts and S 2,447 Vft. 

5ince Tahle 2 rt!:resents the effect of unit line Loads on a shell, the 

coeffi.-ients for 07%1 L° ritsj 100 and r/la 0.5 times the factor of r/L or (r/L)2 

as specifie In the ,madinc ore multinlied by the values of V14 St, nnd 17 just 

determycl. The proOucts of this ooertion :'re tabulated it roc 3 to 5 of 

Table 1. Rew 3 is found ir the followinp manner. In Table 2A on the page car- 

resoondine th, values of rite 100 km:- rifle 0.5 find the ro.. for 110°, then 

umier coLry 3 (TO for a verb cal eve loae) find the coefficient for Se to 

be 0.0.358 giving the value VL coeffiients N.4644 The values for x S, ,nd 

are found in a similar manner. The respective formulas are TO VL coluaLL (j) 

51nlp Tv: VL EL/r)2 column (1)] sin Axe S [ lir column (2)] cos if and 

715r. VL [r column (L )J minim 
-r- 

The resultnnt forces actin?, in Min shell due to the combination of all the 

applied loads are equal to the sum of rows 1 to 5, and ere thulated in row L. 

It should be noted th't both T$ and S -re now equal to isro along the free edge 

nod hence the boundary conditions are satisfied. 

The internal forces at any point in the shell can be obtained by multiply-. 

ing the val.les of TO, Tx, 2 by sinlyx and 5 by the et:06TX. 
-"L" 

In order to determine the steel necessary to resist the tensile forces, the 

principal stresses enernted by the corbinel direct stresses and tangential shears 

must be laupted from the ecuation Tpc Tx4TOt 1/(ThsT0)2 4.12 or from Wehrle 
L, 

Circle (Fig. 7) in which Tpc the principal force. The plane on uhich the first 

principal force rcts is given by tan 246 23 in 41i.:h, for positivt values 

7777 
A' tan 28, 6 is measure:I in a counter clockvi-e Airection from the face on 

which Tx acts. The second principal stress will be at right angles to the first 

principal stre-m. 
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E6 

Tx 

Fig. 7 Monrts Circle 

The nrincipal forces and planes on which they act are given in Table 3. 

The lines of principal -tresses are curvilinear and steel is required to carry 

the tensile stress. 

Fig. 8 One way reinforced Fig. 9 Two way reinforced 

Although concrete can withstand a small tensile force, steel should be 

provided to resist gll the tensile forces. For this to be accomplished theo- 

retically the steel should be bent to follow the curved lines of the principal 

stresses. Because of the lifficulty in bending the bars to follow the definite 

paths, the bars are placed instead at an angle to the direction of principal 

A lb t 
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stresses. The disadvantage of placing the steel in this manner lies in the 

fact that the effectiveness of the steel is reduced. This reduction results 

from the increased distance between the bars and the decreased cdmponents of 

the allowable tension in rs. If th force is sunned in the direction of 

the principal stress Tp tle result is Tp dem As fs dx cos44 in which As is the 

area of steel per unit of length in the x-direction. If this equation is di- 

vided through by ds then Tp: As fs cosSdx= As fs cos24 . 

:.;hen steel is placed in two directions at right angles to each other, 

shown in Fig. 8, the steel stress in one Arection can be arbitrarily specified 

but the stress in the other direction is governed by .118 direction of the prin- 

cipal strain. If the forces in the Arection of Tp are equated, the result is 

Tp ds= As, fsl dx 

unit of length in 

4. As2 fs2 sin6 . 

cosd+0.52 fs2 dy sin6 in which As2 is the area of steel per 

the y-direction. From this, it follows that Tp= Asi fel cos246 

The resulting strain in the reinforcement is in the direction 

of the principal stress; therefore fee fel tan 

tuo directions, Tp: fel (Asi cos2,14.482 sin2i tan6). 

The analysis of the shell has been based on the assurption of homogeneity 

of the material. To be consistent then the steel stresses should be based on 

the ratio of steel strain to concrete strain. This arrangement would require 

the use of a constant percentage of steel throughout the tensile zone. 

In indeterminate structures it is customary to analyze the structure on 

the basis of the constant elastic property of the mether and then determine the 

area of the required steel on the assmption that is is stressed to. an allowable 

design value. The same practice will be followed in shell design 'ith the modi- 

fication that the stresses in the longitudinal steel will be proportioned accord- 

ing to their distance from the neutral axis. This is the point where Tx= 0. 

Hence, for reinforcement in 



The steel at the bottom edge 'AU be assumed nt 20,30e psi. en this b'sis, 
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from eeble 3, the reqeired area alone the bottom eeee et eie:spen is computed 

free the formula as TT,L)qq 3.85 seuere inches. 
75;557 

To furnish the area, one inch roend bars spaced on 2 VS inch centers are 

needed, At .ane foot free the bottom e ge, the pereissible steel stress will be 

b2see on the ratio of the distance to the neutral axis. The neutzel axis is 

three feet from the eottom edge. The permissible stress is therefore 20,030 

times 2/3= 13,000 #/sq. inch. The total force ;Jer unit of eength acting at 

this point is eeeroximate1;y 44,500 pound per foot. The required area of steel 

computed by the formula es: 141500/13,300e 3.32 squnre inch. Consequently, the 

spacing can be increased to 2 7/8 inches. In he eenner, the steel apaciiig 

at two feet from the bottom is found to be 3 3/8 inches, This spacig is mein- 

tamed to the neutral axes, Bove the eeetrel a'is e no-inal ancient of rein- 

foreeent :,;hcrld be erovided. 

With the longitudinal forces varying as the sir re, the steel area is re- 

euced by 25 per cent at lc= IA, and by 50 per cent at x e/6 Every other bar 

is continued to the support. 

Along the supporting rine the tensile forces (Table 3) are resisted by con- 

tinuous diagonal reinforcement. The steel area at $ 10°, and A 20°, is 

8,283/20,000e 0.142 square inches and 4,716/20,000e 0.24 square incees. U 2 

inch round bars, the required spacing normal to the direction of the reinforce- 

becomes 5/3/4 inches and le inches respectively. However since the bars 

are centinueus, the spacing at Se 20° is governed be the spacing required at 

$ - 10° and x i/3. The area at this point is 7,002/20,e00e 0.35 secere inches. 

The required spacing of 6 3/h inches is maintained to the seepert. 

The spacing of the transverse reinforcement is dictated by the transverse 
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moment Mi and thrust T$. At the center of the span at the crown, with an ef- 

fective depth of 2 3/4 inches, there is a moment- 2,297 foot-pounds (Tthle 1) 

and a trust A' 3,829 pounds (Table 1); the steel required is 0.45 souare inch 

per foot in the top of the shell. Since YO decreases as decreases, half the 

bars re terrinated at approximately 0 200, uhere MO is approximately half of 
the crown transverse moment. In the lonaitudiral direction MO varies as the 

inj.frx. Hence the transverse steel .rea can be resnced by 25 per cent at xm 

arC by 50 per cent at xa 14Aa there partial loads are anticipated normal 

bottom reinforcement should be provided. 

C013TRUOTION TECHNIQUSS 

Although it is P fact that thin shell construction makes the maximum. use 

of naterial, giving the designer greater space for the amount of material actu- 

ally used in the completed structure, at the same time it gives the builder 

many new problems. The amount of concrete and steel ,Ised in the structure ac- 

counts for but ^ small percentage of the total cost of the job. The problem 

of form design, form handling and labor, becomes a problem of increasing im- 

portance. The problem was first tackled in Europe, where for both economic rea- 

sons and because of lack of certain structural materials, thin shell construction 

made its most notable strides. The important fact that an increase, in use of 

material can be offset by a saviag in labor and time, has played can important 

role in construction techniques. Reusing the forms as much as possible and re- 

petition of operations that increase the efficiency and skill of the laborer 

are also two important aspects of economic construction. It might be said then 

that the growth in the use of thin shell construction is -:lependent on the im- 

provements in construction techniques. 
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The use of eobile form centering is often advantageous, permitting re. 

pe ted ..:se of forms by moving them intact to their new loeetion. In Europe 

where labor is much cheaper, the ectlea disasseebly and assembly of forms by 

hny has proved econcrical in some czes. The selection of steel or wood for 

the censtrectiae ef tee centering is chiefly a problem of svailability and the 

size of the job. While is higher, in its initial cost, on large jobs it 

has erevee econonical, eee -soiree to its seree,ehi-ity to be quickly assembled 

and disasseebled. The centering es actually a wecteen truss with a curved upper 

chord designed to carry the load of the .et consrete. It is placed on vertical 

supports with an adjustable base, usually consisting of e jack and wheel ar- 

rangement. Rails ere laid in the longitudinal eirection ,.nd the centering is 

rolled into place. The jacks re -djusted to give the form the proper elevation. 

The centering is braced for wind stresses usually by cables or by bracing direct- 

ly on p -rt of the existing structure. When the form is in place the reinforcing 

steel is laid in a mat system of a simple grid. edltionel steel is placed near 

the edges and ribs to trice care of the bending stresses. 3ometirnes the position 

of the bars are painted on the forms for speed in placing the steel. The pour 

is started on both sides at the SaMe time at the springing line and.kept even 

to prevent any arching ,etion. By easuring the deflection of test beams poured 

at the sane time of the shell it can be determined ,.hen it is safe to remove the 

forms. This is done by lowerine the jacks evenly and placing the wheels beck 

down on the rails for novement to the next pour. 

MeNONICS 

The first question that will come to most peoples ends in regard to the 

use of thin shell construction in this coantry is, how mill it compare eco- 

nomically with the types of construction now in use? This is a fair question 



because it io the economy that is the main obstacle to the use of this type of 

construction in this country. To be fair to the thin shell technique one shsuld 

compere Europe and this count y separately. It seems to be the practice at home 

to s-crifice materials for time and consequently, in a structure such as this, 

the vast ssvings in material are more than offset, at the pre ant time, by in- 

creased labor cost. However, there have been notable exceptions to this which 

will be eiscussed later. 

It has already been mentioned that in Earope, where materials -re a cri- 

tical item and labor is relatively cheap, thin shell construction has proved 

one of the best forms of construction. Necessity is the mother of invention 

and this is why most of our outstanolng examples are found in Europe. Because 

even in spanning small areas thin shell eees about 40 per cent as much steel as 

an all steel frame for the sane job, it has been given a great deal of study 

abroad. 

The disadvantages in the use of this type of construction can be broken 

down into three parts. These three parts are the design, placing of steel re- 

inforcing, and formwork. In the design, some of the earlier jobs of complicated 

shapes h ve taken as much effort 79 four engineers working for six months to 

complete. This factor is being rapidly decrease: and for standard shape shells 

various committees, such as the A.S.C.E. committee on thin shell construction, 

have siselified the procedure nd provided tables to cut down on the ,13esign time. 

The sewn:' disadvantage, that of placing reinforcing steel, has been re- 

euced considerably by the use of woven wire mesh as the main reinforcing. 

Still the biggest obstacle is the form work. Yet even this problem is be- 

ing overcome by the use of traveling formwork. Oa the construction of some 

llrge hangars, a form for one or two bays was eeastructed and then moved on 
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rails along the length of the building to be used as the form in each suc- 

cessive bay as described errlier. An example of the cost of one of these forms 

is given by the ene used in the fir Torce Hangar at Rapid City, BouttDekota. 

The form was 50 feet long, AO feet wide, and 90 feet high. It cost 485,000 to 

build, contained 230,000 board feet of ':umber and weighed 50J tons. 

All three of these disadvantages are being overcome and it may not be long 

before this type of structure will have a firm place in the building techniques 

of this country. 

Two examples in which the concrete roof eas cheaper than the °thee types 

of roof construction are the U.S. Army euartermester Wareheuse, at Columbus, 

Ohio and the Livestock Coliseum at Montgomery, tlabema. In the warehouse job 

the concrete was originally bid as an alternate to a steel truss with wood deck 

roofing. The concrete cost only one cent per square foot more than the steel 

design and had the additional advantage of being fireproof. For the roof bids 

on the Livestock Coliseum, the steel bid was $599,000 and the concrete bid was 

$$77,500. Time for completion was 500 days for the concrete as compared with 

730 days for the steel. 

The eisadvantages of thin spell construction can be described, as primarily 

those of construction techniques in this country. But whet are advantages? 

Maintenance is a goof place to start on the lone list. Steel trusses have to 

be cleaned and painted ^crioeically where as there ie no such maintenance to 

concrete. The smooth curved surface ie easy to light either artificially or 

naturally with openings in the roof. Shells may be insulated against both heat 

and reverberation by applying thermal insulation and sound absorptive materials. 

The acoustics are easier to control in a series of emaller cross barrels than 

in a large single shell. The biggest advantage to an owner that needs a large 
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clear area free from columns is the safety of his structure in case of fire. 

Another advantage WAS pointed out in World War II where in Europe some of 

these structures received heavy bombing and stood up remarkably well The shells 

or bombs would make a hole in the shell but the roof would not collapse. A 

team of assessors sent to Germany after the war by the British Ministry of Works, 

reported that shell concrete was the most impressive modern building form found 

in Germany. 

CONCLUSION 

Thin shell concrete construction is the most economical type of construction 

as far as getting the greatest use out of the material. The reason that it has 

not become a popular t2.ipe of roof construction in this country is chiefly be- 

cause of the expense and labor involved in forming, arC the time required in 

the design. 

It is our belief that the advantages of this type of construction such as, 
0. 

greater utilisation of material, high fireproof rating, little maintenance re- 

quired and the striking architectural appearance will soon outweigh the eco- 

nomic disadvantages due to construction techniques. 

The hand book of the A.S.C.E. th-t ha,7,- been referred to in this report has 

helpe to reduce the time required to design the shells. AS has been pointed 

out, this manual enables the designer to solve for his stresses without going 

through the laborious process of solving an eighth ordered differential equation. 

th the constant improvement of construction techniques, such as the cen- 
tering placed on rails for repeated use, the disadvantage will no longer deprive 

this country of the type of structures which we see and admire in European coun- 

tries The inexpensive Turopean labor will be overcome by the "Yankee Ingenuity" 

and this type of roof construction may soon take its place along side the other 
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types of roof construction now in u-e in this country. This is a clear example 

in 'Alich the engineer has given the architect r structural element ti=t gives 

him economy of material, greatest use of space and n striking appearance. 
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40 30 20 10 

unds per Foot) 
0 

1 

4 
5 
6 

1 
2 
3 
4 

Si 
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VL, 

SL 
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VL 
111, 
yh 

4/IT x 25 x 31 x oe 
x 47 x 31 x 
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(c) Tx ut X=LA 
rx 
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/ 0 1/8 
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