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Abstract 

Plant breeding is a process of manipulating plants, making them generally more useful. 

To incorporate beneficial attributes in cultivars, large segregating populations may be necessary. 

Evaluating large populations may create a bottleneck on plant selection. Sensor technologies 

have the potential to complement existing phenotyping criteria to improve the rate of genetic 

gain. This study compared the selection differential in seed yield, maturity, plant height, and 

lodging among F4-derived soybean lines selected in un-replicated progeny rows based on 

spectral imagery, visual observations, and random control selections. Spectral imagery was used 

to calculate a normalized difference red edge (NDRE), a red normalized difference vegetation 

index (NDVI), a thermal rating (TH), and canopy size (CC) indices for 5338 genotypes in 2017 

and 6110 genotypes in 2018. The top 8% of the genotypes based on CC, NDRE, NDVI, TH, 

progeny row yield (PYLD) and visual (VIS) evaluations, along with random (RAND) selections 

were advanced to early and late maturing field trials (KPE and KPL) the following years. NDRE, 

NDVI, and TH selections were measured on mean values (X). Progeny row selections were 

evaluated in 2018 KPE, KPL, and 2019 KPE trials at three locations and in 2019 KPL trials were 

evaluated at two locations; all locations using a non-replicated, modified augmented design. Seed 

yield, maturity, lodging, and plant height were measured on all yield trial plots. Entry means 

were used to calculate the average seed yield, maturity, lodging, and height for each selection 

category. Selections based on XNDRE, XNDVI, PYLD, CC, and VIS showed significant yield 

improvement over RAND selections, however, these observations were not consistent across 

locations or years. XNDRE and XNDVI showed the greatest consistency across years. Height 

had shown to be significantly shorter for both XNDRE and XNDVI and lodging had shown to be 

significantly less severe amongst the XNDRE KPE selections when compared to the random 



 

control selections (RAND). This association was supported by a significantly negative 

correlation between measurements of XNDRE (-.15) and XNDVI (-.07) in 2018 in addition to (-

.31), and (-.21), respectively in 2019 to height means. XNDRE had shown a significant negative 

correlation (-.06) to lodging in 2018 and in 2019, both XNDRE (-.34) and XNDVI (-.21) were 

significantly correlated to lodging. These patterns were similar in the KPL trials. In 2018, 

XNDRE accounted for 44% more entries than RAND of the top 30% highest yielding lines, and 

XNDVI accounting for 47% more entries than RAND. In 2019, XNDVI accounted for 42% 

more of the top 30% highest yielding lines than RAND in the final population, and XNDRE 

accounted for 88% more entries than RAND. XNDRE and XNDVI both showed promising 

results as a selection method. In a program where visual selection is limited by trial size, spectral 

selection might prove beneficial; however, further research is needed to develop the selection 

criteria that will produce a consistent positive selection differential. 

The second experiment consisted of four different locations and 5 different trials (two 

trials at the same location). Each trial ranged from 10 to 52 entries, set up in a randomized 

complete block design, planted in 4-row plots 3.7m long, spaced .76m apart. Seed yield and 

spectral measurements were measured from the center two rows of each plot. MicaSense, Sony, 

and FLIR cameras were used to make spectral measurements. MicaSense measurements 

evaluated were blue, green, red, red-edge, near-infrared (NIR), blue normalize difference 

vegetation index (BNDVI), green normalize difference vegetation index (GNDVI), red 

normalize difference vegetation index (NDVI), normalized difference red-edge (NDRE), and 

pigment index (PI). Sony measurements evaluated were blue, green, NIR, BNDVI, GNDVI, and 

PI. FLIR camera measurement analyzed was thermal (TH). MicaSense BNDVI, GNDVI, 

BNDVI, and NDVI showed a significant relationship to yield across multiple trials, however, 



 

these results showed to be variable, only showing a consistent measurement at two location. 

Sony cameras BNDVI, and GNDVI measurement had shown a significant relationship to yield 

across multiple sights as well but altered between positive and negative correlations. No physical 

plant characteristics were consistently associated with any significant yielding spectral 

measurements across all trials.  
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Chapter 1 - Literature Review   

Introduction 

 Plant breeding is primarily influenced by the ability to manipulate plant attributes, to 

make them generally more useful (Acquaah, 2007). It is from these plant manipulations that 

breeders often attempt to nudge nature into a specific direction as to enhance yielding attributes, 

to improve growth structures, harvest capabilities, and stress adaptations. The effects of these 

attributes are often the result of a genotype and its interaction with the environment (Acquaah, 

2007). These expressions are generally referred to as phenotypes.   

Phenotypic selection has largely been the basis of crop improvement long before modern 

technology. Even techniques that would be considered modern, such as marker assisted 

selection, utilize phenotypic characterizations to aid in selections made (Shakoor et al., 2017) 

The ability to find these beneficial attributes requires large segregating populations to find and 

select for desirable traits (Acquaah, 2007). In general, the larger the segregating population 

(more genotypes), the better the odds are to find a desirable and yield improving attribute. It is at 

this point of evaluating these large populations, that a general bottlenecking or restriction on 

plant selection develops (Araus and Cairns, 2014). These selections are labor-intensive, costly, 

and hold constraints in determining the genetics of stress associated variables. (Shakoor et al., 

2017).  

Genetic Gain 

Breeding programs measure of success is highly influenced or determined by its genetic 

gain (Rife, 2016). This is highly dependent on a programs genetic diversity, selection accuracy, 

selection intensity, and selection cycle time. These programs allow for the development of new 

lines with valuable allele combinations superior to the parental genotypes. The accuracy of 
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estimates throughout different variance components is important in determining the heritability 

and genetic gain (Baenziger et al., 2006). Thus, environmental variance, genotypic variance, 

error variance, and genotype by the environment are highly influential within a breeding 

program. In addition, progress from the selection can only be realized if superior genotypes are 

readily identified (Miller et al., 1958). The recognition of genetic variation among different 

genotypes is imperative for future improvement.  

Plant breeding methods adhere to the creation, selection, and fixation of superior plant 

phenotypes so that improved cultivars complement the needs of farmers and consumers (Moose 

and Mumm, 2008). This can be found in the form of improved yields, nutritional qualities, or 

other traits of value. Examples of this are often recognized in the commercialization of hybrid 

maize, the green revolution with respect to wheat, and development of transgenic crops. Recent 

research had shown that cultivars from 1923 to 2008 had shown a 17.2 kg/ha annual increase in 

soybeans (Wilson et al., 2014).  

Progeny Rows 

In some crops, such as soybean, early testing is conducted with limited seed material, 

limiting the potential for replication of a given trial or entry (Moreira et al., 2019). The limited 

material often results in progeny-row trials being established as the first indicator of yield 

potential. These test plots are often un-replicated, one-row plots at one location. A small 

percentage of these lines are advanced for further evaluation and the remaining lines discarded. 

The legitimacy of early evaluations is highly dependent on the accuracy of the derived data and 

distinguishing the difference among the non-replicated genotypes and the selections stability, 

thereafter across multiple locations. The large effort invested in the evaluation of progeny rows 

can result in the elimination of potentially valuable lines.  
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Visual Selection 

Visual ratings have been used as an important method for selection in progeny rows, but 

the ability of visual selection to predict yield has shown inconsistent, both positive and negative, 

results. Dahiya et al., 1984 compared selection based on both yield and visual ratings. They 

found that the low and high yield selection categories maintained relative performance in later 

yield trials, whereas visual selections for yield showed no improvement over random selections. 

Bowman et al., 2004 did note some merit for visual selection for yield in progeny rows, but did 

indicate that visual selection was unable to identify the highest yielding line in the trials. Kwon 

and Torrie, 1964 were able to visually discriminate between low and high yielding lines when 

yield differences were large, but not when yield differences were small. Ordas et al., 2012 found 

that visual selection was able to successfully select for better yielding and taller corn lines. Ud-

Din et al., 1993 found that visual selection was not a successful method of selection for forage in 

wheat, and determined that yield was more beneficial as a selection method. It has been found 

that there is a potential to consciously or unconsciously select for characteristics that are 

uninformative of yield, such as height, and heading date. This making visual selection potentially 

inconsistent.  

Early Generation Yield Testing 

Often as a result of visual selection showing inconsistent results, these methods are used 

has process to screen out bad genotypes rather than used as a primary selection tool for 

progressing highly productive genotypes (Luedders et al., 1973). Luedders et al. found 27.5% of 

their highest yielding soybean lines were discovered in early yield testing, and that these lines 

were stable across years. They concluded that there is potential to remove up to 75% lines in 

early generations. DePauw and Shebeski, 1973 found similar results where they were able to 
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select for heritable differences in yield in the F3 generation. Negative impacts from selection 

using yield data has been found as well. Briggs and Shebeski, 1971; and Knott and Kumar, 1975 

reported that lines selected for yield in early generations were poor indicators of performance in 

different environments.  

Early generation testing has the potential to be highly influential in a breeding program, 

allowing for the elimination of early undesirable lines.  However, other publications (Ntare et al., 

1984), have found that visual selection has proved to be a good selection method for yield 

improvement.  

 

Leaf Pigment Properties 

Crop energy production is largely influenced by the leaf biochemistry and how it relates 

to genotypic variation within different components such as pigment concentration and status 

(Reynolds et al., 2009). The concentrations of chlorophyll a and b and carotenoid have shown to 

be largely affected to both light and nutrient requirements (Moran et al., 2000). This suggests 

how photosynthetic pigments provide insight into the physiological status of the plant’s 

vegetation. The remote sensing of these technologies allows for non-destructive capabilities for 

accessing these abiotic stress indicators (Hatfield and Prueger, 2010).  

The understanding of how the plant and crop tissue respond to different wavelengths is 

directly related to remote sensing. Both plant tissue and soils absorb short wave energy (400-

3000 nm) from the sun, and the remaining waves are emitted as longwave energy (Asner, et al., 

1998). Apart from this, wavelengths can be identified on a visual scale with the naked eye. This 

is in relationship to chlorophyll a (red), and chlorophyll b (blue). As the chlorophyll a, and b 

absorb the red and blue wavelengths, leaving only green as it is reflected (Tucker and Sellers, 
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1986). The green wavelength reflected is what is visually observed with the naked eye. However, 

carotenoids (yellow pigments) contribute to the production of photosynthesis to plant as well, but 

when under stress carotenoids decline at a slower rate than chlorophyll, giving off chlorosis 

(Sims and Gamon, 2002). From a visual observation on plant color, we can make an 

interpretation of the plant health in relation to the “greenness” or chlorosis of the plant. Often 

this color change can be noticed as the plant matures through its flower stage. This is due to the 

natural destruction of the chlorophyll, and preexisting carotenoids become noticeable (Hendry et 

al., 1987). 

Chlorophyll is the bases of converting sunlight into energy through the process of 

photosynthesis and thus is correlated to yield (Jin et al., 2012). From this, chlorophyll can be 

used as an indicator of a plant’s photosynthetic capabilities and stress indications (Sun et al., 

2018). Often chlorophyll b region (blue) is not used due to the close relationship with carotenoid 

absorbance, and so often the 550nm and 700nm regions (green and red) are used to eliminate 

issues with chlorophyll saturations (Sims and Gamon, 2002).  

The measurement of spectral reflectance is the measurement of light reflectance observed 

from leaf tissues, cellular structures, and air-cell wall-protoplast-chloroplast interaction (Kumar 

and Silva, 1973). The visible portion of this falls between 400-730nm wavelength range, and 

have low reflectance, due to the plants absorbing the vast majority of energy in this range, using 

chlorophyll, carotenoids, carotenes, anthocyanins, etc. As an alternative wavelength near-

infrared (NIR) has a high reflectance rate. The photosynthetic efficiency of a plant is a function 

of the plant’s content of chlorophyll and other pigments. This can be used to estimate biomass 

production and photosynthetic capacity (Filella et al., 1995). Researchers have been able to 

develop predictions on plant health and yield using modeling from different vegetation indices, 
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characterizing; photosynthetic capabilities and water status (Thomas and Gausman, 1977), 

chlorosis (Adams et al., 1999), green cover (Daughtry et al., 2009), and chlorophyll. This is in 

part due to chlorophyll being directly influenced by nitrogen (N), and chlorophyll can be used as 

an estimation of plant N status (Filella et al., 1995). From these measurements, researchers can 

make estimations on general plant health.  

Anthocyanin’s are considered an important leaf pigment for the plant’s developmental 

process as it serves as an indicator of stress for many plant species (Hatfield et al., 2008). This 

pigment indicator along with carotenoid indicators have had a few variables causing issues for 

replicated results (Sims and Gamon, 2002). This is in relation to pigment adsorption and leaf cell 

structure problems. Models have been developed based on a red to a green ratio (Gamon and 

Surfus, 1999). However, these models were found to not be consistently reliable.  

Photosynthesis has shown a strong relationship with yield (Dhanapal et al., 2016). 

Developing a method, that allows for manipulation of this relationship has been suggested as a 

way for yield advancement (Dhanapal et al., 2016). These results have been verified by using 

extraction-based methods, but these can be mildly destructive. As an alternative, spectral 

reflectance has developed for modeling plant phenotypes, specifically chlorophyll content in 

relation to light adsorption. Research has shown that spectral indices can be used to predict both 

disease pressure and yield potential within a trial, accounting for up to 11 to 77% variation in 

disease and 41 to 93% of the variation in yield (Menke, 2018). However, field-based research in 

relation to yield estimation using canopy reflectance and temperature has shown to be variable 

and inconsistent (Babar et al., 2006). Primarily this technology has been, useful in showing a 

relationship between yield and traits such as biomass and canopy reflectance. While many of 

these studies have had success in establishing a relationship between yield and reflectance 
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relationship, there has been relatively no general understanding between their value and 

surrounding physiological and environmental factors that contribute to these 

interpretations(Christenson, 2016).  

Selection to Reflectance Indices 

The optimal spectral measurement for relative precession is best to utilize by ground 

cover methods (Ritchie et al., 2010). However, these readings take excessive time and high 

expertise for analyses. The biggest issue is in relation to spatial resolution and distance between 

cameras (Ritchie et al., 2010). So aerial imagery is being propagated to reduce manual labor and 

increase data measurements throughout replicated studies.  

The absorbance of light energy is developed in both chlorophyll a and chlorophyll b. The 

highest absorbance is developed in the red (600-700nm) and blue (400-500) region (Sims and 

Gamon, 2002). Chlorophyll b generally absorbs light in the 460-650 regions, while chlorophyll a 

absorbs wavelengths in the 580-670 regions of the spectrum (Chappelle et al., 1992).The green 

and red regions at 550nm and 700nm are primarily used, because of high chlorophyll 

concentrations needed to saturate these wavelengths (Sims and Gamon, 2002). Shanahan et al. 

(2001) found that both the wave regions using green wavelength and NIR could account for 70 to 

92% of yield variation in corn. NIR and visible wavelengths are used to create spectral ratios 

known as spectral reflectance indices (SRIs)(Jensen, 2007). These ratios are readily used to 

estimate biomass of different crops (Elliot and Regan, 1993; Babar et al., 2006). 

One of the most common forms of SRIs used is the normalized difference vegetative 

index (NDVI) developed by Deering 1978 and Tucker 1986 and is formed from the ratio (RNIR-

RRed/RNIR+RRed). This has been used to explain 44%-80% of the variation in soybeans, and to 

predict grain yield in soybeans, wheat, and corn (Ma et al., 2001; Shanahan et al., 2001; Aparicio 
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et al., 2002). Similarly, blue normalized difference vegetation index (BNDVI) (RNIR-

RBlue/RNIR+RBlue)  and green normalize vegetation index (GNDVI) (RNIR-RGreen/RNIR+RGreen)  

show the reflective energy in the blue and green regions of reflectance (Hatton et al., 2019), and 

have been used in combination with one another creating a pigment index (PI) (BNDVI-GNDVI) 

to develop a close relationship with carotenoid concentration expressing plant health. Alternative 

indices had been developed to predict anthocyanin concentration using a red to green ratio (R600-

R700/T500-R600) to determine yield estimations(Gamon and Surfus, 1999). Alternative forms of 

wavelengths have been used as stress indicators as normalized difference red edge index 

(NDRE) (Barnes et al., 2000). This has been used as alternative to using temperature as a 

measurement of stress. 

Parameters have been established previously to account for biomass, leaf area index 

(LAI), fractional intercepted photosynthetic active radiation (fiPAR), and as canopy variable 

relate to crop yielding attributes (Serrano et al., 2000). This was found to be most useful in the 

form of the simple ratio (SR). This equation is derived from ( NIR-Red/NIR+Red), and captures 

the ratio of NIR reflectance to reflectance in the red (Deering, 1978) and increased the difference 

between plants due to the increase adsorption in red energy and increase reflectance in the NIR 

energy for healthy plants.  

Issues can arise in respect to how canopies affect the absorption and reflectance observed 

within different wavelengths. The leaf area index and leaf angle distribution can affect both the 

absorption and scattering of these properties. Shadowing within canopies can alter the 

reflectance properties as well. (Asner et al., 1998.) There is the ability to account for these 

different variables using different indexes such as NDVI. NDVI has the ability to capture plant 

health and estimate green biomass, that can be defined as (RNIR-RRED/RNIR+RRED) (Deering, 
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1978). NDVI allows for normalization and reduces the background reflectance, solar irradiance, 

and atmospheric effects (Ritchie et al., 2010).  This index is specific to plants with relation to 

high adsorption of red and high reflectance of NIR. If the plant is starting to senesce or is under 

stress the adsorption of the light into the chlorophylls and other cellular components will start to 

decrease. Previous research has shown that NDVI does not show a linear relationship with 

chlorophyll content unless the chlorophyll content is at relatively low levels (Richardson et al., 

2002). This has been used to explain 44%-80% of the variation in soybeans, and to predict grain 

yield in soybeans, wheat, and corn(Aparicio et al., 2002; Ma et al., 2001; Shanahan et al., 2001). 

In contradiction, it has been found that NDVI shows very little relationship to agronomic traits 

and that it shows the potential to account for genetic variation but doesn’t attribute to drought 

tolerance (Clark, 2016).  

Lower spectral reflectance values have been found for NIR and red wavebands in water-

stressed canopies, and higher reluctance in no stressed canopies. However, the ability of the 

ratios developed from this study to detect water stress, was dependent on the growth stage, soil 

background, and atmospheric changes (Reynolds et al., 2009).  In a study conducted by Andrew 

D. Richardson, they found that chlorophyll was highly correlated to the difference in 

wavelengths between 721 and 744 nm, and concluded that D730 was the single wavelength best 

to correlate to chlorophyll content (Richardson et al., 2002). 

Selection from Thermal Indices  

 A crop’s canopy temperature (CT) is related to the vascular system of the plant and its 

ability to extract water from the soil depending on demand, and photosynthetic potential through 

feedback on the stomatal opening, allowing for selection to be made upon the environment such 

as heat stress(Shakoor et al., 2017a). These studies have shown that thermal reading could be a 
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response in the relationship to the crops efficacy to extract water from the soil, and 

photosynthetic efficiency on stomatal opening (Reynolds et al., 2009). This measurement has 

been used to determine parameters of plant physiological characteristics such as identifying 

drought tolerance (Aslan, 2015). 

These traits have found to be applicable when phenotyping varieties for genetic gain. 

Under drought selection for cooler canopy temperatures. This has shown to select for genotypes 

with the ability to develop a rooting structure, to extract water from deeper soil 

profiles(Reynolds et al., 2009).  

 Thermal infrared is emitted and captured in the 3000-14000 nm electromagnetic 

spectrum (Jensen, 2007). This wavelength criterion has been used to create selection within 

wheat breeding programs (Reynolds et al., 1994), further showing a strong negative relationship 

between CT, as it relates to grain yield. Currently wheat-breeding programs use this technology 

to screen for dehydration resistance. This is due to the test being inexpensive, high association 

with performance, and there is little interaction with the crop growth stage or time of day 

(Shakoor et al., 2017).   

Canopy Cover 

The canopy development in soybean plays a large roll in crop development and grain 

yield (Hall, 2015). The rapid closure offers the ability for maximum light interception, and will 

contribute to improve total biomass and grain yield. Hall (2015) found that canopy closure 

characteristics showed high narrow senses heritability and high correlations to grain yield 

ranging from .61-.68. That study suggested that there is good potential for improvement of 

genetic gain in selection for this category. In a study conducted by Kantolic et al., (2013), they 

found that there was strong relationship between biomass accumulation, and crop growth rate in 
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the reproductive stages (R3-R6) suggesting that there would be an improved yield upon selection 

of increased biomass growth in the later reproductive stages.  

Throughput Phenotyping  

Due to these constraints, there is a search to utilize modern technology to enhance the 

capabilities of a current-day breeding program. Modern remote sensing offers the potential to 

evaluate large populations in a snapshot style to identify beneficial characteristics through 

remote sensing (Shakoor et al., 2017; Jang et al., 2020; Zhang et al., 2019). Through 

manipulation and interpretation of these different wavelengths, there is potential to rapidly 

improve the attributes under selection in a breeding program. 

High throughput phenotyping is highly sought to help improve upon the genetic 

exploration and to help gain access to genetic variation (Reynolds et al., 2009). These highly 

selective methods have shown to be an extremely important component for the improvement of a 

breeding program, and these selections can be related back to multiple traits such as: plant 

height, biomass, flowering time and seed yield (Ma et al., 2001; Furbank and Tester, 2011; 

Christenson et al., 2015, 2016; Keep et al., 2016; Bai et al., 2016; Xavier et al., 2017). Sensor 

technologies have the ability to expand and improve upon the existing phenotyping criteria to 

help produce a large set of data to select from and speed up the breeding process, along with 

improving the rate of genetic gain (Shakoor et al., 2017). There continue to be advancements in 

both research and general use of remote sensing methods continues due to the development  and 

improvement of narrowband or hyperspectral sensors along with their ability to be mounted on 

various platforms, such as satellites, aircraft or small drones, often referred to as small unmanned 

aircraft (UAS) (Hatfield and Prueger, 2010, need a reference for UAS).  This instrumentation can 
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enable the screening of traits related to biomass, photosynthesis, transpiration, disease, and stress 

tolerance (Tattaris et al., 2016; Gehan and Kellogg, 2017; Shakoor et al., 2017).  

The ability to collect phenotypic data with sufficient resolution and accuracy to plant 

characteristics has been a challenge in plant based science research (Bai et al., 2016). The typical 

collection of these plant attributes is labor intensive and expensive creating a bottleneck of 

linking data to selection variables. These visual observations are subject to potential bias 

interpretations (McKenzie and Lambert, 1961). With the advancements in technology, potential 

arises to connect genomic data with high throughput phenotypic data, to better advance genomic 

linkage (Furbank and Tester, 2011). This helps with reducing the cost and time constraints in 

collecting and characterizing plant phenotypes.  

The adoption of using technologies in high throughput phenotyping provides an 

opportunity to aid in the selection of large populations of segregating progeny and could mitigate 

a phenotyping bottleneck associated with labor-intensive selection methods (Furbank et al. year). 

Research conducted by (Christenson et al., 2015) found that current breeding practices had 

indirectly selected for lines showing a relationship between spectral values and cultivar release 

date ranging from 1923 to 2010. This research found that newer cultivars had lower values in the 

visible to red-edge portion of the spectrum and higher values in NIR and concluded that there is 

potential to use spectral imagery as a method of selection based on spectral reflection criteria. 

They also noted that there was a high association with other physiological parameters, offering 

the possibility of the measurements being a result to different physiological plant parameters.  

Similarly, in a study conducted by Xavier et al., 2017, they found that canopy growth 

derived from image collection had a high association with yield showing a (.87) correlation to 

yield and having a heritability (h2) of .77. They suggested using canopy closure as a method of 
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selection due to its ease of collection and association with to yield.  In a study by Bai et al. 2017, 

they found strong correlations between both green NDVI, red edge NDVI and final grain yield in 

soybean and wheat, finding a similar conclusion that spectral reading would be a beneficial 

method of selection as its strong relationship to yield. Ma et al. 2001 evaluated the predictability 

of soybean yield collecting NDVI measurements on plots between maturities of R2 to R5 stages. 

They developed regression models that were able to account 44-80% of the variation in yield. In 

relation to canopy temperature, in a study conducted by Keep et al., 2016 they evaluated 

cultivars between two different maturity groups released between 1920 to 2010. They concluded 

that canopy temperature was highly associated with year of release, suggesting that these 

corresponding improvements could show potential as a method for selection as a means to 

improve selection towards seed yield.  Further research has found a general positive relationship 

to spectral reading as it relates to yield  (Aslan, 2015; Clark, 2016). 

 

 

Objectives and Hypothesis 

 Remote sensing is a resource to obtain phenotypic data on a field trial throughout the 

growing season and at a canopy level. These practices of acquiring numerical crop performance 

is often associated with the relationship to radiation, water, and nutritional efficacy. This can all 

be accomplished in a matter that is non-destructive and non-invasive to the natural crop 

production (Araus and Cairns, 2014).  

 Previous studies have characterized relationships between remote sensing data and 

phenotypic selection for soybean and wheat. Bai et al. 2016 reported correlations from .55 - .70 

between grain yield remotely sensed data and concluded the measurements would be beneficial 
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to utilize in a breeding program. Christenson, 2015 reported that spectral indices were related to 

cultivar year of release as seed yield improved indicated that breeding programs had been 

indirectly selecting for. This would indicate that newer versus older cultivars show a relationship 

to yield with respect to spectral reflectance (Christenson, 2015). Thus establishing that breeding 

programs have indirectly been selecting for increased spectral indices.  

 The objective of this study was to incorporate remote sensing phenotypic selection into 

the progeny row generation of a soybean breeding program, and compare phenotypic selection 

based on remotely sensed data to random and traditional selection practices. This study evaluated 

the relationship within a large population of non-replicated entries and the ability to evaluate 

spectral selection methods in comparison to conventional methods such as visual and yield 

selection and random control selection. This study determined the relationship between these 

practices and helped distinguish what selection techniques were the most optimal and have the 

largest improvement within a breeding program to progress entries to the later preliminary yield 

trials. In addition, we have reviewed spectral measurements in their relationship to phenotypic 

attributes as it relates to performance trials. This in an attempt to model predictor variables of 

trial performance. The hypothesis of the study was that spectral phenotypical selections would 

show a strong heritability, allowing the potential to account for variation using standardized 

checks within our early non-replicated progeny-row trials and determine yield ranking within 

performance trials. In addition, we have predicted that a variation of spectral values would show 

a linkage to improved yield among soybean genotypes.  
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Chapter 2 - Soybean Progeny Row Phenotypic Selection 

Using Spectral Imagery  

Abstract 

Plant breeding is a process of manipulating plants, making them generally more useful. 

To incorporate beneficial attributes in cultivars, large segregating populations may be necessary. 

Evaluating large populations may create a bottleneck on plant selection. Sensor technologies 

have the potential to complement existing phenotyping criteria to improve the rate of genetic 

gain. This study compared the selection differential in seed yield, maturity, height, and lodging 

among F4-derived soybean lines selected in un-replicated progeny rows based on spectral 

imagery, visual observations, and random control selections. Spectral imagery was used to 

calculate a normalized difference red edge index (NDRE), a red normalized difference vegetation 

index (NDVI), a thermal rating (TH), and canopy size (CC) values for 5338 genotypes in 2017 

and 6110 genotypes in 2018. The top 8% of the genotypes based on CC, NDRE, NDVI, TH, 

progeny row yield (PYLD) and visual (VIS) evaluations, along with random (RAND) selections 

were advanced to early and late maturing field trials (KPE and KPL) the following years. NDRE, 

NDVI, and TH selections were measured on mean values (X). Progeny row selections were 

evaluated in 2018 KPE, KPL, and 2019 KPE trials at three locations and in 2019 KPL trials were 

evaluated at two locations; all locations using a non-replicated, modified augmented design. Seed 

yield, maturity, lodging, and plant height were measured on all yield trial plots. Entry means 

were used to calculate the average seed yield, maturity, lodging, and height for each selection 

category. Selections based on XNDRE, XNDVI, PYLD, CC, and VIS showed significant yield 

improvement over RAND selections, however, these observations were not consistent across 

locations or years. XNDRE and XNDVI showed the greatest consistency across years. Height 
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had shown to be significantly shorter for both XNDRE and XNDVI and lodging had shown to be 

significantly less severe amongst the XNDRE KPE selections when compared to the random 

control selections (RAND). This association was supported by a significantly negative 

correlation between measurements of  XNDRE (-.15) and XNDVI (-.07) in 2018 in addition to (-

.31), and (-.21) respectively in 2019 to height means. XNDRE had shown a significant negative 

correlation (-.06) to lodging in 2018 and in 2019 both XNDRE (-.34) and XNDVI (-.21) were 

significantly correlated to lodging. These patterns were similar in the KPL trials. In 2018, 

XNDRE accounted for 44% more entries than RAND of the top 30% highest yielding lines, and 

XNDVI accounting for 47% more entries than RAND.  In 2019 XNDVI accounted for 42% 

more of the top 30% highest yielding lines than RAND in the final population, and XNDRE 

accounted for 88% more entries than RAND. XNDRE and XNDVI both showed promising 

results as a selection method. In a program where visual selection is limited by trial size, spectral 

selection might prove beneficial, however, further research is needed to develop the selection 

criteria that will produce a consistent positive selection differential. 

 

Introduction  

An extensive effort is underway to increase seed yield to meet the growing demand for 

food throughout the world. Estimates predict that increases in seed yield are needed at a rate of 

2.3% per year to meet demand, while current rates or improvement are only averaging 1.3% per 

year (Araus and Cairns, 2014). With predictions of increased atmospheric carbon dioxide 

causing altered weather patterns throughout the globe it is believed that the repercussions of 

climate change will exacerbate biotic stresses on agricultural plants (Walthall et al., 2012). As a 
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result, current elite lines could be negatively affected, creating a need for a new highly adaptable 

combination of additive genetics.  

To increase the rate of genetic gain large segregating populations are needed to identify 

progeny with desirable traits. Conventional methods of selection are often very labor-intensive 

and expensive, generally resulting in an independent measurement of yield replicated across 

different environments (Furbank and Tester, 2011). The accuracy of estimates of different 

variance components is important in determining the heritability and genetic gain (Baenziger et 

al., 2006). Environmental variance, genotypic variance, error variance, and genotype by 

environment are highly influential within a breeding program. Progress from the selection can 

only be realized if superior genotypes are readily identified.  

In some crops such as soybean, early testing is conducted with limited seed amounts 

among large numbers of entries, thus limiting the potential for replication of a given trial or entry 

(Hegstad et al., 1999). The limited material often results in progeny-row trials being established 

as the indicator of agronomic suitability. The progeny rows are often non-replicated single-row 

plots at one location that limit the characterization of yield potential (Moreira et al., 2019). A 

small percentage of these lines are selected and advanced for further evaluations. Effective 

selection in progeny rows has the potential to be highly influential in a breeding program. The 

legitimacy of early evaluations is highly dependent on the accuracy of the derived data and 

distinguishing the difference among the non-replicated genotypes and the selections stability, 

thereafter across multiple locations.  

Visual ratings have been used as a method for early generation testing but the 

predictability of these early generation methods can show confounding results (McKenzie and 

Lambert, 1961). It has been found that there is a potential to consciously or unconsciously select 
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for characteristics that are uninformative of yield, such as height, and heading date, thus making 

visual selection potentially inconsistent. However, Ntare et al., 1984 found that visual selection 

proved to be a good selection method for yield improvement in cowpeas. In a study by Dahiya et 

al., 1984 they compared selection using both low and high yielding genotypes and compared 

them to visual selection categories. They found that the low and high yield selection categories 

continued in the same relationship to later yield trials, whereas visual selection showed no 

improvement over the random control variable suggesting limitations to visual selection methods 

(Dahiya et al., 1984).  

Often as a result of showing inconsistent results, visual selection has been  used to screen 

out bad genotypes rather than used as a primary selection tool for progressing highly productive 

genotypes (Luedders et al., 1973). Luedders et al. 1973, found 27.5% of their highest-yielding 

soybean lines were discovered in early yield testing, and that these lines were stable across years. 

They concluded that there is potential to remove up to 75% lines in early generations. DePauw 

and Shebeski, 1973 found similar results, when they selected for heritable differences in yield in 

the F3 generation. Negative impacts from the selection using yield data have been found as well, 

Briggs and Shebeski, 1971; Knott and Kumar, 1975, discovered that lines selected for yield in 

the early generations, were poor indicators of different environment influence on yield in later 

trials, but that yield selection within the same environment remained accurate.  

As an alternative to yield and visual selection, imagery has been considered as a 

measurement to characterize plant attributes associated with yield. The adoption of using 

technologies in high throughput phenotyping provides an opportunity to aid in the selection of 

large populations of segregating progeny that could mitigate a phenotyping bottleneck associated 

with labor-intensive selection methods (Furbank and Tester, 2011). Research conducted by 
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(Christenson et al., 2015) found that current breeding practices had indirectly selected for lines 

showing a relationship between spectral values and cultivar release date. This research found that 

newer cultivars had lower reflectance values in the visible to the red-edge portion of the 

electromagnetic spectrum and higher values in near-infrared (NIR) and concluded that there is 

potential to use spectral imagery as a method of selection based on spectral reflection criteria. 

They also noted that there was a high association with other physiological parameters, offering 

the possibility of the measurements being a result of different physiological plant parameters. 

Similarly, in a study conducted by Xavier et al., 2017, they found that canopy growth derived 

from image collection had a high association with yield (r=0.87) and a heritability (h2) of 0.77. 

They suggested using canopy closure as a method of selection due to its ease of collection and 

association with yield. In a study by Bai et al., 2016, strong correlations between both green 

NDVI, red-edge NDVI, and final grain yield in soybean and wheat were observed. Ma et al. 

2001, evaluated the predictability of soybean yield using NDVI measurements on plots between 

maturities of R2 to R5 stages. They developed regression models that accounted for 44-80% of 

the variation in yield. Keep et al., 2016, noted that canopy temperature was associated with year 

of release among soybean cultivars in two maturity groups. They suggested that could be 

targeted as selection criteria to improve seed yield.   

 Due to noninvasive imagery collection having a positive relationship to beneficial plant 

attributes, studies are beginning to demonstrate that using spectral imagery as a selection method 

in a breeding program can prove beneficial, in that doing so would result in selection for 

beneficial characteristics. However, few studies have shown the difference between using 

spectral selection when compared to conventional methods of selection within a progeny row 

soybean trial. The objectives of this study were to: 1) determine the influence of using spectral 
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imagery as a as a comparison to a control, 2) compare the selection differential between 

conventional selection methods such as visual and yield selection to spectral measurements of 

interest as a comparison of efficiency, 3) evaluate height, lodging and maturity association to 

selection variables, and 4) determine which spectral measurements are the most beneficial for 

each plant trait.  

 

Materials and Methods 

Experimental Field Design 

This study evaluated 5,338 F4-derived soybeans [Glycine max. (L) Merr.] lines in 2017 

and 6110 lines in 2018 in progeny rows (Prows). The F4-derived lines originated from crosses of 

elite by elite parents. The lines were developed from 51 different parental single-cross 

combinations in 2017 involving 55 different parental lines, and 78 different combination and in 

2018 involving 22 different parental lines and 59 different combinations. Each cross contributed 

from 40 to 250 different lines to the progeny row trials. The average number of progenies per 

cross evaluated was 110 lines. Trial locations and soil characterization are show in Tables 2.1 

and 2.2. Rainfall amounts in 2017 and 2018 were generally dryer than the 30-year average, and 

2019 was wetter than the 30-year average (Table 2.3). Within a 30-year average, the hottest 

month of the growing season was July and the coldest month had been in May (Table 2.4). This 

had been consistent in the 2019 however in 2018 June was the hottest month and September was 

the coldest month in Manhattan and Onega. 

Prows were planted in a modified augmented design with check plots every 10 plots in 

2017 and every 15 plots in 2018. Plots consisted of a single row, 1.8 m in length spaced 76 cm 

apart. The plots were planted in fields that could be irrigated, but moisture stress was limited in 
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the Prow trials. Irrigation of about 5 cm was applied once in 2017 and 2018 at the R1-R2 growth 

stages  (Fehr and Caviness, 1977). Weeds were controlled by herbicides, cultivation, and hand-

weeding.  

Genotypic selections made from Prows were advanced to Kansas Preliminary Early 

(KPE) and Kansas Preliminary Late (KPL) yield trials following the year of selection. The KPE 

trials contained early maturity group (MG) III to mid IV lines. The KPL trials contained late MG 

IV to mid V lines. The KPE trials contained 1288 and 870 selected lines in 2018 and 2019 

respectively. The KPL trial contained 243 and 465 entries in 2018 and 2019. Each KPE and KPL 

field trial was planted in a Modified Augmented Design (Type 2) at three locations, with one 

replication per location (Lin and Poushinsky, 1985). Incomplete blocks consisted of 9 to 15 

entries, 2 or 3 columns and 17 to 32 rows depending upon the number of entries in the tests with 

one central control plot and 2 subplot control plots used in each experiment. In 2018, lines were 

planted in two-row plots, 3.7 m in length spaced 76 cm apart. In 2019, lines were planted in one-

row plots, 3.7 m in length spaced 76 cm apart. The seeding rate of both years was approximately 

26 live seed per meter of row.   

Remote Sensing Data Collection 

The spectral imagery was collected on Prows using a Matrice 100 DJI drone (DJI, 

Shenzhen, China). Gimbal attachments were added to permit mounting cameras of interest for 

data collection. The drone had a maximum load capacity of 1 kilogram allowing for a flight time 

of 25 minutes. The missions were created in Mission Planner and imported into “Litchi” for 

automated flight application. Thermal imagery was collected on a FLIR Vue pro R 13mm (FLIR 

Systems Inc, Wilsonville, OR, USA). For spectral imagery, a RedEdge camera by MicaSense 

(MicaSense Inc., Seattle, WA) was used. This camera collected spectral reflectance from five 

https://www.dji.com/matrice100
https://support.micasense.com/hc/en-us/articles/225950667-RedEdge-Manual-Specifications
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different wavelength bands including 475 nm (blue), 560 nm (green), 668 nm (red), 840 nm 

(near-infrared), and 717 nm (red edge). Both cameras collected imagery at 50 meters high with 

an 80% overlap between images among each flight pass. The flights were flown within a two-

hour window of solar noon during cloud-free days to allow for limited interference. All flights 

were completed between R1 (beginning flowering) to R7 (beginning maturity). In 2017 five 

flights were collected on 6/20, 7/10, 7/20, 8/01, and 8/18. In 2018 four flights were collected on 

6/27, 7/10, 7/24, and 8/09. The drone flight speed was at 3 m/s for all flights. The photos were 

stitched together using Agisoft PhotoScan Professional (Agisoft LLC 2018.). Then the resulting 

imagery was placed into ArcGIS Pro (Esri Inc, Redlands, CA) for raster calculations and 

extractions.  Values were averaged across dates to give a single measurement of selection.   

Phenotypic Traits Progeny Row Trials 

The spectral and thermal phenotypes for the Prows were determined by calculating the 

mean pixel value in the plots after establishing plot polygons. Spectral imagery was used to 

calculate a normalized difference red edge index (NDRE) (Barnes at al., 2000), a red normalized 

difference vegetation index (NDVI) (Deering, 1978), a thermal rating (TH) (Jensen, 2007), and 

canopy size (CC) (Xavier et al., 2017) values. The NDRE was calculated as near-infrared (NIR) 

minus red-edge wavelengths, divided by NIR plus red-edge wavelengths. NDVI was calculated 

as near-infrared (NIR) minus red wavelengths, divided by NIR plus red wavelengths. 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 −  𝑅𝑒𝑑𝐸𝑑𝑔𝑒 

𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒
 

𝑁𝐷𝑉𝐼 =
 𝑁𝐼𝑅 −  𝑅𝑒𝑑 

𝑁𝐼𝑅 +  𝑅𝑒𝑑
 

 

Daily observations were averaged across dates for each year and selections were made 

based on mean values of TH (XTH), NDRE (XNDRE), and NDVI (XNDVI). Within the thermal 

http://www.agisoft.com/features/professional-edition/
https://pro.arcgis.com/en/pro-app/
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imagery FLIR camera measurements are associated with at-sensor radiometric temperatures 

showing  low radiometric values, being associated with low temperatures and high radiometric 

values associated with higher temperatures (Sagan et al., 2019). Often to account absolute 

temperatures in degrees Celsius or Fahrenheit a conversion is necessary to account for 

atmospheric and emissivity corrections; however we were only interested in relative genotype 

thermal association and plot mean pixel ranking so radiometric value was sufficient. Canopy size 

(CC) was measured as the sum of all vegetative or green pixels within the plot area on one 

sampling date prior to canopy closure. Flights to determine CC were completed at or prior to the 

R1 growth stage (Fehr and Caviness, 1977) on 6/20 and 6/27 in 2017 and 2018, respectively. In 

2017 visual ratings and seed yield (PYLD) were collected for Prows . Total plot seed weight was 

recorded for each single progeny row and visual interpretation by an experienced plant breeder 

was recorded for visual (VIS) selections.  In 2018, due to disease and plant health issues relating 

to weather patterns, visual selection and yield were not collected.  

Superior genotypes were considered those with high values for CC, XNDRE, XNDVI 

and seed yield, and low values for XTH. The top 8% of the genotypes based on CC, NDRE, 

NDVI, TH, PYLD and VIS evaluations, along with random (RAND) selections were advanced 

to early and late maturing field trials (KPE and KPL) the following years.   

Yield Trials 

 Data collected for the KPE and KPL trials each year included seed yield, maturity, plant 

height, and lodging. Maturity was recorded as the number of days after August 31st when 95% of 

the pods reach a fully matured color. Plant height was measure as the average length from the 

ground to the tip of the main stem. Lodging was scored at harvest on a scale of 1-5, with 1 = all 

plant upright, 2 = 20º lean, 3 = 45º lean, 4 = 60 º lean, and 5 was assigned to plots when plants 
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were prostrate. Modified Augmented Design (MAD) analysis was used to calculate the 

individual location means, and PROC MIXED was used to calculate the grand means within 

maturity group by location within a given trial year.  

Evaluation of Preliminary Yield Trials Differential Across Selection Methods 

In early preliminary yield trials, VIS, CC, PYLD, XTH, XNDRE, and XNDVI were 

compared to a control (RAND) in 2018. In 2019 CC, XTH, XNDRE, and XNDVI were 

compared to RAND. Analysis of variance was use to compare differences between the selection 

methods. PROC GLM (SAS Institute, 2018) was used as a method to fit general linear models. 

PROC CORR was used to calculate the Pearson’s correlation matrix to evaluate relationships 

between physical attributes. The same selections were used as treatments and compared in the 

PROC GLM function of the grand mean of the 30% top performing entries for both KPE and 

KPL trials in 2018 and 2019. The review of the top 30% was a method to retroactively review 

selections within this trial as a means for future line progression. Variables being reviewed were 

the same as the primary evaluation; yield, height, lodging, and maturity.  

Results and Discussion 

Kansas Preliminary Early Trials  

Preliminary Early 2018 

Yield entries differed when averaged across locations with a low of 1681 to a high of 

3665 kg/ ha (Data not shown). Average maturities ranged from 15 to 56 days after August 30. 

Lodging scores ranged from a low of 1 to a high of 3.7. Average plant heights ranged from 63 to 

128 cm. Entry means across three locations for XNDRE, CC, XNDVI, PYLD, and VIS 

selections of 2834, 2802, 2825, 2827, and 2845 kg/ha, respectively, were significantly higher 

than RAND selections at 2727 kg/ha (Table 2.5). It is shown that the standard deviation for 
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Location 1 presents a high standard deviation. This reflects the higher yield for that location 

across all selection methods. PYLD, CC, XNDRE, and XNDVI were all significantly (P <.05) 

correlated with each other (Table 2.6). Correlations tended to be the largest between XNDRE, 

XNDVI and CC. On average, selections for PYLD were significantly later in maturity than 

RAND, but similar in height and lodging (Table 2.5). PYLD showed a positive correlation to 

maturity (.18*) (Table 2.6). XNDRE and VIS selections tended to be shorter and have lower 

lodging scores than RAND (Table 2.5). Small, negative correlations between XNDRE and both 

lodging (-0.06*) and height (-0.15*) showed that as XNDRE increased, height and lodging 

decreased (Table 2.6).   

At Location 1, XNDRE and VIS selections were greater in seed yield, shorter in plant 

height, and more lodging resistant than RAND selections (Table 2.4). XNDRE values were 

positively correlated to yield (0.14*) and negatively correlated to maturity (-0.07*), lodging (-

0.06*) and height (-0.12) (Table 2.6). At location 2, PYLD and VIS selections were higher 

yielding than RAND at 2275 and 2287kg ha, respectively. PYLD selections tended to be 2 days 

later in maturity, and VIS average 3 cm shorter in plant height than RAND selections. PYLD 

was significantly correlated to yield (0.15*) and maturity (0.18*) at location 2 (Table 2.6). At 

location 3, CC, XNDVI, PYLD, and VIS selected averaged significantly higher yields at 2550, 

2560, 2568, AND 2555 kg/ha, respectively, when compared to RAND at 2441 kg/ha (Table 2.5). 

VIS selections averaged 4 cm shorter than RAND entries. Entry values for CC, and PYLD  

showed significant correlations up to (0.18*) to yield at Location 3 (Table 2.6).  

Preliminary Early 2019 

Yield among entries differed across locations with average yields ranging from 1966 to 

4565 kg/ha. Average maturities ranged from 12 to 50 days after August 30, lodging scores 
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ranged from 1 to 3, and plant height ranged from 58 to 105 cm (Data not shown). Base on the 

three location means, XNDRE and XNDVI showed significant (0.05 or 0.1) increases over 

RAND selections at two location and in the 2019 grand mean (Table 2.7). Average yields of both 

these criteria were significantly higher than XTH, but were not significantly different from CC 

selections. At locations 4 and 6, XNDRE and XNDVI showed a significant yield improvement 

over RAND selections. No differences in seed yield were observed among the selection criteria  

at Location 5. On average and across locations, XNDRE and XNDVI selections tended to be  

shorter in plant height and more lodging resistant than RAND selections. Both XNDRE and 

XNDVI were positively correlated to yield (r values ranged from 0.11* to 0.31*), and negatively 

correlated to lodging and plant height (r values ranged from -0.15 to -0.34), on average and 

across locations (Table 2.8).  

KPE Discussion 

When comparing the performance of the top 30% highest yielding lines of the grand 

mean, the average phenotypic values among the selection categories tended to be similar and 

show no significant difference, except for plant height, where the highest yielding lines tended to 

be shorter in plant height in the VIS selections compared with RAND.  However, XNDRE, and 

XNDVI in 2018 and 2019 and PYLD in 2018 accounted for over 25 more observations than 

RAND in the top 30% of the grand mean (Table 2.9, 2.10). NDVI and NDRE measurements 

have shown to have potential in a soybean breeding program by Bai et al., 2017 finding a 

significant correlation between plot yield and NDRE and NDVI measurements. Similarly, 

Christenson et al., 2015 found that individual wave bands associated with NDVI and NDRE 

measurements would have the same effect. In this study XNDRE variable showed a significant 

improvement in yield at only location 1, 4, and 6, which all were located near the origin of p-row 
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selection. This result is supported in research by Briggs and Shebeski, 1971; Knott and Kumar, 

1975, suggesting that selections made within early generations of lines are primarily 

representative of the location they were selected at. This could show constraints of selection as 

being restricted by line genetic stability (Fehr, 1939). Some cultivars are more adapted to a broad 

range of environments, while others are more limited by their location. This stability is 

influenced by the cultivars ability to withstand stress conditions. Cultivar stability is less 

prominent as homogeneity increases within the cultivar being that F1 hybrids are more stable 

than their homozygous parents.  Of the 30% best performing entries, XNDRE accounted for 101 

of the entries in 2018 and in 2019 accounted for the most entries of 113. Improvement outside of 

the origin of selection amongst XNDVI, CC, PYLD, and VIS. CC selection had shown similar 

results to Xavier et al., 2017; where a positive response to selection was shown to yield. Of the 

significant spectral measurements, CC had and the least significance with an alpha level of 0.10 

of the 2018 grand mean (Table 2.4). XNDVI significant improvement relationship to yield is 

similar to research founded by (Ma et al., 2001) showing that this measurement is indicative of 

yield, however, this significant relationship showed up at only one location and the grand mean 

in 2018 but had a greater response in 2019 showing a significant improvement over the control at 

two locations and the grand mean. This variable did account for 103 of the entries in 2018 and 85 

in 2019 of the top 30% yielding lines (Table 2.9, 2.10). PYLD and VIS had shown a significantly 

positive response in yield to selection and this response had shown at multiple locations.  VIS 

had shown the most consistent response showing a significant improvement over RAND at all 

three locations in 2018. Of the 286 highest yielding lines in 2018 (top 30% of the grand mean) 

PYLD accounted for the greatest amount at 111 lines (Table 2.9). Of the spectral measurements, 

XNDVI accounted for the most in 2018 at 103 lines and the second most in 2019 (Table 2.10) 
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with 85 lines. In comparison, the RAND control had accounted for 70 lines in 2018 and 60 lines 

in 2019 suggesting that these selection methods had made an impact over the top 30% of the 

population.  

 

Kansas Preliminary Late Trials  

Preliminary Late  

Yield among entries differed across locations with a range in yield of 2376 to 4330 kg/ha 

in 2018, and from 2161 to 4571 kg /a in 2019. Maturities ranged from 37 to 66 in 2018 and 51 to 

65 days after August 30 in 2019. Lodging scores ranged from 1 to 3.3 in 2018, and 1 to 4.5 in 

2019. Plant height ranged from 64 to 140 cm in 2018, and 71 to 135 cm in 2019 (Data not 

shown). In 2018 and 2019, the average values of selections for PYLD, VIS, CC, XNDVI, and 

XNDRE were not significantly different from RAND (Table 2.11, 2.12). Average of the 

selection criteria were not significantly different from each other. This could be a result of the 

location of original selection not being indicative of the environment the lines were tested in 

(Briggs and Shebeski, 1971; Knott and Kumar, 1975), showing similar constrains to KPE trials 

of genetic stability implications (Fehr, 1939). Within the KPL trials 4 of the 5 trials had a 

relatively lower latitude than the origin of spectral measurements collected within the p-rows. 

This change of environment could influence growth and senescence as a response to photoperiod 

sensitivity being non-indicative the location in comparison to the section criteria (Cober and 

Morrison, 2010). Of the top 30% of the entries, all of the selection criteria accounted for more 

entries than RAND (Table 2.13). In 2018 VIS accounted for the most entries showing 39 entries 

in the top 30% and of the spectral measurements XNDRE showed the most accounting for 21 
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entries.  In 2019 the response was stronger where RAND accounted for 40 entries when 

compared to XNDRE accounting for the most entries at 122 (Table 2.14).  

These selection responses found that within the early maturity trials XNDRE and XNDVI 

showed a consistent relationship to yield in both years. These results differed in their 

significance level in 2019, suggesting that XNDVI could potentially be a more reliable 

measurement for yield improvement. CC showed a significant relationship to yield in 2018 but 

was relatively inconsistent across years and locations. These results are constant with the study 

conducted by (Christenson et al., 2015) suggesting that measurements in the visible portion of 

the spectrum could make for good selection criteria within a breeding program showing 

consistent responses in yield in early maturity trials. Similarly, less response was found in later 

maturity entries suggesting a lesser response that could be due to physiological growth 

differences between maturity groups.  Similarly to a study conducted by (Benjamin, 2015) 

selection by CC showed a positive response to yield but the results were inconstant across 

environments.  

KPE and KPL Trial Review  

 Where XNDRE had shown a significant correlation to yield in the KPE trials, and the 

2019 KPL trial, this variable, also showed a significant correlation to height and lodging (Table 

2.2.6, 2.8, 2.15).  It is possible that these measurements are selecting the beneficial plant 

characteristics, rather than being tightly linked to yield and that separation from yield and growth 

characteristics could develop. XNDVI had shown less association with these physical attributes. 

Interestingly even where the spectral measurements had not shown a significant mean value 

increase, they accounted for 40% more of the observations than the control in the top 30% of the 

performing entries in 2018, and 41 – 175% (XNDVI) more in 2019. It is possible that even 
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though the population sizes are adequate that larger population sizes can show an influence on 

selection differential based on degrees of freedom. This is noticed in that significant 

improvements are recognized in the KPE trials where entries ranged from 870-1288, and no 

significance is found in the KPL trials with lesser lines of 243-465 entries. When considering the 

average annual genetic gain of soybean of cultivars from 1923 to 2008 is 1.25% increase (Wilson 

et al., 2014), it puts into perspective potentially why large populations could influence the 

evaluation of the selection differential. Interestingly in both trials, the same variables showed an 

increase in observations compared to the control (RAND) when evaluating the top 30% of the 

grand mean (Table 2.9, 2.10, 2.13, 2.14).  

 

Tandem Selections 

 To examine the interaction and potential synergism of selecting superior genotypes based 

on combinations of selection criteria, the impact of selection was examined by evaluating the 

performance of entries based on multiple selection criteria. In 2018 and 2019, selection 

combinations of XNDRE plus XNDVI, XNDRE, plus XNDVI, plus XTH, and XNDRE, plus 

XNDVI, plus CC were evaluated within each maturity group. The mean seed yield in all of the 

tandem selection combinations was not significantly greater than the selection categories based 

on the best single criterion (Data not shown). .  

Conclusions 

 Spectral measurements were used to make genotype selections within the progeny row 

trials of a soybean-breeding program. The yield of these selections was evaluated to determine 

the measurable influence based on those selections. Significant improvements in yield were 

found in using both XNDVI and XNDRE measurements. These recognized yield increase from 
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the control RAND had developed primarily in the KPE trials. CC had shown to have significant 

improvement over RAND in 2018 KPE trial, however this was at an alpha set to 0.10 and was 

non repeatable across years. Within these trials XNDVI had shown to develop an improved yield 

at a higher alpha level than XNDRE, suggesting that this variable is more reliable as a 

measurement for selection. The conventional selection methods of PYLD and VIS showed 

significant improvement over the control. VIS had shown to have the highest average yield over 

all selection methods. In the KPL trials, the average yield for the spectral selections in regards to 

NDVI and NDRE did result in having a higher overall yield, but it did not develop at a level of 

significance. TH had shown to have no influence on yield or any other plant characteristic from 

the selection. Both PYLD and VIS were not significantly different from RAND, however VIS 

had shown a similar pattern as within the KPE trials, in that the average yield was higher than all 

other variables. Within tandem selections, many of the combinations did influence the baseline 

yield; however, the influence did not change with any significant level.  

 Selections based on spectral measurements had also shown an association with plant 

height and lodging. It was found that XNDRE and XNDVI had a significantly shorter height than 

the control in addition to having a lower lodging score in the KPE trials. Similarly, VIS 

selections were significantly shorter and had significantly better lodging scores. PYLD had 

shown a significant association with maturity, in that this variable would select for later maturing 

lines.  In the KPL trials XNDRE and XNDVI had shown significantly lower lodging in 2019. 

Both PYLD and VIS had shown to be significantly shorter than RAND and VIS had not only a 

significantly lower lodging score than RAND but over all other variables. It is possible that these 

selection criteria could be influenced by this criterion and in the case of VIS could be open to 

potential biases.  
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 Using spectral measurements within a soybean-breeding program has shown to be 

effective. Both XNDRE and XNDVI had shown to have strong associations with yield, making 

them good candidates for spectral selection variables. XNDVI was less associated with physical 

parameters suggesting that this variable would have a stronger relationship to yield without 

having secondary influences. VIS had shown to have the greatest opportunity amongst all the 

selection variables; however, this variable has the greatest opportunity for error given that this 

selection is completely open to interpretation of “good lines”. It is worth noting a well-

experienced breeder with many years of experience made VIS selections improving the 

likelihood of selection for good candidates. It is possible that in a situation of lesser experienced 

breeder with less familiarity of the given crop, that this criteria could be more open to apparent 

biases within the given data. Observationally, tandem selections did not appear to influence 

selection, but it is possible that where XNDVI and XNDRE had shown to have a significant 

improvement at alternative environments, that tandem selection could allow for normalization 

between measurements and less environmental influence. This would need to adhere to practice 

to observe the actual selection response as opposed to the observational response.  
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Table 2.1. Trial location is specified by reference name and latitude-longitude location. Trials soil 

type and taxonomic classification are given for each location.  

Trial Year Location reference plant date Latitude Longitude  

P-Rows 2017 Manhattan na 25-May 39° 7'56.86"N 96°37'4.92"W 

P-Rows 2018 Manhattan na 17-May 39° 8'25.06"N 96°37'46.76"W 

KPE 2018 Manhattan Location 1 23-May 39° 8'35.19"N 96°37'46.76"W 

KPE 2018 Onega Location 2 10-May 39°24'55.46"N  96° 9'16.94"W 

KPE 2018 Ottawa Location 3 15-May 38°32'25.20"N 95°14'51.91"W 

KPE 2019 Manhattan Location 4 31-May 39° 8'29.77"N  96°37'46.38"W 

KPE 2019 Riley  Location 5 4-Jun 39°21'26.92"N  96°48'26.28"W  

KPE 2019 Manhattan Location 6 5-Jun 39° 8'29.77"N 96°37'46.38"W 

KPL 2018 Manhattan Location 7 22-May 39° 8'35.19"N  95° 3'8.32"W 

KPL 2018 McCune Location 8 6-Jun 37°23'40.41"N 95° 3'8.32"W  

KPL 2018 Pittsburg Location 9 5-Jun 37°20'27.08"N  94°35'43.62"W  

KPL 2019 Pittsburg Location 10 1-Jul 37°15'46.98"N 94°37'59.55"W  

KPL 2019 Ottawa Location 11 3-Jun 38°32'31.55"N 95°14'52.00"W 
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Table 2.2. Trial soil type and taxonomic classification are given for each location.  

Trial Year Location reference % Soil Type  Taxonomic Class 

P-

Rows 
2017 Manhattan na 100 Eudora silt loam mesic Fluventic Hapludolls 

P-

Rows 
2018 Manhattan na 100 

Bismarck-Kimo 

Complex  
shallow Typic Dystrudepts 

KPE 2018 Manhattan 
Location 

1 

94.1 Belvue silt loam mesic Fluventic Hapludolls 

5.9 Eudora silt loam mesic Fluventic Hapludolls 

KPE 2018 Onega 
Location 

2 

64.3 Chase silty clay loam mesic Aquertic Argiudolls 

35.2 Wabash silty clay 
mesic Cumulic Vertic 

Endoaquolls 

KPE 2018 Ottawa 
Location 

3 
100 Woodson silt loam  thermic Abruptic Argiaquolls 

KPE 2019 Manhattan 
Location 

4 

13 Belvue silt loam mesic Fluventic Hapludolls 

87 Eudora silt loam mesic Fluventic Hapludolls 

KPE 2019 Riley  
Location 

5 
100 

Whmore silty clay 

loam 
mesic Aquertic Argiudolls 

KPE 2019 Manhattan 
Location 

6 

13 Belvue silt loam mesic Fluventic Hapludolls 

87 Eudora silt loam mesic Fluventic Hapludolls 

KPL 2018 Manhattan 
Location 

7 

94.1 Belvue silt loam mesic Fluventic Hapludolls 

5.9 Eudora silt loam mesic Fluventic Hapludolls 

KPL 2018 McCune 
Location 

8 
100 Parsons Silt Loam  thermic Mollic Albaqualfs 

KPL 2018 Pittsburg 
Location 

9 

8.8 Medoc Silt Loam thermic Aeric Albaqualf 

91.2 Cherokee silt loam  thermic Typic Albaqualfs 

KPL 2019 Pittsburg 
Location 

10 

1.7 Helper Silt Loam  frigid Typic Haplustepts 

98.3 Parsons Silt Loam  thermic Mollic Albaqualfs 

KPL 2019 Ottawa 
Location 

11 
100 Woodson silt loam  thermic Abruptic Argiaquolls 
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Table 2.3. Rainfall accumulation by trial location from May 1st to September 30th in 

comparison to the 30-year average.  

Trial Year Location reference 
5/1 -9/30 

rainfall 

30 YR 

average  

Rainfall 

Difference 

P-

Rows 
2017 Manhattan na 377.44 mm 533.15 mm 

 -155.71 mm 

P-

Rows 
2018 Manhattan na 506.98 mm 533.15 mm 

 -26.17 mm  

KPE 2018 Manhattan 
Location 

1 
506.98 mm 533.15 mm  -26.17 mm  

KPE 2018 Onega 
Location 

2 
489.71 mm 594.61 mm  -104.9 mm 

KPE 2018 Ottawa 
Location 

3 
368.05 mm 591.57 mm 

 -223.52 mm 

KPE 2019 Manhattan 
Location 

4 
788.92 mm 533.15 mm  255.77 mm 

KPE 2019 Riley  
Location 

5 
887.22 mm 578.1 mm 

309.12 mm 

KPE 2019 Manhattan 
Location 

6 
788.92 mm 533.15 mm 255.77 mm 

KPL 2018 Manhattan 
Location 

7 
506.98 mm 533.15 mm  -26.17 mm  

KPL 2018 McCune 
Location 

8 
496.32 mm 605.54 mm 

 -109.22 mm 

KPL 2018 Pittsburg 
Location 

9 
496.32 mm 605.54 mm  -109.22 mm 

KPL 2019 Pittsburg 
Location 

10 
998.98 mm 605.54 mm 393.44 mm 

KPL 2019 Ottawa 
Location 

11 
1216.15 mm 591.57 mm 

624.58 mm 
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Table 2.4. Temperature averages by month through growing season for soybean of May through 

September in comparison to the 30 year average.  

Trial Year Location reference comparison May Jun. Jul. Aug. Sep. 

P-Rows 2017 Manhattan na 
Average 17.60 23.20 26.1 25 19.9 

Actual  17.90 24.10 26.9 22.3 22.1 

P-Rows 2018 Manhattan na 
Average 17.60 23.20 26.1 25 19.9 

Actual  22.30 26.50 25.9 24.8 20.9 

KPE 2018 Manhattan Location 1 
Average 17.60 23.20 26.1 25 19.9 

Actual  22.30 26.50 25.9 24.8 20.9 

KPE 2018 Onega Location 2 
Average 17.10 22.20 25 24.2 19.3 

Actual  23.20 25.30 25.2 24.9 20.9 

KPE 2018 Ottawa Location 3 
Average 18.10 23.10 25.9 25.1 20.2 

Actual  23.00 25.80 25.9 25.2 21 

KPE 2019 Manhattan Location 4 
Average 17.60 23.20 26.1 25 19.9 

Actual  16.80 23.00 25.7 24.3 24.1 

KPE 2019 Riley  Location 5 
Average 18.40 23.70 26.6 25.6 20.4 

Actual  17.10 23.40 26.3 24.7 24.4 

KPE 2019 Manhattan Location 6 
Average 17.60 23.20 26.1 25 19.9 

Actual  16.80 23.00 25.7 24.3 24.1 

KPL 2018 Manhattan Location 7 
Average 17.60 23.20 26.1 25 19.9 

Actual  22.30 26.50 25.9 24.8 20.9 

KPL 2018 McCune Location 8 
Average 18.80 23.70 26.4 26.3 21.3 

Actual  22.10 25.90 26.6 25.2 22.4 

KPL 2018 Pittsburg Location 9 
Average 18.80 23.70 26.4 26.3 21.3 

Actual  22.10 25.90 26.6 25.2 22.4 

KPL 2019 Pittsburg Location 10 
Average 18.80 23.70 26.4 26.3 21.3 

Actual  18.90 23.30 25.6 25.2 25.3 

KPL 2019 Ottawa Location 11 
Average 18.10 23.10 25.9 25.1 20.2 

Actual  17.5 23.3 25.5 24.2 24.1 
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Table 2.5. Comparison of mean and standard deviation (SD) for seed yield, maturity, plant height, and 
lodging among selection criteria for soybean entries in Kansas Preliminary Early trials in 2018. 

Selection 
Mean across three 

locations 
Location 1 Location 2 Location 3 

No. of 
entries 

W/I 
criterion criteriona 

 Mean SD Mean SD Mean SD Mean SD n 
 Seed yield (kg/ha) 

RAND 2727c 351 3596b 753 2192b 354 2441b 411 323 

XTH 2759bc 336 3629b 647 2218ab 363 2495ab 422 349 

XNDRE 2834ab 304 3810a 576 2214ab 360 2518ab 421 348 

XNDVI 2825ab 339 3665ab 680 2268ab 373 2560a 410 348 

CC 2802abc* 343 3641b 676 2236ab 359 2550a 420 348 

PYLD 2827ab 365 3692ab 724 2275ab* 370 2568a 420 348 

VIS 2845a 375 3746ab* 668 2287a 359 2555a 457 297 
 Maturity (days after August 31) 

RAND 29b 9.31 40ab 12.59 31bc 9.79 23ab 7.68 323 

XTH 30ab 9.49 34b 12.48 32ab 10.12 24ab 8 349 

XNDRE 29b 8.25 33b 11.49 30c 8.77 22b 6.78 348 

XNDVI 30ab 9.36 34ab 12.55 32ab 9.95 24ab 7.92 348 

CC 29b 8.94 33b 11.98 31bc 9.5 23ab 7.58 348 

PYLD 32a 9.46 37a* 12.9 33a 10.04 25a 7.98 348 

VIS 31ab 9.72 35ab 12.76 33ab 10.62 24ab 8.08 297 
 Plant height (cm) 

RAND 90a 10.77 108a 13.28 80a 11.61 82a 11.63 323 

XTH 88ab* 10.01 105ab 13.86 78ab 11.18 79ab* 10.98 349 

XNDRE 87b 9.17 104b 12.88 77b 10.05 78b 9.79 348 

XNDVI 88ab 10.86 106ab 14.28 79ab 11.69 80ab 11.19 348 

CC 89ab 10.58 106ab 14.09 79ab 11.45 80ab 10.99 348 

PYLD 90a 10.13 108a 13.87 80a 11.36 81a 10.71 348 

VIS 87b 8.81 104b 13.74 77b 10.49 78b 10.14 297 
 Lodging (score) 

RAND 1.6a 0.5 2.2a 0.86 1.5a 0.62 1.2a 0.4 323 

XTH 1.5ab 0.47 2ab 0.8 1.4a 0.62 1.2a 0.46 349 

XNDRE 1.5ab 0.43 1.9b 0.79 1.4a 0.58 1.1a 0.34 348 

XNDVI 1.5ab 0.48 2ab 0.82 1.4a 0.63 1.2a 0.41 348 

CC 1.5ab 0.49 2ab 0.83 1.4a 0.65 1.2a 0.41 348 

PYLD 1.5ab 0.5 2ab 0.8 1.5a 0.68 1.1a 0.41 348 

VIS 1.4b 0.4 1.9b 0.76 1.4a 0.57 1.1a 0.34 297 

a  RAND = random selections, XTH= selections based on thermal mean, XNDRE = selections based on red 
edge NDVI mean, XNDVI = selections based on NDVI mean, CC = selections based on canopy size, PYLD = 
selections based on progeny row seed yield, VIS = breeder selections based on visual phenotype. 
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b Means within a column and trait followed by a common letter are not significantly different at the .05 
level of probability based on LSD test. 

cMeans followed by * are significantly different from RAND selections at the .1 level of probability based 
on LSD test, respectively. 
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Table 2.6. Pearson’s correlation matrix between phenotypic values for soybean entries across 

location (Loc.) 1, 2, and 3 for 2018 KPE trials and their respective mean value. (n=1288) 
 

Yield 

Mean 

Yield 

Loc. 1 

Yield 

Loc. 2 

Yield 

Loc. 3 

Mat.  

Means 

Mat. 

Loc. 1 

Mat.  

Loc. 2 

Mat.  

Loc. 3 

Yield 

Mean 

        

        

Yield 

Loc. 1 

0.65* 
       

        

Yield 

Loc. 2 

.57* 0.01 
      

        

Yield 

Loc. 3 

0.58* -0.12* 0.36* 
     

        

Mat.  

Means 

0.042 -0.43* 0.28* 0.47* 
    

        

Mat. 

Loc. 1 

0.09* -0.32* 0.30* 0.41* 0.91* 
   

        

Mat. 

Loc. 2 

0.03 -0.45* 0.27* 0.48* 0.94* 0.78* 
  

        

Mat. 

Loc. 3 

0.01 -0.46* 0.23* 0.45* 0.92* 0.75* 0.87* 
 

        

Lod. 

Means 

-0.09* -0.34* 0.15* 0.15* 0.36* 0.33* 0.34* 0.35*         

Lod.  

Loc. 1 

-0.07* -0.28* 0.10 * 0.08* 0.18* 0.19* 0.15* 0.18*         

Lod.  

Loc. 2 

-0.07* -0.31* 0.16* 0.16* 0.43* 0.37* 0.42* 0.42*         

Lod. 

Loc. 3 

-0.01 -0.21* 0.10* 0.17* 0.25* 0.21* 0.25* 0.26*         

Ht. 

Means 

0.04 -0.24* 0.17* 0.23* 0.35* 0.35* 0.31* 0.32*         

Ht. Loc. 

1 

0.15* -0.12* 0.20* 0.19* 0.24* 0.32* 0.20* 0.21*         

Ht. Loc. 

2 

0 -0.23* 0.16* 0.16* 0.28* 0.28* 0.26* 0.25*         

Ht. Loc. 

3 

0.02 -0.28* 0.15* 0.27* 0.39* 0.37* 0.36* 0.39*         

PYLD 0.23* 0.15* 0.15* 0.18* 0.18* 0.18* 0.17* 0.12*         

CC 0.10* 0.06* 0.06* 0.08* 0.01 0.00 0.02 0.02         

XNDRE 0.10* 0.14* 0.00 0.03 -0.08* -0.07* -0.08* -0.06*         

XNDVI 0.07* 0.07* 0.02 0.05 -0.02 -0.03 -0.01 0.00 
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XTH 0.04 -0.03 -0.04 0.9* 0.06* 0.05 0.07* 0.06*         

 
Lod. 

Means 

Lod. 

Loc. 1 

Lod. 

Loc. 2 

Lod. 

Loc. 3 

Ht. 

Means 

Ht. Loc. 

1 

Ht. Loc. 

2 

Ht. Loc 

3.  

Lod. 

Loc. 1 

0.81* 
       

        

Lod. 

Loc. 2 

0.78* 0.39* 
      

        

Lod. 

Loc. 3 

0.63* 0.28* 0.41* 
     

        

Ht. 

Means 

0.49* 0.37* 0.44* 0.33* 
    

        

Ht. Loc. 

1 

0.34* 0.32* 0.30* 0.21* 0.79* 
   

        

Ht. Loc. 

2 

0.45* 0.34* 0.41* 0.29* 0.85* 0.56* 
  

        

Ht. Loc. 

3 

0.50* 0.36* 0.43* 0.38* 0.88* 0.60* 0.67* 
 

        

PYLD -0.01 -0.05 0.05 -0.04 0.06* 0.07* 0.03 0.04         

CC -0.02 -0.04 -0.01 0.01 -0.05 -0.05 -0.05 0.00         

XNDRE -0.06* -0.06* -0.04 -0.03 -0.15* -0.12* -0.12* -0.11*         

XNDVI 0.01 -0.01 0.02 0.03 -0.07* -0.08* -0.05 -0.04         

XTH 0.09* 0.07* 0.09* 0.06* 0.05 0.04 0.04 0.07*         

 
PYLD CC XNDRE XNDVI 

    
CC 0.4* 

   

        

    
XNDRE 0.30* 0.75* 

  

        

    
XNDVI 0.31* 0.72* 0.94* 

 

        

    
XTH -0.02 0.16* 0.25* 0.25*         

        

Pearson correlations between soybean entry means among selection categories for 2018 KPE trials 

 

 a  XTH= selections based on thermal mean, XNDRE = selections based on red edge NDVI mean, 

XNDVI = selections based on NDVI mean, CC = selections based on canopy size, PYLD = 

selections based on progeny row seed yield 
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b  Lod. = Lodging 1 value for vertical stem, and 5 for completely horizontal stem. Ht. = height of 

plant in cm. Mat. = maturity in days after August 31st.  

 
c  (*) indicates significance at a p-value alpha level set at 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

Table 2.7. Comparison of mean and standard deviation (SD) for seed yield, maturity, plant height, 

and lodging among selection criteria for soybean entries in Kansas Preliminary Early trials in 2019. 

Selection 
Mean across 

 three locations 
Location 4 Location 5 Location 6 

No. of 

entries 

W/I 

criterion criteriona 

 Mean SD Mean SD Mean SD Mean SD n 
 Seed yield (kg/ha) 

RAND 3341bc 441 3410b 649 3518a 621 3106b 563 210 

XNDRE 3448ab* 421 3587a 574 3497a 622 3272a 566 310 

XTH 3325c 463 3373b 653 3495a 590 3116b 609 272 

CC 3401abc 442 3471ab 582 3551a 636 3187ab 563 210 

XNDVI 3500a 387 3613a 562 3606a 572 3299a 538 210 
 Maturity (days after August 31) 

RAND 32a 4.35 30a 5.05 34a 5.32 32a 4.53 210 

XNDRE 32a 3.23 29a 3.44 33a 4.29 32a 4.06 310 

XTH 31a 3.5 29a 3.72 33a 4.51 32a 4.34 272 

CC 31a 3.46 29a 3.69 33a 4.23 31a 4.41 210 

XNDVI 32a 2.95 29a 3.28 34a 3.82 33a 3.76 210 
 Plant height (cm) 

RAND 78a 7.95 84a 10.02 71a 9.45 80a 8.64 210 

XNDRE 75b 5.44 80c 6.99 68b 7.11 77b 7.28 310 

XTH 78a 6.97 83ab 9.6 71a 8.1 79a 9.11 272 

CC 76b 5.71 81bc 7 70ab 7.46 78ab 9.18 210 

XNDVI 75b 5.94 79c 7.84 68b 7.2 77b 9.23 210 
 Lodging (score) 

RAND 1.5a 0.44 1.7a 0.73 1.1a 0.23 1.6a 0.74 210 

XNDRE 1.3b 0.35 1.4b 0.6 1b 0.08 1.4b 0.6 310 

XTH 1.5a 0.45 1.7a 0.73 1.1a 0.31 1.7a 0.74 272 

CC 1.5a 0.45 1.7a 0.74 1.1a 0.23 1.6a 0.7 210 

XNDVI 1.3b 0.37 1.5b 0.65 1b 0.1 1.4b 0.63 210 
a  RAND = random selections, XTH= selections based on thermal mean, XNDRE = selections based 

on red edge NDVI mean, XNDVI = selections based on NDVI mean, CC = selections based on 

canopy size, PYLD = selections based on progeny row seed yield, VIS = breeder selections based on 

visual phenotype. 
b Means within a column and trait followed by a common letter are not significantly different at the 

.05 level of probability based on LSD test. 

cMeans followed by * are significantly different from RAND selections at the .1 level of probability 

based on LSD test, respectively. 
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Table 2.8. Pearson’s correlation matrix between phenotypic values for soybean entries across 

location (Loc.) 4, 6, and 5 for 2019 KPE trials and their respective mean value. (n=870) 
 

Yield 

Means 

Yield 

Loc. 4 

Yield 

Loc. 6 

Yield 

Loc. 5 

Mat. 

Means 

Mat. 

Loc. 4 

Mat. 

Loc. 6 

Mat. 

Loc. 5 

Yield 

Loc. 4 

0.77* 
       

        

Yield 

Loc. 6 

0.76* 0.44* 
      

        

Yield 

Loc. 5 

0.67* 0.21* 0.25* 
     

        

Mat.  

Means 

0.22* 0.01 0.14* 0.38* 
    

        

Mat. 

Loc. 4 

0.15* -0.01 0.11* 0.27* 0.85* 
   

        

Mat. 

Loc. 6 

0.28* 0.12* 0.23* 0.31* 0.86* 0.60* 
  

        

Mat. 

Loc. 5 

0.14* -0.08* 0.02 0.40* 0.86* 0.60* 0.60* 
 

        

Lod. 

Means 

-0.15* -0.20* -0.21* 0.09* 0.06 0.04 0.01 0.11*         

Lod. 

Loc. 4 

-0.10* -0.14* -0.18* 0.09* 0.06 0.05 0.02 0.10*         

Lod. 

Loc. 6 

-0.09* -0.14* -0.14* 0.09* 0.04 0.02 0.01 0.08*         

Lod. 

Loc. 5 

-0.24* -0.22* -0.24* -0.06 0.01 -0.02 -0.01 0.06         

Ht. 

means 

-0.01 -0.17* -0.07* 0.22* 0.31* 0.22* 0.22* 0.34*         

Ht.  

Loc. 4 

-0.04 -0.12* -0.08* 0.10* 0.25* 0.18* 0.19* 0.26*         

Ht.  

Loc. 6 

0.03 -0.11* 0.04 0.14* 0.24* 0.18* 0.19* 0.23*         

Ht.  

Loc. 5 

-0.01 -0.18* -0.13* 0.28* 0.26* 0.17* 0.17* 0.32*         

CC 0.12* 0.09* 0.04 0.12* -0.13* -0.10* -0.14* -0.11*         

XNDRE 0.31* 0.31* 0.27* 0.11* -0.02 -0.01 0.01 -0.05         

XNDVI 0.28* 0.25* 0.23* 0.13* 0.03 0.02 0.05 0.02         

XTH 0.02 0.03 0.02 -0.01 0.07* 0.07* 0.08* 0.03         
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Lod. 

Means 

Lod. 

Loc. 4 

Lod.  

Loc. 6 

Lod.  

Loc. 5 

Ht. 

means 

Ht.  Loc. 

4 

Ht.  Loc. 

6 

Ht.  Loc. 

5 

Lod. 

Loc. 4 

0.83* 
       

        

Lod. 

Loc. 6 

0.84* 0.44* 
      

        

Lod. 

Loc. 5 

0.44* 0.21* 0.23* 
     

        

Ht.  

means 

0.37* 0.33* 0.27* 0.23* 
    

        

Ht.  

Loc. 4 

0.28* 0.26* 0.19* 0.20* 0.81* 
   

        

Ht.  

Loc. 6 

0.25* 0.21* 0.20* 0.15* 0.79* 0.52* 
  

        

Ht.  

Loc. 5 

0.37* 0.33* 0.27* 0.21* 0.80* 0.49* 0.46* 
 

        

CC 0.07* 0.07* 0.07* -0.02 -0.01 -0.02 -0.02 0.02         

XNDRE -0.34* -0.23* -0.28* -0.27* -0.31* -0.25* -0.23* -0.26*         

XNDVI -0.21* -0.16* -0.17* -0.15* -0.21* -0.17* -0.18* -0.17*         

XTH -0.10* -0.09* -0.09* -0.03 -0.05 -0.04 -0.03 -0.05         

 
CC XNDRE XNDVI TH     

XNDRE 0.40* 
   

        

    
XNDVI 0.43* 0.71* 

  

        

    
XTH -0.36* -0.10* -0.35* 

 

    
        

Pearson correlations between soybean entry means among selection categories for 2019 KPE 

trials 

 a  XTH= selections based on thermal mean, XNDRE = selections based on red edge NDVI 

mean, XNDVI = selections based on NDVI mean, CC = selections based on canopy size 

 
b  Lod. = Lodging 1 value for vertical stem, and 5 for completely horizontal stem. Ht. = height 

of plant in cm. Mat. = maturity in days after August 31st.  

 
c  (*) indicates significance at a p-value alpha level set at 0.05. 
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Table 2.9. Top 30% comparison of grand mean and standard deviation (SD) for seed yield, 

maturity, plant height, and lodging among selection criteria for soybean entries in Kansas 

Preliminary Early trials in 2018. 

Selection 
Mean across three 

locations 
Location 1 Location 2 Location 3 

No. of 
entries 

W/I 

criterion criteriona 

 Mean SD Mean SD Mean SD Mean SD n 
 Seed yield (kg/ha) 

RAND 3167a 137 4256a 418 2449a 336 2760a 336 70 

XTH 3162a 121 4131a 444 2499a 285 2823a 285 80 

XNDRE 3180a 144 4181a 484 2486a 345 2847a 342 101 

XNDVI 3192a 154 4113a 494 2516a 399 2879a 340 103 

CC 3192a 155 4109a 481 2491a 367 2882a 356 91 

PYLD 3177a 145 4154a 427 2519a 360 2798a 356 111 

VIS 3195a 157 4212a 431 2489a 378 2847a 334 95 
 Maturity (days after August 31) 

RAND 30a  6.5 36a 9.7 31a  7.2 23a  5.9 70 

XTH 31a  8.4 35a  10.1 33a  9.4 24a 7.4 80 

XNDRE 31a 9.4 37a 12 33a 10.3 25a 8 101 

XNDVI 32a 9.6 37a 12 35a 10.5 26a 8.2 103 

CC 32a 9.6 36a 11.8 34a 10.3 25a 8.5 91 

PYLD 31a 8.2 37a 11.4 34a 9 24a 6.6 111 

VIS 32a 9.5 36a 12.3 34a 10.5 25a 7.4 95 
 Plant height (cm) 

RAND 92a 8 109a 11 81a 10 84a 9 70 

XTH 89ab 7 108a 10 79ab  7 80ab  9 80 

XNDRE 89ab 9 107a 12 79ab 10 81ab 9 101 

XNDVI 90ab 10 108a 13 80ab 11 81ab 10 103 

CC 90ab 10 107a 12 80ab 11 81ab 9 91 

PYLD 91a 8 111a 10 81a 9 82ab 9 111 

VIS 87b 7 106a 11 76b 8 78b 8 95 
 Lodging (score) 

RAND 1.6a 0.42 2.1a 0.81 1.4a 0.53 1.1a 0.3 70 

XTH 1.5a  0.41 1.9ab 0.77 1.4a 0.56 1.2a 0.42 80 

XNDRE 1.5a 0.43 2.0ab 0.78 1.4a 0.64 1.1a 0.31 101 

XNDVI 1.6a 0.44 2.0ab 0.74 1.5a 0.68 1.2a 0.4 103 

CC 1.5a 0.47 2.0ab 0.83 1.5a 0.69 1.2a 0.4 91 

PYLD 1.5a 0.48 1.9ab 0.76 1.5a 0.69 1.1a 0.41 111 

VIS 1.4a 0.35 1.8b 0.67 1.3a 0.57 1.1a 0.26 95 
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a  RAND = random selections, XTH= selections based on thermal mean, XNDRE = selections 

based on red edge NDVI mean, XNDVI = selections based on NDVI mean, CC = selections 

based on canopy size, PYLD = selections based on progeny row seed yield, VIS = breeder 

selections based on visual phenotype. 
b Means within a column and trait followed by a common letter are not significantly different at 

the .05 level of probability based on LSD test. 
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Table 2.10. Top 30% comparison of grand mean and standard deviation (SD) for seed yield, 

maturity, plant height, and lodging among selection criteria for soybean entries in Kansas 

Preliminary Early trials in 2019. 

Selection 
Mean across 

three locations 
Location 4 Location 5 Location 6 

No. of 

entries 

W/I 

criterion criteriona 

 Mean SD Mean SD Mean SD Mean SD n 
 Seed yield (kg/ha) 

RAND 3849a 193 3971a 518 4026a 454 3551a 436 60 

XNDRE 3879a 211 3988a 472 3952a 500 3699a 412 113 

XTH 3856a 203 3932a 487 3950a 480 3676a 411 76 

CC 3857a 215 3869a 478 4081a 502 3622a 371 69 

XNDVI 3864a 222 3982a 446 3978a 469 3633a 434 85 
 Maturity (days after August 31) 

RAND 33a 3.4 30a 3.8 35a 4.3 34a 4.1 60 

XNDRE 32a  2.7 30a 2.6 34a 4.1 33a 3.2 113 

XTH 33a 2.7 30a 2.7 34a 4 33a 3.2 76 

CC 32a 2.6 30a 2.2 35a 3.8 33a 3.3 69 

XNDVI 33a 2.8 30a 3 35a 3.7 33a 3.3 85 
 Plant height (cm) 

RAND 79a 7 84a 10 72a 8 80a 7 60 

XNDRE 77ab 5 82ab 7 70a  7 79a 7 113 

XTH 78ab 6 83ab 9 71a 7 80a 7 76 

CC 78ab 5 82ab 7 71a 7 80a 7 69 

XNDVI 76b 5 80b 8 69a 7 79a 8 85 
 Lodging (score) 

RAND 1.4a 0.39 1.6a 0.67 1a 0 1.6a 0.73 60 

XNDRE 1.3a 0.37 1.5a 0.63 1a 0 1.4a 0.65 113 

XTH 1.3a 0.35 1.5a 0.61 1a 0.2 1.5a 0.64 76 

CC 1.4a 0.43 1.6a 0.65 1a 0.1 1.6a 0.77 69 

XNDVI 1.3a 0.37 1.5a 0.63 1a 0 1.5a 0.67 85 
a  RAND = random selections, XTH= selections based on thermal mean, XNDRE = selections 

based on red edge NDVI mean, XNDVI = selections based on NDVI mean, CC = selections 

based on canopy size, PYLD = selections based on progeny row seed yield, VIS = breeder 

selections based on visual phenotype. 
b Means within a column and trait followed by a common letter are not significantly different at 

the .05 level of probability based on LSD test. 
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Table 2.11. Comparison of mean and standard deviation (SD) for seed yield, maturity, plant height, 

and lodging among selection criteria for soybean entries in Kansas Preliminary Late trials in 2018. 

Selection 
Mean across 

three locations 
Location 7 Location 8 Location 9 

No. of 

entries 

W/I 

criterion criteriona 

 Mean SD Mean SD Mean SD Mean SD n 
 Seed yield (kg/ha) 

RAND 3425a 354 3082a 652 3674a 584 3766a 584 68 

XTH 3507a 404 3238a 553 3740a 553 3797a 552 72 

XNDRE 3464a 495 3268a 639 3678a 639 3758a 639 70 

XNDVI 3440a 505 3267a 671 3745a 671 3695a 671 70 

CC 3378a 560 3247a 652 3670a 652 3703a 652 71 

PYLD 3491a 451 3245a 674 3806a 674 3915a 674 70 

VIS 3518a 464 3370a 571 3790a 571 3800a 571 102 
 Maturity (days after August 31) 

RAND 49a 3.5 50a 6.8 51a 3.4 46a 4 68 

XTH 48a 3.6 47a 6.4 50a 3.2 45a 4.7 72 

XNDRE 47a 4.4 48a 7.7 50a 4 44a 4.5 70 

XNDVI 48a 4 48a 7.2 50a 2.9 44a 4.8 70 

CC 48a 4.3 48a 7.8 50a 3.06 45a 4.9 71 

PYLD 48a 3.1 48a 6.6 50a 2.8 45a 3.2 70 

VIS 47a 3.5 47a 6.5 50a 2.8 45a 4.4 102 
 Plant height (cm) 

RAND 102ab 13.62 111ab 17.39 97a 12.85 97a 15.66 68 

XTH 100ab 12.37 110ab 14.4 98a 13.86 93ab 13.31 72 

XNDRE 99ab 13.63 110ab 16.69 96a 13.92 92ab 14.58 70 

XNDVI 100ab 15.25 110ab 16.32 97a 17.01 93ab 15.89 70 

CC 105a 17.12 117a 19.98 100a 17.47 99a 18.58 71 

PYLD 98b 14.42 107b 16.44 96a 15.33 91ab 15.3 70 

VIS 97b 13 107b 15.02 96a 13.32 90b 14.13 102 
 Lodging (score) 

RAND 1.5a 0.47 2.2a 0.88 1.2a 0.48 1.2a 0.43 68 

XTH 1.5a 0.44 2.1a 0.85 1.2a 0.44 1.2a 0.41 72 

XNDRE 1.4ab 0.34 2.1a 0.76 1.1a 0.26 1.1a 0.3 70 

XNDVI 1.4ab 0.4 2a 0.8 1.2a 0.41 1.1a 0.35 70 

CC 1.5a 0.39 2.2a 0.78 1.1a 0.38 1.1a 0.34 71 

PYLD 1.5a 0.46 2.1a 0.89 1.2a 0.46 1.2a 0.42 70 

VIS 1.3b 0.31 1.9a 0.69 1.1a* 0.22 1.1a 0.35 102 
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a  RAND = random selections, XTH= selections based on thermal mean, XNDRE = selections 

based on red edge NDVI mean, XNDVI = selections based on NDVI mean, CC = selections based 

on canopy size, PYLD = selections based on progeny row seed yield, VIS = breeder selections 

based on visual phenotype. 
b Means within a column and trait followed by a common letter are not significantly different at the 

.05 level of probability based on LSD test. 
cMeans followed by * are significantly different from RAND selections at the .1 level of probability 

based on LSD test, respectively. 
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Table 2.12. Comparison of mean and standard deviation (SD) for seed yield, 

maturity, plant height, and lodging among selection criteria for soybean entries 

in Kansas Preliminary Late trials in 2019. 

Selection 
Mean across two 

locations 
Location 10 Location 11 

No. of 

entries 

W/I 

criterion criteriona 

 Mean SD Mean SD Mean SD n 
 Seed yield (kg/ha) 

RAND 3317a 447 3162a 550 3455a 590 153 

XNDRE 3452a 450 3321a 539 3577a 579 153 

XTH 3413a 442 3312a 573 3522a 565 153 

CC 3398a 446 3241a 539 3552a 580 153 

XNDVI 3415a 460 3297a 523 3547a 579 153 
 Maturity (days after August 31) 

RAND 57a 3.26 62a 2.51 53a 4.61 153 

XNDRE 57a 3.53 62a 2.93 53a 4.7 153 

XTH 57a 3.49 62a 3.06 53a 4.62 153 

CC 58a 3.37 62a 2.9 53a 4.51 153 

XNDVI 58a 3.77 62a 3.21 54a 4.95 153 
 Plant height (cm) 

RAND 94a 11.2 89a 10.8 98a 15.7 153 

XNDRE 91a 9.3 86a 9.1 95a 13.3 153 

XTH 94a 10.4 89a 10.1 98a 14.4 153 

CC 93a 10.1 89a 10.2 96a 14.2 153 

XNDVI 92a 9.5 87a 9.8 96a 13.6 153 
 Lodging (score) 

RAND 2.5a 2.5 2.7a 2.7 2.3a 0.92 153 

XNDRE 2.2b 2.2 2.3b 2.3 2.0b 0.88 153 

XTH 2.4ab 2.4 2.6ab 2.6 2.1ab 0.90 153 

CC 2.5a 2.5 2.7a 2.7 2.3ab 0.95 153 

XNDVI 2.2b 2.2 2.4ab* 2.4 2.1ab 0.92 153 
a  RAND = random selections, XTH= selections based on thermal mean, 

XNDRE = selections based on red edge NDVI mean, XNDVI = selections 

based on NDVI mean, CC = selections based on canopy size, PYLD = 

selections based on progeny row seed yield, VIS = breeder selections based on 

visual phenotype. 

b Means within a column and trait followed by a common letter are not 

significantly different at the .05 level of probability based on LSD test. 

c Means followed by * are significantly different from RAND selections at the 

.1 level of probability based on LSD test, respectively. 
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Table 2.13.  Top 30% comparison of grand mean and standard deviation (SD) for seed yield, 

maturity, plant height, and lodging among selection criteria for soybean entries in Kansas 

Preliminary Late trials in 2018. 

Selection 
Mean across 

three locations 
Location 7 Location 8 Location 9 

No. of 

entries 

W/I 

criterion criteriona 

 Mean SD Mean SD Mean SD Mean SD n 
 Seed yield (kg/ha) 

RAND 3873a 230 3622a 730 4018a 417 4001a 463 14 

XTH 3923a 190 3620a 608 3999a 351 4143a 441 22 

XNDRE 3950a 171 3782a 338 3973a 372 4087a 467 21 

XNDVI 3944a 203 3713a 505 4075a 305 4001a 500 20 

CC 3984a 172 3775a 419 4139a 269 4030a 492 18 

PYLD 3928a 188 3545a 566 4014a 312 4245a 378 24 

VIS 3918a 181 3678a 423 4046a 420 4044a 413 39 
 Maturity (days after August 31) 

RAND 51a 2.4 55a 4.4 51a 3.9 47a 2.5 14 

XTH 48b 2.4 48b 4.9 50a 2.6 45ab 3.6 22 

XNDRE 47b 3.1 47b 5 50a 3.9 43b 3.1 21 

XNDVI 47b 3.5 49b 6.1 49a 2.8 44ab 4 20 

CC 48b 3.5 50ab 6 49a 3.2 45ab 3.5 18 

PYLD 48b 2.5 48b 5.5 50a 2.6 45ab 3.3 24 

VIS 47b 2.6 47b 4.3 50a 3 44ab 3.6 39 
 Plant height (cm) 

RAND 105a 18 113a 19 103a 18 100a 20 14 

XTH 98a 13 108a 13 97a 15 90a 13 22 

XNDRE 97a 13 107a 14 96a 16 90a 13 21 

XNDVI 100a 17 110a 16 99a 20 92a 16 20 

CC 105a 19 114a 19 104a 20 97a 21 18 

PYLD 98a 13 106a 15 98a 14 90a 13 24 

VIS 96a 12 105a 13 95a 13 87a 12 39 
 Lodging (score) 

RAND 1.9a 0.62 2.7a 0.88 1.6a 0.65 1.5a 0.65 14 

XTH 1.5ab 0.41 2.2a 0.8 1.2ab 0.53 1.1a 0.29 22 

XNDRE 1.4b 0.35 2.0a 0.67 1.1ab 0.36 1.1a 0.3 21 

XNDVI 1.4b 0.42 2.0a 0.77 1.2ab 0.41 1.2a 0.37 20 

CC 1.5ab 0.42 2.2a 0.73 1.2ab 0.38 1.2a 0.43 18 

PYLD 1.5ab 0.56 2.2a 0.93 1.3ab 0.55 1.3a 0.53 24 

VIS 1.4b 0.29 2.0a 0.6 1.1b 0.31 1.1a 0.34 39 
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a  RAND = random selections, XTH= selections based on thermal mean, XNDRE = selections 

based on red edge NDVI mean, XNDVI = selections based on NDVI mean, CC = selections based 

on canopy size, PYLD = selections based on progeny row seed yield, VIS = breeder selections 

based on visual phenotype. 
b Means within a column and trait followed by a common letter are not significantly different at the 

.05 level of probability based on LSD test. 
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Table 2.14. Top 30% comparison of grand mean and standard deviation (SD) 

for seed yield, maturity, plant height, and lodging among selection criteria for 

soybean entries in Kansas Preliminary Late trials in 2019. 

Selection 
Mean across two 

locations 
Location 10 Location 11 

No. of 

entries 

W/I 

criterion criteriona 

 Mean SD Mean SD Mean SD n 
 Seed yield (kg/ha) 

RAND 3871a 253 3736a 429 3988a 506 40 

XNDRE 3880a 231 3749a 383 3996a 439 122 

XTH 3858a 235 3762a 377 3936a 423 114 

CC 3881a 238 3704a 380 4035a 436 50 

XNDVI 3877a 239 3738a 377 4001a 441 110 
 Maturity (days after August 31) 

RAND 57a 3.3 62a 2.5 53a 4.7 40 

XNDRE 58a 3.4 62a 2.6 53a 4.9 122 

XTH 58a 3.5 62a 2.9 54a 4.8 114 

CC 58a 3.6 62a 2.6 53a 4.8 50 

XNDVI 58a 3.5 63a 2.8 54a 4.9 110 
 Plant height (cm) 

RAND 100a 14 95a 13 104a 19 40 

XNDRE 91b 9 87b 9 95b 12 122 

XTH 95ab 11 91ab 11 99ab 14 114 

CC 95ab 12 91ab 12 99ab 15 50 

XNDVI 91b 10 88b 11 94b 12 110 
 Lodging (score) 

RAND 2.1a 0.66 2.3a 0.75 2.0a 0.81 40 

XNDRE 1.9a 0.63 2.1a 0.79 1.8a 0.8 122 

XTH 2.1a 0.65 2.4a  0.77 1.9a 0.75 114 

CC 2.2a 0.7 2.4a 0.88 2.0a 0.81 50 

XNDVI 2.0a 0.63 2.2a 0.79 1.8a 0.76 110 
a  RAND = random selections, XTH= selections based on thermal mean, 

XNDRE = selections based on red edge NDVI mean, XNDVI = selections 

based on NDVI mean, CC = selections based on canopy size, PYLD = 

selections based on progeny row seed yield, VIS = breeder selections based on 

visual phenotype. 

b Means within a column and trait followed by a common letter are not 

significantly different at the .05 level of probability based on LSD test. 
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Table2.15. Pearson’s correlation matrix between phenotypic values for soybean entries 

across location (Loc.) 10 and 11 for 2019 KPL trials and their respective mean value. 

(n=465)  
Yield 

Means 

Yield Loc. 

11 

Yield Loc. 

10 

Mat.  

Means 

Mat.   

Loc. 11 

Mat.    

Loc. 10 

Yield Loc. 

11 

0.78* 
     

      

Yield Loc. 

10 

0.78* 0.15* 
    

      

Mat.   

means 

0.03 0.13* -0.09 
   

      

Mat.    

Loc. 11 

0.02 0.10* -0.06 0.95* 
  

      

Mat.    

Loc. 10 

0.03 0.15* -0.10* 0.87* 0.68* 
 

      

Ht.   

Means 

0.09 0.02 0.13* 0.08 0.09 0.04       

Ht.       

Loc. 11 

0.02 0.01 0.05 0.05 0.05 0.03       

Ht.       

Loc. 10 

0.16* 0.04 0.19* 0.08 0.10 0.04       

Lod.  

means 

-0.36* -0.19* -0.39* 0.24* 0.24* 0.21*       

Lod.    

Loc. 11 

-0.32* -0.24* -0.29* 0.25* 0.26* 0.19*       

Lod.    

Loc. 10 

-0.29* -0.08 -0.37* 0.17* 0.15* 0.17*       

XTH -0.11* -0.10* -0.09 0.13* 0.11* 0.15*       

XNDRE 0.21* 0.12* 0.21* -0.29* -0.28* -0.24*       

XNDVI 0.15* 0.10* 0.15* -0.15* -0.15* -0.12*       

CC 0.13* 0.07 0.13* -0.22* -0.21* -0.20*       

 
Ht.    

Means 

Ht.       

Loc. 11 

Ht        

Loc. 10 

Lod.  

Means 

Lod.    

Loc. 11 

Lod.    

Loc. 10 

Ht.       

Loc. 11 

0.88* 
     

      

Ht.       

Loc. 10 

0.74* 0.33* 
    

      

Lod.   

means 

0.04 0.08 -0.03 
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Lod.    

Loc. 11 

0.06 0.05 0.05 0.85* 
  

      

Lod.    

Loc. 10 

0.01 0.08 -0.10* 0.86* 0.47* 
 

      

XTH -0.02 0.00 -0.03 0.08 0.08 0.06       

XNDRE -0.16* -0.14* -0.12* -0.35* -0.28* -0.33*       

XNDVI -0.144* -0.11* -0.13* -0.28* -0.22* -0.26*       

CC -0.03 -0.05 0.00 -0.09* -0.07 -0.09       

 
XTH XNDRE XNDVI CC   

XNDRE -0.24* 
   

      

  
XNDVI -0.33* 0.73* 

  

      

  
CC -0.30* 0.45* 0.41* 

 

  
            

Pearson correlations between soybean entry means among selection categories for 2019 

KPL trials 

 a  XTH= selections based on thermal mean, XNDRE = selections based on red edge NDVI 

mean, XNDVI = selections based on NDVI mean, CC = selections based on canopy size 

 
b  Lod. = Lodging 1 value for vertical stem, and 5 for completely horizontal stem. Ht. = 

height of plant in cm. Mat. = maturity in days after August 31st.  

 
c  (*) indicates significance at a p-value alpha level set at 0.05. 
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Table2.16. Pearson’s correlation matrix between phenotypic values for soybean entries 

across location (Loc.) 7, 8, and 9 for 2018 KPL trials and their respective mean value. 

(n=243)  
Yield 

Means 

Yield 

Loc. 7 

Yield 

Loc. 8 

Yield 

Loc. 9 

Mat. 

Means 

Mat. 

Loc. 7 

Mat. 

Loc. 8 

Mat.  

Loc. 9 

Yield 

Loc. 7 

0.74* 
       

        

Yield 

Loc. 8 

0.61* 0.20* 
      

        

Yield 

Loc. 9 

0.59* 0.13 0.32* 
     

        

Maturity 

Means 

-0.11 -0.05 -0.06 0.21* 
    

        

Mat.  

Loc. 7 

-0.04 -0.01 -0.05 0.12 0.87* 
   

        

Mat.  

Loc. 8 

-0.13* 0.02 -0.19* 0.18* 0.56* 0.23* 
  

        

Mat.  

Loc. 9 

-0.15* -0.12 0.04 0.20* 0.78* 0.45* 0.36* 
 

        

Lod.  

Means 

0.05 -0.08 0.05 0.29* 0.29* 0.38* -0.03 0.16*         

Lod.  

Loc. 7 

0.02 -0.15 -0.02 0.26* 0.29* 0.42* -0.05 0.12         

Lod.  

Loc. 8 

0.09 0.02 0.18* 0.19* 0.12 0.10 0.01 0.15*         

Lod.  

Loc. 9 

0.09 0.05 0.05 0.16* 0.12 0.18 -0.05 0.06         

Height 

Means 

-0.02 -0.02 -0.01 0.18* 0.33* 0.37* -0.05 0.28*         

Ht.     

Loc. 7 

-0.09 -0.02 -0.07 0.13 0.33* 0.37* 0.02 0.24*         

Ht.     

Loc. 8 

0.12 0.04 0.19* 0.20* 0.18* 0.24* -0.16* 0.19*         

Ht.     

Loc. 9 

-0.07 -0.06 -0.11 0.17* 0.37* 0.39* -0.01 0.33*         

CC -0.04 0.00 0.00 -0.14* -0.04 0.09 -0.21* -0.10         

XNDRE 0.03 0.03 -0.02 -0.12 -0.13 -0.02 -0.11 -0.23         

XNDVI -0.01 0.09 0.02 -0.17* -0.09 0.02 -0.15 -0.16         

XTH -0.13* -0.06 -0.06 0.00 0.15* 0.10 0.11 0.17*         
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PYLD 0.19* 0.02 0.15* 0.22* -0.10 0.00 -0.11 -0.16*         

 
Lod. 

Means 

Lod.  

Loc. 7 

Lod.  

Loc. 8 

Lod.  

Loc. 9 

Ht. 

means 

Ht.     

Loc. 7 

Ht.     

Loc. 8 

Ht.     

Loc. 9 

Lod.  

Loc. 7 

0.86* 
       

        

Lod.  

Loc. 8 

0.64* 0.27* 
      

        

Lod.  

Loc. 9 

0.68* 0.36* 0.40* 
     

        

Ht.  

Means 

0.32* 0.34* 0.05 0.22* 
    

        

Ht.     

Loc. 7 

0.20* 0.28* -0.11 0.11 0.91* 
   

        

Ht.     

Loc. 8 

0.35* 0.29* 0.22* 0.26* 0.85* 0.63* 
  

        

Ht.      

Loc. 9 

0.33* 0.34* 0.06 0.23* 0.92* 0.79* 0.67* 
 

        

CC 0.03 0.06 -0.03 0.01 0.16* 0.15* 0.14* 0.14*         

XNDRE -0.03 0.00 -0.05 -0.05 -0.06 -0.04 -0.07 -0.07         

XNDVI -0.06 -0.05 -0.06 0.00 -0.02 -0.02 -0.02 -0.02         

XTH -0.02 0.02 -0.05 -0.06 0.07 0.08 0.02 0.09         

PYLD 0.04 0.05 0.01 0.03 -0.12 -0.16* -0.03 -0.13*         

 
CC XNDRE XNDVI XTH PYLD    

XNDRE 0.71* 
    

        

   
XNDVI 0.81* 0.82* 

   

        

   
XTH -0.43* -0.52* -0.54* 

  

        

   
PYLD 0.13* 0.14* 0.15* -0.10 

 

   
                

Pearson correlations between soybean entry means among selection categories for 2018 KPE 

trials 

 

 a  XTH= selections based on thermal mean, XNDRE = selections based on red edge NDVI 

mean, XNDVI = selections based on NDVI mean, CC = selections based on canopy size, 

PYLD = selections based on progeny row seed yield 
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b  Lod. = Lodging 1 value for vertical stem, and 5 for completely horizontal stem. Ht. = height 

of plant in cm. Mat. = maturity in days after August 31st.  

 
c  (*) indicates significance at a p-value alpha level set at 0.05. 
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Chapter 3 - Soybean Yield Trials High-Throughput 

Phenotyping  

 

Abstract  

The ability to depict yield associated rankings and predict genotype performance in 

soybean (Glycine max (L.) Merr.) breeding trials across various locations has been relatively 

unrepeatable. The objective of this study was to evaluate spectral measurements or combinations 

(vegetation indices) thereof that could predict entry yield ranking by location and evaluate 

physiological attributes to variables showing a significant relationship to yield. The experiment 

consisted of four different locations and location 4 consisting of two different trials, resulting in a 

total of five trials. Each trial ranged from 10 to 52 entries, set up in a randomized complete block 

design, planted in 4-row plots 3.7m long, spaced .76m apart. Seed yield and spectral 

measurements were measured from the center two rows of each plot. Multi-Spectral, modified 

broadband camera, and thermal cameras were used to make spectral measurements. MicaSense 

measurements evaluated were blue, green, red, red-edge, near-infrared (NIR), blue normalize 

difference vegetation index (BNDVI), green normalize difference vegetation index (GNDVI), 

red normalize difference vegetation index (NDVI), normalized difference red-edge (NDRE), and 

pigment index (PI). Sony measurements evaluated were blue, green, NIR, BNDVI, GNDVI, and 

PI. Flir camera measurement analyzed was thermal (TH). MicaSense BNDVI, GNDVI, and 

NDVI showed a significant relationship to yield across multiple trials, however, these results 

showed to be variable, alternating between positive and negative correlations. Sony cameras 

BNDVI, and GNDVI measurement had shown a significant relationship to yield across multiple 

sights as well but altered between positive and negative correlations. No physical plant 
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characteristics were consistently associated with any significant yielding spectral measurements 

across all trials.  

 

Introduction 

At the forefront of the agricultural cropping systems, producers are attempting to 

continually achieve higher yielding goals. This is often sought using many different techniques; 

however, producers rely on improved seed development to help maintain yield advancement. 

The general progression for yield improvement encourages breeders to focus on developing 

cultivars that are higher yielding. The improvement of cultivars has largely been in part of a 

response to selection from large populations (Acquaah, 2007). Genomic selection has been able 

to rapidly improve selection within populations and offering the ability to depict high yielding 

attributes within a population (Thomson, 2014). The ability to analyze DNA continues to show 

improvement, however, these genetic predictions are highly more efficient when their 

association with plant phenotypes can be depicted (Yu et al., 2016). The association to 

differentiate phenotypes has not improved at the same rate to genome sequencing, suggesting 

that improvements in this area are important for further advancement.  

The ability to collect phenotypic data with sufficient resolution and accuracy to plant 

characteristics has been a challenge in plant-based science research (Bai et al., 2016). The typical 

collection of these plant attributes is labor-intensive and expensive creating a bottleneck of 

linking data to selected variables.  These visual observations are subject to potential bias 

interpretations (McKenzie and Lambert, 1961). With the advancements in technology, the 

potential arises to connect genomic data with high throughput phenotypic data, to better advance 
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genomic linkage (Furbank and Tester, 2011). This helps with reducing the cost and time 

constraints in collecting and characterizing plant phenotypes. 

Photosynthesis has shown a strong relationship with crop yield (Dhanapal et al., 2016). 

Developing a method, that allows for manipulation of photosynthesis’s relationship to yield has 

been suggested as a way for yield advancement (Dhanapal et al., 2016). These results have been 

verified by using extraction-based methods, but these can be mildly destructive. As an 

alternative, spectral reflectance has been developed for modeling plant phenotypes, specifically 

chlorophyll content concerning light adsorption. Research has shown that spectral indices can be 

used to predict both disease pressure and yield potential within a trial, accounting for up to 41 to 

93% of the variation in yield (Menke, 2018). However, field base research has suggested yield 

estimation using canopy reflectance and the temperature has shown to be variable and 

inconsistent (Babar et al., 2006). This technology has been useful establishing a relationship 

between yield and traits such as biomass and canopy reflectance, but many alternatives in 

methodology and instrumentation exist. The objective of this study was to evaluate the ability of 

three different spectral imagery platforms (multi-spectral, modified broadband camera, and 

thermal) to characterize the differences in seed yield, plant height, and maturity, lodging and 

wilting among commercial soybean varieties, in fortuity of the lesser need of mechanical harvest 

still allowing for yield ranking. This is in an effort to evaluate cultivars within later trials in a 

breeding program when comparing established elite lines.    
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Materials and Methods 

Field Trials 

The experiment was conducted on soybean cultivars planted at two locations in 2018 and 

2 locations 2019 as part of the Kansas Soybean Variety Performance Tests. In 2018 Location 1 

was located southeast of Onaga, KS at a latitude of 39°24'51.29"N and longitude of 96° 

9'17.78"W. Soil type present at that location was Chase silty clay loam (mesic Aquertic 

Argiudolls). Location 2 in 2018 was located south of Salina at a latitude of 38°40'5.15"N and a 

longitude of 97°36'14.02"W. The soil type consisted of a Detroit silty clay loam (mesic Pachic 

Argiustolls). In 2019, Location 3 was located north of Manhattan at the research farm at a 

latitude of 39°12'57.88"N and a longitude of 96°35'31.70"W. The soil type consisted of a Kahola 

silt loam (mesic Cumulic Hapludolls). Location 4 in 2019 was located south of Salina at a 

latitude of 38°42'34.43"N and a longitude of 97°37'4.92"W. The soil type was a Longford silt 

loam (mesic Udic Argiustolls). 

Each experiment was set up using a randomized complete block design with four 

replications. Cultivars were planted in 4 row plots, 3.7 m long, spaced .76 m apart. Due to 

herbicide injury, non-dicamba tolerant entries were removed from the evaluations in Locations 1, 

2, and 4. In 2018, Location 1 was planted on 5/10/18 with 16 entries in the trial. Location 2 was 

planted on 5/24/18 with 35 entries. In 2019, Location 3 was planted on 6/10/19 with 52 entries. 

Location 4 had two trials planted on 6/7/19 consisting of an 38 entries in maturity groups III to 

mid-IV in the early test (SP10E, T1), and 10 entries in maturity groups late IV to mid V in a late 

test (SP10L,T2).  

Data Collection 
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The spectral imagery was collected using a Matrice 100 DJI drone (DJI, Shenzhen, 

China). Gimbal attachments were added to be able to insert cameras of interest for the collection. 

The drone had a maximum load capacity of 1 kilogram allowing for a flight time of 25 minutes. 

A built-in autopilot was used for flight data collection. The missions were created in Mission 

Planner and imported into “Litchi” for automated flight application. Thermal imagery (TH) was 

collected on a Flir Vue pro R 13mm (Flir Systems Inc., Wilsonville, OR, USA). For spectral 

imagery, a RedEdge camera by MicaSense (MicaSense Inc., Seattle WA) was used. This camera 

captured reflectance from five different wavelength bands. The center wavelength of each band 

consisted of 475 nm (blue), 560 nm (green), 668 nm (red), 840 nm (near-infrared), and 717 nm 

(red edge). A Sony α5100 (Sony corporation of America, New York, NY) camera was used to 

collect imagery with 3 bands consisting of blue, green, and near-infrared, modified with broader 

bands than the Mica Sense camera that were close to 100 nm.  Cameras allowed for geotagged 

data and ground control pointes were used and allowed alignment of imagery. Within the thermal 

imagery FLIR camera measurements are associated with at-sensor radiometric temperatures 

showing  low radiometric values, being associated with low temperatures and high radiometric 

values associated with higher temperatures (Sagan et al., 2019). Often to account absolute 

temperatures in degrees Celsius or Fahrenheit a conversion is necessary to account for 

atmospheric and emissivity corrections; however, we were only interested in relative cultivar 

thermal association and plot mean pixel ranking so radiometric value was sufficient. MicaSense 

camera had come standard with calibrated reflectance panel to compensate for light conditions at 

time of image capture to give representation of light reaching ground at time of capture. The 

flights were flown within a two-hour window of solar noon on cloud-free days to allow for 

limited interference. The drone flight speed 3 m/s at an elevation of 50 m for all flights with an 

https://www.dji.com/matrice100
https://support.micasense.com/hc/en-us/articles/225950667-RedEdge-Manual-Specifications
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80% overlap between field passes. The photos were stitched together using Agisoft PhotoScan 

Professional. The resulting imagery was placed into ArcGIS Pro for raster calculations and 

extractions. The spectral imagery was extracted from the center two rows of each plot. At 

Location 1, a flight was conducted on 7/09/18. At Location 2, flights were conducted on 7/08/18, 

8/02/18, and 9/22/18. At Location 3, a flight was conducted on 8/29/19. At Location 4, flights 

were conducted on 9/03/19 and 9/13/19.  

Phenotypic traits 

 Ground notes taken for each plot consisted of maturity, height, lodging and seed 

yield. The maturity was calculated based on the days after August 31st when 95% of the pods 

reach a fully matured color. Height was measured as the average length from the ground to the 

tip of the main stem in cm. Lodging was scored on a scale of 1-5 based on the number of plants 

leaning. Upright plants that had 0º of lean were given a 1, 2=20º lean, 3=45º lean, 4= 60 º lean, 

and 5 was given to prostrate plants. The center two rows were harvested with a plot combine to 

determine seed yield, reported as kg/ha.  

Drought conditions enabled the collection of wilting scores at Location 1, 2, and 4 both 

trial 1 and 2.  Visual wilting scores were collected using a scale from 0 – 100. Plots with a 0 

represented no wilting, 20 represented slight wilting and rolling of the leaves at the top of the 

canopy, 40 represented severe rolling of the leaves at the top of the canopy and moderate wilting 

of the leaves through the rest of the canopy, 60 represented severe wilting throughout the 

canopy, 80 represented dead leaves throughout the canopy and severely wilted petioles, and 100 

represented plant death.  

The spectral and thermal phenotyping was completed by calculating the mean pixel value 

in the plot after establishing plot polygons. Both spectral and thermal values were used. The 

http://www.agisoft.com/features/professional-edition/
http://www.agisoft.com/features/professional-edition/
https://pro.arcgis.com/en/pro-app/
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phenotypic values consisted of the thermal (TH) reading, and blue (BLUE), green (GREEN), red 

(RED), red edge (RED EDGE), and near-infrared (NIR) reflectance values. Within the thermal 

imagery, lower pixel values were associated with low temperatures and high pixel values were 

associated with higher temperatures. Reflectance values for blue, green, and near infrared were 

collected using both the MicaSense camera (denoted by “M”) and the Sony camera (denoted by 

“S”). Indices calculated for each plot from the reflectance values included: BNDVI, GNDVI, 

RNDVI, NDRE, and PI. NDRE was calculated as near-infrared (NIR) minus red-edge 

wavelengths, divided by NIR plus red-edge wavelengths. NDVI was calculated as NIR minus 

red wavelengths, divided by NIR plus red wavelengths. BNDVI was calculated as NIR minus 

blue wavelengths, divided by NIR plus blue wavelengths. GNDVI was calculated as NIR minus 

green wavelengths, divided by NIR plus green wavelengths. PI was calculated as BNDVI minus 

GNDVI. All of the indices were calculated using data from the MicaSense camera. NDRE and 

NDVI could not be calculated with the reflectance data from the Sony camera.  

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 −  𝑅𝑒𝑑𝐸𝑑𝑔𝑒 

𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒
 

𝑁𝐷𝑉𝐼 =
 𝑁𝐼𝑅 −  𝑅𝑒𝑑 

𝑁𝐼𝑅 +  𝑅𝑒𝑑
 

𝐵𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 −  𝐵𝑙𝑢𝑒 

𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒
 

𝐺𝑁𝐷𝑉𝐼 =
 𝑁𝐼𝑅 −  𝐺𝑟𝑒𝑒𝑛 

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛
 

𝑃𝐼 = 𝐵𝑁𝐷𝑉𝐼 − 𝐺𝑁𝐷𝑉𝐼 

 

 Data was analyzed using SAS. A mean pixel value was calculated for each plot reading. 

The plot readings were averaged across reps to produce an entry mean, for each location and 

sampling time. Consecutive numbers were added to each variable name to indicate different 

sampling times. PROC CORR was used to calculate Pearson’s correlations coefficient between 
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phenotypic measurements. A forward regression analysis was ran using PROC REG with an 

alpha < 0.10 to estimate which spectral measurements provided the best phenotypic predictions.  

 

Results 

Among the five trials Location 3 had both the highest and lowest entry yield and highest 

grand mean seed yield. (Table 3.1). Location 1 had the lowest grand mean in seed yield. Least 

significant difference (LSD) values ranged from a high at Location 2 at 317 to a low at Location 

1 at 223, resulting in significant difference at all trials amongst the entries. Location 3 had the 

latest grand mean maturity and Location 1 had the earliest with LSD ranging from 1.08 at 

location 1 to 4.31 at Location 4 T2. Location 3 had the highest grand mean lodging score and 

Location 2 had the lowest. Location 4 T2 had the lowest LSD at .23 and Location 1 had the 

highest with .4, showing a significant difference amongst all trials for lodging entry means.  

In 2018 at Location 1 yield had a variation from 2064 to 2625 kg/ha, maturity had a range 

of 23 to 39, lodging ranged from 1 to 1.8, and height ranged from 70 to 99 cm (Table 3.1).  The 

yield was not significantly correlated to any physical attributes (Table 3.2). Wilt 1 and 2 were the 

only physical attributes correlated (r=.93*) amongst each other. Multispectral camera variables 

that were correlated significantly to yield were Blue (r=-.67*), Red (r=-.71*), NDVI (r=0.51*), 

BNDVI (r=0.55*), and GNDVI (r=0.55*). Modified broadband camera had correlations to yield 

with Blue (r=-0.48*), BNDVI (r=0.56*), and GNDVI (r=0.54*). PI M was the only reflectance 

measurement that was correlation to plant height, and it showed a positive relationship (r=0.50*). 

Maturity increases as RED M values increased (r=0.54*), while maturity decreased as BNDVI M 

(r=0.53*) and NDVI M (-0.55*) increased. No spectral reading was correlated with lodging 

scores at this location, where lodging scores ranged from X to Y. Wilting scores taken on two 
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separate dates were positively correlated with reflectance data from both cameras. As reflectance 

values increased, wilting scores increased, with correlations ranging from 0.51 to 0.70. The 

correlations between wilting and the NIR reading from both cameras only differed slightly. 

Trends had developed between Location 1 and 3, as replicated results from measurements 

relate to yield (Table 3.2, 3.6) had been presented. At these locations there was a significant 

relationship to GNDVI M (.44 to .55), BNDVI M(.29 , .55), and NDVI M(.46 , .51), to yield. 

Single band measurement of Red M (-.30, -.71) were also significantly correlated to yield. Red 2 

M was significantly correlated to yield at Location 2 as well. In a forward regression model of 

these two locations Red M had shown to account for 50% (Table 3.3) of the variation in yield at 

Location 1, however this had not been shown to be replicated at any other locations.  

Maturity was significantly associated with several variables; however Red M was 

replicated the most with showing a significant correlation at four trials alternating between 

negative and positive correlation (-.65 to .66) showing a significant but inconsistent 

measurement (Table 3.8, 3.10). The positive and negative relationship came from two different 

maturity groups at the same location (Location 4 T1, and T2). Location 1 and 3, which had 

shown to have the most repeatable measurements amongst yielding attributes, and both showed a 

positive correlation (.31 to .54) to maturity (Table 3.2, 3.6). Red M did not account for any 

variation within a forward regression model as it relates to maturity (Table 3.3, 3.5, 3.7, 3.9).  

Height had shown to have repeatable significant relationship to both TH (-.34 to .65), and 

GNDVI M (-.34 to .70) at three trials. However, the correlations alternated between negative 

positive suggesting inconsistency. In a forward regression model GNDVI 2 M was able to 

account for 42% of the variation (data not shown) in addition to Red 2 M creating a multi 

regression model accounting for 73% of the variation at Location 4 T2 (Table 3.11). TH was able 
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to account for 13% of the variation in height at Location 2 (Table 3.5). At location 3 TH was 

able to account for 9% of the variation in height (data not shown) but in a multi regression model 

with PI1 M was able to account for 27% of the variation (Table 3.7). 

Lodging had shown to have a significantly repeatable relationship at Location 2, 3, and 

4T1 to NDRE M (-.32 to .52) (Table 3.4, 3.6, and 3.8). The alternating positive to negative 

correlations suggesting unrepeatability showing the variable move in different directions by 

locaion.  In a forward regression model at Location 3, NDRE was able to account for 6% of the 

variation (data not shown), and in a multi regression model with TH1, and RedEdge 1M was able 

to account for 28% of the variation (Table 3.7).  

 Discussion  

 At location 2 only Red 2 M was significantly correlated to yield. This could be related to 

this location having the highest LSD value and the least variation in entry mean yield, suggesting 

less significant difference amongst entry means were found at this location for yield. Three of the 

variables had shown a significant relationship to yield at more than one location including; 

NDVI-M, BNDVI-M, and GNDVI-M. The individual band RED from the multispectral camera  

had also shown to have a significant relationship to yield in addition to accounting for 50% of 

the variation in yield at location 1. At individual trials, BNDVI - M had shown to have a 

significant positive correlation to yield at two of the trials. This relationship was associated with 

higher yields in Locations 1, and 3. This value showed to have a decrease in maturity as the 

value increased at Location 1. Within each trial, GNDVI-M showed a significant positive 

relationship to yield at Locations 1 and 3. GNDVI-M had shown to increase when maturity 

decreased at location three and increase when lodging decreased at Location 4 T2 (p< 0.10). 

When NDVI-M measurement had shown to increase as yield increased at the Location 1 and 3. 
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At Location 1 when NDVI-M measurement increased it was found that maturity had decreased 

as a response. 

 At Location 3 the multispectral camera consistently showed a significant relationship to 

yield, whereas modified broadband measurements hand no significant relationship. Amongst the 

highest correlations to yield such as GNDVI M (r=.44*) and NDRE M (r=.51*) there is 

secondary significant correlations to height and lodging, which are also significantly correlated 

to yield. Modified broadband camera had several measurements significantly correlated to 

maturity but no other physical attributes. Maturity was not significantly associated with yield at 

this trial, as such it is possible that the multispectral camera measurements are correlated to 

physical attributes most associated with yield at the given environment.  

At Location 4 T1 many of the variables showed a significant relationship to height and 

maturity, but only RED EDGE 2 M and NIR S showed a significant correlation to yield. This 

could be in part that this trial had the second largest LSD for yield and the second smallest LSD  

for height and maturity,  requiring more yield difference to show a significance and less variation 

in height in maturity to show a significance, allowing for more significant relationships between 

measurements to height and maturity.  

 The multispectral camera had the greatest success showing consistent significant 

measurements amongst GNDVI, BNDVI, and NDVI at two location.   These measurements were  

consistent with previous research (Christenson et al., 2015, 2016), (Gitelson, 2012), and (Ma et 

al., 2001) showing that NDVI measurements in the red, blue, and green wavelengths had shown 

the highest predictability to yield. Similar to research conducted by (Gitelson, 2012), the greatest 

response to yield came from GNDVI–M, suggesting that further research could be explored 

using this measurement specifically in an attempt to improve the repeatability of this index 
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potentially using different cameras. This study also found that these measurements had shown 

inconsistencies across environments, similar to previous research (Clark, 2016). Similarly, the 

single band measurement Red had shown a significant relationship to yield as well. Their 

significant relationship to height, lodging maturity, and wilting appeared to be inconsistent 

across environments. The values that were most associated with height, lodging, and maturity 

gave confounding results, altering between positive and negative correlations. It is worth noting 

that the most consistent measurements to yield showed a significant relationship to yield at 

location 1 and 3, which are both the lowest and highest yielding trials. This showing that trial 

grand mean performance was not necessarily an indicator of measurement success.  

Conclusion  

 This research focused on the predictability of yield, within yield trials to determine if 

spectral measurements could predict entry performance ranking by location. We evaluated the 

effects on crop physiology when yield showed a significant relationship, to determine if 

measurements were associated with these physical attributes as opposed to yield. We found that 

with an alpha level set at 0.05; multispectral camera measurements of BNDVI, NDVI, and 

GNDVI showed a significant relationship to yield at Location 1 and 3. These were the only 

measurements showing a consistent relationship across more than 1 environment. The individual 

band Red M was able to show significant correlation to yield at Location 1, 2, and 3. Within the 

forward selection regression analysis, we found that many of the variables were able to account 

for variation within the models, but these models were not repeatable across the trials.   

 The overall goal of spectral measurements is to simplify a collection of information 

relating back to yield, offering the ability to accurately select lines to progress in a breeding 

system. A collection of a set of data needs to be easily identifiable as accurate and repeatable. 
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Within this study the three measurements we found to be replicable were not consistent across all 

environments. The predictability in determining these measurements as successful by location 

seems to be unidentifiable as a standalone measurement. The two environments showing this 

replication in selection were not similar, in that Location 3 had the highest grand mean and 

Location 1 having the lowest. Additionally, Location 1 had the second lowest number of entries 

and Location 3 had the highest number of entries suggesting that degree of freedom was not a 

limitation amongst 4 of the 5 trials. In a stand-alone selection process, it is difficult to determine 

if any of these spectral measurements will accurately identify top performing lines consistently. 

Establishing parameters in which seemingly replicable measurements are accurate across these 

varying environments is imperative to its future use or at the very least the ability to identify 

measurements accuracy without the need of performing labor-intensive comparisons. Further 

technological advancements are needed to create technology or measurements that can 

adequately compare elite cultivar performances or create indicator to identify when 

measurements are inaccurately representing the population.  
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Table 3.1 Means, ranges, and LSD values from 
agronomic traits for 5 trials 

Trial Mean LSD (0.10) Range 

 Seed Yield (kg/ha) 

Location 1 2360 223 2064 2625 

Location 2 3531 317 2892 4237 

Location 3 4213 245 1853 4960 

Location 4 T1 4102 247 3100 4556 

Location 4 T2 3818 218 3026 4596 

 Maturity (days after Aug. 31st) 

Location 1 29 3.91 23 39 

Location 2 33 1.56 25 46 

Location 3 45 1.08 39.08 52.44 

Location 4 T1 32 1.4 28 41 

Location 4 T2 42 4.31 39 44 

 Height (cm) 

Location 1 87 5 76 99 

Location 2 81 6 66 117 

Location 3 96 7 79 113 

Location 4 T1 83 6 74 106 

Location 4 T2 90 8 86 100 

 Lodging 

Location 1 1.2 0.4 1 1.8 

Location 2 1 0.32 1 1.8 

Location 3 1.4 0.38 1 4.2 

Location 4 T1 1.1 0.25 1 2 

Location 4 T2 1.1 0.23 1 2 
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Table 3.2. Phenotypic correlations between wavelength and physiological 
measurements at Location 1 (n=17).  

 Yield Height Maturity Lodging Wilt 1 Wilt 2 

Maturity 
-0.44 -.05  -.05 .23 .23 

      

Lodging 
-0.45 .41 -.05  .11 .09 

      

Height 
-0.16  -.05 .41 .23 .23 

      

Wilt 1 
-0.19 .23 .23 .11  .93* 

      

Wilt 2 
-0.20 .23 .23 .09 .93*  

      

BLUE M 
-0.67* 0.09 0.37 0.23 0.17 0.26 
      

GREEN M 
-0.46 0.30 0.15 0.10 0.36 0.48 

      

RED M 
-0.71* -0.11 0.54* 0.23 -0.17 -0.09 
      

RED EDGE M 
-0.13 0.19 -0.08 -0.13 0.51* 0.60* 

      

NIR M 
0.20 -0.02 -0.38 -0.26 0.65* 0.66* 

      

BNDVI M 
0.55* -0.08 -0.53* -0.28 0.34 0.26 

      

GNDVI M 
0.55* -0.26 -0.47 -0.27 0.22 0.10 

      

NDRE M 
0.42 -0.25 -0.39 -0.15 0.15 0.02 

      

NDVI M 
0.51* 0.02 -0.55* -0.24 0.46 0.38 

      

PI M 
-0.28 0.50* 0.10 0.13 0.17 0.28 

      

BLUE S 
-0.48* 0.12 0.25 0.04 0.31 0.39 
      

GREEN S 
-0.28 0.20 0.02 -0.11 0.54* 0.63* 

      

NIR S 
0.14 -0.01 -0.33 -0.32 0.67* 0.70* 

      

BNDVI S 
0.56* -0.06 -0.46 -0.20 0.05 -0.01 

      

GNDVI S 
0.54* -0.16 -0.36 -0.06 -0.21 -0.31 
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PI S 
0.48 0.02 -0.46 -0.26 0.23 0.21 

      

TH 
-0.48 -0.45 0.20 0.10 -0.32 -0.33 

            

(*) indicates significance at an alpha level of .05., (M) indicates MicaSense 
camera measurement, (S) indicates Sony camera measurement 
 

*, indicates significance at an alpha level (<.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3. Regression model predictors for yield, 
height, maturity, lodging, Wilt 1, and Wilt 2 for 
Location 1. 

 Independent 
variable(s) 

Dependent 
variable R - Square Pr>F 

Red1 M Yield 0.50 0.0016 

PI1 M Height 0.25 0.0413 

NDVI1 M Maturity 0.30 0.023 

NA Lodging   

NIR1 S Wilt 1 0.45 0.0031 

NIR1 S Wilt 2 0.45 0.0031 
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Table 3.4. Phenotypic correlations between wavelength and physiological measurements at 
Location 2.  n=35 

 Yield Height Maturity  Lodging Wilt 1 Wilt 2 Wilt 3 Wilt 5 

Maturity 
0.18 .68*  0.13 -0.18 0.04 -0.25 -0.13 

        

Lodging 
0.19 -.02 0.13  -0.1 -0.02 -0.07 0.04 

        

Height 
0.24  .68* -0.02 -0.21 0.07 -0.19 0.05 

        

Wilt 1 
0.29 -.21 -0.18 -0.1  .86* .81* .47* 

        

Wilt 2 
0.20 .07 0.04 -0.02 .86*  .72* .44* 

        

Wilt 3 
0.13 -.19 -0.25 -0.07 .81* .72*  .43* 

        

Wilt 5 
0.34* .05 -0.13 0.04 .47* .44* .43*  

        

B 1 M 
.26 .15 0.23 -0.04 -0.04 -0.02 -0.11 -0.14 

        

B 2 M 
.03 .01 0.13 0.17 -0.33 -0.25 -0.25 -0.21 

        

B 3 M 
-.06 .19 -0.04 -0.44* -0.21 -0.22 -0.29 -0.18 

        

G 1 M 
.15 -.09 0.21 0.02 -0.15 -0.20 -.23 -.25 

        

G 2 M 
.05 -.20 0.02 0.33 -0.19 -0.15 -0.10 -0.14 

        

G 3 M 
.13 -.35* -0.24 -0.11 0.12 -0.08 0.06 -0.07 

        

R 1 M 
.28 .23 0.22 -0.07 0.10 0.13 0.00 -0.04 

        

R 2 M 
.37* .05 0.17 0.17 0.22 0.30 -0.01 0.23 

        

R 3 M 
-.06 .22 -0.02 -0.57* -0.16 -0.18 -0.26 0.15 

        

RE 1 M 
.02 -.27 0.08 0.19 -0.25 -0.34* -0.33 -0.25 

        

RE 2 M 
.16 .08 0.17 0.17 -0.22 -0.14 -0.29 -0.13 

        

RE 3 M 
.10 -.41* -0.2 0.16 0.14 -0.02 0.15 -0.01 

        

NIR 1 M 
-.06 -.34 -0.17 0.24 -0.15 -0.25 -0.09 0.00 
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NIR 2 M 
-.13 .05 -0.09 0.08 -0.31 -0.32 -0.13 -0.29 

        

NIR 3 M 
.05 .12 0.23 0.30 -0.06 0.01 -0.01 0.03 

        

BNDVI 1 
M 

-0.29 -0.18 -0.22 0.02 -0.13 -0.19 -0.04 0.01 
        

BNDVI 2 
M 

-0.05 -0.24 -0.22 0.04 0.11 0.00 0.14 0.10 
        

BNDVI 3 
M  

0.05 -0.30 -0.05 0.45* 0.17 0.12 0.25 0.11 
        

GNDVI 1 
M 

-0.30 -0.18 -0.28 0.01 -0.10 -0.16 0.03 0.07 
        

GNDVI 2 
M 

-0.11 -0.07 -0.22 -0.21 0.12 -0.01 0.12 0.13 
        

GNDVI 3 
M 

-0.04 -0.18 0.04 0.54* 0.07 0.11 0.19 0.09 
        

PI 1 M 
0.12 -0.21 0.17 0.22 -0.04 0.00 -0.15 -0.20 

        

PI 2 M 
0.00 -0.07 0.19 0.07 -0.14 -0.11 -0.20 -0.16 

        

PI 3 M  
0.18 -0.26 -0.16 -0.10 0.20 0.03 0.14 0.05 

        

NDRE 1 
M 

-0.10 -0.22 -0.30 0.14 0.04 0.00 0.16 0.21 
        

NDRE 2 
M 

-0.12 -0.04 -0.15 -0.32 0.10 -0.03 0.12 0.06 
        

NDRE 3 
M 

-0.06 -0.12 0.07 0.52* 0.05 0.12 0.18 0.08 
        

NDVI 1 
M 

-0.29 -0.21 -0.20 0.04 -0.19 -0.25 -0.08 -0.04 
        

NDVI 2 
M 

-0.32 -0.03 -0.17 -0.10 -0.27 -0.32 -0.04 -0.26 
        

NDVI 3 
M 

0.06 -0.29 -0.04 0.53* 0.16 0.12 0.25 0.12 
        

B 1 S 
0.30 0.11 0.21 0.01 0.06 0.09 -0.08 -0.10 

        

B 2 S 
0.08 0.04 0.15 0.15 -0.32 -0.24 -0.24 -0.22 

        

B 3 S 
-0.17 0.09 0.04 -0.31* -0.16 -0.09 -0.26 -0.25 

        

G 1 S 
0.22 0.001 0.20 0.15 -0.21 -0.23 -0.33 -0.28 

        

G 2 S 0.09 -0.21 -0.02 0.32 -0.21 -0.21 -0.13 -0.14 
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G 3 S 
0.08 -0.43* -0.30 0.00 0.07 -0.15 0.01 -0.10 

        

NIR 1 S 
-0.03 -0.34* -0.11 0.25 -0.20 -0.31 -0.23 -0.14 

        

NIR 2 S 
-0.07 -0.01 -0.02 0.07 -0.35* -0.36* -0.25 -0.27 

        

NIR 3 S 
0.04 -0.41* -0.15 0.36* 0.13 0.02 0.18 0.03 

        

BNDVI 1 
S 

-0.28 -0.08 -0.17 0.06 -0.19 -0.23 -0.06 -0.01 
        

BNDVI 2 
S 

-0.31 -0.03 -0.15 -0.12 -0.15 -0.28 -0.01 -0.15 
        

BNDVI 3 
S 

0.06 -0.28 -0.03 0.42* 0.19 0.15 0.26 0.12 
        

GNDVI 1 
S 

-0.31 -0.05 -0.24 -0.01 -0.07 -0.09 0.08 0.12 
        

GNDVI 2 
S 

-0.18 -0.08 -0.22 -0.25 0.20 0.08 0.15 0.17 
        

GNDVI 3 
S 

0.00 -0.10 0.10 0.49* 0.13 0.20 0.26 0.16 
        

PI 1 S 
-0.24 -0.10 -0.12 0.10 -0.25 -0.30 -0.14 -0.08 

        

PI 2 S 
-0.24 -0.05 -0.10 -0.03 -0.20 -0.32 -0.08 -0.20 

        

PI 3 S 
0.08 -0.33* -0.07 0.37* 0.19 0.12 0.24 0.10 

        

TH 1 
0.04 0.36* 0.27 -0.29 0.02 0.08 0.00 -0.10 

        

TH 2 
0.25 0.11 0.17 0.06 0.33* 0.49* 0.08 0.15 

        

TH 3 
-0.10 0.28 -0.03 -0.55* -0.20 -0.18 -0.27 -0.12 

                

(*) indicates significance at an alpha level of .05., (M) indicates MicaSense camera 
measurement, (S) indicates Sony camera measurement 
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Table 3.5. Regression model predictors for yield, height, maturity, lodging, Wilt 1, 
Wilt 2, Wilt 3, and Wilt 5 for Location 2. 

 Independent 
variable(s) Dependent variable R - Square Pr > F 

NDVI 2 M Yield 0.1 0.0629 

TH 1 Height 0.13 0.0339 

NDRE 1 M Maturity 0.09 0.0792 

TH 3, BNDVI 3 S, PI 1 
S 

Lodging 0.42 0.0947 

TH 2 Wilt 1 0.11 0.0497 

TH 2 Wilt 2 0.24 0.0027 



86 

 

Table 3.6.  Phenotypic correlations between wavelength and 
physiological measurements at Location 3.   

 Yield Height  Maturity  Lodging 

Maturity 
-0.17 .56*  -.05 

    

Lodging 
-0.48* .23 -.05  

    

Height 
-0.31*  .56* .23 

    

BLUE M 
-0.10 0.07 0.31* -0.16 

    

GREEN M 
-0.22 0.32* 0.69* 0.01 

    

RED M 
-0.30* 0.11 0.31* 0.07 

    

RED EDGE M 
-0.18 0.27* 0.72* 0.02 

    

NIR M 
0.29* 0.13 0.65*  -0.31* 

    

BNDVI M 
0.29* 0.00 0.05 0.04 

    

GNDVI M 
0.44* -0.34* -0.48* -0.20 

    

NDRE M 
0.51* -0.26 -0.44* -0.32* 

    

NDVI M 
0.46* -0.05 0.06 -0.23 

    

PI M 
-0.38* 0.40 0.59* 0.23 

    

BLUE S 
-0.07 0.15 0.26 -0.12 

    

GREEN S 
0.04 0.20 0.63* -0.13 

    

NIR S 
0.22 0.13 0.61* -0.22 

    

BNDVI S 
0.16 -0.09 -0.02 0.01 

    

GNDVI S 
0.05 -0.21 -0.56* -0.03 

    

PI S 
0.16 0.06 0.43* 0.04 

    

TH 
-0.20 -0.31* -0.17 0.37* 
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(*) indicates significance at an alpha level of .05., (M) indicates 
MicaSense camera measurement, (S) indicates Sony camera 
measurement 

Table 3.7.  Regression model predictors for yield, height, maturity, 
lodging, for Location 3. 

 Independent 
variable(s) 

Dependent variable R - Square Pr>F 

NDRE 1 M, NIR 1 S, 
Green 1 S 

Yield 0.49 0.0124 

PI1-M, TH 1 Height 0.27 0.0079 

RedEdge 1 M, NDVI 1 
M, Green 1 M  

Maturity 0.59 0.0084 

TH 1, NDRE 1 M, 
RedEdge 1 M 

Lodging 0.28 0.0233 
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Table 3.8. Phenotypic correlations between wavelength and physiological 
measurements at Location 4, Trial 1. N=38 

 Yield  Height Maturity Lodging Wilt1 

Maturity 
-0.36* .73*  .60* .26 

     

Lodging 
-0.22 .69* .60*  .26 

     

Height 
-0.28 .49* .73* .69* .49* 

     

Wilt 1 
-0.02 .26 .26 .26  

     

BLUE 1 M 
0.04 -0.71* -0.68* -0.47* -0.24 

     

BLUE 2 M 
0.12 -0.76* -0.78* -0.46* -0.30 

     

GREEN 1 M 
0.14 -0.65* -0.53* -0.33* -0.19 

     

GREEN 2 M 
0.28 -0.76* -0.74* -0.41* -0.33* 

     

RED 1 M 
-0.02 -0.70* -0.65* -0.43* -0.31 

     

RED 2 M 
0.04 -0.73* -0.70* -0.43* -0.36* 

     

RED EDGE 1 M 
0.20 -0.49* -0.25 -0.20 -0.15 

     

RED EDGE 2 M 
0.32* -0.78* -0.73* -0.42* -0.40 

     

NIR 1 M 
-0.01 0.48* 0.61* 0.31 0.31 

     

NIR 2 M 
0.02 0.48* 0.61* 0.33* 0.27 

     

NDRE 1 M 
-0.11 0.65* 0.57* 0.33* 0.31 

     

NDRE 2 M 
-0.22 0.76* 0.76* 0.44* 0.40* 

     

NDVI 1 M 
0.04 0.66* 0.64* 0.39* 0.33* 

     

NDVI 2 M 
0.00 0.69* 0.68* 0.42* 0.36* 

     

PI 1 M 
0.13 -0.46* -0.38* -0.17 -0.18 

     

PI 2 M 
0.28 -0.69* -0.68* -0.37* -0.33* 
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BNDVI 1 M 
0.00 0.69* 0.75* 0.48* 0.34* 

     

BNDVI 2 M 
-0.06 0.71* 0.72* 0.44* 0.21 

     

GNDVI 1 M 
-0.07 0.70* 0.70* 0.43* 0.30 

     

GNDVI 2 M 
-0.19 0.70* 0.76* 0.45* 0.32* 

     

BLUE 1 S 
-0.07 0.69* -0.68* -0.44* -0.29 

     

BLUE 2 S 
0.16 0.72* -0.80* -0.45* -0.24 

     

GREEN 1 S 
-0.06 0.64* -0.47* -0.33* -0.18 

     

GREEN 2 S 
0.31 0.74* -0.69* -0.37* -0.23 

     

NIR 1 S 
-0.04 -0.67* 0.24 0.05 0.15 

     

NIR 2 S 
0.33* -0.71* -0.09 -0.05 0.01 

     

BNDVI 1 S 
0.03 -0.57* -0.35* -0.25 -0.31 

     

BNDVI 2 S 
-0.11 -0.66* -0.71* -0.33* -0.18 

     

GNDVI 1 S 
-0.26 0.02 0.73* 0.47* 0.33* 

     

GNDVI 2 S 
-0.26 -0.16 0.81* 0.47* 0.25 

     

PI 1 S 
0.025 -0.45* 0.76* 0.42* 0.24 

     

PI 2 S 
0.06 -0.56* 0.76* 0.42* 0.24 

     

TH 1  
-0.24 0.65* 0.61* 0.34* 0.27 

     

TH 2  
0.13 0.58* 0.74* 0.42* 0.34* 

          

(*) indicates significance at an alpha level of .05., (M) indicates MicaSense 
camera measurement, (S) indicates Sony camera measurement 
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Table 3.9.  Regression model predictors for yield, height, maturity, lodging, 
and Wilt for Location 4, Trial 1. 

 Independent 
variable(s) 

Dependent variable R - Square Pr>F 

NIR 2 S, NIR 1 S Yield 0.25 0.0133 

RedEdge 2 M, PI 2 S, 
BNDVI 2 S 

Height 0.75 0.0028 

BNDVI 2 S, TH 1 Maturity 0.73 0.0051 

PI 1 S Lodging 0.23 0.0026 

NDRE 2 M, GNDVI 1 S, 
Blue 2 S, Green 2 S 

Wilt 0.5 0.027 
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Table 3.10. Phenotypic correlations between wavelength and physiological 
measurements at Location 4, Trial 2. n=10 

 Yield  Height Maturity Lodging Wilt 1 Wilt 2 Wilt 3 

Maturity 
-0.79* .27  .62 -.48 -.96* -.91* 
       

Lodging 
-0.69* -.36 .62  .05 -.65* -.83* 
       

Height 
-0.22  .27 -36 -.38 -.20 -.01 

       

Wilt 1 
0.06 -.38 -.48 .05  .55 .39 

       

Wilt 2 
0.72* -.20 -.96* -.65* .55  .93* 

       

Wilt 3 
0.70* -.01 -.91* -.83* .39 .93  

       

BLUE 1 M 
-0.23* 0.05* 0.02 0.28 0.46 0.12 -0.08 
       

BLUE 2 M 
0.28 -0.11 -0.58 -0.29 0.53 0.69* 0.58 

       

GREEN 1 M 
-0.41 -0.33 0.07 0.66 0.52 -0.09 -0.28 

       

GREEN 2 M 
0.33 -0.55 -0.73* -0.07 0.56 0.67* 0.56 

       

RED 1 M 
-0.57 -0.19 0.66* 0.86* -0.15 -0.68* -0.83* 

       

RED 2 M 
-0.18 -0.52 0.21 0.62 -0.06 -0.26 -0.44 

       

RED EDGE 1 M 
-0.10 -0.27 -0.36 0.19 0.60 0.32 0.23 

       

RED EDGE 2 M 
0.34 -0.36 -0.78* -0.27 0.51 0.73* 0.70* 

       

NIR 1 M 
0.18 -0.06 -0.58 -0.15 0.70* 0.61 0.51 

       

NIR 2 M 
0.25 0.02 -0.58 -0.27 0.51 0.64* 0.55 

       

BNDVI 1 M 
0.49 -0.16 -0.63* -0.49 0.14 0.48 0.61 

       

BNDVI 2 M 
-0.26 0.22 0.49 0.28 -0.47 -0.64* -0.53 

       

GNDVI 1 M 
0.60 0.27 -0.63 -0.83* 0.14 0.68* 0.77* 

       

GNDVI 2 M 
-0.18 0.65* 0.39 -0.15 -0.26 -0.28 -0.21 

       



92 

 

NDRE 1 M 
0.38 0.27 -0.27 -0.47 0.11 0.37 0.35 

       

NDRE 2 M 
-0.24 0.47 0.54 0.13 -0.26 -0.44 -0.46 

       

NDVI 1 M 
0.53 0.07 -0.79* -0.69* 0.47 0.81* 0.86* 

       

NDVI 2 M 
0.34 0.38 -0.59 -0.67 0.42 0.68* 0.75* 

       

PI 1 M 
-0.42 -0.35 0.38 0.65* -0.09 -0.50 -0.54 

       

PI 2 M 
0.10 -0.54 -0.23 0.21 0.11 0.09 0.05 

       

BLUE 1 S 
-0.36 0.21 0.30 0.34 0.24 -0.13 -0.30 

       

BLUE 2 S 
0.34 0.04 -0.63 -0.47 0.55 0.75* 0.70* 

       

GREEN 1 S 
-0.30 -0.17 0.23 0.61 0.22 -0.27 -0.44 

       

GREEN 2 S 
0.45 -0.13 -0.82* -0.45 0.48 0.78* 0.77* 

       

NIR 1 S 
0.17 -0.127 -0.38 0.01 0.52 0.35 0.25 

       

NIR 2 S 
0.47 0.07 -0.79* -0.61 0.34 0.75* 0.82* 

       

BNDVI 1 S 
-0.20 0.00 0.40 0.29 -0.48 -0.56 -0.47 

       

BNDVI 2 S 
-0.20 0.00 0.40 0.29 -0.48 -0.56 -0.47 

       

GNDVI 1 S 
0.44 0.23 -0.49 -0.82* -0.04 0.52 0.72* 

       

GNDVI 2 S 
0.44 0.23 -0.49 -0.82* -0.04 0.52 0.72* 

       

PI 1 S 
0.15 -0.40 -0.13 0.19 -0.05 -0.08 -0.07 

       

PI 2 S 

-0.02 -0.17 0.02 0.19 -0.20 -0.19 -0.16 

       
       

TH 1  
-0.46 -0.26 0.64* 0.58 -0.54 -0.70* -0.69* 

       

TH 2 
-0.48 0.00 0.40 0.21 -0.07 -0.35 -0.27 

              

(*) indicates significance at an alpha level of .05., (M) indicates MicaSense camera 
measurement, (S) indicates Sony camera measurement 
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Table 3.11.  Regression model predictors for yield, height, maturity, 

lodging, Wilt 1, Wilt 2, and Wilt3 for Location 4, Trial 2. 

Independent 
variable(s) 

Dependent variable R - Square Pr>F 

GNDVI 1 M, PI 2 M, 
NDRE 2 M, PI 1 M 

Yield 0.94 0.02 

GNDVI 2 M, Red 2 M Height 0.73 0.0246 

Green2 S Maturity 0.67 0.004 

Red 1 M, PI 1 M Lodging 0.89 0.0173 

NIR1 M, TH2 Wilt 1 0.7 0.0678 

NDVI1 M, BNDVI2 M Wilt 2 0.8 0.0576 

NDVI1 M, Green1 S, 
NIR1 S, Green2 M 

Wilt 3 0.98 0.0493 
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Chapter 4 - Index of Issues and Future Outlook 

 

Within the process of collecting data for both experiments, there were complications 

that arose. It is important to recognize these issues for documentation of future experiments. 

It is possible that new findings of technical difficulties could correct errors founded in this 

complex process for future research and aid in the improvements in increasing the accuracy 

of and development of spectral reading as applied to a breeding program.  

Thermal 

 Complications had been founded in using thermal imagery. This appears to be a 

complication of both technical limitations and the practice of collection itself. Imagery was often 

irregular in random areas of stitching. It appeared that there could have been an influence on the 

surrounding environment within a given image. Blotchy patterns would develop in random 

locations, and patterns of temperature change would be simply related to the time the drone 

platform had made passes through the experiment. Temperature differences among the plots 

appeared to become hotter or cooler based on time of drone suspension. 

 It is possible that the imagery itself is less representative of an area in order to collect 

valid data depending on the angle of collection within individual pictures. For example, there 

may be a need to produce more overlap between image passes at lower altitude to collect 

information on a smaller and more direct area of interest. There could be an outer area of 

influence negatively affecting data as the pixels or area of image collection become less 

perpendicular to the location of the camera collection.  

 Hypothetically, there could also be an issue with the time of day of collection. Typically, 

with spectral measurements, collections were made near solar noon to minimize changes in sun 
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position throughout data capture. With thermal imagery, it may be important to re-evaluate this 

mindset. It is possible that a different time may be necessary to differentiate treatment 

differences in temperature during the day. Reflecting on this thought, it is believed that there 

could be potential to see larger variation in thermal response during the peak in daytime 

temperature rather than sun position. 

Sony Camera 

 The Sony camera used in these experiments had a higher resolution and broader 

wavebands than the comparative MicaSense camera. However, in the second experiment 

(Chapter 3) we found that the MicaSense camera proved to be superior in detecting differences 

among the genotypes. This was surprising in that we had suspected that the Sony camera would 

develop more data as a result to being able to account for measurements that are more sensitive. 

We expected that this camera would be able to account for carotenoid differences between the 

cultivars reflected in the pigment index measurement (PI). This speculation was assumed by its 

predicted association of carotenoids to stress induced plants.  

With this camera, adding more data to the image through wider bands and greater 

resolution created technical issues of processing ability. These issues was probably related to the 

computer processing power. As a comparison, stitching within smaller yield trials (Chapter 3) as 

compared to larger progeny row trials (Chapter 2) we found that processing would take a roughly 

a week for each yield trial. However, using this same process within the larger trial progeny rows 

it took multiple weeks to process and often resulted in a computer crash before processing was 

complete. Therefore, the limitation on processing power as trial size increased may have 

provided the MicaSense camera with an advantage with comparing the different imagery 

platform.  
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Individual Bands 

 We found in the second experiment (Chapter 3) that reflectance data of individual bands 

were as good, or superior to spectral indices in characterizing performance among the cultivars. 

It is interesting that wave measurements in a less complex form of data collection could prove to 

be superior. It is possible that if an individual band could prove to be superior, the cost of 

collecting data could be drastically reduced. This is assuming that this same measurement is 

consistent across different platforms.  

 In Chapter 3, we found that the red wave band proved superior to NDVI and with that 

offers the potential to utilize cheaper red green blue (RGB) cameras to collect data. If this could 

prove to be replicated with cheaper cameras this could offer the ability to select at a more 

affordable level, and still allow for sensitive measurements.  

Weather 

 Weather and the surrounding environment had great implications on data collection. 

Ideally, when collecting data the desirable environment would include cloud free days, relatively 

low or no wind, and warm temperatures. These conditions can be elusive during the growing 

season and can place limitations on the number of collection dates that can be completed. Often 

one or more of the requirements for favorable conditions does not occur. This can result in 

delays in data collection, or collection of data under conditions that may compromise the quality 

of the data. As a result, repeating flights was common to address issues related to shadow affects 

that would occur from clouds or wind gusts that produced poor quality data.  

 

 



99 

 

Conclusions 

 At the conclusion of these experiments, we can see the potential for great improvements 

in selection efficiency to be made within a breeding program. There is an opportunity to explore 

additional measurements not only in vegetation indices but also within individual wave bands 

through different variations of cameras that can reflect cultivar performance. It is possible that 

we are at a time where technology is improving at a more rapid pace than of what is testable. 

However, with continued evaluation of these ever-evolving technologies there is potential to 

greatly increase future production and improvements within a breeding program and agriculture.  

 

   

 


