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Abstract 

The rail industry's recent shift towards larger and heavier railcars has influenced Class III 

/ short line railroad operation and track maintenance costs.  Class III railroads earn less than $38.1 

million in in annual revenue and generally operate first and last leg shipping for their customers.  

In Kansas, Class III railroads operate approximately 40 percent of the roughly 2,800 miles (4,500 

km) of rail; however, due to the current Class III track condition they move lighter railcars at lower 

speeds than Class I railroads.  The State of Kansas statutorily allots $5 million to support rail 

improvement projects, primarily for Class III railroads. Therefore, the objective of this study was 

to conduct an inventory of Kansas’s Class III rail network to identify the track segments in need 

of this support that would be most beneficial to the rail system.  Representatives of each railroad 

were contacted and received a survey requesting information regarding the operational and 

structural status of their systems.  The data collected were organized and processed to determine 

the sections of track that can accommodate the heavier axle load cars that are currently being 

utilized by Class I railroads.  This study identified that Class III railroads shipped over 155,000 

carloads of freight in 2016 and 30 percent of Kansas’s Class III track can currently accommodate 

heavy axle cars.    

The increased load from the increased railcar size has also increased the risk of damage to 

railroad’s track structure.  Railroad ballast is the free draining granular material that supports the 

track structure.  As the track ages, small particles can fill the voids of the granular material which 

is a process known as fouling.  Established methods for determining the fouling of a section of 

ballast are destructive tests that usually require the railroad to restrict or reroute traffic on its 

network. Ground Penetrating Radar (GPR) is a nondestructive geophysical surveying method that 

measures the time required for electromagnetic wave impulses to reflect off differing subsurface 



 

 

interfaces.  Historically, GPR surveys of track structures primarily determine the depth of ballast 

and track geometry.  The objective of this study was to determine the viability of utilizing the 

laboratory’s existing GPR equipment to develop a methodology of measuring ballast fouling 

nondestructively. A 48 x 48 x 48 in (1.2 x 1.2 x 1.2 m) test box was built.  The test box was filled 

with 48 in (1.2 m) of clean and ballast.  Tests were run on dry and partially saturated material, 

wetted using 6 gallons (22.7 L).  GPR data were collected hourly for the first 6 hours, then at the 

multiples of 12 and 24 hour marks for one week.  Sand was chosen as an absorbent geologic 

material for the second stage of testing since no fouled ballast could be acquired at the time of the 

study.  A 27 x18 x 18 in (0.69 x 0.46 x 0.046 m) box was filled with sand and wetted with water 

in one gallon (7.5 L) increments.  GPR scans and samples to determine the water content were 

collected after the addition of each gallon.  The data collected were processed to determine soil 

properties. Preliminary results from this research indicate that the GPR set up utilized can 

effectively determine the dielectric constant of geologic materials including ballast, although the 

dielectric constant is highly dependent on the volumetric moisture content of the material.  
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Chapter 1 - Introduction 

Railroad operations are the primary means of transporting goods, people, and services 

across the state of Kansas. To maintain and improve its Class III railroad network (i.e., track 

structures, bridges, and at-grade crossings), the Kansas Department of Transportation (KDOT) 

distributes state funding in the form of grants and loans to private railroad companies and parent 

companies. Parsons Brinkerhoff reviewed the Kansas Class III Railroad Rehabilitation Program 

for KDOT, concluding that the program was a worthy investment of state taxpayer funding because 

it benefited private and public sectors (Parsons Brinkerhoff, 2005). The study also determined the 

combined 10-year present value of public sector benefits for state and local tax revenues and 

highway maintenance cost savings to be $43.7 million.  Parsons Brinkerhoff found the combined 

direct and indirect benefits to the private sector from rehabilitation projects surpassed $1 billion in 

business earnings and $425 million in personal wage income. The report also recommended that a 

Class III railroad infrastructure inventory assessment should be conducted to document and 

inventory infrastructure needs of the Class III railroad system in Kansas. A Class III inventory 

would prioritize and optimally distribute funds to high-volume priority Class III corridors.  

 1.1 The Kansas Rail System 

The active portion of Kansas’s freight rail system consists of 17 railroads, including three 

Class I railroads (annual revenue more than $475 million), 11 Class III carriers (annual revenue 

less than $38 million), and three switching and terminal railroads, mapped in Figure 1.1.  The Class 

I railroads include Union Pacific (UP), Burlington Northern Santa Fe (BNSF), and Kansas City 

Southern, collectively operating approximately 2,790 miles (4,490 km) of track in Kansas. The 

Class III railroads collectively operate approximately 1,600 miles (2,575 km) of track, accounting 

for slightly more than 40 percent of all route mileage in Kansas (KDOT, 2011).    
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Figure 1.1 Active Freight Railroads in Kansas (2017) 
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Class I railroads have historically upgraded track sections based on business demands and 

lines that terminate or run through the State of Kansas. This distinction means that not only can 

Class I railroads operate at faster speeds (above 50 mph (80 kmh) versus 10 to 30 mph (16 to 48 

kmh)), but they also are capable of supporting and pulling heavier railcars (286,000 lb (129,844 

kg) instead of 263,000 lb (119,294 kg)).  As multimodal freight shipments are now commonly 

utilizing 286,000 lb (129,844 kg) on the Class I network, it has become difficult financially for the 

Class III railroads to upgrade their track structure to accommodate the additional weight and 

increase operating speeds to accommodate current freight demands (KDOT, 2011).   

 1.2 History of the Kansas Rail Funding Programs 

In the late 1980’s KDOT became administrator over the federal Local Rail Freight 

Assistance (LRFA) Program. The goal of the LRFA was to disperse Federal Railroad 

Administration (FRA) funding in the form of loans to support improvement projects for small 

railroads, including Class III railroads. Interest earned from LRFA loans helped generate 

additional loans. Although FRA funding for this program ended in the early 1990s, however 

success of the loan-based program encouraged the state of Kansas to establish its own state-funded 

assistance program (through KDOT) to address track structure upgrades of Class III railroads.  

In 2000, KDOT developed the Comprehensive Transportation Program (CTP) to manage 

and improve Kansas’s multimodal transportation network, which consists of trucking, rail, and air. 

The CTP utilized the State Rail Service Improvement Fund (SRSIF) to provide low-interest loans 

and grants to rehabilitate track structures of Class III railroads in Kansas. The SRSIF program 

provided $3 million annually in loans and grants to Class III railroads from 2000 to 2008. After 

which time, the program was planned to become self-sufficient due to the interest earned from 

loan repayments (Parsons Brinkerhoff, 2005). In 2001, however, the state of Kansas faced the 
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pending abandonment of the Central Kansas Railway (CKR), a central 900-mile (1,450 km) 

section of the Class III network.  To maintain operational feasibility and key rail corridors of this 

railroad in west-central and south-central Kansas, a portion of SRSIF program funds were granted 

to expedite acquisition of the CKR from a bankrupt company to a growing parent company.  

Following Kansas legislative action in 2012 and in conjunction with the Transportation 

Works for Kansas (T-Works) program, the SRSIF now statutorily allots $5 million annually to 

track improvement projects primarily for Class III railroads. To apply for a state loan or grant 

through the SRSIF program, proposed projects must follow a 40-30-30 distribution in which 40 

percent of the capital cost is a loan with a 2 percent interest rate that must be paid back within 10 

years, 30 percent is matched as a grant by the state of Kansas, and the remaining 30 percent must 

come from the project applicant. Class III railroads applying for loans or grants must prove that 

the proposed upgrade will increase operations efficiency by either increasing the track’s weight 

capacity (for heavy railcars) or meeting an FRA-mandated speed limit increase. Proposed projects 

are evaluated based on a cost-benefit analysis and are ranked for consideration. The cost-benefit 

analysis considers the project cost, customer needs, existing rail carloads, anticipated railcar loads 

based on proposed improvements, and public sector benefits (PB, 2005; KAR, 2012).   

 1.3 General Rail Inspection Methods 

The increase in average gross weight of railcars seen since the 1970’s has naturally 

coincides with increased loads supported by the track structure.  These larger loads have resulted 

in Class I railroads strengthening their track maintenance schedules for their track segments with 

heavy volumes.   A common issue that they inspect for in high traffic areas is ballast fouling, which 

occurs primarily due to track degradation.  Ballast fouling decreases the drainage ability and the 

shear strength of tracks.  Conventional methods to determine sections of fouled track usually 
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require physical sample acquisition which negatively impacts the railroads’ ability to operate by 

requiring the railroad to reroute traffic. Ground penetrating radar (GPR) has the potential to locate 

fouled sections of track while maintaining normal operations of  traffic or requiring the acquisition 

of lab samples. 

 1.4 Study Objectives 

KDOT’s continuation of the SRSIF program highlights its confidence that the Class III 

railroad system will continue to be a logistically and economically sound option for freight 

transportation. The primary objectives of this study was to determine the present state of the rail 

system in Kansas and guide future SRSIF rail improvement projects to maximize benefits for 

shippers, railroads, and the state by creating an inventory and synthesis of existing track locations. 

Quantiles were developed to relate track structure and business data for Class III railroads in 

Kansas. Collected Class III railroad data were used to identify high-priority track corridors as 

potential candidates for SRSIF funding. 

The secondary objectives of this research were to investigate the feasibility and develop a 

methodology to utilize ground penetrating radar (GPR) to quantify the degree of fouling present 

in railroad ballast.  These were achieved by acquiring the GPR response of clean ballast and sand 

(due to the inability to obtain fouled ballast) with varying water contents. The scans obtained were 

used to calculate geotechnical properties of each of the materials.  This methodology will allow 

future researchers to investigate a novel approach for using GPR on ballast surveys to reduce the 

inherent uncertainties when transitioned to the field 

  



6 

 

 

 1.5 Thesis Outline 

Following this introduction is a review of literature examining the economic feasibility of 

Class III railroads, the effect of heavy axle loads on the Class III rail system, and methods of 

funding Class III railroad improvement projects, as well as details of the source, effect, and 

detection of ballast fouling focusing on ground penetrating radar (GPR) which details its 

fundamentals and previous rail-related GPR research.  Next, an overview of the research 

methodology is given including the Class III survey development and distribution as well as the 

laboratory set up and instrumentation of the GPR research.  Subsequent sections document the 

survey results for the entire freight rail system and individual Class III railroads in Kansas as well 

as the results of the ballast and sand testing.  Finally, conclusions are presented as well as research 

recommendations including a tiered system to prioritize the importance of upgrading rail corridors 

to accommodate 286,000 lb (129,844 kg) railcars and a review of the ballast/sand study and the 

future work to continue the research.  
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Chapter 2 - Literature Review 

Since the Civil War, railroads have played an important role for the American economy by 

connecting the coasts. This allowed for easy transportation of goods and services between major 

cities and waterway ports.  Today, the United States (U.S.) freight railroad system operates nearly 

140,000 miles (22,530 km) of centerline track, handles more than 40 percent of intercity freight 

volumes, and supports an average of 4.5 jobs in other related sectors of the economy for every 

internal freight rail job these companies provide (AAR, 2014).  The American Short Line and 

Regional Railroad Association (ASLRRA, 2014) states that Class III railroads account for 

approximately 43,000 miles (69,200 km) of centerline track in the U.S., haul more than 8 million 

carloads of goods each year, and serve the economy by cost effectively allowing easy access to 

markets and ports across the country. Currently, there are over 560 Class III railroads, which 

strategically connect private industries, farms, factories, and waterway ports to the major Class I 

freight railroads in the U.S. (ASLRRA, 2014).  The purpose of this chapter is to provide a 

background on Class III railroads including: how they affect society, the challenges faced by Class 

III railroads due to the industry’s shift towards heavy axle loads, and a synopsis of current methods 

for funding Class III railroad improvements, as well as an investigation on an improved method 

of track inspection.   

 2.1 Railroad Classifications 

Since the1860’s, during the Civil War railroads have been essential to the American 

economy because they connect the coasts, allowing straightforward transportation of goods and 

services between major cities and waterway ports. The freight railroad system in the United States 

currently contains nearly 140,000 miles (22,530 km) of centerline track, accommodates more than 

40 percent of intercity freight volumes, and provides an average of 4.5 jobs in related sectors for 
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every internal freight rail job (AAR, 2014). The American Short Line and Regional Railroad 

Association (ASLRRA) states that Class III railroads encompass approximately 43,000 miles 

(69,200 km) of centerline track in the United States, accounting for more than 8 million carloads 

of goods each year and cost-effectively allowing access to markets and ports throughout the 

country (ASLRRA, 2014). Currently, more than 560 Class III railroads strategically connecting 

private industries, farms, factories, and waterway ports to major Class I freight rail network in the 

United States (ASLRRA, 2014). This chapter provides background on Class III railroads, 

including how they affect society, challenges faced by Class III railroads due to the shift towards 

HAL railcars, and a synopsis of current methods for funding Class III railroad improvements.   

 2.1 Railroad Classifications 

The Surface Transportation Board (STB) has broad economic regulatory oversight for most 

modes of freight shipping in the United States, such as pipeline carriers, intercity bus carriers, 

trucking companies, and railroads, including shipping rates, service, construction, acquisition and 

abandonment of rail lines, carrier mergers, and classification of railroads (FRA, 2014). Class I 

railroads are private corporations consisting of expansive stretches of track that span across many 

states that typically allow trains to travel up to 60 mph (97kmh).. Class II and III railroads are often 

referred to as regional and local, or short line, railroads, respectively, and they primarily provide 

services for commodity groups based on area of operation, such as grain and non-grain food and 

farm products in the western two-thirds of Kansas. However, Class II and III railroads operate at 

slower speeds than Class I railroads due to inferior quality track structure, older rolling stock, 

lighter traffic densities, and shorter shipping distances between origin of goods and final 

destinations. Due to their smaller physical and operating sizes, Class II and Class III railroads can 

readily cater to customer needs and adapt operations to meet those needs, including switching 
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operations or increasing grain fleets to accommodate fruitful grain harvests (Allen et al., 2002; 

ASLRR, 2014).   

Railroad classification is based on the railroads’ gross annual operating revenues based on 

dollar values from the year 1991 and adjusted annually for inflation (Federal Register, 2015). Table 

2.1 shows the defined ranges that specify railroad class based on annual operating revenues for the 

base years of 1991 and 2014.   

Table 2.1 Categories for Railroad Classification According to the STB (Federal Register, 2015) 

Class 
Annual Carrier Operating 

Revenues in 1991 dollars in millions 

Annual Carrier Operating Revenues 

for 2014 dollars in millions 

I more than $250 more than $475.7 

II more than $20 but less than $250 more than $38.1 but less than $475.7 

III less than $20 less than $38.1 

 

As shown in Table 2.1, Class I railroads have annual carrier operating revenue greater than 

$250 million, Class II railroads have annual carrier operating revenue between $20 and $250 

million, and Class III railroads have annual carrier operating revenue less than $20 million. For 

dollar values in the year 2014, then, these values translate into more than $475.7 million for Class 

I railroads, between $38.1 and $475.7 million for Class II railroads, and less than $38.1 million for 

Class III railroads. Regardless of annual operating revenues, all switching and terminal railroads, 

or urban-centered operations that primarily transfer goods to other railroads or businesses that 

transport freight, are labeled as Class III railroads. Switching and terminal railroads usually have 

rail yards to reorder or store railcars for customers.  Reclassification occurs after a railroad’s 

operating revenues meets the requirements of a different classification bracket than its current 

ranking for three consecutive years (FRA, 2014).   
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 2.2 Staggers Act and the Influx of Class III Railroads 

Approximately 240 non-Class I railroads were in operation in the United States in 1980, 

and as of 2014, 560 Class II and III railroads were operating within the country (ASLRRA, 2014). 

The Staggers Rail Act of 1980, which deregulated and significantly altered the railroad industry, 

was the primary contributing factor for the proliferation of non-Class I freight railroads. The 

Staggers Act also simplified the procedure for selling sections of track and decreased the time 

required to process such transactions (Allen et al., 2002). As a result, less profitable sections of 

Class I track were sold to investors instead of undergoing abandonment, thus conserving shippers’ 

access to a railroad and preserving rail system connectivity (Witt, 2004). The Staggers Act was 

instrumental in the creation of almost all Class II and III railroads in the United States. Prior to 

1980 most Class III railroads were owned and operated by small, independent, family-oriented 

businesses. Today, however, the largest proprietary stake in the Class III railroad industry is held 

by holding companies that own multiple railroads throughout the country (Allen et al., 2002).  

 2.3 Economic Effects of Class III Railroads 

The actual economic effect of Class II and III railroads are often underestimated because 

the railroads typically supply localized services. Multiple research studies have focused on various 

factors of influence in order to quantify the effects of Class III railroads on local economies.  

 2.3.1 Employment Effects 

Class III railroads often create numerous jobs and attract businesses to local regions. 

Llorens and Richardson (2014) investigated the relationship between Class III railroads and 

increased job opportunities in Louisiana. The research team obtained data by conducting a survey 

of Louisiana’s Class III railroads. Survey results showed that Class III railroads directly employ 

330 individuals annually, offering an average of $67,000 in wages and benefits per individual. 
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Results also showed that the railroads indirectly support an additional 1,500 jobs, consequently 

benefiting the state’s economy, especially Louisiana’s impoverished communities. These jobs 

contribute approximately $3.5 million and $2.86 million annually in state taxes and local revenues, 

respectively (Llorens and Richardson, 2014).     

Miller and Stich (2013) investigated the effects of the Class III railroad industry on 

economic development in Mississippi, determining that an estimated $273 million capital 

investment was needed to upgrade all Mississippi’s Class III railroads for full operation with no 

impending degradation of track quality. They also calculated the number of expected direct and 

indirect jobs created by such an investment and compared this data to previous data of jobs created 

by publicly funded automotive assembly plants, as shown in Table 2.2. 

Table 2.2 Comparison of Economic Development Expenditures per Job Created (Miller and 

Stich, 2013) 

 Public Financial 

Assistance (in millions) 

Direct and Indirect 

Jobs Created 

Public Expenditure 

per Job Created 

Mississippi Class IIIs $273 66,430 over 30 years $4,000 

Toyota Assembly Plant $356 4,000 in 5 years $89,000 

Nissan Assembly Plants $363 4,000 in 5 years $90,000 

 

Miller and Stich (2013) determined that the $273 million invested in the Mississippi Class 

III industry would create 66,430 jobs over 30 years. In contrast, the Toyota and Nissan assembly 

plants would create 4,000 jobs at much higher costs of $356 and $363 million, respectively, 

proving that investments in a Class III railroad create new jobs approximately 22 times more 

effectively than the automotive assembly plants. However, Miller and Stich readily admitted that 

their estimation was a simplified comparison and that many more factors must be investigated to 

design effective local economic development strategies in correlation with Class III railroads. 
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Factors requiring further investigation include public opinions, actual funding sources, and 

situational variables (Miller and Stich, 2013).      

A study conducted by Feser and Cassidy (1996) warned against overly optimistic economic 

development projects for Class III railroad projects. The authors reviewed 14 studies involving 

Class III railroads and compared the estimated versus actual experienced economic effects of the 

Class III railroads. They found that the estimation of employment influences had the largest degree 

of discrepancies between the expected and actual economic impacts of Class III railroad projects, 

and they proposed three factors that contributed to these inconsistencies. First, the data used for 

estimations based on rail users overestimated the impact a service change would have on the rail’s 

businesses. Second, assessment of the actual proportion of total employment created can be 

difficult to calculate, requiring transfers of employment to be distinguished as true jobs or wage 

gains. Third, an industrywide lack of evaluation of estimations after completion of projects that 

potentially contributes to continuous overestimation of job creation rates of Class III rail projects 

(Feser and Cassidy, 1996).    

 2.3.2 Abandonment Effects  

Another common method to estimate regional impacts of a Class III railroad simulates the 

abandonment of all or portions of the railroad network. Babcock et al. (2003) investigated the 

impact of Class III railroad abandonment in the state of Kansas by simulating the complete transfer 

of all wheat production in the western two-thirds of Kansas from Class III railcars to trucks. The 

researchers used geographic information system (GIS) software to calculate the minimum 

transportation and handling costs required to move wheat from Kansas farms to export terminals 

in Houston, Texas. The authors found that increased costs to transport wheat products to export 

terminals via trucks decreased financial gains for wheat producers. The authors also estimated 
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pavement damage costs due to complete railroad network abandonment by converting the amount 

of wheat usually transported by rail to truckloads and then estimating the increased damage trucks 

would cause to the pavement. The study concluded that total Class III abandonment would reduce 

Kansas farm income by $17.4 million per year due to increased shipping and handling costs and 

cause $57.8 million in highway damage per year due to increased truck mileage (Babcock et al., 

2003).   

Witt (2004) improved the methodology for estimating the effect of railroad track 

abandonment on highway safety by accounting for the costs and benefits of stopping operations 

of railroads. Like Babcock et al., Witt also simulated the total abandonment of Class III railroads 

in the western two-thirds of Kansas and determined that corresponding truck traffic must 

accommodate wheat typically shipped in railcars.  Witt took into account that freight shipment 

from rails to trucks reducing the occurrence of crashes involving trucks due to the removal of at-

grade rail crossings in rural regions.  The costs and benefits of the change were based on the 

average cost and number of crashes per truck mile traveled, and annual collisions at highway-rail 

crossings with no rail traffic. Witt found the net annual safety cost to be $1.3 million and the net 

annual safety benefit to be $2.7 million. Thus, the net annual safety impact of rail abandonment 

would be an annual savings of $1.4 million primarily due to the reduction of crash-prone at-grade 

rail crossings (Witt, 2004).  

Bitzan and Toliver (2001) compared total highway impact costs of all North Dakota Class 

III railroads with less than 150 cars per mile running on rails less than 90 lb/yd (44.6 kg/m) to the 

total cost to upgrade the 1,200 miles (1,930 km) of track in North Dakota to accommodate 286,000 

lb (129,844 kg) railcars. They used a method similar to Witt (2004) to calculate total economic 

effect on the state’s highways, determining that, although the change in shipping mode could cost 
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the state of North Dakota $73 million, the cost to completely upgrade the lower quality Class III 

track would exceed $257 million. Therefore, a complete upgrade of the railroad network is highly 

unfeasible, but the researchers suggested that the improvement of sections of certain railroads may 

be economically feasible, consequently earning justly awarded subsidies (Bitzan and Toliver, 

2001).   

Zink (1984) investigated the economic viability of converting Class III railroads instead of 

abandoning low-volume track miles in grain-shipping regions of North Dakota. Zink estimated the 

total revenue for converting abandoned rail segments into Class III railroads under five separate 

scenarios in a heavily grain-dependent market, accounting for necessary rehabilitation costs, 

maintenance, interest rates, and earnings per railcar. Each scenario predicted a shortfall of 

$500,000 to $1.1 million per year, meaning that unless high volumes of grain or similar 

commodities were shipped, acquisition of sufficient revenue to justify the conversion of abandoned 

lines to Class III railroads would be difficult.   

Sage et al. (2015) estimated the economic impact for three Class III railroads in 

Washington state. The costs of transporting commodities using Class III railroads in 2013 were 

estimated for three situations: use of rail only, use of trucks and rail, and use of trucks only. These 

costs were then compared to the product value. For each situation the shipping distance used to 

determine the transportation cost was based on nationwide averages for each commodity group. 

Results of this study for the Columbia Basin Railroad are shown in Table 2.3.   
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Table 2.3 Travel Cost Scenarios for Transport Diversion from Rail to Truck of the Columbia 

Basin Railroad (from Sage et al., 2015) 

Commodity 

Total Estimated 

Value of 

Product Moved 

Total Estimated 

Cost of 

Movement by 

Rail 

Cost if Truck 

Rail 

Combination 

Cost if Moved 

Fully by Truck 

Food or Kindred 

Products (STCC 20) 
$624,843,750 $21,176,145 $28,387,861 $251,561,254 

Farm Products             

(STCC 01) 
$69,253,032 $2,937,626 $7,485,749 $34,897,418 

Chemicals or Allied 

Products (STCC 28) 
$71,177,775 $2,711,296 $5,439,809 $32,208,744 

Hazmat (STCC 49) $62,602,000 $2,968,376 $4,966,521 $35,262,720 

Pulp, Paper or 

Allied Products 

(STCC 26) 

$28,616,327 $1,249,382 $2,006,802 $14,841,994 

Non-Metallic 

Minerals (STCC 14) 
$485,182 $232,332 $742,688 $2,759,976 

TOTAL $856,978,067 $31,275,157 $49,029,433 $371,532,106 

 

As show in in Table 2.3, the estimated value of goods shipped was approximately $857 

billion, and the total cost for shipping goods by rail only was approximately $31 billion. If the 

movement of goods was changed to a rail and truck or truck only, the shipping cost would increase 

to approximately $49 billion and $371 billion, respectively.   

 2.3.3 Summary of the Effect of Class IIIs 

The effect of Class III railroads vary regionally and by railroad, as indicated by the 

mentioned studies. Although Class IIIs railroads are a significant source of employment and 

support several regional industries, simple methods often overestimate the value of these railroads 

(Llorens and Richardson, 2014; Miller and Stich, 2013; Babcock et al., 2003; Freser and Cassidy, 

1996). Therefore, most Class III rail improvements are based on robust cost-benefit analyses that 
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include improved operating performance, customer service, and safety. The removal of Class III 

railroads and the use of large trucks to transport products have increased shipping costs for local 

industries and annual highway damage costs but have decreased state highway costs increasing the 

net annual highway safety (Babcock et al., 2003; Witt, 20004; Sage et al., 2015). However, costs 

required to upgrade Class III railroads to optimal working conditions are not justified due to lack 

of adequate traffic generation (Bitzan and Toliver, 2001; Zink, 1984).   

 2.4 Heavy Axle Loads 

Railroad technology is continually progressing, and the ability to improve and innovate the 

size and shape of railcars has led to the creation of many shipping options for goods and services. 

One type of railcar, the large HAL railcar, can transport large volumes of goods, but it increases 

stress on the track. The Heavy Axle Load Research Program, administered by the Association of 

American Railroads (AAR) and conducted from 1988 to 2000, attempted to develop HAL 

guidance for the North American railroad industry to determine the safest and optimum economic 

payload for bulk shipments (Martland, 2013). In 1991 a railcar with a 286,000 lb (129,844 kg) 

gross value weight became the new industry standard for a cost-effective HAL instead of the 

previous 263,000 lb (119,295 kg) gross value weight (Martland, 2013). The new cost effectiveness 

was attributed to increased savings in operating costs for the railroads compared to the 

corresponding increase in track maintenance and equipment costs. Operation costs for the heavier 

railcars proved to be approximately 9 percent less than the lighter cars due to the decreased number 

of carloads needed to haul the same volume of goods (Casavant and Tolliver, 2001). Although the 

increased stress applied by HAL traffic to the track structure was expected to increase railroad 

expenditures by $50 or $60 million per year, in actuality, the constant dollar infrastructure 

expenditure per 1,000 revenue ton-miles decreased from $10.25 million in 1990 to $9.41 million 
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in 2010 as a result of enhanced technology and improved track maintenance methods and the fact 

that not all railroad tracks are currently maintained sufficiently to accommodate HAL railcars 

(Martland, 2013).   

 Resor et al. (2000) investigated minimum track requirements to accommodate HALs, 

determining that a railcar weighing over 286,000 lb (129,844 kg) on a track structure with rails 

less than or equal to 70 lb/yd (35 kg/m) is likely to deteriorate quickly, and may cause derailments, 

but 90 lb/yd (45 kg/m) rail may perform satisfactorily depending on the track substructure quality 

and train speed. Finally, 112 lb/yd (55 kg/m) rail with average track support performs satisfactorily 

with train speeds up to 40 mph (64 kmh). The authors recommended that all tracks with less than 

90 lb (45 kg/m) rail should be upgraded to 112 or 115 lb/yd (55 or 57 kg/m) rail so that trains can 

operate at or above 25 mph (40 kmh). Additionally, all jointed 90 lb/yd (45 kg/m) rail in service 

should be welded into longer sections to lessen dynamic effects and increase continuous support 

(Resor et al., 2000). However, research results showed that most rail sections with 90 lb/yd (45 

kg/m) or less are owned by small, low-volume railroads that do not generate enough revenue to 

improve track structure conditions.   

 2.4.1 Impact of Heavy Axle Loads on Class III Railroads 

 Most Class IIIs railroads have been acquired by private companies from low-performing 

branch lines of Class I track that currently may be suffering from decades of deferred maintenance, 

preventing many Class III railroad networks from accommodating trainsets with HAL railcars. 

Several research studies have attempted to quantify funding required to upgrade rail segments to 

accommodate HAL railcars and increased train speeds. Babcock and Sanders (2004), Casavant 

and Tolliver (2001), and Bitzan and Tolliver (2001) investigated upgrade costs for Kansas, 
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Washington state, and North Dakota, respectively. Additionally, Resor et al. (2000) investigated 

ways to calculate the current conditions and needs of Class III railroads on a national level.   

Babcock and Sanderson (2004) researched the effects of 286,000 lb (129,844 kg) railcars 

on five Class III railroads in Kansas. They surveyed representatives of these railroads and found 

that approximately 70 percent of the total mainline route miles and 86 percent of the total number 

of bridges must be upgraded to safely accommodate HAL railcars. The total cost of the proposed 

upgrades was estimated to be approximately $308.7 million (Babcock and Sanderson 2004).   

Casavant and Tolliver (2001) estimated the cost of upgrading light-density segments of 

track in Washington state to handle carloads weighing 286,000 lb (129,844 kg). The authors 

estimated upgrade costs to be between $250,000 and $300,000 per mile ($156,000 and 186,000 

per km) of track, not counting any bridge upgrade costs. The researchers estimated that 482 miles 

(776 km) of track must be upgraded, resulting in a minimum rehabilitation cost between $117 

million and $141 million, including the use of second-hand rail and limited replacement of 

crossties (Casavant and Tolliver, 2001).    

Bitzan and Tolliver (2001) simulated the effects of the use of HAL railcars to determine if 

a Class III railroad would be a beneficial investment for North Dakota. They determined that 

approximately 1,200 miles (1,931 km) of track would need to be upgraded for the rail system to 

fully accommodate HAL cars and that upgraded track sections would cost between $258 million 

and $324 million, excluding any necessary bridge rehabilitations. Using an internal rate of return 

to determine the economic feasibility of upgrading track, they found that minimum traffic needed 

to justify upgrading Class III track was more than 200 cars per mile (125 cars per km). However, 

for Class I railroads with shipping competition nearby, minimum necessary traffic was as low as 

40 cars per mile due to their higher revenues (25 cars per km) (Bitzan and Tolliver, 2001).  
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Resor et al. (2000) surveyed a representative sample of 46 Class III railroads throughout 

the United States, which was slightly less than 10 percent of the industry at the time. The objectives 

of the survey were to determine existing track conditions and calculate improvement costs to 

determine the total cost of upgrading the national Class III system. They found that approximately 

23 percent of national rail needed to be replaced, 43 percent of ties needed to be replaced, 23 

percent of the track mileage needed ballast and resurfacing, 22 percent of bridges needed to be 

completely replaced, and another 27 percent of bridges needed upgrading, requiring a total of $650 

million to perform maintenance work for the surveyed sample. When translated to the entire Class 

III rail industry, the researchers estimated it would cost approximately $6.9 billion all track 

mileage. To verify the quality of estimated values, the researchers investigated two recent studies 

conducted by departments of transportation and determined that the numbers were equitable; A 

certain degree of variance between the different studies was deemed acceptable due to differences 

in replacement standards, labor costs, and the condition of the replacement materials.   

As shown by the described research studies, the total expenditure needed to completely 

upgrade Class III railroads throughout the United States is a considerable cost that no private 

railroad could feasibly afford based solely on annual operating costs. Additionally, as discussed in 

the literature review, the actual economic benefits of improving sections of Class III rail track 

structures with light traffic may not justify the funding needed for such an improvement.   

 2.5 Financial Support for Class III 

As of 2017 several sections of Class III railroads in Kansas do not produce enough revenue 

to justify upgrading track beyond general maintenance for current operations even though the 

potential increase of traffic allowed by the upgrade would justify the investment. For Class III 
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railroads in such a situation, bank loans, federal and state funding sources, and larger railroads that 

trade with Class III could be beneficial sources of funding, as explained in the next sections. 

  2.5.1 Bank Funding  

A study conducted by the FRA in 1993 found that Class III railroads, although creditworthy 

companies, had difficulty obtaining financing for track structure upgrades because a limited 

number of financial institutions specialized in Class III railroad loans (FRA, 1993). In addition, 

the scarcity of public information about Class III railroads limited financial institutions’ 

knowledge on which to base risk assessment, and the minimum required amount of $5 million for 

Class III railroad loans for small projects often prevents ready financing. Lack of interest by 

financial institutions to increase loan availability for Class III railroads and a certain degree of 

unwillingness by financial institutions to offer loans for non-liquid assets such as track structure 

and bridges/structures also hinder the acquisition of financing for Class III railroads.  

In 2002 Bitzan et al. investigated six large financial institutions that specialized in railroad 

financing to determine if the previous conditions still influenced the lending market. Survey results 

showed that a limited number of financial institutions specialized in financing Class III railroads 

and that public information on which credit lines could be based was still sparse. Additionally, 

these institutions were still unwilling to offer loans for track and bridge repairs since those 

structures are not able to be readily liquidated. However, all surveyed financial institutions 

indicated they were interested in providing more loans to Class III railroads despite a historic lack 

of lending (Bitzan et al., 2002).   

 2.5.2 Federal and State Funding  

A variety of federal and state financing programs have been created as alternatives to 

private financial institutions for financing Class III railroad track and bridge structure 
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rehabilitation projects. These programs, still active in 2017, assist in the continued growth of Class 

IIIs as the railroads play a key role in the movement of goods to Class I railroads (FRA 2014). 

 Railroad Rehabilitation and Improvement Financing  

The largest federally funded rail program, Railroad Rehabilitation and Improvement 

Financing (RRIF), is administered by the FRA. Since its initiation the program has provided nearly 

$2.7 billion in loans to railroads, with 80 percent of the loans directly pertaining to Class II and III 

railroads. This program allows for improvement or rehabilitation of infrastructure and rail 

equipment but not operating expenses. The loan ceiling is currently $35 billion, with $7 billion 

reserved for non-Class I railroads, and the maximum loan term for RRIF is 35 years. As of May 

2015, 35 loans were provided throughout 27 states (FRA, 2015; Sage et al., 2015).   

 Transportation Investment Generating Economic Recovery Grants 

The American Recovery and Reinvestment Act of 2009 (ARRA) and the Transportation 

Investment Generating Economic Recovery (TIGER) (a supplementary discretionary grant 

program included in ARRA) provided the United States Department of Transportation (USDOT) 

funding for discretionary grants towards capital investment in the nation’s surface transportation 

infrastructure, including transit, planning, port, road, and bicycle/pedestrian projects (FRA, 2014). 

The railroad industry has received approximately $1 billion from TIGER grants, primarily for 

capacity enhancements, track improvements, and bridge repairs.  

TIGER grants also leverage other funding sources. For example, for Class III projects, the 

funding match comes from the railroad company and/or state and/or local jurisdiction. Then 

federal, state, and private contributions construct a public private partnership (PPP) that promises 

to deliver public benefits for which the public pays at least part and private benefits for which the 

Class III railroad pays. TIGER grants are highly competitive, resulting in a small percentage of all 



22 

 

submitted projects being funded (FRA, 2014; Sage et al., 2015). Two Class III railroads in Kansas 

have received this grant for rail infrastructure improvement: KYLE and South Kansas & 

Oklahoma).  

 Railroad Track Maintenance Tax Credit (26 U.S.C. 45G) 

The United States allows a tax credit of up to 50 percent from railroad maintenance projects 

for Class II and Class III railroads to improve infrastructure, including maintaining tracks, 

roadbeds, bridges, and related structures underneath the regulation of 26 U.S.C. 45G. This credit 

is capped at $3,500 per mile ($2,190 per km) of track structure the railroad owns or leases. Per the 

American Class III Railroad Association (ASLRA), more than $300 million worth of Class III 

infrastructure improvements are assisted by this tax credit each year (FRA, 2014; Sage et al., 

2015).   

Several states’ departments of transportation have recognized the economic benefits of 

Class III railroads because they link local producers and manufacturers to the national Class I rail 

network. Therefore, states have provided funding options and tax benefits specifically designed to 

support local Class III railroads.   

 Annual Revolving Loans 

Annual revolving loans and grant programs capitalized with annual appropriations are 

overseen by the Secretary of Transportation if the financing is federal and managed by local 

departments of transportation if the financing is state funded. These programs assist railroad 

companies by providing matching funds for loan terms of up to 10 years. Interest paid on these 

loans helps fund additional projects through additional loans. Applicants compete for funding, and 

recipients can use the funding for state businesses, community industrial parks, and Class III 
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railroads. States currently offering such programs include Idaho, Kansas, New Jersey, New York, 

Ohio, Oregon, Pennsylvania, Virginia, and Wisconsin (FRA, 2014).   

 Tax Benefits 

Some states recognize Class I and Class III railroads’ contributions to economic growth by 

providing the railroads with additional tax benefits. Connecticut, North Carolina, and Pennsylvania 

impose statewide gross earnings or receipt taxes on railroads rather than property tax. 

Massachusetts and New Jersey require only minimal property tax from railroads. New York and 

Virginia provide railroad property tax relief using an individual classification rule: They inventory 

each item of taxable property and value it separately regardless of any cooperative effect on the 

railroad’s other properties (FRA, 2014).  

 2.5.3 Class I Funding  

Class I railroads have recently begun collaborating with Class II and Class III railroads to 

make capital improvements. This collaboration typically occurs when a Class I railroad business 

is expected to improve due to the rehabilitation of the Class III’s asset. Such situations could 

include extensive disrepair to the Class III’s track structure so that it slows down the line or 

strategic locations of the track for access to a regional freight market. Previous joint ventures have 

allowed the preservation and rehabilitation of rail lines for public benefit while reducing Class III 

industry’s reliance on financial support from federal or state governments. Corporate partnerships 

have been shown to increase competition in some regional freight markets (FRA, 2014).   

 2.6 Overview of Railroad Ballast 

Most railroad track is comprised of four major structural components: rails, sleepers, 

subgrade and ballast as illustrated by Figure 2.1.   Most rails installed today are hot rolled steel 

segments shaped like rounded I-beams differentiated by pounds per yard (lb/yd), usually ranging 
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from 85 to 135 lb/yd (42 to 67 kg/m), depending on the expected traffic of the railroad.  Sleepers 

are slabs made of either treated wood or pre-stressed concrete.  The subgrade is the layer of soil 

supporting the track which typically is compacted and treated to provide adequate support as 

needed.  Ballast is the free draining usually granular material supporting the track structure (Selig 

and Waters, 1994).  Ballast performs many vital functions for the track structure, which includes: 

 allowing immediate drainage of surface water, 

 resisting vertical, lateral, and longitudinal forces applied to the sleepers to hold 

the track in place, 

 providing a certain degree of resileincy and energy absorption, 

 facilitating surfacing and adjustment of track geometry tamping maintanence 

operations, and 

 `reducing pressure from the sleeper bearing area to accptable stress levels for the 

subgrade. 

  

Sleepers

Ballast & sub-ballast

Subgrade

Rails

Subsoil or natural ground

Figure 2.1Diagram of a Typical Track Section (Modified from Selig and Waters, 1994) 
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As track ages, small particles can fill the voids of the the ballast, which is a process known 

as fouling.  The fine particles can originate from surface pollutants, aggregate degradation, vertical 

infiltration from subgrade, and sleeper wear (Selig and Waters, 1994).   The sources of ballast 

fouling in North America are shown in Figure 2.2.  Three-quarters of fouling is caused by 

aggregate degradation due to abrasion caused by cyclic trainloads.    

 

Figure 2.2 Sources of Ballast Fouling (Selig and Waters, 1994 

 

In North America, the amount of fouling is determined by the material’s fouling index (FI) 

which is calculated by 

 𝐹𝐼 = 𝑃4 + 𝑃200  (2.1) 

where 𝑃4 and 𝑃200 are the weight percentage of fine particles passing the number 4 (4.75 mm) and 

200 (0.075 mm) sieves, respectively. Table 2.4 shows the category of fouled ballast based on the 

fouling index.  Clean ballast has an FI less than one, while highly fouled ballast has an FI larger 

than 40.  The presence of fouling can prevent ballast from fulfilling its primary functions 

previously noted. The specific effect of fouling on the track structure depends on the characteristics 

and amounts of fouling agents (Selig and Waters, 1994).   
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Table 2.4 Levels of Fouling Based on Fouling Index (Selig and Waters, 1994) 

Fouling Category Fouling Index (FI) 

Clean <1 

Moderately Clean 1<10 

Moderately Fouled 10<20 

Fouled 20<40 

Highly Fouled ≥40 

 

Sand and small gravel-sized particles will provide increased shear strength and stiffness of 

ballast, consequently adding more stability and resistance to the structure.  Increased fouling will 

only add to the stability of the track structure as long as the ballast still contains primarily larger 

coarse particles.  The resiliency and drainage capacity are reduced while surfacing and lining 

operations become more difficult as the void space is filled with sand and gravel.  If most of the 

fouling is from sand or fine gravel, the increase in maintenance cost is generally minimal, and 

mechanical screening is typically sufficient for cleaning the ballast (Selig and Waters, 1994).    

Fouling from clay and silt particles will decrease the drainage capacity of the structure 

while increasing the rate of aggregate deterioration.  The slower drainage can cause water damage 

including hydraulic erosion, subgrade attrition, and loss of stability.  At the highest levels of fine 

particle fouling, the fines will control the behavior of the ballast, making it difficult for the ballast 

to hold the other components of the track in place, which is one of ballasts most important jobs.  

Tamping (compaction of the ballast to increase the durability and strength of the track) will become 

ineffective with high levels of fine particle fouling.  Fine grained particle fouling also increases 

maintenance costs since simple ballast screening is not effective.  Full replacement of the ballast 

may be necessary if a section of track is highly fouled by clay or silt.    
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 2.7 Detection of Fouled Ballast 

Railroad companies must perform routine inspections to ensure that their tracks operate 

safely and efficiently.  During these inspections, data detailing the geometry of the track and 

condition of the rail, ties, connections and ballast are collected.  Often for the condition of the 

ballast, these data include the depth and degree of fouling.  Established methods for determining 

the fouling of a section of ballast include track coring, trial pits, and excavation (Eriksen et al., 

2006).  However, these methods are destructive tests and usually require the railroad to restrict or 

reroute traffic on its network.   

Numerous researchers have tested various nondestructive testing methods to determine 

their feasibility to detect differences between fouled and clean ballast.  Electrical resistivity, 

infrared imaging, multichannel analysis of surface waves (MASW), and GPR are among the 

nondestructive testing methods that researchers have attempted to correlate to ballast fouling.   The 

benefit of using nondestructive investigations is the ability to continue rail operations during 

testing and not having to destroy the track or replace the samples collected for testing (Eriksen et 

al., 2006).   

Rahman (2013) and Neupane (2015) investigated the feasibility and refined the 

methodology of implementing electrical resistivity to determine the level of ballast fouling.  

Rahman (2013) determined the resistance of fouled ballast with varying levels of fouling using a 

four point Wenner survey to verify that fouling changed the resistivity of the ballast.  Neupane 

(2015) designed a portable vertical probe to determine the resistivity of ballast using a three point 

method.  However, this probe must be inserted into the ballast, and therefore still requires the 

redirection of rail traffic for testing.   
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Clark et al. (2002) studied the infrared thermographic responses of clean and fouled ballast.  

The researchers cooled samples of ballast with varying levels of fouling and watched them reheat 

up to room temperature (68°F (20°C) ) over time to compare the different rates of heat transfer, as 

well as performing a field trial on real track.  The research team used infrared cameras to document 

the change in temperature of the samples over time, which was used to calculate the samples’ 

emissivity values.  The laboratory trials showed that fouled ballast transfers heat faster than clean 

ballast.  The field tests determined that it is possible to use the infrared thermographic response of 

the ballast to identify areas with fouled ballast within clean ballast, however such surveys must be 

performed coinciding with a large change in atmospheric temperature.   

Anabazhagan et al. (2011) studied the viability detecting fouled ballast using GPR and 

MASW.  The research team constructed a full-scale model railway track with nine sections of 

ballast, each with varying levels and types of fouling.  A MASW system with 24 channels with 12 

geophones of 10 Hz capacity were used to record the seismic waves created by the impulse of a 

2.2 lb (1 kg) sledgehammer.  The shear wave velocity for the samples were calculated.  It was 

found that the shear wave velocity of clean ballast increased when fouling materials were added 

up to a certain degree of fouling (about FI = 15) and after that the shear wave velocity of the fouled 

ballast was lower than the clean ballast.  Anabazhagan et al. also used the same model track to 

investigate the effect of fouling on GPR responses using antennas with a variety of frequencies.  

They found that the MASW method was better at identifying the type of fouling, while GPR 

surveys were better at identifying fouled layers.  Due to GPR’s history of providing high quality 

data for past researchers, the current use of GPR by the rail industry, and its capacity to be 

integrated into routine track inspections, GPR was used for this experiment.  Therefore, the  
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remaining review of literature will focus on the fundamentals of GPR and provide an overview of 

previous research that looked into correlating GPR surveys to the condition of railroad ballast.   

 2.7.1 Fundamentals of Ground Penetrating Radar  

GPR is a nondestructive geophysical subsurface imaging survey with a wide variety of 

geologic and engineering applications.  Researchers who have investigated the feasibility of 

implementing GPR for a variety of purposes.  Lunt et al. (2005) estimated the volumetric water 

content of a Californian winery to determine the effectiveness of its agricultural irrigation.  They 

showed that GPR has the potential to monitor soil water content over large areas with variable 

hydrologic conditions, and can be used to estimate the volumetric water content of spot locations 

if the depth of the scans is known.  Kalogeropoulo et al. (2013) investigated using GPR to 

determine the corrosion of concrete due to deicing salt put on roads during winter.  Xiang et al. 

(2013) located anomalies within a tunnel to detect the possible damage to the structure.  Both 

research teams proved that GPR can easily determine heterogeneous regions in the subsurface.   

GPR surveys measure the time required for impulses of electromagnetic (EM) waves to 

reflect off differing subsurface interfaces.  The frequency of these waves typically varies from 10 

MHz to 2 GHz depending on the antenna.  Lower frequency antennas provide deeper surveys, 

while higher frequency antennas have shallower scans that provide more details thus allowing 

detection of smaller objects.  A transmitting antenna emits pulses of EM waves into the ground, 

while a receiving antenna records the amplitudes and times of arrival for the waves reflected off 

subsurface variations (Everett, 2013).  The velocity, v, of the EM waves propagated through a non-

magnetic medium like the ground is calculated as  
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 𝑣 =  
𝑐

√𝜀𝑟
 (2.2) 

where 𝑐 is the speed of light in a vacuum (3 x 108 m/s), and 𝜀𝑟 is the dielectric constant of the 

medium and is unitless.  The dielectric constant, or the relative permittivity, is a dimensionless 

material property governed by the equation 

 𝜀𝑟 =  
𝜀

𝜀0
  (2.3) 

where 𝜀 is the absolute permittivity of the material in F/m, and 𝜀0 is the permittivity of a vacuum, 

or 8.854 x 10-12 F/m.  Absolute permittivity is a baseline measure of the resistance encountered 

when creating flow of electric fields through empty space.  The absolute permittivity of a material 

is a measurement of the flow of the electric field that that medium will allow.  Larger permittivity 

values provide more resistance to the formation of electric fields (Annan, 2009).  Equation 2.2 can 

be altered to estimate the dielectric constant of materials with a known depth by  

  𝜀𝑟 = (
𝑐𝑇

2𝑑
)

2

 (2.4) 

where 𝑑 is the depth of impulse penetration in meters, 𝑇 is the two-way travel time in seconds, and 

the remaining variables have previously been defined (Annan, 2009). 

For geologic materials, the dielectric constant is a function of mineralogy, porosity, pore 

fluids, frequency, geometries, and electrochemical interactions between the rock components 

(Martinez and Byrnes, 2001).  The volumetric water content has empirically been proven to be the 

strongest determining factor for the permittivity of geologic materials (Everett, 2013).  The 

volumetric water content (𝜃𝑊) is calculated by  

  𝜃𝑊 =
𝑉𝑤

𝑉𝑠
  (2.5) 

where 𝑉𝑤is the volume of water within a sample and 𝑉𝑠 is the volume of a soil within a sample 

(Bilskie, 2001).  Gravimetric water content can be converted to volumetric by  
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  𝜃𝑊 = 𝑤 ∗ 𝑆𝐺  (2.6) 

where 𝑤 is the gravimetric water content calculated by  

 𝑤 =  
𝑀𝑤

𝑀𝑠
   (2.7) 

where 𝑀𝑤 is the mass of water and 𝑀𝑠 is the mass of the soil solids and 𝑆𝐺 is the bulk specific 

gravity of the material with a typical range of 2.6-2.9 for geologic material.  The empirical equation 

relationship between the dielectric constant to volumetric water content was correlated by Topp et 

al. (1980) as  

 𝜀𝑟 =  3.03 + 9.3 ∗ 𝜃𝑊 + 146.0 ∗ 𝜃𝑊
2 −  76.7 ∗ 𝜃𝑊

3      (2.8)  

where all the variables have previously been defined.   

This primary correlation is due to the large dielectric constant of water (~81) when 

compared to the range for dry geologic martials (3.0-8.0).  Water has one of the largest naturally 

occurring dielectric constants due to its polarization.  Polarized water will align its asymmetric 

charge distribution in the direction of the electric field as diagrammed in Figure 2.3.  The atomic 

movement due to polarization effects transfers a portion of the GPR wave’s potential to kinetic 

energy. This energy transfer reduces the wave’s capacity to propagate through the medium, which 

is reflected by the relatively large dielectric constants for polar materials (Annan, 2009).  

Figure 2.3 Polarization of the Water Molecule 
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The raw GPR data, or scans, must be processed for geological interpretation.  The basic 

data processing steps include time-zero correction, de-wow filtering, background-removal 

filtering, and gain control functions.  More advanced processing methods and analysis techniques 

exist, however their utilization is based on the user’s preferences, experience, and the nature of the 

individual dataset (Cassidy, 2009).   

Time-zero correction involves shifting the time axis for all individual scans to a 

recognizable feature common to all scans, usually the first peak of the earliest arriving pulse.  This 

alteration ensures a common time period for the survey entire.  Trace misalignments can be caused 

by drifts in the transmitter or receiver electronics, irregularities in the connector cables between 

the antenna and the receiver, or small variations in transmitter-receiver antenna spacing and 

orientation.  Time-zero correction improves the spatial coherency of the time sections, improving 

the data for further processing (Cassidy, 2009).   

De-wow low-cut filtering removes the “wow” from the series of scans.  “Wow” is any 

variation or shift in the baseline of amplitude that should ideally be zero at large values of two-

way travel times.  The main sources for “wow” in data sets are the presence of unwanted low-

frequency components in the spectrum of the transmitted electric field and electromagnetic 

induction effects in the conductive ground.  De-wow filters reduces these low frequency 

components to establish a zero baseline amplitude (Cassidy, 2009).   

Background-removal filtering removes a lateral moving average of radar amplitudes over 

a given early time window from each scan in the survey.  This modification removes the presence 

of ground clutter, or antenna ringing. Ground clutter is high amplitude, laterally continuous signal 

present in almost every GPR survey caused by direct coupling or cross talk between the 

transmitting and receiving antennas.  Removing the ringing of the antennas from surveys tends to 



33 

 

increase visualization of shallow features.  However, background-removal filtering might remove 

a portion of the signal if there is slow changing of elevations and other near surface geological 

features (Cassidy, 2009).   

Gain control functions correct for geometric spreading and attenuation of the wave’s 

propagation through the medium.  There are many different types of gain functions, which 

typically apply a multiplying factor to successive regions of the trace in time.  These functions are 

based on the window length (in ns), selected function (eg. linear or exponential), and the maximum 

gain allowed.  The primary purpose of utilizing a gain functions is to increase visualization shallow 

and deeper reflections on scans with roughly the same display intensity, which tend to distort with 

longer window lengths (Cassidy, 2009).   

With proper processing, ground penetrating radar data can be useful to a variety of fields.  

GPR is a relatively simple, rapid tool for nondestructive subsurface investigations.  It is able to 

determine the depth of specialized features, provide an estimate of the water content of soil, and 

locate subsurface abnormalities.   

 2.7 Previous GPR Rail Research 

Obtaining suitable GPR surveys from railroad tracks is difficult due to interferences from 

the other sections of the track, especially the metal rail.  However, improved GPR technology and 

altering antenna arrangements have led to improved quality of surveys (Saarenketo, 2009).  Many 

studies have investigating the feasibility of using GPR surveys to characterize the condition of 

railroad track ballast.  Al-Qadi et al. (2009) developed data analysis techniques for GPR 

assessments of railroad ballast in high radio frequency environments.  Al-Qadi et al. (2010) 

investigated the optimization of multiple-frequency GPR system configurations for railroad 

substructure assessments.  Utilizing the information gained through these studies and many others, 



34 

 

GPR surveys have successfully verified track geometry, determined whether the subgrade had 

mixed with the ballast, and established the dielectric value of the ballast.  Table 2.5 shows the 

dielectric values of clean and fouled ballast at differing moisture contents obtained for two separate 

investigations.  The table shows that water affects the dielectric constant of fouled ballast more 

than clean ballast.  This is due to the larger percentage of fines in the fouled ballast, which hold 

more water than larger particles (DeBold et al., 2015).  The strong GPR response to water content 

can make determining the level of fouling present in the field difficult due to the tendency of the 

water to control the GPR scan, rather than any fouling agents.  

 

Table 2.5 Published Dielectric Values of Ballast (Modified from Saarenkento, 2009) 

Material Dielectric value (Clark, 2001) 
Dielectric value 

(Sussman et al. 2002) 

Dry clean ballast 3.0 3.6 

Moist clean ballast 3.5 4.0 

Wet clean ballast 26.9 n/a 

Dry fouled ballast 4.3 3.7 

Moist fouled ballast  7.8 5.1 

Wet fouled ballast 38.5 7.2 

 

DeBold et al. (2015) analyzed the scattering of the signal’s oscilloscope with respect to the 

trace’s scan area, axis crossing, and points of inflection for both clean and fouled ballast samples 

using 900 and 500 MHz frequency antennas.   As seen Figure 2.4, data collected from clean ballast 

had less scattering, with less areas bounded by the individual scans for all antennas.  A regression 

analysis was performed to correlate the fouling index of the ballast to the average area bounded by 

the traces scan, which is seen in Figure 2.5.    
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Figure 2.5 500 MHz Correlation Analysis (from DeBold et al., 2015) 

Figure 2.4 Example of 500 MHz Signal Plot through Clean (top) and Fouled 

(bottom) Ballast (from DeBold et al., 2015) 
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The regression curve obtained a coefficient of determination, or the R2 value, of 0.655 

calculated by 

 𝑅2 =  1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
     (2.9) 

where 𝑆𝑆𝑟𝑒𝑠 is the sum of squares of the residuals, the square area between the data points and the 

regression line, and 𝑆𝑆𝑡𝑜𝑡is the total sum of squares, the square area between the data points and 

the mean of the observed data.  The closer the coefficient of determination is to one, the better the 

regression analysis fits the observed data.  

Al-Qadi et al. (2010) developed a time-frequency GPR processing technique for ultra-wide 

bandwidth antennae utilizing a time-frequency GPR data processing method known as a short-

time Fourier transform (STFT).  The basic concept of this technique is to create a moving average 

of the amplitudes of sequential scans so that the change in frequency spectrum over time can be 

determined.  The researchers performed this procedure on a large segment of track then collected 

field samples from test pits at three different sites.   A comparison between the FI of the samples 

and the fouling determined by the STFT processing found that this methodology accurately 

determines the condition of track ballast (Al-Qadi et al., 2010). 

Shangguan and Al-Qadi (2014) continued this branch of research by using laboratory 

samples to create a content-based image retrieval approach to partially automate the interpretation 

of railway GPR surveys.  They used laboratory samples with varying FI and water contents to 

create a data base filled with sample GPR surveys of known FI processed using the STFT After 

that, they created an algorithm to compare collected GPR data to the database to estimate the FI of 

field surveys. Currently, the database only contains laboratory scans from one type of ballast and 

fouling agent.  This research team is planning on populating their database with datasets of a wide 

variety of ballast types and fouling agents.   
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Anbazhagan et al. (2016) investigated the effects of varying fouling agents of GPR surveys.  

The research team controlled the fouling level for the test materials by mixing measured amounts 

of coal, iron ore, and screen ballast with clean ballast.  Figure 2.6 documents the variance of the 

calculated dielectric constant with the fouling percentage for each of the fouling agents.  This study 

found that for the same levels of fouling, iron ore increased the dielectric constant more than coal 

or screen ballast.   

Similarly, Sahin (2014) correlated suction and moisture content of roadway base material 

to the dielectric constant of the material.  Base course from 16 varying sites were studied to 

correlate the dielectric constant to the suction and water content of the samples.  Laboratory tests 

were run to determine the range of dielectric constant and percent of fines for each sample to 

generate a suction water characteristic curve.  A comparison of the calculated to the measured 

suction, showed that the model could estimate the suction within a coefficient of determination of 

0.83.  The researchers then collected a 4.5 mile (7.24 km) GPR survey for a section of roadway 

with known base course material.  The dielectric constant for the base course was determined 

across the length of the survey and used to determine the volumetric water content using the suction 

water characteristic curves created from the laboratory data.  This research shows that GPR surveys 

are able to determine the water content of the base course of pavements based on the dielectric 

constant determined by field surveys.    
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Figure 2.6 Variation of Dielectric Constant with Percentage Fouling for Three Fouling Materials 

(from Anbazhagan et al., 2016) 
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Chapter 3 - Methodology 

The first objective of this research study was to inventory Class III railroad track structure 

in Kansas, including critical assessment of the amount of Kansas’s railroad system that is 

compatible with HAL railcars. The predominant commodity and quantity hauled by each Class III 

railroad were recorded, providing the basis for KDOT-predicted growth in carloads to the network 

and determining track structure locations for critical upgrades necessary to accommodate HAL 

railcar service. The following section explains the development, contents, and process of 

distributing the survey to Class III railroads in Kansas. 

The second objective of this study was to establish the feasibility of using GPR to 

determine the level of fouling by determining the effect of water content on the dielectric constant 

of clean ballast and sand.   The ballast used was rose quartz provided by BNSF railroad.  The 

poorly graded sand was used because of the clean ballast’s low water retention.  The GPR system 

used for the study was a 400 MHz antenna with a GSSI TerraSIRch SIR System-3000.  The 

following section explains the development, contents, and process of distributing the survey to the 

Class III railroads in Kansas and a description of the test setups used for examining the GPR 

response to clean ballast and sand with differing water contents. 

 3.1 Class III Railroad Survey 

In coordination with KDOT project monitors, the research team at Kansas State University 

conducted a survey of Class III railroads in Kansas over a six-month period from late 2015 to early 

2016. The survey was based on previous studies KDOT and other private consulting firms 

performed with similar objectives (Sage et al., 2015; Parsons Brinkerhoff, 2005). The survey 

(included in Appendix A) sought to determine operating and structural characteristics of the 
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railroads, current track inventory, needed upgrades, and scheduled/planned track improvement 

projects. The survey included the following questions: 

1. What are the top five commodities shipped on your railroad?  

2. Is your business affected by seasonal differentiation in products? If so explain to 

what extent. 

3. What are your main locations for originating and terminating traffic?  

4. Is your railroad owned by a parent company? If so, which one? 

5. What are your railroad’s primary corridors? Feeder line corridors? 

6. What is your railroad’s operating characteristic by subdivision and key segments 

within subdivisions? Specifically, subdivision route mileage, gross ton-miles per 

year, number of slow orders, average number of railcars by weight, total revenue, 

and percentage non-Class I revenue. 

7. What are the infrastructure characteristics of your Class III by subdivision and key 

segments within the subdivisions? Specifically, the average FRA track class, 

current operating speed, type of rail, rail weight, rail age, ballast and tie conditions, 

and weight capacity for each subdivision. 

8. Does your railroad have trackage rights on another railroad’s track or does another 

railroad have trackage rights over your railroad? If so what segments are shared? 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d 

willingly share with us that show 286,000 lb railcar handling capacity; bridge 

structural issues; geometric issues; track speed; trackage rights?  

10. Are there any scenarios (including economic impacts) under which you could 

foresee the abandonment of your railroad, or specific line segments? 
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11. Does your company make projections as to future growth in your business? If so, 

are these by tonnage or number of carloads and what is the basis for these 

projections? What are your most recent projections for the next three years? 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 

286,000 lb cars?   

13. Does your company have any plans to increase track capacity to handle fully loaded 

286,000 lb railcars (or along greater lengths of track)? If so, what track segments? 

Do you have a timeframe during which you hope to complete these upgrades? Can 

you prioritize these projects? 

14. Are there other issues that your railroad experiences that you feel hamper your 

operations and/or affect customer service? (i.e. car supply shortage)  

Digital surveys were sent to representatives of the Class III railroads operating in Kansas. 

Prior to sending the official survey, however, verbal and electronic communications were made 

with each representative to ensure willingness and ability to provide data. The research team also 

explained the purpose of the study so companies would understand the importance of the 

information requested. Surveys were sent to 10 out of 13 Class III railroads because KDOT project 

monitors identified four Class III railroads as having limited route mileage in Kansas, a recent 

history of low-volume shipping, or less than 10 percent of the total Class III route mileage in 

Kansas. Data were organized and analyzed in a tiered system to provide guidance for the allocation 

of funding from the SRSIF.   
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 3.2 Laboratory Setup and Instrumentation 

To test the aggregate samples with minimal interference, a test box was designed and 

constructed.  The box was built using 3/4 in (19 mm) plywood, 1/4 in (6.35 mm) diameter wooden 

dowels, wood glue, scrap lumber, and a plastic drain.  One side of the box was removable.  A fixed 

beam across the removable side stabilized the structure from lateral loading of the aggregate.  A 

3/4 in (19 mm) slot was cut on two sides of the box so that a sectioning bay could be utilized if the 

box could produce good quality data using half of the footprint.  A 4 in (102 mm) drain was cut in 

the middle to provide the structure a drainage outlet, and a towel was placed over the hole to retain 

the aggregate within the box. The outside dimensions of the box were 48 x 48 x 48 in (1.2 x 1.2 x 

1.2 m).  The inside dimensions of each bay was 22.5 x 44.5 x 44.5 in (0.6 x 1.1 x 1.1 m).  Figure 

3.1(a) shows the setup for using the dowels to fasten the sides together and Figure 3.1 (b) shows 

the stabilizing beam.   

To support the bottom of the box when loaded, and to allow the water to leave the box, a 

frame was made out scrap wood to raise the structure off the floor.  The frame was also specially 

designed to allow a pallet jack easily lift the box with well-placed notches.  The frame is seen in 

Figure 3.1 (c). 
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(c) 
Figure 3.1 Test Box Construction a) wooden dowels, b) support bar, c) box support 

 

The depth of ballast chosen for this study was determined by collecting GPR scans with 

12, 18, 24, and 30 in (0.306, 0.457, 0.609, and 0.762 m) of ballast in the box which are seen in 

Figure 3.2 with a line showing the location of the bottom of the box in each of the scans.  Since 

the typical depth of GPR survey looks at the top 14-16 in (0.356-0.406 m), and it was desirable to 
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maximize the amount of ballast surveyed but 30 in (0.762  m) caused excessive lateral support of 

the test box, 24 in (0.609 m) was selected for the remainder of the ballast tests.   

To determine whether the acceptable scans could be collected utilizing only one bay, two 

sets of data were collected.  First, the box was filled using the entire area of the box.  Then the bay 

wall was inserted, and one side of the box was filled to the same height.  The scans collected for 

both of these conditions were very similar, so the sectioning bay was utilized for future tests. The 

advantage to using the bay was that half of the material could be used, saving the time and energy 

of transporting the aggregate.   

  

Figure 3.2 Scans for 12, 18, 24, and 30 in (0.306, 0.457, 0.609, and 0.762 m) of Ballast 
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The next phase of the research was to determine the effect of water on the clean ballast.  

Six gallons (22.7 L) of water was added to the loaded box using a hand-pump sprayer.  GPR 

readings were collected for every hour for the first eight, and then every twelve hours for the next 

week.  The GPR data were then processed using RADAN (GSSI, 2011). Figure 3.3 shows the GPR 

antenna on top of both wet and dry ballast.   

 

(a) 

 
 

(b) 

Figure 3.3 Test Set Up for Dry (a) and Wet (b) Clean Ballast 

 

No fouled ballast could be acquired at the time of this testing, therefore further 

experimentation was conducted using sand.  The reasons for switching to sand was that the material 

was available and able to retain water much better than the clean ballast.  A smaller quantity of 

sand was available, so a smaller test box was used. This box’s outer dimensions were 27 x18 x 18 

in (0.69 x 0.46 x .046 m) and inner dimensions were 26.5 x17.5 x 17.5 x in (0.67 x 0.44 x 0.44 m) 

was completely filled with sand.  Water was added into the sand one gallon (3.8 L) at a time for 

ten gallons (38 L).  GPR scans were collected after the water was thoroughly mixed with the sand.  

Samples were taken to determine the water content for each survey.    
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Chapter 4 - Results 

 4.1 Class III Carrier Systemwide Inventory 

Although Class III railroads in Kansas are as diverse as the communities they serve, 

recurring themes emerged from the survey data which are summarized in the subsequent sections. 

The tables in this section categorize Class III railroads as local and regional carriers or switching 

and terminal carriers. Local and regional railroads tend to have more track miles and haul goods 

across different regions; switching and terminal railroads typically operate as traditional rail yards 

in which railcars move within the same city. Results showed that all Class III railroads except one 

are owned by subsidiaries of parent companies that own and manage a collection of Class III 

railroads throughout the United States. Table 4.1 specifies the parent company that owns each 

railroad surveyed in Kansas and summarizes the route mileage of each railroad.  As shown in Table 

4.1, the length of track operated by Class III railroads varies from 6 miles (10 km) to more than 

750 miles (1,200 km). 
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Table 4.1 Summary of Surveyed Class III Carrier Route Mileages and Parent Companies 

Class III Carriers 
Route Mileage 

(km) 
Parent Company 

Local and Regional Carriers 

Blue Rapids 10 (16) Georgia-Pacific Gypsum LLC 

Boothill & Western  10 (16) MidWest Pacific Rail 

Cimarron Valley 183 (295) The Western Group, Ogden, UT 

Garden City Western 42 (68) Pioneer Railcorp 

Kansas & Oklahoma 642(1,033) WATCO Co. 

KYLE 271 (436) Genesee & Wyoming Inc. 

Missouri & Northern Arkansas 8 (5) Genesee & Wyoming Inc. 

Nebraska, Kansas, & Colorado 68 (109) OmniTRAX 

South Kansas & Oklahoma 267 (430) WATCO Co. 

V&S 21 (34) Affiliated Railroads 

Switching and Terminal Carriers 

Kansas City Terminal (Kaw) 33 (53) 
BNSF (track rights) / WATCO Co. 

(operations) 

New Century AirCenter 6 (10) n/a 

Wichita Terminal 9 (15) BNSF / UP 

TOTAL CLASS III 1571 (2,529) n/a 

 

An important variable for evaluating railroad business effectiveness is the number of 

railcars that originate and terminate annually. Table 4.2 presents annual carloads by weight and by 

railroad as reported by Class III railroads in Kansas.  As shown in Table 4.2, Class III railroads in 

Kansas hauled approximately 163,300 carloads of goods based on the data collected. KYLE’s 

carloads were estimated by converting trains to carloads, assuming 25 carloads per train, and 

Wichita Terminal does not keep record of the weight of the railcars they move. South Kansas & 

Oklahoma shipped the most total cars, but the Kansas & Oklahoma railroad shipped more than 
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three times the number of 286,000 lb (129,844 kg) carloads than any other railroad. A common 

estimate found during the survey was that every railcar on Class III railroads in Kansas removes 

three to four semi-trucks from the highway system, translating to between 468,600 and 624,800 

trucks (KDOT, 2011).  

 

Table 4.2 Summary of Surveyed Class III Carrier Carloads by Railcar Weight (2015) 

Class III Carriers 
Yearly 263,000 lb 

(119,295 kg) Carloads 

Yearly 286,000 lb  

(129,844 kg) Carloads 
Total Carloads 

Local and Regional Carriers 

Blue Rapids 400 0 400 

Cimarron Valley 6,600 4,400 11,000 

Garden City Western 1,200 0 1,200 

Kansas & Oklahoma 10,600 32,600 43,200 

KYLE 20,000 500 25,000 

South Kansas & Oklahoma 51,200 5,700 56,900 

V&S 450 450 900 

Switching and Terminal Carriers 

Kansas City Terminal 0 16,100 16,100 

New Century AirCenter 560 140 700 

Wichita Terminal n/a n/a 3,750 

TOTAL CLASS III 87,010 64,190 156,200 

Note: Nebraska, Kansas, & Colorado Railroad, Boothill & Western Railway, and Missouri & Northern Arkansas 

Railroad were not surveyed. 

Railroads often project future growth based on customers and market predictions for the 

shipped commodities. Table 4.3 details predictions of the surveyed railroads.  As shown in Table 

4.3 all Class III railroads in Kansas expect growth in future carloads. However, Wichita Terminal 

did not independently project future carloads since the UP and BNSF railroads have joint 

ownership and are in charge of marketing projections. Also, KYLE’s future projections were not 

available to the research team or public due to company policy at the time of this research study.  
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Table 4.3 Summary of Surveyed Class III Carrier Projected Future Carloads 

Class III Carrier 2015 2016 2017 

Local and Regional Carriers 

Blue Rapids 400 500 500 

Cimarron Valley 11,000 12,100 13,310 

Garden City Western 1,200 1,375 1,450 

Kansas & Oklahoma 42,222 43,222 44,222 

KYLE 25,000 n/a n/a 

South Kansas & Oklahoma 62,212 68,643 70,015 

V&S 1,000 1,000 1,000 

Switching and Terminal Carriers 

Kansas City Terminal 16,100 5,475 5,639 

New Century AirCenter 700 1,250 1,750 

Wichita Terminal 3,750 n/a n/a 

TOTAL CLASS III 156,200 133,565 137,886 

Note: Nebraska, Kansas, & Colorado Railroad, Boothill & Western Railway, and Missouri & Northern Arkansas 

Railroad were not surveyed. 

A track’s weight capacity, or the maximum allowable weight the track can safely support, 

is determined by the interaction of its rail, ballast, and ties. Trained track inspectors can determine 

the weight capacity of a section of track and identify poor track conditions. The minimum rail 

weight for a track to accommodate 286,000 lb (129,844 kg) railcars with low risk of derailment or 

other similar operation issues is 85 lb/yd (42 kg/m), providing that tie condition, ballast depth, and 

other track material are in acceptable condition (Resor et al., 2000). Table 4.4 to Table 4.6 provide 

a summary of the track conditions of Class III railroads in Kansas, including the rail weight by 

mile and the percentage of 286,000 lb (129,844 kg) railcar capacity track versus the percentage of 

tons from 286,000 lb (129,844 kg) railcars and FRA class track by mile, respectively.  
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As shown in Table 4.4, based on rail weight, approximately 16 percent of the Class III 

railroad mileage was not adequate for HAL cars even if the rest of the track was in acceptable 

condition. In the “Greater than 100 lb/yd (50 kg/m)” category, most of the rail was 115 lb/yd (57 

kg/m), with a maximum weight of 136 lb/yd (68 kg/m), demonstrating rail weights that were 

considerably lighter than 133 and 141 lb/yd (66 and 70 kg/m) Class I railroads currently use for 

high-speed operations.  

 

Table 4.4 Summary of Surveyed Class III Carrier Rail Weights by Miles 

Class III Carrier Total 

70–85 

lb/yd 

(35–42 

kg/m) 

86–99 

lb/yd 

(42–49 

kg/m) 

Greater than 

100 lb/yd 

(50 kg/m) 

Local and Regional Carriers 

Blue Rapids 10 0 10 0 

Cimarron Valley 255 0 51 204 

Garden City Western 42 38 4 0 

Kansas & Oklahoma 759 253 145 361 

KYLE 458 0 46 412 

South Kansas & Oklahoma 276 1 105 171 

V&S 21 0 0 21 

Switching and Terminal Carriers 

Kansas City Terminal 21 0 0 21 

New Century AirCenter 6 0 3 3 

Wichita Terminal 10 0 5 5 

TOTAL CLASS III 1,858 291 368 1,198 

Note: Nebraska, Kansas, & Colorado Railroad, Boothill & Western Railway, and Missouri & Northern Arkansas 

Railroad were not surveyed.  
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Table 4.5 compares surveyed short line railroads with 286,000 lb capacity versus estimated 

tons shipped using HAL railcars.  Table 4.5 shows that, overall, only 30 percent of the entire Class 

III network in Kansas has been upgraded to accommodate 286,000 lb (129,844 kg) carloads, which 

account for approximately 37 percent of Class III rail shipments in Kansas.  

Table 4.5 Comparison of Surveyed Class III Carrier’s 286,000 lb (129,844 kg) Capacity Versus 

Estimated Tons Shipped Using 286,000 lb (129,844 kg) Railcars 

Class III Carrier 
Route 

Mileage 

Length 

286,000 

Capable 

Percentage 286,000 

lb Capable Track 

Percentage Tons 

from 286,000 lb 

Cars 

Local and Regional Carriers 

Blue Rapids 10 0 0% 0% 

Cimarron Valley 255 135 53% 43% 

Garden City Western 42 28 67% 0% 

Kansas & Oklahoma 759 236 31% 77% 

KYLE 458 57 12% 22% 

South Kansas & 

Oklahoma 
276 49 18% 11% 

V&S 21 21 100% 53% 

Switching and Terminal Carriers 

Kansas City Terminal 21 21 100% 100% 

New Century AirCenter 6 6 100% 22% 

Wichita Terminal 10 10 100% n/a 

TOTAL CLASS III 1,857 563 30% 37% 

Note: Nebraska, Kansas, & Colorado Railroad, Boothill & Western Railway, and Missouri & Northern Arkansas 

Railroad were not surveyed.  

The FRA defines maximum allowable operating speed limits of trains based on the track 

condition, and track conditions are divided into classes based on strict track structure parameters. 

The Excepted class is the lowest quality of track allowed and requires freight trains to travel below 

10 mph (16 kmh). Class 1, Class 2, Class 3, Class 4, and Class 5 have maximum allowable freight 



52 

 

operating speeds of 10, 25, 40, 60, and 80 mph (16, 40, 64, 97, and 129 kmh), respectively. Table 

4.6 classifies the total mileage as each FRA track for Class III railroads in Kansas.  

Table 4.6 Summary of Surveyed Class III Carrier FRA Track Class by Mile 

 

As shown in Table 4.6, approximately half of all Class III railroads in Kansas are restricted 

to speeds of 10 mph (16 kmh) or less. Although the KYLE, Kansas & Oklahoma, and South Kansas 

& Oklahoma railroads have long stretches of track that are Class 2 and above, many sections of 

those tracks may still operate at slower speeds due to safety concerns such as derailment. For 

sections of track hundreds of miles long with a lower class, speed restrictions can slow operations, 

Class III Carrier Total Excepted 
Class 1 

(10 mph) 

Class 2 

(25 mph) 

Class 3 

(40 mph) 

Local and Regional Carriers 

Blue Rapids 10 10 0 0 0 

Boothill & Western 10 0 10 0 0 

Cimarron Valley 255 0 255 0 0 

Garden City Western 42 0 42 0 0 

Kansas & Oklahoma 759 45 352 362 0 

KYLE 458 0 72 149 237 

Missouri & Northern Arkansas 8 8 0 0 0 

Nebraska, Kansas, & Colorado 68 68 0 0 0 

South Kansas & Oklahoma 276 0 164 112 0 

V&S 21 21 0 0 0 

Switching and Terminal Carriers 

Kansas City Terminal 21 0 21 0 0 

New Century AirCenter 6 0 6 0 0 

Wichita Terminal 10 0 10 0 0 

TOTAL CLASS III 1,944 152 932 623 237 
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decrease operating efficiencies, increase fuel consumption, and hinder customer service due to the 

distance the train must travel and FRA restrictions mandating 12 hours as the maximum number 

of consecutive hours an employee can work (Federal Register, 2008). 

Figure 4.1 illustrates where Class III railroads with 286,000 lb (129,844 kg) railcar 

compatible tracks are located in Kansas. Red segments on the map signify that the track can 

accommodate 286,000 lb (129,844) railcars; black segments cannot accommodate railcars of that 

weight. In addition to locations of compatible track, the figure also shows where short line railroads 

connect to Class I railroads.    
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Figure 4.1 Active Freight Railroads in Kansas by Weight Capacity (2017) 
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 4.2 Individual Class III Railroad Inventory 

 4.2.1 Blue Rapids Railroad 

The Blue Rapids Railroad (BRRR) is a 10-mile (16 km) segment of track connecting 

Georgia Pacific Gypsum LLC’s manufacturing facility in Blue Rapids, Kansas, to UP railroad 

lines. Since the mid-1980’s Georgia Pacific has used railcars to transport industrial gypsum plaster 

from their plant to the UP railyard in Marysville, Kansas. The company relies on UP for twice-

weekly switching operations. In 2015 BRRR hauled approximately 500 carloads weighing 263,000 

lb (119,295 kg). Survey results showed that no track segments could accommodate 286,000 lb 

(129,844 kg) railcars and that the company does not intend to increase track capacity. Figure 4.2 

shows the weight capacity of the BRRR.  
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Figure 4.2 Weight Capacity Map for the Blue Rapids Railroad 
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 4.2.2 Boothill and Western Railway 

The Boothill & Western (BH&W) railway is a 10-mile (16 km) stretch of track that 

connects Dodge City, Kansas to Bucklin, Kansas. BH&W was created from the former Chicago, 

Rock Island and Pacific Railroad.  BH&W currently only generates revenue from car storage fees. 

Figure 4.3 shows the weight capacity of the BH&W railway.  

 

 

Figure 4.3 Weight Capacity Map for the Boothill & Western Railway 
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 4.2.3 Cimarron Valley Railroad 

The Cimarron Valley Railroad (CVR) is a subsidiary of the Western Group. CVR operates 

a total of 255 miles (410 km) of track, of which approximately 183 miles (294 km) are located in 

Kansas. The primary agricultural commodities shipped by CVR include wheat, milo, soybean 

meal, corn, and fuel oil. CVR runs from Dodge City, Kansas, to Satanta, Kansas, where it splits 

into two lines. The western route continues to Springfield, Colorado, and the southern route 

continues to Boise City, Oklahoma. The southern route was reported to be able to accommodate 

286,000 lb (129,844 kg) railcars, while the western route cannot. According to the survey, CVR 

currently has no plans to upgrade the weight capacity of the western route. As reported, CVR 

transported six thousand 263,000 lb (119,295) and forty-four hundred 286,000 lb (129,844 kg) 

carloads in 2015. Figure 4.4 details the weight capacity of CVR.  
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Figure 4.4 Weight Capacity for the Cimarron Valley Railroad 
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 4.2.4 Garden City Western Railway  

The Garden City Western (GCW) railway is a wholly-owned subsidiary of Pioneer 

Railcorp. GCW consists of a 40-mile (64) track segment serving the southwestern part of Kansas 

near Garden City, Kansas. The primary commodities hauled by GCW include fertilizers, meal, 

scrap metal, molasses, and utility poles. GCW recently upgraded three miles of their main line and 

13 yard switches to accommodate 286,000 lb (129,844 kg) railcars. Survey results showed that 

286,000 lb (129,844 kg) railcars account for 95 percent of all inbound and outbound traffic for the 

railroad. In 2015 GCW transported 14 hundred 263,000 lb (119,295 kg) railcars. Figure 4.5 

illustrates the weight capacity of the GCW railway.   
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Figure 4.5 Weight Capacity Map for the Garden City Western Railway 
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 4.2.5 Kansas and Oklahoma Railroad 

The Kansas & Oklahoma Railroad (KO) is a subsidiary of WATCO Companies Inc., a 

Class III railroad-holding company headquartered in Pittsburg, Kansas. KO hauls commodities 

such as wheat, sorghum, rains, fertilizers, and soybean meals, as well as Class 8 corrosive 

materials, paper, and flammable gases. KO, one of the largest Class III railroads in North America, 

operates approximately 766 track miles (1,232 km) that stretch in three directions from Wichita, 

Kansas. Table 4.7 summarizes the carloads and weight capacity for sections of the KO.  

 

Table 4.7 Summary of Kansas & Oklahoma Data by Rail Corridor 

Section 
Route 

Mileage 

Mileage 

286,000 lb 

Capable 

Percentage 

Track 286,000 

lb Capable 

Yearly 

263,000 lb 

Railcars 

Yearly 

286,000 lb 

Railcars 

Percentage of 

Tons from 

286,000 lb Cars 

Conway Springs 101.3 0 0.0% 2,220 12,600 86.3% 

Kingman 60.2 0 0.0% 492 0 0.0% 

Hutchison 52.9 52.9 100.0% 0 2,412 100.0% 

Great Bend 120 51.2 42.7% 0 4,608 100.0% 

Hoisington 104.9 104.9 100.0% 1,692 0 0.0% 

Scott City 203.4 0 0.0% 4,980 0 0.0% 

McPherson 13.2 5.7 43.2% 0 7,212 100.0% 

Newton 27 27 100.0% 0 612 100.0% 

Salina 82.7 0 0.0% 1,212 5,160 82.5% 

K&O TOTAL: 765.6 241.7 32% 10,596 32,604 77.4% 

 

As shown, the Conway Springs section has no track structure that can accommodate 

286,000 lb (129,844 kg) railcars. However, a majority of KO business involves 286,000 lb 

(129,844) railcars, so the railroad only partially fills the larger cars.  Figure 4.6 shows weight 

capacity of KO track corridors.  
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Figure 4.6 Weight Capacity Map for the Kansas & Oklahoma Railroad 
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 4.2.6 Kyle Railroad  

Since 2012 Kyle Railroad (KYLE) has been owned and operated by Genesee & Wyoming 

Inc., the largest publicly traded Class III holding company in the United States. Prior to ownership 

by Genesee & Wyoming, the KYLE was owned by Rail America. KYLE operates more than 500 

miles (805 km) of track, of which 458 miles (737 km) are located in Kansas and connect to BNSF, 

UP, and KO railroads, allowing shippers multiple transportation options. KYLE primarily 

transports winter wheat, sorghum, roofing granules, and corn. Table 4.8 summarizes the carloads 

and weight capacities for sections of the KYLE.  

Table 4.8 Summary of KYLE Data by Rail Corridor 

Section 
Route 

Mileage 

Mileage 

286,000 lb 

Capable 

Percentage Track 

286,000 lb Capable 

Yearly 

263,000 lb 

Railcars 

Yearly 

286,000 lb 

Railcars 

Percentage of 

Tons from 

286,000 lb Cars 

Solomon 57 57 100.0% 0 90 100.0% 

Concordia 53 0 0.0% 72 0 0.0% 

Yuma 15 0 0.0% nominal 0 0.0% 

Bellville 96 0 0.0% 72 0 0.0% 

Phillipsburg 140 0 0.0% 72 0 0.0% 

Goodland 97 0 0.0% 72 0 0.0% 

KYLE TOTAL: 458 57 12% 288 90 24.50% 

 

As shown in Table 4.8, the Yuma section segment contains an out-of-service bridge that 

hinders any shipments utilizing this route. Currently, only the Solomon segment can accommodate 

286,000 lb (129,844 kg) railcars; however, as stated in the survey, the KYLE hopes to improve the 

Bellville and Concordia subdivisions so the Phillipsburg operations and Goodland division can 

include 286,000 lb (129,844 kg) cars, offering heavier carloads to their grain customers. Figure 

4.7 details the weight capacity and rail connections for the KYLE.   
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Figure 4.7 Weight Capacity Map for the KYLE Railroad 
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 4.2.7 Missouri & Northern Arkansas  

The Kansas portion of the Missouri & Northern Arkansas (M&NA) is an 8-mile segment 

that connects Fort Scott, Kansas, to Nevada, Missouri. Although the railroad is owned by Genesee 

& Wyoming Inc., this track segment is leased from UP. While the railroad is currently classified 

as active, no shipping is occurring on this segment of track. The weight capacity map for M&NA 

is shown in Figure 4.8.   

  

Figure 4.8 Weight Capacity Map for the Missouri & Northern Arkansas Railroad 
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 4.2.8 Nebraska Kansas Colorado Railway  

The Nebraska, Kansas, & Colorado Railway, LLC (NKCR) is an 86-mile stretch of track 

in the northwestern corner of Kanas. This section of rail currently only generates revenue via 

railcar storage. NKCR previously had two separate subdivisions in Kansas, but the Oberlin 

subdivision was abandoned, leaving only the St. Francis subdivision. Figure 4.9 shows the weight 

capacity map for NKCR.   

 
  

Figure 4.9 Weight Capacity Map for the Nebraska, Kansas, & Colorado Railway 
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 4.2.9 South Kansas & Oklahoma Railroad  

The South Kansas & Oklahoma (SKOL) railroad, a subsidiary of WATCO, operates nearly 

300 miles (482 km) of track in Kansas, originating in Cherryvale, Kansas. SKOL ships 

commodities such as cement, chemicals, sand, rocks, grains, and grain products. Table 4.9 

summarizes shipping and structural data by SKOL subdivision. As shown in the table, SKOL 

transported over fifty thousand 263,000 lb (119,294 kg) and five thousand five hundred 286,000 

lb (129,844) railcars during 2015. Although only the Chanute and Coffeyville portions of the 

SKOL can currently accommodate 286,000 lb (129,844) carloads. SKOL officials are evaluating 

track capacity upgrades on the Moline, Chanute, Coffeyville, and Tulsa sections. Figure 4.10 

illustrates the weight capacity of the SKOL. 

 

 Table 4.9 Summary of South Kansas & Oklahoma Data by Rail Corridor 

 

 

  

Section 
Route 

Mileage 

Mileage 

286,000 lb 

Capable 

Percentage 

Track 286,000 

lb Capable 

Yearly 

263,000 lb 

Railcars 

Yearly 

286,000 lb 

Railcars 

Percentage of 

Tons from 

286,000 lb Cars 

Chanute 35.2 35.2 100.0% 5,029 2,263 33.3% 

Coffeyville 14 14 100.0% 13,771 2,987 17.8% 

Tulsa 15 0 0.0% 8,206 24 0.3% 

Neodesha 96 0 0.0% 11,728 635 5.7% 

Gorilla 140 0 0.0% 5,176 0 0.0% 

Moline 97 0 0.0% 7,430 121 1.8% 

SKOL TOTAL: 397.2 49.2 12% 51,339 5,729 16.7% 
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Figure 4.10 Weight Capacity Map for the South Kansas & Oklahoma Railroad 
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 4.2.10 V&S Railway  

The V&S Railway (VSR) is a stand-alone company managed by Affiliated Railroads as 

part of a non-corporate designation with four other Class III railroads. VSR operates two 

disconnected lines in Kansas consisting of a 22-mile (35 km) segment of track from Medicine 

Lodge, Kansas, to Attica, Kansas, and a 5-mile (8 km) segment of switching track in Hutchinson, 

Kansas. VSR transports industrial goods such as wallboards, plaster, scrap metal, and fertilizer 

from a manufacturing plant in Medicine Lodge, Kansas. All VSR track sections can accommodate 

286,000 lb railcars (129,844 kg). The survey indicated that the most pressing issues for VSR is the 

aging of their bridges and needed funding to repair them. In 2015 VSR transported approximately 

four hundred and eighty 263,000 lb (119,295 kg) and four hundred and eighty 286,000 lb (129,844 

kg) railcars. Figure 4.11 contains a map of the Medicine Lodge subdivision of the VSR. 



71 

 

 

 

 

  

Figure 4.11 Weight Capacity Map for the V&S Railway 
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 4.2.11 Kansas City Terminal Railway Company 

The Kansas City Terminal (KCT) railway serves as a joint operation for the major freight 

railroads serving the Kansas City metropolitan area. The Kaw River Railroad (KAW), a subsidiary 

of WATCO, provides industry switching and operations for KCT. KCT consists of approximately 

85 miles (137 km) of track sections owned by BNSF, with 33 miles (52 km) of track in Kansas 

and the rest in Missouri. The major commodities handled by KCT include grain products, paper, 

cement, lumber, and plastics. In 2015 KCT transported more than 16,000 carloads of goods. Figure 

4.12 illustrates the weight capacity of the KCT.  
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Figure 4.12 Weight Capacity Map for the Kansas City Terminal Railway 
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 4.2.12 New Century AirCenter 

The New Century Air Center (NCA) railroad provides rail service to New Century 

AirCenter/JCAX, a 2,300-acre (9.3 km2) inland port along the I-35 North American Free Trade 

Agreement (NAFTA) corridor. NCA is a 5-mile track (8 km) section that provides switching 

services to meet the air center’s demands. The track section includes weigh-in-motion technology 

for railcar identification and reporting systems. NCA transports a wide variety of goods, including 

soybean oil, lumber, steel, acetic acid, and plastic beads. In 2015 NCA transported seven hundred 

263,000 lb (119,294 kg) and two hundred and fifty 286,000 lb (129,844 kg) railcars. The only 

growth for NCA is expected from additional businesses moving to the industrial park. Figure 4.13 

shows the route and weight capacity of the NCA, all of which can accommodate 286,000 lb 

(129,844 kg) railcars.  
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Figure 4.13 Weight Capacity Map for the New Century AirCenter Railroad 
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 4.2.13 Wichita Terminal 

The Wichita Terminal Association (WTA) is owned by BNSF and UP railroads, and both 

Class I railroads oversee maintenance and dispatching on the line as well as finance required track 

maintenance. WTA primarily transports grain products such as wheat, flour, soybeans, and 

soybean oil, as well as scrap metals. In 2015 WTA transported approximately 3,750 carloads on 

an entire track structure that is compatible with 286,000 lb (129,844 kg) railcars. WTA is planning 

to construct an additional storage track for 12 cars in 2017. Figure 4.14 contains a map of the WTA 

railroad.   
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Figure 4.14 Weight Capacity Map for the Wichita Terminal Association 

Railroad 
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 4.3 Proposed Project Upgrade Prioritization Tiers  

Prioritization of proposed engineering projects, specifically railroads, depends on the 

project’s ability to improve the mobility, safety, economic development, and environmental 

impacts of its serving region more significantly than competing projects. However, differences of 

opinion between stakeholders, unforeseen events, local politics, and shifting economic 

circumstances can complicate the prioritization of large-scale railroad improvement projects. This 

research study quantified the potential impact of proposed upgrades to Class III track structures 

using collected shipping data and the capability of corridors to move goods to Class I railroads. 

Based on survey results and interviews with company officials, a project prioritization is proposed 

using a three-tiered approach. 

As shown in Table 4.10, the projects proposed in the tiered system were selected from 

railroad representatives’ answers to Question 13 of the survey as described in section 3.1. Tier One 

projects are expected to provide significant improvements to allow two Class III railroads to 

transport 286,000 lb (129,844kg) railcars. Tier Two and Tier Three projects are expected to 

provide less benefit than Tier One projects, but they will improve Class III railroad infrastructures 

to better accommodate 286,000 lb (129,844 kg) railcars. The proposed tiers allow for a degree of 

flexibility. For example, if an unexpected safety concern occurred on a Tier Two corridor, the 

project can be upgraded to a Tier One status. However, detailed engineering assessments of the 

bridges, rail, and track structures are needed to determine the cost for each project, potentially 

changing project tier arrangements or providing additional subprojects to track sections overlooked 

in this study.  
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Table 4.10 Proposed Tiered System 

Rail Improvement Project Rational 

Tier One  

KO's Scott City Subdivision 

The Scott City subdivision contains one of Kansas's 

longest sections of track (203 miles [327 km]), which 

currently moves 286,000 lb (129,844 kg) at 10 mph 

(16 kmh) for most of the stretch 

KYLE’s Belleville and Concordia 

Subdivisions 

These projects would allow their Phillipsburg 

customers to ship and receive 286,000 lb (129,844 

kg) railcars 

WTA’s Additional Storage Track 
WTA plans to add a 12-car length storage track in 

2017  

Tier Two  

One of SKOL’s Subdivisions: Moline, 

Chanute, Coffeyville, or Tulsa 

SKOL is currently evaluating these  subdivisions to 

upgrade track capacity based on customer needs with 

consideration of operational efficiencies 

Improvement of KYLE’s Goodland 

Subdivision 

This project will allow grain shipments in in 

Phillipsburg to reach an interchange in 286,000 lb 

(129,84 kg) loadings 

Tier Three  

Repair of VSR’s Aging Bridges 
The most serious, relevant threat to the VSR is their 

aging bridges  
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 4.4 GPR Results 

For the clean ballast testing, GPR scans were collected directly after adding six gallons 

(22.7 L) of water to 24 in (0.61 m) of ballast and for time intervals of 12 hours for a week.  A 

selected series of representative scans showing the condition of the ballast dry, directly after 

wetting, and 12, 144, and 168 hours after the addition of the water is shown in Figure 4.15.  The 

two-way travel time is the time elapsed since the initial pulse of electromagnetic energy.  The GPR 

amplitude is a measure of the received reflection of the wave at each point in time.  Using the two-

way travel time at the bottom of the box read from the GPR scans, the dielectric constant was 

calculated using Equation 2.4  The propagation of the survey wave through the material in Figure 

4.15  is signified as the distance between the two major peaks for each scan, which occur around  

Figure 4.15 Time Lapse of GPR Surveys for Clean Ballast after Initial Wetting 
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4 and 11 ns two-way travel times.  The range of calculated dielectric constant was 3.0-3.6 

representing the dry and initially wetted conditions, which are consistent with the values 

summarized from Clark (2001) and Sussman et al. (2002) in Table 2.5.   

For the sand testing, ten gallons (37.9 L) of water was added one gallon (3.8 L) at a time 

to the smaller test box to collect GPR data for an absorptive geologic material with differing water 

contents.  Figures 4.16 and 4.17 depict the acquired GPR scans for two, four, six, eight and ten 

gallons (7.6, 15.1, 22.7, 30.2, and 37.9 L) with the corresponding volumetric water contents of 

11.6%, 12.3%, 12.71%, 13.1%, and 22.4%, as well as the dry condition.  Even though equal 

amounts of water were added for each data point, the water content of the samples does not increase 

at a constant rate.  This is due to the natural drainage of sand due to a relatively high suction for 

water contents less than 30 percent, which lead to the water seeping to the bottom of the box after  

Figure 4.16 Aggregated GPR Surveys for Sand with Varying Water Contents 
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  Figure 4.17 Individual GPR Scans for Sand with Varying Water Contents Showing Box Depth 
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each mixing process, while the soil sample used to determine water content was collected at the 

top of the box.  As the water content of the sample increased, the waves took longer to propagate 

through the samples. This trend is indicated by the increased distance between the black lines in 

Figure 4.17.  This is the same trend projected by Topp’s equation (Equation 2.8); increasing the 

volumetric water content corresponds to an increase in dielectric content.  The values labeled as 

“calculated” and “measured” were determined using Equation 2.8 and Equation 2.4, respectively.  

These values are compared in Figure 4.18.  For both the measured and calculated values, larger 

water contents correspond to larger dielectric constants.  The percent error comparing the 

calculated and measured dielectric was calculated by 

 %𝑒𝑟𝑟𝑜𝑟  = |
(𝜀𝑟𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑−𝜀𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

𝜀𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

∗ 100 |    (4.1) 

where 𝜀𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
 is the measured dielectric constant using the two-way travel time of the GPR 

scan and the known depth of the test material and 𝜀𝑟𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
 is the calculated dielectric constant  

 
Figure 4.18 Calculated vs. Measured Dielectric Constant by Volumetric Water Content 
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volumetric water content are shown in Table 4.11.  Percent error ranges from 32.73-1.05 percent  

using Topp’s correlation.  The results for both the measured and calculated dielectric constants as 

well as the percent error for each with an average of 14.75.  Figure 4.19 shows a direct comparison 

of the measured and calculated. For all but the two largest values, the measured dielectric constant 

is larger than the calculated value for the same volumetric water constant.   

Table 4.11 Summary of Measured and Calculated Dielectric Constants and Percent Error 

θ Measured Calculated Percent Error 

0.00 4.50 3.03 32.73 

0.11 6.10 5.59 8.37 

0.11 6.71 5.90 12.14 

0.12 6.30 5.96 5.38 

0.12 7.28 6.21 14.69 

0.12 6.94 6.24 10.10 

0.13 7.46 6.43 13.76 

0.13 8.10 6.56 18.98 

0.13 6.71 6.64 1.05 

0.18 10.10 9.01 10.83 

0.22 9.27 11.58 24.93 
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Figure 4.19 Calculated vs. Measured Dielectric Constant Direct Comparison 



85 

 

Chapter 5 - Discussion and Recommendations 

 5.1 Class III Railroads 

Class III railroads are critical for the transportation of goods and services within the United 

States. Although Class III railroads often transport fewer carloads at slower speeds than Class I 

railroads due to decades of deferred maintenance of Class III track structure, Class III railroads 

serve as last and first line operations for customers of manufactured and agricultural goods, 

providing vital links to the nation’s rail network.   

The state of Kansas has allocated up to $5 million per year for rail rehabilitation and 

expansion projects of Class III railroads through the SRSIF program administered by KDOT. The 

state of Kansas has 14 registered Class III railroads that consist of 1,600 track miles (2,875 km), 

including switching and terminal yards. With the help of KDOT, researchers at Kansas State 

University conducted this study to increase understanding of track structure inventory, shipping 

and carload data, and Class III business climate in 2015. This critical data will allow KDOT to 

prioritize projects, assist Class III railroads by investing in infrastructure, and maximize the benefit 

from SRSIF funding.  

 The research team and KDOT project monitors constructed a survey detailing required 

operational and structural information. The survey was sent to representatives of the 10 Class III 

railroad companies currently operating in Kansas; completed surveys were inventoried, organized, 

and synthesized. Special emphasis was given to understanding the current operational status of 

each Class III railroad with respect to accommodating railcars weighing 286,000 lb (129,844 kg). 

During 2015 Class III railroads in Kansas carried approximately 163,300 carloads, approximately 

equivalent to the fully loaded capacity of 600,000 semi-trucks.   
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 Although approximately 64 percent of Class III rail weigh more than 100 lb/yd (47 kg/m), 

only 30 percent, or 560 miles, of track in Kansas can currently accommodate an HAL railcar. The 

survey also determined that many Class III railroads in Kansas contain portions of track structure 

that are rated for faster operating speeds (up to 25 mph [40 kmh]) but still require locomotives to 

travel at 10 mph (16 kmh) to minimize the risk of derailment.  

 Based on the survey data, Class III representative recommendations, and comparisons of 

Class III railroad data between companies, the research team developed a proposed list of priority 

upgrade projects for KDOT to consider. The list was divided into three tiers based on priority 

rankings: Tier One projects are given the highest priority for funding, while Tier Three projects 

are given the least priority based on total expected system benefits for each project as determined 

by shipping characteristics and connections to Class I railroads. The research team recommended 

KO's Scott City subdivision and KYLE’s Belleville and Concordia subdivisions as Tier One 

projects. WTA’s additional storage track was also recommended, but this storage track is currently 

fully funded by the BNSF railway.  

 

 5.2 GPR  

This research is the first step towards determining whether GPR can accurately determine 

the percent fines and water content in railroad ballast by creating soil characteristic curves 

following the methodology Sahin (2014) developed for base course material (2014).  This study 

has established that the testing procedures defined in the methodology section are able to determine 

the dielectric constant of geologic materials in the laboratory and that water increases the observed 

dielectric constant.  Since water tends to be the controlling factor of most GPR surveys, being able 

to correlate differing FI to suction would be helpful to determine the degree of fouling in the field 

using a combination of GPR surveys and calculated volumetric water content since  accurate GPR 
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surveys are currently limited when volumetric water content is variable.  Laboratory tests were 

performed on clean ballast provided by BNSF and sand.   

The effect of decreasing volumetric water content on clean ballast over time was recorded 

by wetting the ballast in a large test box and collecting scans hourly for the first 6 hours, then at 

the 12, 18, and 24 hour marks and at the multiples of 12 hours for a week.  It was determined that 

the clean ballast is slightly affected by the increased water content, in that the dielectric constant 

increased from 3.0 to 3.6.  However the ballast drained most of the applied water quickly, so 

obtaining data with differing water contents was difficult. 

Sand was then selected as an available geo-maerial with higher water retention than clean 

ballast.  A test box was then filled with the sand and water was thoroughly mixed in one gallon 

(3.8 L) at a time for ten gallons (37.8 L).  GPR scans and samples for determining the water content 

were collected between each additional gallon. The correlaton between water content and the GPR 

surveys confirmed that an increase in water content corresponsed with an increase in the dilectric 

constant.  The observed dielectric constant increased from 4.5 to 11.6 by increasing the volumetric 

water content from 0.0 to 22.4 percent  

 5.2.1 Future Work 

To continue this research, fouled ballast will be obtained.  Then the laboratory sand testing 

procedure will be repeated with the fouled ballast varying both fouling indexes and water contents.  

This will document the interaction between the volumetric water content and the change in void 

ratio coinciding with differing fouling indexes.  A correlation of the observed differences in the 

dielectric constant obtained by the GPR surveys, soil characteristic curves will be created.   
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Appendix A - Returned Surveys 

BLUE RAPIDS: 

1. What are the top five commodities shipped on your railroad?  

Commodities: 

Industrial 

Gypsum 

Plasters 

- - - - 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what 

extent.   

No 

 

3. What are your main locations for originating and terminating traffic?  

Originating:   Blue Rapids 

Terminating:  Various, North America 

 

4. Is your railroad owned by a parent company? If so, which one? 

Georgia-Pacific Gypsum LLC 

 

5. What are your railroad’s primary corridors?  Feeder line corridors? 

Primary: Georgia-Pacific Gypsum, Blue Rapids KS to UPRR, Marysville KS  

Feeder: N/A 

 

6. What is your railroad’s operating characteristic by subdivision and key segments within 

subdivisions?  (If you have more subdivision, you can add more Rows) 

a) Subdivisions and key segment route miles 

b) Gross ton-miles per year 

c) Number of slow orders  

d) Average number of railcars by weight (263,000 or 286,000) per week, month, 

year and season 

e) Total revenue 

f) Percentage non-class I line revenue 

 

7. What are the infrastructure characteristics of your class III by subdivision and key 

segments within the subdivsions? (If you have more subdivision, you can add more 

Rows) 

a) FRA Track Class and operating speed 

b) Current operating speed 

c) Jointed or welded rail 

d) Rail weight 

e) Rail age 

f) Ballast conditions (type of ballast, depth, etc.) 

g) Tie age and condition (i.e., plate cut, split, etc.) 

h) Weight capacity  
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i) Structure sufficiency data (capability of handling 286,000 pound cars)  
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Subdivision 
Length 

(miles) 

Number of 

Slow 

Orders 

Average 263,000 lb Railcars Per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

Column 1 9.5 
1 for 

entire 
10 - - - 0 - - - 

 

 

Subdivision 

FRA 

Track 

Class 

Current 

Operating 

Speed 

Jointed or 

Welded 

Rail 

Rail 

Weight 

Rail 

Age 

Ballast Condition Tie 

Age 

Tie 

Cond. 

Weight 

Capacity Type Depth Age Other 

Column 1 Exempt 10 Jointed 90 100 Chat 12” 100 - 
1 to 

100 
fair 268K 
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8. Does your railroad have trackage rights on another railroad’s track or does another 

railroad have trackage rights over your railroad? If so what segments are shared? 

We do not have rights on another railroad.  

We have a contract in place to extend rights to the Union Pacific for twice weekly 

switching.  

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly 

share with us that show 286,000 lb railcar handling capacity; bridge structural issues; 

geometric issues; track speed; trackage rights? 

No.   

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

Undetermined at this time.  

 

11. Does your company make projections as to future growth in your business? 

No projected growth reported 

 

a) If so, are these by tonnage or number of carloads? 

NA (see 11) 

 

b) If so, what is the basis for these projections? 

NA (see 11) 

 

c) What are your most recent projections for the next three years? 

Year 2015 2016 2017 

Projection NA NA NA 

 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 

286,000 lb cars?   

NA  

 

13. Does your company have any plans to increase track capacity to handle fully loaded 

286,000 lb railcars (or along greater lengths of track)?  If so, what track segments? Do 

you have a timeframe during which you hope to complete these upgrades?  Can you 

prioritize these projects? 

No 

 

14. Are there other issues that your railroad experiences that you feel hamper your operations 

and/or affect customer service? (i.e. car supply shortage)  

No 

 



98 

 

CIMARRON VALLEY 

1. What are the top five commodities shipped on your railroad?  

Commodities: Wheat  Milo Fuel oil Soybean meal Corn 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what 

extent.   

Our main commodities are grain, dependent on harvests and markets 

 

3. What are your main locations for originating and terminating traffic?  

Originating:   Dodge City, KS 

Terminating:   Dodge City, KS   

 

4. Is your railroad owned by a parent company? If so, which one? 

The Western Group, Ogden, UT 

 

5. What are your railroad’s primary corridors?  Feeder line corridors? 

Primary:   Southwest Kansas, Southeastern Colorado, Oklahoma Panhandle  

Feeder:   BNSF 

 

6. What is your railroad’s operating characteristic by subdivision and key segments within 

subdivisions?  (If you have more subdivision, you can add more Rows) 

a) Subdivisions and key segment route miles    CV Sub – 151.04 miles, Manter Sub 

– 103.43 miles 

b) Gross ton-miles per year    42,954 miles traveled 2015 

c) Number of slow orders     No slow orders – Everything is 10 mph 

d) Average number of railcars by weight (263,000 or 286,000) per week, month, 

year and season    60% - 40% 

e) Total revenue     N/A 

f) Percentage non-class I line revenue     7% 

 

7. What are the infrastructure characteristics of your class III by subdivision and key 

segments within the subdivsions? (If you have more subdivision, you can add more 

Rows) 

a) FRA Track Class and operating speed 

b) Current operating speed 

c) Jointed or welded rail 

d) Rail weight 

e) Rail age 

f) Ballast conditions (type of ballast, depth, etc.) 

g) Tie age and condition (i.e., plate cut, split, etc.) 

h) Weight capacity  

i) Structure sufficiency data (capability of handling 286,000 pound cars) 
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Subdivision 
Length 

(miles) 

Number of 

Slow 

Orders 

Average 263,000 lb Railcars Per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

CVR 255 NA 253.84 549.99 6600 - 169.22 366.66 4400 - 

 

 

 

 
Subdivision 

FRA 

Track 

Class 

Current 

Operating 

Speed 

Jointed or 

Welded 

Rail 

Rail 

Weight 

Rail 

Age 

Ballast Condition Tie 

Age 

Tie 

Cond. 

Weight 

Capacity 
Type Depth Age Other 

CVR 1 10 mph Jointed 85-136 20-97 
Green 

Granite 

12-15” 

AVG 
5-25 - 0-75 Fair 

263000-

286000 
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8. Does your railroad have trackage rights on another railroad’s track or does another 

railroad have trackage rights over your railroad? If so what segments are shared? 

No 

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly 

share with us that show 286,000 lb railcar handling capacity; bridge structural issues; 

geometric issues; track speed; trackage rights? 

Yes, State already has it  

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

No 

 

11. Does your company make projections as to future growth in your business? 

Yes 

 

a) If so, are these by tonnage or number of carloads? 

Number of carloads 

 

b) If so, what is the basis for these projections? 

Grain harvests and markets 

c) What are your most recent projections for the next three years? 

Year 2015 2016 2017 

Projection 10% 10% 10% 

 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 

286,000 lb cars?   

   Yes 

 

13. Does your company have any plans to increase track capacity to handle fully loaded 

286,000 lb railcars (or along greater lengths of track)?  If so, what track segments? Do 

you have a timeframe during which you hope to complete these upgrades?  Can you 

prioritize these projects? 

   Not at this time 

 

14. Are there other issues that your railroad experiences that you feel hamper your operations 

and/or affect customer service? (i.e. car supply shortage)  

CV Sub is already doing 286,000 cars.  Manter Sub can’t handle 286000 cars.  

Half of our business is on the Manter Sub. 
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GARDEN CITY WESTERN RAILROAD: 

 

1. What are the top five commodities shipped on your railroad?  

Commodities: Molasses  Scrap Fertilizers Meal Utility poles 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what 

extent.   

Not really seasonal, but by market changes. (ex. Scrap market is very weak, as a 

result scrap shipments are down considerably in 2015 from that in 2014)   

 

3. What are your main locations for originating and terminating traffic?  

Originating: Texas    

Terminating: Texas    

 

4. Is your railroad owned by a parent company? If so, which one? 

Yes – Pioneer Railcorp 

 

5. What are your railroad’s primary corridors?  Feeder line corridors? 

Primary:  first 4 miles of West Line which runs from Garden City to Wolf   

Feeder: North Line – runs from Garden City to Shallow Water 

 

6. What is your railroad’s operating characteristic by subdivision and key segments within 

subdivisions?  (If you have more subdivision, you can add more Rows) 

a) Subdivisions and key segment route miles 

b) Gross ton-miles per year 

c) Number of slow orders  

d) Average number of railcars by weight (263,000 or 286,000) per week, month, 

year and season 

e) Total revenue 

f) Percentage non-class I line revenue 

 

7. What are the infrastructure characteristics of your class III by subdivision and key 

segments within the subdivsions? (If you have more subdivision, you can add more Rows) 

a) FRA Track Class and operating speed 

b) Current operating speed 

c) Jointed or welded rail 

d) Rail weight 

e) Rail age 

f) Ballast conditions (type of ballast, depth, etc.) 

g) Tie age and condition (i.e., plate cut, split, etc.) 

h) Weight capacity  

i) Structure sufficiency data (capability of handling 286,000 pound cars)   
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Subdivision 
Length 

(miles) 

Number of 

Slow 

Orders 

Average 263,000 lb Railcars Per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

West Line 14 None 26 112 1344 336 - - - - 

North Line 28 None 1 4.5 50 12 - - - - 

Subdivision 

FRA 

Track 

Class 

Current 

Operating 

Speed 

Jointed 

or 

Welded 

Rail 

Rail 

Weight 

Rail 

Age 

Ballast Condition Tie 

Age 

Tie 

Cond. 

Weight 

Capacity Type Depth Age Other 

Main 1 10MPH Jointed 70/80/90 63+ - +/-8” - - Old - - 

West Main 0-

3.0 
1 10MPH Jointed 70 63+ - - - - 

Some 

New 
Good 286K 



103 

 

8. Does your railroad have trackage rights on another railroad’s track or does another 

railroad have trackage rights over your railroad? If so what segments are shared? 

No 

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly 

share with us that show 286,000 lb railcar handling capacity; bridge structural issues; 

geometric issues; track speed; trackage rights?  Nothing but our marketing Maps, or create 

on in Google Earth 

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

No 

 

11. Does your company make projections as to future growth in your business? 

Yes 

a) If so, are these by tonnage or number of carloads? 

Carloads 

b) If so, what is the basis for these projections? 

Data received from current/projected customers 

 

c) What are your most recent projections for the next three years? 

Year 2015 2016 2017 

Projection 1200 1375 1450 
Note:  GCW had one of our customers consolidate its operations and therein closing its doors on the facility 

in Garden City on the GCW  

-  

12. Do you have an adequate number of locomotives with the power to pull fully loaded 

286,000 lb cars?   

Yes 

13. Does your company have any plans to increase track capacity to handle fully loaded 

286,000 lb railcars (or along greater lengths of track)?  If so, what track segments? Do you 

have a timeframe during which you hope to complete these upgrades?  Can you prioritize 

these projects? 

Yes.  Data provided above regarding carload shipments is based on 2014 traffic.  At this 

time, GCW has completed MP 0-3.0, for 286K and Upgrade of Yard Switches, from I/C to 

West Line MP 3.0, 286K.  Again – GCW on this portion is now 286 capable – which at 

this time covers 95% of all inbound/outbound traffic. 

 

14. Are there other issues that your railroad experiences that you feel hamper your operations 

and/or affect customer service? (i.e. car supply shortage)  

No. 
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KANSAS AND OKLAHOMA: 

 

1. What are the top five commodities shipped on your railroad?  

Commodities: 
Wheat/Sorghum 

Grains 

Flammable 

Gases/NGL’s 

Class 8 

Corrosive 

Material 

Fertilizer 
Soybean 

Meal 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what 

extent.   

The summer and winter harvest for grain is affected by Mother Nature which 

dictates the beginning of harvest and how many railcars that we will move.      

 

3. What are your main locations for originating and terminating traffic?  

Originating:  Various locations  

Terminating: Wichita, Hutchinson, Newton, McPherson, Salina, Abilene 

 

4. Is your railroad owned by a parent company? If so, which one? 

WATCO Companies 

 

5. What are your railroad’s primary corridors?  Feeder line corridors? 

Primary: Conway Springs, Great Bend, Hoisington, Hutchinson, Kingman, 

McPherson, Newton, Salina and Scott City 

 

Feeder: Hutchinson, Wichita, McPherson, Newton, Salina 

 

6. What is your railroad’s operating characteristic by subdivision and key segments within 

subdivisions?  (If you have more subdivision, you can add more Rows) 

a) Subdivisions and key segment route miles 

b) Gross ton-miles per year 

c) Number of slow orders – P = Permanent and Temporary Slow Orders Vary from 

week to week 

d) Average number of railcars by weight (263,000 or 286,000) per week, month, 

year and season 

e) Total revenue 

f) Percentage non-class I line revenue 



105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subdivision 
Length 

(miles) 

Number of 

Slow 

Orders 

Average 263,000 lb Railcars Per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

Conway 

Springs 
101.3 5 P 42 185 2220 - 243 1050 12600 - 

Kingman 60.2 0 P 10 41 492 - - 0 - - 

Hutchinson 52.9 3 P -  - - 46 201 2412 - 

Great Bend 120.1 1 P - - - - 89 384 4608 - 

Hoisington 104.9 2 P 32 141 1692 - - - - - 

Scott City 203.4 1 P 96 415 4980 - - - - - 

McPherson 13.2 2 P - - - - 139 601 7212 - 

Newton 27 1 P - - - - 12 51 612 - 

Salina 82.7 0 P 23 101 1212  100 430 5160  
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7. What are the infrastructure characteristics of your class III by subdivision and key 

segments within the subdivsions? (If you have more subdivision, you can add more 

Rows) 

a) FRA Track Class and operating speed 

b) Current operating speed 

c) Jointed or welded rail 

d) Rail weight 

e) Rail age 

f) Ballast conditions (type of ballast, depth, etc.) 

g) Tie age and condition (i.e., plate cut, split, etc.) 

h) Weight capacity  

i) Structure sufficiency data (capability of handling 286,000 pound cars)   
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Subdivision 

FRA 

Track 

Class 

Current 

Operating 

Speed 

Jointed 

or 

Welded 

Rail 

Rail 

Weight 

Rail 

Age 

Ballast Condition 

Tie Age Tie Cond. 
Weight 

Capacity Type Depth Age Other 

Conway 

Springs 
2/1 

25/20/10 

mph 
Jointed 85/90/112 

1860-

1944 
Limestone 6” 

Varie

s 
- Varies Varies 263 

Kingman 1 10 mph Jointed 75/85/90 
1904-

1912 
Limestone 6” 

Varie

s 
- Varies Varies 263 

Hutchinson 1 10/25 mph Both 110/115 
1934-

1947 

Granite/ 

limestone 
6/8” 

Varie

s 
- Varies Varies 286 

Great Bend EX/2 25/10 mph Jointed 90/110 
1909-

1925 
Limestone 6” 

Varie

s 
- Varies Varies 263/286 

Hoisington 1/2 25/10 mph Both 90/132 1952 Granite 8” 
Varie

s 
- Varies Varies 286 

Scott City 1/2/EX 10/25 mph Both 85/90/115 
1904-

1908 
Limestone 6” 

Varie

s 
- Varies Varies 263 

McPherson 1 10 Both 75/85/115 
1902-

1945 
Limestone 6” 

Varie

s 
- Varies Varies 263/286 

Newton 2 25 Welded 112 
1943-

1951 
Granite 8” 

Varie

s 
- Varies Varies 286 

Salina 1 10 Both 70/90/115 
1913-

1945 
Limestone 6” 

Varie

s 
 Varies Varies 263 
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8. Does your railroad have trackage rights on another railroad’s track or does another railroad have 

trackage rights over your railroad? If so what segments are shared? 

The K&O has trackage rights on the Union Pacific to run from Salina to Abilene for 

interchange with the BNSF 

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly share with 

us that show 286,000 lb railcar handling capacity; bridge structural issues; geometric issues; track 

speed; trackage rights? 

Find attached with one correction… Wichita to Frontier should be in red (286,000 lbs) 

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

No  

 

11. Does your company make projections as to future growth in your business? 

We forecast/project for the next year in September/October 

 

d) If so, are these by tonnage or number of carloads? 

Carloads 

 

e) If so, what is the basis for these projections? 

Projections are based on input from our top customers, historical data, 3 & 5 year rolling 

averages for grain/agriculture and a few are based on a percentage increase 

 

f) What are your most recent projections for the next three years? 

Year 2015 2016 2017 

Projection 42,222 43,222 44,222 

 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 286,000 lb 

cars?   

Yes  

13. Does your company have any plans to increase track capacity to handle fully loaded 286,000 lb 

railcars (or along greater lengths of track)?  If so, what track segments? Do you have a timeframe 

during which you hope to complete these upgrades?  Can you prioritize these projects? 

Currently creating a plan to make upgrades on the Scott City Sub but no set time table.   

 

14. Are there other issues that your railroad experiences that you feel hamper your operations and/or 

affect customer service? (i.e. car supply shortage)  

We just try to improve every day.  
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KYLE  

 

1. What are the top five commodities shipped on your railroad? 

 

Commodities: 
winter 

wheat 
sorghum 

roofing 

granules 
corn - 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what 

extent. 

With wheat, sorghum and corn, there is a definite seasonality of shipments. 

Peak season for transportation is typically July / August / September 

 

3. What are your main locations for originating and terminating traffic? 

Originating: Downs, Glen Elder, Goodland 

Terminating: Phillipsburg, Goodland 

 

4. Is your railroad owned by a parent company? If so, which one? 

KYLE is a wholly-owned subsidiary of Genesee & Wyoming Inc. 

 

5. What are your railroad’s primary corridors? Feeder line corridors? 

Primary: Wheat: KYLE – St. Louis or Kansas 

City – points east and south Sorghum: 

KYLE – Gulf Coast ports 

Corn: KYLE – mixed, 

predominately southern states 

Roofing Granules: Wisconsin – 

KYLE 

 

6. What is your railroad’s operating characteristic by subdivision and key 

segments within subdivisions? (If you have more subdivision, you can add 

more Rows) 

a) Subdivisions and key segment route miles 

b) Gross ton-miles per year: Not readily available, you can estimate using 

train frequency, estimated number of railcars per train, and length of 

subdivisions. 

c) Number of slow orders 

d) Average number of railcars by weight (263,000 or 286,000) per week, month, 

year and season 

Total revenue: Confidential. As a publicly traded company that reports 

unified financial results, G&W cannot make a non-public disclosure of 

financially material information. Providing a revenue or car load 

projection for KYLE would fall into this prohibition. 

e) Percentage non-class I line revenue: Amount of KYLE Local Traffic is approx. 2 

percent. 
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7. What are the infrastructure characteristics of your class III by subdivision and key segments 

within the subdivsions? (If you have more subdivision, you can add more Rows) 

a) FRA Track Class and operating speed 

b) Current operating speed 

c) Jointed or welded rail 

d) Rail weight 

e) Rail age 

f) Ballast conditions (type of ballast, depth, etc.) 

g) Tie age and condition (i.e., plate cut, split, etc.) 

h) Weight capacity  

i) Structure sufficiency data (capability of handling 286,000 pound cars)   
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Subdivision 
Length 

(miles) 

Number of Slow 

Orders (Appox. 

Number of miles of 

slow orders) 

Average 268,000 lb Railcars per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

Solomon Sub 57 0 (0 Miles) - - - - 
6-8 

trains/week 
- - - 

Concordia 

Sub 
53 1 (21 Miles) 

6 trains / 

week 
- - - - - - - 

Yuma 15 

Predominately OSS 

due to Republic 

River Bridge OSS 

currently 

nominal 
- - - - - - - 

Bellville 96 9 (40 miles) 
6 trains / 

week 
- - - - - - - 

Phillipsburg 140 12 (58 miles) 
6 trains / 

week 
- - - - - - - 

Goodland 97 8 (45 miles) 
6 trains / 

week 
- - - - - - - 
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Subdivision 
FRA 
Track 

Class* 

Current 
Operating 

Speed 

Jointed or 

Welded Rail 

Rail 

Weig

ht 

Rail 

Age 

Ballast Condition 
Tie 

Age 

Tie 

Cond. 

Weight 

Capacity 
Type Depth Age Other 

Solomon Sub 1 10 mph 
Predominately 

jointed 

mix, 
90 to 

115 lb 

approx 

70 

years 

and 

newer 

rock - - 
upgrade 

desirable 
- fair 286k 

Concordia Sub 2 

largely 10 

mph due to 

slow orders, 

some 25 

mph 

Predominately 

jointed 

mix, 

90 to 

115 lb 

approx 

70 

years 

and 

newer 

rock - - 
upgrade 

desirable 
- fair 268k 

Yuma Sub 1 

10 mph (what 

is currently 

in-service) 

Predominately 
jointed 

mix, 

90 to 

115 lb 

approx 

70 

years 

and 

newer 

rock - - 
upgrade 
desirable 

- fair 268k 

Bellville Sub 2 

largely 10 

mph due to 

slow orders, 

some 25 

mph 

Predominately 

jointed, with 

sections of 

CWR 

mix, 

90 to 

115 lb 

approx 

70 

years 

and 

newer 

rock - - fair - fair 268k 

Phillipsburg 3 

largely 10 

mph due to 

slow orders, 

some 30 

mph 

Predominately 

jointed, with 

sections of 

CWR 

mix, 

90 to 

115 lb 

approx 

70 

years 

and 

newer 

rock - - fair - fair 268k 

Goodland 3 

largely 10 

mph due to 

slow orders, 

some 30 

mph 

Predominately 

jointed, with 

sections of 

CWR 

mix, 

90 to 

115 lb 

approx 

70 

years 

and 

newer 

rock - - 
upgrade 

desirable 
- fair 268k 

NOTE: Timetable speed used for Class of Track definition, however, actually operating speeds substantially less due to slow orders on the subdivisions. If slow orders are in 

close proximity, timetable allowed track speed is not obtained between the slow orders 
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8 Does your railroad have trackage rights on another railroad’s track or does another railroad have 

trackage rights over your railroad? If so what segments are shared? 

KYLE trackage rights over other railroads: 

Temporary BNSF trackage rights: Concordia to 

Courtland Permanent Union Pacific trackage rights: 

Salina to Solomon 

 

No current trackage rights for another railroad over KYLE 

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly share with us 

that show 286,000 lb railcar handling capacity; bridge structural issues; geometric issues; track speed; 

trackage rights? 

Such a map is not readily available. The ONLY section of KYLE rated to handle 286,000 lb 

freight cars is Downs to Solomon. The rest of the railroad has a freight car weight limit of 268,000 

lbs. It is very important to note, however, that handling 286,000 lb freight cars over subdivisions 

not now rate to handle such shipments will require investments in bridges, rail and track structure 

(ties and ballast). Such investments vary by subdivisions. A more current detailed assessment 

would be necessary to provide a complete understanding of the limitations on each subdivision. 

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

Like with any other freight railroad, future viability is dependent upon handling enough traffic to 

create a positive cash flow to ensure adequate maintain and coverage of expenses. Clearly the 

failed bridge over the Republic River on the Yuma Sub, resulting in the bulk of this subdivision 

being placed into Out of Service (OOS) status, has put a significant question on the future of this 

subdivision. 

 

11. Does your company make projections as to future growth in your business? 

As a publicly traded company that reports unified financial results, G&W cannot make a non-

public disclosure of financially material information. Providing a revenue or car load projection for 

KYLE would fall into this prohibition. Having stated this, it is possible for others to estimate 

future KYLE traffic by considering two markets: Kansas grain, specifically wheat, and roofing 

materials. These two markets directly drive KYLE carloads in its two largest traffic bases. Both 

markets are largely impacted by weather patterns and trends; for grain in determining the quality 

and quantity of the wheat harvest, and for roofing materials by the frequency of severe weather 

that would create heavy demand for such materials. Secondary factors impacting future KYLE 

traffic would be the overall strength of the U.S. dollar affecting the competitiveness of Kansas 

grains in the world marketplace and the U.S. housing market affecting the demand for roofing 

materials.  

 

a) If so, are these by tonnage or number of carloads? 

Not available 

 

b) If so, what is the basis for these projections? 

Projections not available 
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c) What are your most recent projections for the next three years? 

 

Year 2015 2016 2017 

Projection - - - 

 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 286,000 lb cars?   

Locomotive fleet on KYLE is not limiting factor for the railroad to handle 286,000 lb freight cars 

over a large amount of its route structure. Bridge, rail and overall track structure are the limiting 

factors. 

 

13. Does your company have any plans to increase track capacity to handle fully loaded 286,000 lb 

railcars (or along greater lengths of track)?  If so, what track segments? Do you have a timeframe 

during which you hope to complete these upgrades?  Can you prioritize these projects? 

There are no immediate plans to increase the 268,000 lb weight limited subdivisions of the KYLE 

to 286,000 lbs. If financially possible, it would be desirable to increase the Bellville and Concordia 

subdivisions to allow customers on the Phillipsburg subdivision to ship and receive 286,000 lb rail 

loadings, and to improve the Goodland Subdivision to allow for grain shipments in the Phillipsburg 

area to reach interchange in 286,000 lb car loadings. 

 

14. Are there other issues that your railroad experiences that you feel hamper your operations and/or 

affect customer service? (i.e. car supply shortage)  

No, increasing the ability of KYLE to handle 286,000 lb freight cars is certainly a desirable long 

term objective for the railroad. Customers will be able to reach their customers or raw materials 

more economically, and be better able to compete in their marketplaces. Based on the mileages 

involved, with the associated amount of bridge, rail and roadbed upgrades that would be necessary 

to increase the railroad to a universal 286,000 lb railcar weight limit, this is a long term focus and 

will require public – private partnerships to realize. A detailed assessment of bridges, rail and track 

structure would be required for each KYLE subdivision (except for the Solomon Subdivision) to 

determine the cost to reach a 286,000 lb load limit. It is clearly beyond the current financial ability 

of KYLE to make all of these investments in the immediate future. 
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SOUTH KANSAS AND OKLAHOMA  

1. What are the top five commodities shipped on your railroad?  

Commodities: Cement Chemicals Sand Rock 

Grain and 

Grain 

Products 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what extent.   

South Kansas & Oklahoma Railroad (SKOL) moves three of its five top commodities, 

during construction season which includes cement, sand and rock. Grain and grain products 

also run with seasonality due to harvest. SKOL serves a diverse customer base allowing us 

to move shipments of chemicals, coal, steel and plastics year round; in addition we serve 

three dimensional shippers.   

 

3. What are your main locations for originating and terminating traffic?  

Originating: Coffeyville, KS; Chanute, KS; Humboldt, KS; Moline, KS  

Terminating: Coffeyville, KS; Pittsburg, KS; Wichita, KS; Tulsa, OK 

 

4. Is your railroad owned by a parent company? If so, which one? 

Watco Companies is the parent company of SKOL.  

 

5. What are your railroad’s primary corridors?  Feeder line corridors? 

Primary: Chanute Subdivision, Coffeyville Subdivision, Moline Subdivision, Neodesha 

Subdivision, Gorilla Subdivision, Tulsa Subdivision 

Feeder:Union Pacific Railroad – Interchange points at Coffeyville, KS; Winfield, KS; Tulsa, 

OK. BNSF Railway – Interchange points at Columbus, KS, Tulsa, OK; Winfield, KS. 

Kansas City Southern – Interchange point at Pittsburg, KS. Kansas & Oklahoma Railroad – 

Interchange point at Wichita, KS. Stillwater Central Railroad – Interchange point at Tulsa, 

OK. Sand Springs Railroad – Interchange point at Tulsa, OK. 

 

6. What is your railroad’s operating characteristic by subdivision and key segments within 

subdivisions?  (If you have more subdivision, you can add more Rows) 

a) Subdivisions and key segment route miles 

b) Gross ton-miles per year 

c) Number of slow orders  

d) Average number of railcars by weight (263,000 or 286,000) per week, month, 

year and season 

e) Total revenue 

$32 million 

f) Percentage non-class I line revenue 

53% which includes freight revenue only
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Subdivision 
Length 

(miles) 

Number of 

Slow 

Orders 

Average 263,000 lb Railcars Per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

Chanute 39.2 12 210 838 10,058 - 94 377 4525 - 

Coffeyville 17 7 574 2295 27,541 - 112 448 5374 - 

Tulsa 100 20 342 1368 16,412 - - 4 48 - 

Neodesha 70 7 488 1954 23,455 - 26 106 1269 - 

Gorilla 21.9 4 216 863 10,352 - - - - - 

Moline 94.2 8 310 1238 14,860 - 5 20 242 - 
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7. What are the infrastructure characteristics of your class III by subdivision and key segments 

within the subdivsions? (If you have more subdivision, you can add more Rows) 

a) FRA Track Class and operating speed 

b) Current operating speed 

c) Jointed or welded rail 

d) Rail weight 

e) Rail age 

f) Ballast conditions (type of ballast, depth, etc.) 

g) Tie age and condition (i.e., plate cut, split, etc.) 

h) Weight capacity  

i) Structure sufficiency data (capability of handling 286,000 pound cars)   
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Subdivision 

FRA 

Track 

Class 

Current 

Operating 

Speed 

Jointed or 

Welded 

Rail 

Rail 

Weight 

Rail 

Age 

Ballast Condition Tie 

Age 

Tie 

Cond. 

Weight Capacity 

Type Depth Age Other 

Chanute 2 25 Jointed 90 60+ Limestone 6 in Varies - Varies fair 286,000 

Coffeyville 2 25 Welded 90 60+ Limestone 6 in Varies - Varies fair 263,000 

Tulsa 2 25 Both 90 60+ Limestone 6 in Varies - Varies fair 263,000 

Neodesha 2 25 Both 90/115 60+ Limestone 6 in Varies - Varies poor 263,000 

Gorilla 2 20 Jointed 115 20 Limestone 6 in Varies - Varies poor 263,000 

Moline 2 25 Welded 132 50+ Limestone 6 in Varies - Varies fair 263,000 
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8. Does your railroad have trackage rights on another railroad’s track or does another railroad have 

trackage rights over your railroad? If so what segments are shared? 

SKOL maintains trackage rights on BNSF track from Winfield, KS to Wichita, KS. This 

can be referenced on attached SKOL Track Capacity Map. Segment offers SKOL 

interchange with Kansas & Oklahoma Railroad to add value to western Kansas shippers and 

provide future rail solutions. 

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly share with 

us that show 286,000 lb railcar handling capacity; bridge structural issues; geometric issues; track 

speed; trackage rights? 

See attached SKOL Track Capacity Map. 

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

SKOL is committed to the communities we serve and we do not foresee abandonment of 

any track at this time. 

 

11. Does your company make projections as to future growth in your business? 

Annual projections are completed and often times a three or five year outlook will be 

evaluated.  

 

d) If so, are these by tonnage or number of carloads? 

Projections are completed by carloads.  

 

e) If so, what is the basis for these projections? 

Projections are based on our customer input for planning purposes.  

 

f) What are your most recent projections for the next three years? 

Year 2015 2016 2017 

Projection 62,212 68,643 70,015 

 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 286,000 lb 

cars?   

SKOL maintains adequate locomotive power to pull our current 286,000 lb cars. In addition 

our connectivity with two sister railroads (Kansas & Oklahoma Railroad at Wichita, KS and 

Stillwater Central Railroad at Tulsa, OK) offers flexibility with locomotive power solutions.  

 

13. Does your company have any plans to increase track capacity to handle fully loaded 286,000 lb 

railcars (or along greater lengths of track)?  If so, what track segments? Do you have a timeframe 

during which you hope to complete these upgrades?  Can you prioritize these projects? 

SKOL is evaluating track capacity upgrades on the following subdivisions Moline, Chanute, 

Coffeyville and Tulsa. A timeframe cannot be outlined at this time. We will prioritize 

projects based on our customers’ needs and the consideration of operational efficiencies.      
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14. Are there other issues that your railroad experiences that you feel hamper your operations and/or 

affect customer service? (i.e. car supply shortage)  

Increasing our grain fleet could offer benefit to our operations and customer service. 

Currently we maintain a Central Region grain fleet and divide base on customer harvest 

feedback.   
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V & S RAILROAD 

1. What are the top five commodities shipped on your railroad?  

Commodities: Wallboard Plaster Scrap Metal Fertilizer N/A 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what extent.   

Not really. Fluctuations are accounted for by market prices, or change the pricing of a 

finished product. Example: If a price increase goes into effect in January, we will see a 

surge in shipments leading up to the price increase. Traffic will drop off quickly, then 

slowly regain previous levels. 

 

3. What are your main locations for originating and terminating traffic?  

Originating: Medicine Lodge (manufacturing plant) 

Terminating: Attica (interchange with BNSF) 

 

4. Is your railroad owned by a parent company? If so, which one? 

V&S Railway, LLC is a standalone company, but managed in parallel with other railroads.  

 

5. What are your railroad’s primary corridors?  Feeder line corridors? 

Primary: Attica, to Medicine Lodge 

Feeder: None 

 

6. What is your railroad’s operating characteristic by subdivision and key segments within 

subdivisions?  (If you have more subdivision, you can add more Rows) 

a) Subdivisions and key segment route miles 

b) Gross ton-miles per year 

c) Number of slow orders  

d) Average number of railcars by weight (263,000 or 286,000) per week, month, year and 

season 

e) Total revenue 

f) Percentage non-class I line revenue 

 

7. What are the infrastructure characteristics of your class III by subdivision and key segments 

within the subdivsions? (If you have more subdivision, you can add more Rows) 

a) FRA Track Class and operating speed 

b) Current operating speed 

c) Jointed or welded rail 

d) Rail weight 

e) Rail age 

f) Ballast conditions (type of ballast, depth, etc.) 

g) Tie age and condition (i.e., plate cut, split, etc.) 

h) Weight capacity  

i) Structure sufficiency data (capability of handling 286,000 pound cars)   

We are in the middle of a project to upgrade the line to Class II
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Subdivision 

FRA 

Track 

Class 

Current 

Operating 

Speed 

Jointed or 

Welded 

Rail 

Rail 

Weight 

Rail 

Age 

Ballast Condition Tie 

Age 

Tie 

Cond. 

Weight 

Capacity Type Depth Age Other 

Column 1 Ex. 10 10 112 - Gran. 12” - - 5-80 poor 286K 

Subdivision 
Length 

(miles) 

Number of 

Slow 

Orders 

Average 263,000 lb Railcars Per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

Column 1 21 Excepted 10 40 - - 10 40 - - 
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8. Does your railroad have trackage rights on another railroad’s track or does another railroad have 

trackage rights over your railroad? If so what segments are shared? 

No trackage rights except for interchange purposes. 

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly share with 

us that show 286,000 lb railcar handling capacity; bridge structural issues; geometric issues; track 

speed; trackage rights? 

We are currently moving 286k cars, and through the State program making changes so that 

this is maintained for the next ten years. 

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

If the plant in Medicine Lodge were to be shut down, or economics made trucking more 

attractive. 

 

11. Does your company make projections as to future growth in your business? 

Any projections would be tied to the projection of the building industry, or unforeseen 

markets (i.e. frac sand, oil, wind turbine projects, etc.) 

 

a) If so, are these by tonnage or number of carloads? 

carloads 

 

b) If so, what is the basis for these projections? 

N/A 

 

c) What are your most recent projections for the next three years? 

Year 2015 2016 2017 

Projection N/A N/A N/A 

 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 286,000 lb 

cars?   

The answer is dependent on the number of cars and the speed at which you choose to 

travel. On very rare occasions, we will have to increase service, or leave cars behind. 

 

13. Does your company have any plans to increase track capacity to handle fully loaded 286,000 lb 

railcars (or along greater lengths of track)?  If so, what track segments? Do you have a timeframe 

during which you hope to complete these upgrades?  Can you prioritize these projects? 

Already handle them. 

 

14. Are there other issues that your railroad experiences that you feel hamper your operations and/or 

affect customer service? (i.e. car supply shortage)  

We run into car supply issues for a few months each year. The biggest threat to the 

railroad at this time would be the age of bridges, and the need for funding to repair them. 
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KANSAS CITY TERMINAL // KAW RIVER RAILROAD 
 

1. What are the top five commodities shipped on your railroad?     Kaw River Railroad (KAW) 

Commodities: 
Grain 

Products 
Paper Cement Lumber Plastics 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what extent.   

Cement and lumber experience seasonality due to favorable weather for construction 

activity  

 

3. What are your main locations for originating and terminating traffic?  

Originating:  Kansas City, MO 

Terminating: Kansas City, MO 

Note: KAW is a handling carrier for BNSF. 

 

4. Is your railroad owned by a parent company? If so, which one? 

KAW is a wholly owned subsidiary of Watco Companies.  The railroad detail provided is 

referencing a lease rail line with BNSF Railway. 

 

5. What are your railroad’s primary corridors?  Feeder line corridors? 

Primary:  BNSF 

Feeder:  BNSF 

 

6. What is your railroad’s operating characteristic by subdivision and key segments within 

subdivisions?  (If you have more subdivision, you can add more Rows) 

a) Subdivisions and key segment route miles 

b) Gross ton-miles per year 

c) Number of slow orders  

d) Average number of railcars by weight (263,000 or 286,000) per week, month, year and 

season 

e) Total revenue 

f) Percentage non-class I line revenue 

 

7. What are the infrastructure characteristics of your class III by subdivision and key segments 

within the subdivsions? (If you have more subdivision, you can add more Rows) 

a) FRA Track Class and operating speed  

b) Current operating speed  

c) Jointed or welded rail  

d) Rail weight  

e) Rail age -  

f) Ballast conditions (type of ballast, depth, etc.) 

g) Tie age and condition (i.e., plate cut, split, etc.) 

h) Weight capacity  

i) Structure sufficiency data (capability of handling 286,000 pound cars)   
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Subdivision 
Length 

(miles) 

Number of 

Slow 

Orders 

Average 263,000 lb Railcars Per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

Bedford 5 0 - - - - 95 413 4958 NA 

Kearney 16 0 - - - - 7 30 358 NA 
 

 

 

 

 

 

Subdivision 

FRA 

Track 

Class 

Current 

Operating 

Speed 

Jointed 

or 

Welded 

Rail 

Rail 

Weight 

Rail 

Age 

Ballast Condition 

Tie 

Age 

Tie 

Cond

. 

Weight 

Capacity Type Depth Age Other 

Bedford 1 10 mph Jointed 90-110 - 
Granite/ 

Limestone 
6 inch 

2-5 

yrs 
- 

10-15 

yrs 
Fair 286,000 

Kearney 1 10 mph Jointed 110 - - - - - 
10-15 

yrs 
Fair 286,000 
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8. Does your railroad have trackage rights on another railroad’s track or does another railroad have 

trackage rights over your railroad? If so what segments are shared? 

BNSF for interchange purposes only. 

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly share with 

us that show 286,000 lb railcar handling capacity; bridge structural issues; geometric issues; track 

speed; trackage rights? 

If so, please send with completed questionnaire  

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

None at this time. 

 

11. Does your company make projections as to future growth in your business? 

Yes. 

 

a) If so, are these by tonnage or number of carloads? 

Carloads 

 

b) If so, what is the basis for these projections? 

Our projections mirror Customer projections for the line. 

 

c) What are your most recent projections for the next three years? 

Year 2015 2016 2017 

Projection 5316 5475 5639 

 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 286,000 lb 

cars?   

 

13. Does your company have any plans to increase track capacity to handle fully loaded 286,000 lb 

railcars (or along greater lengths of track)?  If so, what track segments? Do you have a timeframe 

during which you hope to complete these upgrades?  Can you prioritize these projects? 

All track is 286k capacity. 

 

14. Are there other issues that your railroad experiences that you feel hamper your operations and/or 

affect customer service? (i.e. car supply shortage)  

Not at this time. 
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NEW CENTURY AirCENTER 

1. What are the top five commodities shipped on your railroad?  

Commodities: Soybean oil Steel- Lumber- Acetic acid- 
Plastic 

Beeds- 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what extent.   

NO 

 

3. What are your main locations for originating and terminating traffic?  

Originating: Main yard track 8601 

Terminating: Main yard track 8601 

 

4. Is your railroad owned by a parent company? If so, which one? 

No 

 

5. What are your railroad’s primary corridors?  Feeder line corridors? 

Primary: None 

Feeder: 

 

6. What is your railroad’s operating characteristic by subdivision and key segments within 

subdivisions?  (If you have more subdivision, you can add more Rows) 

a) Subdivisions and key segment route miles 

b) Gross ton-miles per year 

c) Number of slow orders  

d) Average number of railcars by weight (263,000 or 286,000) per week, month, year and 

season 

e) Total revenue 

f) Percentage non-class I line revenue 

 

7. What are the infrastructure characteristics of your class III by subdivision and key segments 

within the subdivsions? (If you have more subdivision, you can add more Rows) 

a) FRA Track Class and operating speed 

b) Current operating speed 

c) Jointed or welded rail 

d) Rail weight 

e) Rail age 

f) Ballast conditions (type of ballast, depth, etc.) 

g) Tie age and condition (i.e., plate cut, split, etc.) 

h) Weight capacity  

i) Structure sufficiency data (capability of handling 286,000 pound cars)   
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Subdivision 
Length 

(miles) 

Number of 

Slow 

Orders 

Average 263,000 lb Railcars Per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

Column 1 6 0 4 150 1000- - 3- 15- 250- - 

 

 

 

 

Subdivision 
FRA 

Track 

Class 

Current 

Operating 

Speed 

Jointed or 

Welded 

Rail 

Rail 

Weight 

Rail 

Age 

Ballast Condition 
Tie Age 

Tie 

Cond. 

Weight 

Capacity Type Depth Age Other 

Column 1 1- 10mph Jointed 
90&10

5 

60yr

s 
Limestone - 4yrs - 4yrs good - 
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8. Does your railroad have trackage rights on another railroad’s track or does another railroad have 

trackage rights over your railroad? If so what segments are shared? 

No  

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly share with 

us that show 286,000 lb railcar handling capacity; bridge structural issues; geometric issues; track 

speed; trackage rights? 

No   

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

No 

 

11. Does your company make projections as to future growth in your business? 

Yes 

 

a) If so, are these by tonnage or number of carloads? 

Number of carloads 

 

b) If so, what is the basis for these projections? 

Added businesses to our industrial park 

 

c) What are your most recent projections for the next three years? 

Year 2015 2016 2017 

Projection 0- 0 500 

 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 286,000 lb 

cars?   

Yes Sw900 and Sw1500 

 

13. Does your company have any plans to increase track capacity to handle fully loaded 286,000 lb 

railcars (or along greater lengths of track)?  If so, what track segments? Do you have a timeframe 

during which you hope to complete these upgrades?  Can you prioritize these projects? 

Not at this time 

 

14. Are there other issues that your railroad experiences that you feel hamper your operations and/or 

affect customer service? (i.e. car supply shortage)  

No 
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WICHITA TERMINAL  

1. What are the top five commodities shipped on your railroad?  

Commodities: Wheat- Flour Soybeans Scrap Soybean Oil 

 

2. Is your business affected by seasonal differentiation in products? If so explain to what extent.   

Yes. Wheat is seasonal. We will typically get most of our wheat for Ardent Mills and 

Bartlett from May-Aug. 

 

3. What are your main locations for originating and terminating traffic?  

Originating: Wichita 

Terminating: Wichita 

I have no information as to where the cars originate / terminate on the BNSF / UPRR. 

 

4. Is your railroad owned by a parent company? If so, which one? 

Yes. BNSF and UPRR 

 

5. What are your railroad’s primary corridors?  Feeder line corridors? 

Primary: N/A 

Feeder: N/A 

 

6. What is your railroad’s operating characteristic by subdivision and key segments within 

subdivisions?  (If you have more subdivision, you can add more Rows) 

a) Subdivisions and key segment route miles – We have no named subdivisions.  

b) Gross ton-miles per year - Unkown 

c) Number of slow orders – All tracks are either 5 or 10 MPH. No slows. We pull it out of 

service if not good for posted speed. 

d) Average number of railcars by weight (263,000 or 286,000) per week, month, year and 

season – N/A 

e) Total revenue – We get no revenue. All revenue collected by owning rail companies. 

f) Percentage non-class I line revenue 

 

7. What are the infrastructure characteristics of your class III by subdivision and key segments 

within the subdivsions? (If you have more subdivision, you can add more Rows) 

a) FRA Track Class and operating speed – Class 1 and Excepted – 5 mph except  10 mph on 

lead 

b) Current operating speed – 5 mph except 10 mph on lead 

c) Jointed or welded rail - jointed 

d) Rail weight – 90 to 115 lbs 

e) Rail age – new to 80 yrs old 

f) Ballast conditions (type of ballast, depth, etc.) – 2” ballast – 6 to 12 inches in depth 

g) Tie age and condition (i.e., plate cut, split, etc.) – new to 15 years old 

h) Weight capacity – 243 ton (not excepted track) 

i) Structure sufficiency data (capability of handling 286,000 pound cars)   

All tracks rate to 143 ton 
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Subdivision 
Length 

(miles) 

Number of 

Slow 

Orders 

Average 263,000 lb Railcars Per Average 286,000 lb Railcars Per 

Week Month Year Season Week Month Year Season 

Column 1 10 0 - - - - - - - - 

Subdivision 

FRA 

Track 

Class 

Current 

Operating 

Speed 

Jointed or 

Welded 

Rail 

Rail 

Weight 

Rail 

Age 

Ballast Condition Tie 

Age 

Tie 

Cond. 

Weight 

Capacity Type Depth Age Other 

Column 1 1 5 to 10 Jointed 
90 – 

115 
0-15 2”- 6-12 in  - 0-15- - 286,000 
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8. Does your railroad have trackage rights on another railroad’s track or does another railroad have 

trackage rights over your railroad? If so what segments are shared? 

We have trackage rights on BNSF and UPRR. No one has rights on WTA tracks. 

 

9. Do you have a map showing the exact segments or Sub-Divisions that you’d willingly share with 

us that show 286,000 lb railcar handling capacity; bridge structural issues; geometric issues; track 

speed; trackage rights? 

N/A 

 

10. Are there any scenarios (including economic impacts) under which you could foresee the 

abandonment of your railroad, or specific line segments? 

No 

 

11. Does your company make projections as to future growth in your business? 

No. BNSF / UPRR make marketing projections. 

 

a) If so, are these by tonnage or number of carloads? 

 

b) If so, what is the basis for these projections? 

 

c) What are your most recent projections for the next three years? 

Year 2015 2016 2017 

Projection - - - 

 

12. Do you have an adequate number of locomotives with the power to pull fully loaded 286,000 lb 

cars?   

    Yes 

 

13. Does your company have any plans to increase track capacity to handle fully loaded 286,000 lb 

railcars (or along greater lengths of track)?  If so, what track segments? Do you have a timeframe 

during which you hope to complete these upgrades?  Can you prioritize these projects? 

Adding one storage track of about 12 car lengths in 2017. 

 

14. Are there other issues that your railroad experiences that you feel hamper your operations and/or 

affect customer service? (i.e. car supply shortage)  

 

 

 


