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Abstract 

Jackson County, Kansas is situated on the west side of the Forest City Basin, location of 

the first oil discovery west of the Mississippi River (KGS),  Production in the area is 

predominately from the Viola Limestone, and a noticeable trend of oil fields has developed 

where the basin meets the Nemaha Anticline.  Exploration has been sluggish, because of the lack 

of an exploration model.  Production rates have varied widely from well to well, even when they 

are structurally equivalent.  The goal of this study was to determine the factors controlling 

reservoir quality in the Ordovician-aged Viola Limestone so that a better exploration model 

could be developed.   

A two township area was studied to examine relationships between subsurface variations 

and production rates.  In the absence of an available core through the Viola, drill cuttings were 

thin-sectioned and examined under a petrographic microscope to see the finer details of porosity, 

porosity type and dolomite crystal-size that are not visible under a binocular microscope.  

Production appears to be controlled by a combination of structural position and dolomite crystal 

size, which was controlled by secondary diagenesis in the freshwater-marine phreatic mixing 

zone.  The best wells exhibited a Viola Limestone made up of 100% very coarsely crystalline, 

euhedral dolomite crystals.  These wells occur on the east and southeast sides of present day 

anticlines, which I have interpreted to be paleo-highs that have been tilted to the east-southeast.
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Chapter 1 - Introduction 

Exploration for petroleum in Kansas began with the initial discovery in 1860, and it has 

been a major economic contributor to the state ever since. Currently, the price of oil is near 

$100/barrel, which is creating a boom in the oil and gas industry and fueling exploration efforts. 

Even though production has continued for over 150 years, there is a lot more oil left in place, and 

new exploration paradigms are expected to increase the proven reserves in Kansas. It is 

estimated that only 31% of Kansas petroleum has been discovered (Kansas Geological Survey, 

2012), therefore new exploration models are needed to discover the remaining 69% of Kansas’ 

petroleum and unlock the potential of the under explored reservoirs.  

 

Figure 1.1  Kansas oil production by reservoir (Franseen et. al 2004) 
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As seen in Figure 1.1, nearly 75% of all oil produced in Kansas comes from only 3 

reservoir systems (Mississippian, Arbuckle and Pennsylvanian).  As such, these 3 major 

reservoirs are better understood while the others reservoirs are not, and are sometimes 

completely bypassed when drilling. 

 Study Area 

 

The study area consists of 2 townships that are centered on Soldier Field, a newly 

discovered, producing oil field, located in northern Jackson County.  Geologically, the study  

Figure 1.2  Location of study area with respect to major oil fields and 

provinces of Eastern Kansas. Unnamed triangles represent Kimberlites. 

Study Area 
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area is located on the western edge of the Forest City Basin that converges with the Nemaha 

uplift (Figure 1.2).  It is situated in a line of producing fields that runs parallel to the trend of the 

Nemaha anticline and the Humboldt Fault.  This trend can be followed SSW from the Kansas-

Nebraska border in Nemaha County through Jackson and Wabaunsee Counties, and ending in 

Morris County (Figure 1.3).  Fields along this trend include the McClain, Davis Ranch, and John 

Creek fields which have produced a cumulative of 21.3 million barrels of oil to date from the 

Viola Limestone (KGS).  The majority of the smaller oil fields along the trend have produced 

several hundred thousand barrels of oil each.  There at least 17 of these ‘smaller’ fields with a 

minimum cumulative production of one hundred thousand barrels of oil.  Cumulatively, these 17 

fields have produced 6.38 million barrels of oil.  

  

 

 

 

 

 

 

 

 

  

 

 

Figure 1.3  Trend of producing Viola Limestone oil fields along western edge of the 

Forest City Basin (modified from KGS) 
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 Stratigraphy 

 

Middle Ordovician rocks above the Arbuckle Group comprise the Simpson Group, which 

includes unnamed beds of sandstone and shale, the St. Peter Sandstone, and the Platteville 

Formation, and the Viola Limestone.  The Viola Limestone of Kansas, which is upper Middle 

Ordovician, represents only part of the Viola present in Oklahoma.  It consists of dolomite and 

limestone strata containing some cherty beds characterized by black flecks and spicular and 

tubelike fragments of microorganisms. In deep parts of the North Kansas basin, the carbonate 

rocks of the Viola are dominantly dolomite, but toward margins of the basin earthy and granular 

limestone beds are present, especially at the base (Lee, 1943). The Viola occurs throughout the 

State except in places on the Central Kansas uplift, in northwestern Kansas, on the Chautauqua 

Figure 1.4  Stratigraphy of Middle and Upper 

Ordovician Series (modified from Zeller, 1968) 
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arch, and on the northern end of the Nemaha anticline. In Kansas it is bounded both above and 

below by unconformities (Zeller et al, 1968).  It is at its maximum thickness of 310 feet at the 

Kansas –Nebraska border in Washington County, and gradually thins to 20 feet thick in the 

southwest part of the state.  

In the study area, fine to coarsely crystalline dolomite composes over 95 % of the Viola 

Limestone. It replaces both micrite matrix and grains, and occurs as void-filling intergranular 

cement. Depositional textures (e.g., grains and types of porosity) are difficult to distinguish due 

to pervasive dolomite replacement, which obliterates original textures.  For the most part, this 

dolomite is thought to have formed relatively early, perhaps in the freshwater-marine phreatic 

mixing zone (Caldwell and Boeken, 1985). 

 

In areas of Kansas where the Viola has not undergone complete dolomite replacement, 

original depositional textures are still visible.  In these areas, the Viola consists of mixed-skeletal 

Figure 1.5  Idealized, shallow-subsurface carbonate diagenetic environments, 

not to scale.  Dolomitization takes place in the freshwater-marine mixing zone 

(from Caldwell and Boeken, 1985) 
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packstones, wackestones, and mudstones (Caldwell and Boeken, 1985 and St. Clair, 1981).  

More specifically, in the Forest City Basin, biota (echinoderms, brachiopods, and bryozoans) in 

the upper part of the formation suggest deposition on a relatively shallow, open-marine shelf in 

waters a few meters to a few tens of meters deep.  However, planar and cross-stratified 

grainstones and packstones of the lower Viola suggest deposition in shallower, more agitated, 

marine waters (Caldwell and Boeken, 1985). 

 Paleogeography and Depositional Setting 

 

During the time period in which the Viola was deposited, North America was located 

near the equator and an extensive epicontinental sea covered the majority of the continent 

(Barnes, 2004).  Sedimentation was controlled by this and the Transcontinental Arch (Ross, 

1976).  Kansas was split from the northwest corner to the southeast by the Central Kansas Arch 

which was part of the Transcontinental Arch (St. Clair, 1981).   

Figure 1.6  Major influencing structures present in Kansas 

during time of Viola deposition (from Merriam, 1963) 
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This created a shallow sea across the North Kansas Basin, where the study area would 

have been located at the time, which created an environment suitable for limestone deposition.  

Because the Viola was deposited in this type of environment, it is considered to be a shelf 

carbonate.  Also, during deposition there were two marine transgressions (Bornemann et al., 

1982), which are represented in some areas by differing petrology throughout the formation (St. 

Clair, 1981 and Newell, 2000). 

After deposition, there have been multiple erosional events that have affected the Viola, 

and have removed it from some of the structural highs across Kansas, so it is now completely 

absent from the subsurface in roughly 30% of the state (Newell, 2000).  The area being studied 

was also affected structurally by the Nemaha Uplift, which created the Nemaha Anticline.  The 

anticline is faulted along this eastern side in several areas by high angle reverse and normal faults 

(Merriam, 1963).  Splays from these faults may be present in the study area.  This structural 

activity produced hydrocarbon traps along the eastern side of the Nemaha Uplift and the western 

edge of the Forest City Basin.  The Viola is missing on all of the structural highs in Kansas, 

including the Nemaha Anticline, so there is speculation on the possibility of a stratigraphic trap 

(Lee, 1943), though based on regional structure and regional dip this seems very unlikely. 

 

 Importance of Viola Reservoirs 

 

 The Viola Limestone has been a proven hydrocarbon producer across the state of Kansas 

for over 100 years, and a study of ultimate oil recovery across the midcontinent (Adler, 1971) 

estimated that 11% of all oil production will come from the Middle to Upper Ordovician-aged 

formations.  The last report of petroleum production from Kansas was published by the Kansas 



8 

 

Geological Survey in 2004, but at that time an estimated 275 million barrels of oil had already 

been produced from the Viola alone.  The state of Kansas has remained a top 10 oil producing 

state since the 1900s, but for that to continue, new or under explored reserves must be realized.  

One of those under explored reservoirs is the Viola Limestone, especially in the Forest City 

Basin of northeast Kansas. 

 The oil fields that make up the trend being investigated produce mostly, or solely, from 

the Viola Limestone.  The 20 largest Viola fields in the trend have produced a cumulative of 27.7 

million barrels of oil.  This production accounts for 10% of the total Viola production from 

Kansas, and all of this is contained in parts of five counties.  Despite this proven production, 

research to examine future petroleum potential from the Viola formation has been concentrated 

in areas of Kansas where petroleum production is the greatest.  These areas include the Hugoton 

Embayment and the Sedgwick Basin.  In these areas the Viola is typically a secondary 

exploration target.  In the Forest City Basin, the Viola is most often a primary target, but 

exploration in this area has historically been slow compared to the before mentioned petroleum 

basins.  A limited number of producing reservoirs makes exploration riskier here, and there is not 

a thorough exploration model, which adds to the risk.  The goal of this study is to explain the 

variations in reservoir quality and to contribute to the development of a new exploration model. 
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Chapter 2 - Porosity and Dolomitization 

 Carbonate Porosity Types 

 

Porosity plays a key role in determining the quality of a reservoir. Porosity is simply the 

volume of the void spaces within the rock. It is an important reservoir characteristic to predict, 

because the more pore space a rock has, the more oil and gas it can potentially hold. Also 

critically important in hydrocarbon production is permeability, which is a measure of the 

connectedness of those pore spaces.  The type of porosity can positively or negatively impact the 

amount of permeability, which in turn,  affects the hydrocarbon recovery. Therefore, the ability 

to identify different types of porosity is important in this study. 

Porosity types used in this study will be based on the definitions as defined by Choquette 

and Pray’s (1970) classification of carbonate porosity.   They defined 15 different types of 

carbonate porosities; however, in this study I will only refer to intercrystalline, vuggy, fracture 

and moldic porosity types. 

 

 

 

 

 

 

 

 

Figure 2.1  Carbonate porosity types (from Scholle and Ulmer-Scholle, 2003, originally modified 

from Choquette and Pray, 1970) 
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Intercrystalline, or intercrystal, porosity occurs between crystals of similar size that have formed 

by mineral recrystallization or dolomitization.  This occurs as the fluid chemistry changes within 

the rock. The chemistry can change late in burial, due to hydrocarbon maturation, or earlier if the 

limestone is influenced by meteoric water caused by an unconformity. The size of the crystals 

being formed has an impact on permeability. Permeability will decrease as the size of the crystals 

decrease, because of excessive surface tension effects (Choquette and Pray, 1970). 

 

Vuggy porosity is described as irregular holes that can cut across grains and cement boundaries 

within the rock. Vugs and vuggy porosity are probably the most commonly used porosity type 

when referring to carbonates, as definitions and usages vary widely by geologist.  According to 

Choquette and Pray (1970), a “vug” is a pore that (1) is somewhat equant, or not markedly 

elongated, (2) has a diameter greater than 1/16 mm (and visible to the unaided eye), and (3) is 

not fabric selective.  Vuggy porosity is dominantly a secondary porosity and most often occurs 

because of dissolution.  Most vugs may represent solution enlargement of fabric-selective pores 

and occur at a stage in digenesis when solution is apparently indiscriminate of fabric elements. 

 

Fracture porosity is porosity formed by fracturing.  “Fracture porosity generally is used for 

porosity occurring along breaks in a sediment or rock body where there has been little mutual 

displacement of the opposing blocks.”  In carbonates, fractures can originate in a number of 

ways.  Most common is due to any kind of tectonic deformation, but may also come about from 

collapse or slumping due to dissolution (Choquette and Pray, 1970).  Fractures are important in 

reservoir rocks because they connect pores, creating permeability that may not have been present 

originally. 
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Moldic porosity is a secondary process in which grains are removed by dissolution. In order for 

this process to occur there needs to be a distinct difference in solubility between the grains and 

the framework (Choquette and Pray, 1970).  Moldic porosity can create good permeability if 

pores are interconnected. 

 Dolomitization 

 
Dolomite is a complex mineral, and despite its economic importance in the petroleum 

industry, it remains poorly understood.  The mineral dolomite can precipitate directly from 

solutions containing magnesium, calcium and carbonate ions to form cement or unlithified 

sediment (protodolomite), however, most dolomite forms through the chemical alteration of 

precursor carbonate rock or sediment; primarily limestone or calcareous muds.  When these 

precursor materials are exposed to magnesium-rich fluids, a portion of the calcium ions may be 

replaced by magnesium ions to form the more stable magnesium calcium carbonate known as 

dolomite.  This process of forming secondary or replacement dolomite is called dolomitization 

(Mishari, 2009).   
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Dolomitized limestones are important because they make up some of the world’s largest 

oil and gas reservoirs, and dolomites typically make better reservoirs than limestones.  

Exploration efforts specifically targeted at dolomite reservoirs have paid off in the form of 

numerous oil and gas fields around the world.  It is estimated that up to 50% of the world’s 

carbonate reservoirs are in dolomite, and in North America that estimate ranges up to 80% 

(Warren, 2000). 

The most important consequence of replacement dolomitization is an accompanying 

increase in porosity.  Dolomite has a more compact crystal structure than calcite, so in theory 

Figure 2.2  SEM image of dolomite replacement.  Dolomite rhombs (green) 

growing over original calcite (blue) that was high in magnesium (from Nurmi and 

Standen, 1997) 
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total dolomitization of a limestone should result in a porosity increase of 13%, barring any 

subsequent compaction or cementation (Nurmi and Standen, 1997).  While this is true in theory, 

it normally does not correlate to the actual rocks.  Dolomitization generally creates greater 

effective porosity, but most diagenetic changes tend to reduce overall porosity.  Effective 

porosity lacks a single definition, but it is best described as “the porosity of a rock or sediment 

available to contribute to fluid flow through the rock or sediment.”  Studies have shown that the 

planar grains of dolomites create polyhedral pores (Nurmi and Standen, 1997).  Consequently, as 

the rhombs develop they produce sheet pores and throats, rather than the tubular pores and 

throats that characterize limestones (Figure 2.2).  Sheet pores and throats allow greater fluid 

flow, thus increasing effective porosity, even though overall porosity may have stayed the same 

or even decreased. 

Dolomite crystal formation plays another role in reservoir quality.  Dolomite frequently 

forms larger crystals than the calcite it replaces.  Enlarged crystal size is associated with 

increases in pore-throat size and pore smoothness, 

which boost permeability in dolomites (Mishari, 

2009).  So more coarsely crystalline dolomites 

should have better permeability than those with 

fine or micro- sized dolomite crystals.  

Allan and Wiggins (1993) evaluated the 

quality and characteristics of dolomite and 

limestone reservoirs around the world and found 

that dolomite reservoirs also hold their original 

porosity better at greater depths than limestones do 

Figure 2.3  Progressive loss of porosity with 

depth (from Allan and Wiggins, 1993) 
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(Figure 2.3).  This is very important for dolomite reservoirs around the world as exploration 

targets deeper and deeper reservoirs, but not as much for Kansas petroleum reservoirs.  Wells in 

Kansas are rarely drilled to depths where this would become a factor. 
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Chapter 3 - Methods 

 Creating the Database 

 

A data base was compiled comprising all known wells in Townships 6S-13E and 7S-13E, 

Jackson County, Kansas. Most well header information, including spot location, well symbols, 

operator, unique well identification number, lease name, and well remarks, was downloaded 

from public access information available from the Kansas Geological Survey website. Some well 

information for new wells being drilled in the Soldier Field was generously provided privately by 

George Petersen and L.D. of L.D. Drilling.  This information was imported into Petra software, 

made available on an academic license to KSU from IHS, Inc. The location of each well was 

entered and referenced using the North American Datum 83.  

Also obtained from the Geological survey were wire line logs and tops data in the study 

area. The Kansas Geological survey had sixty wire line logs available, and formation tops listed 

for approximately one-fourth of the wells. Each top that was imported into Petra was checked 

using scout cards and wire line logs from Walter’s digital library in Wichita, Kansas. Dozens of 

tops taken from the KGS were incorrect, and had to be corrected by log evaluation to insure 

quality data for mapping. In addition, many wells had no formation top data listed by the KGS, 

so these had to be found using wire line logs or scout cards.  Since the well logs are scanned 

photocopies of the original paper logs, and not digital, each log had to be calibrated so that Petra 

could recognize depths. All cartographic data that were imported into the map module of Petra 

were downloaded from the Kansas Geospatial Community Commons website 

(http://www.kansasgis.org/). The data downloaded included county lines and public land survey 
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system.  Compiling all of the data was very time consuming because all data had to be manually 

entered into Petra. 

 Using Petra 

 

Using the cross-section module in Petra, tops for the Hunton Limestone, Maquoketa 

Shale, Viola Limestone, and Simpson Sandstone were hand-picked for all wells with available 

well logs. Tops were picked by interpreting log signatures of the gamma ray curve, neutron 

curve, density curve, and induction curve. Each formation looks significantly different in their 

log characteristics (Figure 3.1). No type log had been established for Jackson County which 

made picking tops more challenging.  Eventually, cross referencing logs from the Leach Field 

and the McClain Field in township 4S-14E proved to be the most reliable, as they are the most 

intensely drilled fields around the study area.  

After all tops were picked, structure maps were constructed to aid in determining current 

day structure, paleostructure, and stratigraphy. Structure maps were constructed on the top of the 

Hunton, Maquoketa and Viola formations, using the map module in Petra.  A structure map of 

the Simpson was created, but a lack of deeply drilled wells makes it somewhat unreliable.  The 

main module in Petra calculated the thickness of the formations for all wells. Isopach maps of 

the Viola Limestone and Maquoketa Shale were constructed using the calculated formation 

thickness values. The purpose of creating this variety of maps was to aid in interpreting the data. 

Structure maps were combined with production data to determine the control of structure on 

production. Isopach maps combined with production data were created to determine if thickness 

has influence on the quality of the reservoir. A variety of wells were chosen to examine well 
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cuttings based upon the different maps and well logs. The array of wells that were chosen had 

variable production rates. 

 

Figure 3.1  Differences in log characteristics for the Hunton, Maquoketa, Viola and 

Simpson formations. 

Hunton Limestone Top 

Mauoketa Shale Top 

Viola Limestone Top 

Simpson Group Top 
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Well Cuttings 

 

Twelve wells were picked for drill-cutting study and obtained from the Kansas 

Geological Survey Well Sample library in Wichita, Kansas.  Before viewing the cuttings for each 

well, the lag time was estimated from the log data and drill time data, in order to correctly predict 

the sample depth that contains the samples from the Viola Limestone formation.  The Viola was 

easily distinguished from the overlying Maquoketa Shale, which made finding the correct sample 

depths easier.  All cuttings at the depth of the Viola were first examined using a binocular 

microscope.  The cuttings were viewed to get a sense of the type and amount of porosity present, 

crystalline size and texture, and determine if any oil staining was still present.  Individual 

cuttings were then hand-picked from each well and mounted as grain mounts.  These were 

mounted using an epoxy resin, and then hand polished to a thickness of approximately 30 

microns using corundum powder to create the thin section.  Each thin section was carefully 

viewed under a petrographic microscope to more clearly examine variations in crystal size and 

shape, and porosity types in greater detail than the binocular microscope allows. 
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Chapter 4 - Results 

 Thin Sections 

 

Table 4-1 lists the results of the drill cutting examination done by creating thin sections 

and viewing under a petrographic microscope.  Thin sections were viewed to see porosity, 

determine porosity type, and to see the dolomite crystal size and shape to determine if any of 

these factors were controlling reservoir quality.  Crystal size and shape descriptions were based 

on Scholle and Ulmer Scholle’s (2003) Guide to the Petrography of Carbonate Rocks.  Figure 

4.1 shows names given for crystal sizes and Figure 4.2 shows differences in crystal shapes.  

Images of thin sections can be found in the Appendix. 

 

 

 

 

 

Figure 4.1  Names for crystal sizes used in Table 4.1 (from 

Scholle and Ulmer-Scholle, 2003) 
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Table 1 Descriptions of thin sections 

Field Well 
Depth 

(ft) 
Porosity Type Comments Figure 

Soldier Henry Trust 4 
3340-

3350 

Vuggy, 

Intercrystalline 

Great porosity, 

euhedral, very 

coarsely crystalline 

7.1 

Soldier Henry Trust 4 
3340-

3350 

Vuggy, 

Intercrystalline 

Very coarsely 

crystalline, euhedral  

Soldier Henry Trust 4 
3350-

3360 

Vuggy, 

Fracture, 

Intercrystalline 

Very coarsely 

crystalline, euhedral  

Soldier Henry Trust 4 
3350-

3360 
Intercrystalline 

Very coarsely 

crystalline, euhedral  

Soldier Henry Trust 4 
3360-

3363 

Vuggy, 

Intercrystalline 

Very coarsely 

crystalline, euhedral  

Figure 4.2  Description of crystal fabrics seen in replacement 

dolomites 
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Soldier Henry Trust 4 
3363-

3370 

Fracture, 

Intercrystalline 

Dolomite crystals 

begin to get smaller, 

coarse to very coarse, 

subhedral to euhedral 

7.2 

Soldier Henry Trust 4 
3370-

3380 
None 

A few calcite crystals 

remain, coarsely 

crystalline, subhedral 
 

Soldier Henry Trust 5 
3375-

3380 

Vuggy, 

Intercrystalline 

Very coarse to 

coarsely crystalline, 

euhedral 

7.3 

Soldier Henry Trust 5 
3380-

3390 
Intercrystalline 

Very coarse to 

coarsely crystalline, 

euhedral 

7.4 

Soldier Henry Trust 5 
3390-

3400 

Intercrystalline, 

but not 

abundant 

Coarsely crystalline, 

subhedral  

Soldier Henry Trust 5 
3400-

3410 

Intercrystalline, 

but not 

abundant 

Coarsely crystalline, 

subhedral  

Soldier 

West 
Dugan 1 

3410-

3416 

Vuggy, 

Intercrystalline 

Euhedral, Very 

coarsely crystalline, 

but rhombs smaller 

than in Henry Trust 4 

7.5 

Soldier 

West 
Dugan 1 

3416-

3420 
Intercrystalline 

Perfectly euhedral 

dolomite rhombs, 

very coarse to 

coarsely crystalline 

 

Soldier 

West 
Dugan 1 

3420-

3430 
Vuggy 

Subhedral, coarsely 

crystalline  

Soldier 

West 
Dugan 1 

3430-

3440 
None 

Subhedral, medium 

crystalline  
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Soldier 

West 
Dugan 2 

3400-

3407 
Intercrystalline 

Euhedral to 

subhedral, very 

coarsely crystalline, 

but rhombs smaller 

than Henry Trust 4 

 

Soldier 

West 
Dugan 2 

3407-

3410 

Intercrystalline, 

Vuggy 

Euhedral to 

subheadral, very 

coarse to coarsely 

crystalline 

 

Soldier 

West 
Dugan 2 

3410-

3420 
Intercrystalline 

Coarsely crystalline, 

subhedral 
7.6 

Soldier 

West 
Dugan 2 

3420-

3430 
None 

Subhedral to 

nonplanar, coarse to 

medium crystalline, 

some calcite remains 

 

Soldier 

West 
Dugan 2 

3430-

3440 
None 

Individual crystals 

not identifiable  

Wildcat Rieschick 1 
3400-

3410 
Vuggy 

Coarsely crystalline, 

subhedral  

Wildcat Rieschick 1 
3410-

3420 

Intercrystalline, 

Vuggy 

Coarse to medium 

crystalline, subhedral 

7.7 

7.8 

Wildcat Rieschick 1 
3420-

3430 
Slightly vuggy 

Medium crystalline, 

subhedral to 

nonplanar 
 

Wildcat Rieschick 1 
3430-

3440 
None 

Medium crystalline, 

subhedral to 

nonplanar, calcite 

present 

 

Wildcat 
Carl V Smith 

1 

3530-

3540 

Slightly vuggy, 

Fracture 

Medium crystalline, 

subhedral to 

nonplanar. No  

effective porosity 

7.9 

Wildcat 
Carl V Smith 

1 

3540-

3550 
Fracture 

Cannot distinguish 

individual crystals, 

nonplanar 
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Wildcat 
Carl V Smith 

1 

3550-

3560 
None 

Cannot distinguish 

individual crystals, 

nonplanar, some 

calcite remaining 

 

Wildcat Waters 1 
3400-

3404 
None 

Nonplanar; mass of 

dolomite. No 

effective porosity. 

Striations and 

twinning in dolo. 

 

Wildcat Waters 1 
3400-

3404 
None 

No individual 

crystals  

Wildcat Waters 1 
3400-

3404 
None 

No individual 

crystals  

Wildcat Waters 1 
3404-

3410 
None 

No individual 

crystals  

Leach Wykert 1 
3320-

3325 

Vuggy (smaller 

vugs) 

Poor effective 

porosity; small pore 

throats. Subhedral, 

coarse to medium 

crystalline 

7.10 

Leach Wykert 1 
3325-

3330 

Vuggy (smaller 

vugs) 

Coarse to medium 

crystalline, subhedral, 

some dol. rhombs 

have dark inclusions 

7.11 

Leach Wykert 1 
3330-

3340 
None 

Subhedral to 

nonplanar, coarse to 

medium crystalline, 

some unreplaced 

calcite remains 

7.11 

Leach Bennett A 5 
3200-

3210 

Intercrystalline, 

Vuggy 

Very coarse to 

coarsely crystalline, 

euhedral to subhedral 
 

Leach Bennett A 5 
3210-

3212 

Intercrystalline, 

Vuggy 

Very coarsely 

crystalline, euhedral 

to subhedral 

7.12 
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Leach Bennett A 5 
3212-

3220 

Intercrystalline, 

Vuggy 

Very coarsely 

crystalline, euhedral 

to subhedral 
 

Leach Bennett A 5 
3320-

3330 
Intercrystalline 

Coarsely crystalline, 

subhedral  

Leach Bennett A 5 
3330-

3340 
Intercrystalline 

Coarsely crystalline, 

subhedral  

Leach Leach 'A' 1 
3270-

3280 

Intercrystalline, 

Vuggy, 

Fracture 

Coarse to very 

coarsely crystalline, 

euhedral to 

subhedral, but 

smaller than Bennett 

A 5 

7.13 

Leach Leach 'A' 1 
3280-

3290 

Intercrystalline, 

Vuggy 

Coarse to very 

coarsely crystalline, 

euhedral to subhedral 
 

Leach Leach 'A' 1 
3290-

3300 

Slight 

intercrystalline, 

Vuggy, 

Fracture 

Coarsely crystalline, 

subhedral, 

increasingly smaller 

crystals with depth 

7.14 

Leach Leach 1 
3230-

3240 

Excellent 

intercrystalline, 

Vuggy, Moldic 

Very coarsely 

crystalline, up to 3 

mm, perfectly 

euhedral, larger pores 

probably from 

selectively dissolved 

crystals (moldic 

porosity) 

7.15 

Leach Leach 1 
3240-

3250 

Intercrystalline, 

Vuggy 

Very coarsely 

crystalline, euhedral  

Leach Leach 1 
3250-

3260 

Intercrystalline, 

Vuggy 

Very coarsely 

crystalline, euhedral 

to subhedral 
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Leach Leach 1 
3260-

3270 
Intercrystalline 

Very coarse to 

coarsely crystalline, 

euhedral to subhedral 
 

Leach 
M. A. 

Beightel 1 

3320-

3330 

Intercrystalline, 

Vuggy 

Very coarse to 

coarsely crystalline, 

euhedral to 

subhedral, limited 

intercrystalline 

porosity b/c of 

smaller crystal size 

 

Leach 
M. A. 

Beightel 1 

3330-

3340 

Intercrystalline, 

Vuggy 

Coarsely crystalline, 

subhedral, rapid loss 

of porosity wih depth 

7.16 

Leach 
M. A. 

Beightel 1 

3340-

3350 
Slightly vuggy 

Coarsely crystalline, 

subhedral  

Leach 
M. A. 

Beightel 1 

3350-

3360 
None 

Medium to coarely 

crystalline, subhedral, 

no efective porosity, 

calcite 

7.17 

 

 Subsurface Maps 

 

The following maps were created to determine how different attributes control 

production.  All maps were created using the Petra software and data collected through well log 

analysis, thin-section descriptions and formation thickness calculations.  Maps labeled as 

structure maps show subsea structure of the top of a formation.  Subsea data is used to eliminate 

variations in drilling depth caused by surface elevation changes. 
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 Base Map 

 

Figure 4.3  Base map of study area displying well location and symbols 
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 Viola Structure 

 

Figure 4.4  Structure of the Viola Limestone. Contour interval is 10 feet 
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 Cuttings Locations 

 

Figure 4.5  Map displays wells where drill cuttings were collected and examined 
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 Cuttings Locations Relative to Structure 

 

Figure 4.6  Map displaying drill cuttings locations with respect to Viola Structure 
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 Viola Isopach 

 

Figure 4.7  Isopach map of the Viola Limestone.  Contour interval is 1 foot 
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 Maquoketa Structure 

 

Figure 4.8  Structure of the Maquoketa Shale which directly overlies the Viola.  Contour 

interval is 10 feet 
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 Simpson Structure 

 

Figure 4.9  Structure of the Simpson Group which lies at the Viola base.  Contour interval 

is 10 feet 
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Chapter 5 - Discussion 

 Structure and Production 

 

Oil discoveries correlated well with the structure map of the top of the Viola Limestone.  

Anticlines with closure that are trending NE are the trapping mechanism for the Soldier and 

Leach Fields.  But looking at how long wells produced and which are still producing raised a 

question: Why are some wells on top of the structure plugged after as little as 1 month, when 

others on the limbs produce for years? 

Here is one example referring to the arrowed wells in Figure 5-1.  The well on the left is 

the Dugan 1 and the well to the right is the Henry Trust 4.  The Viola top is 15 feet higher at the 

Dugan 1 well than at the Henry Trust 4.  However, the Dugan 1 was plugged only 1 month after 

completion, while the Henry Trust 4 has been producing oil for 6 months and is still going.  The 

Henry Trust 4 well also had a drill stem test that flowed oil to the surface, even though it was the 

last completed producing well on the structure.  So while structure did determine where oil 

would be encountered, some wells located on structure did not produce commercially, whereas 

some wells did even though they were beginning to be slightly off structure.  The differences in 

production must be a function of reservoir quality. 



34 

 

 

Figure 5.1  Viola structure. Arrowed wells are Dugan 1 (left) and Henry Trust 4 (right).  

Viola top is 15 feet higher at Dugan 1 compared to Henry Trust 4. Contour interval is 10 

feet.   
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  Dolomitization and Structure 

 

Viewing the thin sections under the petrographic microscope showed that there was a 

wide range of dolomite crystal sizes and fabrics, and this seems to be the controlling factor for 

reservoir quality.  Dolomite crystals ranged in size from .125 mm (medium crystalline) all the 

way up to 3.5 mm (very coarsely crystalline).  Along with crystal size, the crystal fabric (shape) 

had a wide range, seeing both planar types as well as nonplanar.  After viewing samples from 

only a few wells, it became clear that dolomite crystal size and fabric was the main force 

controlling reservoir quality.  In wells that were at the top of structures, the upper Viola was 

composed of 100% dolomite in very coarsely crystalline, euhedral (planar-e) crystals.  Wells 

located in structural lows showed a Viola composed of medium crystalline, subhedral (planar-s) 

to nonplanar dolomite crystals, and some even showed up to 20% calcite remaining. 

 Reservoir Quality 

 

Nearly all wells had samples that showed vuggy porosity, but samples with the large, 

euhedral dolomite crystals always had more effective porosity.  These samples came from wells 

on the top and eastern limbs of the anticlines (Figure 5.2), and had very good intercrystalline 

porosity.  Because of the larger crystal size, dolomite rhombs could not fit together tightly, 

leaving void space between them (Figure 5.3).  This porosity is extremely beneficial because the 

intercrystalline porosity is well connected, which in turn connects the many vugs present.  As 

wells moved off structure crystal size began to shrink, and so too did the intercrystalline 

porosity.  The smaller crystals were easier to pack and compress together, which squeezed the 

pore throats, getting rid of the intercrystalline porosity and the permeability it produces.  So 
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while a medium to coarse crystalline dolomite may show good log porosity because of vugs, 

those vugs are not connected, which makes the effective porosity of the rock close to zero. 

 

 

Figure 5.2 Examples of good reservoir (upper) vs. poor reservoir (lower) quality at same 

scale.  Larger euhedral crystals connect pores in good reservoirs.  In poor reservoirs, 

smaller subhedral to nonplanar crystals lack permeability and isolate vugs.  Apparent 

intercrystalline porosity in lower image is caused by extinction. 
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Figure 5.3  Map displaying reservoir quality with respect to Viola structure 

 Dolomitization and Maquoketa Isopach 
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Figure 5.4  Map displays reservoir quality's relation to Maquoketa Shale thickness 
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It was originally thought that the trapping structures may have developed before the 

Maquoketa Shale was deposited.  If this were the case, then the Maquoketa should be noticeably 

thinner on top of structures, and thicker off-structure.  During exploration, one could then just 

measure how much Maquoketa was drilled, and determine whether or not that location was on a 

structural high.  Looking at Figure 5.3 it looks as though this idea is not true.  The Maquoketa 

thickness seems to have no relation to production or reservoir quality.  It is actually thicker on 

top of the Soldier field anticline than in surrounding areas, and shows a range of thicknesses 

across the Leach field anticline. 

 Key to Understanding the Results 

 

As seen in Figure 5.1, the structure of the Viola Limestone controls where oil will be 

encountered.  It did not however explain why productive wells on the east sides of the anticlines 

studied produced more, and longer, than those on the west sides, even when wells were at equal 

elevations.  Viewing the drill cuttings as thin sections under a petrographic microscope provided 

the most useful information in regards to reservoir quality, which controls prolonged production.  

Figure 5.2 shows how differences in dolomitization are closely related to differences in 

production.  The greater production on the east sides of anticlines is caused by larger, more 

euhedral dolomite crystals that make up the Viola Limestone there.  The larger crystal size 

produces a better reservoir because of greater overall porosity and increases pore throat size, 

which makes permeability higher.  Why they occur along the east flanks became a puzzling 

question, and the answer was found in research done by Wallace Lee in the Forest City Basin 

(Lee, 1943). 
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 The study was characterized by Lee as a “report embodies the results of a study of the 

stratigraphy and structural history of that part of the Forest City basin lying in northeastern 

Kansas. It is based on the microscopic examination of samples from wells and the correlation 

and interpretation of the lithologic units recognized in the area.”  The first thing Lee found was 

that a major period of deformation occurred almost immediately after the middle and late 

Ordovician Series were deposited, creating local highs in the Viola and Maquoketa.  As the basin 

then continued to sink and be buried, those local highs continued to rise and deform into 

anticlines with greater relief.  This caused the highs and lows of the Viola to go through 

diagenesis and dolomite recrystallization at different times, producing different crystal sizes and 

fabrics. 

 Lee also found that the regional dip of the east side of the Forest City Basin has changed 

directions over time.  After the Ordovician system had been deposited, regional dip of the area 

was slightly to the northwest, but during the Nemaha uplift of late Paleozoic-age, that regional 

dip was reversed to a steeper southeast direction.  By changing dip direction, the paleo-highs of 

the earlier formed anticlines are now located on the east and southeast limbs of the structures 

seen in the subsurface today, which explains the trend of better reservoir quality of the east and 

southeast sides of the Soldier and Leach field anticlines.  
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Chapter 6 - Conclusions 

Subsurface mapping of all wells in a two township area in northeast Jackson County, 

Kansas was done in order to predict where petroleum accumulations occur in the Viola 

Limestone formation.  Oil was found on top of structural highs, as is common in the majority of 

Kansas’ reservoirs.  Structure maps did not, however, explain why production rates vary from 

well to well across those structural highs.   

 To better understand the difference in production rates in the Viola, drill cuttings were 

collected from various wells that represented a range of different structural locations and 

petroleum productions.  Thin sections were made out of drill cuttings samples so that they could 

be examined under a petrographic microscope.  Thin section evaluation allowed porosity, 

porosity type, and dolomite crystal attributes to be seen in detail.  These findings were combined 

with production data (when available) to establish the quality of the reservoir and determine what 

factors, if any, were controlling production rates.   

 The variation in production rates of wells producing from the Viola Limestone is 

explained by varying reservoir quality, which is controlled directly by dolomite crystal size and 

fabric.  Porosity and permeability were best developed on Paleozoic highs that underwent 

diagenesis and dolomitization at different times than the lows.  Differences in dolomite crystal 

size and fabric were the result.  Larger, more euhedral dolomite crystals create increased 

effective porosity and permeability by creating enlarged pore sheets that allow greater fluid flow. 

 The best exploration model for Viola production along the western flank of the Forest 

City Basin is to identify structural highs in the subsurface.  Mapping the Viola itself, or the 

overlying Hunton Limestone, can accomplish this.  Once structural highs are identified, wells on 

the east and southeast sides of the anticline will see the greatest production and well longevity.  
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Those wells will encounter the Viola that was a paleo-high during the time it went through 

dolomitization, giving it the coarsest, most euhedral crystals, and thus the greatest effective 

porosity and permeability. 
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Appendix A - Thin Section Images 

 

Figure 7.1  Thin section of cutting sample from well Henry Trust 4 

 

 

Figure 7.2  Thin section of cutting sample from well Henry Trust 4 
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Figure 7.3  Thin section of cutting sample from well Henry Trust 5 

 

 

Figure 7.4  Thin section of cutting sample from well Henry Trust 5 
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Figure 7.5  Thin section of cutting sample from well Dugan 1 

 

 

Figure 7.6  Thin section of cutting sample from well Dugan 2 
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Figure 7.7  Thin section of cutting sample from well Reischick 1 

 

 

Figure 7.8  Thin section of cutting sample from well Reischick 1 

 



49 

 

 

Figure 7.9  Thin section of cutting sample from well Carl V Smith 1 

 

 

Figure 7.10  Thin section of cutting sample from well Wykert 1 
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Figure 7.11  Thin section of cutting sample from well Wykert 1 

 

 

Figure 7.12  Thin section of cutting sample from well Bennett A 5 
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Figure 7.13  Thin section of cutting sample from well Leach ‘A’ 1 

 

 

Figure 7.14  Thin section of cutting sample from well Leach ‘A’ 1 
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Figure 7.15  Thin section of cutting sample from well Leach 1 

 

 

Figure 7.16  Thin section of cutting sample from well M.A. Beightel 1 
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Figure 7.17  Thin section of cutting sample from well M.A. Beightel 1 

 

 


