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Abstract 
 

This study evaluated sixteen canine nasal carcinoma and five normal nasal epithelium 

samples for expression and phosphorylation of known targets of toceranib [vascular endothelial 

growth factor receptor-2 (VEGR2), platelet derived growth factor alpha (PDGFR-a), platelet 

derived growth factor receptor beta (PDGFR-b), and stem cell factor receptor (c-KIT)] and 

epidermal growth factor receptor 1 (EGFR1) using immunohistochemistry, RT-PCR and a 

receptor tyrosine kinase (RTK) phosphorylation panel. Protein for VEGFR2 was expressed in 

neoplastic cells of all carcinomas, PDGFR-a was noted in 15/16, whereas PDGFR-b was 

detected in 3/16 samples, but showed primarily stromal staining.  Protein expression for c-KIT 

was present in 4/16 and EGFR1 was noted in 14/16 samples. Normal tissue showed variable 

protein expression of the RTKs. Messenger RNA for VEGFR2, PDGFR-b, and c-KIT were 

noted in all samples.  Messenger RNA for PDGFR-a and EGFR1 were detected in 15/16 

samples. All normal nasal tissue detected messenger RNA for all RTKs of interest.  Constitutive 

phosphorylation of VEGFR2, PDGFR-a, PDGFR-b and c-KIT was not observed in any 

carcinoma or normal nasal sample, but phosphorylation of EGFR1 was noted in 10/16 carcinoma 

and 3/5 normal samples. The absence of major phosphorylated RTK targets of toceranib suggests 

the clinical effect of toceranib may occur through inhibition of alternative and currently 

unidentified RTK pathways in canine nasal carcinomas.  The observed protein and message 

expression and phosphorylation of EGFR1 in the nasal carcinoma samples merits further inquiry 

into EGFR1 as a therapeutic target for this cancer.
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Chapter 1- Introduction 
Epithelial tumors, including adenocarcinoma, squamous cell carcinoma, and 

undifferentiated carcinoma, comprise nearly two-thirds of canine intra-nasal neoplasia. 1,2  These 

tumors are characterized by progressive local invasion and a low metastatic rate at the time of 

initial diagnosis, but may be as high as 40-50% at the time of death.3  The cause of death in most 

patients is typically attributable to extensive primary disease rather than the presence of 

metastasis. Owing to this biologic behavior, external beam radiation therapy is the treatment of 

choice for canine intranasal tumors. Radiation therapy substantially improves survival, with 

median survival times of 7-23 months compared to 3 months for those patients that do not 

receive any form of treatment.4-7  Despite most dogs experiencing a favorable response to 

treatment, the majority of dogs treated with radiation therapy will experience tumor recurrence 

and suffer from progressive disease.  In lieu of radiation therapy or when tumor recurrence is 

documented after radiation therapy, some owners may elect to pursue other treatment options 

such as chemotherapy.  

 Protein kinases are normal regulators of cell signaling that act through phosphorylation of 

other proteins and are stimulated by growth factors.  Protein kinases can be expressed on the cell 

surface, cytoplasm, or even the nucleus.  Toceranib phosphate (Palladiaâ, Pfizer Animal Health, 

Madison, NJ, USA) is an FDA-approved canine drug that is a multi-kinase inhibitor that was 

developed to inhibit stem cell factor (c-KIT), a receptor tyrosine kinase (RTK) that is mutated in 

approximately 30% of canine mast cell tumors.8  Multi-kinase inhibitors like toceranib work by 

blocking the ability of the kinase to bind ATP, as this is necessary for donating the phosphate 

group that phosphorylates the tyrosine kinase as well as downstream targets.  The first clinical 

evaluation of toceranib in veterinary medicine was a phase I clinical trial evaluating safety and 
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activity of the drug in dogs with a variety of tumor types. Mast cell tumors exhibited the highest 

frequency of response, but evidence for anti-tumor activity of toceranib was found in 54% of 

other treated cases including patients with carcinomas, sarcomas, melanoma, and multiple 

myeloma.9  More recently, efficacy of toceranib phosphate has been retrospectively evaluated in 

a variety of solid tumor types, including nasal carcinomas.10  Dogs receiving toceranib in this 

study exhibited a resolution of clinical signs, with one dog having an objectively measured 

complete response and another with stable disease, indicating toceranib phosphate may possess a 

role in the treatment of canine nasal carcinomas.  Toceranib phosphate inhibits the activity of 

several RTKs linked to cancer biology including: vascular endothelial growth factor receptor 2 

(VEGFR2), platelet derived growth factor receptor a (PDGFR-a), platelet derived growth factor 

receptor b (PDGFR-b), FMS-like tyrosine kinase 3 (FLT-3), colony stimulating factor receptor 1 

(CSFR1), and stem cell factor receptor (c-KIT).11  With this spectrum of inhibition, toceranib can 

act as an oral anti-angiogenic agent in those tumors that exhibit angiogenic RTKs such as 

VEGFR2, PDGFR-a, and PDGFR-b.9,12  

 Several RTK targets of toceranib expressed by canine nasal carcinomas are responsible 

for angiogenic sprouting and vascular maturation, both defined processes in vasculogenesis and 

angiogenesis that are imperative for tumor growth.9,12-14  In one report of 187 dogs with nasal 

carcinoma, VEGFR was detected in 84.5%, PDGFR-a in 71.1%, and PDGFR-b in 39.6% of 

tumors by immunohistochemistry.13  While VEGFR was expressed in the majority of these 

canine nasal carcinomas, another report showed that 91.7% of epithelial nasal tumors also 

expressed the VEGF ligand.14  Additionally, one report of dogs with solid tumors treated with 

toceranib identified significantly increased plasma VEGF level, a surrogate marker for VEGFR2 

inhibition, denoting a possible anti-angiogenic effect.15  Although potential RTK targets are 
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present in canine nasal carcinomas, it is not known whether their constitutive phosphorylation is 

a direct underlying mechanism of toceranib’s activity.   

Epidermal growth factor receptor expression has been noted in a variety of canine tumors 

including transitional cell carcinoma, mammary carcinomas, gliomas, and pulmonary 

adenocarcinoma. 16-19 Canine nasal carcinomas have also been shown to express epidermal 

growth factor receptor 1 (EGFR1) in 55% of tumors.14 Epidermal growth factor receptor is the 

principal RTK expressed in human head and neck tumors and represents a therapeutic target for 

humans afflicted with this type of cancer.20,21 Based on kinome analysis, EGFR1 activity is not 

inhibited by toceranib, but it may represent a future therapeutic target for dogs with nasal 

carcinoma.22  

 In light of toceranib’s spectrum of RTK inhibition and clinical activity against canine 

nasal carcinomas, the intent of this study was to assess this tumor type for the phosphorylation of 

VEGFR2, PDGFRa, PDGFR-b, and c-KIT and to subsequently verify the protein and messenger 

RNA expression of these RTKs to obtain a more detailed understanding into their functional 

relationship with toceranib’s efficacy.  A secondary aim of this study was to evaluate the 

phosphorylation of EGFR1, as well as a panel of other RTKs, and to demonstrate expression of 

EGFR1 at the messenger RNA and protein level to validate EGFR1 as a prospective target in the 

treatment of canine nasal carcinomas. With these objectives, it was hypothesized that canine 

nasal carcinoma expresses a complement of RTKs involved in tumor growth and metastasis and 

are targets of toceranib phosphate.  Additionally, it was hypothesized that targets of toceranib are 

constitutively phosphorylated in canine nasal carcinoma.  
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Chapter 2 – Approach to Research 

Nasal tissue samples from normal (non-tumor bearing) dogs and dogs with intra-nasal 

tumors were collected following routine diagnostic sampling or at the time of necropsy between 

August 2013 and March 2015. Tissue obtained post-mortem was done so specifically for 

collection of normal nasal epithelium from dogs that presented for necropsy with no reported 

clinical signs (e.g. epistaxis, facial swelling or deformity, nasal discharge, or stridor) of an intra-

nasal tumor. Routine H&E histopathology was used to confirm normal nasal epithelium from 

five dogs without nasal tumor and confirm nasal carcinoma in sixteen dogs with nasal tumors.  

Each tissue sample was divided 3:1 by volume. The larger fraction was placed in formalin and 

processed for routine H&E staining. The smaller fraction was halved (split 1:1 by volume) and 

either snap frozen in liquid nitrogen and stored at -80°C or placed in a stabilizing solution to 

preserve RNA (RNAlaterâ, Qiagen, Valencia, CA). 

Immunohistochemistry 

Samples were reviewed by an anatomical pathologist (JH) and confirmed as normal 

canine nasal epithelium or nasal carcinomas using routine H&E staining. Immunohistochemical 

staining was performed for c-KIT (Dako, rabbit polyclonal) at 1:600 dilution23, VEGFR2 (Santa 

Cruz Biotechnology, mouse monoclonal) at 1:75 dilution24, PDGFR-a (Santa Cruz 

Biotechnology, rabbit polyclonal) at 1:500 dilution25, PDGFR-b (Biogenex, rabbit monoclonal) 

at 1:100 dilution23, and EGFR1 (Invitrogen, mouse monoclonal) at 1:50 dilution14 on all nasal 

carcinoma samples.  Tissues known to express RTKs of interest [canine mast cell tumor (c-KIT), 

canine anal sac adenocarcinoma (PDGFR-a & PDGFR-b), canine pyogranulomatous skin 

(VEGFR2), and normal canine lung (EGFR1)] were used as positive controls for RTK 

expression. 11,23,24,26,27    Irrelevant isotype matched antibodies at equivalent dilutions were 
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utilized as negative controls.   All slides were immunostained using a Leica Bond Max 

autostainer. The Bond Polymer Refine Red Detection Kit (Leica Biosystems, Buffalo Grove, IL) 

which utilizes an alkaline phosphatase-linked polymer with Fast Red chromogen and 

hematoxylin counterstain was used for four of the antibodies. c-KIT was detected with a similar 

Bond Polymer Detection Kit that contains a horseradish peroxidase polymer and 3,3-

diaminobenzidine (DAB) as the chromogen with a hematoxylin counterstain.  

Immunohistochemical staining was quantified on digitized slides utilizing commercial HALOâ 

software (Indica Labs, Corrales, NM).  Slides were visually evaluated and the region with the 

highest proportion of immunostained neoplastic cells was annotated to determine the percent of 

positive staining neoplastic cells.  The percent of positive neoplastic cells was identified by using 

a color deconvolution algorithm in which values are set for stains based on RGB optical densities 

and intensity channels are established for each stain.   The optical density of the entire cell 

(nucleus, cytoplasm, or membrane) was averaged and if the value was higher than threshold, the 

cell was considered positive. Tumor stroma staining between non-staining neoplastic cells was 

also identified.   

 The percentage of neoplastic cells with positive immunoreactivity were scored according 

to the following: <5% = 0, 5-25% = 1, 26-50% = 2, and >50% = 3. Cytoplasmic (C), nuclear (N), 

membranous (M), and stromal (S) staining locations were also identified.  

RNA isolation and RT-PCR 

Total RNA from normal nasal tissue and carcinomas was obtained using the RNeasyâ 

Mini Kit (Qiagen, Valencia, CA) according to manufacturer’s instructions from tissue preserved 

in RNAlaterâ (Qiagen, Valencia, CA). RNA quantity was assessed with a Nanodrop-1000 

spectrophotometer (Thermo Scientific, Wilmington, DE). Reverse transcription was carried out 
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with M-MLV Reverse Transcriptase (Invitrogenä, Carlsbad, CA) using TGradient 

ThermocyclerÒ (Biometra, Göttingen, Germany) with cycling parameters set at 25°C for 10 

minutes, 37°C for 50 minutes, and finally 70°C for 15 minutes.  PCR was carried out using 

cDNA with primers for the genes of interest (Table 2.1), HotStarTaqâ Master Mix Kit (Qiagen, 

Valencia, CA) and TGradient ThermocyclerÒ (Biometra, Göttingen, Germany).  Thermal cycling 

parameters were 95°C for 15 minutes for initial heat activation, followed by 34 cycles of 

amplifications at 94°C for denaturation for 30 seconds, annealing for 30 seconds, and 72°C for 

one minute for extension.  Samples were then set at 72°C for 10 minutes as the final extension 

step. The annealing temperature used varied depending on the manufacturer’s specifications for 

that primer (Integrated DNA Technologies, Coralville, IA).  Following completion of the PCR 

reaction, products were separated using 1% agarose gel electrophoresis to resolve and identify 

PCR products of the expected size.   Appropriately sized products were purified with QIAquickâ 

PCR Purification Kit (Qiagen, Valencia, CA) prior to DNA sequencing.  Products from the RT-

PCR were sequenced using specific primers at the KSU DNA Sequencing and Genotyping 

Facility (Applied Biosystems 3730 DNA Analyzer) to confirm the identity of the target cDNA.   

Sequence alignments between canine RT-PCR products and known mammalian RTK sequences 

were constructed using BLASTÒ (National Center for Biotechnology Information, U.S National 

Library of Medicine). 

Cell lysate preparation and phosphoprotein arrays 

The Proteome Profilerä Human Phospho-RTK Array Kit (R&D Systems, Minneapolis, 

MN) was utilized to evaluate in situ phosphorylation of 49 different RTKs in nasal carcinoma 

and normal nasal epithelium samples, an assay previously utilized in canine studies.11,28 To 

prepare lysates, 50 mg milligrams of frozen tissue (normal nasal epithelium or nasal carcinoma) 
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was ground with a liquid nitrogen-cooled mortar and pestle.  The powdered tissue was 

resuspended in a lysis buffer (Lysis Buffer 17, R&D Systems, Minneapolis, MN) supplemented 

with 10ug/ml pepstatin, 10ug/ml leupeptin, and 10ug/ml aprotinin.  The samples were rocked at 

4°C for 30 minutes followed by centrifugation at 14,000 x g for 5 minutes.  After completion, the 

supernatant was collected and the protein concentration was quantitated by the Bradford method 

(Bio-Rad, Hercules, CA).  The phosphoprotein arrays were performed according to 

manufacturer’s instructions using 300µg of protein lysate. 

Phosphoproteins in nasal tissue samples were detected using a series of 49 specific 

capture antibodies that were pre-spotted in duplicate on nitrocellulose membranes by the kit 

manufacturer (R&D Systems, Minneapolis, MN). Each membrane also contained a 

phosphorylated protein positive control and phosphate buffered saline (PBS) negative control. 

Membranes were placed in individual trays and incubated for one hour at room temperature with 

a blocking buffer (Array Buffer 1, R&D Systems, Minneapolis, MN).  After removal of the 

blocking buffer, each membrane was incubated overnight at 4°C with the individual sample 

protein lysate to allow proteins to bind to fixed antibodies.  After binding of phosphorylated and 

unphosphorylated RTKs, unbound material was removed with Wash Buffer (R&D Systems, 

Minneapolis, MN) by placing the membranes in individual trays and rocking them for 10 

minutes and repeating this washing step a total of three times.  Next, the membranes were 

incubated for two hours at room temperature with an anti-phospho-tyrosine antibody conjugated 

to horseradish peroxidase (R&D Systems, Minneapolis, MN).  Finally, a Chemi Reagent Mix 

(R&D Systems, Minneapolis, MN) was used to coat the membranes which were subsequently 

evaluated for chemiluminescence with the FluorChemä E system (Protein Simple, San Jose, 

CA). 
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A subjective positive result was determined by comparing the chemiluminescent result 

with the positive and negative controls.  Positive results were confirmed by averaging pixel 

density of the pair of duplicate spots representing each RTK using Alphaview Softwareä 

(Protein Simple, San Jose, CA). The intensity of the positive result was recorded by subtracting a 

background value from the averaged RTK signal. The background value was obtained by 

averaging the signal from the two PBS negative control spots. 

 

Table 2.1 Primer Sequences used in RT-PCR 

RTK Primers Product Size (bp) 

EGFR1  F: 5’- TGG TCC TGG GGA ATT TGG AA- 3’ 
 R: 5’- GGT TAT TGC TGA AGC GCA CA- 3’ 262 

c-KIT  F: 5’- GAG AAC ACA CAC AAC GAA TG- 3’ 
 R: 5’- GCA GCG GAC CAG CGT ATC ATT G- 3’ 185 

PDGFRa  F: 5’- GCT CTC ATG TCG GAA CTG AAG- 3’ 
 R: 5’- GTG TGC TGT CAT CAG CAG G- 3’ 237 

PDGFRb  F: 5’- GAC CAG TCA GTG GAT TAC GTG- 3’ 
 R: 5’- GTC TCT CAT GAT GTC ACG AGC CAG- 3’ 329 

VEGFR2  F: 5’- GTA AGT ACC CTT GTT ATC CAA GCA GCC-3’ 
 R: 5’ – CGT AGT TCT GTC TGC AGT GCA CCA C- 3’ 195 

 
Canine primer sequences with corresponding base pair (bp) product size used in reverse 
transcriptase polymerase chain reaction (RT-PCR) to assess for qualitative expression.  
(Urie, BMC Vet Res 2012 and Mariotti, BMC Vet Res 2014) 
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Chapter 3 - Results 

Sample Demographics 

Nasal tumor samples (n=16) were collected from untreated tumor-bearing dogs that 

presented to the Kansas State University Veterinary Health Center (KSU-VHC) between August 

2013 and March 2015. The mean age was 11.4 years (median 11.4, range 7.5 to 14.7 years). The 

majority of the dogs were spayed females (n=8), with the remainder comprising castrated males 

(n=6) and intact males (n=2). Labrador Retrievers (n=3) and mixed breed dogs (n=3) were 

represented most often with the remaining population comprised of a single dog representing the 

following breeds: German wire hair pointer, Shar pei, Australian shepherd, Boxer, American 

bulldog, Cardigan Welsh corgi, Border collie, Pembroke Welsh corgi, Shetland sheepdog, and 

Brittany spaniel. All sixteen tumors were histologically classified according to the World Health 

Organization’s histological classification of tumors of the respiratory system of domestic 

animals.29 Adenocarcinoma encompassed 50% (n=8) of the tumors while transitional (n=4) and 

undifferentiated (n=4) nasal carcinomas each comprised 25% of the samples.  

Immunohistochemistry 

Sixteen nasal carcinoma tissue samples were evaluated for expression of RTKs of interest 

(Table 3.1 and Figure 3.1).  Immunoreactivity for c-KIT was detected in 4/16 samples.  Positive 

immunoreactivity for PDGFR-a was noted in 15/16 samples assessed.  Neoplastic cells showed 

positive immunoreactivity for PDGFR-b in only 3/16 samples but strong stromal staining was 

noted in all 16 samples.  EGFR1 immunoreactivity was noted in 14/16 samples.  All samples 

showed immunoreactivity for VEGFR2.  Normal nasal epithelium demonstrated variable 

positive immunoreactivity for VEGFR2 (4/5 positive), PDGFR-a (3/5 positive), PDGFR-b (2/5 

positive) and EGFR1 (3/5 positive). No reactivity was expressed for c-KIT.  
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Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) 

Successful extraction of mRNA was obtained from all normal nasal and nasal carcinoma 

samples (Table 3.2).  Messenger RNA for c-KIT, PDGFR-b, and VEFGR2 was present in all 

sixteen tumors assessed; however, messenger RNA for PDGFR-a and EGFR1 was detected in 

only 15/16 (93.7%) samples.  Messenger RNA for all RTKs were detected in normal nasal tissue.  

Phosphoprotein Arrays 

The phosphorylation status of forty-nine RTKs was assessed in sixteen nasal carcinoma 

and five normal nasal samples [Table 3.3 and Figure 3.2].  Specific RTKs that were 

phosphorylated in >50% of tumors were Insulin-R (68.7%), EGFR1 (62.5%) and ROR2 (56.2%).  

Phosphorylated RTKs in 25-50% of tumors were ALK (43.7%), RYK (37.5%), DTK (31.3%), 

and Tie-1 (25%).  Five normal nasal epithelium samples showed phosphorylation of Insulin R in 

80% of samples, whereas phosphorylation of EGFR1, RYK, and ROR2 was identified in 60% of 

samples assessed.  None of the nasal carcinoma or normal nasal epithelium samples had 

phosphorylation of VEGFR2, PDGFR-a, PDGFR-b, or c-KIT.  

 

Table 3.1 Nasal carcinoma RTK expression by IHC 

RTK 0 
n (%) 

1 
n (%) 

2 
n (%) 

3 
n (%) 

Predominant 
Localization 

c-KIT 12 (75.0) 3 (18.7) 1 (6.3) 0 C 
VEGFR2 0 0 1 (6.3) 15 (93.7) C 
PDGFRa 1 (6.3) 0 2 (12.5) 13 (81.2) N, C 
PDGFRb 13 (81.2) 0 1 (6.3) 2 (12.5) S 
EGFR1 2 (12.5) 2 (12.5) 5 (31.3) 7 (43.7) M 

N: nuclear; M: membranous; C: cytoplasmic; S: tumor stroma 
 
The number (n) of positive canine nasal carcinoma samples evaluated by immunohistochemistry 
(IHC). The percentage of neoplastic cells with positive immunoreactivity were scored according 
to the following: <5% = 0, 5-25% = 1, 26-50% = 2, and >50% = 3. 
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Figure 3.1 Immunohistochemistry for KIT, VEGFR2, PDGFR-b, PDGFR-a & EGFR  

 

Representative images of each receptor tyrosine kinase (RTK) examined are shown. (Panel A:   
c-KIT cytoplasmic staining, Panel B: VEGFR2 cytoplasmic staining, Panel C: PDGFRb stromal 
staining, Panel D: PDGFRa nuclear and cytoplasmic staining, Panel E: EGFR1 membranous 
staining).  400X. 
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Table 3.2 Nasal carcinoma qualitative messenger RNA expression by RT-PCR 

Sample # VEGFR2 PDGFR-a PDGFR-b KIT EGFR1 
1 + + + + + 
2 + + + + + 
3 + + + + + 
4 + + + + + 
5 + + + + + 
6 + - + + + 
7 + + + + + 
8 + + + + - 
9 + + + + + 
10 + + + + + 
11 + + + + + 
12 + + + + + 
13 + + + + + 
14 + + + + + 
15 + + + + + 
16 + + + + + 

 
  
 

 
 
Table 3.3 Nasal carcinoma phosphoprotein results 

RTK n (%) 
Insulin R 11 (68.7) 
EGFR1 10 (62.5) 
ROR2 9 (56.2) 
ALK 7 (43.7) 
RYK 6 (37.5) 
DTK 5 (31.3) 
Tie-1 4 (25%) 

 
The number (n) of the most common phosphorylated receptor tyrosine kinases (RTK) from 
sixteen canine nasal carcinoma samples evaluated by The Proteome Profilerä Human Phospho-
RTK Array Kit.  
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Figure 3.2 Phospho-RTK arrays of canine nasal carcinomas 

 

On the representative example arrays shown from two tumors, positive and negative controls, 
insulin receptor (Insulin R), epidermal growth factor receptor 1 (EGFR1), receptor tyrosine 
kinase-like orphan receptor 2 (ROR2), anaplastic lymphoma kinase (ALK), and receptor-like 
tyrosine kinase (RYK) have been identified.  
 

 

  

+ Control EGFR1 RYK ALK Insulin R ROR2 - Control 



14  

Chapter 4 – Discussion 

The results of this study suggest that canine nasal carcinomas do not demonstrate 

persistent phosphorylation of VEGFR2, PDGFR-a, PDGFR-b, and c-KIT. Thus, inhibition of 

these RTKs is not the principle mechanism by which toceranib exerts its clinical effects on this 

tumor type.  Although phosphorylation of these RTKs was not detected, the presence of each 

RTK demonstrated by detection of messenger RNA and immunoreactive protein, in nasal 

carcinoma and normal nasal epithelium was verified.  Thus, although the key angiogenic targets 

for toceranib action are present, the absence of phosphorylation of these RTKs suggests the 

conclusion that any clinical effect of toceranib may occur through inhibition of alternative 

unidentified RTK pathway in canine nasal carcinomas. Additionally, normal canine nasal 

epithelium expressed a similar spectrum of RTKs to those identified in the neoplastic tissue, 

further supporting the idea of an unidentified RTK pathway as a possible underlying means of 

toceranib’s clinical efficacy.  However, the lack of phosphorylation in the nasal carcinoma tissue 

does not completely eliminate the possibility that these RTKs have a role in this tumor’s biology 

or contribute in an indirect anti-tumor action of toceranib. 

Multiple RTK targets of toceranib, particularly PDGFR-b, play crucial roles in the tumor 

microenvironment (TME) and their presence is documented by strong stromal expression.30,31  

Stromal expression of PDGFR-b was present in all samples analyzed in this study whereas 

previous studies have shown only 60.9% of samples to have stromal staining for PDGFR-b.13 

The development and function of vessels in the TME rely heavily on PDGFR-b and inhibition of 

this RTK in the TME has been documented in some human solid tumors and may represent an 

indirect target for toceranib in canine nasal carcinomas.30,32,33 Interestingly, VEGFR2 and 

PDGFR-a were not expressed in the tumor stroma in this study; however, PDGFR-a was shown 



15  

to have nuclear localization.  Nuclear localized RTKs have been shown to bypass standard signal 

transduction and respond to stimuli through transcriptional and translational regulation of target 

genes.34 Nuclear localized RTKs, such as PDGFR-a, have been observed in highly proliferative 

normal tissues and neoplastic tissues that have an elevated signaling for cell growth, survival and 

differentiation.34-38 The identified nuclear localization of PDGFR-a in nasal carcinoma tissues in 

this study may suggest that it has important implication in the development of this cancer; 

however, further investigation into its role is warranted.  

Aberrant function of EGFR1 has been implicated as an important oncogenic driver in a 

number of human cancers and the results of this study suggest that EGFR1’s noted 

phosphorylation in over half of the nasal carcinoma samples may represent a possible role in 

tumorigenesis.20,39-41  Nearly all the samples analyzed in this study showed EGFR1’s presence at 

the protein and messenger RNA level in comparison to a previously noted 55% of canine nasal 

carcinomas and 74% of human nasopharyngeal carcinomas.14,42 The discrepancy between the 

number of samples exhibiting phosphorylation and protein/messenger RNA expression in this 

study may tell us that while EGFR1 is expressed in most canine nasal carcinomas, only a subset 

may be in a persistently phosphorylated state.   In addition to EGFR1 phosphorylation by nasal 

carcinomas, normal nasal epithelium evaluated within this study was shown to have high EGFR1 

phosphorylation.  With the concurrent phosphorylation of normal nasal epithelium and nasal 

carcinoma tissue, further investigation into possible activating mutations or autocrine paracrine 

loops as a cause of persistent phosphorylation within the nasal carcinoma tissue is warranted to 

further elucidate EGFR1’s role in nasal carcinoma tumorigenesis, as well as its role as a future 

therapeutic target.43,44  
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Phosphorylation of several RTK pathways were identified in the nasal carcinoma samples 

in this study including those involved in key Hallmarks of Cancer such as angiogenesis, 

metastasis, tissue invasion, and limitless replicative potential.45  For example, tyrosine kinase 

with immunoglobulin-like and EGF like domains 1 (Tie-1) and anaplastic lymphoma kinase 

(ALK) were phosphorylated in nasal carcinoma tissue in this study and have both been 

associated with neoplastic angiogenesis and metastasis of neoplastic cells.46-50  Additionally, 

receptor tyrosine kinase-like orphan receptor 2 (ROR2), tyrosine-protein kinase DTK (DTK), 

and receptor-like tyrosine kinase (RYK), all exhibiting phosphorylation in this study, have been 

noted to participate in neoplastic tissue invasion and cellular proliferation.51-56  The 

phosphorylation of these RTKs in canine nasal carcinoma indicates that they may participate in 

the development, progression, and eventual metastasis of this tumor type; however, further 

investigation into their specific roles in canine nasal carcinomas is needed.  Furthermore, the 

phosphorylation of these RTKs in canine nasal carcinoma samples may represent additional 

novel therapeutic targets.  

This study’s descriptive design imparts various limitations including small study size, 

tumor heterogeneity, and tumor sample size.  The small study size represents only a limited 

spectrum of the population of dogs afflicted by nasal carcinomas and evaluating a larger number 

of nasal carcinoma samples would allow for applicability of these results with more certainty.  

As with many tumors, nasal carcinomas are heterogeneous in their composition and the tumor 

sample sizes in this study were small due to collection methodology.  The combination of tumor 

heterogeneity and small sample size presents the possibility of misrepresenting true RTK 

phosphorylation and expression in the samples analyzed due to heterogeneous RTK distribution.  
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Chapter 5 – Conclusions 

Major RTK targets of toceranib were not phosphorylated in the canine nasal carcinomas 

evaluated.  However, the presence of the RTKs inhibited by toceranib were verified by positive 

protein and messenger RNA expression.  The lack of phosphorylated target RTKs in canine nasal 

carcinomas suggests that toceranib may be exerting its clinical effects through an unidentified 

mechanism.  Furthermore, stromal expression of PDGFR-b in the tumor microenvironment may 

provide an indirect method by which toceranib functions in this tumor type. The results also 

demonstrated that several key RTKs, including EGFR1, were phosphorylated in the majority of 

samples analyzed.  The phosphorylation of EGFR1 and other RTKs warrants further 

investigation into their role in this tumor type and consideration as novel targets for the treatment 

of canine nasal carcinoma. 
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Appendix A – Abbreviations 
ALK   anaplastic lymphoma kinase 

bp   base pair 

°C   Celsius 

cDNA   complementary deoxyribonucleic acid  

c-KIT   stem cell factor receptor 

CSFR1   colony stimulating factor receptor 1  

DAB   3,3-diaminobenzidine  

DNA   deoxyribonucleic acid 

DTK   tyrosine-protein kinase DTK 

EGFR1  epidermal growth factor receptor 1 

F   forward 

FDA   Food and Drug Administration 

FLT-3   FMS-like tyrosine kinase 3  

H & E   hematoxylin and eosin 

IHC   immunohistochemistry 

Insulin-R  insulin receptor  

KSU   Kansas State University 

µg   microgram 

mRNA   messenger ribonucleic acid 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

PDGFR-a  platelet derived growth factor alpha 

PDGFR-b  platelet derived growth factor receptor beta 

R   reverse 

RGB   red-green-blue 

RNA   ribonucleic acid  

ROR2   receptor tyrosine kinase-like orphan receptor 2 

RTK   receptor tyrosine kinase 

RT-PCR  reverse transcriptase polymerase chain reaction 

RYK   receptor-like tyrosine kinase 
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Tie-1   tyrosine kinase with immunoglobulin-like and EGF like domains 1 

TME   tumor microenvironment 

VEGF   vascular endothelial growth factor 

VEGFR2  vascular endothelial growth factor receptor-2 

VHC   Veterinary Health Center  
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Appendix B – Complete Phospho-RTK Results  

(Number of samples phosphorylated) 

EGFR 10 

ErbB2 1 

ErbB3 1 

ErbB4 2 

FGF R1 3 

FGF R2-alpha 3 

FGF R3 2 

FGF R4 1 

Insulin R 11 

IGF-1 R 1 

Axl 2 

Dtk 5 

Mer 2 

HGF R 1 

MSP R 1 

PDGFR-alpha 0 

PDGFR-beta 0 

KIT 0 

Flt-3 0 
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M-CSF R 1 

c-RET 2 

ROR1 2 

ROR2 9 

Tie-1 4 

Tie-2 3 

TrkA 1 

TrkB 1 

TrkC 1 

VEFGR1 0 

VEGFR2 0 

VEGFR3 0 

MuSK 1 

EphA1 1 

EphA2 1 

EphA3 0 

EphA4 2 

EphA6 2 

EphA7 1 

EphB1 1 

EphB2 3 
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EphB4 1 

EphB6 2 

ALK 7 

DDR1 3 

DDR2 4 

EphA5 1 

EphA10 4 

EphB3 4 

RYK 6 

 
 

 

 


