
A POST -PROCESSING SYSTEM

FOR AN AHPL SIMULATOR

by

PUNDI SREENIVASAN MADHAVAN

B.S., Madras Institute of Technology, 1976

M.S., University of Madras, 1980

A MASTER'S THESIS

submitted in partial fulfillment

of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1982

Approved by:

Major Professor

c0LL.

I, IJ

A 11203 645583

TABLE OF CONTENTS

PAGE

I. INTRODUCTION 1

A. Motivation for HDL's 1

B. Different Levels of Abstraction 2

II. A HARDWARE PROGRAMMING LANGUAGE 7

A. AHPL Language and its Features 7

III. AHPL SIMULATOR AND ITS FEATURES 16

A. AHPL Simulator as a Hardware Design Tool 16

B. An Example Simulation Using HPSIM 2 19

C. Problems With the Present Simulator
22

D. Advantages of the Post -processor 25

E. Examples to Illustrate the Use of the Post processor 26

IV. THE ALGORITHMIC DESCRIPTION OF THE POST -PROCESSOR
40

A. Description of the Algorithm 40

B. A Description of How to Use the Post -processor
48

V. CONCLUSION
56

APPENDIX
57

BIBLIOGRAPHY
69

ACKNOWLEDGEMENTS
70

LIST OF ILLUSTRATIONS

Figure PAGE

1. Control and Data Unit Realization of an AHPL Sequence 9

2. Asynchronous Systems in AHPL 14

3. Searching for a Given Combination of Values 28

4. Determining the Number of Times a Given Combination Occurred 31

5. Studying the State of the Machine in the Vicinity of a

Given Combination 32

6. Graphical Display of a Subset of Scalars 35

7. Selective Display of a Subset of Variables 38

8. The Algorithm Implemented in the Design of the Post -processor 41

9. Using the Post -processor 49

ii

Chapter I

INTRODUCTION

A. Motivation for HDL's (Hardware Description Languages)

A digital computer is an extremely complex device and, likewise,

a complete description of such a device is also complicated D.] . It

takes a lot of words to describe even a few operations of a very simple

computer. Certainly something better than the English language is re-

quired in order to describe the design and functioning of a computer

efficiently. Several languages such as AHPL (A Hardware Programming

Language), CDL (Computer Design Language), DDL (Digital Design Language),

ISP (Instruction -Set Processor) and PMS (Processor Memory Switch) have

been proposed to describe the computer structures and hardware algorithms.

There are different levels of digital system design and they range

from circuit design, packaging design, logic design, structure design,

behavior design to system design. Each level has a specific purpose and

requires a description. Computer hardware description languages can pro-

vide a common denominator for this broad spectrum.

Different types of hardware description languages reflect different

levels of abstraction of computer hardware. Their use offers the fol-

lowing advantages [I.0].

1. They serve as a means of communication among

computer engineers.

2. They permit a precise and concise description.

3. They provide a convenient documentation.

4. They are amenable to simulation on a computer.

5. They aid greatly in an integrated and total

design automation system - ranging from the

1

2

design of the computer structure to the wiring
list or even to the patterns for making large-
scale integrated semiconductor devices.

In just the same way as software design engineers use high level

languages for expressing algorithms, hardware design engineers use hard-

ware description languages to describe the design of digital systems [71 .

Other important applications of CHDL's (computer hardware description

languages) include teaching logic design, inputting to an automatic design

system, generating user manuals, etc.

B. The Different Levels of Abstraction

A digital system can be described at different levels of abstraction

[6] such as (a) the circuit level, (b) the switching circuit level,

(c) the register transfer level, (d) the program level, (e) the EMS

(Processor Memory Switch) and (f) the ISP (Instruction -Set Processor)

level. Also, the complexity of computer systems is better understood when

such systems are organized into different levels. Each of the above -

mentioned levels of abstraction is briefly discussed below.

1. The Circuit Level

The components at the circuit level of abstraction are

resistors, inductors, capacitors, diodes, transistors, voltage

sources and other non-linear devices. The behavior of the sys-

tem is measured in terms of current, voltage, resistance,

magnectic flux and so on. The description of the system is

given by algebraic equations and also in terms of a graphical

picture. Various theorems like Ohm's law and Kirchoff's law

are used to develop the equations describing the system.

3

2. The Switching Circuit Level

At the switching circuit level, the system is viewed as con-

sisting of logic gates and flip-flops. The behavior of the sys-

tem is described by discrete variables which assume only one of

two values, 0 or 1. (True or false, high or low). The components

involved in the system perform logic functions such as AND, OR,

NOR, NOT and EX -OR. The behavior of the system can be described

by a set of Boolean equations. The important point to note here

is that the designer does not concern himself with the behavior

of the basic components such as resistors, capacitors, inductors,

diodes and transistors. Also the description of the circuits,

which constitutes the system, is given in terms of a set of inter-

connected gates and flip-flops. The description at the switching

circuit level suppresses the lower level details such as resistors,

capacitors, inductors, diodes and transistors.

3. The Register Transfer Level (RT Level)

The description of the system at the RT level consists of

register transfers under various conditions. The system can be

visualized as consisting of two parts: (1) the data section, and

(2) the control section. The data section is composed of registers

and data paths. The control section provides the time dependent

signals which are responsible for the various register transfers

in the data section. Combinational logic networks are described

differently. Usually a combinational network performing a speci-

fic function is described in terms of the specific combinational

logic function it performs. At the register transfer level, the

4

designer does not concern himself with the interconnections of

logic gates. The designer at this level would be more interested

in the operation of the whole system as such with reference to

the control signal sequence and the various data transfers that

take place among the registers. Various languages at the regis-

ter transfer level have been proposed, one example of which is

AHPL (A Hardware Programming Language) Ell.

4. The Program Level

The program level is not just a unique level of description

for digital systems but is uniquely associated with computers.

The program level deals with the specific algorithms implemented

in the hardware for the solution of a problem, and there is a

central component that interprets a programming language.

Considering the examples of digital controls and instrumentation,

it is easy to visualize that in such systems there is no inter-

preting device and, hence, no program level of description but

only a logic level of description.

The program level of description consists of the following

components: (1) a set of memories and (2) a set of operations.

These memories hold data structures and the operations,
accept

the various data structures as inputs, and create more data

structures which also reside in the memory.
The unique feature

here is the representation of the various operations
on various

data structures in a specific sequence.
Usually the operations

continue in sequence unless a branch instruction
is encountered.

5

Computer structures described at the logic level are

parallel structures with all the components being active at the

same time. At the program level, these are described as serial

devices executing instructions in sequence.

At the program level, it is possible to name certain quan-

tities, use abbreviations and make decisions. At this point, it

is worth mentioning that the program level is linguistic in

nature whereas the logic level is not.

5. The PMS Level (Processor Memory Switch Level)

The PMS level describes the system in terms of processing

units, memory elements, peripheral devices and switching systems.

The computer system is viewed in terms of its most aggregate

behavior. The system is viewed as consisting of central proces-

sors, core memories, tapes, disks, input/output processors,

communication lines, printers, tape controllers, graphics ter-

minals, etc. The system is viewed as a processing medium and the

information is measured in bits. Thus, the components have

capacities and flow rates as their operating characteristics. All

details of the program are suppressed.

The PMS description is one of the top levels of description

of a computer system. Besides being a description of the overall

structure of a computer system, the PMS description is also the

description of the amounts of information held in various

components, the flow of information among various components and

the description of the control unit that accomplishes these flows.

6

6. The ISP Level (Instruction -Set Processor Level)

The ISP notation is meant to precisely describe the program

level of a computer system. The behavior of a processor depends

on the nature and sequence of its operations. This sequence is

determined by means of a program in the main memory and a set of

interpretation rules within the CPU. Thus, if the nature of

operation and the interpretation rules are specified, the actual

behavior of the processor is a function of the initial conditions

and the particular program under consideration.

The ISP level gives the details of the machine's instruction

cycles such as fetching the instruction, decoding, program counter

incrementing, calculating the operand address, operand fetching

and execution of the instruction.

The ISP description consists of a description of the entire

instruction set of the processor. The details must include the

format of instructions, various registers referenced by the in-

struction, and the interpreting rules of the instruction.

The above six levels of abstraction provide different ways to

describe a digital system. In this thesis, the main topic of discus-

sion is the register transfer level of abstraction and the language

used is AHPL (A Hardware Programming Language). Also, the emphasis

is on the AHPL simulator [8].

Chapter II

A HARDWARE PROGRAMMING LANGUAGE (AHPL)

A. AHPL Language and its Features

AHPL is a register transfer level language [1]. The use of AHPL

as a hardware description language is based on the fact that many

digital systems can be segmented into two distinct sections: (1) the

control section and (2) the data section. The control section is res-

ponsible for causing register transfers within the data section. This

is effected by sending control signals at appropriate times to the

data section. In some cases, the fixed control sequence may be influ-

enced by branching information that is received from the data section.

Usually, in most applications, a single control signal is responsible

for the transfer of the contents of a register (after a logical compu-

tation) into another register. The main topic of discussion here

regards the various features of AHPL as a hardware design language.

Other aspects of AHPL such as conventions and notations will not be

discussed here since such information is readily available elsewhere [1].

Generally, all the bits in a register are treated uniformly and
one can

conveniently express the logical operations among registers in vector

notations. The following AHPL example will illustrate the points

noted above:

INPUTS:f,g

MEMORY:A[4], B[4], C[4], D[4]

1. A ((B A C) *f) V (D*g)

2. -7> (g,g)/(3,10)

3. B F D3,0:2
4. (10)

7

8

In the above example, statement #1 represents a register transfer

and so does statement #3. In statement #1, if the variable f is 1, the

logical AND of B and C registers is transferred to register A or if the

variable g is 1, the contents of register D is transferred to register

A. Variables f and g are not allowed to be 1 simultaneously. Also if

f and g are 0 at the same time, the contents of register A do not

change -- in other words, no transfer takes place.

In statement #2, if the variable g is 1, a branch occurs and the

next statement to be executed is statement #3. If g is 0 (g is 1) the

control proceeds to statement #10 in the sequence. This is a typical

example of a conditional branch in an AHPL sequence. Statement #4

signifies an unconditional branch to statement #10.

In effect, the AHPL statements give a complete description of the

digital system or a sequential network. It is possible to construct a

detailed logic diagram of the hardware realization of both the control

and data units, given the AHPL description. To illustrate the construc-

tion of a logic diagram from the AHPL description, the following example

of an AHPL sequence is considered:

1.

2.

Z XVA

b, f3)/(2,3,4)

A

A a A

4-X

(1)

3. A X X
1:3, 0

4. A A A
1:3, 0

--3 (1)

9

1

D D D D

Z3 Z2 Z/ Zo

2
xo Xl

3
X, 1 3

xo
\._.

L-.

--7

Al

---T

A2 A3 A

4

D

AD Al

D

A2

D

A3

X3 xo

D
1 2

D Q

3
-7

0

4

Figure 1. Control and Data Unit Realization of an AIiPL Sequence

10

In the above example, construction of the logic diagram (see

fig. 1) was quite simple because of the relatively few number of

statements in the given AHPL sequence. The process of constructing

such logic diagrams becomes almost unmanageable if the AHPL descrip-

tion contained a larger number of statements.

All the information required to completely define both the control

and data section is available in the AHPL sequence. Every register

transfer operation in an AHPL sequence takes place in one clock time.

The branch (if there is one) following a register transfer operation

in any particular AHPL statement is accomplished (simultaneously with

the transfer) in the same clock time.

The preceding example illustrates how a logic diagram could

be constructed from a specification of the design problem through

an AHPL description. In this example, the final representation of the

circuit was a logic diagram. It is also possible to directly translate

an AHPL description into a form of logic diagram with gate details and

wiring list information. At this point, it is important to note that

the control sequence gives timing information which is not easily

determined in the schematic diagram (see fig. 1).

Thusfar, the AHPL language was discussed in conjunction with ele-

mentary logic diagrams from the hardware design point of view and an

example was given. In the remainder of this section, other aspects of

the AHPL language such as combinational logic units, asynchronous sys-

tems and timing considerations will be reviewed. Finally, an advanced

version of AHPL will be briefly discussed.

11

1. Combinational Logic Units in AHPL

The use of combinational logic functions in AHPL is similar

to a function call in a programming language. The following AHPL

transfer statement is considered as an example to introduce the

idea of combinational logic functions:

C <-- (A0 AB0) e ((A1 V Bl) A (A2 V B2) A (A3 V B3)),

(Al
B1) ®

((A2

(D B2) A (A3 0 B3)),

(A2 + B2) ® (A2 c) B3) , (A3 ® B3)

The expression on the right is quite complex. It is probably

manageable if such an expression occurred only once in an AHPL

description. If it were to occur a number of times, one would

prefer not to write it each time. In such instances, the complex

logic unit is defined in the beginning of the AHPL sequence and

the unit is given a particular name. This name can then be sub-

stituted whenever a need arises to write the complex combinational

function. In the above example, the expression on the right could

be named LOGIC (A;B) and now the complex combinational transfer

statement can be rewritten in the following way:

C <-- LOGIC (A;B)

This convention can be viewed as similar to a function call in

conventional programming languages. Such a notation is restricted

in AHPL only to combinational logic networks.

A combinational logic unit may be referenced several times

with the same arguments in an AHPL description. In such an

instance, only one logic network is built with multiples of

12

connections to its output. The notation for a given combinational

function may also appear several times with different arguments.

In such a case, one network can be constructed and shared instead

of independently constructing the networks for each set of

arguments. One method of sharing a complex combinational logic

network is to declare buses for its arguments.

Quite often, a large digital system consists of several inter-

connected modules. It is important to consider such multimodular

systems and the relation of each module to others within the

system. It is quite possible that the data unit of one module

might be triggered by control signals from more than one control

section. It is quite important to be able to visualize the trans-

fer and connection statements of one module and isolate them as

belonging to one specific module. In these areas, the designer

is often posed with the problem of defining the boundaries of the

systems, particularly in situations where the systems are connected

through communication channels and complicated networks.

Typically, the AHPL description of any particular module in a

digital system consists of the name of the module, declarations,

control sequence and an end statement. A declaration includes the

following:

MEMORY (flip-flops, registers, etc.)

INPUTS

OUTPUTS

ONESHOTS

LABELS (used to rename portions of large

registers)

13

BUSES

COMBUS (communications bus -- contents on this bus
may be defined by more than one module)

2. Asynchronous Systems

The AHPL descriptions studied thusfar have implied synchronous

operations. All register contents were assumed to change values

only on a common edge of the same clock pulse. This may not be the

case for large systems with subsystems. Some logic levels may

change asynchronously with the system clock. The physical distance

between modules may be so large that it makes this synchronism

impossible. This problem is particularly true in the case of high

frequency clocks where the clock time is comparable to the propa-

gation delay of the signal.

An asynchronous subsystem can be viewed as shown in figure 2.

The design can be expressed in AHPL by identifying the asynchronous

subsystem as a separate module (see fig. 2). The asynchronous

signals are synchronized with the system clock before they are used

in a given module. An asynchronous signal after synchronization

is treated just as any other signal within the module. Thus a col-

lection of modules, operating asynchronously with respect to one

another, can also be described in AHPL.

3. Timing Considerations

It is possible to go through an AHPL sequence and find out if

any step could be modified that would speed up the process. Inter-

related branches can make this process more difficult. In cases

where possible, the approach would be to eliminate the delay

14

MODULE B MODULE A

SYN (y)

ASYNCHRONOUS
SUBSYSTEM

SYNCHRONIZER

Figure 2. Asynchronous Systems in AHPL

15

associated with an individual step in the control sequence. If

such a step is identified, it is specified in the corresponding

AHPL step by a NO DELAY comment. The main idea is that the one

clock time delay associated with an AHPL step can be eliminated

if the transfer or branch part of a step is independent of the

result of an immediately preceding step. The important point

here is to note that some transfers do not require an additional

clock time. These transfers can be accomplished in the previous

clock time.

4. Advanced version of AHPL [5]

When the complexity of a system increases, it is useful to

have a facility to invoke a set of register transfer operations

in just the same way as combinational logic functions were in-

voked before. The advanced of AHPL provides AHPL des-

criptions within descriptions. Also, the recent version of

AHPL allows representation of sets of duplicate descriptions of

considerable complexity. The structures permitted in this

latest version are procedural, functional and combinational

logic units.

Chapter III

AHPL SIMULATOR AND ITS FEATURES

In this section, the AHPL simulator [8] will be briefly reviewed.

The main objective is to highlight the features of the AHPL simulator

and its use as a design tool for the hardware designer. The actual

operation of the simulator and various details regarding the syntax of

AIIPL to be followed for use in the simulator are available [8]. The

AHPL simulator does not support descriptions of asynchronous systems.

At the conclusion of this section, the shortcomings of the AHPL simu-

lator are discussed and solutions to overcome these shortcomings are

proposed.

A. AHPL Simulator As a Hardware Design Tool

In the last section, the use of AIIPL as a design language and its

various features were discussed. At this point, it is necessary to

think of a simulator which could simulate the AHPL description and per-

form the register transfers, branches, etc. of a digital system, and

display the contents of various registers, control signals and buses on

a clock period by clock period basis.

The HPSIM (Hardware Program Simulator) and HPCOM (Hardware Program

Compiler) are the two software packages designed to simulate and
com-

pile the AHPL description of a digital system. HPSIM is a function

level simulator which simulates the AHPL description by performing the

register transfers, branches, etc., on a clock time by clock time

basis. HPCOM, on the other hand, is a program capable of listing the

16

17

wire connections which specify the interconnections of the available

integrated circuit parts. The AHPL as accepted by HPSIM and HPCOM

is slightly different from the original version [1].

HPSIM was implemented on the CYBER 175 and DEC 10 computers, and

it is written in Fortran. HPSIM 2 was implemented on the IBM 370

computer. The version of HPSIM which is discussed in this thesis is

HPSIM 2. HPSIM 2 is an enhanced version of HPSIM and is more powerful

and faster than HPSIM. To help the user debug his AHPL description,

HPSIM 2 provides runtime error messages.

The input to HPSIM 2 is an AHPL description of a digital system

followed by a communication section. In the communication section, the

user assigns values to the external lines and specifies the names of

registers and control signals that he needs to observe as outputs. In

the communication section, it is possible to specify one of several

options. Depending on the option specified, the output is available in

different forms such as binary, octal or hexadecithal. If no option is

specified, the output is in binary form by default. The option infor-

mation, if included, should be the first specification in the communi-

cation section. The user can also specify the number of clock times

for which the execution should continue. The simulator continues for

as many clock times as specified unless a DEADEND is encountered. It

is also possible to assign values to the external lines and this is

similar to assigning data in programming languages. In terms of hard-

ware, this could be written to imitate the I/O (Input/Output) behavior

of a system so that it is not necessary to model the internal

operation.

18

Before the simulation begins, the user can initialize the

registers and memories. The user can specify the lines and registers

that he needs to observe as outputs at each clock time. The corres-

ponding module number to which each output belongs can also be

specified. There is also a facility to indicate the registers and

memories whose contents need to be observed at the end of the

simulation and such information is specified in the DUMP section.

The simulator may stay in wait loops for response from an external

system. The outputs corresponding to such statements of wait loops

can be suppressed by specifying them in the SUPPRESS section.

With the present simulator, seven standard functions are

available. They are as follows:

ADD (Add function)

INC (Increment function)

BUSFN (Memory read function)

DCD (Decode function)

DEC (Decrement function)

COMPARE (Compare function)

ASSOC (Associative function)

If any of the above seven standard functions are used in the

AHPL sequence, they must be declared as CLU (combinational logic units)

units at the beginning of the AHPL description. User -defined CLU

units are not allowed in the simulator at the present time.

More than one of the same kind of a standard function can be

used in a module and, in such a case, all function names of that type

must be declared with distinct alphanumeric suffixes.
For example, if

19

two separate adders are required in a circuit, the declarations would

be as follows:

CLUNITS: ADDi[ni](W,X) ; ADD2(n2)(Y;Z), where nl and n2

are the number of bits of Adder 1 and Adder 2 respectively.

CLUNITS may have CLUNITS as arguments.

Unclocked transfers which are denoted as 0 are not distinguished

from clocked transfers by HPSIM. The clocked transfer notation must be

used in an AHPL description to be simulated using HPSIM. The simulation

will be accurate subject to the condition that the output of a memory

element is not used during the same clock period in which it is the

target of an unclocked transfer.

Comments can appear anywhere in the AHPL sequence or in the commu-

nication section. Comments should be enclosed within double quotes and

should not exceed a card limit.

B. An Example Simulation Using HPSIM 2

An example simulation of a small AHPL sequence is briefly reviewed

here. The following AHPL sequence is considered in this example. The

corresponding output file appears in the Appendix.

AHPL INPUT FILE

AHPLMODULE:CONTROLLER

EXINPUTS:Z;START.

MEMORY:A[4];B[4];C[4];D[4].

1 (START)/(1). -
2 B A. .4E-

3 C B; --> (Z)/(5) '-

4 A (E); (2).

5 D C; -. (2). <--

20

ENDSEQUENCE.

CONTROLRESET(1).

END.

COMMUNICATION SECTION

OPTION 7.

CLOCKLIMIT 10.

EXLINES START=0,1;Z=0#4,1.

OUTPUTS START;Z;A;B;C;D.

INITIALIZE A .- 3.

DUMP ALL.

After simulating the above AHPL sequence, the outputs of the

registers A, B, C, D and the control signals START and Z are listed

in the output file on a clock cycle by clock cycle basis (see the

Appendix).

At the first clock time, all register and control variable

values are zero except register A which is initialized to the value

3. Also, the variables START and Z are 0 at this time because of

initialization. The module and step information indicate that module

#1 is active and the next statement to be executed is statement #1.

At clock time 2, the variable START becomes 1 as specified in the

communication section of the file, and all other register contents

do not change at this time. AHPL statement #1 is still not executed

since START was 0 before. At the third clock time, START has already

become 1 and the decision is made at AHPL step #1 and the wait loop

is terminated. At the fourth clock time, statement #2 is executed

21

and, correspondingly, the contents of register A are transferred to

register B. At the fifth clock time, the contents of register B

are transferred to register C, and this completes execution of AHPL

statement #3. At the same time, a branch occurs based on the value

of Z, which becomes a 1 at the end of clock time 5. So the next

step to be executed is AHPL statement #4. Hence, at clock time 6

the contents of the complement of register C are transferred to

register A, and this completes the execution of statement #4. At

the same time, there is an unconditional branch to statement #2. At

clock time 7, statement #2 is executed causing the transfer of

contents of register A into register B. At the eighth clock time,

the next executable statement would be statement #3, causing the con-

tents of register B to transfer into register C. At this time, a

branch occurs to statement #5 because Z is already 1 and stays high at

this time. At clock time 9, the contents of register C are transferred

into register D. This completes the execution of statement #5 and an

unconditional branch to statement #2 occurs. At clock time 10, once

again the contents of register A are transferred into register B,

which completes execution of AHPL statement #2. In the above example,

statement #'s 2,

infinite loop.

The clock limit was

3 and 4 are repeatedly executed and constitute an

specified as 10 in the communication section

of the file and, therefore, the simulation stopped in 10 clock times.

If the clock limit was specified as 1000, the simulation would have

continued for 1000 clock times. If it were not for the unconditional

branch to statement #2, the program would have probably encountered

22

a DEADEND and would not repeat itself for several cycles. Whenever

a program encounters a DEADEND, a relevant message to that effect is

output, and the simulator stops even though the required number of

clock times is not reached.

The above discussion is related to a single module design (see

Appendix). The step information at any clock time indicates the

next active AHPL statement in sequence and this is obvious from the

computer printout (see Appendix) and the above discussion.

Finally, a DUMP of memories and registers is provided at the

end, and this dump displays the contents of the memories and registers

at the time when simulation stopped.

C. Problems With the Present Simulator

A close look at the simulator output (see Appendix), reveals that

all the outputs specified in the communication section are printed out

at every clock time. Though the designer has all the information

dumped in the output file, such an output file is difficult to analyze.

All such problems are briefly discussed below and at the conclusion of

this section, solutions to these problems are proposed.

1. The control variables are listed along with the vectors,

and it is difficult to identify certain level changes at certain

clock times. This is because such information is presented

simply in the form of l's and 0's and there is no means of

visualizing the information in graphical form relative to the

system clock. Quite often, a graphical presentation is needed

and preferred in most digital systems, because such a presentation

23

is more meaningful. The level changes with respect to the

clock and also with respect to other control signals of any

variable are more easily noticeable in a graphical picture.

Any special Boolean relation between control variables can be

better visualized with a graphical picture. Redundant control

flip-flops may be detected and eliminated with the aid of a

graphical picture. The convenience of graphical presentation

does not exist with the original simulator.

2. With the original version of AHPL simulator, the status

of control variables and vectors cannot be visualized in a

selected group of clock pulses alone. It is probably of interest

for the designer to select a certain number of clock times and

study the status of some of these variables relative to the

system clock. This process may be helpful to locate some faults

(if any).

3. It might be of interest to observe the contents of registers

after a certain condition is established in a given register, or

after a certain Boolean relation is satisfied among certain con-

trol variables, or after a given register attains a critical

value (maximum or zero). It may be helpful to observe the con-

tents of registers and control variables after a certain combina-

tion of values of a given set of vectors and scalars is

established. The present simulator does not support this feature.

4. Another possible area of interest is to know the number of

times a register or set of registers reach a certain value
and to

24 -

study the state of the machine or the system in the vicinity

of those values that the register(s) attain. It can be dif-

ficult to scan and obtain such information with the existing

simulator.

An immediate solution to the above problems (1 through 4),

is to output only a few variables from the simulator. It is,

in fact, possible to specify fewer number of outputs in the

communication section of the input file to the simulator. The

output file is probably better displayed for usual scanning

because of the few number of outputs. There are two major

disadvantages with this kind of a solution: (1) There is no

control over the number of clock cycles of information printed

out in the output file once a certain number is specified in

the communication section. The visual scanning is in no way

easier for a lesser number of outputs, and (2) once a specific

number of outputs are listed out for a given number of clock

times, and if at a later time a different set of vectors or

scalars are required to be output, the communication section

of the input file has to be changed and the simulator run

again. Such a practice of changing the communication file

often and running the simulator each time is obviously not

desired.

A solution to the above problems (1 through 4) is proposed in this

thesis. The solution proposed is to post -process the AHPL simulator

output file. The major advantage is that all the required variable

names can be specified in the communication section of the input file

25

and the simulator can be run for a maximum number of clock times.

The output file now contains all the specified variable values and

for a maximum number of clock times. This output file can now be post -

processed to have many features at the user's convenience.

D. Advantages of the Post -processor

1. The post -processor offers the convenience of observing

the control variables in graphical form relative to the

system clock. The list of control variables, the start

clock time and the stop clock time can be specified for the

post -processor in an interactive environment. The post -

processor accepts this data as input and plots the control

variables relative to the system clock. Due to the limita-

tion in the size of the screen width, the states of control

variables are not plotted for more than 25 clock times at a

time.

2. It is possible to selectively display the number of times

and also the particular clock times at which a given combina-

tion occurs. Once such information is available, it is

possible to observe the state of the machine or the system

in the vicinity of the given combination. It may be of

interest to visualize the state of the machine a few clock

times before or after the particular clock time at which a given

combination occurs.

3. The post -processor can selectively display a subset of

vectors, scalars or vectors and scalars within given bounds of

26

clock times. The user specifies the start and stop clock

times and the list of scalars and/or vectors.

4. Step and module information is available at each clock

time. This facility is built in the post -processor as an

option. The module information specifies the active module

and the step information specifies the next active AHPL

statement.

The interested user can repeatedly use the above (1 through 4)

features (some or all of them) depending upon his needs. The actual

details regarding the usage of the post -processor are not discussed in

this thesis. A User's Manual has been prepared [9]. This manual con-

tains all the information necessary for the use and maintenance of the

post -processor.

E. Examples to Illustrate the Use of the Post -processor

A simple example to illustrate the use of the post -processor is given

below. The simulated output file is also attached (see the Appendix).

The following AHPL input file is considered in this example:

INPUT FILE

AHPLMODULE:CONTROLLER

MEMORY:A[4];B[4];C[4];D[4];Z[1];E[1];F[1].

CLUNITS:INC[4](A).

1 B <-- A.

2 C <-- B.

3 D <-- C.

4 A <-- INC (A)

27

5 Z &/(A).

6 E (E)

7 F A[0] @ B[3]

8 (Z)/(10).

9 --> (1).

10 A EE-- (A)

ENDSEQUENCE

CONTROLRESET(1).

END.

COMMUNICATION SECTION

OPTION 7.

CLOCKLIMIT 250.

OUTPUTS A;B;C;D;E;F;Z.

INITIALIZE Z '1; E '1; F L '1; A '2;

B '3; C '4; D ct:71.- '5.

DUMP ALL.

The AHPL simulator is run with the above AHPL input file and now

the output file is available, ready for post -processing. The following

examples are considered to illustrate the uses of the post -processor:

Example 1

A = 1111

B = 0000

C = 0000

D = 0000

tt 4CU THE SELECTION OF VECTORS BEGINS II
oo A

ARE WU IN''ERESTED IN TA:S 1-ECT:JR 1?
THE WIEEP OF FITS :F THIS)E;-(;.
ENTER NOW THE HEPE t CF BITS(I'S &
1111
B 2

CS (-ND HIT RETURN

ARE YOU INTERESTE:. 19 TH:i k.ECTI:f ,Y it 7y
THE NUMBER CT FITS THIS 1.ECTOP. 4

ENTER NOW THE AP0E t FITE, 1 i & O'S) AND HIT RETURN
0000
C 3

ARE YOU INTERESTED IN TH:3 E.:TOF !Y/N) 9Y
THE NUMBER OF PITS THIS OECTOF. 4

ENTER NOW THE PEPE = OF FITS1 1'S t 0'51 AND HIT RETURN
0000
D 4

ARE YOU INTERESTED IN THIS "UTOR
THE NUMBER OF BITS OF THIS ECTOR. 4

ENTER NOW THE Atr.(iE : OF FITS(1'S & O'S) AND HIT RETURN
0000
*1 NOW THE SELECTION OF SCALARS BEGINS *1

5

ARE YOU INTERESTEL in THIS SCALAR (YEN)
F 6

ARE YOU INTERESTED IN THIS SCALAR (Y/N)
Z 7

'PH

ARE YOU INTERESTED IN THIS SCALAR 1Y/N) 7y
ENTER NOW ITS FIT 1 OR 0 &HIT RETURN

Figure 3. Searching for n Given Combination of Values.

THE COMBINATION NEVER 3CCURED

DO `'CL WANT A GF1=PHI.Tal. CISFLA'y OF SCALARS

Figure 3 (Continued)

30

It is required to observe the state of the system in the

vicinity of the above combinations. The above values of the

variables A, B, C, D and E are input to the post -processor

and the post -processor returns the following message (see

fig. 3):

"THE GIVEN COMBINATION NEVER OCCURRED".

An examination of the output file (see Appendix) reveals

that the above given combination never occurs. Since the

given combination never occurs, there is no question of observ-

ing the state of the machine in the vicinity of the given

combination.

Example 2

It is required to observe the state of the machine in the

vicinity where the register A attained the value 1111. The

value of A=1111 is input to the post -processor.

The system has returned the following message (see fig. 4):

"# OF TIMES THE GIVEN COMBINATION OCCURS=5"

"THE GIVEN COMBINATION OCCURS AT THE FOLLOWING

CLOCK TIMES"

113 114 115 116 117

The clock times displayed above are decimal values.

Now, a group of clock pulses is selected before or after the

above status and the state of the machine can be observed between

the bounds of the clock times (see fig. 5). The variables

selected are A, B and D. The clock time bounds are 100 and 113.

$ TIMES THE COMBINATION OCCURS S
TIE COMBINATION OCCUPS A' THE FOLLOWING CLOCK -ImES

113 114 115 1:e 117

DO YOU WANT A GPAP1'ICP:. DISPLAY CF SCA1.ARS (i.41

Figure 4. Determining the Number of Times a Given Combination Occurred.

$ OF CLOCK PULSES II FILE II7
YOU CAN NOW GET A TOR-TC-BOTTOI DISPLAY OF A SUBSET CF 1,API*IES

CO Y3.2 NEED MODULE 6 S7EF EETAILS (s./N)

3 -AFT (st.)CK TIME -'100
STOP :LOCK TIME -':113
#t NO;; THE SELECTION OF .3":ALARS BEGINS 11

E 5

ARE JCL INTERESTED IN T4I3 ['ill) 1N

ARE YOU INTERESTED IN THIS y Np

ARE YOU INTERESTED IN THIS 3Ckl.R 1'140 ';h4

tt NOW THE SELECTION OF VECTORS BEGINS It

A

ARE YOU INTERESTED IN THIS VECTOR tV,N)
2

ARE YOU INTERESTED IN THIS VECTOR re441 /V
C

ARE YOU INTERESTED IN THIS VECTOR Ce/N) 714

D 4

ARE YOU INTERESTED IN THIS VECTOR (Y'N) 2Y

Figure 5. Studying the State of the Machine in -the Vicinity of a Given Combination.

A. E. D. 'TLE.3TEP

1101 1:'o 1100 1.2
1101 1:01 110,, 1.3
1101 1.11,1 110,.' 1.4
1101 :l01 110: I.s
1110 11.01 1101 1.6
1110 :101 1101 1.7
1110 1101 110: 1.E
1110 net 1101 I.?
1110 1101 1101 1.1
1110 1101 1 2
1110 1110 1101 1 3
1110 1110 1101 1.4
1110 1110 1110 1 5

1111 1110 1110 1 6

DO YOU ;JAN T TO SEHPCH FC.JP Ariv ;

Figure 5 (Continued)

34

Example 3

It is required to have a graphical presentation of the

control variables. The variables E and Z are selected and

the bounds are clock times 1 through 55. The corresponding

graphical picture is included (see fig. 6). The parameters

that are to be input to the post -processor are the variable

names E, Z and the clock time bounds, namely, 1 and 15.

Example 4

It is required to selectively display a subset of the

variables between clock times 21 through 40. The variables

chosen are A, B, C, D, E and Z. The resulting computer dis-

play is included (see fig. 7). In this case, the parameters

that are input to the post -processor are the variable names

A, B, C, D, E, Z and the bounds of clock times, namely, 21

through 40.

01 02 03 04 CS 06 07 OR 09 10 11 lc 13 $4 15 $6

DISPLAY DECIAS AT CLOCK TIME t

l' !' 20 21 22 23 24 ES

E

THERE IS MORE OUTPUT TO BE DISPLAYED

DO YOU DISH TO COHTINUE IY/Fir

Figure 6. Graphical Display of a Subset of Scalars.

II 02 e3 04 05 06 07 CS zi3 10 : 12 tL 1' :; 17 1E 13 20 21 22 23 24 25

DISPLAV BEGINS At CLOCK TIDE 1 26

Lf -1TU1111-1_-

THERE IS MOPE OUTPUT TO RE DISPLAYED

DO YOU UISH TO CONTINUE (Y/N) 7

Figure 6 (Continued)

et 02 03 04 05 06 0' 08 C9 10 1 12 13 14

DISPLAY BEGINS AT CLOCK TIME I SI

E

1; 22 2 22 23 24 25

it

2

DO YCU NEED TO CONTIICE UITH MORE SELECTIONS (V/N)

Figure 6 (Continued)

OF CLOCK PULSES IN FILE 117
YOU CAN NOW GET A TOP-TO-BOTTOM DISPLAY OF A

DO YOU NEED MODULE & STEP DETAILS y/N1
START CLOCK TIME -7'21

STOP CLOCK TIME. '?40
2t NOW THE SELECTION OF SCALARS BEGINS *t
E 5

ARE YOU INTERESTED IN THIS SCALAR
F 6

(,1,141 17

ARE YOU INTERESTED IN THIS SCALAR (y1.1(1N

Z 7

ARE YOU INTERESTED IN THIS SCALAR CY N) 1Y

tt NOW THE SELECTION OF (ECTORS BEGINS tt

A 1

ARE YOU INTERESTED IN THIS VECTOR (YEN) 1Y
B 2

ARE YOU INTERESTED IN THIS UECTOR 01),N) 7.e

C 3

ARE YOU INTERESTED IN THIS VECTOR ty/N) 1Y

D 4

ARE YOU INTERESTED IN THIS VECTOR (7/9)

SUBSET CF UAFIAPLES

Figure 7. Selective Display of a Subset of Variables.

E,Z,A, B. C. D. MDLE,STEP

1 0 0100 0100 0100 0011 1.4
1 0 0100 0100 0100 0100 1,5
1 0 0101 0100 0100 0100 1.6
1 0 0101 0100 °lee 0100 1,7
1 0 0101 0100 0100 0100 1 8
1 0 0101 0100 0100 0100 1.9
1 0 0101 0100 0100 0100 1.1
1 0 0101 0100 0100 0100 1,2
1 0 0101 0101 0100 0100 1.3
1 0 0101 0101 0101 0100 1,4
1 0 0101 0101 0101 0101 1,5
1 0 0110 0101 0101 0101 1,6
1 0 0110 0101 0101 0101 1,7
1 0 0110 0101 0101 0101 1,8
1 0 0110 0101 0101 0101 1,9
1 0 0110 0101 0101 0101 1,1
1 0 0110 0101 0101 0101 1.2
1 0 0110 0110 0101 0101 1.3
1 0 0110 0110 0110 @101 1,4
1 0 0110 0110 0110 0110 1,5

DO YOU WANT TO SEARCH FOP ANY COMBIW4TION (Y41) ?

Figure 7 (Continued)

Chapter IV

THE ALGORITHMIC DESCRIPTION
OF THE POST -PROCESSOR

In this section, the design of the post -processor is reviewed.

The overall operation of the post -processor is discussed at the gener-

alized block diagram level. The algorithm is implemented in Fortran

and the program M is well -documented and structured to aid in the

use and maintenance of the system. The post -processor system is

implemented on the Nova 6 minicomputer.

A. Description of the Algorithm

The following discussion refers to the flow chart of figure 8.

The blocks in the flow chart are labelled a, b, c, etc., and as the

discussion proceeds, references are made to the labelled boxes.

Block (a)

The first step obviously is to create the simulator

output file. It may be recalled that before the simula-

tion begins, there are two files that should be created.

They are: (1) the AHPL description file, and (2) the

AHPL communication file. All the various parameters such

as the option number, the number of clock times, the set

of variables whose values are to be output, etc., are

specified in the communication file. It is necessary to

specify option #7 (see page 17), since the system is built

to work only for option #7. This option is more general,

in that the module and step information are available at

40

41

CREATE THE AHPL
SIMULATOR FILE

SCAN THE FILE AND CHECK
FOR CORRECT OPTION #(7)

LOOK FOR THE KEY WORD
"OUTPUTS"

1

(a)

(b)

(c)

STORE THE NAMES OF THE VARIABLES
IN AN ARRAY. ALSO FIND THE TOTAL

U OF VARIABLES

OPEN FILES WITH VARIABLE NAMES

PREFIXED WITH $V FOR VECTORS
AND $$ FOR SCALARS

LOOK FOR THE KEY WORD
"CLOCK 1/"

LOOK FOR THE FIRST
CHARACTER "!".

(g)

(f)

(d)

(e)

Figure 8. The Algorithm Implemented in the Design of the Post -processor.

42

IDENTIFY SCALARS AND VECTORS FOR

ALL VARIABLES EXCEPT THE LAST

VARIABLE. ALSO FIND THE II OF

BITS FOR EACH VECTOR

IDENTIFY THE LAST VARIABLE
ALSO AS A SCALAR OR A VECTOR.

IF A VECTOR, FIND # OF BITS.

1
GET THE DATA CORRESPONDING TO

SCALARS AND VECTORS AND STORE

IN RESPECTIVE FILES

GET THE MODULE AND STEP
INFORMATION ALSO AT EACH

CLOCK TIME

(h)

(i)

(j)

(k)

CHECK FOR THE END OF CLOCK TIMES
OR THE WORD "DEADEND"

COMPUTE THE # OF

CLOCK TIMES IN THE FILE

Figure 8 (Continued)

(m)

(1)

43

each clock time in the output file. In the post -processor,

the module and step information are available as an option.

The need to have the module and step information can be

specified at run time in the interactive post -processor.

Block (b)

Once the output file is created, the next step is to

scan the file and check if the specified option is #7. With

this option, the output is in binary form. As explained

before, the option has to be 7 since the system is designed

for this specific option. If the specified option is not 7,

or if no option is specified, a relevant message is displayed

so that the user can correct the communication file.

Block (c) & (d)

After scanning the output file to check that the speci-

fied option is 7, the next step is to look for the key word

"OUTPUTS". The characters following this key word are read

using the byte function and stored in an array. Each variable

name is separated by the character "!" and the last variable

name ends with the character "." (period). It is quite easy to

recognize the end of each variable name and also to mark the

end of the list of variables. A counter is used to count the

number of variable names read into the array. The program

accomodates as many as 20 characters for each variable name.

This means that a variable name may not exceed 20 characters

in length.

44

Block (e)

Having identified the variable names, the next step is

to store the values of these variables in some form. A memory

array could be declared in the program, and all the values of

the variables can be stored in the array. There are a few pro-

blems in this approach. First of all, the memory array to be

declared has to be quite large to accomodate all the variable

values and for all the clock times. Neither the number of

clock times, nor the number of variables can be predicted.

Even if a largest possible memory array is declared, there is

always a chance for some simulation to exceed the bounds speci-

fied in the declaration of the memory array. Assuming that a

memory array can be declared to handle most cases, still the

total memory required for the program is quite large.

To solve the problems discussed above, an alternative to

the memory declaration scheme is proposed. A file is opened

for each variable. The name of the file can be the name of

the variable itself. All the files required to store the

values of vectors can be prefixed with the characters "$V", and

all the files required to store the values of scalars are pre-

fixed with the characters "$$". This way, the scalar and vector

files can be easily identified. A file is opened only if a

variable exists. That is, the number of files opened is equal

to the number of variables, unlike the case of declaring the

memory where the memory size is fixed.

Also, there is no severe limitation on the number of clock

times. Each file can accomodate a large number of clock times of

45

information. The files can be closed after writing all the

variable values for all clock times. At a later time when

the values from these files are read, each file is referenced

by means of a unique unit number. Each time a few lines are

read from any file, the system has to return to the beginning

of the file immediately. This is to ensure that the reading

starts from the beginning of the file and the next time the

file is referenced. If the system does not return to the begin-

ning of the file, the reading would commence from a point where

it was left the previous time. The other advantage of opening

files for each variable is that the files are stored on the

disk and the memory space is conserved.

Block (f)

Having created a file for each variable, the next step is

to scan the file for the values of the variables. The key

word to look for is 'MOCK #" (see Appendix). The output file

contains both the description and communication files along

with the values of variables at each clock time. The word

"CLOCK #" occurs in the output file just before the values
of

the output variables for the first clock time. Therefore, the

occurrence of the word "CLOCK It" marks the beginning of
the

variable values in the output file.

Blocks (g) & (h)

In the same line where the word "CLOCK #" occurs, the

characters "II' " can be found (see Appendix). The number

46

of these characters that can be found following the word

"CLOCK #" is equal to the number of variables specified to

be output in the communication file. A close look at the

output file reveals this fact. The spacing between each of

these characters ""It " determines whether each variable

is a scalar or a vector. Starting from the first of these

"!!l..." characters, it is easy to visualize that if the

spacing between the nth and (n + 1)th of these characters

is one blank space, then the nth variable is a scalar; other-

wise, the nth variable is a vector. This rule holds for all

but the last variable since the last of these "!!! ." charac-

ters cannot be compared with any other character. To deter-

mine if the last variable is a scalar or a vector, the first

data line has to be read. The procedure is discussed in

Block (i). Once a variable is identified as a vector, the

number of bits associated with that vector has to be determined.

A scalar, obviously, has just one bit. If the spacing between

the nth and (n + 1)th of the characters "Ill " is K (K not

equal to 1), then the variable n is a vector of K bits. This

is the simple algorithm implemented to determine the number of

bits in a vector.

Block (i)

At this point, all the variables except the last variable

are identified as vectors or scalars. To identify the last

variable, the first data line has to be read. The column in

which the last character "!!!..." occurs can easily be determined.

47

Now, if the next column in the data line contains a carriage

return character, then the last variable is a scalar; otherwise,

the last variable is a vector. If the last variable is a

vector, the number of bits can be determined by keeping track

of the number of columns after which a carriage return charac-

ter occurs.

Block (j)

The next step is to read the AHPL output file, line by

line, to get the data and store them in the respective files

created for each vector and scalar. The column at which each

vector and scalar begins is known. Having recognized the

number of bits of each vector, that many columns of data are

read for each vector. Of course, for a scalar only one column

is read. This procedure is repeated for each line of data.

Therefore, the data is extracted from the output file for

vectors and scalars and the corresponding values stored in

respective files.

Block (k)

Once the data values are read for any clock time, the
next

two lines contain the module and step information. Consequently,

after reading any particular line for variable values,
the next

two consecutive lines have to be read to get the module
and step

information. The module and step information are stored in the

files named "$$MODULE" and "$$STEP". The module number specifies

the active module and the step number specifies
the next active

AHPL step.

48

Blocks (1) & (m)

The process of reading the data values, module information

and step information can be continued until the last clock time

is reached. At each clock time, values are read and a counter

is incremented so that in the end the counter gives the number

of clock times in the output file. The only problem left is to

recognize the last clock time. Actually, the information

regarding the number of clock times can be found in the communi-

cation file, but the problem is that the simulation may have

halted before the specified number of clock times if the program

encounters a DEADEND. For this reason, the only alternative is

to scan the complete output file and determine the number of

clock times by some other means. If the simulation runs for the

number of clock times specified in the communication section,

then after the last clock time a blank space and a carriage

return are output. Thus, if any particular line contains only

two characters, then it means that the simulation has continued

for the number of clock times as specified in the communication

section. In the event where a DEADEND is encountered, the simu-

lator outputs a message to this effect (see Appendix). In such

a case, the key word to look for is "DEADEND" or simply "DEAD".

Therefore, either the word DEAD or a count of two characters

signifies the end of the last clock time data, and the number of

clock times in the simulator output file can be easily determined.

B. A Description of How to Use the Post processor

The following description refers to figure 9.
It may be recalled

from figure 8 that the discussion of the flow chart terminated at a point

49

Yes

GIVE A
GRAPHICAL
DISPLAY

NEED TO SCAN THE FILE
AND LOOK FOR ANY
GIVEN COMBINATION

No

NEED A GRAPHICAL DISPLAY OF
SCALARS ALONE? (YES) OR
NEED TO LOOK AT SCALARS
AND/OR VECTORS SELECTIVELY

GIVE A
SELECTIVE
DISPLAY

Yes

SCAN THE FILE
TO LOOK FOR THE
COMBINATION

Figure 9. Using the Post -processor

50

where all the data from AHPL output file was extracted and stored

in different files. The data is now ready to be processed. The

post -processor allows the user to specify certain requirements and

displays the results in the graphics terminal. The program is

interactive and it displays relevant messages at each step so that

the user can follow and interpret the results. In the discussion

that follows, references are made to the blocks labelled 1, 2, 3,

etc., in figure 9.

Block 1

A message is displayed on the screen with a question

for which the answer should be either "YES" or "NO". Any

other answer is ignored and the question is asked again.

The question displayed on the screen is as follows:

"DO YOU WANT TO SEARCH FOR ANY COMBINATION?"

If the answer is "YES" to the above question, it means

that the user is interested to look through the file for

a given combination of vectors and/or scalars. The pro-

gram then displays the name of each variable and asks the

user if he is interested in that particular variable. As

an example, a message is of the form as given below:

VARIABLE NAME ITS NUMBER

"ARE YOU INTERESTED IN THIS VARIABLE?"

The number that is displayed along with a variable name is

the unique number of the variable which the program uses in-

ternally to reference the variable. Actually, the program

51

uses this unique number to open a file on the disk to store

that particular variable's values. Later on, the program

references the specific file belonging to any variable with

the unique unit number.

Once the user specifies interest in a particular

variable, the program allows the user to enter the value

of that variable for searching the output file. If a

variable is a scalar, the program accepts one bit (a 0 or 1)

as the value of the scalar. If the variable is a vector,

the program displays the number of bits and accepts that

many bits of l's and 0's for the value of the vector. In

this way, all the variables of interest can be specified

with the corresponding values of the variables. Once all

the variables and their values are specified, the program

scans through the file and returns with one of the following:

(1) If the combination never occurs, a relevant

message is displayed to that effect, namely:

"THE GIVEN COMBINATION NEVER OCCURRED".

(2) If the given combination occurs in the file,

a message is displayed indicating the number

of times the combination occurred and the

corresponding clock times.

"it OF TIMES THE GIVEN COMBINATION OCCURS

"THE GIVEN COMBINATION OCCURS AT THE FOLLOWING

CLOCK TIMES".

The above information (1) and (2) gives an idea as to which

section of the file is of most interest to selectively ob-

serve a subset of variables or have a graphical picture of

52

of the scalars. If there is no necessity to look for a

given combination in the file, then the program continues

through block 2 after having accepted a "NO" as the res-

ponse to block 1.

Block 2

At this time, the user can choose a graphical display

of the scalars or a subset of the scalars. If the graphical

display is not desired, a choice can be made to observe the

subset of scalars and vectors in a selected group of clock

times.

If the graphical display is chosen, then the program

accepts the list of scalars for which graphical display is

required. The program also accepts as input the start and

stop clock times for the graphical display. The program does

not display the graphical picture of the scalars relative to

the clock for more than 25 clock cycles at any one given time.

This is due to the fact that there is better clarity on the

screen for a fewer number of clock cycles at a time (see fig. 6).

Also, there is a limitation set due to the size of the screen

width. Twenty-five clock times is chosen as a compromise bet-

ween the screen size and a reasonable amount of clarity.

Although more than 25 clock cycles of information is not dis-

played at a time, the user is not limited to specify only 25

clock times at any instance. If the total number of clock

times specified exceeds 25, then the display is presented in

portions of 25 clock cycles or less. As each portion is

53

displayed, the system waits for the user's response to con-

tinue with the other portions of the display.

Before the presentation begins, the absolute value of

the start time is displayed on the screen. Also the rela-

tive number of the clock time is displayed on top of the

clock signal itself. At any given time, as many as six

variables can be displayed graphically, one below the other,

relative to the clock. This limitation is again due to the

size of the screen.

If a graphical display is not desired, a top -to -bottom

display of a subset of scalars and vectors can be chosen.

This is a numeric type display (see fig. 7). It is possible

to choose a subset of scalars and/or vectors and a selected

number of clock times for the top -to -bottom display. This

facility enables the user to choose only those variables of

interest and select a group of clock times.

The program displays the name of each variable along with

a number unique to that variable. A choice can be made regard-

ing the set of variables of interest. Also, the start and stop

clock times can be specified. In a top -to -bottom display of

the subset of variables, if the screen size is inadequate, the

remainder of the display does not continue until indicated by

means of controls on the keyboard of the graphics terminal.

The details regarding the actual use of these controls are ex-

plained in the User's Manual [9].

Although the user can specify as many vectors and scalars

required for the top -to -bottom display, there is a limitation

54

set by the screen width. The user does not realize this at

the time of specifying the list of variables. Actually, the

program checks to see if the given subset of variables can

be accomodated on the screen. If all of the variables cannot

be accomodated on the screen, a message is displayed on the

screen and the user can specify a smaller subset of the

variables.

As part of the top -to -bottom display, the user can request

the module and step information at each clock time. This faci-

lity is available as an option and can be specified to the

system.

In the entire discussion regarding the software implemented in

the post -processor, there were no details about the actual program.

The program is lengthy and complex, for which reason it was believed

that the detailed version should not be included in the thesis. The

program is well -documented and structured and appears in the User's

Manual [9J. Every effort has been made to explain any ambiguous

portions. Comments are included in the program, wherever it was felt

necessary, to aid the interested reader in better understanding.

The User's Manual is written with the assumption that the reader

has a good background in the use of the AHPL language and the AHPL

simulator. The version of AHPL as accepted by the simulator does not

use all the characters as described in the original version [1]. There

are quite a few variations in the symbol usage and the details are

available in the User Manual [81.

Due to the requirements of the graphical display as part of

the post -processor, the program is written to work only with the

55

graphics terminal. Hence, only the graphics terminal can be used

in conjunction with the post -processor.

Chapter V

CONCLUSION

The post -processor has been developed to support many features

required after the simulation of an AHPL description. The post -

processing technique is particularly advantageous in cases where the

AHPL output file is large. The graphical display is most advantageous

in recognizing the level changes of control signals at given clock

times. The facility of displaying a subset of the variables within

given bounds of clock times is very helpful in design error detection.

To enhance the use of the post -processor in the area of design error

detection, the facility to search the output file for a given combina-

tion of variables is incorporated. This facility of being able to

search the file for a given combination is quite powerful. At the

present time, the post -processor displays the contents of registers in

binary form. Although binary form is quite suitable for most cases, it

may be advantageous to have the display of registers in other different

forms such as octal, hexadecimal and decimal. The decimal form of dis-

playing the register contents may be useful in increment, decrement,

add and subtract operations.

56

APPENDIX

_57

58

8/ 1/1982 18:14:52 DIR MADHAVANPR Pae 1

AHPL CIRCUIT DESCRIPTION MODULE NUMBER 1 « DATE: 06/07/82
TIME: 10:49:45 (HPSIM/2.0 U OF ARIZ.)

1. AHPLMODULE:CONTROLLER
EXINPUTS:ZASTART.
MEMORY:AC4.1;BE41;C(43;DE4:1.

4 1 => (-START)/ (1).
2 B <= A.

6 3 C <= B => (Z)/(5).
7 4 A <= (-C) ;=> (2).
8 D <= C ; => (2).
9 ENDSEQUENCE

10 CONTROLRESET(1).
11 END.

1HPSIM COMMUNICATION SECTION FOR THE ABOVE MODULES DATE: 06/07/82
TIME: 10:49:46

12 OPTION 7.

12 CLOCKLIMIT 104
14 EXLINES START=091 ;Z=Ot471.
15 OUTPUTS START;Z;A;B;CiD.
16 INITIALIZE A <= 3.

17 DUMP ALL.

::;:: EXECUTION OF THE HPSIM PROGRAM MODULES
WILL START BY EXECUTING THE STEPS SPECIFIED BY THE

(CONTROLRESET) STATEMENT ALL THE EXECUTED STEPS
AND THEIR MODULE NUMBER WILL BE LISTED BEFORE
THEIR CORRESPONDING OUTPUTS ARE PRINTED :::::

0 ::::: EXECUTION WILL STOP AFTER 10 CLOCK PULSES « « «

:!.AHPL FUNCTION LEVEL SIMULATOR OUTPUT IS LISTED BELOW
START

7

! A

! ! !

CLOCK 4 ! !

1 0 0 0011 0000 0000 0000
MODULE4 1

STEP 4 1

1 0 0011 0000 0000 0000
MODULFt 1

STEP 4 2

1 0 00:11 0000 0000 0000

0 MODULE4 1

STEP if: 3

59

8/ 1/1932 18:14:52 DIP MADHAVANPR Page

4 1 0 0011 0011 0000 0000
0 MODULE* 1

STEP 4 4

5 1 1 0011 0011 0011 0000
O MODULE* 1

STEP *

6 1 1 1100 0011 0011 0000
0 MODULE4 1

STEP 4 3

7 1 1 1100 1100 0011 0000
O MODULE4 1

STEP 4

8 1 1 1100 1100 1100 0000
0 MODULE* 1

STEP 4 2

9 1 1 1100 1100 1100 1100
O MODULE* 1

STEP 4 7

10 1 1 1100 1100 1100 1100
O MODULE* 1

STEP 4 5

PROGRAM REACHED THE CLOCKLIMIT. INTERPRETER STOPS :::::

1HPSIM OUTPUT, DUMP OF MEMORIES AND REGISTERS:
- A < 0: 0> 1100

B < 0: 0> 1100

0: 0> 1100

D < 0: 0> 1100

R;

60

8/1/1982 18:13:17 nIR MADHAVANPR Page 1

AHPL CIRCUIT DESCRIPTION MODULE NUMBER 1: DATE: 06/28/82
TIME: 16:34:13 (HPSIM/2.0 11 OF ARIZ+)

1 AHPLMOnULF:CONTROLLFR
2 MEMORY:AL47J;BE43;C[4];DE421;Z[1];EE1:1;F[1].
3 CLUNITS: INC[4J (A).

4 1 B <= A:

5 2 C <= B.

6 3 D <= C.

7 4 A <= INC(A).
Z <=

9 6 E <=
10 7 F <= A[O] @ B[3]
11 8 => (Z)/(10).
12 9 => (1),
13 10 A <= (-A);
14 ENDSEGUENCE
15 CONTROLRESET(1),
16 END.

1HPSIM COMMUNICATION SECTION FOR THE ABOVE MODULES DATE: 06/28/82
TIME: 16:34:14

17 OPTION 7.

18 CLOCKLIMIT 250.
19 OUTPUTS A;B;C;D;F;F;Z:
20 INITIALIZE Z <= 11;E <= 11;F <= "1;A <=

B<= '3;C<= '4;D <='5,
21 DUMP ALL.

EXECUTION OF THE HPSIM PROGRAM MODULES
WILL START BY EXECUTING THE STEPS SPECIFIED BY THE

(CONTROLRESET) STATEMENT:. ALL THE EXECUTED STEPS
AND THEIR MODULE NUMBER WILL BE LISTED BEFORE
THEIR CORRESPONDING OUTPUTS ARE PRINTED :::"

0 ::::: EXECUTION WILL STOP AFTER 250 CLOCK PULSES
lAHPL FUNCTION LEVEL SIMULATOR OUTPUT IS LISTED BELOW :

A

! F

! ! 7_

CLOCK t ! ! !

1 0010 0011 0100 010,1 1 1 1

0 MODULE4 1

STEP 4 2

61

3/ 1/1982 18:13:17

2 0010 0010 0100 0101 1 1 1

0 MODULES 1

STEP S 3

3 0010 0010 0010 0101 1 1 1

0 MODULE* 1

STEP S 4

4 0010 0010 0010 0010 1 1"
0 MODULE* 1

STEP 4 5

5 0011 0010 0010 0010 1 1 1

0 MODULES 1

STEP t 6

6 0011 0010 0010 0010 1 1 0

0 MODULES 1

STEP * 7

7 0011 0010 0010 0010 1 1 0

O MODULES 1

STEP 4 8

8 0011 0010 0010 0010 1 0 0

O MODULE* 1

STEP S 9

9 0011 0010 0010 0010 1 0 0

0 MODULES 1

STEP S 1

10 0011 0010 0010 0010 1 0 0

MODULE* 1

STEP 4 2

11 0011 0011 0010 0010 1 0 0

0 MODULE* 1

STEP 4 3

12 0011 0011 0011 0010 1 0 0

O MODULES 1

STEP t 4

13 0011 0011 0011 0011 1 0 0

O MODULES 1

STEP 4 5

14 0100 0011 0011 0011 1 0 0

0 MODULES 1

STEP 4 6

15 0100 0011 0011 0011 1 0 0

O MODULES 1

STEP t 7

16 0100 0011 0011 0011 1 0 0

O MODULES 1

STEP t 8

0100 0011 0011 0011 1 1 0 17
O MODULES 1

STEP * 9

nIR MAnHAVANPR Page 2

62

8/ 1/1982 18:13:17 DIP MADHAVANPR Page 3

13 0100 0011 0011 0011 1 1 0

0 MODULE* 1

STEP 4 1

19 0100 0011 0011 0011 1 1 0

0 MODULE* 1

STEP t

20 0100 0100 0011 0011 1 1 0

O MODULE* 1

STEP 4 3

21 0100 0100 0100 0011 1 1 0

MODULE* 1

STEP * 4

22 0100 0100 0100 0100 1 1 0

MODULE* 1

STEP * 5

23 0101 0100 0100 0100 1 1 0

MODULE* 1

STEP t 6

24 0101 0100 0100 0100 1 1 0

MODULE* 1

STEP t 7

25 0101 0100 0100 0100 1 1 0

0 MODULE* 1

STEP t 8

26 0101 0100 0100 0100 1 0 0

O MODULE* 1

STEP * 9

27 0101 0100 0100 0100 1 0 0

MODULE* 1

STEP t 1

28 0101 0100 0100 0100 1 0 0

0 MODULE* 1

STEP *

29 0101 0101 0100 0100 1 0 0

MODULE* 1

STEP 4 3

30 0101 0101 0101 0100 1 0 0

0 MODULE* 1

STEP * 4

31 0101 01.01 0101 0101 1 0 0

0 MODULE* 1

STEP t 5

32 0110 0101 0101 0101 1 0 0

0 MODULE* 1

STEP * 6

33 0110 0101 0101 0101 1 0 0

O MODULE* 1

STEP * 7

63

8/ 1/1982 18:13:17 DIR MADHAVANPR Page 4

34 0110 0101 0101 0101 1 0 0

0 MODULE* 1

STEP 4 8

OJ 0110 0101 0101 0101 1 1 0

MODULE* 1

STEP t 9

36 0110 0101 0101 0101 1 1 ('

0 MODULE* 1

STEP * 1

37 0110 0101 0101 0101 1 1 0

0 MODULE 1

STEP t

38 0110 0110 0101 0101 1 1 w

O MODULE4 1

STEP t 3

39 0110 0110 0110 0101 1 1 0

O MODULE* 1

STEP t 4

40 0110 0110 0110 0110 1 1 0

MODULE* 1

STEP 4

41 0111 0110 0110 0110 1 1 0

0 MODULE* 1

STEP t 6

42 0111 0110 0110 0110 1 1 0

0 MODULE 1

STEP 4 7

43 0111 0110 0110 0110 1 1 0

0 MODULE* 1

STEP * 8

44 0111 0110 0110 0110 1 0 0

O MODULE* 1

STEP 4 9
4 In - 0111 0110 0110 0110 1 0 0

MODULE4 1

STEP t 1

46 0111 0110 0110 0110 1 0 0

O MODULE,* 1

STEP 4 2

47 0111 0111 0110 0110 1 0 0

0 MODULE* 1

STEP 4 3

48 0111 0111 0111 0110 1 0 0

0 MODULE* - 1

STEP t 4

49 0111 0111 0111 0111 1 0 0

0 MODULE,* 1

STEP t

64

8/ 1/1982 18:13:17 DIR MADHAVANPR Page 5

50 1000 0111 0111 0111 1 0 0

0 MODULE* 1

STEP * 6

51 1000 0111 0111 0111 1 0 0

0 MODULE* 1

STEP * 7

52 1000 0111 0111 0111 1 0 0

0 MODULE# 1

STEP * 8

53 1000 0111 0111 0111 1 0 0

0 MODULE* 1

STEP * 9

54 1000 0111 0111 0111 1 0 0

O MODULE* 1

STEP 4 1

55 1000 0111 0111 0111 1 0 0

0 MODULEt 1

STEP *

56 1000 1000 0111 0111 1 0 0

0 MODULE* 1

STEP t 3

1000 1000 1000 0111 1 0 0

0 MODULEt 1

STEP t 4

58 1000 1000 1000 1000 1 0 0

O MODULE* 1

STEP * 5

59 1001 1000 1000 1000 1 0 0

0 MODULE* 1

STEP * 6

60 1001 1000 1000 1000 1 0 0

0 MODULE* 1

STEP * 7

61 1001 1000 1000 1000 1 0 0

0 MODULE* 1

STEP *

62 1001 1000 1000 1000 1 1 0

0 MODULE* 1

STEP * 9

63 1001 1000 1000 1000 1 1 0

0 MODULE*
STEP # 1

64 1001 1000 1000 1000 1 1 0

0 MODULE* - 1

STEP t

65 1001 1001 1000 1000 1 1 0

0 MODULE* 1

STEP 4 3

65

8/ 1/1982 18:13:17 DIR MADHAVANPR Page 6

66 1001 1001 1001 1000 1 1 0
0 MODULE*

STEP 4 4

67 1001 1001 1001 1001 1 1 0

0 'MODULEO 1

STEP t 5

68 1010 1001 1001 1001 1 1 0

MODULE0 1

STEP t 6

69 1010 1001 1001 1001 1 1 0

0 MODULE4
STEP 4 7

70 1010 1001 1001 1001 1 1 0

O MODULE4 1

STEP 4 8

71 1010 1001 1001 1001 1 0 0

O MODULE4 1

STEP t 9

72 1010 1001 1001 1001 1 0 0
0 MODULE* 1

STEP 4 1

73 1010 1001 1001 1001 1 0 0

0 MODULE* 1

STEP t 2

74 1010 1010 1001 1001 1 0 0

0 MODULE* 1

STEP *

75 1010 1010 1010 1001 0

O MODULE* 1

STEP 4 4

76 1010 1010 1010 1010 1 0 0

0 MODULE4 1

STEP 4 5

77 1011 1010 1010 1010 1 0 0

0 MODULEI 1

STEP 4 6

78 1011 1010 1010 1010 1 0 0

O MODULE4 1

STEP t 7

79 1011 1010 1010 1010 1 0 0

0 MODULE4 1

STEP 4 8

80 1011 1010 1010 1010 1 1 0

MODULE4 _ 1

STEP * 9

81 1011 1010 1010 1010 1 1 0

0 MODULE4 1

STEP 4 1

66

8/ 1/1982 18:13:17 DIR MADHAVANPR Page 7

82 1011 1010 1010 1010 1 1 0

0 MODULES 1

STEP 4 2

83 10'11 1011 1010 1010 1 1 0
0 MODULES 1

STEP 4

84 1011 1011 1011 1010 1 1 0

0 MODULES 1

STEP S 4

85 1011 1011 1011 1011 1 1 0

O MODULE* 1

STEP 4 5

86 1100 1011 1011 1011 1 1 0

0 MODULE/ 1

STEP 4 6

87 1100 1011 1011 1011 1 1 0

0 MODULES 1

STEP 4 7

88 1100 1011 1011 1011 1 1 0

0 MODULES 1

STEP 4

89 1100 1011 1011 1011 1 0 0

0 MODULES 1

STEP t 9

90 1100 1011 1011 1011 1 0 0

0 MODULES 1

STEP * 1

91 1100 1011 1011 1011 1 0 0

0 MODULE* 1

STEP * 2

92 1100 1100 1011 1011 1 0 0

0 MODULES 1

STEP 4 3

93 1100 1100 1100 1011 1 0 0

0 MODULES 1

STEP 4 4

94 1100 1100 1100 1100 1 0 0

0 MODULES 1

STEP 4

95 1101 1100 1100 1100 1 0 0.
0 MODULE* 1

STEP t 6

96 1101 1100 1100 1100 1 0 0

O MODULES - 1

STEP 4 7

97 1101 1100 1100 1100 1 0 0

0 MODULES 1

STEP 4 8

67

8/ 1/1982 I8:13:17 DIR MADHAVANPR Page 8

98 1101 1100 1100 1100 1 1 0
0 MODULE* 1

STEP t 9

99 1101 1100 1100 1100 1 1 0
0 MODULE4 1

STEP 4 1

100 1101 1100 1100 1100 1 1 0

0 MODULE4 1

STEP 4

101 1101 1101 1100 1100 1 1 0
0 MODULE* 1

STEP 4 3

102 1101 1101 1101 1100 1 1 0

O MODULE* 1

STEP 4 4

103 1101 1101 1101 1101 1 1 0

0 MODULE* 1

STEP 4 5

104 1110 1101 1101 1101 1 1 0

MODULE4 1

STEP 4 6

105 1110 1101 1101 1101 1 1 0

0 MODULE* 1

STEP 0 7

106 1110 1101 1101 1101 1 1 0

0 MODULE* 1

STEP 4

10/ 1110 1101 1101 1101 1 0 0

0 MnDULE4 1

STEP 4 9

108 1110 1101 1101 1101 1 0 0

0 MODULE*: 1

STEP 0 1

109 1110 1101 1101 1101 1 0 0

O MODULE4 1

STEP 4

110 1110 1110 1101 1101 1 0 0

0 MODULE4 1

STEP 4 7

111 1110 1110 1110 1101 1 0 0

0 MODULE*: 1

STEP t 4

112 1110 1110 1110 1110 1 0 0

0 MODULE*: - 1

STEP 4 5

113 1111 1110 1110 1110 1

0 MODULE* 1

STEP 4 6

68

8/ 1/1982 18:13:17 DIR MADHAVANPR Page

114 1111 1110 1110 1110 J. 0 1

0 MODULE* 1

STEP * 7

115 1111 1110 1110 1110 0 0 1

0 MODULE* 1

STEP 4 8

116 1111 1110 1110 1110 0 1 1

MODULE* 1

STEP * 10
117 1111 1110 1110 1110 0 1 1

0 MODULE* 0

STEP * 0

:: PROGRAM REACHED A COMPLETE DEADEND. INTERPRETER STOPS
1HPSIM OUTPUT, DUMP OF MEMORIES AND'REGISTERS:

- A < 0: 0> 1111

0: 0 1110

0: 0 1110

IE 0: 0 1110

Z 0: 0 1

E 0: 0 0

0: 0;: 1

R

BIBLIOGRAPHY

1. F. J. Hill and G. R. Peterson, Digital Systems: Hardware
Organization and Design. 2nd ed., Wiley, New York, 1978.

2. F. J. Hill, "Introducing AHPL," Computer, vol. 7, pp. 28-30,
Dec. 1974.

3. F. J. Hill, "Updating AHPL," IEEE Proceedings of the
International Symposium on Computer Hardware Description
Languages and their Applications, Sept. 1975, pp. 22-29.

4. F. J. Hill and Z. Navabi, "Extending Second Generation AHPL
Software to Accomodate AHPL III," IEEE Proceedings of the 4th
International Symposium on Computer Hardware Description
Languages, Oct. 1979, pp. 47-53.

5. F. J. Hill, R. E. Swanson, M. Masud and Z. Navabi, "Structure
Specification with a Procedural Hardware Description Language,"
IEEE Transactions on Computers, vol. C-30, Feb. 1981, pp. 157-161.

6. D. P. Siewiorek, C. G. Bell and A. Newell, Computer Structures:
Principles and Examples. McGraw Hill, 1982.

7. S. G. Shiva, "Computer Hardware Description Languages - A
Tutorial," Proceedings of the IEEE, vol. 67, Dec. 1979, pp. 1605-
1615.

8. F. J. Hill, R. Swanson and Z. Navabi, User Manual for AHPL
Simulator (HPSIM 2) and the AHPL Compiler (HPCOM). Dept. of Elec.
Engg., University of Arizona, Jan. 1979.

9. J. H. Tracey and P. S. Madhavan, User Manual for the Post -
processor of AHPL Simulator. Dept. of Elec. Engg., Kansas State
University, 1982.

10. Y. Chu, "Why do we need Computer Hardware Description Languages,"
Computer, vol. 7, Dec. 1974, pp. 18-22.

11. J. P. Hayes, "CHDL's in Design Automation Systems," Proceedings of
the IEEE International Symposium on Computer Hardware Description
Languages, 1975, pp. 53-69.

12. J. L. Houle, "New Applications of CHDL's," Proceedings of the IEEE

International Symposium on Computer Hardware Description Languages,
1975, pp. 76-91.

69

ACKNOWLEDGEMENTS

I wish to thank my thesis supervisor, Dr. James H. Tracey,

for his excellent guidance during the years of my study and

suggestions during the preparation of this thesis. I also wish

to thank my committee members Dr. Virgil Wallentine and Dr. Richard

Gallagher for their suggestions and support.

I would also like to thank Dr. Nasir Ahmed for his comments

and support.

Also, thanks to my wife Vinatha for her superb typing of this

thesis.

70

A POST -PROCESSING SYSTEM

FOR AN AHPL SIMULATOR

by

PUNDI SREENIVASAN MADHAVAN

B.S., Madras Institute of Technology, 1976
M.S., University of Madras, 1980

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment

of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1982

ABSTRACT

The main objective of this work, "A Post -processing System

For An AHPL Simulator," is to enhance the use of the AHPL simulator

in hardware design applications. The original AHPL simulator pro-

vides an output file which is difficult to analyze. The analysis

of the output file is not convenient, particularly for larger

number of variables and clock times. The original version of the

simulator does not support features such as graphical presentation,

display of a subset of the variables in given bounds of clock times

and searching the output file for a given combination values of

variables. All of the above -mentioned features are implemented in

the post -processor. In the simulation of the AHPL sequence, from

a design standpoint, the post -processor offers significant support.

