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INTRODUCTION

Aggression is defined as an unprovoked attack, involving engagement in

aggressive behavior, which includes only offensive behavior. The term

agonistic behavior includes both offensive and defensive behaviors and may

include both physical conflict (fighting) and nonphysical conflict such as

gestures, postures and other communicative signals. Aggressiveness is a

relatively permanent state of potential for committing acts of aggression

(Welch, 1968).

Aggression in laboratory animals can be elicited by various methods such

as surgical techniques, painful stimuli, drug treatment and prolonged isolation-

frustration. Frontal lobectomy (Karli, 1955), ablation of the olfactory bulbs

(Vergnes and Karli, 1963), bilateral lesions of the lateral olfactory bandelets

and the destruction of the prepyriform cortex (Karli and Vergnes, 1963) are

experimental surgical techniques which induce aggressive behavior in rats. In

addition, lesions of the septal nuclei produce septal irritability accompanied

by aggression (Brady and Nauta, 1953)- Electric foot shock also can induce

aggression when applied to mice or rats (O'Kelly and Steckle, 1938] Miller,

19U8; Ulrich, Hutchinson, and Azrin, 1965). Treatment with hallucenogenic

drugs (Brown, I960; Everett, 1961), convulsant and amphetamine -like drugs

(Reinhard, Plekes, and Scudi, i960) results in the appearance of aggressive

behavior. Prolonged periods of isolation produce aggressive behavior in male

mice (Garattini, Giacolone, and Valzelli, 1967; Yeu, Stanger and Millman

,

1959) . Isolation-frustration produces an aggressive behavior which is most

"natural", in the sense that it includes elements of species characteristic

behavioral patterns.
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The study reported herein is one of a series of experiments on the

endocrine and neurochemical effects of exposure to agonistic behavior in the

male C57BL/6J mouse. In all cases the training method of Scott (19U6) was

utilized to establish a colony of male fighting mice. This work on agonistic

behavior originated from a study of population density and its effect on the

endocrine system (Christian, 1957). Several separate studies indicate that

agonistic behavior might be as important in causing adrenal responses as

density (Barnett, 1958; Bronson and ELeftheriou, 1963; Clark, 1953). The

effects of aggression and defeat on adrenal weights (Bronson and ELeftheriou,

1965a), plasma bound and unbound corticosterone (Bronson and ELeftheriou,

1965b), pituitary ACTH (Bronson and ELeftheriou, 1965a) and plasma and

pituitary levels of LH (Eleftheriou and Church, 1967) and TSH (Eleftheriou

,

Church, Norman, Pattison, and Zolovick, 1968) reveal a trend toward systemic

endocrine adaptation which develops earlier in aggressive mice than in

defeated mice . /

Since aggressive or defeat behavior patterns are mediated through the

central nervous system a series of experiments was initiated into the study

of factors in the brain which might affect agonistic behavior. It is well

known that changes in the concentration of serotonin in the brain affect

behavior (Aprison and Ferster, 196la; Aprison and Ferster, 196lb; Aprison,

Wolf, Poulos and Folkerth, 1962; Bogdanski, Weisbach, and Udenfreind, 1958j

Brodie and Shore, 1957; Costa and Rinaldi, 1958; Hingtgen and Aprison, 1963;

Shore, Fletscher, Tomich, Carlsson, Kuntzman and Brodie, 1957; Udenfriend,

Weisbach and Bogdanski, 1957a; Udenfriend, Weisbach, and Bogdanski, 1957b;

Udenfriend, Weisbach and Bogdanski, 1957c). Norepinephrine is altered also

in various types of behavior (Aprison and Hingtgen, 1965), and is related to
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behavioral alterations seen when an animal is attacked or is being attacked

(Gunne and Reis, 1963 ). In addition, both serotonin and norepinephrine are

involved in the learning ability of mice (Woolley, 1962; Woolley, 1963;

Woolley and van der Hoeven, I963). Initial studies on brain monamine

oxidase (Boehlke and ELeftheriou, 1967) and brain 5-hydroxytryptophan

decarboxylase (Eleftheriou and Church, 1968a) revealed inconsistent changes

in enzyme activity in the hypothalamus, amygdala, and frontal cortex of mice

exposed to aggression and defeat. When serotonin and norepinephrine levels

in these areas were measured, a persistent effect of exposure to aggression

was evident up to sixteen day fights in defeated mice indicating a lack of

neurochemical adaptation when systemic adrenal-pituitary adaptation has

occurred (ELeftheriou and Church, 1968b).

With increasing information on the roles of ribonucleic acid (RNA) in

the cell, the effects of aggression and defeat on regional brain RNA in the

mouse were studied to gain an insight into the mediation of aggressive and

defeat behavior patterns. Brain RNA has been a subject of study only in

recent years. Brain RNA is located in both microsomal and nuclear fractions

(Brody and Bain, 1952; Aldridge and Johnson, 1959). A DMA-dependent RNA

polymerase has been identified in nuclei from calf and rat brain (Barondes,

1961|), and its activity is higher in the brain than in the liver for all

species studied (Bondy and Waelsch, 1965). Hiatt (1962) identified an RNA

fraction in rat liver nuclei which, on the basis of its size, rate of labelin

and base composition, resembled bacterial messenger RNA. The existence of

rapidly labelled RNA in the brain has been demonstrated in the U-18 S region

of a sucrose density gradient (Barondes and Jarvik, 196k; Kimberlin and

Hunter, 1965). In addition, a rapidly labelled RNA was eluted from a
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methylated albumin-kieselghur column (Bertermann, Mahler, Koore, Button, and

Thompson, 1965). A rapidly labelled RNA with the following properties was

obtained from rat brain: its base composition is close to that of rat DNAj

it sediments in sucrose density gradients in a broad range, a part of it

sedimenting faster than 28 S ribosomal ENA; it is eluted from a methylated

albumin-kieselghur column at higher salt concentration than ribosomal RNA,

and its synthesis is inhibited by actinomycin-D (Jacob, Stevenin, Jund,

Judes, and Mandel, 1966). These results support the theory that synthesis of

high molecular weight RNA of the messenger type also occurs in the rat brain.

The level of stimulation of neuronal cells in the eye alters the RNA

content of the cells. Bratgaard (1952) reported that light deprivation led

to a rapid decrease in RNA concentration in the ganglion cells of the rabbit

retina and light stimulation resulted in an increased synthesis of RNA

proportional to the total light stimulation received. These observations

were confirmed and the conclusion reached that adequate light stimulation is

a major variable controlling the development of normal ribonucleoprotein

levels in retinal cells (Rasch, Swift, Riesen, and Chow, 1961). Stimuli

which alter the levels of brain RNa have been noted. The compounds, hexenal,

caffein, and camphor, increase and circulatory hypoxia of the brain decreases

the nucleic acid content of the brain (Baranov and Pevzner, 196j). The

concentration and total amount per cell of cytoplasmic RNA were markedly

increased in rat Purkinje cells, as compared with controls, following prolonged

physical exertion (Attardi, 1957). Convulsions produced by metrazol resulted

in depletion of pentose-nucleic acid content in nuclear fractions of the rat

brain (Talwar, Sadasijudu, and Chitre, 1961). ELectroshock treatment of the

cat produced a pronounced decrease in the RwA content in various brain areas

(Mihailovic, Jankovic, Petrovic, and Isakovic, 1958).



5

In addition to demonstrations that RNA synthesis is affected by neural

stimulation, a number of studies have attempted to link RNA -with the

capacity of the central nervous system to store information which corresponds

to learning and memory. Increased RNA synthesis in the brains of goldfish

during short term learning experiments has been demonstrated (Glassman,

Schlesinger, and wilson, 1966). RNA from mice trained to avoid a shock

showed greater isotope incorporation than RNA from controls (wilson, Boggan,

Zemp, and Glassman, 1966). These investigators also showed by density gradient

sedimentation patterns that there was increased RNa synthesis of a messenger-

like RNA in mice brains during learning. Analysis of regional areas of

mouse brain for incorporation of %-uridine into RNA following fifteen minutes

of avoidance conditioning showed increased labelling only in localized areas

(zemp, Wilson, and Glassman, 196?). These workers concluded that brain tissue

responds to certain kinds of stimulation in the same way as do other tissues,

i.e., an early chemical response to stimulation is the synthesis of RNA.

The purine -pyrimidine ratio was analyzed in nuclear and cytoplasmic RNA

from vestibular Deiters' neurons in rats subjected to a learning experiment

during which there was established a pattern of sensory and motor abilities

(Hyden and Egyhazi, 1962). The adenine/uracil ratio of the nuclear RNA

increased significantly and there was an increased amount of RNA per nerve

cell. These results suggested that the base ratios of RNA changed during

learning. The RNA changes during learning were interpreted as a genomic

activation of regions in the brain to produce nuclear RNA with highly specific

base ratios. In a subsequent experiment Hyden and Egyhazi (196U) studied

changes in RNA content and base composition in cortical neurons of rats in a

learning experiment involving transfer of handedness. The results showed an
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increase of RNA occurred, in the neurons of the part of the cortex engaged in

the transfer of handedness. The purine/pyrimidine ratio was increased

significantly in the RNA of the learning neurons compared to the controls.

The conclusions from this study were that an acute learning situation with

no precedence in the animal's life acts as a genomic stimulation resulting

in a production of RNA with highly specific base ratios in the neurons

immediately involved, and that the decrease of the ratio G+C/A+U suggests

that the new RNA formed is of the messenger RNA type. Hyden and Lange (1965)

summarized their work on RNa response in neurons early and late during two

learning experiments. Early in a learning situation, which has not been

encountered before, they postulated that the genome of the neuron is activated,

and a small amount of RNa rich in adenine and uracil is synthesized. When

the new behavior has become fixed, the formation of the adenine-uracil rich

RNA declines, and RNA rich in guanine and cytosine is formed. At this time,

the genie activation already has induced the synthesis of a specific protein

by the adenine-uracil rich RNA needed for facilitation. Thus, an acute

learning situation may select parts of the genome which become activated. The

primary gene product is RNA rich in adenine and uracil. This is followed by

a ribosomal type RNa which takes over the long term synthesis of protein

necessary to sustain neural function of the new behavior.

Additional support for the role of MA in neural stimulation, memory and

learning is found in studies with ribonuclease (RNA-ase) . Certain neural

membrane transport systems may be dependent on RNA since the surface positive

component of dendritic potentials are enhanced after topical application of

RNA-ase to the cortex (Shtark, 196$) . Tail sections of transected, conditioned

planaria regenerated in exogenous ribonuclease performed randomly suggesting
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that ribonuclease interferes with the transfer of Information (Corning and

John, 1961). Intracerebral injection of RNA-ase was shown to block retention

of a conditioned defensive reflex in white mice (Krylov, Danylova, and Tongur,

1965).

Utilizing aggression and defeat as generalized nervous stimuli, regional

brain levels of ribonuclease and total ribonucleic acid (RNA) -we're studied

(Hamlet, 1969). Significant differences in hypothalamic and amygdaloid

RNA-ase activity were found between day one and day sixteen of exposure to

aggression in defeated mice. Male fighter mice during their early training

period exhibited similar chaiges in RNA-ase which became reversed after

training was completed. Total regional brain RNA content supported the

findings obtained with RNA-ase. A persistent and significant decline in

total RITA was obtained in the hypothalamus and amygdala of repeatedly defeated

mice as well as in fighters during the early part of their training experience.

Additional information regarding the nature of the changes in total regional

nucleic acid content in mice exposed to aggression and defeat was desirable.

The purpose of i±ie present study was to determine the RNA base percent and

base ratios in certain brain areas (hypothalamus, amygdala, frontal cortex,

and cerebellum) of C57BL/6J male mice exposed to aggression and defeat. This

was done in an effort to supplement previous studies dealing with aggression,

defeat, and the mode of neural RNA adaptation.
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MATERIALS AND METHODS

Five hundred Kale Mus mus

c

uius , strain Cp7BL/6J, were used in the study.

All expei'iroental mice -were isolated follox-ring weaning at twenty-one to

twenty-eight days of age, and were maintained under standard conditions of

sixteen hours light, eight hours dark, 70° F, with food and water provided

ad libitum . Isolation was achieved by dividing 7" x ll^g" opaque cages into

halves with metal cage dividers. One animal was placed in each compartment

with its own bedding, food, and water supply. Isolation was maintained for

a minimum of forty days before experimental, treatment was initiated.

The five hundred mice were divided into ten experimental groups of fifty

mice each. An entire experimental group of fifty animals each was killed on

the same day by cervical dislocation. The brain areas (hypothalamus,

amygdala, frontal cortex, and cerebellum) were dissected immediately from

the brain and frozen in acetcne-dry ice. These frozen brain areas from each

group were placed in polyethylene tubes, and transferred to a liquid nitrogen

storage tank for subsequent analyses. All mice, except one group which will

be discussed later, were between the ages of 60-83 days.

Experimental Groups :

(1) Late fighters (LF): The late fighters were fifty male mice trained

to fight according to the method of Scott (I9ii6) . Prior to training,

each mouse and its soiled bedding was transferred and housed in a

7" x ll5g" opaque cage. These cages were not cleaned, although fresh

cedar shavings were added where needed. Each mouse was exposed twice

daily (morning and late afternoon) for five-minute periods to a

"trainer" mouse . Trainer mice were male and of the C573L/6J strain
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which were held by the tail and dangled in the cage of the mouse being

trained according to the procedure of Scott (19U6) . The late fighters

were trained in this manner for twenty-four days. As the late fighters'

attacks be cane more aggressive, they were marked at the base of the tail

by nail polish and the trainer mice were dropped into the late fighters'

cages. The mice were carefully observed so that the late fighter was

not repulsed in any attack. At the end of "the twenty-four day training

session, the most aggressive males were selected for use in subsequent

fighting encounters. Criteria for selection were rate and vigor of

attack. The late fighters were killed and the brain areas removed

within five minutes after their last fight. Because of isolation,

length of training period, and fighting encounters, the late fighters

were between llii-121 days of age when killed.

(2) Early Fighters (EF): The early fighters were fifty male mice trained

to fight exactly as the late fighters were trained, except they were

killed within five minutes of the last training period on the fifth

day of training.

(3) Naive mice and exposure to aggressors: After forty days of isolation,

mice not trained to fight (naive) were exposed to the trained fighters

for (unfought control), 1, k, 8, and 16 days. Fifty male mice were

exposed at each period for a total of 250 mice. In all cases the naive

mice were transferred to the cage of the late fighters for the five

minute period. The mice were killed and brain regions removed within

five minutes after the second fight on the last day. The control

group of mice that were transferred to a clean cage without exposure
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to a trained fighter was not included because it has been found that

no significant hormonal or neurohormonal changes occur in these mice

(ELeftheriou and Church, 1968b).

(h) Hormone Treatments: Serotonin, dopamine, and corticosterone were

injected subcutaneously into a group of fifty animals each. The

dosage level of each hormone was 200 ug/.l ml/day for five days.

The animals were killed on the sixth day following the initiation

of injections. Serotonin and dopamine were injected in saline and

corticosterone was injected in sesame seed oil.

Extraction Fro cedure :

Total RNA was determined by the procedure of Kirby (1956). A modification

of this technique was used to obtain RNA which was free of DMA, protein, and

ribonucleases from both nuclei and cytoplasm (Popa, Cruceanu, and Lacatus,

1967).

At the time of analysis, a tube containing identical brain areas from

one group was removed from the liquid nitrogen . All steps were carried out

at 0°-U° C whenever possible . The brain areas were rapidly subdivided into

five groups of 10 areas/group in order to obtain sufficient tissue for each

analysis, and suspended in a glass homogenizer (Potter-ELvehjem type)

containing 10 ml of ice-cold medium A (0.03M tris-HCl, 0.25M sucrose, 0.001M

MgCl
2 , and 0.006M mercaptoethanol, at pH 7.6). Prior to the addition of brain

tissue, medium A was made 0.$% with respect to the detergents sodium dodecyl

sulphonate (Crestfield, Smith and Allen, 1955), and sodium napthaiene

disulphonate (Jacob, Stevenin, Jund, Judes, and Mandel, 1966) to aid in the

disruption of cells. Washed bentonite was added to medium A (1.25 mg/ml) to

aid in the removal of nucleases (Petermann and Pavlovec, 1963). The suspension

was homogenized using a teflon pestle and a power stirring apparatus.
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Fig. 1. Flovr diagram for the extraction of MA from mammalian tissues (brain).
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next 25 ml collected + 1.250 ml IN HC1 AIJP-CMP
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The homogenate was diluted with an equal volume of 90% aqueous phenol

reagent (90% phenol, 0.1$ 8-hydroxyquinoline , and 10% m-cresol) and stirred

for twenty minutes (Hiatt, 1962). The aqueous and phenol layers were

separated by centrifugation at 15,000 g for ten minutes. The phenol extrac-

tion was repeated a second time by adding h volume of the phenol reagent to

the aqueous phase and stirring for twenty minutes . The mixture was centrifuged

at 15,000 g for ten minutes, the aqueous layer was removed and saved, while

the last phenol layer was back washed by adding 5 ml of medium A. This

mixture was centrifuged at 15,000 g for ten minutes and the aqueous phase

pooled with the original aqueous extract. Two volumes of ice-cold ethanol,

and a sufficient quantity of 20% potassium acetate were added to the aqueous

extract to make the final solution 2% with respect to potassium acetate . The

solution was shaken gently and stored at -20° C for a minimum of 18-2U hours.

The RNA precipitate was collected by centrifugation at 20,000 g for 10 minutes.

The supernatant was discarded and the RNA pellet dried under a nitrogen spray.

Base Ratio Analysis ;

A technique developed by Katz and Comb (1963) using a small cation

exchange column was used to isolate and determine the RNA bases. The RNA

obtained from the extraction procedure was hydrolyzed by placing the pellet

in a small polyethylene centrifuge tube, adding 0.5 ml of 0-5N KOH and

incubating the tube in a hot water bath for 18-2U hours at 37° C. The

solution was neutralized by adding 3-h drops of 6N HCIO^, and the KCIO^

precipitate was removed by centrifugation at 15,000 g for 10 minutes. An

equal volume of 0.311 HC1 was added to the supernatant, and the solution was

layered carefully on the top of a Dowex 50 H* column, 0.9 x 5 cm (200 to

kOO mesh, h times cross linked). The column was prepared by washing and
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decanting the fines of the resin in doubly distilled water (pK 7.6) three

times. The resin then was washed with about 200 ml of 3N HC1, followed by-

water washing until neutral. The resin was packed into a 0.9 x 32.0 cm column

to a height of $ cm and 20 ml of 0.05W HC1 passed through the column. The

columns were standardized by placing 0.5 ml of a standard 2'
, 3 1 -ribonucleotide

mixture plus 0.£ ml of 0.1U HC1 on the column, allowing it to drain to the

top of the resin and collecting the fraction. The column was washed down with

1.0 ml of 0.0^ HC1 which was allowed to drain to the top of the resin and

collected. Five milliliters of O.O^N HC1 were added and allowed to drain to

the top of the resin and five 1 ml fractions collected. Buffered doubly

distilled water (pH 7.6) was passed through the column and one milliliter

fractions were collected for a total of forty-five 1 ml fractions. The

collected fractions were read on a Beckman DU-spectrophotometer at a wave

length of 260 mu. Results of standardization are shown in Fig. 2.

Each one milliliter sample of hydrolyzed RNA was layered carefully on

a column which had been washed with 20 ml of O.O^N HC1 prior to each run,

and allowed to drain to the top of the resin. The column was washed dowi

with 1.0 ml of 0.0£N HC1 which was allowed to drain to the top of the resin.

Five milliliters of 0.05M HC1 were added to the column and the first 6 ml

of the HC1 effluent collected and the rest discarded. These conditions wash

quantitatively uridine monophosphate (UMP) through the column while the other

nucleotides remain on the column. Doubly distilled water (pH 7-6) was added

to the column carefully to prevent disturbing resin particles and allowed to

pass through the column at a flow rate of not more than 1 ml/minute. The first

7.5 ml of water effluent, which quantitatively elutes guanosine monophosphate

(0MP), were collected and brought to 0.05N HC1 concentration by the addition



Fig. 2. Results of column chromatography standardization on

hydrolyzed ENA. Each nucleotide cr nucleotide combina-

tion was eluted from the Dowex columns in specific

fractions. These were collected and their optical

density values at 260 mu determined.

t





17

of 0.375 ml of 1.0N HC1. The head; 25 ml of water passing through the column,

which elutes cytidine monophosphate (CMP) and adenosine monophosphate (AMP)

together, were collected and brought to 0.05$J HC1 concentration by the addition

of 1.275 ml of IN HC1.

Determination of Relative Mole Per cent of Nucleotides (uMAOO uM Nucleotide )

:

The three fractions containing UMP, GMP , and AMP-CMP, were read on a

Beckman DU-2 spectrophotometer at their respective maximal absorbancy wave

lengths (UMP-260 mu; GMP-257 muj AMP-CMP, 257 and 279 mu). The A^qtA^

ratio in 0.05*1 HC1 for AMP is O.238 and, for CMP, 2.32 (Katz and Comb, 1963).

The folloxri.ng equations (Loring, 1955) were used to calculate the absorbancy

due to AMP and CMP in the mixture:

x =
2 '32 (A

257 ) - A
279

2.08

y = A
27 q

- 0.238 x

where x is the absorbancy at 257 mu due to AMP alone, y is the absorbancy

at 279 mu due to CMP alone, and A is absorbancy (optical density). The

relative mole percent for each nucleotide was found by dividing the optical

density of each nucleotide by its extinction coefficient, multiplying by the

dilution factor (fraction volume), adding the total, and finding the percent.

Example ;

x = 2.32 (a257 ) - A279 m 2.32 (.115) - .Q7U . >093

2.08 2T08

y = A27 o - .238 x = .07h - .238 (.093) = .052



Base O.D. Extinction Dilution Product Microrcoles/
Coefficient (fraction) uM of MA

UMP .100 9,600 6.000 .625 x 10

QMP .365 11,600 7.875 2.569

AMP .115 Hi, 900 26.250 1.633

CMP .07U 13,000 26.250 1.001 "

5-837 x 10-k

10.71

Ui.02

27.98

17.30

Statistical Analyse s;

Standard deviations were calculated for all nucleotide base per cents

In addition, a two-way analysis of variance was performed (Winer, 1962)

.
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RESULTS

Qualitative Analysis

;

Brain RNA from C57BL/6J mice obtained using the cold phenol extraction

procedure of Kirby (1956) exhibited an absorption curve typical of nucleic

acids (Fig. 3). Previous studies on mouse brain RNA reported a maximal

absorbance at 258 mu, minimal absorbance at 23h mu, and the 280 mu/260 mu

ratio to be 0.U7 (Popa, Cruceanu, and Lacatus, 1967). For RNA extracted from

the hypothalamus, maximal absorbance was at 258 mu, minimal absorbance at

230 mu, and the 280 mu/260 mu ratio was equal to 0.U9. The maximum

absorbance for amygdaloid RNA was found to be at 258 mu, minimal absorbance

at 23h mu, and the 280 mu/260 mu ratio was equal to 0.62, which was within

the limits reported for mouse brain RNA. Previous work in this laboratory

tested the purity of the RNA obtained by this procedure by fractionation on

a methylated albumin kieselghur column, treatment with RNA-ase, and ^2P

uptake (Fig. h) {Pattison, 1969). Confirmation of isolation of various

nucleotides also can be seen in Fig. 2.

Quantitative Analysis

;

The two way analysis of variance (treatment x brain areas) for each

nucleotide (uridine monophosphate (UMP), guanosine monophosphate (GMP),

adenosine monophosphate (AMP), and cytidine monophosphate (GMP) showed that

all experimental treatments had a significant effect (P < .005) on each

base (Table 1). For the nucleotides AMP and GMP, all observed differences

can be attributed solely to treatments since the block (variation among the

four brain areas) and interaction terms are nonsignificant. Uridine

monophosphate was the only nucleotide which exhibited a significant (P < .005)



Fig. 3. Comparison of UV absorption curves of a standard HtTA

preparation and UNA extracted from CJJ7BL/6J mouse brain

(hypothalamus and amygdala)

.
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Fig. h- Results of MAK coluinn chromatography. Extracted 32p

labelled RM was separated by the column and 5 ml fractions

collected. Fractions were divided into two equal portions

with one set receiving RNA-ase, the other receiving no

RNA-ase. Optical density for each fraction was read at

260 ran and plotted.

t
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Table 1. Statistical treatment showing the results of the two way analysis

of variance procedure.

Nucleotides Source of Mean Degrees cf 7 ratio
variation square freedom

AMP Treatment 165-35 9 6.09 <.005
Combinations

Block (between 9.01 ^ 3 0.33 ns
main groups)

Interaction 39-23 27 l.hh ns

Sampling error 27-17 160

CMP Treatment 59-60 9 6.68 <.005
Combinations

Block (between 12.58 3 1.L..1 ns
main groups)

Interaction 35-76 27 U-01 <-0C5

Sampling error 8.92 160

GMP Treatment U02.16 9 5.U9 <.005
Combinations

Block (between 180.00 3 2.U6 ns
main groups)

Interaction 107.05 27 1.^6 ns

Sampling error 73-31 l60

DMP Treatment 1*8.25 9 U.65 <.005
Combinations

Block (between 181.03 3 17.hh <.005
main groups)

Interaction l£.75 27 u.02 <.005

Sampling error 10.38 160
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variation among brain areas . Interpretation of the data for UMP was made more

complex by a significant (P < .005) interaction term. For CMP, the treatment

and interaction terms were significant (P < .005) while the block term was

nonsi gni ficant

.

The AMP base percent was maximal (30.85 - 6.00) in the hypothalamus on

day one, and minimal (18.97 * 1.1*2) in the unfought controls. In the amygdala,

AMP levels were highest (29-53 1 1-29) following corticosterone treatment

(200 ug) and lowest (17.86 t J. 28) in the controls. The frontal cortex

exhibited the greatest AMP level (28.UU ± 1.16) on day one, and the lowest

AMP percent (20.50 - 2.79) in the controls. The highest base percent of AMP

(jU.h7 - U-72) in the cerebellum was obtained on day one, while the lowest

percent (19-95 1 1-55) was on day sixteen. In the hypothalamus
, amygdala and

cerebellum, there was a trend for an initial increase in AMP base per cents

on day one wfth a gradual decline through day sixteen (Tables 2, J, and 5).

In all four brain areas there was an increase in AMP levels in the late

fighters when compared to the early lighters (Tables 2, 3, U, and 5). The

hormone injections increased AMP levels over the control levels in the

hypothalamus, amygdala, and frontal cortex (Tables 2, 3, and U), while only

corticosterone had this effect in the cerebellum (Table 5).

Hypothalamic cytidine monophosphate (CMP) per cents exhibited trends in

defeated mice similar to those seen for hypothalamic AMP. The maximal CMP

value (22.98 ± 3«5a) was obtained on day one, and the minimal CMP level

(1U.05 ± 2.30) in the late fighters was not significantly different from the.

control value (1U.56 ± 1.69). An initial increase in hypothalamic CMP

levels on day one was followed by a decline through day sixteen (Table 2)

.

There were no significant differences between hypothalamic CMP levels in the
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early and late fighters, or among the groups injected with the three hormones.

Cytidine monophosphate (CMP) percents in the 'amygdala showed no trends in the

defeated mice (Table 3). Maximal amygdaloid CMP percent (19.U6 - U.86) was

obtained on day eight of fighting exposure, whereas 13 -9h - 1.78 represented

the minimal CMP level found in the early fighters. All three hormone treat-

ments resulted in slightly elevated CMP levels in the amygdala. The frontal

cortical CMP levels were similar to those seen in the amygdala (Table U)

.

Cerebellar CMP levels exhibited the greatest overall changes with the various

treatments. The lowest cerebellar CMP level of 9.70 ±1.78 was exhibited by

the unfought controls while the highest CMP level (23.09 ~ 8.U3) was found

following serotonin treatment. In the defeated animals, there was a trend

for an increase in cerebellar CMP levels as days of repeated defeat were

prolonged

.

Guanosine monophosphate consistently had the highest overall base percent

in all brain areas studied and for all treatments (Tables 2, 3, h, and 5).

Maximal hypothalamic GMP percent (53-99 - 2.88) was found in the controls,

and the minimal GMP level of 33-65 - 10. 6h was seen on day cne. In the

hypothalami of defeated animals, GMP was affected in a manner opposite to

that for both AMP and CMP after all treatments (Table 2). A similar situation

was found between GMP and AMP when base values in the hypothalamus from the

early and late fighters were compared. All three hormones resulted in

decreased hypothalamic GMP levels when compared to the control value.

The inverse relationship between the two purines, AMP and GMP, also was

seen in the amygdala and cerebellum (Tables 3 and h) of the defeated animals.

As in the hypothalamus, the highest amygdaloid GMP percent (57.21 * 5-00) was

found in the unfought controls, and the lowest GMP level (hi .32 ± 5.25) was
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observed in day one. There was a significant decline of GMP levels in the

late fighters as compared to the early fighters in the amygdala (Table 3).

All hormone treatments resulted in decreased amygdaloid GMP levels -when

compared to the control value. Treatments affected frontal cortical GMP

levels in a manner similar to that found in the hypothalamus and amygdala

(Table h) • The highest value for GMP in the cerebellum (U8.7U - $,33) was

found in the late fighters, and the lowest value (32.93 - 6.07) was present

in the serotonin treatment. In the defeated mice cerebellar GMP levels

exhibited a gradual increase over the control value through day sixteen

(Table $) . A significant increase in GMP levels between the early and late

fighters was observed in the cerebellum, a trend opposite to that found in

the hypothalamus and amygdala. GMP levels were elevated by dopamine and

corticosterone, and lowered by serotonin in the cerebellum.

In the hypothalamus , uridine monophosphate did not exhibit any trends

nor show any significant differences among the various treatments (Table 2).

Uridine monophosphate levels in the amygdala showed minor differences in

repeatedly defeated animals (Table 3). Amygdaloid UMP levels in early and

late fighters, as well as with all hormone treatment, exhibited slight increases

over the control value. In the frontal cortex, the low control UMP value of

10.32 ± 1.73 rose rapidly to the highest UMP level of 21;. 77 * 8.79 on day

four. Uridine monophosphate content of the frontal cortex also was increased

in the early fighters and by dopamine treatment. In contrast to the other

three brain areas, cerebellar UMP declined significantly with prolonged

exposure to defeat (Table 5). Uridine monophosphate content of the cerebellum

also was lowered by corticosterone treatment, as well as in the late fighters.
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In the hypothalamus and amygdala., the G+C/A+U ratio (Table 6) declined

at day one and increased gradually to a value near that of the control on

day sixteen- The waning and waxing of the G+C/A+U ratio reflected primarily

the changes in the two nucleotides, AMP and GMP. In defeated animals, the

frontal cortex exhibited an initial decrease in the G+C/A+U ratio at day one

followed by inconsistent and minor fluctuations through day sixteen. The

G+C/A+U ratio in the cerebellum increased over the control value from day

one to day sixteen . In the amygdala, hypothalamus, and frontal cortex, the

G+C/A+U ratio was lower in both the early and late fighters when compared

to the control value (Table 6), but a further decline in this ratio in the

amygdala and hypothalamus and an increase in this ratio in the frontal

cortex and cerebellum was noted as training competence increased. In the

hypothalamus, amygdala, and frontal cortex, the three hormones produced a

decline in the G+u/a+U ratio to varying degrees, whereas in the cerebellum

the same treatment elevated this ratio. '

In summary, the general trends in these data indicated that the

nucleotides, AMP and GMP, exhibited the largest proportional change with

most treatments while CMP exhibited lesser changes, and UMP had the least

overall change. In general, AMP and GMP were affected in the opposite manner

by the same treatments. The hypothalamus and amygdala exhibited corresponding

affects of exposure to aggression and defeat on brain RNA base percentages

and ratios. Of the four brain areas studied, the hypothalamus, amygdala and

cerebellum displayed the most persistent and sustained affects of aggression

and defeat on brain KNA base composition.
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DISCUSSION

The study of agonistic behavior has as its ultimate goal the under-

standing of aggressive and defeat behavior, and is, therefore, of great

pertinence to our society. Aggression, and to a lesser extent, defeat, have

been studied psychologically through behavioral tests, physiologically, and

more recently, biochemically. This report is the second of a series dealing

with the macromolecular changes, specifically in RNA, of the central nervous

system of mice exposed to repeated aggression and defeat.

Exposure to aggression and defeat, and early training of fighters all

have been shown to be stressful when adrenal responses were used as an

index (Bronson and Eleftheriou, 1963; Bronson and Eleftheriou, 1965a;

Bronson and Eleftheriou, 1965b). Stimulation of the central nervous system

by drugs (Baranov and Pevzner, 1963; Talawar, et al., 1961) and physiological

exertion (Attardi, 1957) alters the RNA content of the brain, and over-

stimulation of the nervous system by electric shock (liLhailovic , et al.,

1958) or drug therapy (Talwar, et al., 196l) results in fatigue and a

decline in RNA levels in the brain. In the current studies on brain RNA,

exposure to aggression and defeat is accepted as a generalized stressful

nervous stimulus resulting in neural activation.

Work on regional brain ribonuclease (RNA-ase) and total regional RNA

content (Hamlet, 1969) indicates that a decline in total RNA and a corres-

ponding increase in RNA-ase is found in the hypothalamus and amygdala of

defeated mice as well as early fighters. These observations on the response

of brain RNA to the stress of exposure to aggression and defeat correspond

to the response of RNA found in neural overstimulation.
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Results of the present study indicate that in the hypothalamus, amygdala,

and frontal cortex there is a significant decline in the G+C/A+U ratio upon

exposure to aggression and defeat with the largest proportional changes

occurring in AMP and GMP, while CMP arid UI3P showed only minor effects. Based

on works of Hyden and Egyhazi (1962,, 196h) , it may be assumed that the

decrease in the G+C/A+U ratio indicates increased synthesis of a messenger

type RNA. The relationship be tire en the G+C/A+U ratio, and synthesis of a

messenger type RNA was obtained by an interesting series of observations.

The base composition of nucleolar RNA seems to agree with that of cytoplasmic

RNA (Edstrom, Grampp, and Schor, 1961; Edstrom, I960), and it was surmised

that nucleolar RNA would mask chromosomal RNA if the latter were a copy of

RNA. Microchemical studies revealed that chromosomal RNA did not have a

base composition similar to that of DNa, nor did it have base symmetry

(Edstrom and Beerman, 1962) . Since nucleolar RITA in nerve ceils comprised

25 percent of the total nuclear RNA (Hyden and Egyhazi, 1962), nucleolar RNA

could not mask the base ratio composition of the rest of the nuclear RNA, the

chromosomal and nucleoplasmic RNA. Therefore, the production of nuclear RNA

with an increased A/U ratio in a learning experiment in rats (Hyden and

Egyhazi, 1962) was concluded to be chromosomal with the characteristic of

"messenger" RNA in bacterial systems. When an increase in the A+G/C+U and

a decrease in the G+C/A+U ratio was found in intact cortical neurons during

a learning experiment, and the observations made that the increase in RNA in

each cortical nerve cell was moderate, and the ratio of nuclear to cytoplasmic

was high, this meant that the newly synthesized RNA had highly specific base

ratios. The decrease in the G+C/A+U ratio suggested that the newly synthesized

RNA was of the messenger type (Hyden and Eghazi, 1961;). The steady increase
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in the G+C/'A+U ratio in the cerebellum upon exposure to aggression and defeat

is assumed to indicate a synthesis of RNA primarily of the ribosomal type.

This assumption is based on the observations by Hyden and Lange (1965), that

a decrease in the G+C/A+TJ indicates base ratio conposition of the ribosomal

type. A].though the ultimate answer as to which types of RNA are changing

with exposure to aggression and defeat depends on the isolation of the various

types of RNA not made in this study, the changes in the RNA base ratios can

be used as a reliable estimate of the changes in the synthesis of various

types of RNA.

It has been proposed that an acute learning situation with no precedence

in the animal's life can act as a genomic stimulation resulting in the

production of chromosomal RNA with highly specific base ratios in neurons

(Hyden and Egyhazi, 196k) . Exposure to aggression and defeat, which results

in significant changes in RNA base composition, may act in a similar manner,

thus resulting in the production of RNA which is rich in AMP. This appears

to be true initially in the hypothalamus, amygdala, and frontal cortex, all

of which exhibit elevated AMP, lowered GMP, slightly increased CMP, and static

UMP levels on day one of exposure to aggression and defeat. By day sixteen

of exposure to aggression and defeat, hypothalamic and amygdaloid base per cents

and G+C/A+U ratios approach those found in the unfought controls. This

return to "normal" RNA base composition in the amygdala and hypothalamus

raises the question of neurochemical adaptation. On day sixteen of exposure

to aggression and defeat, systemic adrenal-pituitary adaptation has occurred

(Bronson and KLeftberiou, 1965a; Bronson and Eleftheriou, 1965b; Eleftheriou

and Church, 1967; Eleftheriou, et al., 1968). Total hypothalamic RNA exhibits

a return to normal control levels on day sixteen, while amygdaloid MA levels
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remain at reduced levels (Hamlet, 1969). It is possible that the adjustment

in hypothalamic and amygdaloid base composition on day sixteen of exposure

to aggression and defeat indicates an adaptative ability in these two areas.

On day sixteen, the frontal cortical G+C/A+U ratio still is significantly

lowered, indicating a lack of adaptation in this area, while the cerebellum

exhibits the optimum increase in the G+C/a+U ratio on day sixteen.

An overall analysis of RNA base relationships in early and late fighters

reveals that there are few significant differences between the two groups.

This is relatively surprising considering the finding that total RNA levels

are higher in late than in early fighters in all four brain regions and that

the RNA-ase levels are lower in the hypothalamus and amygdala in the late

fighters (Hamlet, 1969). The G+C/a+U ratio in the hypothalamus and amygdala

shows a slight decrease in the late fighters as compared to the early fighters,

However, in the frontal cor Lex, the G+C/a+U ratio is significantly lower in

the early fighters
. The significance of, the changes in RNa base percents and

ratios between early fighters and late fighters is not clear. Interpretation

of the results obtained from the late fighters is complicated by the fact that

the late fighters were significantly older than the other mice used in this

study. Since the "early fighter" group was arbitrarily chosen for sacrifice

on day $, it well may be that due to psychological adaptation, this group was

not chosen sufficiently early. Thus, additional studies to measure base RNA

ratios before day five of training may be required.

The hormones, dopamine, corticosterone, and serotonin, were studied with

the hope of gaining an understanding of how these hormones are associated with

aggressive and defeat behavior patterns in changing RNA composition. The

hormone injections appear to produce changes in the RNA base percents and
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ratios simHar to those seen in exposure to aggression and defeat. These

results, however, are very incomplete and thus, any comment should be with-

held until additional data are available.

A note of caution must be interjected at this point in the interpretation

of these results. The work of Hyden and Egyhazi (1962, 196k) on RNA base

compositions was conducted in learning experiments in which there was noted

an increase in total MA. Previous work on exposure to aggression and defeat

indicates that there is a significant decline in total regional RNA and a

corresponding increase in ribo nuclease activity (Hamlet, 1969). Therefore,

the decline in the G+C/a+U ratio might be due to a more rapid turnover and

utilization of RNA rich in guanosine and cytidine caused by defeat stress, or

a complex interaction of breakdown and synthesis of various kinds of RNA.

However, the reversal of the G+C/A+U ratio in the cerebellum, which also

exhibits a decrease in total RNA, indicates that there is a differential

effect. Without the specific additional/ information in the types of RNA

changed, turnover rates, and nuclear RNA polymerase activity, any conclusions

drawn from the data would be mere conjecture.

The experimental design for study of effects of exposure to aggression

and defeat involves elements of conditioning, learning and memory. A colony

of fighter mice were trained to be "winners" in all encounters. The defeated

mice, on the other hand, appeared to be inert, and did not learn to defend

themselves or escape from an aggressive attack. A growing volume of data

indicating that RNA has a role in learning and memory is accumulating

(Albert, 1966; Hyden and Egyhazi, 1962; Hyden and Egyhazi, 1963; Hyden and

Egyhazi, 196U; John, 1967). The general concept is that learning acts as a

genomic stimulator altering the metabolism of DMA and RNA whose functions



39

would be to serve as repositories of memory and to dictate construction of

molecules, such as proteins, which actually affect functional changes in the

cell. Supporting evidence for this concept comes from the fact that there is

a loss of recent memory in mice following inhibition of cerebral protein

synthesis (Flexner, Flexner, Roberts, de la Haba, 196U). An electrokinetic

mechanism for the "read-out" of memory has been proposed (KLul, 1966). In

learning, changes in DNA and/or RNA alter protein structures of neuronal

membranes, which in turn alters synaptic activity.

At this time, the role of regional brain RNA in aggressive and defeat

behavior patterns is not clear. It has been found that exposure to aggression

and defeat increases ribonuclease activity with a corresponding reduction in

regional brain RNA (Hamlet, 1969) . The results of the present study indicate

that under these same conditions, there is an increased synthesis of a

messenger type of RNA. Since this is one of the first attempts at correlating

the results of a study on macromolecules' with aggressive and defeat behavior,

no specific assumptions can be drawn from these data. One can speculate that

initial exposure to aggression and defeat somehow triggers an increase in

brain RNA-ase which accounts for the decreased total regional RNA, but leaves

the significance of the decrease in the G+C/a+U ratio an unanswered question.

If exposure to the stress of aggression and defeat results in increasing

demands for neurotransmitter in the brain , as learning has been proposed to

do (Briggs and Kitto , 1962), a situation analogous to enzyme induction may

occur such that lowering levels of neurotransmitters or other precursors

inhibit repressor sites on MA and cause the synthesis of RNA, which will

in turn direct the synthesis of the neurotransmitter . The first and second

possibilities are not mutually exclusive, but are given to indicate the



complex interaction of effects which may occur upon exposure to aggression

and defeat. The significance of the present study on regional brain RNA

base ratios lies in the fact that it indicates that RNA is changing with

exposure to aggression and defeat. At this time, the mechanism of

mediation of the SNA base changes found in this study cannot be clarified.

However, the finding that changes do occur in neural RNA upon exposure to

aggression and defeat is significant.



SUMMARY

The results of the present study can he summarized as follows:

(1) All experimental treatments had a significant effect on all nucleotides

(AMP, CMP, GMP, and UMP).

(2) AMP and GM? exhibited the largest proportional change with most treat-

ments while CMP exhibited lesser changes, and UMP had the least overall

change. In general, AMP and GMP were affected in the opposite manner

by the same treatments.

(3) The hypothalamus, amygdala, and cerebellum displayed the most persistent

and sustained effects of aggression and defeat on brain RNA base composi-

tion. The hypothalamus and amygdala exhibited almost identical effects

of exposure to aggression and defeat on brain RNA base percentages and

ratios

.

(ii) In defeated animals, there was a significant decrease in the G+C/A+U ratio

in the hypothalamus, amygdala, and frontal cortex, while there was an

increase in the G+C/A+U ratio in the cerebellum upon initial exposure

to aggression.

(5) A surprising finding was that there were no consistent differences in

base composition between the early and late fighters.

(6) Dopamine, cor ticosterone, and serotonin appeared to produce changes in

the RNA base percents and ratios similar to those seen in exposure to

aggression and defeat.

(7) At this time, the significance and mechanism of mediation of the RNA

base changes found in this study cannot be clarified without further

study of types of RNa changed, nuclear RNA polymerase, and RNA turnover

rates upon exposure to aggression and defeat.
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ABSTRACT

A total of five hundred Mus mus cuius , strain C57BL/6J, were isolated,

upon weaning, for a minimum of forty days, then divided into ten experimental

groups of fifty mice each: late fighters, a colony of trained fighting mice;

early fighters ; unfought controls; exposure to trained fighters for one, four,

eight, and sixteen days; and hormone treatments of dopamine (200 ug),

corticosterone (200 ug), and serotonin (200 ug). Hormone injections were

given subcutaneously once daily for a total of five days and animals were

killed on the sixth day. Animals were killed by cervical dislocation, the

brain regions dissected, and frozen immediately in liquid nitrogen far

subsequent analyses. Ten brain areas were pooled for each analysis, and the

RNA was extracted, hydrolyzed, and a base ratio analysis performed.

The two way analysis of variance for each nucleotide (adenosine

monophosphate [AMP], cytodine monophosphate [CMP], guanosine monophosphate

[GMP], and uridine monophosphate [WW]) was significantly different (P < .005)

for each treatment. Adenosine monophosphate (AMP)and GMP exhibited the

largest proportional change with most treatments while CMP exhibited lesser

changes, and UMP levels showed the least variation. In repeatedly defeated

animals, the hypothalamic and amygdaloid levels of AMP shored a sharp initial

increase at day one (30.85 ± 6.00 and 27-U5 - 7.7, respectively) with a

gradual decline approaching control levels (18.97 - 1.U2 and 17.86 t 3.28,

respectively), while GMP levels exhibited an inverse relationship. Frontal

cortical AMP and GMP levels exhibited the same initial effects of exposure

to aggression and defeat as seen in the hypothalamus and amygdala but did not

show a return to control levels at day sixteen. The same treatment in the



cerebellum resulted in decreasing levels of AMP and increasing levels of GMP

through day sixteen. No consistent differences in base percents were observed

between the early and late fighters . The base percents in the three hormone

treatments (dopamine, corti costerone, and serotonin) differed significantly

(P < .005) from the control levels.

With the exception of the cerebellum, the brain areas tested exhibited a

significant decline in the G+C/A+U ratio upon initial exposure to defeat.

Based on previous work, it was indicated that the decrease in the G+C/a+U

ratio might denote increased synthesis of a messenger type RNA, rich in AMP.

The steady increase in the G+C/A+U ratio in the cerebellum upon exposure to

aggression and defeat may indicate a synthesis of a ribosomal type UNA, rich

in guanosine and cytidine. However, since this is one of the first attempts

to correlate this type of macromolecular data with exposure to aggression and

defeat, the suggested syntheses of various types of RNA changes in base ratio

are mere conjectures. Since it is known that there is decreased total RNA

levels in these brain areas upon exposure to aggression and defeat, the changes

in the base ratios may be due to a complex interaction of RNA breakdown and

synthesis. Additional information regarding types of RNA specifically changed,

turnover rates and nuclear RNA polymerase are needed. At this time , the

mechanism of mediation of the RITA base changes found in this study cannot be

clarified. However, the finding that changes do occur in neural RNA upon

exposure to aggression and defeat is significant.


