A MINICOMPUTER GRAPHICS SYSTEM

by

VERNE ROY WALRATEN

B.S. in Civil Engineering, University of Kansas, 1963

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1976

Approved by:

Major Profess

D
GoY
RY
19

N N

76 TABLE OF CONTENTS

- WEY -
e
Document

LIST OF FIGURES v v uvaveeeussoosonensnsnssennnnssesssesanasssescannss

CHAPTER ONE

INTRODUCTION 2§ 5 » cniiiiin.d & § 5 5 S & 5 REERAH § § 5 E0RER & § 8 Shmded » v armmmonon o
PAPER ORGANIZATION tvevvevesncoasnoasasasusosnasananssananssasnanus
MOTTVATLON woww s o 6 sommenis s o 3 sowmpmas o g 3 sy o § 5 Saeesecs « 8 s & 8 s e ¢
INHERENT LIMITATIONS
Main Memory SiZe ..cc.ccecvcecensssnssssssoncssnsonersanncansnsanras
Programming Effort ..cccceecraserssancsncacacnosconcsanssascssanas
DIBPLlay SPEEd < cswnaseds vonanoesssmaniananesessenenigses s s sieiane
SPECIFIC AREAS OF CONVERSION EFFORT
Memofy S1Z8 iivsunnsdsrsissmiamsanasiaidsen simadasamanedssbosois
Overlay ROULINE vesevssssessvscascsconcasaanoasasssasasasncnnsae
WOTA ST ZC ivic s cpmmniais s s s v sumieioin v o ¢ ¢ wimioin v ¢ o 8 wiwsernss & v wigieiniois o 8 FemIRN
Fortran Language .ceessciasusssessasnsnassnnionnssssnsansnsossiss
Entry Polnt DeFIRICIONE s onwmmis s s 0ow@vs § § evEd & § vmase § sasvs
DIFFICULTIES ENCOUNTERED
Operating System Protection ...ecececececcssssssccssnssnsacovens
Operating System Modifications .ececscesncscscnessasossensnrsnns
Standard NOVA Software (...eeescenssccancsssacsccssnsesansssans
Graphics SOftWAre ..scsesesacasccnascnnsncnsscsnncnnascnsonnnsns
Hardware SUPPOTL wuvecscrnssessnsasscsasneancaananasanencassnsns
EVALUATION OF PROJECT BESULTS sevevecnvscessosuvanennsanaasnsssass

CHAPTER TWO

GRAPHICS SOFIWARE ORGANIZATION
CONSTLYUCLOTS wwssssmmanoes s maiendss @ninins s swei'vess bimssessson
COEPIIETS iiiew ¢ ¢ sodmaiis b ¢ Saauiing § 4 RSRE § @ 5 nalilie o o cemmoms s v o o bom
PranSEOTMETE wue v v wovcaiemminn s v mmimorsmnin o v svcrdiacsie v siummesss o sy o o s $
USAGE OF GRAPHICS PACKAGE
Overl ay Roubdine Calle wivwn s s suwmesis v ¢ AR ¥ § S09080E § 55 anas s 3 5
Overlay Segment FI1eS .cvieviseecscnasnananscnsanssasnsunasnnnss
NOVA'S TeXxt EditOr .uoveevcorerescnnsnsssnasnonsnsascsasanssnssnse
NOVA's Fortran Compiler s swwmmes o s swmnns s s &8ss § § Saasee s s o
NOVA's Relovatrable LOgder s pames oo 5 5 wain 58 & 5 05 6 6 3 559064 § § 5
Problem Program EXecUtiOn ...ceveserasassacnanancnssssnsaasenes

CHAPTER THREE

CONSTRUCTION OR MODIFICATION OF GRAPHICS PACKAGE
Modification of Graphics Routines Source Code .i.vevsvoasnnscans
Development of Additional Graphics Routines ..veeeeeereenaccens
Seperation of Graphics Routines Into Two or More Groups
Construction of Page Zero Linkage Routine
Phase 1 - "Labeled Common Definitions” ..icieiieiveneennnesrene
Determination of Overlay Area SiZe ...ciiesccscncancsanasnannse

Page

5

10
10
14
14
15

17
17
19
19
19
30

21
22
22

23
24
25
25
26
26

30
30
31

32
33

(]

B

Page

CONSTRUCTION OR MODIFICATION OF GRAPHICS PACKAGE (continued)

Determination of Fortran Library Subroutines

Required by Graphics RoutInes ...ciieuwvscssaniessarnsansssss 3b
Construction of Page Zero Linkage Routine

Phase 2 — "Fortran Library Subroutines”eievevesserasa. 35
Determination of Main Memory Address Boundaries

for the Overlay Area ciii.cvencsssssssvsnsnasvasssanavssisas 35
Modification of Overlay Area Address Boundaries

in "OVERLAY" and "SMASH" s s wimsTee s e s e ¥ 8 e Essae 39
Creation of Core Image Files for All Overlay Groups 40
Execution of "SMASH" to Produce Qverlay Segement Files ...eeoe. 42
Construction of Page Zero Linkage Routine

Phase 3 - "Graphics Routines Entry Points" cieeevecveriseeas 43
You are now ready to use your new overlay segment files 44

APPENDIX "A"
SOURCE CODE FOR
OVERLAY . SR+ v vuvenesrncnarasnssanensossnanarsensasenssnsonenases 46
SMASHLER & ¢ 5 o5wischind b § 6§ WHUF §5 5 SRFHT Y 3§ 5 SHBE 5 5 pANDRT §ys0meni sy 30
USERLINK.SR 4ot sensnenennsnerasasenesasasasronsenenesasencanees 53
MYLINK.SR 4 ereeensoncnenencsasssasanasaasenennssanasnsennsansans 54

APPENDIX "B"

SOURCE CODE FOR
CONSTRUCTORS . icenacocssssasasanansosessstsadninenansansssananss I3

APPENDIX "C"

SOURCE CODE FOR
COMPILERS & v ps 0 vopwrvnss 3 wiwracuare s o 0 wrsigivae s s soarainias s s gmme s s s owecns i OB

APPENDIX "'D"

SOURCE CODE FOR
TRANSFORMERS e @ 92 R8s PSR RS A SSAs Ed e ng TSSO R AR e S b e s 80

APPENDIX "E"

SOURCE CODE FOR
EXAMPLE PROGRAMS scuinin o oo onsaimn s ssmmeame s s o oomismms o » o snecacs v ¢ scoiesiase O
TEST PROGRAMS. | 5 wompmrey s o 8 8 59w & & 5 wonampas o § = sompuere & » § waswms g » wopewy 94

APPENDIX "F"
SYSTEM HARDWARE
HARDWARE CONFIGURATION
Minicomputerce.. R NENIER Y NS s R s e s s ey 99

Disk Drive «.vvvevnseaan- pRia % S BEANESEEE 4 b e BiSHSVANe @ ¥ 4 ASOSOMNE v 5 @ @ winie LD
Graphics Tortifial cuveeemvmvne e pmmnsese vosvee s s samase s e vees 9

Page

APPENDIX "'G"

MISCELLANEA
Explanation of Components of Final Step Command String 99
Definition of File Suffix by File TYPE tuievsevecesnonasennarasas 100
File Type Relationships ...cceivcvarnenn cesasaserasasarsesssassssas 100
User Status Table Template ..eieevevecaeerossnsacesasananannanas 1017
Wire List for CRT Plug on Synetics NOVA - Slot 9ei00eee.. 102
Computek 300 / Synetics NOVA Connect Procedure ..ieeesesees.sa. 102
Computek 300 / Synetics NOVA Disconnect Procedureecoo.... 102

LIST OF FLIGURES

Page

ONE ,

INITIAL OVERLAY ROUTINE (.vevececnvnena bR B N R E e VR sway 13
TWO

FINAL OVERLAY ROUTINE ...ceocveveeanans § M E B SRR 8 R e 13
THREE

ILLUSTRATION OF REASON FOR ERRORS IN

ENTRY POINT DEFINITIONS IN "PAGE ZERO" ..vvveivacncarevonacancnnoss 16
FOUR

GRAPHICS PACKAGE USAGE DIAGRAM Nressrsiatenesenatanabana sive 20
FIVE

PROCEDURE DIAGRAM for

" CONSTRUCTION OR MODIFICATION OF GRAPHICS PACKAGE .cvivevcasevens 29
SIX

OVERLAY ADDRESS BOUNDARY SELECTION .evvveaeass . O & % B PR esen 37
SEVEN *

EXAMPLE MAIN MEMORY ADDRESS MAPcecuvaes cesssre s senaeanun 38

CHAPTLR ONE
INTRODUCTION

During the spring semester of 1974 the graphics class (CS830) at
Kansas State University wrote a set of interactive vector-graphics
routines for a Computek 300 graphics terminal using timesharing Fortran
IV on the GLE635 system at the University of Kansas.

It was decided to convert a basic subset of the graphics package
for use on the NOVA minicomputer system available in the KSU Computer
Science Department.

The graphics package had about ten man months invested in it and
it was estimated that to convert it for use on the NOVA minicomputer
system would require approximately three man months.

This paper is a report on that effort and on how to use and/or

modify the resulting graphics software package.

PAPER ORGANIZATION

Chapter One is intended for the reader that is interested only in
the research description and the results and conclusions,

Chapter Two is intended for the reader that desires to use the
resulting graphics package on the NOVA minicomputer.

Chapter Three is intended for the reader that might desire to
either duplicate the conversion effort or modify the resulting graphics
package in order to expand upon the basic subset of graphics routines
selected for conversion in this research.

Appendices include the source code for all the selected graphics
routines plus other material that supports or expands upon various

items in the text of chapters one, two and three.

MOTIVATION

Dynamic graphic sequences were not feasible using the original
graphics package on the GE635 system due to the low speed of data
transmission via the communication lines, Only the two speeds of 110
baud and 300 baud were available and neither was sufficient to provide
relatively smooth motion during dynamic graphic sequences. A higher
data transmission rate of up to 1200 baud was available between the
NOVA minicomputer and the Computek graphics terminal.

The line charges for using the original graphics package on the
GE635 system between Lawrence and Manhattan were so high that the cost
of running the package was excessive and as a result the availability
of the package to Computer Science students at KSU was naturally very
restricted. Since the NOVA minicomputer system is readily accessible
to students at KSU, clearly the result of converting the original
GE635 graphics package to run on the NOVA minicomputer would be good
availability of the package to the student. The NOVA minicomputer
system does not represent a large capital outlay when compared to
larger systems, such as the GE635, and with the elimination of line
charges an inexpensive standalone graphics system would result.

A definitive study iﬁ portability of software from a large machine
environment to a minicomputer environment would provide both useful
training and experience and, hopefully, some guidelines for anyone
desiring to make a similar effort. This is particularly important to
us in today's world of shrinking finances and expanding demands since

minicomputers are rising to fill the gap.

INHERENT LIMITATIONS

As a result of the difference in size of main memory between the
GE635 and the NOVA minicomputer, the amount of programming effort forced
upon the graphics package user and the realizable display speed both
exhibited induced limitations. The discussion that follows addresses
itself to both the original iInherent limitations and the resultant new

induced "inherent" limitations.

Main Memory Size

1t was quite obvious upon the most cursory examination that the
smail amount of main memory available in the NOVA minicomputer, only
16,384 words, simply would not be adequate to hold an operating system,
all the graphics routines, the required fortran library subroutines,
fortran's runtime stack and the user's problem program.

Since the DOS operating system on the NOVA did not provide for
the capability to overlay segments of core with object code modules
from secondary storage upon demand, a software overlay routine was
the obvious requirement.

In addition, the size of the user's problem program would clearly
be restricted considerably from those possible on larger machimes and
the precise limits on this could not readily be anticipated since the
amount of main memory that would be remain could not be determined
until the largest overlay segment, containing the graphics routines,
was built.

However, since the resulting minicomputer graphics package was to
be used as an instructional aid rather than in any sort of a production

environment, this size limitation was construed to be tolerable.

Programming Effort

The existence of an overlay software routine created the burden
upon the problem programmer to place calls to the overlay routine in
his program whenever specific graphics routines he wanted to use were
not resident in main memory.

This clearly would result not only in extra coding effort and
larger problem programs, but alsc in the requirement that the user know

at all times in his logic flow whether or not the routines he needs

are in fact resident in main memory.

Display Speed

The time required to execute the overlay routine and to actually
transfer the required overlay segment into main memory from secondary
storage would clearly reduce the effective display speed considerably
from the upper limit of 1200 baud.

The magnitude of this reduction could not be anticipated and would
be critical if the hoped for results of smooth graphics sequences were
to be realized.

The degree of optimization of the overlay routine's source code
was of prime importance in the conversion effort because of this speed
reduction.

The design of the user's problem program could degrade the display
speed even further since the placement of the calls to the overlay

routine would be completely under the user's control.

SPECIFIC AREAS OF CONVERSION EFFORT

Even though much of the conversion effort was actually done as
a large number of interlinked actions and sometimes reactions, the
presentation of this report requires that each specific area be treated
seperately.

The following paragraphs attempt to give both the reasons for the

various efforts and the results of said efforts.

Memory Size

The primary obstacle that had to be overcome was the small amount
of main memory available in the NOVA minicomputer, particularly when
one allowed for the fact that the operating system, DOS, took up some
34+4% of the already limited main memory.

Whether or not all the graphics routines being transported could
have resided concurrently in main memory or not was a moot question
since, 1t was readily apparent that there would have been insufficient
space remaining for the user's problem program.

The only viable solution to this was the development of software
to overlay groups of graphics routines, overlay segments, in main

memory under program control.

Overlay Routine

The initial overlay routine was designed to bring into main memory
a complete new "Core Image" which included all the fortran library
subroutines, the user's problem program and finally the new segment

that contained the desired graphics routines to be executed.

10

This seemed a logical approach since the NOVA's relocatable loader
could create only a complete "Core Image" file that contained the
different groups of graphics routines.

Since one could not actually read into main memory those portions
of code that had been assigned new values at execution time, the areas
that contained variables such as the common area, the implementation of
the first overlay routine simply read the "Core Image' file one buffer
full at a time and did not actually transfer it into the area of main
memory that corresponded to that area in the “Core Image'" file.

Once the overlay routine read in enough buffers to, in effect,
bypass all code up to the graphics routines, it then commenced actually
transfering the new object code into the area of main memory being
overlayed.

When the graphics package was actually executed using this first
version of the overlay routine, it became readily apparent that the
display speed reduction was excessive.

A further design fault was that the overlay routine always read
the requested overlay segment into main memory even if the requested
segment was already resident in main memory.

At this point the overlay routine was modified to do two things,
one being to check first to see if the overlay segment being requested
was already resident in main memory and if so to simply return at once
to the user's problem program and the other was to commence loading of
the overlay segment file immediately at the overlay point in main

MEemory.

i1

The immediate loading required that the "Core Image" file produced
by the NOVA's relocatable loader be processed by a routine, which I
named "SMASH", that would strip off the unwanted portion leaving only
the object code for the overlay segment since the overlay routine no
longer bypassed the unwanted portiom.

The source code for both versions of the overlay routines and for

the "smash" routine are presented in Appendix "A".

12

FIGURE ONE :

INITIAL OVERLAY ROUTINE

graphics |——— ———{ graphics
OVERLAY
routines |——— ———| routines
Routine
buffer
Core Main
Image Memory
File
FIGURE TWO : FINAL OVERLAY ROUTINE
graphics |——— ———| graphics
SMASH
routines |[——— ——— routines |--——
Routine
buffer
Core Overlay
Image Segment
File File

——— graphics
OVERLAY
——— routines
Routine
buffer
Main
Memory

13

Word Size

The word size on the GE635 was four bytes while on the NOVA words
are only two bytes in length.

Since the graphics routines do character manipulation any variable
that the program logic handled was assumed to contain four characters
and this was no longer the case once the graphics routines had been
transported for execution on the NOVA minicomputer.

This resulted in having to modify the source code of some of the

graphics routines.

Fortran Language

For compiler efficiency Data General's Fortran IV compiler requires
a partial ordering of statements with all non-executable statements
preceding any executable statements in the program unit.
Since this constraint was not present in the original Fortran
language that the graphics routines were written in, all routines had
to be re-ordered.
The breaks between groups of NOVA Fortran's statements are indicated
to the compiler unambiguously by the control statements:
.SPEC
.EXEC
.BODY

The ordering of statements and control statements is:

1.) Specification Statements: "COMMON", ''DIMENSION'", Data-type
Declarations, "EQUIVALENCE" and "EXTERNAL".

2.) .SPEC

3.) "DATA" Initialization Statements.

4.) .EXEC

5.) "FORMAT" Statements.

6.) .BODY

7.) Executable Statements including Statement Functions.

14

Entry Point Definitions

The NOVA's operating system, DOS, uses low core, commonly called
""page zero", to store entry point definitions for all the routines in
the user's problem program which includes the entry points into all of
the Fortran library subroutines as well as the entry points into all of
the user's own subroutines (the graphics routines in our case).

The relocatable loader created a different "page zero" for each
core image file that it produced according to what subroutines were in
the object modules being loaded.

The result of this was that the entry point definitions in the
user's core image file either did not have definitions for some of the
subroutines that the graphics routines required or, in the cases where
it did have them, they were incorrect.

It was necessary to force the relocatable loader to load entry
point definitions in the same place in "page zero" for both the overlay
core image files and the user's core image files.

The only way to do this was to create an assembler language routine
that requested all the routines that the graphics routines would need,
plus providing specific entry point definitions for the graphics routines
themselves, plus providing definition and extents of all labeled common
areas.

These assembler language "linkage" routines only force the
relocatable loader to build the same "page zero" under different
conditions and produce no actual words of executable code in the

final core image files.

15

FIGURE, THREE : ILLUSTRATION OF REASON FOR ERRORS IN
ENTRY POINT DEFINITIONS IN "PAGE ZERO™.

Object Code D™

K“overlay point”

\-M-\/—-_

“page zero” j
*¥¥loe. 73%% E¥]ge.T6%FF

54

Overlay Routine

| .

Object Code “D™

— Object Code “C” ——q\

k“overlay point”

~ “page zero”

L

*¥oe, TOFF #¥]oe,TO®F

The results of overlaying the object code for *A™ and “B” with the object code for *C"”
and “D” is, since the original page zero is retained, the addresses resolved in the routines
calling **C" still, accidentally, point Lo **C" but the addresses resolved in the routines calling
“D” point, not to the entrv point of D", but to the location where "*B’" used to reside and

which is now someplace in the middle of the object code for “C™.

16

DIFFICULTIES ENCOUNTERED

The problems presented for solution by the conversion of the
graphics routines for use in the NOVA / Computek environment were
not the only difficulties encountered.

The environment itself came with its own built-in set of problems

both with the hardware and with the software.

Operating System Protection

The operating system provided no protection such that when one
tested any unproven program he quite often found that an error had
caused a branch into some portion of main memory that was not intended
for execution and the contents of said area was immediately treated as
valid instructiecns causing, as often as not, not only the overwriting
of random portions of main memory but also the overwriting of random
portions of secondary storage where all our source files previously
existed.

This caused numerous restarts from paper tape versions of all
routines plus re-entry of all modifications to the source code from

the time of punching the paper tapes.

Operating System Modifications

The operating system changed twice during the project.

Once it expanded by an amount sufficient to cause the overlay
segments previously created to be tooc large to fit into main memory
and required the break down of the graphics routines into three groups

rather than the original two groups.

17

This, of course, made it necessary to rebuild the linkage routines,
to modify the overlay and smash routines, to regenerate all overlay
segment files and to rebuild all test problem programs.

The next change was the replacement of the standard disk operating
system, DOS, with a real-time disk operating system, RDOS, accompanied
by the addition of another 16,384 words of main memory thus changing
the NOVA's entire configuration.

This allowed the use of two overlay segments again rather than the
three that had been developed due to the first change but this again
required rebuilding, modifying and regenerating everything.

The new operating system, RDOS, had the overlaying capability built
into it allowing the operating system to produce the overlays upon
demand rather than making the user handle the effort.

As a result, the Overlay routine, the Smash routine and the Linkage
routines were no longer needed to allow the production of overlays and
the increase in main memory size made it no lohger necessary to have
any overlays at all since the operating system, the graphics routines
and the user's problem preogram could now all reside in main memory at
the same time.

The NOVA's new configuration, in effect, made the majority of the
conversion effort expended up to that point in time redundant and the
only justification for this report is that the conversion effort as
made would be of use if it was to be recreated at some other installation
or at least under another small machine environment that was very

similar to the original NOVA configuration.

18

Standard NOVA Software

The standard software routines such as the text editor and the
relocatable loader can best be described as primitive and as a result
quite difficult to use particularly in view of the fact that it would

quite regularly do something unexplainable and usually quite destructive.

Graphics Software

There were many logic flaws encountered, the majority of which
were introduced during copying of the source code from hard copy (both
the first time and subsequent times) while others insinuated themselves
durgng the process of modifying the source for the difference in word

size between the GE635 and the NOVA.

Hardware Support

The amount of time that one or more pieces of hardware was "down'",
inoperative, would have to have been experienced to be believed.

The unreliability of the high speed paperrtape punch/reader coupled
with the previously mentioned system software and standard NOVA software
unreliability caused not a few total restarts from hard copy (teletype
or selectric printed output of source files).

The portion of time that the entire system was operational was
not of adequate duratiom to allow productive research.

This is probably a normal situation, particularly in a research
environment, where only a very few users place demand on a relatively

inexpensive system and there isn't enough pressure monetarily to rate

immediate attention to breakdowns as normal in a large machine environment.

19

EVALUATION OF PROJECT RESULTS

The original graphics routines were designed with one objective
being to make them easily portable and such would quite likely have
been the case if the conversion effort had been from one large machine
environment to another large machine environment.

The fact that they were portable from a large machine environment
to a minicomputer environment, albeit with some difficulty, indicates
that they were properly designed.

Had they been poorly designed the conversion effort made in this
research would have been virtually impossible.

The problems addressed in this paper are common to many mini-
computer environments and as such this effort has been both instructive
and of potential future value.

It is proposed that the minicomputer environment, while remaining
a useful tool in the execution of fully developed software packages,
is excessively difficult to use in the actual dévelopmental stages though
obviously not impossible,.

Depending upon the level of capabilities built into a minicomputer
system, software development could be feasible but at present the large
machine is the best software engineering tool for developmenf of software
for minicomputers.

The software and hardware support of a large machine environment
provide the researcher a much firmer basis from which to pursue the

actual problems postulated by his research.

20

CHAPTLR TWO

GRAPHICS SOFTWARE ORGANIZATION

It was assumed that the user's problem programs would exhibit
locality within certain basic types of graphics routines according
to their functions and that by spliting the graphics routines into
groufs based on these function types the user could pefform several,
hopefully numerous, manipulations before having to call in a new
overlay segment.

There appeared to be three basic function types that the graphics
routines naturally segregated into and these were called Constructors,

Compilers and Transformers.

Constructors

The constructors are the primitives by ﬁhich all images are formed.
They build arrays that store text information and an array called
a "Pseudo Display File', abbreviated as "PDF", which is an "N" by "4"
array, where:
PDF(I,*) = (Operation Code,X,Y,Z).

The constructor routines and their functions are as follows:

CLEAR Clear the CRT screen.
START Start a new picture, PDF, file,
WMODE Enter write mode,
EMODE Enter erase mode.
MOVES Move the cursor with no trace.
VEC Move the cursor with a straight line trace.
HTEXT Display text horizontally
from the current cursor position.
VTEXT Display text vertically

from the current cursor position.
SENDPDF Marks the end of one picture, PDF, file.

See Appendix "B" for the source code for these routines and for

the arguments that each routine expects when called.

21

Compilers

The compilers are routines which translate an "image" segment
in the "Pseudo Display File" into an output buffer of code specifically
formated for the Computek 300 graphics terminal and then initiates the
actual I/0 to get it there.

The compiler routines and their functions are as follows:

COMPIL Translates an "image'" segment.

GETC Used by COMPIL to get a byte for translatiomn
from either the PDF or the Text arrays.
PUTC Used by COMPIL to put the translated byte
into the output buffer.
BSEND Used by COMPIL to initiate the actual output to

the Computek of the output buffer.

See Appendix "C" for the source code for these routines and for

the arguments that each routine expects when called.

Transformers

The transformers are routines which build a "4" by "4" application
matrix (array), called "T", which is applied to the "PDF" array thus
causing a uniform transformation of the picture contained therein,

These rcoutines all transform coordinate axes in the convention of

Newman and Sproull}

The transformation routines and their functions are as follows:

INIT Initializes the transformation.

ROTATE Performs axes rotatiom.

SCALE Performs arbitrary scaling.

TRANS Performs translation of the coordinate axes.

MATMUL Used by ROTATE, SCALE and TRANS for
matrix manipulation.
DAPPLY Applies the transformation to the PDF.

See Appendix "D" for the source code for these routines and for

the arguments that each routine expects when called.

1 - PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS, Newman and Sproull.

22

USAGE OF THE GRAPHICS PACKAGE

In order to usé the minicomputer graphics package the user must
know what functions are available (as explained under Graphics Software
Organization), how to call the overlay routine including what graphics
routines are in which overlay segments and how to use the NOVA's text

editor, fortran compiler and relocatable loader.

Overlay Routine Calls

The overlay routine must be called by the user in his problem
program every time that he needs a graphics routine that is not in the
ovérlay segment that is currently resident in main memory.

It should be noted that the overlay routine checks to determine
which overlay segment file is currently in main memory and will not
waste time pulling in an overlay segment file that is requested by the

user if it is already resident.

The following code shows the necessary call sequences for a

hypothetical segment of a user's problem program assuming that overlay
P

segment file "A" contains routines "a", "b" and "c" and that overlay

"1 L] . |

segment file "B" contains routines "x", "y" and "=z

"
.

CALL OVER("A™)
CALL b
CALL OVER("B")
CALL x
CALL =z
CALL OVER("A™)
CALL
CALL

e N =

23

Overlay Segment Files

The constructor routines and the compiler routines were all
placed in an overlay segment file named "CONSTRUCT" and the trans-
former routines were placed in an overlay segment file named
"TRANSFORM".

The reason for grouping the individual routines by function type
has already been discussed and the reason for grouping the constructor
routines with the compiler routines was not because of any similarity
of function but rather because the amount of object code in the
transformer routines was considerably larger than either of the other
two groups; thus the way to obtain the smallest maximum sized overlay
segment was to place the two smaller groups together in one overlay

segment file,

Contents of "CONSTRUCT". Contents of "TRANSFORM'.
CLEAR INIT
START ROTATE
WMODE SCALE
EMODE TRANS
MOVES MATMUL
VEC DAPPLY
HTEXT
VTEXT
COMPIL
GETC
PUTC
BSEND

See Appendix "E" for example user's problem programs first without
calls to the overlay routine, as if all graphics were resident in main
memory concurrently, and then with calls to the overlay routine inserted
as required in order to run the user's problem program in the limited

main memory available,.

NOVA's Text Editor

Creation of a problem program source file on the NOVA is normally
accomplished using the text editor rouﬁine.

The following gives a very simple example of how the text editor
is initiated and used to create a hypothetical source file (lower case
letters in example indicate where the user has an option of what to use
in his application).

EDIT

*GWname.FRS$S
*1 "

source
statements

$PHSS
The above illustration would have created a scurce file named as
whatever the user had inserted in place of '"mame" that contained the

source statements the user had developed.

NOVA's Fortran Compiler

To create a relocatable binary file from the user's source file
requires only the initiation of the fortran compiler which can be
illustrated by the following very simple command string (lower case

letters used as previously defined).

FORT name.FR
This creates a relocatable binary file with the same name as the
user selected in creating the source file except that the suffix "FR"

is replaced by the suffix "RB".

25

NOVA's Relocatable Loader

" file for the user's

To create an executable core image '"save
problem program requires the use of the relocatable loader, the two
routines developed for support of the minicomputer graphics package,
USERLINK.RB and OVERLAY.RB, the relocatable binary file previously
created from the user's problem program and the library file that
contains the fortran subroutines.

The following command string illustrates the exact method needed
to accomplish this final step.

RLDR 1000/ name.SV/S USERLINK.RB OVERLAY.RB name.RB SYS.LB 23240/N!
This creates a core image file, a "save" file, that has the

same name as the user selected in creating the source file except

that the suffix "FR" is replaced by the suffix "SV'".

Problem Program Execution

The execution of the user's problem program is now accomplished
by entry of the name that the user selected in creating the source
file as a command.

If the name chosen had been "testmain" for example then the
following command would load the user's problem program into main
memory and commence its execution.

TESTMAIN

Assuming that the user had not failed to insert the proper calls
to the overlay program in his source code then the result of this
command will be precisely whatever the user's source code indicates

they should be.

1: See Appendix "G" for detailed explaination of components of this.

26

FIGURE IFOUR :

GRAPHICS PACKAGE USAGE DIAGRAM

TEXT masessmssmme= name.FR
' 3
U 4 *
v 4 A Y
!’\ FORT pame.,FR —=———= "\\
& \\) N
P N S
U 4 N X
4 N 4+
TELETYPE EDIT FORTRAN
S T COMPILER
: |
entry <_:f user’s source code '
including calls to the overlay
ro.utine where needed, l
: |
CALL OVER (“CONSTRUCT") |
? I
CALL OVER (“TRANSFORM") i
PHSS |
|
i
i
|
COMPUTEK RLDR 1000/N name.SV/S USERLINK.RB OVERLAY.RB name.RB SYS.LB 23240/N]
300 name.RB
GRAPHICS V4
TERMINAL N V4
Y
L W ' 4
N S
\ il
\ -—=—="" pname ,l
\\ é
N v 4
N\ y 4

LOADER

27

CHAPTER THREE

CONSTRUCTION OR MODIFICATION OF GRAPHICS PACKAGE

This chapter is provided not only as documentation of the exact
procedure used in constructing the minicomputer graphics package but
also as a guide on how to modify said package since in order to make
any modification the same procedure would have to be followed.

The addition of new graphics routines, modification of the size
of any of the graphics arrays (such as the TEXT and PDF arrays) in
labeled common or even simply changing one word in an existing graphics
routine would cause such things as; a change in the overlay area size
causing the address constants in OVERLAY and SMASH to be invalid, the
addition of new entry points that would be undefined in the USERLINK
routine thus destroying page zero's accuracy, the shift of an entry
point to an existing routine (even if only by one word) and the demand
for some fortran library routine not previously required that would
not be in main memory for use when the graphics routine called for it.

A procedure diagram, Figure Five, provides a good overview of
what is required in settingup the easily used graphics package as
indicated in Chapter Two and also provides a step by step guide for

the layout of this chapter.

28

FIGURE FIVE : PROCEDURE DIAGRAM for
CONSTRUCTION OR MODIFICATION OF GRAPHICS PACKAGE

MODIFICATION
oFr

GRAPHICS ROUTINES SEPERATION
SOURCE CODE #jusaasnnfus OF CONSTRUCTION
GRAPHICS ROUTINES OF PAGE ZERO
[1A] INTO *orayyy,, . LINKAGE ROUTINE
TWO OR MORE "' PHASE 1

GROUPS "LABELED COMMON',

L)
\DEFINITIONS', /
DEVELOPMENT [2]

OF [3] ETER.MINAT TON
. ADDITIONAL
GRAPHICS ROUTINES OVERLAY AREA

[1B]

~!
~ﬁ
\

[5] DETERMINATI
FORTRAN LIBRARY
CONSTRUCTIONY __ qws"t* SUBROUTINES

OF PAGE ZERO "\ REQUIRED BY

DETERMINATION LINKAGE ROUTINE GRAPHICS ROUTINES
{ OF gttt PHASE 2
MAIN MEMORY "] "FORTRAN LIBRARY"

ADDRESS BOUNDARTES "SUBROUTINES"
\ FOR THE / (6]

OVERLAY AREA
~i (7]

MODIFICATION
OF
OVERLAY AREA (8]

ADDRESS BOUNDARIES
IN
"OVERLAY" AND "SMASH" [11]

CONSTRUCTION
OF PAGE ZERO
LINKAGE ROUTINE

(9]

CREATION PHASE 3
OF "GRAPHICS ROUTINES"
CORE IMAGE FILES [10] "ENT‘RY POINTS"
)
FOR R
ALL OVERLAY GROUPS ,- “,
&

fay EXECUTION
oy, s
’ OF .

y

ready to use

""SMASH" your new
TO PRODUCE overlay segment
OVERLAY SEGMENT files.
FILES

29

1A: Modification of Graphics Routines Source Code

Any existing graphics routine can be modified by following the
few steps illustrated in this section.
First rename the original file with the command string:
RENAME original-name.FR temporary-name
Then by using the text editor to actually insert the modified

code in the selected graphics routine as shown in the following short

example.

EDIT
#GCRtemporary-name$YS$$
*T$S

INDEX = 1
*¥2LS1TS$S

INDEX = 1
*C15$2$$
*T$S

NDEX = 2

* 4a |=f 2w en»

*GWoriéinal-name.FR$PH$$
Finally, to insure that the desired modification is actually
reflected in the relocatable binary file for the selected graphics
routine the modified source file must be recompiled using the fortran
compiler, which would be initiated using the following command string.

FORT original-name.FR

1B: Development of Additional Graphics Routdines

The text editor can be used te develop new graphics routines in
precisely the same manner as was exemplified in the development of the

user's problem program in Figure Four.

30

2: Seperation of Graphics Routines Into Two or More Groups

The decision on how many groups to break the graphics routines
into was reached by a bit of trial and error in which it was finally
determined that approximately a 50-50 split of the object code for
the graphics routines would allow room in main memory for all the
other necessary space allocations, page zero, overlay routine, user's
problem program, fortran library subroutines, common area, fortran's
runtime stack and the operating system.

Seperate the graphics routines into two or more groups attempting
to maintain some similarity in overall size but insuring above all, in
so far as possible, the minimum interaction between groups when the
user's problem program is in execution.

To prevent oversights and typographical errors later on during the
entry of command strings the creation, using the text editor, of files
that contain the names of the graphics routines, one file for each
group, is most helpful.

The creation of such an "indirect command string'" file, the way to
actually use the file and the results of using the file are illustrated
by the following example.

EDIT

*GWgroup-namels$$
*#Tnamel.RB name2,.RB name3.RBS$$S

*PHS$S

LIST @group-nameld@

namel .RB 124

name2 .RB 375
name3.RB 436

LIST namel.RB name2.RB name3.RB
namel .RB 124
name?2.RB 375

name3.RB 436

3: Construction of Page Zero Linkage Boutine

Phase 1 - "Labeled Common Definitions’

The length of the labeled common blocks must first be determined.
The simplest method is to choose either a graphics routine, a user's
problem program or a dummy fortran program that contains all the
labeled common blocks and execute the fortran compiler on it with the
assembler source file option switch on by entry of the following
command string.

FORT/S program-name.FR

Then printing out the resulting aséembler source file, it will
have the same program name as ''program-name.FR" except that the suffix
will have changed to "SR", will provide the specific information needed.

TYPE program-name.SR

. e a8

. COMM common-namel 41
.COMM common-name2 4541

s 3s e

Now the first phase of construction of the linkage routine can be

carried out using the text editor again.

EDIT
*GWphasel-name.SRS$S
*1 .TITL LINK
. NREL
. CoMM common-namel 41
. COMM common-name2 4541
.END
$PHSS

32

Finally, to produce a relocatable binary file for the linkage
routine the use of NOVA's assembler is required and can be initiated
using the fellowing command string.

ASM phasel-name.SR

4: Determination of Overlay Area Size

Using the relocatable loader the exact size, extent, of each
group of graphics routines can be determined thusly providing, by
selection of the largest of the resulting values, the overall size
necessary to be set aside for the overlay area.

. The following example illustrates the required command strings
and the results of each.

RLDR temporary-name/S phasel-name.RB 10000/N @group-namel@

NMAX 22474

RLDR temporary-name/S phasel-name.RB 10000/N @group-name2@

NMAX 23237

By selecting the largest resulting NMAX value and subtracting the
starting address, 10,000, from it the overlay area extent results.
The 10,000 address was selected arbitrarily since it was known

to be larger that the maximum address that would be allocated to

labeled common common's load point address of 1,000 plus the extent

of all labeled commons.

5: Determination of Fortran Library Subroutines

Required by Graphics Routines

In the previous step the execution of the relocatable loader
produced a listing called a "load map" and the fortran library sub-
routines needed by the graphics routines are listed therein and may
be recognized by the fact that their entry points are flagged, 'U",
as undefined.

An example of what to look for follows.

RLDR temporary-name/S phasel-name.RB 10000/N @group-namel@

4n e 8

common-namel 005541
common-name?2 001000
graphics-routine—-entry-namel 010000
graphics-routine-entry-name2 010473

U library-routine-entry-namel 010742 *
graphics-routine-~entry-name3 011144

U library-routine-entry-name2 011273

U library-routine-entry-name3 012215

U library-routine-entry-nameé 012277

By taking the union of undefined entry points from both load maps
the construction of phase 2 of the page zero linkage routine becomes
possible.

The names of the fortran library subroutines themselves which
one or more of the library routine entry names provide access to are
of no particular interest to the researcher since the inclusion of
the entry names in the page zero linkage routine will cause the desired
library routines to be loaded by the relocatable loader without having

to know the fortran library subroutine names specifically.

34

6: Construction of Page Zero Linkage Routine

Phase 2 - "Fortran Library Subroutines'

The expansion of the phasel-name.SR file to create a new linkage
routine by the addition of external definition statements for all of
the undefined entry points determined in step 5 is possible by using

the text editor again in the manner illustrated by the following

example,

EDIT

*GRphasel-name.SR5YSS

*2L$%

%] .EXTD entry-namel, entry-name2
.EXTD entry-name3, entry-name&

$TSS
.TITL LIBK
.NREL
. EXTD entry-namel, entry-name?
.EXTD entry-name3, entry-named
. COMM common-namel 41
.COMM common-name?2 4541
.END

*GWphase2-name,SR$S

*PHSS

Again, to produce a relocatable binary file for the linkage
routine the use of NOVA's assembler is required and can be initiated
using the following command string.

ASM phase?-name.SR

7: Determination of Main Memory Address Boundaries

for the Qverlay Area

This is a very critical step since if the placement of the overlay
are in main memory is too low there won't be adequate memory available
to execute the user's problem program and if too high the fortran

runtime stack will not have room between NMAX and the operating system.

35

The relocatable loader is of use in the determination of the
amount of main memory that will be used by labeled common, the overlay
routine and the fortran library subroutines required by the graphics
routines and such information is necessary in order to know exactly
where the user's problem program work area will begin.

The following example gives the necessary command string to
initiate the relocatable loader and the results that will be obtained.

RLDR temporary-name/S 1000/N OVERLAY.RB phase2-name.RB SYS.LB

s we as

NMAX 11516

s se ew

The value of NMAX gives you the amount of main memory required
by labeled common, the overlay routine and the library subroutines
and therefore, the point‘where the user's problem program will be
loaded.

The positioning of the overlay area must be such that some main
memory is left between the top of the overlay area and the bottom of
the operating system and such that as much space as possible is left
between the bottom of thé overlay area and the point where the user's
problem program will be loaded so as to allow the execution of the
largest feasible problem program.

Figure Six on the following page gives a graphical view of the
considerations that were made in selecting the address of 20000 as

the beginning of the overlay area.

36

FIGURE SIX: OVERLAY ADDRLESS BOUNDARY SELECTION

37777 = =
----- = s
----- : :
..... = =
= DoSs =
= OPERATING -
_____ = -
- SYSTEM =
..... - =2
- -
= -
..... - -
- -
30000 -ooooeeee- R s
..... - -
- =
----- - =
- -
e e e ey -_
e a
ZSOVERLAY AREA
""" = CHOICE 1
S -
""" - = FINAL
..... = = OVERLAY AREA
= CHOICE
----- E
20000 emooccemommmeeneeeoooe s mmenes e Pl e
..... EOVERLAY AREA
= CHOICE 2
“““ =
-
-
""" =
----- i..------.------—------—-----------»--...—..-—--------------—-.-_
= =
E fortran library subroutines E
10000 -cemenees e T T TS S S S SR R S S RS S
E required by graphics routines -
----- - -
- overlay routine -
..... s Sotonianad ne e sss gl s e snap s e i sa s snis s
= -
----- s =
- labeled common -
..... = ':'
..... = =
1000 LT ISP R IR -
= page zero -
CHOQICE 1: Too high, not enough room for Fortran's runtime stack to fit inbetween

CHOICE 2:

the top of the overlay area, NMAX, and the bottom of the gperating system.

Too low, not encugh roem for the user’s problem program and the
and the fortran library subroutines that it may require.

37

FIGURE SEVEN : EXAMPLE MAIN MEMORY ADDRESS MAP

It should be clearly understood that the following main memory
map is from one specific test case and as such will not be the same
as the map that the user might develop for a different problem program.
Many of the addresses would change but the relative order of the

items described would not change.

00000-00377 Page "Zero".

00400-00427 User Status Table.**

01000-01040 COMMON/TRSF/.

01041-05601 COMMON/GRAF/ .

05602-05667 Overlay Routine.

05670-11515 System Subroutines for Graphics Routines.

11516-14372 User's Problem Program.

14373-15725 System Subroutines for User's Problem Program
(those not already loaded for graphics routines).

15726-17777 (unused).

20000-23237 Overlay Area.

23240-varying* Fortran's Runtime Stack.

25116-37777 DOS Operating System
(includes the bootstrap and binary loaders).

*note: If the runtime stack runs up into the DOS area during
execution of the user's problem program a fatal fortram
runtime error occurs.

**note: For the definition of the user status table refer to
Appendix "G".

38

8: Modification of Overlay Area Address Boundaries

in "OVERLAY'" and ''SMASH"

Since the low and high addresses of the overlay area exist as
constants in both the overlay routine and the smash routine, any change
of either value requires that the address constants, .0VLO and/or .OVHI,
be changed correspondingly.

There are two methods to accomplish this.

There exists a routine, called the "octal editor'", that provides
for the direct modification of any type of file, not just text files,
and the value that needs changed could be modified in a relocateable
binary file, such as OVERLAY.RB, or in a core image file, such as
SMASH.SV, but the location of the precise word within each file that
contains the value to be modified, .OVLO and/or .OVHI, are not readily
apparent and for this reason it is normally quicker and more accurate
to alter the source code files using the text editor.

First rename the original source files with the following two
command strings.

RENAME OVERLAY.SR temporary-namel
RENAME SMASH.SR temporary-name?2

Then the use of the text editor to actually insert the modifications

is illustrated in the following two short examples where it is assumed
that only the wvalue of .0OVHI has changed.

EDIT

*GRtemporary-namel $Y$$

%S, 0VHI:SLSITSS

.OVHI: old-value
*Cold-valueSnew-valueS$SLS1TSS
.OVHI: new-value
*GWOVERLAY . SR$PH$$

39

EDIT

#GRtemporary-name2$Y$$

*S, OVHI:SLS1TSS

.OVHI: old-value

*#Cold-value$new-valueSLS1TSS

.OVHI: new-value

*GWSMASH.SRSPHSS

The use of the NOVA's assembler at this point, by the following

command strings, will modify the relocatable binary files, OVERLAY.RRBR
and SMASH.RB.

ASM OVERLAY.SR
ASM SMASH.SR

Finally the use of the relocatable loader, by the following
coﬁmand string, will modify the core image file, SMASH.SV.
RLDR SMASH.RB
In all of the following illustrations the wvalues of .0OVLO and
.OVHI will be assumed to be 20000 and 23237 respectively and if the
actual values being worked with vary from these then all occurences
of 20000 and 23240 in the example command strings must be replaced

by the actual values being worked with.

9: Creation of Core Image Files for All Overlay Groups

The production of the actual executable code with all addresses
resolved correctly may now be carried out using the relocatable loader
as illustrated by the following two command strings.

RLDR segment-namel/S 1000/N OVERLAY.RB
phase2-name.RB SYS.LB 20000/N @group-namel(@

RLDR segment-name?/S 1000/N OVERLAY.RB
phase2-name.RB SYS.LB 20000/N @group-name2(@

40

The output from the relocatable loader as a result of the two
command strings previously illustrated is a load map that contains
the entry point definitions for the graphics routines themselves as

illustrated by the following example.

graphics-routine-entry-namel 020000
graphics-routine-entry-name2 020473

The names that presently exist as entry points into the graphics

routines are as follows:

CLEAR
EMODE
MOVES
SENDP
START
VEC
WMODE
DTEXT
HTEXT
VTEXT
COMPI
BSEND
PUTC
DAPPL
INIT
MATMU
ROTAT
SCALE
TRANS

The reason that these entry point names differ from the subroutine
names for which they are entry points is due to an internal restriction
in NOVA assembler language that all identifiers, entry points included,

be five characters or less.

41

The entry point definitions produced in this step will be needed
in step 11 where the page zero linkage routine is finally completed so

be sure and save the relocatable loader's output listing.
P g

10: Execution of "SMASH" to Produce Overlay Segment Files

The core image files produced in the previous step, segment-namel.SV

and segment-name2.SV (called CONSTRUCT.SV and TRANSFORM.SV in this
conversion effort), must be reduced to only the overlay portion of

the file and placed in a new file under the names that the user expects
when he calls OVERLAY with said names as arguements, for example

CALL OVER ("CONSTRUCT") and CALL OVER (""TRANSFORM'").

The execution of SMASH.SV on the two core image files, as illus-
trated by the following examples, will produce the final reduced files'
that the overlay routine needs to function properly.

SMASH
segment-namel .5V
segment-namel
SMASH
segment-name?2.SV
segment-name?Z

Care must be taken when executing the smash routine since there
are no prompt characters indicating that SMASH is waiting for first
the entry of the file to be reduced, the input file, and second the
entry of the file to be created, the output file, and as a result the
user of the smash routine may sit quietly waiting after the entry of

the command SMASH and not realize that the routine is waiting for input

from the teletype.

42

11: Construction of Page Zero Linkagce Reutine

Phase 3 - "Graphics Routines Entry Points"

The production of the actual linkage routine to be used by the
user of the graphics package is now possible since all graphics entry
point names and definitions are known.

The actual linkage routine (called USERLINK in this conversion
effort) is produced using the text editor to modify the "phase2-name"
linkage routine, as illustrated by the following example, by the
addition of entry definition statements for all of the graphics routines

entry points and by the addition of entry value statements.

EDIT
*#GRphase2-nameS$Y$$
*S, COMMSLSS
*1 .ENT graphics-routine-entry-namel
.ENT graphics-routine-entry-name2 *
$S.ENDSLSS
*1 graphics-routine-entry-namel=20000
graphics-routine-entry-name2=20473
$TSS
.TITL
.NREL
.EXTD entry-namel, entry-name?
- EXTD entry-name3, entry-nameé
- ENT graphics-routine-entry-namel
. ENT graphics-routine-entry-name2
. COMM common-namel 41
. CoMM common-name2 4541
graphics-routine-entry-namel=20000
graphics-routine-entry-name2=20473
.END
*#GWactual-linkage-routine~name.SR$$
*PHS$S

43

Again, to produce a relocatable binary file for the final linkage
routine, the one to be used by the user of the graphics package, the
use of NOVA's assembler is required and can be initiated using the
following command string.

ASM actual-linkage~routine~name.SR

You are now ready to use your new overlay segment files

You have generated new overlay segment files (such as TRANSFORM
and CONSTRUCT) and a new linkage routine (such as USERLINK.RB).

You have modified the overlay boundaries (.OVLO and/or .OVHI) in
OVERLAY.RB and you are now ready to use your new graphics package

precisely as explained in Chapter Two's "USAGE OF THE GRAPHICS PACKAGE"

APPENDIX *“A™

SOURCE CODE

FOR

OVERLAY.SR

SMASH.SR

USERLINK.SR

MYLINK.SR

45

FILENAME: OVERLAY.SR
OVERLAY ROUTINE ("FINAL VERSION").

PURPOSE: TO PULL IN FROM DISK ANY OVERLAY SEGMENT FILE NOT
ALREADY RESIDENT IN MAIN MEMORY AND OVERLAY THE
PORTION OF MAIN MEMORY SPECIFIED BY THE VALUES OF
.OVLO AND ,OVHI AND PLACING SAID FILE IN MEMORY
WITHOUT AFFECTING ANY OTHER PORTION OF THE CURRENT
CORE IMAGE.

VI we Wwe W We we we WE We WE we We

.TITL OVER

.EXTD .CPYL, .FRET
.ENT .OVLO, .OVHI, OVER
.NREL
1
OVER: JSR @.CPYL
: LDA 2,c7
STA 2,COUNT ;COUNT WORDS TO COMPARE.
STA 3,TEMP ;SAVE AC3.
LDA 3,T.,3 ;GET ADDRESS OF NAME.
LDA 2,ALAST ;GET ADDRESS OF CURRENT OVERLAY NAME.
ONE: LDA 0,0,2 ;GET NEXT TWO CHARACTERS OF OLD NAME.
LDA 1,0,3 ;GET NEXT TWO CHARACTERS OF NEW NAME.
SUB# 0,1,SZR ;SKIP IF THE SAME.
JMP TWO ;DIFFERENT NAME.
INC 5,2
INC 353
DSZ COUNT ;SKIP IF NAMES EQUAL.
JMP ONE
JSR @.FRET ;NAMES WERE EQUAL - RETURN.
TWO LDA 3,TEMP
LDA 3.1 .3 :GET ADDRESS OF NEW NAME.
LDA 2,ALAST
LDA 0,67
STA 0, COUNT
THREE: LDA 1,0:3 ;:MOVE ONE WORD.
STA 1,0,2
INC . ;BUMP POINTERS.
INC 2,2
DSZ COUNT ; DONE?
JMP THREE ;NO!
LDA 0,ALAST ;YES!
MOVZL 0,0 :GET BYTE POINTER TO NAME.
SUB 1,1 ;CLEAR INHIBITS.
.SYSTM
. OPEN 7 ;OPEN FILE.
JMP ERROR

46

LDA 0
LDA 1,
SUB 0,
INCZL 1,
MOVZL 0,
.SYSTM
.RDS 7 ;READ OVERLAY SEGMENT FILE.
JMP ERROR
.SYSTM
.CLOSE 7 ;CLOSE OVERLAY SEGMENT FILE.
JMP ERROR
JSR @. FRET
ERROR: .SYSTM
.ERTN
HALT

1 .
1 ;s GET BYTE COUNT.
0 ;GET BYTE POINTER TO AREA.

NOTE: .OVLO IS THE BEGINNING ADDRESS OF THE OVERLAY AREA AND
.OVHI IS THE MAXTMUM ADDRESS OF THE OVERLAY AREA ("NMAX"
MINUS ONE) AND MOST CERTAINLY WILL NEED TO BE CHANGED
WHENEVER ANY CHANGES ARE MADE TO THE GRAPHICS PACKAGE.

- ME We Ve we ME Ve

OVLO: 20000
.OVHI: 23237

ALAST: .+l
LAST: .BLK 7 sNAME OF OVERLAY FILE CURRENTLY IN MEMORY. "
C7: 7
COUNT: .BLK 1
TEMP: +BLK 1
T.=-167
.END

47

WE Ve WS W Wr We Wwe Ve We wae

OVER:

FILENAME: OVERLAY.SR
"ORIGINAL" OVERLAY ROUTINE.

PURPOSE: TO PULL IN FROM DISK THAT POQRTION OF THE SAVE FILE
(CORE IMAGE FILE) SPECIFIED BY THE VALUES OF .OVLO

AND .OVHI AND PLACING SAID SEGMENT IN MEMORY WITHOUT

AFFECTING ANY OTHER PORTION OF CURRENT CORE IMAGE.

.TITL QVER

.EXTD .CPYL, .FRET
.ENT OVER, .OVLO, .OVHI
.NREL

1

JSR @. CPYL
LDA 0,143
LDA 1,.LAST
SUB# 1,0,SNR
JSR @.FRET
STA 0, .LAST
MOVZL 0,0

SUB 1,1
.SYSTM

.OPEN 7 :
JMP ERROR
LDA 0,.0VLO
LDA 1,.0VHI
SUB 0,1
INCZL 1,1

LDA 2,.SUBS
SUBL# 0,2,SNC
JMP THREE
SUB 0,72
NEGZL 2,2
MOVZL 0,0
ADCL# 1,2,SZC
JMP ™MO -
.SYSTM

.RDS 7

JMP ERROR
SUB 1,2

JMP ONE

STA 1,.TEMP
MOV 9.1
.SYSTM

.RDS 7

JMP ERROR
LDA 1,.TEMP
MOV 0,0,SKP

48

THREE:

NOTE:

MOVZL 0,0

«SYSTM

-RDS 7

JMP ERROR

. SYSTM

.CLOSE 7

JMP ERROR

JSR @.FRET

.OVLO 1S THE BEGINNING ADDRESS OF THE QOVERLAY AREA AND
.OVHI IS THE MAXIMUM ADDRESS OF THE OVERLAY AREA ("'NMAX"
MINUS ONE) AND MOST CERTAINLY WILL NEED TO BE CHANGED
WHENEVER ANY CHANGES ARE MADE TO THE GRAPHICS PACKAGE.

20000

23237

.BLK 1

.BLK 1

16

T.=-167

. SYSTM

+ERTN .-
HALT

‘END

49

Wi W wa we We Ve s

SMASH:

FILENAME:

PURPOSE:

SUB
«SYSTM
. MEMI
Jup
LDA
SUB
.SYSTM
. OPEN
JMp
LDA
.SYSTM
.RDL
IMP
.SYSTM
. OPEN
IMP
LDA
.SYSTM
.RDL
IMP
.SYSTM
. CREAT
JMP
.SYSTM
. OPEN
IMP
.SYSTM
.CLOSE
JMP
LDA
LDA
SUB
INCZL
STA
LDA
SUBL#
IMP

SMASH.SR
TO REDUCE AN OVERLAY SAVE FILE
(CORE IMAGE FILE) TO ONLY THE
OVERLAY SEGMENT ITSELF.
SMASH
.OVLO, .OVHI
ERROR
1,0
ERROR
0,BPTTI ;='S$TTI'.
1,1 sCLEAR INHIBITS.
1 ;OPEN CHANNEL 1.
ERROR
0,BPIN ;BYTE POINTER TO INPUT FILE NAME.
1 -
ERROR
2 ;OPEN CHANNEL 2.
ERROR
0,BPOUT ;BYTE POINTER TO OUTPUT FILE NAME.
1
ERROR
ERROR
3 ;OPEN CHANNEL 3.
ERROR
1 ;CLOSE $TTI.
ERROR
0,.0VLO
1,.0VHI
0,1
o ;GET BYTE SIZE OF OVERLAY AREA,
1,TEMP ;SAVE BUFFER SIZE.
2,.SUBS ;BASE OF SAVE FILE.
0,2,SNC ;SKIP IF NOT AT .OVLO.
THREE

50

SUB 2 ;GET NUMBER OF WORDS TO SKIP.
NEGZL 2,2 ;BYTES TO SKIP.
MOVZL 0,0 ;BYTE ADDRESS OF BUFFER.
ONE: ADCL# 1,2,SZC 3;MORE BYTES THAN BUFFER?
JMP TWO ;NO.
.SYSTM
.RDS 2 ;YES, READ A BUFFER FULL.
Jue ERROR
SUB 1,2 ;DECREMENT BYTES TO SKIP COUNTER.
JMP ONE ;AND REPEAT.
TWO: MOV 2,1 $GET REMAINING BYTE COUNT.
.SYSTM
.RDS 2 sREAD RIGHT UP TO .OVLO.
JMP ERROR
LDA 1,TEMP ;RESTORE BUFFER SIZE.
MOV 0,0,SKP ;SKIP BYTE POINTER CREATION.
THREE: MOVZL 0,0 ;CREATE BYTE POINTER TO BUFFER.
.SYSTM
.RDS 2 sREAD OVERLAY AREA.
JMP 2
JMP 0K
LDA 1,TEMP ;RESTORE BUFFER SIZE.
LDA 3,C6
SUB# 3,2,SNR ;CHECK FOR END OF FILE.
JMp OK
; —
ERROR: .SYSTM
.ERTN
HALT
; _— -
OK: .SYSTM
WRS 3 ;WRITE BUFFER TO NEW FILE.
JMP ERROR
.SYSTM
.RESET
HALT
.SYSTM
.RTN
HALT
»
; NOTE: .OVLO IS THE BEGINNING ADDRESS OF THE OVERLAY AREA AND
3 .OVHI IS THE MAXIMUM ADDRESS OF THE OVERLAY AREA (''NMAX"
; MINUS ONE) AND MOST CERTAINLY WILL NEED TO BE CHANGED
; WHENEVER ANY CHANGES ARE MADE TO THE GRAPHICS PACKAGE.
; —
L.OVLO: 20000
LOVHI: 23237
BPTTI: 2%.42
JIXTM 1
n $TTI"

. TXT

51

BPIN:
BPOUT:
.SUBS:

TEMP ;
C6:

2%, +2
.BLK
2% .42
«BLK
16

.BLK

20

SMASH

s INPUT FILE NAME.

; OUTPUT FILE NAME.
;SAVE FILE BEGINNING ADDRESS.

52

We we W we e

Se wa We W we

FILENAME: USERLINK.SR

PURPOSE: PHASE THREE PAGE ZERO LINKAGE ROUTINE USED
TO ACTUALLY FORCE THE RELOCATEABLE LOADER TO
CREATE THE SAME PAGE ZERO ADDRESSES FOR THE
USER'S CORE IMAGE FILE AS WAS CREATED FOR THE
TWO OVERLAY SEGMENT FILES, ''CONSTRUCT" AND
"TRANSFORM'". '

. TITL LINK

.NREL
.EXTD .FRED, .FALO, .FSUB, .FSBR, .CGT, MO.
.EXTD IA.S, .SMPY, .SDVD, IF.X, XI.X, SI.N
.EXTD .FARG, .FRGL, .FRGO, .FRGl, DB.E,- SN.L
.EXTD FL.AT, .LDO, .LDl, .LD2, .STO, .STl
.EXTD .ST2, .STOP, .PAUS, .FCAL, .FSAV, .FRET
.EXTN .RTER, .RTEO, .RTES, .WRCH, .COUT, .CIN
.EXTD .LDBT, .STBT, .MOVE, .CPYA, .CPYL, .MAD
.EXTD .MADO, SUCOM, .SOSW, .NDSP, AFSE, .IOCA
.EXTD SP, .OVFL, .SV0, QSP, NSP, FLSP
.EXTD SIN., COS.

. ENT CLEAR, EMODE, MOVES, SENDP, START, VEC
.ENT WMODE, DTEXT, HTEXT, VTEXT, COMPI, BSEND
.ENT PUTC, DAPPL, INIT, MATMU, ROTAT, SCALE
.ENT TRANS

. COMM TRSF 41
. COMM GRAF #4541
CLEAR=20042
EMODE=20137
MOVES=20234
SENDP=20371
START=20467

VEC=20547
WMODE=20703
DTEXT=21005
HTEXT=21173
VIEXT=21317
COMPI=21440
BSEND=23024
PUTC=23152
DAPPL=20057
INIT=20334
MATMU=20476
ROTAT=20735
SCALE=21417
TRANS=21675
.END

53

WE e WE We we WS

e WEe We WE We WE WE

FILENAME: MYLINKL,SR

PURPOSE:

.TITL
«NREL
.COMM
- COMM
.END

FILENAME:

PURPOSE:

. TITL

.EXTD
+EXTD
+EXTD
«EXTD
. EXTD
«EXTD
.EXTD
-EXTD
«EXTD
.EXTD
- COMM
- COMM

PHASE ONE PAGE ZERb LINKAGE ROUTINE USED
TO DETERMINE THE COVERLAY AREA SIZE.

LINK

TRSF 41

GRAF 4541
MYLINKZ,SR

PHASE TWO PAGE ZERO LINKAGE ROUTINE USED

TO DETERMINE THE AMOUNT OF MAIN MEMORY USED
BY THE FORTRAN LIBRARY SUBROUTINES REQUIRED
BY THE GRAPHICS ROUTINES.

LINK

.FRED,
IA.S,
.FARG,
FL.AT,
.8T2,
.RTER,
sLDBT,
.MADO,
SP,
SIN.,
TRSF
GRAF

.FALO,
.SMPY,
.FRGL,
.1LDO,
.STOP,
.RTEO,
.STBT,
SUCOM,
.OVFL,
CoS.
41
4541

.FSUB,
.SDVD,
.FRGO,
.LD1,

.PAUS,
.RTES,
.MOVE,
.SOSW,
.SVO0,

.CGT,
1%,
DB.E,
.STO,
.FSAV,
.COUT,
.CPYL,
AFSE,
NSP,

MO.
SI.N
SN.L
.ST1
.FRET
.CIN

.I0CA
FLSP

54

APPENDIX “B”

SOURCE CODE

FOR

CONSTRUCTORS

55

FILENAME: GRSTART.FR

SUBROUTINE START

COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(ZOOi
INTEGER OUT, TXTIND, TEXT

«SPEC

. EXEC

-.BODY

INDEX=1

TXTIND(1,1)=1

TXTIND(2,1)=1

RETURN

END

56

FILENAME: GRCLEAR.FR

SUBROUTINE CLEAR
COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(zooj
INTEGER OUT, TXTIND, TEXT

.SPEC

.EXEC

.BODY

PDF(1, INDEX) =2

INDEX=INDEX+1

RETURN

END

57

FILENAME: GRWMODE.FR

SUBROUTINE WMODE
COMMON/GRAF/ 1INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(200)
INTEGER OUT, TXTIND, TEXT

.SPEC

.EXEC

.BODY

PDF(1,INDEX)=3

INDEX=INDEX+1

RETURN

END

58

FILENAME: GREMODE.FR

SUBROUTINE EMODE

COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(ZOOS
INTEGER OUT, TXTIND, TEXT

.SPEC

.EXEC

.BODY

PDF(1, INDEX)=4

INDEX=INDEX+1

RETURN

END

59

FILENAME: GRSENDPDF.FR

SUBROUTINE SENDPDF
COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(200)
INTEGER OUT, TXTIND, TEXT

.SPEC

.EXEC

.BODY

PDF(1, INDEX)=6

INDEX=INDEX+1

RETURN

END

60

FILENAME: GRMOVES.FR

SUBROUTINE MOVES (X,Y,Z)
COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(200)
INTEGER OUT, TXTIND, TEXT

.SPEC

. EXEC

.BODY

PDF(1,INDEX)=0

PDF(2, INDEX)=X

PDF(3, INDEX) =Y

PDF (4 , INDEX) =Z

INDEX=INDEX+1

RETURN

END

X : X Coordinate (floating point)
Y : Y Coordinate (floating point)
Z : Z Coordinate (floating point)

FILENAME: GRVEC.FR

SUBROUTINE VEC (X,Y,Z)
COMMON/GRAF/ 1INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(200)
INTEGER OUT, TXTIND, TEXT

.SPEC

.EXEC

.BODY

PDF(1,INDEX)=1

PDF (2, INDEX)=X

PDF(3, INDEX)=Y

PDF (4 , INDEX) =Z

INDEX=INDEX+1

RETURN

END

X : X Coordinate {floating point)
Y : Y Coordinate (floating point)
Z: Z Coordinate (floating point)

*

FILENAME: GRDTEXT.FR

SUBROUTINE DTEXT (N,ISTR,IND)

COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(zooﬁ

INTEGER OUT, TXTIND, TEXT

DIMENSION ISTR(30)

EQUIVALENCE (IP1,TXTIND),
(IP2,TXTIND(2,1))

.SPEC

.EXEC

.BODY

IP1=IP1+l

IND=1P1

TXTIND(1,IP1)=IP2

TXTIND(2,IP1)=N

NN=(N-1) /2+1

DO 1 I=1,NN

TEXT (1P2)=ISTR(I)

IP2=IP2+1

RETURN

END

N : Number of characters in text string.
ISTR : Text string (integer array).
IND : Location of table entry for text.

63

FILENAME: GRHTEXT.FR

SUBROUTINE HTEXT (N,ISTR)
COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(200)
INTEGER OUT, TXTIND, TEXT

DIMENSION ISTR(30)

.SPEC

.EXEC

.BODY

CALL DTEXT (N,ISTR,IND)

XN=IND

PDF(1, INDEX)=100.+XN

INDEX=INDEX+1

RETURN

END

N : Number of characters in text string.
ISTR : Text string (integer array).

FILENAME: GRVTEXT.FR

SUBROUTINE VTEXT (N,ISTR)
COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(zooi
INTEGER OUT, TXTIND, TEXT

DIMENSION ISTR(30)

.SPEC

.EXEC

.BODY

CALL DTEXT (N,ISTR,IND)

PDF(1,INDEX)=-100-IND

INDEX=INDEX+1

RETURN

END

N : Number of characters in text string.
ISTR : Text string (integer array).

65

APPENDIX *“C”

SOURCE CODE

FOR

COMPILERS

66

FILENAME: GRCOMPIL.FR

AEkTAFRRRAKEATRARRAATAL LSS LR AR AT I NA AR A A Rkh ik

GRAPHICS COMPILER WITH TEXT HANDLING CAPABILITY

AAIAARRALAARAARAR AR AR AR A REAT AR AR XA R AR LA LA AR Ak 4R

SUBROUTINE COMPIL (I1,I2,L)

COMMON/GRAF/ INDEX, PDF(4,200), OUT(50G), TXTIND(2,50), TEXT(200)

INTEGER OUT, TXTIND, TEXT, GETC, OPB, OPW, OPC,
PARMI, PARM2, PARM3, PARM4, D, X, Y, B(6)

.SPEC

.EXEC

FORMAT ("OERROR - UNTERMINATED PDF.")

FORMAT ("OERROR - ILLEGAL TEXT INDEX.")

ILLEGAL PDF OPERATION CODE.")

FORMAT ("OERROR

FORMAT ("OERROR - UNIMPLEMENTED PDF OPERATION CODE.")

FORMAT ("OERROR - OUTPUT TEXT BUFFER OVERFLOW.'")

.BODY
PARM1=200
PARM2=50
PARM3=200
PARM4=500

I1 : The index into the PDF of the first entry
MODE=0 to be compiled.

I2:: The pointer into the “OUT™ buffer where
IP=I1-1 the compiled instructions are to start.
OPW=12 L : Amount of the buffer used.
OPB=0

67

10 IP=IP+1

20

30

40

IF (IP.LE.PARMl) GOTO 20
ERROR - UNIMPLEMENTED PDF.

WRITE (10,1)

STOP 1
OPC=PDF(1,IP)+SIGN(0.1,PDF(1,IP))
IF (IABS(OPC).LE.7) GOTO 30

IF (IABS(OPC).LE.100) GOTO 130
ITXT=IABS(0OPC)-100

IF (ITXT.LE.PARM2) GOTO 40
ERROR - ILLEGAIL TEXT INDEX.

WRITE (10,2)
STOP 2

IF (OPC.GE.0) GOTO 60
ERROR - ILLEGAL PDF OPERATION CODE.

WRITE (10,3)

STOP 3

IF (OPC.LT.0) GOTO 50
D=1

GOTO 220

68

50

60

70

80

90

100

110

D=3

B(2)=8

B(3)=10

GOTO 220

IF (OPC.EQ.0.0OR.0OPC.EQ.1)
IF (OPC.NE.2) GOTO 100
Cf12

N=0

IF (MODE.EQ.0) GOTO 80
B(1)=64

N=1

MODE=0

N=N+1

B(N)=C

GOTO 180

N=0

IF (MODE.NE.0) GOTO 170
B(1)=28

N=1

MODE=1

GOTO 170

IF (OPC.NE.3) GOTO 110
C=15

GOTO 70

IF (OPC.NE.4) GOTO 120
C=14)

GOTO 70

GOTO 90

69

120 IF (OPC.LT.7) GOTO 140

130

140

150

160

170

ERROR - UNIMPLEMENTED PDF OPERATION CODE.

WRITE (10,4)

STOP 4

IF (MODE.NE.O) GOTO 150
N=0

GOTO 260

OPB=0PB+1

IF (OPB.LE.2) GOTO 160

OPB=1
OPW=0PW+1

IF (OPW.GE.PARM4) GOTO 210
CALL PUTC (OPW,OPB,64)

MODE=0

GOTO 260
Y=MOD(IFIX(PDF(3,IP)+0.5),256)
X=MOD (IFIX(PDF(2,IP)+0.5),256)

N=N+1

B(N)=0PC+2+16*MOD(Y, 4)

IF (B(N).LT.32) B(N)=B(N)+64
N=N+1
B(N)=Y/4

IF (B(N).LT.32) B(N)=B(N)+64

N=N+1

70

180

190
200

B(N)=16*MOD(X,4)

IF (B(N).LT.32) B(N)=B(N)+64
N=N+1

B(N)=X/4

IF (B(N).LT.32) B(N)=B(N)+64
DO 200 I=1,N

OPB=0PB+1

IF (OPB.LE.2) GOTO 190

OPB=1

OPW=0PW+1

IF (OPW.GT.PARM4) GOTO 210
CALL PUTC (OPW,OPB,B(I))
CONTINUE

GOTO 10

ERROR - OUTPUT TEXT BUFFER OVERFLOW.

210 WRITE (10,5)

220

STOP 5

NC=TXTIND(2,ITXT)
ITXTB=TXTIND(1,ITXT)

I=0

IF (MODE.EQ.0) GOTO 240
OPB=0PB+1

IF (OPB.LE.2) GOTO 230

71

OPW=0PW+1
OPB=1
IF (OPW.GT.PARM4) GOTO 210
230 CALL PUTC (OPW,OPB,64)
MODE=0
240 T=I+1
IF (I.GT.NC) GOTO 10
B(1)=GETC (TEXT(ITXTB),I)
DO 250 J=1,D
OPB=0PB+1
IF (OPB.LE.2) GOTO 250
OPW=0PW+1
0PB=1
IF (OPW.GT.PARM4) GOTO 210
250 CALL PUTC (OPW,OPB,B(J))
GOTO 240
260 OPB=0OPB+1

IF (OPB.GT.2) GOTO 270

CALL PUTC (OUT,OPW,OPB,0)
GOTO 260

270 L=0PW-I2+1
IF (OPC.EQ.5) RETURN
CALL BSEND (I2,L)
RETURN -

END

FILENAME: GRGEIC.FR

INTEGER FUNCTION GETC (STRING,NUMBER)
COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(zooj
COMMON/TRSF/ 1IDM, T(4,4)
INTEGER OUT, TXTIND, TEXT
INTEGER NUMBER, WORD, BYTE, STRING(30)
.SPEC
.EXEC
.BODY
WORD=(NUMBER+1) /2
BYTE=MOD (NUMBER-1,2)}+1 .
GOTO (1,2),BYTE
1 GETC=MOD(STRING(WORD)/256,256)
GOTO 3
2 GETC=MOD(STRING(WORD),256)
3 RETURN

END

73

FILENAME: GRPUTC.FR

SUBROUTINE PUTC (W,C,CH)
COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(zooj
COMMON/TRSF/ IDM, T(4,4)
INTEGER OUT, TXTIND, TEXT, W, C, CH
.SPEC
.EXEC
.BODY
GoTo (1,2),C

1 OUT(W)=256%CH
GOTO 3

2 OUT (W)=0UT(W)+CH

3 RETURN

END

74

c FILENAME: GRBSEND.FR

SUBROUTINE BSEND (LOC,LEN)

COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(200)
INTEGER OUT, TXTIND, TEXT

.SPEC

.EXEC

.BODY

L = LEN + 1LOC - 1

D0 3 I=LOC,L

D0 3 J=1,2

IF (J.EQ.2) GOTO 1

IOUT = OUT(I)/256
GOTO 2
1 I0UT = OUT(I)
2 ITTY = IOUT
3 CONTINUE
RETURN
END

The Fortran compiler was used on this source file with the "output
assembler source file" switch and the resulting ".SR" file was altered

as shown in the following source listing.

Qoo

W M W P ye g W

.Fl:
F2:

All.:

Al0.:

A7.:

Ab.:

- FILENAME: GRBSEND.SR

COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(200)
INTEGER OUT, TXTIND, TEXT
.SPEC

.EXEC

.COMM GRAF 4541
.NREL

.TITL BSEND

.ENT BSEND

.NREL

JIXTM 1

.EXTU

.EXTN I

s TEXT

. GADD GRAF, 4231

s TXTIND

» GADD GRAF, 4065

s OUT
.+3]
. GADD GRAF, 3101
764
401

764
; PDF

.GADD GRAF, 1

1440 : : 76

@.CPYL
@.+1

L =LEN+ LOC - 1

JSR
.BODY

JMP

Fs.
L1.

BSEND:

?

a® alh

=
™ ™M
i o
+ |
TT. [=)
SE€onatg8n
o l.l.?a7_nvL OO
I
H [32]
<4 <4 /A < < <
EEEEEEEE

L4.
LDA
INC

L3.:

oMo

o o

+
+

TOTT_ZZZ
0001210

STA

LDA s
]
3

L5.:

0,T.+4,3

0,1 SNC
L10.

@L30-1

DO 3 J=1,2
0,0

SUBZR
AND
ADDL
SUB
JMP
SUBZL
STA
JMP
L7.

Lar] -
*n -y
—{
o
% 0 © B e o
~r Z -0 ™~
+ M”1., (7| i t m M
. [L . n L .
TOTw - O~ A 11113“. ..-T..
L] L I N | [e
OO . O*M_&‘. O o o~ o~ e @) ()]
5]
)
(=] N r\@
<L <N &= N L - By ™
= = R_C.m M oo O MM M
EEEREE TR R

Lé6.:
L10.:

77

L1l.:

H
L12.:

k]

L13.:

I0UT = OUT(I)/256

JSR @.FSUB

3

A7. ;0UT
VS.+1

V.+3 -
JSR@E .LDO

.C7

LDA 1,@TS.+1,3

JSR @.sdvd

STA 1,T.+5,3 s I0UT
GOTO 2

JMP @.+1

L13.

IOUT = OUT(I)

JSR @.FSUB

3

A7. s OUT
VS.+1

V.+3 31
LDA 0,@TS.+1,3

STA 0,T.+5,3 s I0UT

ITTY = I0UT
LDA 0,T.+5,3 ; IOUT

ORIGINAL CODE WAS:

STA 0,T.+6,3 sITTY

e Wwe WE We W ws Ve

NEW CODE INSERTED IS:

.SYSTM sTTYIO ROUTINE
.PCHAR sSEND CHAR IN ACO
JMP .+l sERROR RETURN
: _ -
i CONTINUE
L2.: JMP @.+1
L6.
L7.:
JMP @.+1
L3.
L4.:
3 RETURN
JSR @.FRET
3 END
JSR @. FRET
.C7: 000400
.CH: 000062 8
.C5: 000002
.Ch: 000764
.C3: 000310
.C2: 000001

78

.Cl:

000004
Fs5.=11
SF5.=0
T.=-167
V.=200+T.
TS.=T.+b6
FIS.=T.4+0
VS.=V.+6
FVS.=V.+0
. END

79

APPENDIX “D”

SOURCE CODE

FOR

TRANSFORMERS

80

FILENAME: GRINIT.FR
SUBROUTINE INIT (IDM1)
COMMON/TRSF/ IDM, T(4,4)
.SPEC

.EXEC

.BODY

IDM=IDML

ID1=IDM+1

DO 1 J=1,4

DO 1 I=1,4

T(I,J)=0.

DO 2 1I=1,1ID1

T(I,I)=1.

RETURN

END

IDM1

: Number of dimensions (2 or 3 only).

81

FILENAME: GRDAPPLY.FR

SUBROUTINE DAPPLY(I1,I2)
COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(Z2,50), TEXT(200)
COMMON/TRSF/ 1IDM, T(4,4)

INTEGER OUT, TXTIND, TEXT

DIMENSION X(4)

.SPEC

.EXEC

.BODY

ID1=IDM+1

DO 3 I=11,I2

DO 2 L=2,IDI

X(L)=0.

LL=L-1

DO 1 J=2,ID1

K=J-1

X(L)=X(L)+PDF(J,I) *T(K,LL)

X(L)=X(L)+T(ID1,LL)

DO 3 J=2,1ID1

PDF(J,I)=X(J)

RETURN

END
I1 : Location of first entry in PDF to which the
transformation is to be applied.

12 : Location of last entry in PDF to which the
transformation is to be applied.

FILENAME: GRSCALE.FR

SUBROUTINE SCALE (X,Y,Z)
COMMON/TRSF/ 1IDM, T(%,4)
DIMENSION F(4,4)
.SPEC

.EXEC

- .BODY

DO 1 J=1,4

DO 1 I=1,4

F(I,J)=0.

XTEM=X

YTEM=Y

IF (IDM.eq.2) GOTO 2
ZTEM=Z

F(1,1)=XTEM
F(2,2)=YTEM
F(3,3)=ZTEM

F(4,4)=1,

GOTO 3

F(1,1)=XTEM
F(2,2)=YTEM

F(3,3)=1.

“CALL MATMUL (F)
RETURN

END

X : Scale factor with respect to the X axis.
Y : Scale factor with respect to the Y axis.
Z : Scale factor with respect to the Z axis.

83

FILENAME: GRTRANS.FR

SUBROUTINE TRANS (X,Y,Z)
COMMON/TRSF/ IDM, T(4,4)
DIMENSION F(4,4)

.SPEC

.EXEC

.BODY

DO 2 I=1,4

DO 1 J=1,4

F(I,J)=0.

F(I,I)=1.

XTEM=-X

YTEM=-Y

IF (IDM.EQ.2) GOTO 3
ZTEM=-Z

F(4,1)=XTEM

F(4,2)=YTEM

F(4,3)=ZTEM

GOTO 4

F(4,4)=0.

F(3,1)=XTEM X:

F(3,2)=YTEM Y:

CALL MATMUL (F)
RETURN

END

Distance in negative X direction that the
object is to be moved.

Distance in negative Y direction that the
object is to be moved.

: Distance in negative Z direction that the

object is to be moved.

FILENAME: GRROTATE.FR

SUBROUTINE ROTATE (L,THET)

COMMON/TRSF/ IDM, T(4,4)

DIMENSION F(4,4)
.SPEC

.EXEC

.BODY

DO 1 J=1,4

DO 1 I=1,4
F(I,J)=0.

F(4,4)=1.

TEM=3.14159265/180.

TEMP=THET*TEM
XC0S=COS (TEMP)
XSIN=SIN(TEMP)

INSIN=-XSIN

IF (IDM.EQ.2) GOTO 4

GoTO (2,3,5),L
F(1,1)=1.
F(2,2)=XC0S
F(3,2)=XSIN
F(2,3)=XNSIN

F(3,3)=XC0S

L : Axis of rotation (1:X 2:Y 3:Z).

THET : Degrees of rotation in clockwise
{right hand rule) direction about
specified axis.

85

CALL MATMUL (F)
RETURN
F(1,1)=XCOS
F(3,1)=XNSIN
F(2,2)=1.
F(1,3)=XSIN
F(3,3)=XC0S
CALL MATMUL (F)
RETURN

F(4,4)=0.
F(1,1)=XCOS
F(2,1)=XSIN
F(1,2)=XNSIN
F(2,2)=XC0S
F(3,3)=1.

CALL MATMUL (F)
RETURN

END

86

FILENAME: GRMATMUL.FR

SUBROUTINE MATMUL (F)
COMMON/TRSF/ 1IDM, T(4,4)
DIMENSION F(4,4), X(4,4)
.SPEC

.EXEC

.BODY

N=IDM+1

DO 1 I=1,N

DO 1 J=1,N

X(1,J3)=0.

DO 1 K=1,N
X(1,J)=T(I,K)*F(K,J)+X(I,J)
DO 2 J=1,N

D0 2 I=1,N

T(I,J)=X(1,J)

RETURN

END

F : The new transformation matrix
(floating point).

87

APPENDIX “E”

SOURCE CODE

FOR

EXAMPLE PROGRAMS

AND

TEST PROGRAMS

88

EXAMPLE GRAPHICS PROGRAM (NOT USING GRAPHICS ROUTINES)

.TITL SHOW

. NREL
3 .
;3 OUTPUT THE PICTURE STORED IN "BUF" TO THE COMPUTEK 300.
]
SHOW: IORST
LDA 2,ABUF
LDA 3,NUMB
STA 3,TIMES
LDA 0,000,3
JSR ouT
INC 2,2
DSZ TIMES
JMP =4
JMP SHOW
NUMB : 18.
TIMES: 0
3
;. OUTPUT DRIVER WITH DELAY ACCORDING TO CONSOLE SWITCHES.
2
DELAY: O
OuT: DOAS 0,TTO
SKPDN TTO
JMP .1
READS 0
STA 0,DELAY
ISZ DELAY
JMP 1
JMP 000,3
]
3 BUFFER CONTAINING PICTURE TO BE OUTPUT.
)
ABUF .+l
BUF: 34 :ENTER FOUR BYTE MODE.
103 ;Y1, FIRST BYTE.
104 :Y2, SECOND BYTE.
100 sX1, THIRD BYTE.
40 ;X2, FOURTH BYTE.
103 sYl, FIRST BYTE,
40 ;Y2, SECOND BYTE.
60 ;X1, THIRD BYTE.
77 ;X2, FOURTH BYTE.
103 sY1, FIRST BYTE.
40 ;Y2, SECOND BYTE.
100 X1, THIRD BYTE.
40 sX2, FOURTH BYTE.
63 3Y1, FIRST BYTE.
77 ;Y2, SECOND BYTE.
100 :X1, THIRD BYTE.
100 3 X2, FOURTH BYTE.
100 ; ENTER ALPHA MODE,.

-

. END SHOW

By simply modifying the buffer's contents other pictures can be
driven to the Computek by the preceding example program.

Once such modification that was used is as follows:

BUF: 34 sENTER FOUR-BYTE MODE.
103 sFIRST BYTE "X".
104 sSECOND BYTE "X".
100 sTHIRD BYTE "Y".
40 ;FOURTH BYTE "Y".
100 ;ENTER ALPHA MODE.
101 ;ASCII "aA".
102 ;ASCII "B".
103 s ASCII "C".
40 ;BLANK.
40 s BLANK.
40 sBLANK.
34 ;ENTER FOUR-BYTE MODE.
63 ;FIRST BYTE "X".
77 sSECOND BYTE "X".
100 sTHIRD BYTE "Y".
100 ; FOURTH BYTE "Y".

100 ;ENTER ALPHA MODE.

TEST GRAPHICS PROGRAM (USING GRAPHICS ROUTINES) WITHOUT OVERLAYS

COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(200)
COMMON/TRSF/ 1IDM, T(4,4)
INTEGER OUT, TXTIND, TEXT
.SPEC
.EXEC
.BODY
CALL START
CALL CLEAR
CALL MOVES (20.,20.,0.)
CALL VEC (200.,200.,0.)
CALL MOVES (200.,20.,0.)
CALL VEC (20.,200.,0.)
CALL MOVES (20.,100.,0.)
CALL VEC (200.,100.,0.)
CALL SENDPDF
CALL COMPIL (1,1,L)
CALL INIT (2)
CALL TRANS (10.,0.,0.)
ID = INDEX - 1
Do 2 1=1,5
CALL DAPPLY (1,1D)
CALL CoOMPIL (1,1,L)

2 CONTINUE

END

TEST GRAPHICS PROGRAM (USING GRAPHICS ROUTINES) WITH OVERLAYS

COMMON/GRAF/ INDEX, PDF(4,200), OUT(500), TXTIND(2,50), TEXT(200)
COMMON/TRSF/ 1IDM, T(4,4)
INTEGER OUT, TXTIND, TEXT
.SPEC

.EXEC

.BODY

CALL OVER ("CONSTRUCT")

CALL START

CALL CLEAR

CALL MOVES (200.,100.,0.)
CALL VTEXT (10,"DR.HANKLEY")
CALL MOVES (230.,20.,0.)
CALL VEC (250.,35.,0.)

CALL VEC (230.,35.,0.)

CALL VEC (250.,20.,0.)

CALL VEC (240.,45.,0.)

CALL VEC (230.,20.,0.)

CALL MOVES (20.,200.,0.)
CALL HTEXT (12,"V.R.WALRAFEN")
CALL SENDPDF

CALL coMPIL (1,1,L)

CALL OVER ("TRANSFORM")

CALL INIT (2)

CALL TRANS (10.,0.,0.)

ID = INDEX - 1

D0 5 1-1,5

CALL

CALL

CALL

CALL

OVER ("TRANSFORM")
DAPPLY (1,ID)
OVER ("'CONSTRUCT")

CoMPIL (1,1,L)

CONTINUE

END

23

APPENDIX “F”

SYSTEM HARDWARE

94

HARDWARE CONFIGURATION

The NOVA minicomputer system hardware configuration consists of
a Data General NOVA minicomputer, a Caelus model 303 disk cartridge
drive, a Computek 300 graphics terminal, an IBM Selectric typewriter,

a highspeed paper tape punch and reader and a KSR-33 Teletype.

Minicomputer

The Noval minicomputer in the KSU Computer Science Department has
16,384 bytes (8,192 words) of main memory and two communication rates
of 110 baud and 1200 baud.

All main memory locations are commonly expressed using octal
numbers; thus the maximum addressable storage location in main memory

is 37,777, which is 16,383

8 10°

Disk Drive

The Caelus2 disk drive conected to the Department's NOVA has one
removable IBM5440 type disk cartridge and one fixed disk. Each disk
has 205 tracks per surface with a recording density of 2200 bytes per
inch yielding a storage capacity of 7500 bytes (3750 words) per track

and 24.6 megabits (1,537,500 words) per disk.

Graphics Terminal

The Computek3 graphics terminal has a black and white display
screen consisting of a matrix of 255 by 255 addressable points, which
are either on or off, with the screen matrix origin being at the lower

left hand corner of the screen.

95

There is no intensity variation and no color control (although
intensity could be simulated by the dot density variation and color
photographs could be generated using multiple exposures with color
filters).

- Internal hardware provides straight line vector capability only
but curved lines can be approximated by a series of short straight
line vectors.

The screen cursor (moveable crosshairs) can be positioned at any
addressable point in the screen matrix using the "slew" keys on the
keyboard, or using a pen and tablet which is electronically connected
with the screen cursor, or by the receipt of a command string via the
input channel from the minicomputer.

Similarly, the cursor position can be read from the terminal by
the minicomputer under program control.

The result of moving the screen cursor depends upon the "mode"
the terminal is in when the movement is initiated.

In the "move" mode simple repositioning of the screen cursor
occurs, while in the "write" mode a straight line vector is approximated
by illumination of addressable points between the original screen cursor
position and the new position specified and in the "erase" mode erasure
of all addressable points from the original screen cursor position to
the new position specified occurs.

Character generation is by internal hardware using a seven (7) dot
vertical by five (5) dot horizontal matrix where the character position
is defined by the screen matrix address of the lower left hand dot in

the character matrix.

96

Characters are erased by overwriting them on the display screen

with a blank character.

1 - How to use the Nova Computers,
DG NM-5,
April 1971,
Data General Corperation,
Southboro, Massachusetts 01772

2 - CAELUS CONTROLLER - Disk Drive / Nova Computer -
Operation and Maintenance Manual,
Revision A,
2f72,
Caelus Memories, Inc.,
967 Mabury Road,
San Jose, California

3 - 300 SERIES User's Manual,

009-00021,

Sept. 1972,

Computek, Inc.,

143 Albany Street,

Cambridge, Massachusetts 02139

97

APPENDIX

MISCELLANEA

i‘G!’

98

Explanation of Components of Final Step Command String

The final step command string that creates an executable core image

"save" file for the user's problem program was given as:

RLDR 1000/N name.SV/S USERLINK.RB OVERLAY.RB name.RB SYS.LB 23240/N

The explanation of each component and its function is as follows:

RLDR - The filename for NOVA's Relocatable Loader. This causes
the relocatable loader to be placed in main memory and
execution to commence using the remaining components of
the command string as arguements.

1000/N - Indicates that the loading of the program is to start at
location 1000,. In our case this is where our first
labeled common will start.

name.SV/S - Causes the final core image "save" file for the user's
problem program to have the name that was chosen by the
user for his program. Without this the relocatable
loader would pick up the name of the first file, in our
case "USERLINK", and name the final core image file by
that name.

USERLINK.RB - Produces no executable code but causes all fortran library
subroutines to be loaded in the same spots as was done
in producing the overlay "segment'" files. It also gives
"page zero" definitions for all entry points into the
graphics routines that will be called in later in the
overlay area when the requested overlay "segment'" file
is loaded.

OVERLAY.RB - Brings the object code for the overlay routine in and
places it in the final core image 'save" file.

name.RB - Brings the object code for the user's problem program in
and places it in the final core image ''save” file.

SYS.LB — Provides the object code for all the fortran library
subroutines required by the graphics routines (as indicated
by USERLINK), by OVERLAY.RB and by name.RB.

23240/N - Forces the value of "NMAX" in the user status table to have
the same value as the maximum overlay segment so that the
fortran runtime stack will start above the maximum address
needed by the graphics routines. Otherwise the runtime
stack would start just above the last library subroutine
just loaded. 99

Definitions of File Suffix by File Type.

File Suffix File Type

.SR NOVA assembler language source file.
.FR NOVA For;ran IV language source file.
.RB Relocateable binary file.
.SV Core Image file ("Save" file).
.LB Subroutine library file.

none Overlay segment file or text file.

File Type Relationships.

SR——= Assembler .LB
A '
L4
USER :' -+ Teletype (op‘f:i\onal) +.RB ——=Relocateable
L™ Loader

N Y

« FR ——»= Fortran .5V
Compiler

1060

User Status Table Template

Address Contents
400 Program Counter.
401 ZMAX.
402 Start of Symbol Table.
403 End of Symbol Table.
404 NMAX.
405 Starting Address.
406 Debugger Address.
407 Highest Address Used by Load Module.
423 Save Storage for ACO.
424 Save Storage for ACl.
425 Save Storage for AC2.
426 Save Storage for AC3.
427 Save Storage for Carry Bit.

101

Wire List for CRT Plug on Synetics NOVA - Slot 9.

MOTHER
PLUG BOARD WIRE
PIN PIN COLOR NOTE
1 B97 BROWN +5V
2 A89 RED
3 B69 ORANGE
4 Ab YELLOW =5V
5 B100 GREEN (GROUND)
6 A85 BLUE
7 A83 VIOLET
8 A87 GRAY
9 B99 WHITE GROUND

Computek 300 / Synetics NOVA Connect Procedure.

1.) Power off NOVA and teletype.
2.) Pull TTY board out 2" in slot 3.
3.) Push CRT board in solid in slot 9.
4.) Connect Computek at the teletype plug
on the upper right front corner of the NOVA.
5.) Attach the two jumpers:

Slot 3...A95-A9%6

Slot 3...A93-A9%
6.} Power on NOVA and Computek.
7.) Computek "ON", "LINE", "READY" and
1200 baud ("4" on rear).

Computek 300 / Synetics NOVA Disconnect Procedure.

) Power off NOVA and Computek,
.} Pull CRT board out 2" in slot 9.
) Push TTY board in solid in slot 3.
) Disconnect Computek at the teletype plug
on the upper right front corner of the NOVA.
5.) Remove the two jumpers:
Slot 3...A95-A96
Slot 3...A93-A%4
6.) Power on NOVA and teletype.

A MINICOMPUTER GRAPHICS SYSTEM

by

VERNE ROY WALRAFEN

B.S. in Civil Engineering, University of Kansas, 1963

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1976

The implementation of the transportation of a basic subset of
an Interactive vector graphics software package from a large machine
environment to that of a minicomputer is presented. The subset
selected contains only the most primitive operations necessary to
allow a user to construct non-interactive problem programs.

The necessary instructions.to allow a user to build a problem
program and thus actually use the graphics package are presented.

In addition the reader is taken step by step through the necessary
activities that would allow him to modify and/or build extensions
to the subset selected initially.

It is proposed that the minicomputer environment, while remaining
a useful tool in the execution of fully developed software packages,
is excesgsively difficult to use in the actual developmental stages
though obviously not impossible. The software and hardware support
of a large machine environment provide the researcher a much firmer
basis from which to pursue the actual problems postulated by his

research.

