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INTRODUCTION

In the operation of most filters only the impedance char-

acteristics in the pass band of the particular filter in question

need be given much consideration. However, when the inputs of

filters whose pass bands are not the same are paralleled the

equivalent impedance of the resultant network needs to be as

nearly a constant resistance as possible throughout the pass

bands of any of the individual filters.

This paper reviews previous work on the operation of filters

in fan fashion (input sides in parallel) which starts with the

characteristic impedance improvement of a single filter and then

uses similar techniques adapted to filters which have their in-

puts in parallel. It then presents methods for obtaining

different degrees of approximation to a constant resistance for

the input impedance to the filters in question. This is done

for both complementary filters and for low-pass filters with

different bandwidths.

The interactance of a filter is defined in order to have a

comparison measure between fan-out filters which have input im-

pedances approximating a constant resistance with different

degrees of approximation.

Other filter configurations are discussed which have maxi-

mum power transfer both at the common input to the filters and

at the individual filter outputs. The additional resistors in

these networks cause large insertion loss and this makes the

filters undesirable for most applications.



In order to simplify calculations, both the cut-off

frequencies and the impedance levels of most of the filters

discussed in this paper have been normalized to 1.

PREVIOUS WORK

0. J. Zobel's Patent
t < V,

As early as 1920, 0. J. Zobel (8) gave a description of a

method for paralleling the inputs of two complementary constant-K

filters. Complementary filters were defined as filters which

have pass bands and attenuation bands which are approximately

the opposites of each other. An example of such filters would

be a high-pass and a low-pass filter with the same cut-off fre-

quency.

His method started from what he called impedance improve-

ment of a single filter. This consisted of adding either

x-series terminations or x-shunt terminations, of which the

x-series termination will be discussed here. The impedance

improvement method was based upon the assumption that the filter

whose impedance was to be improved was terminated in its char-

acteristic impedance. Then by adding an x-series termination,

consisting of a series element which was 0.809 times that of the

full series element of the original filter, and adding in shunt,

a shunt annulling element which consisted of O.SZ^ in series

with 3.236Z2, (where Z^ is the full series arm of the original

filter and Z2 is the full shunt arm of the original filter), it

was found that the input impedance of the filter was reasonably



flat throughout most of the pass band of the filter. These

values for the added elements were found by plotting the input

impedance of the corresponding circuit for different x-series

terminations and noting which values would give approximately

a flat input impedance throughout most of the pass band of the

filter. Also, in practice these values were found desirable

because of a similarity in the elements of both shunt and series

annulling networks. Series annulling networks are employed with

the use of x-shunt terminations.

By following this procedure for both a high- and a low-pass

filter Zobel noted that the annulling network for the low-pass

filter was a shunt branch which consisted of a capacitor in

series with an inductance. Thus the x-series termination of the

high-pass filter could be considered as the capacitor and the

rest of the high-pass filter could serve as the inductance if

the inputs of the two filters were paralleled. In other words,

the high-pass filter would act as the reactance annulling cir-

cuit for the low-pass filter. In the same manner it was noted

that the low-pass filter would serve as the reactance annulling

network for the high-pass filter throughout most of the letter's

pass band,

Zobel also states that the load side of each of the filters

in question should be terminated in such a way as to cause the

impedance of each filter, as viewed from that end, to be approx-

imately a constant resistance over the range of transmission of

that filter.



W. H. Bode's Paper

W. H. Bode (1) expanded upon Zobel's fundamental idea of

impedance correcting networks for a single filter. His ap-

proach was to consider a network similar to Pig. 1. He first

assumed the impedance to be corrected was the characteristic

impedance of a constant-K "T" section or "n" section. Then

writing the expression for the input admittance, and neglect-

ing the susceptance annulling network, he determined the values

of the various added elements which would make the conductance

an approximation to a constant. After having determined the

values to use for the conductance, or resistance controlling

network, he added a susceptance annulling network which would

approximately cancel the susceptance throughout the pass band

of the filter.

Using the case in which only one element is added to the

conductance controlling network of a "T" filter (see Fig. 2)

as an example. Bode obtained the following results. The

expression for the input admittance is

Vfl - x2) - ja.x

Yin = G + jB = -—.^ . -1_ (1)
Zjl - (1 - a2)x2]

2l
where x = (2)

J2Zo

The conductance is

Vtl - x2)
G =

f ;
p—

^

(3)
Zq[i - (1 - a2)x2]
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and the susceptance Is

-a-ix
B = 1 ^^ (4)

Zo[l - (1 - a2)x2]

This susceptance may be annulled by a tvgo-terminal impedance

in parallel vjlth the rest of the netvgork which has the value

of 1/B but has the opposite sign. Therefore the susceptance

annulling netvjork is an impedance

Zp[l - (1 - a^)x^] _ Zo jxZ^Ca^ - 1)

ja^^x ja^^x a-j^

This is recognized as a series combination of two elements

by using equation (2) and also for a constant-K filter

Z1Z2-Z/ (6)

Equation (5) then becomes -

Zo jxZo(a2 - 1) 2 1 - a-.^
= Z2 + Z. (7)

ja-^x a]_ a^^ 28^

The choice for the value of a-j_ is based upon the fact that it

is desired to make the conductance approximately equal to a

constant. Therefore the denominator of equation (3) is made

to approximate vfl - x^). Bode suggested the use of the bi-

nomial theorem to expand vfl - x^) and then set as many like

powers of x equal as possible in the numerator and denomina-

tor polynomials of equation (3). The expansion of

vfl - x2) = 1 - -x2 - -x^ x^ + (8)
2 8 16

Substituting equation (8) into equation (3) gives



1 x^ x4 - . . . .

2 8
G = -—— (9)

Zjl - (1 - a2)x2]

Setting like powers of x equal gives

1
- - = (a2 - 1) (10)

2

0^
.

a^ = 0.707 (11)

This approach yields the same results for the terminating

section as does m-derivation if a value of m = 0.707 is used.

However, if more than one added reactance is used in the

resistance or conductance controlling network it differs con-

siderably from m-derivation.

Bode also suggests that the best approximation (with

"least square" deviation) is obtained by expressing the

Vtl - x^) as a sum of Legendre coefficients instead of the

binomial expansion used in the preceding example,

E. A, Guillemin's Book

E, A, Guillemin (2) extended the method used by Zobel for

paralleling the inputs of filters to the class called poten-

tially complementary filters. Potentially complementary filters

are those which have different pass and attenuation bands but

do not have the same cut-off frequencies,

Guillemin started by studying the characteristic impedance

of a uniform ladder structure of the constant-K type with frac-

tional series termination as suggested by Zobel,
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He wrote the expression for the input impedance (see

Fig. 3) vghich was

Z^^ = R vfoT^"]^ + jaxR (12)

where Z^ = 2jxR (13)

'-'
R

and Zp = Uk)
2jx

For further consideration he studied the corresponding

admittance function . .

• 1
"

'
^

.Yin = = ^ + JS (15)
Zin

or in particular, the real and imaginary parts G and B,

1
R(G + jB) = (16)

V(l - x2) + jax

Since the factor v(l - x^) may be either real or imaginary

depending upon whether a pass band or an attenuation band is

considered, Guillemin studied the admittance fxinction separ-

ately in these ranges.

Thus for the range -co < x < 1

' RG = - (17)

1
and RB = _

-

r (l8)

V^ - 1) - ax

This followed from the fact that the minus sign of the radical

was used to enable the Vix^ - 1) to represent a reactance with

a positive slope which was necessary for realization. Also

for the range -1 ^ x ^ 1

V(l - x2)
RG = . ^-^ (19)

1 - (1 - a2)x2
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-ax
and ,

. RB = -—

^

(20)
1 - (1 - a2)x^

and for tiae range 1 ^ x < co

RG = (21)

... . ..,-1

and RB = (22)

V^ - 1) + ax

Ttien he applied these equations to both the high-pass

and the low-pass filters. For the lovg-pass case x = oj/uj^.

The application of the low pass case to equation (9) and

equation (11) gave

Wc;
RB = ^j O^il^l (23)

-1 ^
and RB =

,
; 1 < __ < cd (21+)

J£.\ - 1 ^ J "^

^c I X'^c

and for the high-pass case x = -<^q/cu which gives

RB = ; ^ -^ ^ 1 (25)

JW- ^ *1-'
"^o\ "o

•e
RB ^;i^^<oo (26)

\ Ui ]

The plots of these equations showed that when the two filter
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Fig, i|, Susceptance characteristics for a pair of complementary-
filters with fractional terminations and identical cut-
off frequencies.
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inputs were paralleled, each filter would serve as an approx-

imate annulling circuit for the other provided the cut-off

frequencies were identical (see Pig. I4). However, he noted

that the susceptance characteristics did not cancel each other

very well if the cut-off frequencies were not the same (see

Pig. 5)» He found it necessary in this case to place another

susceptance in parallel with the input sides of the filters.

This additional network was a resonant circuit with a resonant

frequency of

1
CO = (27)

and the susceptance of the network when multiplied by R was

RB3 = —^ (28)

By properly choosing the resonant frequency o^g, and the

values of Lq and Cq, Guillemin found that a reasonably constant

input resistance could be maintained in the pass band of each

of the filters. He suggested the use of the geometric mean of

the two filter cut-off frequencies for w^. The values of Lg

and Cg are then determined by the frequencies at which the

susceptances are to be completely corrected,

E. L. Norton's Paper

E. L. Norton (5) used a somewhat different approach to the

problem of paralleling the inputs of complementary filters. He

determined what the form of the equivalent input impedance needs

to be in order to be a constant resistance, and then synthesized
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Pig. 5. Susceptance characteristics and corrective susceptance
for a pair of potentially complementary filters with
fractional series terminations but different cut-off
frequencies.
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a pair of complementary filters which had this form of input

Impedance. This gave the desired input impedance; however, the

calculation required to synthesize a complex filter of this

type is rather long since it involves the solution of several

simultaneous nonlinear equations.

DEFINITION OP INTERACTANCE

In order to have some means of comparing the power avail-

able at the input terminals of a filter, or a group of filters

whose inputs are connected in parallel, with that which would

be available if the networks were purely resistive, the term

"interactance" is used. Interactance is defined as

Pf
A = -i- (29)

Pr

where A is the interactance of the filter, P^ is the power

dissipated in the source resistance when the filter or filters

are connected, and P^ is the power dissipated in the source

resistance when a pure resistance replaces each filter in the

circuit. These powers, P^ and P^,, are measured with an addi-

tional voltage put in each parallel filter path (see Pig, 6)

such that when the filter is replaced by a pure resistance the

voltage across the sovirce resistance is equal to the original

source voltage. Figure 7 shows the filters replaced by one-

ohm (which is the pseudo-characteristic impedance of the filters)

resistors. Using Millman's theorem, the voltage e^^ in Pig. 7 is



Ill

Source

Pig. 6. The circuit arrangement for measurement of the Inter-
actance of a group of filters whose inputs are in
parallel.

^0= 1

Yl=l

e
or

Source

Y^= 1 V^

Pig. 7. The circuit arrangement for measurement of the inter-
actance with the filters replaced by one-ohm resistors
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^- =^ '^°'

where n is the number of parallel paths and is always a posi-

tive integer. Solving equation (30) it is found that

'/-- e(l - 1)

., ^or = —— = (31)
.
-

;

1 + n

Therefore the voltage across the source resistance (e^,) is

e^ = e - Cq^ = e (32)

where e is the source voltage. The power, P^., dissipated in

the source resistance under these conditions is (assuming e

is a peak value)
1 le|2

Pv. = (33)
2 R

If R is one ohm, equation (33) reduces to

Pr = -Iel^ (3)4)

2

The calculation of P^ follows a similar procedure except

the one-ohm load resistors are replaced by the admittance Y

of each filter as in Pig, 6.

^of
= (35)

^o-^^1^^2-^ •••• *^n
The voltage across the source resistance for this case is

.,
; .

Oj, = e - e^^ (36)

Substituting equation (35) into equation (36) yields
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e^. = e

h + 1
(Y. + Yp + + ^n)

n

Yo + Yi + Y2 + + Y,

(37)

The power, P^, in this case is

n + 1

P^ = -|e |2y,

(Yt + Yp +

n .

+ ^n)
n

Y + Y, + Y, +old + Y_
'n

(38)

Substituting equations (3i|) and (38) into equation (29), the

interactance is found to be

A = Y.

n +

n

1

<^1 -y^- • • • •*^n'

^0 + ^1^Yj. . • • • *^n
(39)

in terms of the input admittances of the individual filters

in the circuit.

Calculating the interactance in the preceding manner, it is

noted that the plot of ideal interactance versus frequency is a

straight line. The value for the ideal interactance is one.

However, as in the case of complementary filters, the admittance

of one filter may be zero, so that the added voltage in that

branch adds no power to the circuit. Therefore the best inter-

actance plot that may be obtained for this case is a straight

line of some value less than one. Thus it is necessary to con-

sider each case separately in order to determine the best value

of interactance obtainable, although the straight line applies

toa 11 cases.
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r INTERACTANCE OP INDIVIDUAL FILTERS

Constant-K "T" Filter

Considered individually, the syroraetrical "T" or "n"

constant-K filter has an input impedance which approximates

a pure resistance of K ohms. This is seen by examining the

input impedance of a low-pass "T" constant-K filter (see Fig.

8). The expression for the input impedance (K normalized to

one ohm) is

1 + 2s + 2Xs2 + 2 (2 - X)s3

1 + 2s + 2(2 - A)s2

If X is chosen such that the maximum number of coefficients

of corresponding powers of s in the numerator and denominator

are equal, the filter is symmetrical and the input impedance is

1 + 2s + 2s2 + 2s5

Zin =
P ^W

1 + 2s + 2s2

This is King's (i|) approximation to a constant for small values

of s — as many as possible of the corresponding powers of s in

the nvimerator and denominator polynomials are equal.

The interactance of this low-pass filter is calculated by

use of equation (39) and is

1 + 2s + 2s2

Zi^ = -^ (l40)

A =

1 + 2s + 2s2 + s3

Evaluating A for s = jo;, the following result is obtained.

(l|2)

s = jw

'
. 1 + iju;^

, A = -. ^ - (l43)

Figure 9 is a plot of A versus frequency. It is noted that the
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Pig. 8. Low-pass constant-K filter terminated in a one-ohm
resistor.

A 1.0

0.1 0.2 0.i| 0.6 1.0 2,0 i^.O 10.0

w (radians per second)

Pig. 9. Interactance of the low-pass constant-K filter shown
in Fig. 8 with A = 1,
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curve starts off with a flat response but then changes value

rapidly about the middle of the pass band. In order to ob-

tain an interactance plot which is flat throughout more of the

pass band it is necessary to use a filter which has an input

impedance which more closely approximates a constant, such as

with m-derived filters or filters which have some other type

of impedance improvement

.

Figure 10 shows the interactance for a high-pass constant-K

filter with the same cut-off frequency as the low-pass filter.

M-Derived Filter

The m-derivation of a constant-K filter, which is included

in most network textbooks, is one means of improving the imped-

ance characteristics throughout the pass band of the filter. It

also makes it possible to choose one frequency of Infinite at-

tenuation which depends upon the value of m that is chosen.

This means that it not only has a flatter impedance character-

istic in the pass band but also has a sharper cut-off at the

start of the attenuation band.

The interactance of a constant-K filter which has ra-derived

terminating half- sections is shown in Fig. 11. This curve is

plotted for m = 0.6, a value that gives good filter character-

istics. A value of 0.70? for m would give a somewhat better

characteristic impedance.

Comparing Fig. 11 with Fig. 9 shows that the m-derived

filter has a much better Interactance plot throughout the pass
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Fig* 10. Interactance of a higti-pass constant-K filter vghicti

is ttie complement of ttie filter shown in Pig. 8.
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a; (radians per second)

Pig. 11. Interactance of a low-pass m-derived filter with
m = 0.6,

•
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band than the constant-K filter. However, it is noted that

the in-derived filter interactance has a high peak just out-

side its pass band at a frequency which corresponds to the

frequency of infinite attenuation. This, as would be expected,

causes trouble when a high- and a low-pass m-derived filter

are connected in fan fashion,

INTERACTANCE OF COMPLEMENTARY PAN-OUT FILTERS

Fan-Out Constant-K Filters

If two complementary constant-K filters are connected in

fan fashion, the interactance of the combined network may be

calculated by use of equation (39).

3
- (1 + i|s + es2 + 9s3 + 8s^ + ijs^ + s^)
2

A = ikk)

s = jw2(1 + 3.5s + 6.5s2 + 7.75s3 + 6.5s^ + 3.5s5 + s^)

Evaluating A for various values of cu, the curve of Pig. 12

is obtained. This curve is not flat throughout as much of the

pass band of each of the filters as is the curve for the inter-

actance of each filter by itself (see Pigs. 9 and 10). However,

the peak at the cut-off frequency is not as high as for the in-

dividual filters.

That the equivalent input impedance for the fan-out constant-

K filters is a ratio of polynomials of higher degree of s than

for each filter by itself suggests that more of the coefficients

of corresponding powers of s in the numerator and denominator

polynomials could be made equal and the plot of interactance
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J I I I I I III 1 I I I II J

0.1 0.2 0.1^ 0.6 1.0 2.0 I4.O 10.0

a»(radians per second)

Fig. 12. Interactance of the high-pass and low-pass constant-K
filters when their inputs are in parallel.
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could be a much flatter curve. One method of accomplishing

this is to write the expression for the equivalent input im-

pedance with a variable coefficient for the reactance nearest

the input terminals in each filter (Fig. 13). This gives an

equivalent input impedance of

An + Ans + Aps2 + A^s^ + A),s^ + Ahs5 + A/S^

2in = — —o —^ —^ —. ^- (^^)
Bq + B;j^s + B2s2 + Bos3 + B, sU + B^s5 + B^go

where A„ = 2k, B^ = ak^
o 1 o 1

AjL = 2k^(k + 2) . _
B^ = 6k^ + 2

A2 = 6kk-j^ + 3k + 1 B2 = Sk-L + 2k + 5

A3 = lOkk^ + 2k + 1 B3 = 6k^ + 6k + 6 (i^d)

A, = 6kk^ + 3k + 1 ." B, = 2k + 9k + 5

A^ = 2k(k^ +2) B^ = 6k + 2

A^ = 2k B^ = 2k

The approach is now to choose k and k, so that the input im-

pedance is as close an approximation to one, in both pass bands,

as can be obtained. Since the coefficients of the zero and

sixth powers of s will be equal with any value of k and k , the

coefficients of the first power of s and the fifth power of s

are examined. The coefficient of s in the denominator is set

equal to the numerator s coefficient. The same procedure is

followed for the coefficients of the fifth power of s , Prom

equations ikk) and (I45) this gives

2k^(k + 2) = (6k^ + 2) (I47)

and 2k(k^ + 2) = (6k +2) (i|8)

Solving equations (I47) and (J48) simultaneously for k and k.
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Pig. 13. Circuit configuration used in the first step of improv-
ing the interactance of compleitientary constant-K filters
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0.6

o.k

0.2

0.1 I I I I I 1 I I I I

Pig. 14.
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w (radians per second)

Interactance of the complementary filters of Pie. 13
with k = ki = 1.618.
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gives the following result

k = k^ = 1.618 (I49)

Substituting these values into equations (^5) and (i|6) , and

solving for the interactance by use of equation (39), the

curve of Fig. II4 is obtained. This gives a much closer approx-

imation of a straight line for the interactance than when the

two filters were merely paralleled without changing any element

values. It is also noted that this curve is flatter through-

out more of the pass band regions than are the individual

filter interactance curves.

If the magnitude of the voltage transfer function of each

of the filters is plotted versus frequency for the filters by

themselves and when in parallel, it is seen that there is a big

improvement when their inputs are paralleled and the first

series impedance changed to I.6I8 times its original value (see

Pigs. 15 and 16). In fact, it approaches the flatness and

sharpness of the cut-off of the transfer characteristic of a

single m-derived filter.
^.

,

This value of k = I.618 agrees very closely with the value

Zobel (8) used in his x-terminations which were determined from

practical consideration and from calculations considering only

perfect terminations for the filters in question.

Going one step further and writing the expression for the

Input impedance with both the series and shunt element nearest

the input terminals of the filters having a variable coefficient

(see Fig. 17), it is possible to get another approximation to a
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T(joj)|
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0.2
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''Ill J
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Voltage transfer functions of complementary low-pass
and higti-pass constant-K filters when each is used
alone.
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Fig. 16.

0.1 0.2 O.k 0.6 1.0 2.0 k'O 10.0

<i; (radians per second)

Voltage transfer function for complementary high-pass
and low-pass fan-out filters which have the Inter-
actance characteristics shown in Pig. lij.
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constant for ttie input impedance. This allows the coefficients

of the s*^, s^ , s , s'^, s^, and s" terms of the numerator poly-

nomial to be set equal to the coefficients of the corresponding

terms in the denominator. Also, by noting that for complementary

filters the coefficients of s of the numerator and denominator

have the relationship A = A , A^ = A , , A^ = A „,••••, and
o n' 1 n-1 2 n-2*

B- = 3^, B, = B^ - , B^ = B_ o, ••••
, the number of equationso n 1 n-l ii n-d

necessary for this case is reduced to two. Carrying out the

preceding calculations the following simultaneous equations are

obtained,

kk^ = k2 + k - 1 (50)

and 2kk^^ + kk^ + 2k^ + k = k^k^^ + ^^^^^ + 2k (5l)

Solving these equations for the roots which yield realizable

reactances gives k = 1.73 (52)

and - \c^ = 2.15 (53)

Using these values for the calculation of the interactance,

the plot of Pig. 18 is obtained. This second approximation

gives only a slight increase in the flatness of the interactance

curve at the low and high frequencies, and its characteristics

near the cut-off frequency are not as desirable as in the pre-

vious case. Also, the voltage transfer function does not have

as sharp a cut-off.

If this procedure is carried still further and all of the

reactive elements are allowed to have variable magnitudes in the

calculation of the input impedance, and setting the coefficients

of corresponding powers of s in the numerator and denominator
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Pig. 17. Circuit configuration used for the second step of
improving the interactance of complementary constant-K
filters.
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Pig. 18. Interactance of the fan-out complementary filters
shown in Pig. 1? with k = 1.73 and k-|_ = 2.15.
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equal, and solving these equations simultaneously, the values

which make the input impedance a constant resistance are

obtained. This procedure requires the solution of three simul-

taneous nonlinear equations for this simple case, and becomes

very difficult for more complex filters. Carrying out the pre-

ceding calculations gives values of

3
k = - (5i4)

2

k. = - (55)^3 ,'-„/..-

kp = -
. (56)

Although the interactance is a straight line for this case, the

voltage transfer function is not as flat as in the previous case

This means that some compromise will have to be made in a prac-

tical situation between the input impedance and the filter

characteristics required.

The circuit obtained for this constant resistance case

resembles the circuit which Norton (5) used in his constant

resistance synthesis approach,

Fan-Cut M-Derived Filters

Figure 19 shows the interactance of fan-out high-pass and

low-pass m-derived filters. This curve shows that the charac-

teristics of these filters are not even as good as the

characteristics of the fan-out constant-K filters discussed

previously.
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Fig. 19. Interactance of fan-out low-pass and high-pass
complementary m-derived filters.
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Pig. 20. Interactance of fan-out low-pass and high-pass
complementary degenerate m-derived filters.
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Since the stiunt resonant branch nearest the input of the

m-derived filter is used to give the frequency of infinite

attenuation, or in this case an impedance zero, it is now

omitted from the circuit. This will be referred to as a de-

generate case of m-derivation. When the interactance of the

high-pass and the low-pass degenerate m-derived filters con-

nected in fan fashion is plotted, the curve of Pig. 20 is

obtained. A value of m = 0.6 was used again for these calcu-

lations. This plot shows a marked improvement in the

interactance over all other cases considered thus far except

the final case of the constant-K filters. Also, the voltage

transfer function for the degenerate m-derived filters in

parallel is flat over most of the pass bands of the filters

and has sharp cut-off characteristics. In fact, the cut-off

is even sharper for this case than for a regular m-derived

filter by itself.

If a procedure similar to that used for finding the best

value of the series impedance element nearest the input in each

of the parallel constant-K filters is used for the degenerate

m-derived case, it is found that a value of I.618 should be

used instead of 1,6. This is the same value that was found to

give the best results for constant-K filters.

As in the complementary constant-K filter examples, the

process of setting equal the coefficients of corresponding

powers of s in the numerator and denominator polynomials of the

input impedance function could be carried to such an extent
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that a network v^ould result which would resemble the comple-

mentary degenerate ra-derived filters in parallel and have a

constant resistance for the input impedance. However, as with

the constant-K filters, the voltage transfer function is not

as good for this case as it is for the degenerate m-derived case,

Fan-Out Filters Derived from Self-Dual Filters

The input impedance of a low-pass symmetrical constant-K

"T" filter as shown in Fig. 8 is

1 + 2s + 2&2 + 2s^
Z = (57)

1 + 2s + 2s2

If the impedance level is doubled, the input impedance is

2 + [|s + ijs^ + i\s^

1 + 2s + 2s

which may also be written as

i|s3

Zin =
, . . . . ,

(^S)

Z = 2 + — = 2 + ^ (59)
^^ 1 + 2s + 2s2

The input impedance of a filter which is the dual of Fig. 8

with the impedance level doubled is

2 + lis + l4s2 2s3

1 + 2s + 2s2 + 2s3 1 + 2s + 2s2 + 2s3

If these two filters are connected so that their inputs are

in parallel, the input impedance is a closer approximation

to a resistance for small values of e.

(2 + €){2 - O ^2
=1 =1 (61)2+^ + 2-£ I4
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Since the voltage out of each of the filters is the same the

output terminals may also be connected in parallel. The re-

sulting network is the self-dual network shown in Pig. 21,

Reduction of this network to an equivalent ladder structure

yields the low-pass filter of Pig. 22.

A high-pass filter with an improved impedance character-

istic may be obtained in a similar manner. The fan-out

operation of these two filters is not very satisfactory since

the low-pass filter has an impedance zero at w = oo and the

high-pass filter has an impedance zero at cj = 0. However, if

the parallel branch nearest the input terminals of each of the

filters is removed, as in the fan-out operation of m-derived

filters, the input impedance characteristics are greatly im-

proved. Figure 23 shows the interactance of these networks

which is an improvement over the constant-K filter interactance.

Also, the voltage transfer functions (see Pig. 2l( ) of these

filters connected in fan fashion are an improvement over the

transfer functions of the constant-K filters. In fact, they

have similar cut-off characteristics to the transfer functions

of the degenerate m-derived filters.

The interactance of the complementary fan-out filters

derived from the parallel connection of dual filters may be

improved even more by the method used on the constant-K and

the m-derived filters. This Involves the changing of the first

series element in each filter to obtain the coefficient of s^

in the numerator which will equal the coefficient of s^ in the
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Pig. 21. Ttie self-dual network resulting from the paralleling
of dual low-pass constant-K filters.
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Pig. 22. Ladder equivalent network of Pig. 21.
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Pig. 23. Interactance of fan-out complementary filters derived
from self-dual filters.
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denominator of the input impedance function. Carrying out these

calculations gives a value of l.l67s instead of s as shown in

Fig. 22. Figure 25 shows the improved interactance curve. As

was the case with the constant-K and m-derived filters, this

process of changing element values could be carried to such an

extent as to yield complementary filters with a constant resist-

ance input impedance.

INTERACTANCE OF LOW- PASS FAN- OUT FILTERS

: Fan-Out Filters with Identical Pass Bands

If the inputs of two filters whose pass bands are identical

are paralleled the problem of obtaining a flat interactance

curve is very similar to that associated with a single filter.

Impedance improvement of each of the individual filters results

in an overall impedance improvement of the parallel combination.

One additional method may be employed in this case. If one of

the filters to be paralleled is made to be the dual of the other

the resultant input impedance of the parallel combination is

much closer to a constant resistance in the pass band. This is

seen by writing the expression for the input impedance of a low-

pass constant-K filter and its dual as was done in the section

on filters derived from self-dual filters. The only difference

is that the output terminals are not connected in parallel in

this case. The application of impedance improvement methods

upon these dual filters results in a good approximation of a

constant resistance in the pass band. The impedance level of
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Voltage transfer functions of fan-out complementary
filters derived from self-dual filters.
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the filters should also be doubled to get closer to maxinium

power transfer In this case.

Fan-Out Filters with Different Bandwidths

Since two low-pass filters of different bandwidths do not

act as reactance annulling circuits for each other, it is neces-

ary to find a method for making their im.pedance approxim^ately

constant. The case in which the bandwidth of one low-pass

filter is twice the bandwidth of the low-pass filter with which

it is to be paralleled will be considered here.

In the constant-K and m-derived filters considered previ-

ously in this paper, the characteristic impedance becomes purely

reactive at the cut-off frequency. In the case under consider-

ation here one filter has a resistive characteristic im^pedance

and one a reactive characteristic impedance in the region where

their pass bands do not overlap. However, by connecting two

sections of the filter with the higher cut-off frequency in

cascade, a filter of half the bandwidth is obtained, although

its characteristic impedance remains resistive throughout the

bandwidth of the original filter. If a filter made up of these

two sections is connected in fan fashion with the original one-

section filter the resulting equivalent input imipedance may be

made to approxim.ate a constant over the wider pass band of either

of the filters. Figure 26 shows an example of the preceding

network using simple constant-K filters. The Interactance curve

for the parallel combination (see Fig, 2?) resem^bles that of a
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Fig, 26. Circuit configuration used to improve the interactance
of two parallel low-pass filters which have different
bandwidths.
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Pig. 27. Interactance of the filters shown in Pig. 26.

i .

,



39

single low-pass filter except at the higher cut-off frequency

of the two filters.

In order to improve the input impedance of the combination

it is necessary to improve the impedance of each of the individ-

ual sections. This may be done with the use of self-dual

networks or some other method of impedance im.provement

.

Although this procedure yields a reasonable approximation

of a constant for the input impedance, the voltage transfer

functions of the filters do not have as sharp cut-off character-

istics as is som.etimes desired. This is especially true for the

filter with the smaller bandwidth.

If the filter with the wider bandwidth is made to be the

dual of one of the sections of the two-section filter the

interactance characteristics are better than for the first case

discussed (see Pig. 28). Also, impedance improvement of these

dual filters gives the flattest interactance response.

The procedure of cascading filter sections, which may be

applied to both low- and high-pass filters, may be used to

obtain filters with various ratios of bandwidths, although the

number of components becomes large for large ratios,

PAN-OUT NETWORKS WITH MAXIMUM POWER
TRANSFER CHARACTERISTICS

The ideal input impedance of any filter or group of filters

whose inputs are in parallel is the com.plex conjugate of the

source impedance. This is true since the condition for m^aximum

power transfer to a load Impedance is for the impedance looking
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Fig. 28. Interactance of two fan-out filters of different
bandwidths when the wider bandwidth filter is the dual
of one of the sections of the other filter.
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toward the load, end to be the complex conjugate of the impedance

looking toward the input end. Since the impedance of the source

in the case of filters is usually a constant resistance, the

impedance looking into the filters should also be a constant

resistance.

Considerin.g the ideal case, where the input impedance

of each filter in a group of filters whose inputs are to be

paralleled is a constant resistance, n^, the equivalent input

impedance of tt:le parallel filters is

Z^o = = C (62)

where n is the

n

number of filters in parallel. If the source

Impedance is al.so a resistance, b, then maximum power transfer

will occur at the input terminals of the filters (see Pig, 29).

However, If an individual filter of the n parallel filters is

examined the impedance looking toward the load is

Zl = n^ (63)

The impedance 1 coking toward the source is

Z3 =^ (6i|)

Therefore, the condition for maximum power transfer to each

individual load. does not exist in this circuit.

If a resis tance, r, is added in series with the source

resistance, and
, also added in series with each of the loads

(see Pig. 30), the conditions for maximum power transfer may

be obtained for both the points a and a' and the individual

filter inputs. b and b'o The impedance looking toward the
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Pig. 29. Circuit diagram of n parallel resistance loads used

in the maximum power transfer discussion.
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Pig. 30. Circuit diagram of parallel resistance loads with
coupling resistors, r.
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load terminals from points a and a« is

r + ^
Z. = r + (65)
L

Setting ttiis equal to the source resistance, s.

r + ^
^ = r + (66)

n

and solving for r gives

n - 1

r = C (67)
n + 1

Then setting equal the impedances looking both ways at points

b and b' gives

i = r + (68)
^ n

n - 1
and r = ^ (69)

- n + 1

This value of r agrees with the value obtained in equation (6?),

or maximum power transfer occurs at both of these junction points

for the same value of r. This type of coupling network could be

used with constant resistance networks such as a bridged-T, How-

ever, even in this case, the insertion loss in the coupling

resistors makes the actual power output less than for the previ-

ous case. Therefore, in most practical situations the first case

would be used.
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SU14I^ARY

Previous work which has been done on the operation of fil-

ters whose inputs are in parallel is reviewed in this paper.

Most of this work developed from Zobel's patent which gave a

method for impedance improvement of a single filter and a method

for paralleling complementary filters. This work xiias baaed upon

filters which were terminated in their characteristic impedance.

Norton's approach was a synthesis approach in that he

determined the form necessary in order for the input impedance

function to be a constant resistance, and then synthesized com-

plementary filters which had this form of input impedance.

The interactance of a filter or a group of filters is de-

fined as the ratio of the power dissipated in the source

resistance to the power which would be dissipated if maximum

power were transferred to the filters.

The configurations which give the best plot of interactance

versus frequency do not always have the best filter character-

istics. Therefore it is sometimes necessary to compromise

between impedance characteristics and filter characteristics,

A method is given for finding the element values for fan-

out complementary filters which make the input impedance a

constant resistance or which can be used to give different de-

grees of approximation to a constant resistance. This is

accomplished by solving for the input impedance in terms of

variable reactances, and then determining the values for these

reactances which will yield equal coefficients of corresponding
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powers of s in the numerator and denominator polynomials.

The interactance of fan-out filters is also improved by-

using individual filters which have an impedance characteristic

that approximates a constant resistance. Therefore impedance

improvement of a single filter may be used to obtain fan-out

filters with an improvement in the interactance. The use of

self-dual networks to improve the impedance characteristics is

demonstrated. This new method gives results which are com-

parable to those of m-derivation. .

A procedure, which is applicable to both low- and high-

pass filters, is developed for the parallel operation of two

low-pass filters which have the same bandwidth, and for two

which have different bandwidths. This latter case requires the

resistive nature of the characteristic impedance of the filter

with the lower cut-off frequency to be extended throughout the

pass band of the filter with the higher cut-off frequency.

This is accomplished by cascading two filter sections of the

higher cut-off frequency to yield the branch which is to have

the lower cut-off frequency. Additional improvement is achieved

if the filter with the wider bandwidth is made to be the dual

of one of the sections of the lower bandwidth filter. This

makes it possible to obtain the impedance characteristics and

the bandwidths desired, although the filter characteristics are

not as desirable as those which may be obtained with a single

filter. Therefore a compromise must be made between the filter

characteristics and the impedance characteristics desired.
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Although these methods yield fan-out filters which have

acceptable input impedance characteristics, a general theory

needs to be developed which may be applied to any type of filter.

Finally, a discussion is given of a circuit which satisfies

the conditions for maximum power transfer both at the coupling

network and at the individual filters. However, since the

coupling network consists of resistances, the insertion loss

makes the network undesirable in most cases.
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Ttie fan-cut operation of filters causes some additional prob-

lems over single filter operation. These problems are due to the

variation of a normal filter's input impedance with frequency.

Most of the previous work in this field was an outgrowth of

Zobel's patent on the characteristic Impedance improvement of a

single filter and on the parallel operation of complementary

filters. This work considered the filters to be terminated in

their characteristic impedance so that the Impedance looking into

the filter was also its characteristic impedance. The configura-

tions which resulted were tried in practical situations until

satisfactory results were obtained. Norton started with an input

impedance form which was a constant resistance and then synthe-

sized complementary filters with this Impedance form.

This paper defines the interactance of a filter or a group

of fan-out filters in order to have a means of comparing different

configurations of filters. It is defined to be the ratio of power

dissipated in the source resistance with the filters in the

circuit, to the power dissipated in the same resistance when m.ax-

Immri power transfer conditions exist in the network. The best

plot of interactance versus frequency is a straight line, the

value of which depends upon the types of filters being paralleled.

A procedure for obtaining an input Impedance which is a

constant resistance for a particular filter configuration is to

express the input Impedance of the filters, which have resistive

terminations, using variable terms for the reactive components.

If the coefficients of s in the niomerator polynomial are set



equal to the coefficients of corresponding powers of s in the

denominator polynomial, simultaneous equations are obtained

which, when solved, will give the element values required to make

the input impedance a constant resistance. 3y setting; equal only

part of the corresponding powers of s, different approximations

of a constant resistance are obtained.

Individual filter impedance improvement may also be used to

improve their fan-out operation. A new method of impedance im-

provement, the use of self-dual filters, is presented. When

these filters are used in fan fashion, any reactances which yield

input impedance zeros in any of the pass bands of the filters

must be removed from the network.

The problem of paralleling two low-pass filters of the same

cut-off frequency is similar to the problems involved with a

single filter. However, if the two filters have different band-

widths a different problem arises. The resistive character of

the impedance of the filter with the lower bandwidth m.ust be

extended throughout the wider bandwidth of the filter with which

it is to be paralleled. This may be accomplished by cascading

two sections of the wider bandwidth filter to obtain a filter

with half the bandwidth and still maintain the impedance

characteristics of the original filter. Then by using an im-

pedance improvement method on each of the individual filter

sections, satisfactory impedance characteristics may be obtained.

Finally, a discussion is given of a circuit configuration

which gives maxim.um power transfer both at the input to the

coupling network and at the individual filter inputs.


