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CHAPTER I
INTRODUCTION

The.problem considered is that of modeling an unknown
system with an adaptive digital system. This problem has
recently been considered by Widrow [1,2,3], Stearns [4] and
Feintuch [5] who have each applied the method of steepest
descent to obtain different control algorithms for adapting
the digital system used to model the unknown system. The
general approach taken is shown in Figure 1. The unknown
system is forced by a signal x(t), samples of which are also
input to the adaptive system and the controller. Samples of
the output of the unknown system, perhaps corrupted by additive
noise, n(t), are then compared with the outputs of the adaptive
digital system to obtain an error signal. The error signal,
e(k), is the major input to the controller which uses an
algorithm to compute the appropriate adjustments in the
adaptive system. Algorithms and control strategies are
designed with the goal of minimizing the square of the error.
They differ in their convergence properties and their error
performance.

The approach of Figure 1 can be derived by application
of a least squares procedure without resorting to the method
of steepest descent, and with the aid of simplifying
assumptions most of the previous algorithms are easily

obtained as special cases of the least squares approach.
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digital system.
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The simplifications necessary to arrive at Widrow's and Stearns'
algorithms are given and a new algorithm which is a variation
of Stearns' approach is developed.

The least squares algorithm is compared to Widrow's and
Stearns' algorithms for the systems identification problem.
Simple FIR and IIR unknown systems are used. The advantages
of the least squarés algorithm are its fast convergence time

and its ability to track changes in the unknown system.



CHAPTER 11
LEAST SQUARES ESTIMATION
A. VECTOR OBSERVATIONS

The following results are well documented in the
literature [6,7,8,9,10]. Details for the risk function
used in this system modeling application are given. There are
a number of different techniques for obtaining a recursive
least squares algorithm. The approach taken is basically
that of Swerling [6] and Blackman [7].

Suppose that an estimate of a parameter vector o of
dimension N is desired to the k-th stage, and that the estimate
is to be obtained as an improvement of the estimate &k—l from
the previous stage. The improvement is to be based on a new
observation or measurement r where ry is a vector of
dimension M. If sy(a) is a vector function of o, possibly
nonlinear, then a suitable scalar risk function for finding

a least squares estimate of o is

R(e) = (o - op )0 by (o - ap )

T -
G 1 [r

vy - Sk(a)] = Sk(a)], (1)

k

L are symmetric positive definite weighting

-1 -
where Ck-l and Cn
matrices. When such data are available, they are usually
taken as the inverse covariance matrices of the previous

estimate, O 1> and the observation error, n. Statistical



descriptions, however, are not required in a least squares
approach.
Expanding Sk(a) in a Taylor scries about &P 1 and
< -

retaining only the linear terms for substitution in (1) yields

R(0) = (@ - & )7 Gl (a - & )
LN I I AN CRR
Cla - g Yot in s (6 D)
UEHCRIS RN CINE NN (2)

where s is a differential operator used to indicate

differentiation with respect to the vector o and

11

v sT(a) : . (3)
5K o=a

k-1
The following notation will be used:

T A
Vask(ak_l)

. s T
VS = ¥ s (o () and ¥ST = [V, s (0 ()] (4)

Minimizing R(a) requires taking the vector derivative of
(2) and setting it to zero, 1.e.,
VaR(u) . =0 (5)
=0y

Differentiation of (3) yields

P | A PR N |
V. R(0) = 21 (a - &y q) + 29 [-(V8T)el” C

Clry - sy q) - vsTla - G )] (6)

k-1



Simplification of (6) leads to

O s "1 A ~ "1)

Cq By &y ) - vs(c

~ T ~ ~
. [rk - sk(uk_l] - N8 {ak- uk_l)] 3 | (7)
Solving for ak, the estimate of o yields
5 % .
0y %1 + [Ck-l + V8§ Cn VS+]
cvscl e, - s (G, )] . (8)
n k k-"k-1

If a statistical description is given for w, it is not
difficult to show [7] that the covariance matrix Ck of the

estimate &k is given by the lengthy inverse term of (8), i. e.,

=4

- -1 gqTq-1
C = [Ceoy +vs ¢~ usi]™h . (9)

In the absence of a statistical description it is still
desirable to use C%l as a weighting matrix at stage k+l.
Equations (8) and (9) thus define a recursive procedure for
calculating the least squares estimate of a. A very similiar
result is derived by Sage [8] using a risk function based on

all previous observations.
B. SCALAR OBSERVATIONS

While vector observations occur often, the application
to systéms modeling considered has scalar observations. When
Ty is a scalar it is possible to manipulate (8) to eliminate
the cumbersome inverse. Examples of this procedure are given

in [7] and [8]. C, becomes a scalar and will be written as



0; to emphasize it scalar nature. Equation (8) becomes

i . -1 x T;-1 : e g
0y %y q + lck—l g, * VS vSH] VS [rk Sk(ak-l)] . (10)

With v a scalar defined as

‘ ) . 2

Yy = VS® Cy_q{ VS + ag (11)
VS can be written as

-1 T 2 -1
VS = S[VS VST Cy g VS + of Cply €y VST, (12)

since Ci%l Cx.q = I where I is the identity. Factoring

Ck~1 VS to the right yields
= i T 5 Tk
VS = Y[VS VS® + o Ck_l] Ck-l VS . (13)

Substitution of (13) into (10) yields

=

~ _ o T 2 _1
0y = 0 # [V8 ¥5* # o Ck—l]

= | =

k-1

s vsT v o2 cili1 o Vs Iy - s, B DT, (18)

which reduces to

~ 1
Gy = QO + = C
k Y

k-1 VS [rk - Sk(&k—l)] (15)

k-1
with y as defined by (11). Blackman [7] has shown that the

covariance of the estimate is
-1 Tq,-1
= [C + VS .
Cx = [C C * vs'] (16)

Some simplification of (16) is necessary to give an expression

that can be used to recursively calculate Ck' As before



C, = cﬁ. Subtracting Ck—l from each side of (16) yields
e = ~2 [ T 2 -1 (-1 _ .
Cx = Crq ol [VS VS~ + T Lk~1l Lk—] ; (17)
or
T 2 ~-1 _ _ 2
[VS VS" + o Ck-l](ck Ck—l) o I
- T 2 ~-1
[VS V&~ + o, Ck-l] Ck—l . (18)
Combining (13) and (16) gives
vs = ——clg . vs (19)
¥z “k k1 '
Substitution of (19) into (18) yields
1 -1
"0,2 Ck (Ck‘ Ck*l) = U]?l I
n
_ l ‘“]. T i) ‘1
[?'?121'“‘ Ck Ck-]. VS VS® + Un Ck'l] Ck-l. (20)
Multiplying both sides by Ck and then solving for Cy
= 21 T
Cp = Ck-l . Ck_1 VS VS Ck-l . (21)

The least squares algorithm is now defined by (11), (15)

and (21). The algorithm is summarized below.

Fal ~
= 0 +

ag k-1 G VS [rk - s. (a )]

k™ k-1

1
Y
Ck = Cop ™ 5 Cpoq V8 98 Gy

" T 2
Y—VS Ck‘"l VS""Un

The vectors &k and ak-l are s5till N-dimensional and matrices



Ck and Ck-l are N x N. Sk(uk“l) is a scalar and VS is a

vector of dimension N.



CHAPTER III
APPLICATIONS IN SYSTEMS MODELING
A. GENERAL MODEL

In systems modeling the function sy(c) is determined by
the form assumed for the model. Both finité impulse response
(FIR) and infinite impulse response (IIR) forms will be
considered. The components of the vector o are the parameters
of the model and the goal is to adjust these for the least
squared error between the output of the unknown system and
the model. The system output depends both on the system
parameters o and the input x. Since the problem considered
is that of estimating o the x dependence has been suppressed
in the preceding. The application of least squares procedures
to the system modeling problem suggests the structure
illustrated in Figure 2. This structure is an implementation

of (11), (15) and (21), the least squares approach.
B. FINITE IMPULSE RESPONSE SYSTEMS

One of the initial steps in applying the preceding
results is to choose a specific sk(u). In what follows next
it is assumed tﬁat a finite impulse response (FIR) digital
filter is the most suitable form. This corresponds to the
case of Widrow [1,2,3]. For an FIR filter the output can be

represented by

10
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sila) = .Z W, x(k-1) . (22)

ot = [wo Wy wN_l] (23)
xp = [x(k) x(k-1) ++ x(k-N-1)] (24)
leads to a more convenient vector form
T
s, (@) = X, o (25)
The derivative indicated in (8) and (15). is then
VS = Xy (26)

A Least Squares Algorithm

Substitution of (25) and (26) into (11), (15) and (21)
yields a recursive least squares algorithm for estimating the

weights of the FIR system. The resultant algorithm is

~ A 1
G = @y 4 + = Ck-l X, € (27)
v = %1 C x, + g2 (28)
k k-1 "k n’
1 T
C, =C =g C 3 29
kK~ k-1 ¥ k-1 'k 'k k-1 W]
where e, =T, - xT a . (30)
k k k k-1

A similiar result has been derived by Graupe [8] using a

slightly different approach.
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Reduction to the LMS Algorithm

Widrow [1,2,3] has used the method of steepest descent
to develop an algorithm for the FIR model. His result may be

expressed as

A = uk—l + 2y Xk ek ; (31)

The parameter u is a free parameter used to control stability
and rate of convergence.

Reduction of the least squares result (27) to Widrow's
form is most readily achieved by starting at an earlier point

with (8) and (9). For the case of an FIR model, (8) becomes

~ = ~ "1 1 T _1 l
&, = O L~ = .
O T S T s Werah (32)
and (9) reduces to
= (¢l 1 Ty =1
Cx (ck—l + -7 X xk) i (33)
n

Considerable simplification can be obtained by arbitrarily
avoiding calculation of the inverse in (33) and substituting a
constant matrix in its place. Since this matrix corresponds
to the covariance matrix of the estimate, this amounts to
assuming that the quality of the estimate remains constant as
time proceeds. While it is anticipated that the convergence
properties of the algorithm will be impaired by this choice,
it is expected that the desired estimate should still be
obtained unless a particularly adverse choice is made.

Assume that Ck—l is a constant matrix of the form
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. - 2 ;
G 9y I {(34)
where I is the identity. Next replace the matrix x

T p
X xk by its

average. If white Gaussian noise is used for the input, x(t),

the appropriate substitution is
E[x, Xi] = 02 1 (35)
k 7k X :

Substituting in (32) and manipulating yields

4y = ak—l * 2 1 o 5 Xk €y - (36)

X

o)

If the observation error is small so that o? << G; g?
n X

further simplification may be achieved so that (36) becomes
(37)
With of = 1/2u this is the LMS algorithm developed by Widrow.

Comparison of the FIR Algorithms

A comparison of the convergence characteristics of these
two algorithms shows the superior performance of the least
squares approach. The models used for comparison are that of
Figure 1 for the LMS algorithm and Figure 2 for the least
squares algorithm. Each adaptive system had five coefficients
or weights. The "unknown" system was a four weight FIR digital

filter characterized by the difference equation

sla) = ag x(k} + a; x(k-1) + a, x(k-2) + a5 x(k-3)

0.50 a 0.50
0.50 az 0.50

with a

#t
]
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This represents a low pass filter.

The algorithms were simulated on an TBM System 370,  The
programs used are given in Appendix A.  The input to the system
was white Gaussian noise generated by the standard IBM Scientific
Subroutine Gaussian number generator. The noise had zero mean
with o% = 0.1. The value of u in (31) was chosen as L b
to achieve minimum convergence time [1,2,3].

The results shown in Figures 3 and 4 are the average of
five simulations using different input sequences. Figure 3
represents the average squared error curves for both algorithms.
The least squares algorithm converges much more rapidly than.
the LMS algorithm. This rapid convergence characteristic
allows the least squares algorithm to track changes in the
unknown system within a few iterations while the LMS algorithm
requires many iterations to adjust. To demonstrate this

tracking ability the unknown was changed from (38) to

0.75 aq 0.50

a9

&9

(39)

6.25

0.25 ag

after 100 iterations. The resulting squared error curves are

shown in Figure 4.
C. INFINITE IMPULSE RESPONSE SYSTEMS

A recursive form is used for the infinite impulse response

(IIR) model. Let

sila) = 3

=
Il 1
<

J
a, x(k-2) + } b. sk_.(a) . (40)
it !
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In this case, the output of the system not only depends on the

input but also on the previous outputs. By defining vectors

T

' = [ag a) «++ap by b, ee b] (41)

and
B = [X(K) x(k-1) +-v x(k-L) s; j(0) - s, ()],  (42)
sk(a) can be expressed in vector form as
. LT
sk(a) = Bk o . (43)

A Least Squares Algorithm

Using (41), (42) and (43) the derivatives of sk(a) are

— _ _
9s, (o) 35y _+ (&) 9s, _(a)
KT k) + bl_mk_i___ Poeee 4 bJ__E_im“*
Bao _ Ba0 aao
3s (a) 9s (a) oS (o)
k x(k-L) + b, K-1 #oeer b K7J
BaL aaL BaL
V. sy (a)= = (44)
o7k 35, () o5y 1 (@) 35,5 (o)
sk_l(a) + bl + + bJ
aby 3bq abl
9s. (a) 0s (a) 9sy _7(a)
k Spq(@) by KoL T ey
ab ] 3b 3b;

or written more compactly

VS = B + b Vs (o) *-ee + b Vs (o) . (45)
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Using (43) and (45) together with (11), (15) and (21) yields
a least squares algorithm for the IIR model. Although the
algorithm does involve matrices, it is free from matrix
inversions and not unduly complicated. It differs from the
FIR case 1n that calculations of both the filter output and
its derivatives are retained for calculations of subsequent
estimates.

For many physical systems which have infinite or
extremely long impulse responses, a good FIR model would
require a very large number of weights, i. e., a vector o
of large dimension would be needed. In such cases it is

expected that implementation of the IIR model will be simpler.

Reduction to the Case of Stearns

The first work with an IIR model was that of Stearns [4].
As in the case of Widrow, Stearns used the method of steepest
descent. By assuming a constant covariance matrix Stearns'
algorithm can be derived from the least squares algorithm as
given by (8) and (9). Let C be a constant diagonal matrix
and replace the inverse in (8) by o2 C. TFor the IIR case

n

this gives

~ ~

G = 8y 4 + C [vask(ak_l)] ek . (46)
Now, if the derivatives are formed using the recursion

+ b.V s + b.V s

V8 = By * by¥ sy 5[0y o) * we- 7aSk-000 1.5 >

(47)

the result is an algorithm essentially the same as that of
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Stearns. The constants of the diagonal matrix are selected
for convergence and stability.
Another suboptimum but computationally simpler version
has been suggested by Feintuch[5]. In this case the derivative

is approximated by only the first term of (47), VS = Bk‘

A New IIR Algorithm

Equation (40) may be written in an FIR form by substituting
previous values of sk(a) in the second summation of (40). These
previous values are derived from (40) itself by replacing k

with k-1, k-2, etc. This yields [11]
s, (a) = ] c_ x(k-n). (48)
i n=0 I

The cn's are functions of the components of a as defined in
(41).
Vask(a) becomes a function only of o, the filter parameters,

and Xy, the inputs. A method for determining the c, and

n
Vask(a) has been developed and is given in Appendix B.
For the case L=J=2 in (40) and using the first five terms

of the summation

1 4, d; d, dg
0 1 dy d; d,

VSk(&k_l] =10 0 1 dy dyf [Xg] (49)
0 d; d¢ dy dy
0 0 dy d¢ dg




where

0 1
2
d; = b] + b,
d, = b3S + 2b_b
2 1 12
. il 2 2
dg = by + 3bib, + bj
d4 = aO
ds = al + Zblao

_ 2
d6 = SblaO + 2b2a0 + 2b1a1+ az
_ 3 b 2

2b12) a.+ 2b,a.+ 2b,a

1 271 172

With this algorithm as defined by (46) and (49) VS is
computed each iteration without using previous values of
itself in the computation. In the systems modeling application
discussed in the next section five terms are needed in (49)
to achieve results that are equivalent to those of Stearns'

algorithm.

Comparison of IIR Algorithms

The models used for comparison are the same as those used
for the FIR case with Figure 1 representing Stearns' algorithm,.
Each adaptive system was a five weight IIR system with two
zeroes and three poles. The input sequences were identical to
those used in the FIR case. The "unknown'" system was a five

weight IIR low pass filter characterized by
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sk(a) = aox(k) + alx(k—lJ + azx(k-Z)

# blsk_l(a) + bzsk_z(a] (50)

where

ag = 1.00
a; = 0.00
a, = 0.49
bl = 0.50
b, = 0.06

The programs used for simulation on the IBM 370 appear
in Appendix A. The value of C in (32) was chosen for minimum
convergence time. The results shown in Figures 5 and 6 are
an average of five simulations.

Figure 5 gives average squared error curves for all three
algorithms. The new suboptimum algorithm uses five terms of
the infinite series in its computation. The least squares
algorithm converges much faster than the other two algorithms.
This allows the least squares algorithm to track changes in
the unknown much faster than the other algorithms. Figure 6
shows average squared error curves for the least squares

and Stearns' algorithms when the unknown (50) is changed to
a, = 0.90

a; = 0.00
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CHAPTER TV
CONCLUSION

The method of least squares has been applied to derive
an algorithm for modeling an unknown system with an adaptive
digital system. Although this algorithm requires matrix
operations, no matrix inversions are needed. Implementation
of the least squares algorithm in software requires more
statements than some previous algorithms but is straightforward.
A comparison of the least squares algorithm with previous
algorithms shows the superior convergence characteristics of
the least squares approach. In addition the ability of the
model to adapt to changes in the unknown system is superior
to that of models based on previous algorithms.

A new IIR suboptimum algorithm that does not require
storing previous values of the gradient was developed and
compared to previous IIR algorithms. These comparisons
showed equivalent convergence characteristics were achieved
with five terms of the infinite sum for the new algorithm.

It has also been shown that the previous algorithms, both
FIR and IIR, can be derived as special cases of the least
squares approach.

Further study is needed in the area of modeling larger
systems with adaptive digital systems. An anticipated problem
in this area is the effect of coefficient round off error.
Another area where the least squares approach should find

many applications is that of adaptive noise cancelling.

26
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APPENDIX A

FORTRAN PROGRAMS

This appendix contains copies of the FORTRAN programs

used to simulate the modeling of unknown systems as described

in Chapter 3. The WATFIV compiler was used. Work was done

on the Kansas State University IBM 370 system. The following

five programs are included.

Lo
2.

Five Weight LMS Algorithm.

Five Weight FIR Least Squares Algorithm.
Stearns' Algorithm. |
Five Weight IIR Algorithm.

Five Weight TIR Least Squares Algorithm.
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l. FIVE WEIGHT LMS ALGORITHM

DIMENSION X(500)

REAL MU

FORMAT(' ", 1643F12.44E12.4,45F12.4)
FORMAT (5F5.3)
FORMAT(FBe4919,1442F7.4)
READ105s MU,y I1XeMy8,C
READLO& WO s WL W2 W3 4 Wi

DO 43 I=119

X{1)=0.EO

43 CONTINUE

45

10

DO 45 I=10,M

CALL GAUSSITIXyByCyW)

X{I)=W

ERR=0.E0

PO 10 I=10,M

N=I-9

WO=WO+MU*ERR*X (T-1)

Wl=W1+MU%ERR%X{1-2}

W2=W2+MUXERR*X(I-3)

W3=W3+MU*ERR*X (I-4}

Wa=W4+MUXERR*X(I-5]

YWOFX (T J4WLXX (I~1 ) +W2¥X( T2 J+W3IRX(I-3)+wWaorX( 1~ 4)
D=o5¥( X{I)#+X(I-1)+X{I-2)+X(1-3))
ERR=D-Y

ERR2=ERR*ERR
PRINT1024Ne X(I) Dy YyERRZ ;WO s WL ¢W24W3 4 W4
sTop

END
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2. FIVE WEIGHT FIR LEAST SQUARES ALGORITHM

DIMENSION X(500) 4A(8),B(8),D(8),F(8),C(8,8)4+E(8,8),¥Y(500)
102 FORMAT(' ',16,3F12.44El4.4,6F12.4)
104 FORMAT(19,1442F7.4414)
READ104+IXsMM,B8,CC NN
READ, ({CU{EsJ )y, J=14NN),I=14NN)
DO 10 I=1,NN ‘
10 A(I)=0.EQ

DO 43 1I=1,9

X(1)=0.E0
43 CONTINUE

DO 45 I=10,MM

CALL GAUSS{IX,BB,CC4W)
45 X{1)=W

DO 99 I=10,MM

NX=1I-9

S=A(L)*X{1)+A(2)eX(I~1)+A{3)%X(I-2)+A(4}*xX(I~-3)+A(5)*X{]1-4)

2= 5% (X(ID#X(I-1}+X(1-2}+X(1~3))

ERR=Z-35

ERRZ=ERR*ERR

GAMA=0.ED

DN 15 N=1,4NN

F(N)=0.EO

BIN)=0.ED

15 D(N}=0.EOQ

Y(I)=X(I)

Y(I-1)=X(1I-1)

Y{I-2)=X(I-2)

Y(I-4)=X(I-4)

Y(I-3)=X(I-3)

DO 60 N=1,4NN

D3 50 M=1,NN

50 FUN)=F(N)+C (M, NIXY(I41-M)*Y(I+1-N]
60 GAMA=GAMA+F(N)

DO 30 K=1,NN

D8 20 J=1,NN

ALK)=A(K)+ERR¥CIK, S} *Y(T+1-J)/GAMA

B(K)=B(K)+C(KyJI*Y(I+1-J)

29 D(K)=D(KI+C{J,K}*Y{T1+1-J)
30 CGNTINUE

DO 46 K=1,4NN

DD 55 J=1,NN

E(KyJ)=B(K)*D(J)

55 CUKyJ)=CUK,J)-E(KyJ) /GAMA

46 CONTINUE

47 CONTINUE

99 PRINT102,NX¢X( L) +Z+S+ERR2,A(1) 4A(2),A(3) sA(4),A(5)
STOP
END
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3. STEARNS' ALGUGRITHM

DIMENSIIN X(300),Y(200) ,ALFAL(300) ,ALFA2)300},BETAQ(300),
*BETAL(300),BETAZ2(300)
REAL MUL . MU2

101 FORMAT(5F5.3)

102 FORMAT(® " ,1643FLl2.4+E14.4,5F12.4)

104 FORMAT(2F844319914,2F7.4)
READLO4yMUL,MU2, IX M4y8B,C
READ101,A0,A1,A2,B1,B2
DO 46 1I=1,9
X{IV)=0.E0
Y{1)=0.EDQ
BETAQ(I)=0.EQ
BETAL{I)=0.EOQ
BETA2(I}=0.EOD
ALFAL(1)=0.E0

46 ALFA2{I1)=0.ED
DD 44 I=10.M
CALL GAUSS(T1XsByCyW)

44 X(1)}=MW
ERR=0.E0
DO 10 1=10,M
N=1-9
Y(I)=A0RX(T)+ALZX(I-1)+A2%X{ I-2)+B1*Y(I-1)}+B2%Y(I-2)
D=X(1) =498 X{I=2)#.5%Y (11 )+, 06%¥(1~2)
ERR=D=-¥Y( 1]}

ERRZ=ERR*ERR
ALFAL{I)=Y(I-1)+Bl*ALFAL(I-1)+B2¥%ALFAL(I-2)
ALFA2(I)=Y(I-2)+B1#ALFA2({I-1)+B2*ALFA2Z{1-2)
BETAQ{I)=X(I)+B1*BETAD(I-1)+B2¥BETAQ(I-2)
BETALL{I)=X{ I-1)+B1*BETAL(I-1)+B2%BETAL(I-2}
BETA2(I)=X(1-2)+B1*BETA2(I-1)+B2*BETA2(1-2)
B81=A1+MU2HERR*ALFAL(]I)
B2=B2+MU2*ERR#*ALFAZ(T)
AD=AD+MUL*ERRYBETAD(I)
Al=A1+MUL*%ERR*BETAL(I)
A2=A2 +MUL*ERR*BETA2( 1)

10 PRINT102 4Ny X(I)4DyY(I),ERR2,A04A14A2,81,B2
STOP
END
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4e FIVE WEIGHT TIR ALGORITHM

DIMENSION X(500),S(500)

REAL K1lysK23K3,K44K5

FORMAT (5F10 %)

FORMAT(' *,16,3F12.4+514.4,5F12.4)
FORMAT(I9,14,2F7.4)

READ101 4Kl 4K24K3 y K&, K5

READ101,A0,A1,A2,B1,B2

READLO4, IXsMeB,yC

DO 44 I=104M

CALL GAUSS({1XsB+CoNW)

X(I)=W

DO 42 1I=1,9

X{1)=0.EO

S(1)=0.ED

CONTINUE

DO 10 I=104+M

N=1-9

S{T)=A0RX( T)H+ALAX(I-1)+A2%X(1-2}+B1*%S{I-1}+B2*S(I-2]
D=X(I1)—a49%X(I-2)+.5%S{I-1)+.06%S5(I-2)

ERR=D-S( 1)

ERR2=ERR*ERR

Ci=B1%*2+B2

C2=B1**3+2,%B1*82

C3=A1+2,.%B1%*A)

C4=3.%¥BL*x¥2xA0+2 ,¥B2*xA0+2,*BLl*AL+AZ
C5=B1%%4+3 ., %B1¥*2%B2+B2%*2

CH=b o ¥BL*%3XAD+6 ,#B2¥BIXAQ+3 . kBLA¥2XAL +2 *B2*AL+2.%B 1%A2
C7=A0

AD=AD+K1*ERR*{ X(I)+B1*X( I~ 1) +C 1#X[I-2)+4C2*X(1-3) +C5%X(I-4)}

AL=AL+K2*ERR¥{X(I-1)+B1*X(1-2)+C1*X(I-3)+C2%X(I-4))
A2=A2+KIXERR*F( X(I-2)+B1%X{I-3)+C1lkX(1-4)})
B1=RBl1+K4*ERR*X{CTHX(I-1)+C3#X(I-2}+C4*X{I-3)+L&6%X(I-4))
B2=B2+KSXERR*X{CT%X(1-2)+C3%X (1-3 }+C4*X(I-4))
PRINT102,NeyX(I1)4D,S(1),ERR2,A0,A1,A2,B1,B2

STOP

END
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5. FIVE WEIGHT IIR LEAST SQUARES ALGORITHM

DIMENSION X(500),A{8),8{(8),0(8),F(8),0{8,8),E(8,81,Y(500)
FORMAT(" " 416,3F12.49E14.4+6F12.4%)
FORMAT(I9,1442FT4,14)

READIO4, IX,MM,B8,CC,NN
READ({C(14d)sJ=1,NN),I=1,NN)

DO 10 I=1,NN

A{IY=0.EO

DO 43 I=1,.+9

X{1)=0.E0Q

CONTINUE

DO 45 I=10,MM

CALL GAUSS(IX,BBsCCyW)

X(1)=W

S1=0.E0

$=0.E0

DO 99 I=10,MM

NX=1-9

$2=51

S1=S
S=A(L)EX(IY+A{2)EX(TI-LI+A( B RX(TI-2)+A(4)*S1+A(5) *52
I=Xl1 ) =4O X{[~2)+.5%51+,06%S52
ERR=7-5

ERRZ2=ERR*ERR

IF{ERRZ2.LT.1.E-13) GO TO 47
GAMA=0D,.EQ

DO 15 N=1,4NN

F(N}=0.EOD

B(N)=0.EOQ

D{N}=0.E0Q

Y(I}=X{(1)

Y(I-1)=X(I-1)

Y{I-2)=X{1-2)

¥(1-3)=S1

Y(I-4)=52

DO 60 N=1,NN

00 50 M=1,NN

FIN)=F(N}+C{M NIRY(T+1-M)%Y( I+1-N)
GAMA=GAMA+F (N}

DO 30 K=1.NN

00 20 J=1,NN
A(K)=A(K}+ERR*C(KyJ}*Y{I+1-J)/GAMA
BIK)=B(K)+C (K JIXY(I+1-J})
D{K}=D(K}+C (JoK)EY{I+1-J)

CONT INUE

DO 46 K=14,NN

DO 55 J=1,NN

E(KsJ)=BIK}=*D(J])
CUKeJ)=CUlKsJ)-E(K,J)/GAMA

CONTINUE

CONTINUE

PRINTL102 sNXX{1) sZ,5,ERR25A(1)A(2),A(3)sA(4),A(5)
STOP

END



APPENDTX B

EXPANSLON OF AN [IR S5YSTEM
[N TERMS OF FIR SYSTEM PARAMETIERS

The equation

J
sy (@) a, x(k-2) + _Z bj sk_j(a) (B1)

I B

2=0
represents an IIR model for a system. This can be written

in an FIR form as [11]
s (0) = ¥ ¢, x(k-n) . (B2)
n=0

The expression for Vask(aj formed from (B2) does not
contain previous values of itself as does the V sk(u) derived
from (Bl). To evaluate sy (o) derived from (B2) previous values
of sk(a) are substituted into (B1l). These previous values
are derived from (B1) by replacing k with k-1, k-2, etc.

Substituting for sk_l[a) in (B1l) yields

It

sk(a) aox(k) + alx(k~1) + ...+ aLx[k—L)

+ bl[aox(k-l) + alx(k—Z) + wsm # aLx(k-L—l)

J k-J-1

1 k- 2(&) * b s (a) + *++* + b_s ()]

) + b s (a) + e+ bJsk_J(aJ ; (B3)

bzsk_z(a
Continued substitution for Sk-Z(a)’ sk_s(a), etc. yields
an expression that contains terms like Sk—J~m(aj where m>1.

Assuming the system has not been functioning for all time a

point will be reached where all terms containing a previous
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value of the output will be identically zero and the present
output will be cxpressed in terms of the inputs and the system
parameters as in (B2).

For the case L=J=2 in (Bl)
sile) = aox(k) + alx(k~1) + azx(k-ZJ + blsk_l(a)
+ bzsk_z(a) (B4)
substituion for first sk_l[a) and then sk_z(u) yields

sk(a) = aox(k) 4 alx(k—l) + azx(k-ZJ

+

bl aox(k-l) + alx(k—Z) # azx(k—3)

b

+

1[aox(k-2) + alx(k-S) + azx(k-d)]

+ bZSk—B(a) + bz[aox(k—Z) + alx(k-E)
+ azx[k—4) + blsk_s(a) + bzsk_4(a)] " (B5)

After substituting for sk_3(a) so that all terms containing
x(k), x(k-1), x(k-2) and x(k-3) will be contained in the

expression for sk(a) (B5) becomes

i}

sk(u) aox(k) + [a, + blao]x(k-lj

1

+ [32 + bja; ¢+ b%ao + bzao 1x(k-2)

-+

[bla2 + bZa, + 2b

131 + b,b,a, + bzblao]x(k-S)

2% 129%q

+ R (B6)

where R is the additional terms not involving x(k), x(k-1),
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x(k-2) and x(k-3). [nspection of (B6) and (B2) immediately

yields

= 2
Cz az + bla1 + bZaD + blaO
= 2
Cz = bla2 + bla1 + 2b2a1 + szblaO g (B7)

Additional ci's can be generated by defining a permutation

function Pi(b) such thatr

Pi(b) = A sum of products of the form bmbn"' where
m+n+...=i, The sum is to include all permutations
of the product. Po(b) = 1 by definition.

For example let J=2 in (B1). The product permutations possible

are:
by bzb1 blbzbl b2b2b2
bibq blblbl bzblb2
blb2 blblbz bzbzbl
This gives
Po(b) =1
Pl(bJ = bl
P,(b) = b2 + blb1



_ _ .3

P(b) = bb, + b,b, *+ bbb =b] + 2bb,
Lo 12 2 4

P,(b) = by + 3b bl + b]

Using this notation gives

sk(u) = PO a, x(k) + [P0 a, + P1 ao]x(k-l)

+ [P0 a, * P1 a; + Py ao]x(k-ZJ AR (B8)
or
Se@ = I TL o py(®) aplxticd) (B9)
m+n=j

To form Vask(a) the derivatives of sk[u) with respect to o

must be formed. Using (B9)

3sq ()
__E_d_ = Pox(k) ¥ Plx(k~1) + P x(k-2) +
Bao 2
95, (a) o0
kT oy b x(k-5)
da,  j=n 71
95, (a) 5 aP_(b)
K e T Ay x(k-j) . (310)
aby j=0 m,n Bbi
m+n=j

Computation of the first few terms of the summation for the

last equation in (B10) for the case J=2 yields
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5 ‘
PD(bJ . 3P (b) .
i R i
3by ab,
3P, (b) BPz(b]
e —— = zbl ———— = 1
abl ab,
3P_(b) 3P, (b)
B . 3b§ + 2b, 3 . 2b,
3by 3b,
3P, (b) 3 3P, (b)
A b+ 6bb A Sbi + 2b

The complete computation of Vask(u) involves infinte sums,
therefore truncation is required 1in practical applications.
For L=J=2 in (B1l) and using the first five terms of the infinite

sums gives the following expression for Vusk(a).

14, d; 4, d
0 1 dy dy d,
Vyse(@) = 1o 0 1 dy d | [X] (B11)
0 dy d. dg 4,
0 0 4, 4. d¢

where



(S N R

a, + 2b,a

1 170

az + 2b1a1

Zbla2 + 2b2a1

+ szaD

+ Sb%a

1

+ 3b2a

1°0

+ 6b

2b14g

+ 4b%a

0
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The method of least squares is applied to derive an
algorithm for modeling an unknown system with an adaptive
digital system. Both finite impulse response (FIR) and
infinite impulse response (IIR) models are considered. A
new suboptimum algorithm is also obtained for the IIR model.
In comparisons with previously published algorithms, the
least squares algorithm is found to converge faster. This
characteristic enables the adaptive system to track changes

in the unknown system with increased speed.



